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Abstract

In this article, we study the behavior of consecutive values of random completely
multiplicative functions (Xn)n≥1 whose values are i.i.d. at primes. We prove that for
X2 uniform on the unit circle, or uniform on the set of roots of unity of a given order,
and for fixed k ≥ 1, Xn+1, . . . , Xn+k are independent if n is large enough. Moreover,
with the same assumption, we prove the almost sure convergence of the empirical
measure N−1 ∑N

n=1 δ(Xn+1,...,Xn+k) when N goes to infinity, with an estimate of the
rate of convergence. At the end of the paper, we also show that for any probability
distribution on the unit circle followed by X2, the empirical measure converges almost
surely when k = 1.

Keywords: random multiplicative function; empirical distribution; limit theorem; Chowla conjec-
ture.
AMS MSC 2010: 11K65; 11N37; 60F05; 60F15.
Submitted to EJP on May 9, 2019, final version accepted on April 12, 2020.

1 Introduction

Many arithmetic functions of interest are multiplicative, i.e. their value at mn is the
product of their values at m and n, for all coprime integers m,n ≥ 1. For example, it is
the case for the Möbius function, which is defined by µ(n) = 0 if n ≥ 1 is divisible by the
square of at least one prime number, µ(n) = 1 if n is the product of an even number of
distinct primes, and µ(n) = −1 if n is the product of an odd number of distinct primes.
Similarly, Dirichlet characters are multiplicative, as well as the Liouville function, which
is equal to (−1)k on integers with k prime factors, counted with multiplicity: these
functions are even completely multiplicative, which means that their value at mn is the
product of their values at m and n for all integers m,n ≥ 1. The behavior of the Möbius
and the Liouville functions is far from being known with complete accuracy, even if
partial results have been proven. This difficulty can be encoded by the corresponding
Dirichlet series, which involve the Riemann zeta function. For example, the partial
sum, up to x, of the Möbius function in known to be negligible with respect to x, and
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On consecutive values of random completely multiplicative functions

it is conjectured to be negligible with respect to xr for all r > 1/2: the first statement
can quite easily be proven to be equivalent to the prime number theorem, whereas the
second is equivalent to the Riemann hypothesis.

It has been noticed that the same bound xr for all r > 1/2 is obtained if we take the
partial sums of i.i.d., bounded and centered random variables. This suggests the naive
idea to compare the Möbius function on square-free integers with i.i.d. random variables
on {−1, 1}. However, a major difference between the two situations is that in the random
case, we lose the multiplicativity of the function. A less naive randomized version of
Möbius functions can be obtained as follows: one takes i.i.d. uniform random variables
on {−1, 1} on prime numbers, 0 on prime powers of order larger than or equal to 2, and
one completes the definition by multiplicativity.

In [29], Wintner considers a completely multiplicative function with i.i.d. values at
primes, uniform on {−1, 1} (which corresponds to a randomized version of the Liouville
function rather than the Möbius function), and proves that we have almost surely the
same bound xr (r > 1/2) for the partial sums, as for the sums of i.i.d. random variables,
or for the partial sums of Möbius function if the Riemann hypothesis is true. The estimate
in [29] has been refined by Halász in [9], and then by Lau, Tenenbaum and Wu in [17].
Some lower bounds can also be deduced from moment estimates by Harper [10]. In
order to get more general results, it can be useful to consider complex-valued random
multiplicative functions. For example, it has been proven by Bohr and Jessen [2] that for
σ > 1/2, the law of ζ(σ + iTU), for U uniformly distributed on [0, 1], tends to a limiting
random variable when T goes to infinity. This limiting random variable can be written as∑
n≥1Xnn

−σ, when (Xn)n≥1 is a random completely multiplicative function such that
(Xp)p∈P are i.i.d. uniform on the unit circle, P denoting, as in all the sequel of the
present paper, the set of prime numbers. The fact that the series just above converges
is a direct consequence (by partial summation) of the analog of the result of Wintner
for the partial sums of (Xn)n≥1: one can prove that almost surely,

∑
n≤xXn = o(xr) for

r > 1/2.
This discussion shows that it is often much less difficult to prove accurate results

for random multiplicative function than for the arithmetic functions which are usually
considered. In some informal sense, the arithmetic difficulties are diluted into the
randomization, which is much simpler to deal with.

