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Abstract

We study weak convergence of a sequence of point processes to a scale-invariant
simple point process. For a deterministic sequence (zn)n∈N of positive real numbers
increasing to infinity as n→∞ and a sequence (Xk)k∈N of independent non-negative
integer-valued random variables, we consider the sequence of point processes

νn =

∞∑
k=1

Xkδzk/zn , n ∈ N,

and prove that, under some general conditions, it converges vaguely in distribution to
a scale-invariant Poisson process ηc on (0,∞) with the intensity measure having the
density ct−1, t ∈ (0,∞). An important motivating example from probabilistic number
theory relies on choosing Xk ∼ Geom(1−1/pk) and zk = log pk, k ∈ N, where (pk)k∈N
is an enumeration of the primes in increasing order. We derive a general result on
convergence of the integrals

∫ 1

0
tνn(dt) to the integral

∫ 1

0
tηc(dt), the latter having

a generalized Dickman distribution, thus providing a new way of proving Dickman
convergence results.

We extend our results to the multivariate setting and provide sufficient conditions
for vague convergence in distribution for a broad class of sequences of point processes
obtained by mapping the points from (0,∞) to Rd via multiplication by i.i.d. random
vectors. In addition, we introduce a new class of multivariate Dickman distributions
which naturally extends the univariate setting.
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Convergence to scale-invariant Poisson processes

1 Introduction

Consider a locally compact separable metric space S with Borel σ-algebra S. Let
M(S) denote the space of all locally finite non-negative measures on S. This space is
endowed with the vague topology generated by assuming continuity of the integration
maps µ 7→ µf =

∫
S
f(x)µ(dx) for all f from the family ĈS of bounded non-negative

continuous functions on S with relatively compact support. A random measure ξ is
a random element in M(S), equivalently, ξA = ξ1A is a random variable for each
relatively compact Borel set A. The associated notion of convergence in distribution of

random measures is called vague convergence in distribution, denoted hereafter by
d−→,

see [11, 12]. When considering point processes, we restrict ourselves to the subclass
N (S) ⊂M(S) of counting measures (that is, taking values in N0, the set of non-negative
integers). A random measure ξ is said to have a finite intensity if E(ξA) <∞ for every
relatively compact Borel set A.

In this paper, we are particularly interested in vague convergence in distribution
to scale-invariant Poisson processes. A random measure ξ on S is scale-invariant if its
distribution is invariant with respect to a group of scaling transformations of S. Even
though convergence to stationary Poisson processes has been extensively studied in the
literature, studies regarding convergence to scale-invariant processes seem to be rare.
Distributional properties of scale-invariant Poisson processes on the half-line (0,∞) are
surveyed in [2]. While a simple transformation relates a scale-invariant Poisson process
on (0,∞) to a stationary Poisson processes on the line, such a transformation is not
readily available in general Euclidean spaces.

Throughout the sequel, we take S = Rd \ {0}, d ∈ N, that is, the Euclidean space
with the origin removed. On the half-line, for c > 0, we denote by ηc the scale-invariant
Poisson process on (0,∞) with intensity measure ct−1dt, and we will simply write η for
η1.

Scale-invariant processes naturally arise as limits of point processes when a scaling
is applied to the support points of the point processes. For measures, this amounts to
scaling of their arguments, namely, the scaling of ν ∈M(S) by t > 0 is defined as

Ttν(A) = ν(t−1A), A ∈ S. (1.1)

We call this operation intrinsic scaling. In Section 2, we show that random measures
when intrinsically scaled, naturally yield scale-invariant measures as limits. As an
application, we generalize a result in [10] proving that the intrinsically scaled process
of jump sizes in a pure-jump subordinator converges vaguely in distribution to a scale-
invariant Poisson process, and as a consequence, the sum of small jumps in the process
converges to a Dickman distribution.

In this paper, our basic objects of interest are point processes on (0,∞) of the
following type. Let (zk)k∈N be a sequence of positive deterministic numbers with zn ↑ ∞
as n→∞. For a sequence (Xk)k∈N of independent random variables in N0, define the
point process

ν =

∞∑
k=1

Xkδzk ,

where δx denotes the Dirac measure at x. Rescaling the support points of ν by (zn)n∈N
yields the sequence of point processes

νnA = Tznν(A) = ν(z−1n A), A ∈ S, n ∈ N. (1.2)

In Section 3, we study the convergence of such processes; these results are extended to
point processes in multidimensional Euclidean spaces in Section 4.
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Convergence to scale-invariant Poisson processes

Our interest in the scale-invariant Poisson process ηc also stems from its connection
to the Dickman distributions. It is well known that the sum of points of ηc lying in
the interval (0, 1) is distributed as a generalized Dickman random variable denoted
hereafter by Dc for c > 0, with D = D1 being a standard Dickman random variable. The
generalized Dickman distribution with parameter c > 0 can be defined as the unique
non-negative fixed point of the distributional transformation W 7→W ∗ given by

W ∗ =d Q
1/c(W + 1),

where =d denotes equality in distribution and Q is a uniformly distributed random
variable on [0, 1] independent of W . It was introduced in the work of Dickman [13] in the
context of smooth numbers and since then has appeared, sometimes curiously, in various
areas including probabilistic number theory [9, 23], minimal directed spanning trees
[8, 21], quickselect sorting algorithm [15, 16] and log-combinatorial structures [4, 6].

Given the various application, not surprisingly, there have been many works studying
weak convergence to Dickman distributions [16, 21, 23] and, more recently, Stein’s
method has been used to provide non-asymptotic bounds for Dickman approximations
[1, 9, 15]. In [22], Pinsky provided some general conditions under which certain randomly
weighted Bernoulli sums converge to a generalized Dickman random variable. But, to
the best of our knowledge, there has been no other attempt to characterize the domain
of attraction of the Dickman distributions. Elaborating on [3], one aim of this work is to
identify a broad class of random variables which asymptotically behave like a Dickman
random variable. To do this, we make use of the fact that

Dc =d

∫ 1

0

tηc(dt) =
∑

t∈ηc∩(0,1)

t.

Hence, if a sequence of point processes converges vaguely in distribution to ηc, then,
under certain natural additional conditions, sums of their points in the interval (0, 1)

converge in distribution to the Dickman random variable Dc. Thus, our approach via
scale-invariant Poisson processes yields a new tool to prove Dickman convergences and
provides useful insights into why such convergences occur. We note here that a similar
approach concerning limit theorems for point processes in relation to the behaviour
of sums of their points has previously been discussed in [5]. Also, the simpler case of
Poisson processes converging to ηc on (0,∞) was considered in [10]. Scale-invariant
Poisson processes also arise in limit theorems for records, see e.g. [7] and references
therein.

In Section 5, we characterize scale-invariant Poisson processes in general dimension
d, and show that any such process can be obtained by independently multiplying each
point of a scale-invariant Poisson process on (0,∞) with independent and identically
distributed unit vectors in Rd. Such a characterization naturally leads to a multivariate
generalization of the Dickman distribution. Analogous to the univariate case, these
multivariate Dickman distributions are fixed points of a distributional transform

W ∗ =d Q
1/c(W + U),

where Q is a uniform random variable on [0, 1] and U a unit random vector in Rd,
independent of everything else.

