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Stability of overshoots of zero mean random walks

Aleksandar Mijatović* Vladislav Vysotsky†

Abstract

We prove that for a random walk on the real line whose increments have zero mean
and are either integer-valued or spread out (i.e. the distributions of steps of the
walk are eventually non-singular), the Markov chain of overshoots above a fixed level
converges in total variation to its stationary distribution. We find the explicit form
of this distribution heuristically and then prove its invariance using a time-reversal
argument. If, in addition, the increments of the walk are in the domain of attraction
of a non-one-sided α-stable law with index α ∈ (1, 2) (resp. have finite variance), we
establish geometric (resp. uniform) ergodicity for the Markov chain of overshoots.
All the convergence results above are also valid for the Markov chain obtained by
sampling the walk at the entrance times into an interval.
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1 Introduction

Let S = (Sn)n≥0 with Sn = S0 + X1 + . . . + Xn be a one-dimensional random walk
with independent identically distributed (i.i.d.) increments X1, X2, . . . and the starting
point S0 that is a random variable independent with the increments. Assume that

E|X1| ∈ (0,∞) and EX1 = 0, (1.1)

which implies that lim supn→∞ Sn = − lim infn→∞ Sn = ∞ a.s. Define the up-crossings
times of zero

T0 := 0, Tn := inf{k > Tn−1 : Sk−1 < 0, Sk ≥ 0}, n ∈ N, (1.2)

and let
On := STn , Un := STn−1, n ∈ N, (1.3)
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Stability of overshoots of zero mean random walks

be the corresponding overshoots and undershoots; put O0 = U0 := S0. The choice of
zero is arbitrary and can be replaced by any fixed level. The sequence of overshoots
O = (On)n≥0 is a Markov chain. The sequence of undershoots U = (Un)n≥0 also forms a
Markov chain. Both statements can be checked easily, although the latter one is less
intuitive. We are mostly interested in the chain of overshoots, but our techniques also
yield results for the chain of undershoots.

Under assumption (1.1), consider the law

π+(dx) :=
2

E|X1|
1[0,∞)(x)P(X1 > x)λ(dx), x ∈ Z,

where Z is the state space of the walk S, defined as the minimal closed (in the topological
sense) subgroup of (R,+) containing the topological support of the distribution of X1,
and λ is the Haar measure on (Z,+) normalized such that λ([0, |x|) ∩ Z) = |x| for x ∈ Z.

We will prove that the distribution π+ is invariant for the Markov chain of overshoots
O (Theorem 2.1). Our proof is based on a time reversal of the path of S between
the up-crossings of the level zero. Since this proof gives no insight into the form
of π+, in Section 2.3 we present a heuristic argument which we used to find this
invariant distribution. Invariance of π+ is also established in our companion paper [14,
Corollary 4.1] in a much more general setting using entirely different methods based
on infinite ergodic theory; the proof presented here precedes the one in [14]. By [14,
Corollary 4.2], the assumption in (1.1) implies that the law π+ is the unique (up to
multiplicative constant) locally finite Borel invariant measure of the chain of overshoots
O on Z. Moreover, we will see in Section 2.1 that assumption (1.1) is the weakest
possible ensuring that O has an invariant distribution (i.e. probability measure).

The main goal of this paper is to study convergence of the Markov chain of overshoots
O to its unique invariant law π+. Our aim is to identify the conditions on the law of the
increments of S under which the total variation distance between the law of On and π+
converges to zero as n → ∞ (Theorem 3.1) and study its rate of decay (Theorem 4.1).
Since the chain O is in general neither weak Feller ([14, Remark 3.2]) nor ψ-irreducible
(see Section 5), the total variation convergence requires additional smoothness assump-
tions on the distribution of increments of S. In particular, Theorem 3.1 holds if the
distribution of X1 is either arithmetic or spread out, which means respectively that
either X1 is supported on dZ for some d > 0 or the distribution of Sk is non-singular for
some k ≥ 1. The geometric rate of convergence in Theorem 4.1 is established under a
further assumption that the law of X1 is in the domain of attraction of a non-one-sided
α-stable law with index α ∈ (1, 2). For increments with finite variance we get a stronger
version with the geometric rate of convergence uniformly in the starting point of O.
Section 5 concludes the paper by offering a conjecture about the weak convergence
of the Markov chain O to π+ without additional assumptions on the law of X1 other
than (1.1).

Our interest in the Markov chains of overshoots of random walks stems from their
close connection to the local time of the random walk at level zero (see Perkins [15])
and their relevance to the study of asymptotics of the probability that the integrated
random walk (S1 + . . .+ Sk)1≤k≤n stays positive (see Vysotsky [23, 24]). A discussion on
these applications and on further connections to a special class of Markov chains called
random walks with switch at zero, is available in [14, Section 1.2]. Distributions of the
same form as π+ appear on many occasions, as discussed in Sections 2.1 and 2.2.

Finally, we note that our methods developed for establishing convergence of the
chain O of overshoots above zero work without any changes for the Markov chain of
entrances into the interval [0, h] with any h > 0. In Section 5.1 we show that all the
results for the chain O remain valid for this new chain, whose stationary distribution,
given in (5.1) below, is unique and explicit; see also [14, Section 4].
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Stability of overshoots of zero mean random walks

2 Stationary distributions of overshoots

2.1 Setting and results

Consider the random walk S = (Sn)n≥0 from Section 1, and define its version S′ =

(S′n)n≥0 with S′n := Sn−S0, which always starts at zero. We assume that S, as well as other
random elements considered in this paper, are defined on a generic measurable space
equipped with a variety of measures: a probability measure P; the family of probability
measures {Px}x∈R given by Px(S ∈ ·) = P(x+S′ ∈ ·) (satisfying Px(S0 = x) = 1); and the
measures of the form Pµ(·) :=

∫
R
Px(·)µ(dx), where µ is a Borel measure µ on R. We do

not necessarily assume that µ is a probability but we prefer to (ab)use the probabilistic
notation Pµ and the terms “law”, “expectation”, “random variable”, etc., by which we
actually mean the corresponding notions of general measure theory. Under the measure
Pµ, the starting point S0 of the random walk S follows the “law” µ. Denote by E and Ex
the respective expectations under P and Px. All measures considered in the paper are
Borel, that is defined on the corresponding Borel σ-algebras.

Recall that the state space Z of the random walk S was defined as the minimal
closed subgroup of (R,+) containing the support of the distribution of X1. Let us give a
different representation for Z assuming throughout that X1 is not degenerate. Denote

Zh :=

{
R, if h = 0,

hZ, if h > 0.

We equip Zh with the discrete (resp. Euclidean) topology if h > 0 (resp. h = 0). Note that
any closed (in the topological sense) subgroups of (R,+) is of the form (Zh,+) for some
h ≥ 0. Finally, denote Z+

h := Zh ∩ [0,∞) and Z−h := Zh ∩ (−∞, 0).
Define the span of the distribution of increments of S by

d := sup{h ∈ [0,∞) : P(X1 ∈ Zh) = 1}, (2.1)

and note that d ∈ [0,∞) and Z = Zd. We always assume that the random walk starts in
Zd, hence P(S0, S1, . . . ∈ Zd) = 1. The distribution of increments of S is called arithmetic
(with span d) if d > 0 and is called non-arithmetic if d = 0. We shall often use d > 0 and
d = 0 as synonyms for arithmetic and non-arithmetic, respectively. Define the measure
λd on Zd as follows: for any B ∈ B(Zd), put

λd(B) :=

{
λ0(B), if d = 0,

d ·#B, if d > 0,

where λ0 denotes the Lebesgue measure on R and # denotes the number of elements in
a set. Then λd is the normalized Haar measure on the additive group Zd = Z, as defined
in the Introduction. Furthermore, define the measures on Zd:

λ+d (dx) := 1Z+
d
(x)λd(dx) and λ−d (dx) := 1Z−d (x)λd(dx), x ∈ Zd,

and

π+(dx) := c1P(X1 > x)λ+d (dx) and π−(dx) := c1P(X1 ≤ x)λ−d (dx), x ∈ Zd, (2.2)

where c1 := 1 if E|X1| =∞ and c1 := 2/E|X1| if E|X1| <∞. This extends the definition
of π+ given in the Introduction under assumption (1.1).

The classic trichotomy states that the (non-degenerate) random walk S either drifts
to +∞, drifts to −∞, or oscillates; see Feller [7, Section XII.2]. By definition, the latter
possibility means that lim supn→∞ Sn =∞ a.s. and lim infn→∞ Sn = −∞ a.s. It is known
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that S oscillates if and only if either EX1 = 0 and E|X1| ∈ (0,∞) or EX1 does not exist, i.e.
EX+

1 = EX−1 = +∞, where x+ := max{x, 0} and x− := (−x)+ for a real x; cf. Feller [7,
Theorems XII.2.1] and Kesten [11, Corollary 3]. In particular, S oscillates when it is
topologically recurrent on Zd, meaning that P0(Sn eventually returns to G) = 1 for every
open neighbourhood G ⊂ Zd of 0. Indeed, such random walks satisfy P0(Sn ∈ G i.o.) = 1

for every non-empty open set G ⊂ Zd; see Revuz [16, Proposition 3.4].
Clearly, the assumption of oscillation is necessary and sufficient for S to cross a level

infinitely often a.s., in which case the Markov chains of overshoots and undershoots
of the zero level introduced in (1.2) and (1.3) are well-defined. Similarly, define the
down-crossing times of the level zero

T ↓0 := 0, T ↓n := inf{k > T ↓n−1 : Sk−1 ≥ 0, Sk < 0}, n ∈ N, (2.3)

and the corresponding overshoots and undershoots at the down-crossings

O↓n = ST↓n , U↓n := ST↓n−1, n ∈ N, (2.4)

with O↓0 = U↓0 := S0. The random sequences in (1.3) and (2.4) are defined on the event
that all crossing times Tn are finite. Since S oscillates, this event occurs almost surely
under P and under Pµ with arbitrary measure µ on Zd.