In the present paper, we study another example of results which are stronger and
less difficult to prove in the random setting than in the deterministic one. The example
we detail in this article is motivated by the following question, initially posed in the
deterministic setting: for k ≥ 1, what can we say about the distribution of the k-tuples
(µ(n + 1), . . . , µ(n + k)), or (λ(n + 1), . . . , λ(n + k)), where µ and λ are the Möbius and
the Liouville functions, n varies from 1 to N , N tends to infinity? This question is only
very partially solved. One knows (it is essentially a consequence of the prime number
theorem), that for k = 1, the proportion of integers such that λ is equal to 1 or −1
tends to 1/2. For the Möbius function, the limiting proportions are 3/π2 for 1 or −1
and 1 − (6/π2) for 0. It has been proven by Hildebrand [15] that for k = 3, the eight
possible values of (λ(n+ 1), λ(n+ 2), λ(n+ 3)) appears infinitely often. This result has
been improved by Matomäki, Radziwiłł and Tao [19], who prove that these eight values
appear with a positive lower density: in other words, for all (ε1, ε2, ε3) ∈ {−1, 1}3,

lim inf
N→∞

1

N

N∑
n=1

1λ(n+1)=ε1,λ(n+2)=ε2,λ(n+3)=ε3 > 0.

The similar result is proven for the nine possible values of (µ(n+1), µ(n+2)). A conjecture
by Chowla [3] states that for all k ≥ 1, each possible pattern of (λ(n+ 1), . . . , λ(n+ k))

appears with asymptotic density 2−k. This conjecture is still open, however, partial
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results have been recently proven, in particular in papers by Tao and Teräväinen ([24],
[25], [26]).

In the present paper, we prove results similar to this conjecture for random completely
multiplicative functions (Xn)n≥1. The random functions we will consider take i.i.d. values
on the unit circle on prime numbers. Their distribution is then entirely determined by
the distribution of X2. The two particular cases we will study in the largest part of the
paper are the following: X2 is uniform on the unit circle U, and X2 is uniform on the set
Uq of q-th roots of unity, for q ≥ 2. In this case, we will show the following results: for all
k ≥ 1, and for all n ≥ 1 large enough depending on k, the variables Xn+1, . . . , Xn+k are
independent, and exactly i.i.d. uniform on the unit circle if X2 is uniform. Moreover, the
empirical distribution

1

N

N∑
n=1

δ(Xn+1,...,Xn+k)

tends almost surely to the uniform distribution on Uk if X2 is uniform on U, and to the
uniform distribution on Ukq if X2 is uniform on Uq. In particular, the analog of Chowla’s
conjecture holds almost surely in the case where X2 is uniform on {−1, 1}. We have also
an estimate on the speed of convergence of the empirical measure: in the case of the
uniform distribution on Uq, each of the qk possible patterns for (Xn+1, . . . , Xn+k) almost
surely occurs with a proportion q−k + O(N−t) for n running between 1 and N , for all
t < 1/2. We have a similar result in the uniform case, if the test functions we consider are
sufficiently smooth. It would be interesting to have similar results when the distribution
of X2 on the unit circle is not specified. For k ≥ 2, we are unfortunately not able to
show similar results, but we nevertheless can prove that the empirical distribution of
Xn almost surely converges to a limiting distribution for any distribution of X2 on the
unit circle. We specify this distribution, which is always uniform on U or uniform on Uq
for some q ≥ 1, and in the latter case, we give an estimate of the rate of convergence.
This rate corresponds to a negative power of logN , which is much slower than what we
obtain when X2 is uniform on Uq.

The techniques we use in our proofs are elementary in general, mixing classical tools
in probability theory and number theory. However, a part of our arguments need to use
deep results on diophantine equations, in order to bound the number and the size of
their solutions.