Some results concerning weak convergence of general point processes (not necessar-
ily scale-invariant) are collected in the Appendix.

2 Intrinsic scaling of random measures

Let Ŝ ⊆ S denote the family of relatively compact Borel sets in S = Rd \ {0} for some
d ∈ N. A subclass U ⊂ Ŝ is called dissecting if every open set can be expressed as a
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Convergence to scale-invariant Poisson processes

countable union of sets from U and every set in Ŝ can be covered by finitely many sets
in U . Recall that a subclass I ⊂ Ŝ is a ring if it is closed under proper differences and
under finite unions and intersections. In the special case of (0,∞), we will often take
the dissecting ring U to be the family of finite unions of semi-open intervals (a, b] with
0 < a < b <∞.

Let (ξn)n∈N be a sequence of point processes in S. It is well known that the vague

convergence in distribution ξn
d−→ ξ for a simple ξ follows from the one-dimensional weak

convergences ξnA
d−→ ξA for all A from the dissecting ring

U ⊂ ŜEξ = {B ∈ Ŝ : E ξ(∂B) = 0},

where ∂B denotes the boundary of B, see e.g. [19, Chapter 4]. A measure µ ∈M(S) is
said to be scale-invariant if Tcµ = µ for all c > 0, where Tc is defined at (1.1). The next
result shows that the limit of the sequence of random measures obtained by intrinsic
scalings of a given random measure ν is necessarily scale-invariant under some mild
conditions on the normalizing constants. For deterministic measures, similar results are
known, see e.g. [20, Theorem 3.1]. We write Sd−1 for the d-dimensional unit sphere and
Br for the closed ball of radius r > 0 around the origin.

Lemma 2.1. Let (sn)n∈N be a sequence of positive real numbers increasing to infinity
with limn→∞ sn−1/sn = 1, and let µ, ν ∈M(S) be random measures with finite intensities

such that Tsnν
d−→ µ as n → ∞. Then Ttν

d−→ µ as t → ∞, and the limiting measure µ is
scale-invariant.

Proof. Since µ has finite intensity, the family of sets

U =
{
A× [a, b] : E µ[∂A× (0,∞)] = E µ[∂(Ba) ∪ ∂(Bb)] = 0, A ⊆ Sd−1, 0 < a < b <∞

}
forms a dissecting semi-ring. Hence, the first claim will follow (see [17, Theorem 1.1])
by establishing that

(Ttν(Ai × [ai, bi]))i∈[k]
d−→ (µ(Ai × [ai, bi]))i∈[k] as n→∞ (2.1)

for all k ∈ N and Ai × [ai, bi] ∈ U , i = 1, . . . , k.
To simplify the argument, assume that k = 1; for general k ∈ N, one can argue

similarly. For t > 0, let n(t) be the integer such that sn(t) < t ≤ sn(t)+1. Fix a Borel set
A ⊆ Sd−1 and 0 < a < b <∞ with A×[a, b] ∈ U and ε ∈ (0, b−a). Since limn→∞ sn−1/sn =

1 and n(t)→∞ as t→∞,

a

sn(t)+1
>
a− ε
sn(t)

and
b

sn(t)+1
>
b− ε
sn(t)

for all sufficiently large t. Hence, for t large enough, we have

Ttν(A× [a, b]) ≤ ν(A× [a/sn(t)+1, b/sn(t)]) ≤ Tsn(t)
ν(A× [a− ε, b]).

A similar argument yields a lower bound, so that

Tsn(t)
ν(A× [a, b− ε]) ≤ Ttν(A× [a, b]) ≤ Tsn(t)

ν(A× [a− ε, b])

for all sufficiently large t. Since n(t)→∞ as t→∞ and Tsnν
d−→ µ as n→∞, we obtain

that

lim sup
t→∞

P{Ttν(A× [a, b]) ≤ x} ≤ P{µ(A× [a, b− ε]) ≤ x}
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and

lim inf
t→∞

P{Ttν(A× [a, b]) ≤ x} ≥ P{µ(A× [a− ε, b]) ≤ x}

for x ≥ 0. Since E µ[∂(Ba) ∪ ∂(Bb)] = 0,

lim
ε→0

P{µ(A× [a, b− ε]) ≤ x} = lim
ε→0

P{µ(A× [a− ε, b]) ≤ x} = P{µ(A× [a, b]) ≤ x},

which, together with the two inequalities above yield (2.1), proving the first claim.
Finally, let v : S → R be a bounded continuous function with relatively compact

support. For c > 0, since Ttν
d−→ µ as t→∞,

lim
t→∞

TcTtν(v) = lim
t→∞

∫
S

v(x)Tctν(dx) = lim
t→∞

∫
S

v(cx)Ttν(dx) =

∫
S

v(cx)µ(dx) = Tcµ(v),

which implies that

TcTtν
d−→ Tcµ as t→∞.

On the other hand, TcTtν = Tctν converges vaguely in distribution to µ as t→∞ by our
assumption. Hence we obtain Tcµ = µ, proving the scale invariance of µ.

The following theorem proves Dickman convergence for the sums of small jump sizes
in a pure-jump subordinator; we note here that the Dickman limit result is not new and
has been proved in [10]. We prove a stronger result that the scaled point process of
jump sizes converges to a scale-invariant Poisson process on (0,∞).

Let Y = (Y (t))t≥0 be a pure-jump subordinator with infinite Lévy measure σ and for
ε > 0, let Yε be the process obtained by removing the jumps of size larger than ε in the
Lévy-Ito decomposition of Y . For t > 0, let Πt denote the point process of jump sizes
occurring in the time interval [0, t]. The scaled process T1/εΠt consists of the points of Πt

scaled by ε. Recall, Dc denotes a Dickman distributed random variable with parameter
c > 0.

Theorem 2.2. If ε−1
∫ ε
0
xσ(dx)→ c > 0 as ε→ 0, then for any t > 0,

T1/εΠt
d−→ ηct as ε→ 0.

Moreover,

ε−1Yε(t)
d−→ Dct as ε→ 0.

Proof. Arguing as in the proof of [10, Theorem 2.1], letting ψ and ψε, ε > 0 be the
measures given by ψ(dx) = 1(0,1](x)cdx and ψε(dx) = x ·T1/εσ(dx) = xσ(εdx) respectively,
for any p ∈ (0, 1), we have

ψε((0, p]) =

∫ p

0

xσ(εdx) =
1

ε

∫ pε

0

zσ(dz)→ cp = ψ((0, p]) as ε→ 0.