The Markov chains of overshoots at up-crossings O = (On)n≥0 and at down-crossings
O↓ = (O↓n)n≥0 take values in Z+

d and Z−d , respectively. Both chains are started at

O0 = O↓0 = S0 ∈ Zd. Note that there is asymmetry at zero. Namely, since −Z+
d 6= Z

−
d ,

the down-crossing times T ↓n (resp. positions O↓n and U↓n) need not be almost surely equal
to the up-crossing times Tn (resp. positions −On and −Un) for the dual random walk
(−Sn)n≥0. We will be mostly concerned with the chain O, which for brevity will be called
the chain of overshoots if there is no risk of confusion with O↓. We will also consider the
sequence (−Un − d)n≥0, taking values in Z+

d , which is a Markov chain since so is U .

Theorem 2.1. Let S be any random walk that oscillates. Then the measure π+ is
invariant for the Markov chains O and (−Un − d)n≥0 of overshoots and shifted sign-
changed undershoots at up-crossings of the zero level, i.e. Pπ+

(On ∈ ·) = π+ and
Pπ+

(−Un − d ∈ ·) = π+ for all n ∈ N. Similarly, π− is an invariant measure for the chains
O↓ and (−U↓n − d)n≥0.

Remark 2.2. We will show in Section 2.4.1 below that the laws of overshoots and
undershoots of the zero level at consecutive down- and up-crossings are related by

Pπ+
(O↓1 ∈ ·) = π−, Pπ−(O1 ∈ ·) = π+, Pπ+

(−U↓1−d ∈ ·) = π−, Pπ−(−U1−d ∈ ·) = π+.

We will prove these results using an argument based on the time reversal of the path
of S between the up-crossings of the level zero. Since this proof gives no insight about
the form of π+, we will also present a heuristic argument which we used to find this
invariant distribution. After these results were obtained, we found an entirely different
proof of Theorem 2.1, which is based on the methods of infinite ergodic theory and
applies in a much more general setting; see our companion paper [14].

The assumption that the random walk S oscillates is the weakest possible to consider
the Markov chains of overshoots and undershoots. By [14, Corollary 4.2], the chains of
overshoots and undershoots of such random walks possess no other (up to multiplicative
constants) locally finite invariant Borel measures, including the ones singular with
respect to π+ and π−. Therefore, the probabilistic question of convergence of these
chains to stationarity can be posed only if the measures π+ and π− in Theorem 2.1
have total mass one. This need not be the case in general since every non-degenerate
symmetric random walk oscillates. However, by (2.2), both measures π+ and π− have
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finite mass if and only if E|X1| ∈ (0,∞), in which case the oscillation assumption forces
EX1 = 0 and the equalities π+(Zd) = π−(Zd) = 1 follow. Thus, condition (1.1) is the
weakest assumption under which convergence to stationarity of the chains of overshoots
and undershoots can be stated.

Probability measures of the same form as π+ and π− appear as limit distributions for
the following stochastic processes closely related to random walks. Assume that (1.1)
holds. First, π+ is the unique stationary distribution of the reflected random walk driven
by an i.i.d. sequence with the common non-arithmetic distribution P(X1 ∈ ·|X1 > 0); see
Feller [7, Section VI.11] and Knight [12]. This can be generalised as follows. Consider
a time-homogenious Markov chain Y on Zd whose first increment has distribution
P(X1 ∈ ·|X1 < 0) for all starting points in Z+

d and P(X1 ∈ ·|X1 > 0) for all starting points
in Z−d . This chain belongs to a special type of Markov chains which we call random walks
with switch at zero. A stationary distribution for such chains was found by Borovkov [4],
and we can use it show that 1

2π+ + 1
2π− is an invariant distribution of Y . Second, π+ is

known as the stationary distribution, as well as the limit distribution, for the non-negative
residual lifetime in a renewal process with inter-arrival times distributed according to
P(X1 ∈ ·|X1 > 0); see Asmussen [1, Section V.3.3] or Gut [8, Theorem 2.6.2]. For random
walks this limit property can be interpreted as follows.

Denote by H−1 the first strict descending ladder height of the random walk S′, i.e.
the first strictly negative value of S′. Similarly, denote by H+

1 the first strict increasing
ladder height of S′. It is known that random variables H+

1 and H−1 are integrable if
EX1 = 0 and EX2

1 <∞; see Feller [7, Sections XVIII.4 and 5]. When this is the case, by
the results of renewal theory (e.g. by [8, Theorem 2.6.2] and (4.6) below), we have

Px(O
↓
1 ∈ dy)

d−→
x→∞, x∈Zd

1

−EH−1
P(H−1 ≤ y)λ

−
d (dy), y ∈ Zd. (2.5)

The r.h.s. of (2.5) is referred to as the distribution of the overshoot of the walk S above an
“infinitely remote” level at −∞. This distribution equals π− defined for H−1 instead of X1.
Similarly, π+ corresponds to the non-strict overshoot of S above an “infinitely remote”
level at +∞, which is distributed as the strict overshoot above this level decreased by d:

Px(O1 ∈ dy)
d−→

x→−∞, x∈Zd

1

EH+
1

P(H+
1 > y)λ+d (dy), y ∈ Zd. (2.6)

2.2 An alternative representation for π+ and π−

Notice that the invariant measures π+ and π− in Theorem 2.1, which are probabilities
if and only if E|X1| ∈ (0,∞), are defined only in terms of the tails of the distribution
of increments of the random walk S. On the other hand, it is natural to expect that
π+ and π− are closely related to the distributions of the overshoots above infinitely
remote levels at ±∞ given by the r.h.s.’s of (2.5) and (2.6). In this section we give such
a representation. Note that since the limit distributions of overshoots above infinite
levels exist only for zero-mean random walks with finite variance, before we proved
Theorem 2.1 it was not at all clear why the chain of overshoots should have a stationary
distribution for walks with infinite variance.

Denote by H̃−1 the first non-strict (weak) descending ladder height of S′, i.e. the first
non-positive value of (S′n)n≥1.

Lemma 2.3. For any random walk S that oscillates, we have

π+ = c1P(H̃
−
1 6= 0)

[
P(H−1 ≤ x)λ

−
d (dx)

]
∗ P(H+

1 ∈ ·) on Z+
d .

Similarly,
π− = c1P(H̃

−
1 6= 0)

[
P(H+

1 > x)λ+d (dx)
]
∗ P(H−1 ∈ ·) on Z−d .
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Remark 2.4. If EX2
1 <∞ (which implies (1.1)), the first identity can be interpreted as

π+(dy) = P(R
− +H+

1 ∈ dy|R− +H+
1 ≥ 0),

where R− is a random variable having the distribution of the overshoot of S above an
“infinitely remote” level at −∞ (given by the r.h.s. of (2.5)) and independent with H+

1 ,
and

P(R− +H+
1 ≥ 0) = − 1

c1P(H̃
−
1 6= 0)EH−1

= − 1

c1EH̃
−
1

.

Combining this with the analogous probabilistic interpretation of π− and in the case
d = 0 using that any distribution function is continuous a.e. with respect to the Lebesgue
measure λ0 allows us to rewrite the above representations directly in terms of the
random walk as follows.

Proposition 2.5. For any random walk S satisfying EX1 = 0 and 0 < EX2
1 < ∞, we

have

Px

(
ST1
∈ ·
∣∣∣ST↓1 ≥ ST↓1 +1, . . . , ST↓1

≥ ST1−1

)
d−→

x→∞, x∈Zd
π+.

and

Px

(
ST↓1
∈ ·
∣∣∣ST1

≤ ST1+1, . . . , ST1
≤ ST↓1−1

)
d−→

x→−∞, x∈Zd
π−.

We found the representations for π+ and π− in Lemma 2.3 by considering the over-
shoots above zero for the Markov chain of the so-called switching ladder heights, which
is a particular example of random walks with switch at zero. This argument will be
presented elsewhere. Here we give a different independent proof.

Proof of Lemma 2.3. From the Wiener–Hopf factorization (Feller [7, Chapter XII.3])

P(X1 ∈ ·) = P(H+ ∈ ·) + P(H̃−1 ∈ ·)− P(H
+
1 ∈ ·) ∗ P(H̃

−
1 ∈ ·) (2.7)

it follows that for any y ∈ Z+
d ,

P(X1 > y) = P(H+
1 > y)−

∫
(y,∞)

P(H̃−1 > y − z)P(H+
1 ∈ dz)

=

∫
(y,∞)

P(H̃−1 ≤ y − z)P(H
+
1 ∈ dz).