The sequel of the paper is organized as follows. In Sections 2 and 3, we study
the law of (Xn+1, . . . , Xn+k) for n large depending on k, first in the case where X2 is
uniform on U, then in the case where X2 is uniform on Uq. In Section 4, we study the
empirical measure of (Xn+1, . . . , Xn+k) in the case of X2 uniform on U. In the proof of
the convergence of this empirical measure, we need to estimate the second moment
of sums of the form

∑N
n=N ′+1

∏k
j=1X

mj
n+j . The problem of estimating moments of order

different from two for such sums is discussed in Section 5. The proof of convergence of
empirical measure in the case of uniform variables on Uq is given in Section 6. Finally,
we consider the case of a general distribution for X2 in Section 7.

2 Independence in the uniform case

In this section, we suppose that (Xp)p∈P are i.i.d. uniform random variables on the
unit circle. By convenience, we will extend our multiplicative function to positive rational
numbers by setting Xp/q := Xp/Xq: the result is independent of the choice of p and q,
and we have XrXs = Xrs for all rationals r, s > 0. Moreover, Xr is uniform on the unit
circle for all positive rational r 6= 1. In this section, we will show that for fixed k ≥ 1,
(Xn+1, . . . , Xn+k) are independent if n is sufficiently large. The following result gives a
criterion for such independence:
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Lemma 2.1. For all n, k ≥ 1, the variables (Xn+1, . . . , Xn+k) are independent if and only
if log(n+ 1), . . . , log(n+ k) are linearly independent on Q.

Proof. Since the variables (Xn+1, . . . , Xn+k) are uniform on the unit circle, they are
independent if and only if

E[Xm1
n+1 . . . X

mk
n+k] = 0

for all (m1, . . . ,mk) ∈ Zk\{(0, 0, . . . , 0)}. This equality is equivalent to

E[X(n+1)m1 ...(n+k)mk ] = 0,

i.e.
(n+ 1)m1 . . . (n+ 1)mk 6= 1

or
m1 log(n+ 1) + · · ·+mk log(n+ k) 6= 0. (2.1)

We then get the following result:

Proposition 2.2. The variables (Xn+1, . . . , Xn+k) are i.i.d. as soon as n ≥ (100k)k+1. In
particular, for k fixed, this property is true for all but finitely many n.

Remark 2.3. The same result is proven in [27], Theorem 3. (i), with an asymptotically
better bound, namely n ≥ eck log log(k+2)/ log(k+1) where c > 0 is a constant. However, their
proof uses a deep result by Shorey [23] on linear forms in the logarithms of algebraic
numbers, involving technical tools by Gelfond and Baker, whereas our proof is elementary.
Moreover, the constant c involved in [27] is not given, even if it is explicitly computable.

Proof. Let us assume that we have a linear dependence (2.1) between log(n + 1), . . . ,

log(n + k): necessarily k ≥ 2. Moreover, the integers n + j for which mj 6= 0 cannot
be divisible by a prime larger than k: otherwise this factor remains in the product∏k
`=1(n+ `)

mj since none of the n+ ` for ` 6= j can be divisible by p, and then the product
cannot be equal to 1. We can rewrite the dependence as follows:

log(n+ j) =
∑
`∈A

r` log(n+ `),

for a subset A of {1, . . . , k}\{j} and for R := (r`)`∈A ∈ QA. Let us assume that the
cardinality |A| is as small as possible. Taking the decomposition in prime factors, we get
for all p ∈ P,

vp(n+ j) =
∑
`∈A

vp(n+ `)r`,

where vp denotes the exponent of p in the prime factorization. If M := (vp(n+ `))p∈P,`∈A,
V := (vp(n + j))p∈P , then we can write these equalities in a matricial way V = MR.
The minimality of |A| ensures that the matrix M has rank |A|. Moreover, since all the
prime factors of (n + `)`∈A are smaller than k, all the rows of M indexed by prime
numbers larger than k are identically zero, and then the rank |A| of M is at most π(k),
the number of primes smaller than or equal to k. Moreover, we can extract a subset Q of
P of cardinality |A| such that the restriction M (Q) of M to the rows with indices in Q is
invertible. We have with obvious notation: V (Q) = M (Q)R, and then by Cramer’s rule,
the entries of R can be written as the quotients of determinants of matrices obtained
from M (Q) by replacing one column by V (Q), by the determinant of M (Q). All the
entries involved in these matrices are p-adic valuations of integers smaller than or equal
to n + k, so they are at most log(n + k)/ log 2. By Hadamard inequality, the absolute
value of the determinants are smaller than or equal to ([log(n + k)/ log(2)]|A|)|A||A|/2.