By Lemma A.2,

T1/εσ((p, 1]) =

∫ 1

p

x−1ψε(dx)→
∫ 1

p

x−1ψ(dx) = c log(1/p) as ε→ 0,

which yields that the Poisson process on (0,∞) with intensity measure T1/εσ converges
vaguely in distribution to ηc as ε→ 0. Since Y is a Lévy process with Lévy measure σ,
the jump process Πt is distributed as a Poisson process on (0,∞) with intensity measure
tσ; this proves the first claim.
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Convergence to scale-invariant Poisson processes

Finally, note that ε−1Yε(t) =
∫ 1

0
x (T1/εΠt)(dx). To prove the last claim, by Lemma A.3,

it suffices to check that

lim
δ→0

lim sup
ε→0

E

∫ δ

0

x (T1/εΠt)(dx) = 0. (2.2)

Since Πt is a Poisson process with intensity measure tσ, we have that T1/εΠt is distributed
as a Poisson process on (0,∞) with intensity measure tT1/εσ. Thus, using the Mecke
equation in the first equality and that ε−1

∫ ε
0
xσ(dx)→ c as ε→ 0 in the third, we obtain

lim sup
ε→0

E

∫ δ

0

x (T1/εΠt)(dx) = lim sup
ε→0

t

∫ δ

0

xT1/εσ(dx)

= lim sup
ε→0

tε−1
∫ εδ

0

xσ(dx) = ctδ

which implies (2.2), concluding the proof.

3 Convergence to scale-invariant Poisson processes

Now we move our attention to proving convergence to scale-invariant Poisson pro-
cesses for sequences of general (not necessarily Poisson) point processes. The necessary
and sufficient conditions for vague convergence in distribution of point processes to a
simple point process given by Theorem A.1, when applied to νn given by (1.2) with ηc
being the limit, translate to the following simpler condition. For convenience, denote

q0k = P{Xk = 0} and q1k = P{Xk = 1}, k ≥ 1.

Condition 3.1. There exists c > 0 such that for all 0 < a < b <∞,

(i)
∏
k:azn<zk≤bzn q

0
k → (a/b)

c as n→∞.

(ii) lim infn→∞
∑
k:azn<zk≤bzn q

1
k/q

0
k ≥ c log(b/a).

Theorem 3.2. A sequence of point processes (νn)n∈N given by (1.2) converges vaguely
in distribution to ηc for some c > 0 as n→∞ if and only if (q0k, q

1
k)k∈N and (zn)n∈N satisfy

Condition 3.1.

Proof. Condition 3.1(i) for the dissecting ring composed of finite unions of semi-open
intervals is equivalent to condition (i) in Theorem A.1. Condition (ii) in Theorem A.1 is
equivalent to

lim inf
n→∞

1 +
∑

k:azn<zk≤bzn

q1k/q
0
k

 ∏
l:azn<zl≤bzn

q0l

 ≥ (a
b

)c(
1 + c log

b

a

)
,

which, given Condition 3.1(i), simplifies to Condition 3.1(ii), proving the result.

The next result concerns vague convergence to scale-invariant Poisson processes for a
large class of point processes νn of the form (1.2) and, as a consequence, establishes weak
convergence of sums of the points in (0, 1) of νn to a generalized Dickman distributed
random variable Dc. Note that such a convergence does not readily follow from the
vague convergence since ηc has infinitely many points in any neighbourhood of zero.

Theorem 3.3. For a monotone sequence of positive numbers (zk)k≥0 increasing to
infinity with limk→∞ zk/zk−1 = 1, let (Xk)k∈N be independent random variables in N0

with
q0k = (zk−1/zk)c and q1k = q0k(1− q0k)
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Convergence to scale-invariant Poisson processes

for some c > 0. Then the sequence (νn)n∈N defined at (1.2) converges vaguely in
distribution to ηc as n→∞. If, in addition, EXk = O(q1k), then

1

zn

n∑
k=1

zkXk
d−→ Dc as n→∞. (3.1)

Proof. Fix 0 < a < b <∞. Let M = inf{k : azn < zk ≤ bzn} and N = sup{k : azn < zk ≤
bzn}. Letting δn = azn − zM−1 and δ′n = bzn − zN , one has

zM−1
zN

=
a− δn/zn
b− δ′n/zn

.

Since limk→∞ zk/zk+1 = 1 and M →∞ as n→∞,

lim sup
n→∞

δn
zn
≤ lim
n→∞

zM − zM−1
zM

· zM
zn

= 0,

and a similar argument shows that lim supn→∞ δ′n/zn = 0. Thus,

∏
k:azn<zk≤bzn

q0k =
∏

k:azn<zk≤bzn

(
zk−1
zk

)c
=

(
zM−1
zN

)c
→
(a
b

)c
as n→∞.

Also,

lim inf
n→∞

∑
k:azn<zk≤bzn

q1k
q0k
≥ lim inf

n→∞

(
zn−1
zn

)c
lim inf
n→∞

∑
k:azn<zk≤bzn

zck − zck−1
zck−1

≥ lim inf
n→∞

∫ zcN

zcM−1

1

t
dt = c lim inf

n→∞
log

zN
zM−1

= c log
b

a
.

Hence, Condition 3.1 is satisfied and the first claim follows by Theorem 3.2.
If EXk = O(q1k), then there exists C > 0 such that EXk ≤ Cq1k for all k ∈ N. Denoting

by d·e the ceiling function and using the simple inequality that 1− (1− x)c ≤ 2dcex for
x ∈ [0, 1] in the penultimate step, we have

E

∫ ε

0

tνn(dt) =
1

zn

∑
k:zk≤znε

zkEXk ≤
C

zn

∑
k:zk≤znε

zkq
1
k

≤ C

zn

∑
k:zk≤znε

zk

(
1−

(
1− zk − zk−1

zk

)c)
≤ C

zn

∑
k:zk≤znε

2dce(zk − zk−1) ≤ C2dceε.

Therefore,

lim
ε→0

lim sup
n→∞

E

∫ ε

0

tνn(dt) = 0. (3.2)

Thus, invoking Lemma A.3 we obtain∫ 1

0

tνn(dt) =
1

zn

n∑
k=1

zkXk
d−→ Dc as n→∞.

Remark 3.4. Recall that X is a geometric random variable with parameter p ∈ (0, 1)

if P{X = m} = (1 − p)mp for m ≥ 0; we then write X ∼ Geom(p). For (zk)k∈N as in
Theorem 3.3, clearly Xk ∼ Geom(q0k) satisfies the conditions therein. We can also take
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the random variables Xk ∼ Ber(q0k) with q0k as in Theorem 3.3, i.e. Xk is a {0, 1}-valued
random variable with P{Xk = 0} = q0k. In this case, a similar proof shows that

νn =

∞∑
k=1

Xkδzk/zn
d−→ ηc as n→∞.

Since EXk = q1k, arguing like in Theorem 3.3, one can establish (3.1) in this case as well.