Then from the identity P(H̃−1 ≤ u) = P(H̃
−
1 6= 0)P(H−1 ≤ u) for u ∈ Z−d , we get

c1P(X1 > y) = c1P(H̃
−
1 6= 0)

∫
Zd
P(H−1 ≤ y − z)1Z−d (y − z)P(H

+
1 ∈ dz).

This establishes equality of densities with respect to λd of the measures given in the
first assertion of Lemma 2.3. Indeed, the function on the l.h.s. is the density of π+. For the
r.h.s., notice that the integral has the form Ef(y−H+

1 ), where f(x) := P(H−1 ≤ x)1Z−d (x)
for x ∈ Zd. Recall a formula for the density of convolutions: for any random variable H
supported on Zd and any measure µ on Zd with a bounded density g with respect to λd,

(µ ∗ P(H ∈ ·))(dy) = [Eg(y −H)]λd(dy), y ∈ Zd. (2.8)

This equality is evident for d > 0; for the absolutely continuous case d = 0, see e.g.
Cohn [5, Proposition 10.1.12]. It remains to use (2.8) with g = f and H = H+

1 .
The second assertion of Lemma 2.3 follows similarly.

EJP 25 (2020), paper 63.
Page 6/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP463
http://www.imstat.org/ejp/


Stability of overshoots of zero mean random walks

2.3 Derivation of π+

Let us present a simple probabilistic argument that we used to guess the form of π+.
Assume that EX1 = 0, the variance of increments σ2 = EX2

1 is finite and positive, and
the random walk S is integer-valued and aperiodic, i.e. the distribution of X1 − a is
arithmetic with span 1 for every a ∈ Z. In this case Z+

d = N0, where N0 := N ∪ {0}.
Consider the number of up-crossings of the zero level by time n:

L↑n :=

n−1∑
i=0

1(Si < 0, Si+1 ≥ 0) = max{k ≥ 0 : Tk ≤ n}.

Assume that the chain O has an ergodic stationary distribution µ. Then by the ergodic
theorem, for any x, y ∈ {z ∈ N0 : P(X1 > z) > 0},

lim
n→∞

1

n

n∑
i=1

1(Oi = y) = lim
n→∞

1

L↑n

L↑n∑
i=1

1(Oi = y) = µ(y), Px-a.s. (2.9)

On the other hand,

Ex

[
L↑n√
n
· 1

L↑n

L↑n∑
i=1

1(Oi = y)

]
=

1√
n

n−1∑
i=1

Px(Si < 0, Si+1 = y)

=
1√
n

n−1∑
i=1

∞∑
k=1

Px(Si = −k)P(X1 = y + k)

=

∞∑
k=1

P(X1 = y + k)
1√
n

n−1∑
i=1

Px(Si = −k).

By the local central limit theorem, there exists a constant c > 0 such that for every
integer i and k ≥ 1 we have Px(Si = −k) ≤ c/

√
n, and also Px(Si = −k) ∼ 1√

2πiσ
as

i→∞. Hence from (2.9) and the dominated convergence theorem, we obtain

µ(y) lim
n→∞

Ex

[
L↑n√
n

]
=

∞∑
k=1

P(X1 = y + k)
(
lim
n→∞

1√
n

n−1∑
i=1

1√
2πiσ

)
=

√
2

πσ2
P(X1 > y).

Thus, µ = π+ in the special case considered above.
Therefore it is feasible that the distribution π+ is stationary for the chain of overshoots

O for general random walks but of course we need to prove this directly, and even for
the case considered here.

2.4 Proof of Theorem 2.1

The main result of the section, Proposition 2.7 below, reveals a distributional symme-
try hidden in the trajectory of an arbitrary oscillating random walk, which is key for the
proof of Theorem 2.1.

Define new Markov transition kernels P and Q on Zd as follows: for x, y ∈ Zd let

P (x, dy) := Px(−U1 − d ∈ dy), Q(x, dy) := P(X1 − d ∈ dy + x|X1 − d ≥ x), (2.10)

with the convention that Q(x, dy) := δ0(dy) in the case when P(X1 − d ≥ x) = 0; the
choice of the delta measure is arbitrary and will not be relevant for what follows. The
kernel P is defined in terms of the sign-changed first undershoot U1, given in (1.3) above,
which is shifted by d to ensure that −U1 − d may take value zero in the arithmetic case.
The kernel Q corresponds to up-crossings of the zero level by the walk S. Clearly, for
every x ∈ Zd, the transition probabilities P (x, dy) and Q(x, dy) are supported on Z+

d .
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The sequences of overshoots (On)n≥0 and shifted sign-changed undershoots (−Un −
d)n≥0 are Markov chains with respective transition kernels PQ and QP . More precisely,
for any probability measure µ on Zd and any n ∈ N,

Pµ(On ∈ dy) = [µ(PQ)n](dy), Pµ(−Un − d ∈ dy) = [µP (QP )n−1](dy), y ∈ Zd, (2.11)

where (QP )0(x, dy) := δx(dy), (PQ)n and (QP )n−1 are the Chapman–Kolmogorov con-
volutions over Zd, and for any transition kernel T on Zd, we denoted µT (dy) :=∫
Zd T (z, dy)µ(dz). A formal proof of the Markov property, which is not entirely obvious

for the sequence of undershoots U , is given in a very general setting in [14, Lemma 2.1].
In the arithmetic case, we clearly have the equality

λd(dx)P(X1 − d ∈ dy + x) = λd(dy)P(X1 − d ∈ dx+ y)

of measures on Zd × Zd; we will also prove this identity for d = 0. Combined with the
equality of measures P(X1−d ≥ z)λ+d (dz) = π+(dz) on Zd, this implies that the transition
kernel Q is reversible with respect to π+. Put differently, the detailed balance condition

π+(dx)Q(x, dy) = π+(dy)Q(y, dx), x, y ∈ Zd

holds true for the measures on Zd ×Zd (which are supported on Z+
d ×Z

+
d ). Surprisingly,

the kernel P shares the same property. Put together, we have the following statement,
which we will prove in full below in Section 2.4.1.

Proposition 2.6. For any random walk S that oscillates, the kernels P and Q are
reversible with respect to π+.

A direct corollary to this proposition is invariance of the measure π+ for the Markov
chains (On)n≥0 and (−Un − d)n≥0, asserted by Theorem 2.1. A similar argument yields
invariance of π− for the chains (O↓n)n≥0 and (−U↓n − d)n≥0 (indeed, use (2.14) from
Section 2.4.1 below and a kernel decomposition for these chains analogous to (2.11)).
Thus, Theorem 2.1 follows from Proposition 2.6, which in turn is a direct corollary to
Proposition 2.7 (see Section 2.4.1).

2.4.1 The time reversal argument

We now present a result concerning the entire trajectory of the random walk between
up-crossings of the level zero. Our proof is based on a generalisation of the argument
from Vysotsky [24, Lemma 1].

Recall from (1.2) (resp. (2.3)) that Tm ≥ 1 (resp. T ↓m ≥ 1) for any m ∈ N and any
value of S0.

Proposition 2.7. For any random walk S that oscillates, for any m ∈ N we have

Pπ+

(
(S0, S1, . . . , STm−1, 0, . . .) ∈ ·

)
= Pπ+

(
(−STm−1 − d,−STm−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·

)
(2.12)

and

Pπ+

(
(S0, S1, . . . , ST↓m−1, 0, . . .) ∈ ·

)
= Pπ−

(
(−STm−1 − d,−STm−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·

)
. (2.13)

The choice of the value 0 in the random sequences in (2.12) and (2.13) is arbitrary
and could be substituted by any constant. The constant is included in (2.12) and (2.13)
to emphasise that the random vectors take values in an infinite dimensional space.
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Stability of overshoots of zero mean random walks

Furthermore, we stress that the equalities in (2.12) and (2.13) cease to hold if this
constant value is substituted by the remaining part of the path of S. Note that (2.12) can
be stated more elegantly as(

S0, S1, . . . , STm−1
) d
=
(
−STm−1 − d,−STm−2 − d, . . . ,−S0 − d

)
under Pπ+

.

Remark 2.8. Similarly, we have

Pπ−
(
(S0, S1, . . . , ST↓m−1, 0, . . .) ∈ ·

)
= Pπ−

(
(−ST↓m−1 − d,−ST↓m−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·

)
(2.14)

and

Pπ−
(
(S0, S1, . . . , STm−1, 0, . . .) ∈ ·

)
= Pπ+

(
(−ST↓m−1 − d,−ST↓m−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·

)
. (2.15)

We first prove Proposition 2.6 and Remark 2.2, which are simple corollaries of
Proposition 2.7.

Proof of Proposition 2.6. Reversibility of the P -kernel follows immediately by (2.12)
with m = 1 since U1 = ST1−1.

As explained above, reversibility of the Q-kernel follows from the equalities of mea-
sures

λd(dx)P(X1 − d ∈ dy + x) = λd(dy)P(X1 − d ∈ dx+ y)

on Zd ×Zd and P(X1 − d ≥ z)λ+d (dz) = π+(dz) on Zd. The latter equality is trivial. The
former one is equivalent to

λd(dx)P(x+X1 ∈ dy) = λd(dy)P(y −X1 ∈ dx), x, y ∈ Zd, (2.16)

as follows from substituting y by y − d using invariance of λd under shifts in Zd and
substituting x by −x using the central symmetry of λd; cf. (2.24) below for the meaning
of (2.16).