EJP 25 (2020), paper 59.
Page 4/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP456
http://www.imstat.org/ejp/


On consecutive values of random completely multiplicative functions

Since |A| ≤ π(k), we deduce, after multiplying by det(M (Q)), that there exists a linear
dependence between log(n+ 1), . . . , log(n+ k) involving only integers of absolute value
at most D := [

√
π(k) log(n + k)/ log 2]π(k): let us keep the notation of (2.1) for this

dependence. Let q be the smallest nonnegative integer such that
∑k
j=1 j

qmj 6= 0: from
the fact that the Vandermonde matrices are invertible, one deduces that q ≤ k− 1. Using
the fact that ∣∣∣∣∣log(n+ j)−

(
log n+

q∑
r=1

(−1)r−1 jr

rnr

)∣∣∣∣∣ ≤ jq+1

(q + 1)nq+1
,

we deduce, by writing the dependence above:∣∣∣∣∣∣
k∑
j=1

jqmj

∣∣∣∣∣∣ 1

qnq
≤

k∑
j=1

|mj |jq+1

(q + 1)nq+1

if q ≥ 1 and ∣∣∣∣∣∣
k∑
j=1

mj

∣∣∣∣∣∣ log n ≤
k∑
j=1

|mj |j
n

if q = 0. Since the first factor in the left-hand side of these inequalities is a non-zero
integer, it is at least 1. From the bounds we have on the mj ’s, we deduce

1

qnq
≤ Dkq+2

(q + 1)nq+1

for q ≥ 1 and

log n ≤ Dk2

n
.

for q = 0. Hence

1 ≤
(

q

q + 1
∨ 1

log n

)
Dkq+2

n
≤ Dkq+2

n

if n ≥ 3, which implies, since q ≤ k − 1,

n ≤ Dkk+1 ≤ [
√
π(k) log(n+ k)/ log 2]π(k)kk+1.

If n ≥ k ∨ 3, we deduce

2n ≤ 2[
√
π(k) log(2n)/ log 2]π(k)kk+1,

i.e.
2n

[log(2n)]π(k)
≤ 2[

√
π(k)/ log 2]π(k)kk+1.

Now, one has obviously π(k) ≤ 2k/3 for all k ≥ 2, and then
√
π(k)/ log 2 ≤

√
2k for all

integers k ≥ 2, and more accurately, it is known that (π(k) log k)/k, which tends to 1 at
infinity by the prime number theorem, reaches its maximum at k = 113: this fact is in
particular an immediate consequence of [22], Corollary 2, equation (3.7). Hence,

2n

[log(2n)]π(k)
≤ 2(2k)ck/ log kkk+1

where

c =
1

2

π(113) log 113

113
≤ 0.63

EJP 25 (2020), paper 59.
Page 5/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP456
http://www.imstat.org/ejp/


On consecutive values of random completely multiplicative functions

and then

2n

[log(2n)]π(k)
≤ 2(20.63k/ log 2)k0.63k/ log kkk+1 ≤ 2e1.26kkk+1 ≤ (e1.26k)k+1 ≤ (3.6k)k+1.

Let us assume that 2n ≥ (100k)k+1. The function x 7→ x/ logπ(k)(x) is increasing for
x ≥ eπ(k). Moreover, by studying the function x 7→ log log(100x)/ log(x+ 1) for x ≥ 2, we
check that log(100k) ≤ (k + 1)1.52 for all k ≥ 2. Hence, since π(k) ≤ π(k + 1),

2n

[log(2n)]π(k)
≥ (100k)k+1

((k + 1) log(100k))π(k)
≥ (100k)k+1

(k + 1)2.52π(k+1)

≥ (100k)k+1

(k + 1)(2.52)(1.26)(k+1)/ log(k+1)
≥ (100ke−3.18)k+1 ≥ (4k)k+1,

which contradicts the previous inequality.
Hence,

n ≤ 2n ≤ (100k)k+1,

and this bound is of course also available for n ≤ k ∨ 3.