Remark 3.5. Even though under Condition 3.1 the sequence νn converges vaguely in
distribution to a simple process, it is not necessarily true that the Xk’s are {0, 1}-valued
almost surely for all sufficiently large n. Consider the sequence νn as in Theorem 3.3
with c = 1 and zk defined sequentially by letting z0 = z1 = 1 and zn/zn−1 =

√
n/(
√
n− 1)

for n ≥ 2. Since

zn =

√
n√

n− 1
zn−1 ≥

n

n− 1
zn−1 ≥ · · · ≥ nz1 = n,

Theorem 3.3 yields that νn
d−→ η as n→∞. Furthermore,

∞∑
k=1

P{Xk ≥ 2} =

∞∑
k=1

(1− q0k − q1k) =

∞∑
k=2

(1− zk−1/zk)2 ≥
∞∑
k=2

k−1,

which diverges. By the Borel-Cantelli lemma, Xk is strictly greater than 1 for infinitely
many k. However, after rescaling, the number of points with multiplicities more than 1
in any bounded interval [a, b] ⊂ (0,∞) converges to zero.

The processes in Theorem 3.3 do not necessarily satisfy (A.4), since only q0k and q1k
are specified there and one can allocate the rest of the probability on a large number to
make EXk sufficiently large so that (A.4) does not hold. Hence, an additional condition
like EXk = O(q1k) is essential. Note that, for Xk ∼ Geom(q0k), we have q1k = q0k(1− q0k) and

EXk = (1− q0k)/q0k = (1/q0k)2q1k = O(q1k),

since q0k → 1 as k →∞.

Next, we describe a sequence of point processes arising in probabilistic number
theory which satisfies Condition 3.1, and hence, converges to the scale-invariant Poisson
process η by Theorem 3.2 and the sums of points in (0, 1) converge to the standard
Dickman distribution. For an enumeration (pk)k∈N of the prime numbers in increasing
order, let Ωn denote the set of positive integers having all its prime factors less than
or equal to the nth prime pn. Let Mn be a random variable distributed according to
the probability mass function Θn with Θn(m) being proportional to the inverse of m for
m ∈ Ωn. Then one can show that (see e.g. [23])

logMn

log pn
=d

1

log pn

n∑
k=1

Xk log pk, (3.3)

where X1, . . . , Xn are independent with Xk ∼ Geom(1 − 1/pk) for 1 ≤ k ≤ n. The
distributional convergence of the right-hand side of (3.3) to the standard Dickman
distribution was proved in [23] with optimal convergence rates provided in [9] using
Stein’s method. We prove that this convergence is a consequence of the underlying
sequence of point processes converging to η.

Theorem 3.6. Let (νn)n∈N be a sequence of point processes defined at (1.2) with

zk = log pk and Xk ∼ Geom(1− 1/pk) for k ∈ N. Then νn
d−→ η as n→∞ and

1

log pn

n∑
k=1

Xk log pk
d−→ D as n→∞.
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Proof. For the first part, by Theorem 3.2, we only need to check Condition 3.1. Since
q0k = (1− 1/pk), for 0 < a < b <∞, by Merten’s formula (see e.g. [25, Prop. 1.51]),∏

k:azn<zk≤bzn

q0k =
∏

k:pan<pk≤pbn

(
1− 1

pk

)
→ a

b
as n→∞.

Hence, Condition 3.1(i) is satisfied. For Condition 3.1(ii), since q1k = p−1k (1 − p−1k ),
Merten’s formula yields that∑

k:azn<zk≤bzn

q1k/q
0
k =

∑
k:pan<pk≤pbn

1

pk
→ log

b

a
as n→∞.

Theorem 3.2 now yields the first part of the result.
For the second part, by Lemma A.3, it suffices to check (A.4). Since∑

pk≤n

p−1k log pk = log n+O(1)

(see [25, Prop. 1.51]), it follows that for ε > 0,

E

∫ ε

0

tνn(dt) =
1

log pn
E

∞∑
k=1

Xk log pk1{1<pk≤pεn} ≤
2

log pn
[log pεn +O(1)],

which converges to ε as n→∞. Thus, (νn)n≥1 satisfies (A.4), proving the result.

Remark 3.7. Let Xk ∼ Ber(1/(1 + pk)), where pk is the kth prime number and consider
(νn)n∈N defined in Theorem 3.6. One can argue as in the proof of Theorem 3.6 to show

that νn
d−→ η as n→∞ and

1

log pk

n∑
k=1

Xk log pk
d−→ D as n→∞.

As mentioned above, if the Xk’s are distributed as geometric random variables given in
Theorem 3.6, the induced distribution on Mn =

∏n
k=1 p

Xk

k is the reciprocal distribution
on the set Ωn of positive integers with all prime factors less than or equal to pn. If
Xk ∼ Ber(1/(1 + pk)), the induced distribution on Mn turns out to be the reciprocal
distribution on the set of square-free positive integers with all its prime factors less than
or equal to pn.

Next, we provide a few more examples that arise as special cases of the class of point
processes considered in Theorem 3.2 and in Remark 3.4.

Example 3.8. Let Xk ∼ Ber(1/k), k ≥ 1, be independent and νn =
∑∞
k=1Xkδk/n. In

this case, one can easily check that Condition 3.1 and (A.4) are satisfied. Hence,

νn
d−→ η and n−1

∑n
k=1 kXk

d−→ D as n→∞. This is a well-known example arising in the
context of counting sums of ‘records’ in a random permutation. For a uniformly random
permutation σ of {1, . . . , n}, let Sn be the sum of records, which are positions k such that
σ(k) > maxi∈[k−1] σ(i). One can check that Sn is indeed distributed as

∑n
k=1 kXk.

Example 3.9. Let νn be as in (1.2) with zk = log k and independent Xk ∼ Geom(1 −
1/(k log k)), k ∈ N. In this case, it is straightforward to check that the conclusions of
Theorem 3.3 hold. Heuristically, this is equivalent to Theorem 3.6, since, by the prime
number theorem, one has that the kth prime number pk is asymptotically of the order
k log k.

Example 3.10. Theorem 3.2 and Lemma A.3 apply if Xk’s are independent Poisson
random variables with mean 1/pk and νn is given by (1.2) with zk = log pk, k ∈ N.
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4 Convergence of uplifted point processes

In this section, we consider convergence of certain general point processes to scale-
invariant Poisson processes in dimension d. These point processes are obtained by
first taking a point process on (0,∞) and transforming (uplifting) its points to Rd by
multiplying them with random vectors taking values in S = Rd \ {0}. We start with a
point process ξ =

∑∞
k=1XkδZk

with finite intensity on the positive half-line. Let V be
a random vector in S with i.i.d. copies (Vk)k∈N which are independent of ξ. Define the
uplifted process ξV as

ξV =

∞∑
k=1

XkδVkZk
. (4.1)

We need to impose some conditions on ξ and V to ensure that ξV is locally finite on S.
To this end, throughout this section, we assume for any uplifted process ξV that ξ and V
satisfy

E

∞∑
k=1

Xk1{Zk‖Vk‖∈[a,b]} <∞ for all 0 < a < b <∞, (4.2)

where ‖ · ‖ denotes the Euclidean norm. Since ξ has a finite intensity, this condition is
always satisfied if V is bounded away from 0 and∞. In Lemma 5.1, we show that any
scale-invariant Poisson process in S has the same distribution as the uplifted process ηUc
for some c > 0 and a unit random vector U in Rd. Thus, our uplifting scheme is a natural
choice to recover all scale-invariant point processes in S.