It suffices to check equality of measures (2.16) only for rectangular sets with Borel
sides A,B ⊂ Zd. By Fubini’s theorem and the mentioned shift invariance of λd,[

λd(dx)P(x+X1 ∈ dy)
]
(A×B) =

∫
Z2
d

1(x ∈ A, x+ z ∈ B)λd(dx)⊗ P(X1 ∈ dz)

=

∫
Zd
λd(A ∩ (B − z))P(X1 ∈ dz)

=

∫
Zd
λd
(
B ∩ (A− z)

)
P(−X1 ∈ dz)

=
[
λd(dx)P(x−X1 ∈ dy)

]
(B ×A),

where the last equality follows from the first two. This is exactly (2.16).

Recall that Remark 2.2 asserts that

Pπ+
(O↓1 ∈ ·) = π−, Pπ−(O1 ∈ ·) = π+, Pπ+

(−U↓1−d ∈ ·) = π−, Pπ−(−U1−d ∈ ·) = π+.

Proof of Remark 2.2. Fix m = 1. By (2.12), the random variables −O↓1 − d = −ST↓1 − d
and U↓1 = ST↓1−1

have the same law under Pπ+
, hence Pπ+

(O↓1 ∈ ·) = Pπ+
(−U↓1 − d ∈ ·).

By (2.13), the law of −U↓1 − d = −ST↓1−1− d under Pπ+
is the same as the law of S0 under

Pπ− , i.e. Pπ+
(−U↓1 − d ∈ ·) = π−, and hence Pπ+

(O↓1 ∈ ·) = π−. Similarly, by (2.14), we
find Pπ−(O1 ∈ ·) = Pπ−(−U1−d ∈ ·). Finally, by (2.15), it holds Pπ−(−U1−d ∈ ·) = π+.
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We now prove the main statement of the section.

Proof of Proposition 2.7. Consider equality (2.12) in the case m = 1. Pick an arbitrary
k ∈ N and define the time-reversal mapping Rk : Rk+1 → Rk+1 by

Rk(x0, . . . , xk) := (−xk − d, . . . ,−x0 − d).

Introduce the random vector K := (S0, . . . , Sk) and note that (2.12) follows if we establish
the equality of measures on (Zd)k+1:

Pπ+
(K ∈ ·, T1 = k + 1) = Pπ+

(Rk(K) ∈ ·, T1 = k + 1). (2.17)

Put

Z̃+
d :=

{
Z+
d \ {0}, if d = 0,

Z+
d , if d > 0,

and denote Ck := ∪k−1i=0 (Z̃
+
d )

i × (Z−d )k−1−i. Then C ′k := Z̃+
d × Ck × Z−d is the set of

sequences of length k+1 that start from Z̃+
d , down-cross the level zero exactly once, and

in the non-arithmetic case have no zeroes. The general case m ∈ N follows analogously,
with the only difference that the set C ′k should be defined to account for 2m− 1 crossings
of the level zero.

Note that Rk is an invertible mapping on Rk+1, and it is an involution. Further,
Rk(Ck) = Ck since −Z̃+

d − d = Z−d in both cases d = 0 and d > 0. Similarly, Rk(C ′k) = C ′k,
implying that Rk(Rk+1 \ C ′k) = Rk+1 \ C ′k. This gives

Pπ+

(
Rk(K) ∈ Rk+1 \ C ′k, T1 = k + 1

)
= Pπ+

(
K ∈ Rk+1 \ C ′k, T1 = k + 1

)
= 0. (2.18)

The second equality is trivial in the arithmetic case. In the non-arithmetic case, it is due
to the fact that K has density with respect to the Lebesgue measure on Rk+1, which
in turn holds true since in this case the measure π+ has density with respect to the
Lebesgue measure on R.

By (2.18), if suffices to check equality (2.17) on rectangles of the form B0 ×B ×Bk
with Borel sides B0 ⊂ Z̃+

d , Bk ⊂ Z
−
d and B ⊂ Ck. Using the definition of π+ and the fact

that Xk+1 is independent with K under Px0
for every x0 ∈ Zd, we obtain

Pπ+

(
K ∈ B0 ×B ×Bk, T1 = k + 1

)
=

∫
B0

Px0

(
(S1, . . . , Sk) ∈ B ×Bk, T1 = k + 1

)
π+(dx0)

=

∫
B0

∫
Bk

[
Px0

(
(S1, . . . , Sk−1) ∈ B, T1 = k + 1

∣∣Sk = xk
)
P(X1 > x0)

]
Px0(Sk ∈ dxk)λd(dx0)

=

∫
B0×Bk

fB(x0, xk)Pλd((S0, Sk) ∈ dx0 ⊗ dxk), (2.19)

where

fB(x0, xk) := Px0

(
(S1, . . . , Sk−1) ∈ B

∣∣Sk = xk
)
P(X1 > x0)P(X1 ≥ −xk)

for (x0, xk) ∈ Z̃+
d ×Z

−
d . Then we use equality (2.19) to get

Pπ+

(
Rk(K) ∈ B0 ×B ×Bk, T1 = k + 1

)
= Pπ+

(
K ∈ (−Bk − d)×Rk−2(B)× (−B0 − d), T1 = k + 1

)
=

∫
(−Bk−d)×(−B0−d)

fRk−2(B)(x0, xk)Pλd((S0, Sk) ∈ dx0 ⊗ dxk)

=

∫
B0×Bk

fRk−2(B)(R1(x0, xk))Pλd
(
R1(S0, Sk) ∈ dx0 ⊗ dxk

)
, (2.20)
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where in the last equality we used the change of variables formula, the fact that Rk is an
involution, and the equality (−Bk − d)× (−B0 − d) = R1(B0, Bk).

Let us simplify the integrand under the last integral in (2.20). We have

P−xk−d
(
(S1, . . . , Sk−1) ∈ Rk−2(B)

∣∣Sk = −x0 − d
)

= P0

(
(S1 − xk − d, . . . , Sk−1 − xk − d) ∈ Rk−2(B)

∣∣Sk = xk − x0
)

= P0

(
Rk−2(S1 − Sk − x0 − d, . . . , Sk−1 − Sk − x0 − d) ∈ B

∣∣Sk = xk − x0
)

= P0

(
(Sk − Sk−1 + x0, . . . , Sk − S1 + x0) ∈ B

∣∣Sk + x0 = xk
)
.

The well-known duality principle for random walks states that the random vectors
(S1, . . . , Sk) and (Sk−Sk−1, . . . , Sk−S1, Sk) have the same law under P0. By a conditional
version of this distributional identity, for every x0 ∈ Zd and Px0

(Sk ∈ ·)-a.e. xk ∈ Zd,

P−xk−d
(
(S1, . . . , Sk−1) ∈ Rk−2(B)

∣∣Sk = −x0 − d
)
= Px0

(
(S1, . . . , Sk−1) ∈ B

∣∣Sk = xk
)
.

(2.21)
By the definition of fB, this gives

fRk−2(B)(R1(x0, xk)) = fRk−2(B)(−xk − d,−x0 − d))
= Px0

(
(S1, . . . , Sk−1) ∈ B

∣∣Sk = xk
)
P(X1 > −xk − d)P(X1 ≥ −x0 − d).

Thus, using in the non-arithmetic case the fact that a distribution function can have at
most countably many jumps, we get

fB(x0, xk) = fRk−2(B)(R1(x0, xk)), Pλd((S0, Sk) ∈ ·)-a.e. (x0, xk). (2.22)

Hence we see from (2.19), (2.20), and (2.22) combined with (2.18), that equality
(2.17) will follow once we show the following equality of measures on Z+

d ×Z
−
d :

Pλd((S0, Sk) ∈ ·) = Pλd(R1(S0, Sk) ∈ ·). (2.23)

By translation invariance of λd under shifts in Zd,

Pλd(R1(S0, Sk) ∈ ·) = Pλd((−Sk − d,−S0 − d) ∈ ·) = Pλd((−Sk,−S0) ∈ ·),

and thus the claim (2.23) reduces to

Pλd((S0, Sk) ∈ ·) = Pλd((−Sk,−S0) ∈ ·), (2.24)

which means that the random walk −S is dual to S with respect to λd. To prove this
property, note that by the shift invariance of λd under shifts in Zd, the equality (2.24) of
measures on Z2

d = Zd×Zd is equivalent to Pλd((S0, Sk) ∈ ·) = Pλd((S0−S′k, S0) ∈ ·). This
is exactly (2.16) with X1 replaced by S′k. Thus, (2.12) is proved for m = 1. As mentioned
above, the general case m ∈ N follows analogously, with the only difference that the set
C ′k shall account for 2m− 1 crossings of the level zero.