This result implies that theoretically, for fixed k, one can find all the values of n such
that (Xn+1, . . . , Xn+k) are not independent by brute force computation. In practice, the
bound we have obtained is far from optimal, and is too poor to be directly useable except
for very small values of k, for which a more careful reasoning can solve the problem
directly. Here is an example for k = 5:

Proposition 2.4. For n ≥ 1, the variables (Xn+1, Xn+2, Xn+3, Xn+4, Xn+5) are indepen-
dent except if n ∈ {1, 2, 3, 4, 5, 7}.

Proof. If
∏5
j=1(n + j)mj = 1 with integers m1, . . .m5 not all equal to zero, then mj = 0

as soon as n+ j has a prime factor larger than or equal to 5: otherwise, this prime factor
cannot be cancelled by the factors (n+ k)mk for k 6= j. Hence, the values of n+ j such
that mj 6= 0 have only prime factors 2 and 3, and at most one of them has both factors
since it should then be divisible by 6. Moreover, if n ≥ 4, there can be at most one
power of 2 and one power of 3 among n + 1, . . . , n + 5. One deduces that dependence
is only possible if among n+ 1, . . . , n+ 5, there are three numbers, respectively of the
form 2k, 3`, 2r.3s, for integers k, `, r, s > 0. The quotient between two of these integers is
between 1/2 and 2 since we here assume n ≥ 4. Hence, 2k ≥ 2r.3s/2 ≥ 2r and then k ≥ r.
Similarly, 3` ≥ 2r.3s/2 ≥ 3s, which implies ` ≥ s. The numbers 2k and 2r.3s are then both
divisible by 2r; since they differ by at most 4, r ≤ 2. The numbers 3` and 2r.3s are both
divisible by 3s, and then s ≤ 1. Therefore, 2r.3s ≤ 12 and n ≤ 11. If 9 ≤ n ≤ 11, the only
possible values of n+ j such that mj can be different from zero are 12 and 16, which are
multiplicatively independent. If n = 8, the only possible values are 9 and 12, which are
also independent, if n = 6, the values to consider are 8 and 9. The only remaining values
of n are 1, 2, 3, 4, 5, 7, which are exceptions since

84 · 93 · 12−6 = 6−6 · 82 · 93 = 43 · 8−2 = 32 · 4 · 6−2 = 22 · 4−1 = 1.

The results above give an upper bound, for fixed k, of the maximal value of n such that
(Xn+1, . . . , Xn+k) are not independent. By considering two consecutive squares and their
geometric mean, whose logarithms are linearly dependent, one deduces the lower bound
([k/2] − 1)2 − 1 ≥ (k − 1)(k − 5)/4 for the maximal n. As written in a note by Dubickas
[4], this bound can be improved to a quantity equivalent to (k/4)3, by considering the
identity:

(n3 − 3n− 2)(n3 − 3n+ 2)n3 = (n3 − 4n)(n3 − n)2.
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In [4], as an improvement of a result of [27], it is also shown that for all ε > 0, the lower
bound elog2 k/[(4+ε) log log k] occurs for infinitely many values of k.

A computer search gives, for k between 3 and 13, and n ≤ 1000, the following largest
values for which we do not have independent variables: 1, 5, 7, 14, 23, 24, 47, 71, 71,
71, 239. For example, if k = 13 and n = 239, the five integers 240, 243, 245, 250, 252 have
only the four prime factors 2, 3, 5, 7, so we necessarily have a dependence, namely:

24065 · 24331 · 24555 · 250−40 · 252−110 = 1.

It would remain to check if there are dependences for n > 1000.