It is well known that, if ξn
d−→ ξ as n→∞, then (see e.g. [19, Theorem 4.11])

E e−ξnf → E e−ξf as n→∞ (4.3)

for any f ∈ ĈS . In order to handle uplifting transformations by a possibly unbounded
random vector V , we need to consider test functions f with unbounded support. The
following result extends (4.3) to more general functions.

Lemma 4.1. Let (ξn)n∈N and ξ be point processes on a locally compact separable metric

space Ω with ξ having a finite intensity, such that ξn
d−→ ξ as n → ∞. Let h be a non-

negative continuous function on Ω such that for any ε > 0, there exists a relatively
compact set Kε with

lim sup
n→∞

E

∫
Kc

ε

h(x)ξn(dx) ≤ ε. (4.4)

Then
E e−ξnh → E e−ξh as n→∞.

For a proof, see the Appendix. For f ∈ ĈS , define the function hf : N0 × (0,∞)→ R

as
hf (x, y) = − logE e−xf(V y). (4.5)

Note that by Jensen’s inequality, one has

hf (x, y) ≤ xE f(V y). (4.6)

Define the map M : N ((0,∞))→ N (N0 × (0,∞)) at ξ =
∑∞
k=1 akδzk as

M(ξ) =

∞∑
k=1

δ(ak,zk). (4.7)

This map turns a counting measure with possibly multiple points into a simple counting
measure in the product space N0 × (0,∞).
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Theorem 4.2. Assume that a sequence of point processes ξn =
∑∞
k=1XkδZn

k
, n ∈ N

converges vaguely in distribution to a simple point process ξ with finite intensity in
N ((0,∞)) as n→∞. Moreover, let V be a random vector in S with i.i.d. copies (Vk)k∈N
such that for every f ∈ ĈS and ε > 0, there exists a compact set Kf,ε ⊆ N0 × (0,∞) such
that

lim sup
n→∞

E
∑

(Xk,Zn
k )∈Kc

f,ε

Xkf(VkZ
n
k ) ≤ ε. (4.8)

Then ξVn
d−→ ξV as n→∞.

Proof. Fix f ∈ ĈS . Then

E e−ξ
V
n f = E

[ ∞∏
k=1

E
[
exp {−Xkf(VkZ

n
k )}

∣∣∣ξn]]

= E exp
{
−
∞∑
k=1

hf (Xk, Z
n
k )
}

= E e−ξ̃nhf ,

where ξ̃n = M(ξn) and hf is given by (4.5). Since ξn
d−→ ξ as n→∞ with ξ being simple,

Lemma A.4 and the continuous mapping theorem yield that ξ̃n
d−→ ξ̃ = M(ξ). Clearly, hf

is continuous as f is such. Also note that by (4.6) and (4.8), we have that hf satisfies

(4.4) with respect to the processes (ξ̃n)n∈N. By Lemma 4.1,

E e−ξ
V
n f = E e−ξ̃nhf → E e−ξ̃hf as n→∞.

Finally, noticing that

E e−ξ
V f = E

[
E(e−ξ

V f |ξ)
]

= E e−ξ̃hf ,

we obtain

E e−ξ
V
n f → E e−ξ

V f as n→∞

for all f ∈ ĈS , which proves that ξVn
d−→ ξV as n→∞.

The condition (4.8) in Theorem 4.2 that (Vn)n∈N and (ξn)n∈N are required to satisfy
can be hard to check in general. In some special cases, one can find some easily verifiable
conditions on (ξn)n∈N and V so that (4.8) is satisfied. Throughout, ‖ · ‖∞ denotes the
supremum norm on ĈS .

Lemma 4.3. Let (ξn)n∈N be a sequence of simple point processes in (0,∞). Let V be
such that for some α > 0,

lim sup
t→∞

tP{‖V ‖ ≥ t} <∞ and lim sup
t→∞

tαP{‖V ‖ ≤ 1/t} <∞. (4.9)

Moreover, assume that

lim
r→0

lim sup
n→∞

E

∫ r

0

tξn(dt) = 0 and lim
r→∞

lim sup
n→∞

E

∫ ∞
r

t−αξn(dt) = 0. (4.10)

Then the processes (ξn)n∈N and i.i.d. copies (Vn)n∈N of V satisfy (4.8).

Proof. Since ξn is simple, for f ∈ ĈS , it suffices to check that h(y) = Ef(V y) satisfies{
limr→0 lim supn→∞E

∫ r
0
h(y)ξn(dy) = 0,

limr→∞ lim supn→∞E
∫∞
r
h(y)ξn(dy) = 0.

(4.11)
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Since f is compactly supported, there exist 0 < a < b <∞ such that f(z) = 0 for ‖z‖ < a

or ‖z‖ > b. Thus, using (4.9) in the last step, we have

lim sup
y↘0

h(y)

y
= lim sup

y↘0

E f(V y)

y
= lim sup

y↘0

E
[
f(V y)1{‖V ‖≥a/y}]

y

≤ ‖f‖∞ lim sup
y↘0

y−1P{‖V ‖ ≥ a/y} <∞.

Arguing similarly and using (4.9),

lim sup
y→∞

yαh(y) = lim sup
y→∞

yαE f(V y)

= lim sup
y→∞

yαE
[
f(V y)1{‖V y‖≤b}

]
≤ ‖f‖∞ lim sup

y→∞
yαP{‖V ‖ ≤ b/y} <∞.

Thus, lim supy↘0 h(y)/y < ∞ and h(y) = O(y−α) as y → ∞. Together with (4.10), this
implies that h satisfies (4.11).

Corollary 4.4. Let (ξn)n∈N be a sequence of simple point processes converging vaguely
in distribution to ηc as n→∞. Assume that a random vector V in S and (ξn)n∈N satisfy

(4.9) and (4.10), respectively, for some α > 0. Then ξVn
d−→ ηVc as n→∞.

Remark 4.5. Fix α > 0. For a sequence of point processes (νn)n∈N as in Theorem 3.3
with EXk = O(q1k) ≤ Cq1k for some C > 0, by (3.2) in the proof of Theorem 3.3, the first
condition in (4.10) is satisfied. Letting N = inf{k : zk > znr} for r > 0 yields that

E

∫ ∞
r

t−ανn(dt) = zαn
∑

k:zk>znr

z−αk EXk ≤ Czαn (sup
k
q0k)

∞∑
k=N

zck − zck−1
zc+αk

≤ Czαn

[
zcN − zcN−1

zc+αN

+

∫ ∞
(znr)c

1

x(c+α)/c
dx

]
.

Since the right-hand side converges to C(c/α)r−α as n→∞,

lim
r→∞

lim sup
n→∞

E

∫ ∞
r

t−ανn(dt) = 0.

Hence, these point processes satisfy (4.10).