Consider now (2.13). We need to prove that the law of (S0, S1, . . . , ST↓m−1) under Pπ+

equals the law of (−STm−1 − d,−STm−2 − d, . . . ,−S0 − d) under Pπ− . Similarly to the
proof of (2.12), by the duality principle for random walks this reduces to the equality

Pπ+
((S0, Sk) ∈ ·, Sk+1 < 0) = Pπ−(R1(S0, Sk) ∈ ·, Sk+1 ≥ 0)

of measures on Z̃+
d × Z̃

+
d for k ∈ N0. Use the definitions of π+, π−, R1 to write this as

Pλd((S0, Sk) ∈ dx0 ⊗ dxk)P(X1 > x0)P(X1 < −xk)
= Pλd(R1(S0, Sk) ∈ dx0 ⊗ dxk)P(X1 ≥ x0 + d)P(X1 ≤ −xk − d).

This equality holds by (2.23) and the fact that P(X1 > x) = P(X1 ≥ x+d) for λd-a.e. x.
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3 Convergence to the stationary distribution

For the rest of the paper we assume (1.1) and investigate convergence in total
variation of the law of On to the probability distribution π+ as n→∞.

In the non-arithmetic case convergence in the total variation norm requires additional
assumptions on the law of the increments of S. We say that the distribution of the
increment X1 is spread out if P0(Sk ∈ ·) is non-singular with respect to the Lebesgue
measure for some k ≥ 1. It is clear that this assumption is necessary for the total
variation convergence to π+ of the law of the chain On starting from a point. In fact, if
this assumption is violated in the non-arithmetic case, then ‖Px(On ∈ ·)− π+(·)‖TV = 1

for every x ∈ R and n ≥ 1 since π+ has density. In this sections we will show that that
the spread out assumption is actually sufficient for the total variation convergence. Let
us mention that spread out distributions arise often in the context of renewal theory, see
Asmussen [1, Section VII].

Theorem 3.1. Assume (1.1) and that the distribution of X1 is either arithmetic or spread
out. Then

lim
n→∞

‖Px(On ∈ ·)− π+(·)‖TV = 0 for all x ∈ Zd.

A standard application of the dominated convergence theorem yields another proof
of the fact (given in full generality by [14, Theorem 4.2]) that, under the assumptions of
Theorem 3.1, π+ is the unique stationary distribution of the chain (On)n≥0 in the class of
all probability laws on Zd, including the ones singular with respect to π+.

The convergence in Theorem 3.1 may fail for every starting point x ∈ Z0 in the case
of general non-arithmetic distributions of increments, e.g. for discrete non-arithmetic
distributions, but π+ remains the unique stationary distribution of O by [14, Corol-
lary 4.2]. Therefore one may argue that the total variation metric is too fine for the study
of convergence of the chain of overshoots for general zero mean random walks. It is
feasible that the convergence holds in other metrics under less restrictive assumptions
than those in Theorem 3.1 but we did not succeed in proving results of such type; see
the discussion in Section 5 below.

It is well known that under the spread out assumption on the increments of a random
walk, a successful coupling of the walks started at arbitrary distinct points x, y ∈ Z0

can be defined, implying in particular limn→∞ ‖Px(Sn ∈ ·) − Py(Sn ∈ ·)‖TV = 0, see
e.g. Theorem 6.1 of Chapter 3 in Thorisson [22]. However, this coupling yields only
a shift-coupling [22, Section 3.1] of the chains of overshoots started at x and y. Thus
only the Cesaro total variation convergence [22, Section 3.2] of O can be deduced
from these results, which is weaker than the convergence stated in Theorem 3.1. Our
proof of Theorem 3.1 rests on the crucial property of the Markov chain (On)n≥0 stated
below in Proposition 3.2, implying that a successful coupling of the chains of overshoots
started at any distinct levels can be constructed for any span d ∈ [0,∞). We do not
exhibit a coupling construction in this paper but instead apply Theorem 4 in Roberts and
Rosenthal [18], which is established using this coupling.

For any measure µ on Zd, denote respectively by µa and µs its absolutely continuous
and singular components with respect to λd. We will slightly abuse this notation for dis-
tributions of random variables and write, say, Pax(O1 ∈ ·) instead of (Px(O1 ∈ ·))a.
We reserve the term “density” to mean the density with respect to the Lebesgue
measure λ0 without referring to the measure. The set X+ := [0,M+) ∩ Zd, where
M+ := sup(supp(X1)), is the actual state space of the Markov chain of overshoots: for
any x ∈ Zd and n ∈ N we have Px(On ∈ X+) = 1. Moreover, the equality π+(X+) = 1

holds true.

Proposition 3.2. Assume (1.1) and that the distribution of X1 is either arithmetic or
spread out. Then the measures Pax(O1 ∈ ·) and π+(·) are equivalent for any x ∈ Zd. Put
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differently, for any x ∈ Zd there exists a version of the density d
dλd
Pax(O1 ∈ dy) that is

strictly positive for all y ∈ X+.

Proof of Theorem 3.1. Proposition 3.2 implies that with positive probability, the chain
of overshoots visits in a single step any Borel set A ⊆ Zd satisfying π+(A) > 0. This
means that the Markov chain (On)n≥0 is π+-irreducible and aperiodic in the sense of
Meyn and Tweedie [13, Sections 4.2 and 5.4]. By Theorem 2.1 above, (On)n≥0 has a
stationary distribution π+. Then Theorem 4 in Roberts and Rosenthal [18], which applies
to ψ-irreducible aperiodic Markov chains with a stationary distribution on a general state
space with a countably generated σ-algebra, implies the total variation convergence in
Theorem 3.1 for π+-a.e. x ∈ Zd.

Since Px(O1 ∈ X+) = 1 for every x ∈ Zd, we will conclude the proof of Theorem 3.1 if
we show that the non-convergence set

N :=
{
x ∈ X+ : lim sup

n→∞
‖Px(On ∈ ·)− π+(·)‖TV > 0

}
is empty. In the arithmetic case (d > 0) this is clear by the fact that every point
of X+ has positive π+-measure and π+(N) = 0. In the non-arithmetic case (d = 0)
first note that since the Borel σ-algebra on X+ is countably generated, the function
x 7→ ‖Px(On ∈ ·)− π+(·)‖TV is measurable for every n ∈ N by Roberts and Rosenthal [17,
Appendix], making the set N measurable. Thus the claim will follow by a standard
application of the strong Markov property and the dominated convergence theorem if
we show that the chain (On)n≥0 hits the convergence set X+ \N with probability one
when started in N . Put differently, we need to prove that Px(On ∈ N, ∀n ∈ N) = 0 for
every x ∈ N .

Since π+(N) = λ0(N) = 0 we have Px(Sm ∈ N) = Psx(Sm ∈ N) for all m ∈ N. Hence,

Px(On ∈ N, ∀n ∈ N) ≤ lim inf
n→∞

Px(On ∈ N)

≤ lim inf
n→∞

∞∑
m=2n

Px(Sm ∈ N) ≤ lim inf
n→∞

∞∑
m=2n

Psx(Sm ∈ R), (3.1)

where in the second inequality we used the identity On = STn and the fact that Tn ≥ 2n

for x ≥ 0, cf. (1.2) and (1.3). By the definition of spread out distributions, we have
Psx(Sk ∈ R) = Ps(S′k ∈ R) < 1 for some k ≥ 1. Then, using that the convolution of an
absolutely continuous measure with any other measure is absolutely continuous, we get

Ps(S′m ∈ R) =
((
Ps(S′k ∈ ·) + Pa(S′k ∈ ·)

)∗bmk c ∗ P(S′m−kbmk c ∈ ·))s(R) ≤ (Ps(S′k ∈ R))bmk c
for any integer m ≥ 1, where bcc denotes the largest non-negative integer smaller or
equal to a c ≥ 0. Hence the sequence Psx(Sm ∈ R), which equals Ps(S′m ∈ R), decays
exponentially fast to zero as m→∞, and it follows that the last bound in (3.1) is zero.

Proof of Proposition 3.2. Pick any x ∈ Zd and denote by y an arbitrary element in X+.
Consider two cases.

Arithmetic distributions. We need to prove that Px(O1 = y) > 0.
Since y < M+, there exists a z ∈ Z+

d such that z > y and P(X1 = z) > 0. Furthermore,
it follows from the definition of Zd that there exists an integer k ≥ 1 such that Px(Sk =

y − z) > 0; see, e.g., Spitzer [20, Propositions 2.1 and 2.5]. Then

Px(O1 = y) ≥ Px(Sk = y − z, T1 > k) · P(X1 = z), (3.2)

and it remains to show that the first factor on the r.h.s. is positive.

EJP 25 (2020), paper 63.
Page 13/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP463
http://www.imstat.org/ejp/


Stability of overshoots of zero mean random walks

Denote by Sym(k) the symmetric group on the set {1, . . . , k}. For any permutation σ ∈
Sym(k), define a new random walk S(σ) = (Sn(σ))n≥0 by Sn(σ) := S0+Xσ(1)+ . . .+Xσ(n)

for 1 ≤ n ≤ k and Sn(σ) := Sn for n ≥ k. Denote by T1(σ) the first up-crossing time
of the level zero by S(σ) (cf. (1.2)), and let ξ be the number of negative terms among
X1, . . . , Xk.