3 Independence in the case of roots of unity

We now suppose that (Xp)p≥1 are i.i.d., uniform on the set of q-th roots of unity, q ≥ 1

being a fixed integer. If q = 2, we get symmetric Bernoulli random variables. For all
integers s ≥ 2, we will denote by µs,q the largest divisor d of q such that s is a d-th power.
The analog of Lemma 2.1 in the present setting is the following:

Lemma 3.1. For n, k ≥ 1, the variables (Xn+1, . . . , Xn+k) are all uniform on the set of
q-th roots of unity if and only if µn+j,q = 1 for all j between 1 and k. They are independent
if and only if the only k-tuple (m1, . . . ,mk), 0 ≤ mj < q/µn+j,q such that

∀p ∈ P,
k∑
j=1

mjvp(n+ j) ≡ 0 (mod. q)

is (0, 0, . . . , 0).

Proof. For any s ≥ 2, ` ∈ Z, we have

E[X`
s ] =

∏
p∈P

E[X`vp(s)
p ],

which is equal to 1 if `vp(s) is divisible by q for all p ∈ P, and to 0 otherwise. The
condition giving 1 is equivalent to the fact that ` is a multiple of q/(gcd(q, (vp(s))p∈P)),
which is q/µs,q. Hence, Xs is a uniform (q/µs,q)-th root of unity, which implies the first
part of the proposition.

The variables (Xn+1, . . . , Xn+k) are independent if and only if for all m1, . . . ,mk ∈ Z,

E

 k∏
j=1

X
mj
n+j

 =

k∏
j=1

E[X
mj
n+j ].

Since Xn+j is a uniform (q/µn+j,q)-th root of unity, both sides of the equality depend
only on the values of mj modulo q/µn+j,q for 1 ≤ j ≤ k. This implies that we can assume,
without loss of generality, that 0 ≤ mj < q/µn+j,q for all j. If all the mj ’s are zero, both
sides are obviously equal to 1. Otherwise, the right-hand side is equal to zero, and then
we have independence if and only if it is also the case of the left-hand side, i.e. for all
(m1, . . . ,mk) 6= (0, 0, . . . , 0), 0 ≤ mj < q/µn+j,q,

E

 k∏
j=1

X
mj
n+j

 = E

∏
p∈P

X
∑

1≤j≤kmjvp(n+j)
p

 =
∏
p∈P

E
[
X

∑
1≤j≤kmjvp(n+j)

p

]
= 0,

which is true if and only if

∃p ∈ P,
k∑
j=1

mjvp(n+ j) 6≡ 0 (mod. q).
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We then have the following result, similar to Proposition 2.2:

Proposition 3.2. For fixed k, q ≥ 1, there exists an explicitely computable n0(k, q) such
that (Xn+1, . . . , Xn+k) are independent as soon as n ≥ n0(k, q).

The bound n0(k, q) can be deduced from bounds on the solutions of certain diophan-
tine equations which are available in the literature: we do not take care of its precise
value, which is anyway far too large to be of any use if we want to find in practice the
values of n such that (Xn+1, . . . , Xn+k) are not independent.

Proof. For each value of n ≥ 1 such that (Xn+1, . . . , Xn+k) are dependent, there exist
0 ≤ mj < q/µn+j,q, not all zero, such that

∀p ∈ P,
k∑
j=1

mjvp(n+ j) ≡ 0 (mod. q).

There are finitely many choices, depending only on k and q, for the k-tuples (µn+j,q)1≤j≤k
and (mj)1≤j≤k, so it is sufficient to show that the values of n corresponding to each
choice of k-tuples is bounded by an explicitely computable quantity. At least two of
the mj ’s are non-zero: otherwise mjvp(n+ j) is divisible by q for all p ∈ P, j being the
unique index such that mj 6= 0, and then mj is divisible by q/µn+j,q: this contradicts the
inequality 0 < mj < q/µn+j,q.

On the other hand, if p is a prime larger than k, at most one of the terms mjvp(n+ j)

is non-zero, and then all the terms are divisible by q, since it is the case for their sum.