Example 4.6. Consider the sequence of point processes (νn)n∈N given by (1.2) with
zk = log pk and Xk ∼ Geom(1−1/pk). Since pk > k log k (see e.g. [25]) and log pk < 2 log k

for k ≥ 6, (see e.g. [14, Lem. 1]), we have that Nn = inf{k : pk > prn} > nr/2 for n large
enough. Hence,∑

k:pk>prn

1

pk(log pk)α
≤

∞∑
k=Nn

1

k log k(log k)α

≤
∫ ∞
Nn−1

1

x(log x)1+α
dx =

(log(Nn − 1))−α

α
≤ 2α(log n)−α

αrα
.

Therefore,

lim sup
n→∞

E

∫ ∞
r

t−ανn(dt) = lim sup
n→∞

(log pn)α
∑

k:pk>prn

2

pk(log pk)α

≤ lim sup
n→∞

(2 log n)α
21+α(log n)−α

αrα
=

21+2α

αrα
,
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which yields

lim
r→∞

lim sup
n→∞

E

∫ ∞
r

t−ανn(dt) = 0.

The other condition in (4.10) is easy to check using Merten’s formula. Hence, as νn
d−→ η

as n→∞ by Theorem 3.6, for V satisfying (4.9), Corollary 4.4 yields that νVn
d−→ ηV as

n→∞.

We now return to our basic example of point processes given by (1.2). For a point
process on (0,∞) with support points in a deterministic set, we can generalize the
notion of uplifting. For (νn)n∈N given by (1.2), consider its uplifting by independent
vectors V = (Vk)k∈N in S which are possibly non-identically distributed, allowing for
possible dependence within the pairs (Vk, Xk) for any k ∈ N. Assume that the conditional
distribution of Vk given Xk is a function V (Xk) that does not depend on k, i.e.,

V (x) =d (Vk|Xk = x), k ∈ N. (4.12)

For instance, this is the case if the random vectors (Vk)k∈N are i.i.d. and independent
of the random variables (Xk)k∈N. We also assume that the random vectors (Vk)k∈N are
uniformly bounded away from 0 and∞ and define the uplifted process νVn as

νVn =

∞∑
k=1

XkδVkzk/zn .

Finally, we assume that the random variables (Xk)k∈N are {0, 1}-valued with high proba-
bility, i.e.,

∞∏
k=1

(q0k + q1k) > 0. (4.13)

Theorem 4.7. For (νn)n∈N given by (1.2), assume that the Xk’s satisfy (4.13) and

νn
d−→ ηc for some c > 0. Let V = (Vk)k∈N be a sequence of random vectors in S satisfying

(4.12) with ε ≤ ‖V (x)‖ ≤ r almost surely for all x ∈ N for some 0 < ε < r < ∞. Then

νVn
d−→ η

V (1)
c as n→∞, where ηV (1)

c is defined as in (4.1).

Proof. Let X̃k = 1{Xk>0}. Let (m(n))n∈N be such that m(n) → ∞ and zm(n) = o(zn) as
n→∞. Denote

En = {Xk = X̃k for all k ≥ m(n)}, n ∈ N.

By Kolmogorov’s zero-one law and (4.13),

lim
n→∞

P(En) = 1.

Fix f ∈ ĈS . Then, recalling that V (1) =d (Vk|Xk = 1), we have

E
[
e−ν

V
n f |En

]
= E

[
exp

{
−
∞∑
k=1

Xkf(Vkzk/zn)
}∣∣∣En]

= E

exp
{
−
m(n)−1∑
k=1

Xkf(Vkzk/zn)
}E

 ∞∏
k=m(n),Xk=1

E e−f(V (1)zk/zn)
∣∣∣En

 . (4.14)

Since zm(n) = o(zn), the process
∑m(n)−1
k=1 Xkδzk/zn converges vaguely in distribution

to the zero process in M((0,∞)) as n → ∞. Combined with our assumption that
ε ≤ ‖V (x)‖ ≤ r almost surely for all x ∈ N, this implies that the first factor on the
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right-hand side of (4.14) converges to 1 as n→∞. For the second factor in (4.14), we
have

E

 ∞∏
k=m(n),Xk=1

E e−f(V (1)zk/zn)
∣∣∣En

 = E exp
{
−

∞∑
k=m(n)

Ykh̃(zk/zn)
}
,

where Yk ∼ Ber(q1k/(q
0
k + q1k)), k ≥ m(n), has the same distribution as Xk conditional on

En, and

h̃(t) = − logE e−f(V (1)t).

Consider the point process ν̃n =
∑∞
k=1 Ykδzk/zn . Using (4.13) for the first equality, we

have that for any 0 < a < b <∞,

lim
n→∞

∏
k:azn<zk≤bzn

q0k
q0k + q1k

= lim
n→∞

∏
k:azn<zk≤bzn

q0k =
(a
b

)c
,

where in the last equality we have used our assumption that νn
d−→ ηc and Theorem 3.2.

Hence, (ν̃n)n∈N satisfies Condition 3.1(i). That (ν̃n)n∈N satisfies Condition 3.1(ii) follows
trivially by noticing that (νn)n∈N satisfies Condition 3.1(ii). Thus, ν̃n converges vaguely
in distribution to ηc as n→∞ by Theorem 3.2. Again, we can ignore the first m(n)− 1

terms of the sum ν̃n as it converges to a zero process, whence

∞∑
k=m(n)

Ykδzk/zn
d−→ ηc as n→∞.

By our assumption that V (1) is bounded away from 0 and ∞ and that f is compactly
supported, it follows that the function h̃ has a relatively compact support in (0,∞).
Clearly, h̃ is continuous and bounded. Hence by (4.3),

E exp
{
−

∞∑
k=m(n)

Ykh̃(zk/zn)
}
→ E e−ηch̃ as n→∞.

By (4.14),

E
[
e−ν

V
n f |En

]
→ E e−ηch̃ as n→∞.

Finally, noticing that

E e−ηch̃ = E
[
E(e−η

V (1)
c f |ηc)

]
= E e−η

V (1)
c f ,

and that P(En)→ 1 as n→∞, we have

E e−ν
V
n f = E

[
e−ν

V
n f |En

]
P(En) + E

[
e−ν

V
n f |Ecn

]
P(Ecn)→ E e−η

V (1)
c f

as n→∞ for any f ∈ ĈS , which yields that νVn
d−→ η

V (1)
c as n→∞.

Example 4.8. For zk = log pk and Xk ∼ Geom(1−1/pk) or Ber(1/(pk+1)), one can easily
see that the conditions of Theorem 4.7 are satisfied by (νn)n∈N, and hence, for V as in
Theorem 4.7, the conclusion of the result holds.