Note that on the event Aσ := {ξ ≥ 1, Xσ(1) < 0, . . . , Xσ(ξ) < 0} ∪ {ξ = 0} the sequence
(Sn(σ))n∈{σ(ξ),...,k} is non-decreasing (on {ξ = 0}, we define σ(ξ) := 0). Then, since
y − z < 0 and Sk = Sk(σ), we have

{Sk = y − z} ∩Aσ ⊂ {Sk(σ) = y − z, T1(σ) > k}. (3.3)

Recall that the cardinality of Sym(k) is k! and note that

1

k!

∑
σ∈Sym(k)

1(Aσ) = 1(ξ = 0) + 1(ξ > 0)ξ!(k − ξ)!/k! = 1/

(
k

ξ

)
≥ 1/

(
k

bk/2c

)
. (3.4)

Since the laws of the random walks S an S(σ) coincide for all σ ∈ Sym(k), we get

Px(Sk = y − z, T1 > k) =
1

k!
Ex

[ ∑
σ∈Sym(k)

1(Sk(σ) = y − z, T1(σ) > k)

]

≥ 1

k!
Ex

[
1(Sk = y − z)

∑
σ∈Sym(k)

1(Aσ)

]

≥ Px(Sk = y − z)/
(

k

bk/2c

)
> 0, (3.5)

where the first inequality holds by (3.3) and the second by (3.4). Combined with (3.2),
this proves Px(O1 = y) > 0, and hence the proposition holds in the arithmetic case.

Spread out distributions. We say that measures µ and ν on Z0 = R satisfy

µ(du) ≥ ν(du) on an interval I ⊂ R

if µ(B) ≥ ν(B) for any Borel set B ⊂ I. Note that µ(du) ≥ cλ0(du) on I implies
µa(du) ≥ cλ0(du) on I. In this case there exists a version of the density of µa which is
bounded from below on I by the positive constant c.

Since the distribution of X1 is spread out, there exist ε1, h > 0, an integer k1 ≥ 1, and
a real a such that P0(Sk1 ∈ du) ≥ ε1λ0(du) on [a, a+2h]; see the proof of Proposition 5.3.1
in Meyn and Tweedie [13]. By the Chung–Fuchs theorem, the zero mean random walk
S is topologically recurrent. Hence for any b ∈ R (to be specified later) there exists
k2 = k2(b− x) ∈ N such that

ε2 = ε2(b− x) := Px
(
Sk2 ∈ [b− a− h, b− a]

)
> 0. (3.6)

Let k = k(b − x) := k2(b − x) + k1. Then, for any v ∈ [b − a − h, b − a], we have
P0(Sk1 ∈ du − v) ≥ ε1λ0(du) on [b, b + h], since u − v ∈ [a, a + 2h] and the Lebesgue
measure λ0 is invariant under translations. Hence on the interval [b, b+ h] it holds

Px(Sk ∈ du) ≥ Px(b− a− h ≤ Sk2 ≤ b− a, Sk ∈ du)

=

∫
[b−a−h,b−a]

Px(Sk2 ∈ dv)P0(Sk1 ∈ du− v) ≥ ε1ε2λ0(du).

In particular, the density of Pax(Sk ∈ ·) is bounded below by ε1ε2 on [b, b+ h].
Since y < M+, we can choose z > y such that ε3 = ε3(y) := P(X1 ∈ [z, z + h/2]) > 0.

Set b′ := y − z − 3h/4 and h′ := min(h, y − z − 3h/4), and let k′ := k2(b
′ − x) + k1 and
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ε′2 := ε2(b
′ − x) as in (3.6). Then Px(Sk′ ∈ du) ≥ ε1ε

′
2λ0(du) on [b′, b′ + h]. Moreover,

substituting the events {Sk = y− z} and {Sk(σ) = y− z}, where σ ∈ Sym(k), in the proof
of the arithmetic case above by {Sk′ ∈ [b′, b′ + h′)} and {Sk′(σ) ∈ [b′, b′ + h′)}, where
σ ∈ Sym(k′) and b′ + h′ ≤ 0, yields a bound analogous to (3.5):

Px(Sk′ ∈ du, T1 > k′) ≥ ε1ε
′
2(

k′

bk′/2c
)λ0(du) on [b′, b′ + h′). (3.7)

On the event {Sk′ ∈ [b′, b′ + h′), T1 > k′, Xk′+1 ≥ z} we have O1 = Sk′ + Xk′+1. The
Markov property at k′ implies that on the interval [y − h/4,min(z, y + h/4)) we have

Px(O1 ∈ dv) ≥
∫
[z,z+h/2]

Px(Sk′ ∈ dv − u, T1 > k′)P(Xk′+1 ∈ du)

≥ ε1ε
′
2(

k′

bk′/2c
)P(X1 ∈ [z, z + h/2])λ0(dv). (3.8)

The second inequality holds by (3.7) and the translation invariance of λ0 since, for
v ∈ [y − h/4,min(z, y + h/4)) and u ∈ [z, z + h/2], we have v − u ∈ [b′, b′ + h′). Since we
can partition X+ by a countable subcollection of the intervals {[y − h/4,min(z, y + h/4)) :

y ∈ X+}, by (3.8) there exists a version of the density p(x, ·) of Pax(O1 ∈ ·) satisfying

p(x, y) ≥ ε1ε
′
2ε3(
k′

bk′/2c
) > 0 for all y ∈ X+. (3.9)

4 Rate of convergence to the stationary distribution

In this section we present results on the rate of convergence in Theorem 3.1. We
will use the following norm: for any function f : Z+

d → [1,∞), the f -norm of a signed
measure µ on Z+

d is

‖µ‖f := sup
g:|g|≤f

∫
Z+
d

g(x)µ(dx).

In particular, for f ≡ 1 the following relationship with the total variation norm holds:
‖µ‖f = 2‖µ‖TV. Clearly, convergence in any f -norm is stronger than the total variation
convergence. We will only need the Vγ -norms, where Vγ(x) := 1 + xγ with γ ≥ 0.

Further, define the set of bivariate parameters

I := {(α, β) : 1 < α < 2, |β| < 1}.

For a random variable X, we write X ∈ D(α, β) for a pair (α, β) ∈ I if the distribution
of X belongs to the domain of attraction of a strictly stable law with the characteristic
function

χα,β(t) = exp
(
−c|t|α(1− iβ sign(t) tan(πα/2))

)
for some c > 0. Denote D := ∪(α,β)∈ID(α, β). The quantity

p := 1/2 + (πα)−1 arctan(β tan(πα/2)),

which is called the positivity parameter of the stable law, ranges over the open interval
(1− 1/α, 1/α) on I, see in Bertoin [2, Section 8.1].

Theorem 4.1. Assume (1.1) and that the distribution of X1 is either arithmetic or
spread out. In addition, assume either EX2

1 < ∞ with γ ∈ {0, 1} or X1 ∈ D with
γ ∈ (0,min{αp, α(1− p)}). Then there exist constants r ∈ (0, 1) and c1 > 0 such that

‖Px(On ∈ ·)− π+(·)‖Vγ ≤ c1(1 + xγ)rn, x ∈ Z+
d . (4.1)
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Equation (4.1) with γ = 0 translates to a uniform (in x) convergence at a geometric
rate in the total variation norm. Thus the chain of overshoots is uniformly ergodic if the
increments have finite variance; see Meyn and Tweedie [13, Theorem 16.0.2].

Our proof of Theorem 4.1 rests on two statements. The first can be viewed as a
uniform version of Proposition 3.2 stated in a slightly different form to avoid measurability
issues.

Proposition 4.2. Under the assumptions of Theorem 4.1, for any K > 0 in the case
X1 ∈ D and for K = ∞ in the case EX2

1 < ∞, there exists a measurable function
gK : X+ → (0,∞) such that

Px(O1 ∈ B) ≥
∫
B

gK(y)λd(dy) for all x ∈ Z+
d ∩ [0,K) and Borel sets B ⊂ X+. (4.2)

Remark 4.3. Note that (4.2) implies Px(O1 ∈ B) ≥
∫
B
gK(y)λd(dy) > 0 for any Borel set

B with λd(B) > 0. In particular, every compact set C ⊂ Z+
d with non-empty interior in

Z+
d (or the whole set Z+

d in the finite variance case) is small with respect to the measure
gdiam(C)(y)1X+

(y)λd(dy); see Meyn and Tweedie [13, Section 5.2] for the definition of
small sets. The proposition also yields that the Markov chain (On)n≥0 is strongly
aperiodic and satisfies the minorization condition, cf. respective Sections 5.4 and 5.1
in [13].

Remark 4.4. Our proof, based on Stone’s local limit theorem, actually implies that the
inequality in (4.2) with finite K is also valid for asymptotically stable distributions of
increments with 1 < α < 2, |β| = 1 and with α = 2. Moreover, it is plausible that (4.2)
holds under assumptions of Proposition 3.2, i.e. without any assumptions on the tail
behaviour of X1 beyond (1.1).

Second, we need the following geometric drift condition. We will prove it using
results of renewal theory.

Proposition 4.5. Under the assumptions of Theorem 4.1, there exist constants ρ ∈ (0, 1)

and L > 0 such that

ExO
γ
1 ≤ ρxγ + L, x ∈ Z+

d . (4.3)

Put together, Propositions 4.2 and 4.5 imply Theorem 4.1 via Theorems 15.0.1 and
16.0.2 and Proposition 5.5.3 in Meyn and Tweedie [13].

Proof of Proposition 4.2. The case X1 ∈ D(α, β). In the arithmetic case the set Z+
d ∩

[0,K) has a finite number of elements and the claim follows from Proposition 3.2. For
spread out distributions we have d = 0, implying Z+

0 ∩ [0,K) = [0,K), and it is clearly
sufficient to prove that there exist a measurable function gK : X+ → (0,∞) and for every
x, a version p(x, y) of the density of Pax(O1 ∈ dy) such that

inf
x∈[0,K)

p(x, y) ≥ gK(y) > 0 for all y ∈ X+. (4.4)

We will do this by refining the argument in the proof of Proposition 3.2.

Pick y ∈ X+ and consider the estimate in (3.9). Note that ε1 does not depend on x

and y while ε3 depends on y only through the choice of z > y. By decomposing X+ into a
pair-wise disjoint collection of countably many bounded half-open intervals and choosing
the same z for all y in each of the intervals makes y 7→ ε3(y) = P(X1 ∈ [z, z + h/2]) a
measurable function of y. Therefore it suffices to check that ε′2 can be bounded away
from zero and k′ can be bounded from above, both uniformly in x ∈ [0,K) and y in
each of the intervals in the partition of X+. These claims will follow once we establish
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a refined version of (3.6): for any compact interval I in R and h > 0, there exists an
integer m ≥ 1 such that

inf
x∈[0,K),u∈I

Px(Sm ∈ [u, u+ h]) > 0. (4.5)

Possibly the easiest way to prove (4.5) is to apply Stone’s local limit theorem which
holds for non-lattice asymptotically stable distributions [21, Corollary 1]: if the sequence
(bn)n≥1 tending to infinity is such that Sn/bn converges weakly to a strictly stable law
with the characteristic function χα,β given above, then

Px(Sn ∈ [u, u+ h)) = P0(Sn ∈ [u− x, u− x+ h)) = (hpα,β(0) + o(1))b−1n

as n → ∞ uniformly in x ∈ [0,K) and u ∈ I, where pα,β, the density of the stable law
with the characteristic function χα,β , is strictly positive and continuous at 0 for (α, β) ∈ I.
Hence the inequality in (4.5) holds for all n sufficiently large.

The case EX2
1 <∞. Note that in this case the above proof implies (4.2) for any finite

K > 0. In order to construct g∞ : (0,∞) → X+, let T(−∞,L) := min{n ≥ 0 : Sn < L} be
the moment of the first entrance of the walk (Sn)n≥0 to the half-line (−∞, L), where
L := d+ 1 > 0. For any Borel set B in X+ we have

Px(O1 ∈ B) =

∫
(−∞,L)

Pz(O1 ∈ B)Px(ST(−∞,L)
∈ dz)

≥
∫
(0,L)

Pz(O1 ∈ B)Px(ST(−∞,L)
∈ dz)

≥ Px
(
ST(−∞,L)

∈ (0, L)
) ∫

B

gL(y)λd(dy)

where gL is the lower bound in (4.4) that corresponds to the interval (0, L).
By the definition of O↓1 in (2.4), we have

Px
(
ST(−∞,L)

∈ (0, L)
)
= Px−L

(
O↓1 ∈ (−L, 0)

)
.

By (2.5), under the assumption EX2
1 < ∞, Px(O

↓
1 ∈ ·) converges weakly as x → ∞

to a distribution which assigns positive mass to (−L, 0). Hence there exist constants
c0,K0 > 0 such that Px(O1 ∈ B) ≥ c0

∫
B
gL(y)λd(dy) for all x ≥ K0 and all Borel sets

B in X+. The positive function g∞ := min{gK0 , c0gL} satisfies the inequality in (4.2) for
K =∞. This concludes the proof of the proposition.

Proof of Proposition 4.5. We will need a representation of the overshoots O1 and O↓1
as residual lifetimes of renewal processes of ladder heights. The sequence of descending
ladder heights (H−k )k≥0 of the random walk S′ (recall that S′0 = 0) satisfies H−0 = 0 and
its increments Yk := H−k −H

−
k−1 are negative i.i.d. random variables distributed as H−1 ,

the first strictly negative value of S′. For any x ≥ 0, denote by

R−(x) := sup{H−k + x : k ≥ 1, H−k < −x}

the overshoot at the down-crossing of the level −x. Then, by definition (2.4), we have

O↓1 = R−(S0) on {S0 ≥ 0}. (4.6)

In particular, this implies (2.5) under the assumption EX2
1 <∞.

Clearly, there is a similar representation for the overshoot O1 at the first up-crossing:

O1 = R̃+(−S0) on {S0 < 0},
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where R̃+(x) := inf{H+
k − x : k ≥ 1, H+

k ≥ x} is the non-negative residual lifetime at
time x > 0 for the ascending ladder height process (H+

k )k≥1 of the random walk S′. The
increments of this process are i.i.d. and have the same common distribution as H+

1 , the
first strictly positive value of S′.

The case X1 ∈ D(α, β). We need to estimate ExO
γ
1 and we start with the following

bounds. For any x > 0, denote T (x) := inf{k ≥ 1 : |H−k | > x} and T ′(x) := inf{k ≥ 1 :

|Yk| > x} with the convention inf ∅ :=∞. By the assumption |β| < 1 the distribution of
|Y1| has unbounded support, implying T ′(x) < ∞ a.s. for any real x. Since |R−(x)| <
|YT (x)| ≤ |YT ′(x)| a.s., we have

Ex|O↓1 |γ = E|R−(x)|γ < E|YT (x)|γ ≤ E|YT ′(x)|γ .

Clearly, a similar estimate applies for E−xO
γ
1 . Since the law of |YT ′(x)| equals that of

|H−1 | conditioned to be greater than x, we have

Ex|O↓1 |γ ≤
E
[
|H−1 |γ1{|H−1 |>x}

]
P(|H−1 | > x)

and E−xO
γ
1 ≤

E
[
(H+

1 )γ1{H+
1 ≥x}

]
P(H+

1 ≥ x)
. (4.7)

Note that the r.h.s.’s of these inequalities are monotone in x since YT ′(x) is non-decreasing
in x a.s.

Recall that, since |β| < 1, we have αp < 1 and αq < 1, where p is the positivity
parameter introduced in the beginning of the section and q := 1 − p. By Theorem 9
of Rogozin [19] we have |H−1 | ∈ D(αq, 1). Hence the renewal theorem of Dynkin [6,
Theorem 3] applies to the residual lifetime process (|R−(x)|)x>0 and so the distributions
Px(−O↓1/x ∈ ·) converge weakly as x→∞ to the distribution with the density

gαq(t) = π−1 sin(παq)t−αq(1 + t)−1, t > 0,

supported on the positive half-line. Recalling that γ ∈ (0, αq), we will obtain that

lim
x→∞

Ex|O↓1 |γ

xγ
=

∫ ∞
0

tγgαq(t)dt =
sin(παq)

sin(π(αq − γ))
=: cα,q(γ) (4.8)

once we check the uniform integrability of the distributions Px(|O↓1/x|γ ∈ ·).
Consider the numerator in the first estimate in (4.7). Using Karamata’s theorem (see

Bingham et al. [3, Proposition 1.5.10]) and the fact that the tail probability P(|H−1 | > x)

is regularly varying at infinity with index −αq, we get

E
[
|H−1 |γ1{|H−1 |>x}

]
=

∫
(x,∞)

tγP(|H−1 | ∈ dt)

= xγP(|H−1 | > x) +

∫ ∞
x

γtγ−1P(|H−1 | > t)dt

∼ αq

αq − γ
xγP(|H−1 | > x)

as x→∞. Hence, by (4.7), we have

lim sup
x→∞

Ex(|O↓1 |/x)γ ≤
αq

αq − γ
.

Since the above computations work for any γ ∈ (0, αq), the lim supx→∞Ex(|O
↓
1 |/x)γ0 is

finite for any γ0 ∈ (γ, αq). This yields the required uniform integrability, and (4.8) follows.
Further, consider E−xO

γ
1 = E(R̃+(x))γ . The result [6, Theorem 3] used above applies

only to (positive) residual times R+(x) := inf{H+
k − x : k ≥ 1, H+

k > x}, where H+
1 ∈
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D(αp, 1) by [19, Theorem 9]. However, it gives weak convergence of R+(x)/x as x→∞
to the distribution with density gαp(t). This yields weak convergence of P−x(O1/x ∈ ·)
to the same limit since R+(x) = R̃+(x) on the event {R+(x− 1) > 1} whose probability
tends to 1 as x→∞. Then, recalling that γ ∈ (0, αp), we obtain an analogue of (4.8):

lim
y→∞

E−yO
γ
1

yγ
=

sin(παp)

sin(π(αp− γ))
= cα,p(γ). (4.9)

We now apply the strong Markov property of the random walk S at T ↓1 : for any R > 0,

ExO
γ
1 =

∫
(0,R]

E−yO
γ
1 · Px(O

↓
1 ∈ −dy) +

∫
(R,∞)

[E−y(O1/y)
γ ]yγPx(O

↓
1 ∈ −dy). (4.10)

The first term is bounded uniformly in x for any fixed R:∫
(0,R]

E−yO
γ
1 · Px(O

↓
1 ∈ −dy) ≤ sup

0<y≤R
E−yO

γ
1

≤
E
[
(H+

1 )γ1{H+
1 ≥R}

]
P(H+

1 ≥ R)
≤

E
[
(H+

1 )γ
]

P(H+
1 ≥ R)

<∞, (4.11)

where in the second inequality we used the second inequality in (4.7), whose r.h.s. is
monotone. For the second term in (4.10), by (4.9), we make the expression E−y(O1/y)

γ

in the integrand arbitrarily close to cα,p(γ) by taking R sufficiently large. Finally, for any
fixed R,

lim sup
x→∞

∫
(0,R]

yγPx(O
↓
1 ∈ −dy) ≤ lim

x→∞
RγPx(−O↓1 ≤ R) = 0.