Note, if Vk is independent of Xk for all k ∈ N, then they are necessarily i.i.d. by (4.12).
Now we consider an example when (Xk)k∈N and V are dependent.
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Example 4.9. Let d ≥ 2 and m ∈ N be positive integers. Let Xk ∼ Geom(1 − 1/pk) be
independent and Vk = (mXk)−1(X1

k , . . . , X
d
k )1{Xk>0} for k ∈ N, where (X1

k , . . . , X
d
k ) is

multinomially distributed with the number of experiments mXk and the probabilities of
outcomes q1, . . . , qd with

∑d
i=1 qi = 1. Let

νn =

∞∑
k=1

Xkδlog pk/ log pn and νVn =

∞∑
k=1

XkδVk log pk/ log pn ,

where (pk)k∈N is an enumeration of the primes. Clearly, the random variables (Xk)k∈N
satisfy (4.13). For each k, the random vector Vk and hence V (x) is almost surely bounded
away from 0 and∞ when Xk = x > 0. Since by Theorem 3.6 we have that νn converges

vaguely in distribution to η as n → ∞, Theorem 4.7 yields that νVn
d−→ ηV (1) as n → ∞,

where mV (1) is distributed as a multinomial random variable with m experiments and
probabilities of outcomes q1, . . . , qd.

5 Scale-invariant Poisson processes in higher dimensions and
multivariate Dickman distributions

In this section, we study and classify scale-invariant Poisson processes in higher
dimensions and extend the generalized Dickman distributions in one dimension to its
multivariate counterpart. For a simple point process ξ in (0,∞) and a random vector
V taking values in S = Rd \ {0} bounded away from 0 and∞ with i.i.d. copies (Vk)k∈N,
recall that the uplifted point process ξV is given by

ξV =d

∞∑
k=1

δVkZk
,

where (Zk)k∈N is an enumeration of the points in ξ.

Lemma 5.1. Any scale-invariant Poisson process in S has the same distribution as ηUc
for some c > 0 and unit random vector U in Rd. Moreover, for any random vector V
in S with ηc and (Vk)k∈N satisfying (4.2), the uplifted point process ηVc has the same
distribution as ηUc with U = V/‖V ‖.

Proof. Let ν be a scale-invariant Poisson process in S. Hence ν(tB) =d ν(B) for every
Borel set B ∈ S and t > 0. Represent each point x ∈ S as a pair (u, r) ∈ Sd−1 × (0,∞),
where u = x/‖x‖ and r = ‖x‖. For a measurable subset A ⊆ Sd−1 and 0 < a < b <∞, by
scale invariance one has

E ν(A× [a, b]) = E ν(A× [a/b, 1]). (5.1)

For p ∈ (0, 1) and A ⊆ Sd−1, define γν(p,A) = E ν(A× [p, 1]) and γν(1, A) = 0. For every
fixed A ⊆ Sd−1, notice that γν satisfies

γν(p,A) + γν(q, A) = γν(pq,A), p, q ∈ (0, 1).

By monotonicity, γν(p,A) = −γν(A) log p for p ∈ (0, 1], where γν is a locally finite measure
on Sd−1 not depending on p. By (5.1),

E ν(A× [a, b]) = γν(A) log(b/a).

EJP 25 (2020), paper 79.
Page 15/20

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP482
http://www.imstat.org/ejp/


Convergence to scale-invariant Poisson processes

For a random vector U in the unit sphere Sd−1 with distribution µ, the uplifted process
ηUc is also a Poisson process. Its intensity measure is given by

E ηUc (A× [a, b]) =

∫
u∈A

∫ b

a

ct−1dtµ(du) = cµ(A) log(b/a) (5.2)

for all Borel A ⊆ Sd−1 and 0 < a < b <∞. It is immediately seen that ηUc is scale-invariant.
By comparing the two equations above., we obtain that ν has the same intensity measure
as ηUc with c = γν(Sd−1) and U is distributed according to µ = γν/c. Thus ν =d η

U
c proving

the first claim.

Next, for a random vector V distributed on S according to a probability measure ψ
with ηc and (Vk)k∈N satisfying (4.2), let U = V/‖V ‖. Clearly, ηVc is also a Poisson process.
For all A ⊆ Sd−1 and 0 < a < b <∞, using the substitution z = ‖v‖t in the second step,
the intensity of ηVc can be expressed as

E ηVc (A× [a, b]) =

∫
v/‖v‖∈A,‖v‖t∈[a,b]

ct−1dtψ(dv)

=

∫
v/‖v‖∈A,z∈[a,b]

cz−1dzψ(dv) = c log(b/a)P{U ∈ A} = E ηUc (A× [a, b]),

where in the last step we have used (5.2). Hence, ηVc =d η
U
c .

Recall that the generalized Dickman random variable Dc with parameter c > 0 has
the same distribution as the sum of points of ηc in the interval (0, 1). One can naturally
generalize this definition to dimensions d ≥ 2 by considering a scale-invariant Poisson
process in S, which by Lemma 5.1 is of the form ηUc for some c > 0 and unit random
vector U in Rd, and summing its points lying inside the unit ball B1. The following
definition makes this precise.

Definition 5.2. For a unit random vector U in Rd and c > 0, the multivariate Dickman
random variable DU

c with parameters (c, U) is defined by

DU
c =

∫
B1

xηUc (dx) =
∑

x∈ηUc ∩B1

x. (5.3)

Note that the points of ηc in the interval (0, 1) are distributed as the collection

{Q1/c
1 , (Q1Q2)1/c, . . . }, where (Qk)k∈N are independent copies of a random variable Q

which is uniformly distributed on [0, 1]. Thus, letting (Ui)i∈N be i.i.d. copies of U , we can
write

DU
c =d

∑
x∈ηUc

x1{‖x‖<1} =d

∞∑
k=1

Uk

k∏
i=1

Q
1/c
i =d Q

1/c(DU
c + U ′)

for Q uniformly distributed on [0, 1] and U ′ =d U independent of DU
c . Thus, the random

variable DU
c is the unique fixed point of the distributional transformation W 7→W ∗ given

by

W ∗ =d Q
1/c(W + U)

with Q, U and W mutually independent.

By Lemma 5.1, the sum of points from any scale-invariant Poisson process lying inside
the unit ball is distributed as DU

c for some c > 0 and unit random vector U . In particular,
for a general random vector V in S, by Lemma 5.1, it is straightforward to see that the
sum of points of ηVc inside the unit ball is distributed as DU

c with U = V/‖V ‖.
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Also note that

DU
c =d

∞∑
k=1

e−ZkUk,

where (Uk)k≥1 are i.i.d. copies of U and (Zk)k∈N is an enumeration of the points of a
homogeneous Poisson process on the interval (0, 1) with intensity c. In particular, DU

c is
self-decomposable, see [24].

We finish this section with an example of weak convergence to a multivariate Dickman
distribution as defined in (5.3). Consider the setting of Example 4.9 with d = 2 and
m = 1. Let pk, Xk and Vk be as in Example 4.9. For p ∈ (0, 1), let X1

k ∼ Bin(Xk, p)1{Xk>0}
and X2

k = Xk −X1
k . Define

Wn =

n∑
k=1

XkVk log pk/ log pn =
1

log pn

n∑
k=1

(X1
k , X

2
k) log pk, (5.4)

where Vk = X−1k (X1
k , X

2
k)1{Xk>0}. Let DU

1 denote a Dickman random variable defined at
(5.3), where U = (X, 1−X) with X ∼ Ber(p).