Hence by (4.10) there exists a constant CR > 0, such that
∣∣ExOγ1 − cα,p(γ)Ex|O↓1 |γ∣∣ ≤ CR

for all x > 0. By (4.8) and (4.9) we obtain

lim
x→∞

Ex(O1)
γ

xγ
=

sin(παq)

sin(π(αq − γ))
· sin(παp)

sin(π(αp− γ))
=: ρ0. (4.12)

Since 0 < γ < 1 < α < 2, the following implies ρ0 < 1:

sin(παq) sin(παp)− sin(π(αq − γ)) sin(π(αp− γ)) = 1

2
cos(π(α− 2γ))− 1

2
cos(πα)

= sin(πγ) sin(π(α− γ)) < 0.

Thus the inequality in (4.3) holds for any ρ ∈ (ρ0, 1) since ExO
γ
1 is locally bounded

by (4.10), (4.11), and the fact that for all R sufficiently large and any K > 0,

sup
0≤x≤K

∫
(R,∞)

[E−y(O1/y)
γ ]yγPx(O

↓
1 ∈ −dy) ≤ (1 + cα,p(γ)) sup

0≤x≤K
Ex|O↓1 |γ

≤ (1 + cα,p(γ))E|H−1 |γ

P(|H−1 | > K)
,

where we used (4.9) for the first inequality and (4.7) for the second one as we did in
(4.11).

The case EX2
1 <∞. The case γ = 0 is trivial so take γ = 1. It is well known that the

ladder heights of random walks with finite variance of increments are integrable; see
Feller [7, Sections XVIII.4 and 5]. Moreover, we have the following versions of (4.8) and
(4.9):

lim
x→∞

Ex|O↓1 |
x

= lim
y→∞

E−yO1

y
= 0,

see Gut [8, Theorem 3.10.2]. The rest of the proof is exactly as in the first case: by
(4.10), the value of the l.h.s. of (4.12) is now zero and ExO1 is locally bounded.
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5 Concluding remarks

5.1 The entrance chain into an interval

The methods of this paper developed for establishing convergence of the chain O

of overshoots above zero work without any changes for the Markov chain of entrances
into the interval [0, h] for any h > 0, defined analogously to O (cf. (1.2) and (1.3)): put

O
(h)
n := S

T
(h)
n

for n ∈ N0, where

T
(h)
0 := 0, T (h)

n := inf{k > T
(h)
n−1 : Sk−1 6∈ [0, h], Sk ∈ [0, h]}, n ∈ N.

By [14, Theorem 4.2], the Markov chain O(h) := (O
(h)
n )n≥0 on Zd has a unique stationary

distribution given by

πh(dx) := ch1[0,h](x)(1− P(x− h ≤ X1 ≤ x))λd(dx), x ∈ Zd, (5.1)

where ch > 0 is a normalizing constant. The assertions of Theorems 3.1 and 4.1 remain
valid if we replace On and π+ respectively by O(h)

n and πh, with γ = 0 in Theorem 4.1.
To see this, recall that the proof of Theorem 3.1 was based on Proposition 3.2

describing Px(O1 ∈ ·), which was actually used only for starting points x in X+ =

supp(π+), where X+ = [0,M+) ∩ Zd with M+ = sup(suppX1). For the chain O(h), we
need to consider only x ∈ supp(πh), where supp(πh) = ([0,M+)∪ (h+M−, h])∩ [0, h]∩Zd
with M− := inf(suppX1). The case x ∈ [0,M+) ∩ [0, h] ∩ Zd (which gives the claim if
M+ ≥ h+ d) is actually covered in the proof of the proposition, where we can replace

throughout O1 by O(h)
1 without any other changes. The remaining case x ∈ (h+M−, h] ∩

[0, h] ∩ Zd follows by considering the random walk −S. Finally, Theorem 4.1 immediately
follows from Proposition 4.2, which is simply the uniform version of Proposition 3.2, and
Proposition 4.5, which trivially holds with L = h.

5.2 Convergence of the chain of overshoots under minimal assumptions

By [14, Corollary 4.2], the probability law π+ is the unique stationary distribution
for the chain of overshoots O of any random walk satisfying (1.1). By Theorem 3.1, the
laws of On converge to π+ in the total variation distance for random walks with either
arithmetic or spread out distributions of increments. Our intuition coming from renewal
theory suggests that the following hypothesis is plausible.

Conjecture 5.1. Under assumption (1.1), we have Px(On ∈ ·)
d→ π+ as n→∞ for any

x ∈ Z0.

Below we discuss the difficulties of proving convergence of On in other metrics on
probability distributions under the minimal assumptions in (1.1). Let us start with two
observations.

First, the total variation norm is clearly inappropriate since it requires the spread
out assumption, as explained in the beginning of Section 3. Moreover, in the non-
spread out non-arithmetic case the chain of overshoot is not ψ-irreducible and thus
not Harris recurrent, placing it outside of the scope of the well-established classical
convergence theory (see Meyn and Tweedie [13]). In fact, the spread out assumption on
the distribution of X1 is equivalent to ψ-irreducibility of O (and S, of course). To see this,
recall that any ψ-irreducible Markov chain on R has a finite period p by Theorems 5.2.2
and 5.4.4 in Meyn and Tweedie [13]. Then, by Theorem 4 in Roberts and Rosenthal [18],
which we used in the proof of Theorem 3.1, the ψ-irreducibility of O implies that the
aperiodic chain (Opn)n≥0 converges to π+ in the total variation distance. But this can
only be true when the distribution of X1 is spread out.

Second, recall from Section 2.4 that stationarity of π+ for the chain O can be estab-
lished by factorizing the transition kernel of O into the Markov kernels P and Q, defined
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in (2.10), both having π+ as their stationary distribution (see (2.11)). Unfortunately,
this representation appears to be of a very limited use for studying the questions of
convergence. In fact, the following example shows that the chain generated by Q may
have an invariant distribution other that π+, hence it may fail to converge to π+ starting
from an arbitrary point.

Example 5.2. Let X1 satisfy P(X1 = a|X1 > 0) = 1 for some a > d. Then for any
x ∈ (0, a) we have Q(x, dy) = δa−x(dy) and hence 1

2δx +
1
2δa−x is a stationary distribution

of Q. An analogous phenomenon occurs for any non-arithmetic distribution of X1 whose
restriction to Z+

0 is atomic with finitely many atoms.

The next candidate is convergence in L2(π+). First of all, here we can work only with
initial distributions (of O0 = S0) that are absolutely continuous with respect to π+. Given
that the transition operator of the chain of overshoots O is the product of two reversible
transition operators (see Section 2.4 above), it is tempting to apply the methods of the
theory of self-adjoint operators. We would need to show that either P or Q has a spectral
gap. A plausible way to prove this is to check that the operator is compact, with 1 being
an eigenvalue of multiplicity one, and that −1 is not an eigenvalue.

The operator Q appears to be more amenable for the analysis, but it seems that Q
may be non-compact for a general distribution of increments. In addition, Example 5.2
above shows that 1 can be a multiple eigenvalue of Q, since the Q-chain can in general
have more than one stationary distribution on Z+

d . We are not aware of any works
that establish compactness of Markov transition operators on infinitely-dimensional
functional spaces without assuming some form of absolute continuity (as in this paper
with spread out distributions of increments).

Regarding the weak convergence of Markov chains, the only technique we are
aware of is based on the so-called ε-coupling for continuous-time Markov chains; see
Thorisson [22, Section 5.6]. This does not seem to be applicable in the non-arithmetic
case: even though, for any distinct real values x1 and x2, the walks x1 + S′ and x2 + S′

enjoy a version of ε-coupling (see Thorisson [22, Theorem 2.7.1]), the level zero will be
crossed at different times by the two walks making it hardly possible to deduce that the
corresponding chains of overshoots are eventually only a small distance away from each
other.

Our last candidate are Wasserstein-type metrics with a carefully chosen distance
on Z+

0 = [0,∞). Here there is a promising approach, introduced by Hairer and Mat-
tingly [9, 10], which works under a significantly relaxed version of the restrictive ψ-
irreducibility assumption and allows one to prove convergence of Markov chains whose
transition probabilities can even be mutually singular. Our problem with non-arithmetic
distributions that are not spread out appears to be in this category, but we were unable to
apply these ideas in our context because of the analytical intrectability of the transition
kernel of the chain O.
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