Theorem 5.3. Let Wn be given by (5.4). Then Wn
d−→ DU

1 as n→∞.

Proof. Define

νn =

∞∑
k=logn

Ykδlog pk/ log pn ,

where the random variables (Yk)k∈N are independent with Yk ∼ Ber((1+pk)−1) for k ∈ N.
Notice that

∑logn−1
k=1 Ykδlog pk/ log pn converges vaguely in distribution to the zero process

on (0,∞) as n→∞. By Remark 3.7, the process
∑∞
k=1 Ykδlog pk/ log pn converges vaguely

in distribution to η as n→∞, hence, so does (νn)n∈N. By Theorem 4.7, we obtain that

νUn
d−→ ηU as n→∞.
Let En = {Xk = X̃k for all k ≥ log n}, where X̃k = 1{Xk>0}. Notice that for each

k, the random variable Yk has the same law as Xk conditional on the event Xk = X̃k.
Hence, for each n, conditional on En, the point process (XkVk log pk/ log pn)logn≤k≤n has
the same law as νUn restricted to the unit ball B1. Therefore, the conditional law of

Zn =

n∑
k=logn

XkVk log pk/ log pn

given En is the same as that of
∫
B1
xdνUn . Using [25, Prop. 1.51], notice that

lim
ε→0

lim sup
n→∞

E

∫
Bε

xνUn (dx) ≤ lim
ε→0

lim sup
n→∞

1

log pn

∑
k:pk≤pεn

log pk
1 + pk

= 0.

Since νUn
d−→ ηU as n→∞, using [18, Theorem 4.28] and Lemma A.2, it is not hard to see

that

(Zn|En) =d

∫
B1

xνUn (dx)
d−→
∫
B1

xηU (dx) =d D
U
1 as n→∞.

Since P(En)→ 1 as n→∞, this yields that Zn
d−→ DU

1 as n→∞.
Finally, taking expectation and using [25, Prop. 1.51], it is straightforward to see that

logn−1∑
k=1

XkVk log pk/ log pn → 0 as n→∞

in L1, hence, in probability as n → ∞. An application of Slutsky’s theorem yields the
result.
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A Results on vague convergence in distribution

Let S be a locally compact separable metric space. The following result provides
a necessary and sufficient condition for the vague convergence in distribution of a
sequence of point processes to a simple point process. Recall that a semi-ring I is a
family of sets closed under finite intersections such that any proper difference of sets in
I is a finite, disjoint union of I-sets.

Theorem A.1 (see [19, Theorem 4.15]). Let (ξn)n≥1 be point processes on S, and fix a

dissecting ring U ⊂ ŜEξ and a semi-ring I ⊂ U . Then ξn
d−→ ξ in N (S) as n → ∞ for a

simple point process ξ if and only if

(i) limn→∞P{ξnA = 0} = P{ξA = 0} for all A ∈ U , and

(ii) lim supn→∞P{ξnB > 1} ≤ P{ξB > 1} for all B ∈ I.

Recall that ξn
d−→ ξ is equivalent to (see e.g. [19, Theorem 4.11])∫

f(x)ξn(dx)
d−→
∫
f(x)ξ(dx) as n→∞ (A.1)

for all f ∈ ĈS . By a standard argument, approximating an indicator function with a
continuous function, it is straightforward to derive the following result.

Lemma A.2. Let (ξn)n≥1, ξ be random measures in S such that ξn
d−→ ξ as n→∞. For a

relatively compact measurable set K, let f : S → R be a non-negative function which
is continuous when restricted to K and f(x) = 0 for x /∈ K. If Eξ(∂K) = 0, then (A.1)
holds.

Next we prove Lemma 4.1.

Proof of Lemma 4.1. Fix ε > 0 and Kε satisfying (4.4). Since ξ has a finite intensity,
without loss of generality, we can assume that E ξ(∂Kε) = 0. By Lemma A.2,∫

Kε

h(x)ξn(dx)
d−→
∫
Kε

h(x)ξ(dx) as n→∞.

Hence,

E exp

{
−
∫
Kε

h(x)ξn(dx)

}
→ E exp

{
−
∫
Kε

h(x)ξ(dx)

}
(A.2)

as n→∞. Since eEX ≤ E eX ,

log E exp

{
−
∫
Kc

ε

h(x)ξn(dx)

}
≥ −E

∫
Kc

ε

h(x)ξn(dx).

Thus, by (4.4), we have that

lim
ε↓0

lim inf
n→∞

E exp

{
−
∫
Kc

ε

h(x)ξn(dx)

}
= e0 = 1. (A.3)

The same holds for the upper limit trivially. Combining (A.2) and (A.3) yields the desired
result.

The following result which is a direct consequence of [18, Theorem 4.28] and
Lemma A.2 provides conditions under which the vague convergence of a general se-
quence of point processes (νn)n∈N to ηc implies the convergence of the sum of points in
(0, 1).
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Lemma A.3. Let (νn)n∈N be a sequence of point processes in (0,∞) with νn
d−→ ηc for

c > 0. If

lim
ε→0

lim sup
n→∞

E

∫ ε

0

tνn(dt) = 0, (A.4)

then ∫ 1

0

tνn(dt)
d−→
∫ 1

0

tηc(dt) =d Dc.

Lemma A.4 (Continuity of M restricted to simple counting measures). Let (ξn)n∈N be
a sequence of counting measures (deterministic) in N ((0,∞)) such that ξn converges
vaguely to ξ as n → ∞ for a simple counting measure ξ. If M is given by (4.7), then
M(ξn) converges vaguely to M(ξ) as n→∞.

Proof. Denote ξ̃n = M(ξn) and ξ̃ = M(ξ). Note that it suffices to show that, for all
0 < a < b <∞ and k ∈ N0,

ξ̃n([k,∞)× [a, b])→ ξ̃([k,∞)× [a, b]) as n→∞. (A.5)

Since ξ is simple,

ξ̃([k,∞)× [a, b]) =

{
ξ([a, b]) for k = 0, 1,

0 for k > 1.

Note that ξ̃n([k,∞) × [a, b]) = ξn([a, b]) for k = 0, 1. Hence, (A.5) holds for k = 0, 1 by
our assumption that ξn → ξ as n → ∞. Fix k > 1. Let ξ([a, b]) = m for some m ≥ 0.
If m = 0, by our assumption we have ξn([a, b]) → ξ([a, b]) = 0 as n → ∞, which yields
ξ̃n([k,∞) × [a, b]) → 0 as n → ∞, showing (A.5). Next, assume that m ≥ 1. Since ξ is a
locally finite counting measure, there are disjoint intervals (Ii)1≤i≤m such that ξ(Ii) = 1

for 1 ≤ i ≤ m and ∪mi=1Ii = [a, b]. By our assumption, ξn(Ii) → ξ(Ii) = 1 as n → ∞ for
1 ≤ i ≤ m. Since k > 1, we have ξ̃n([k,∞)× Ii)→ 0 as n→∞. Taking union over the m
sets [k,∞)× Ii, 1 ≤ i ≤ m proves (A.5), concluding the proof.
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