We deduce that n + j is the product of a power of order ρj := q/ gcd(mj , q) and a
number Aj whose prime factors are all smaller than k. Moreover, one can assume that
Aj is “ρj-th power free”, i.e. that all its p-adic valuations are strictly smaller than ρj .
Hence there exist

Aj ≤
∏

p∈P,p≤k

pρj−1 ≤ (k!)q

and an integer Bj ≥ 1 such that n+ j = AjB
ρj
j . The value of the exponents ρj are fixed

by the mj ’s, and at least two of them are strictly larger than 1, since at least two of the
mj ’s are non-zero. Let us first assume that there exist distinct j and j′ such that ρj ≥ 2

and ρj′ ≥ 3. One finds an explicitly computable bound on n in this case as soon as we
find an explicitly computable bound for the solutions of each diophantine equation in x
and z:

Azρj −A′xρj′ = d

for each A,A′, d such that 1 ≤ A,A′ ≤ (k!)q and −k < d < k, d 6= 0. These equations can
be rewritten as: yρj = f(x), where y = Az and

f(x) = Aρj−1(A′xρj′ + d).

This polynomial has all simple roots (the ρj′ -th roots of −d/A′) and then at least two of
them; it has at least three if ρj = 2 since ρj′ is supposed to be at least 3 in this case. By a
result of Baker [1], all the solutions are bounded by an explicitly computable quantity,
which gives the desired result (the same result with an ineffective bound was already
proven by Siegel).

In remains to deal with the case where ρj = 2 for all j such that mj 6= 0. In this
case, q is even and mj is divisible by q/2, which implies that mj = q/2 when mj 6= 0. By
looking at the prime factors larger than k, one deduces that for all j such that mj 6= 0,
n+ j is a square times a product of distinct primes smaller than or equal to k. If at least
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three of the mj ’s are non-zero, it then suffices to find an explicitly computable bound for
the solutions of each system of diophantine equations:

By2 = At2 + d1, Cz
2 = At2 + d2

for 1 ≤ A,B,C ≤ k! squarefree, −k < d1, d2 < k, d1, d2, d1−d2 6= 0. From these equations,
we deduce, for x = BCyz:

x2 = BC(At2 + d1)(At
2 + d2).

The four roots of the right-hand side are the square roots of −d1/A and −d2/A, which
are all distinct since d1 6= d2, d1 6= 0, d2 6= 0. Again by Baker’s result, one deduces that
the solutions are explicitly bounded, which then gives an explicit bound for n.

The remaining case is when exactly two of the mj ’s are non-zero, with ρj = 2, and
then mj = q/2. The dependence modulo q then means that (n+ j)(n+ j′) is a square for
distinct j, j′ between 1 and k, which implies that (n+ j)/g and (n+ j′)/g are both squares
where g = gcd(n+ j, n+ j′). These squares have difference smaller than k, which implies
that they are smaller than k2. Moreover, g divides |j − j′| ≤ k, and then g ≤ k, which
gives n ≤ k3.

Here, we explicitly solve a particular case:

Proposition 3.3. For q = 2, (Xn+1, . . . , Xn+5) are independent for all n ≥ 2 and not for
n = 1.

Proof. A dependence means that there exists a product of distinct non-square integers
among n+ 1, . . . , n+ 5 which is a square. For a prime p ≥ 5, at most one p-adic valuation
is non-zero, which implies that all the p-adic valuations are even. Hence, the factors
involved in the product are all squares multiplied by 2, 3 or 6. Since they differ by at most
4, they cannot be in the same of the three “categories”, which implies, since the product
is a square, that there exist three numbers, respectively of the form 2x2, 3y2, 6z2, in the
interval between n + 1 and n + 5. Now, Hajdu and Pintér [6] have determined all the
triples of distinct integers in intervals of length at most 12 whose product is a square.
For length 5, the only positive triple is (2, 3, 6), which implies that the only dependence
in the present setting is X2X3X6 = 1.

Remark 3.4. The list given in [6] shows that for q = 2, there are dependences for quite
large values of n as soon as k ≥ 6. For example, we have X240X243X245 = 1 for k = 6 and
X10082X10086X10092 = 1 for k = 11.

4 Convergence of the empirical measure in the uniform case

In this section, (Xp)p∈P are uniform on the unit circle, and k ≥ 1 is a fixed integer.
For N ≥ 1, we consider the empirical measure of the N first k-tuples:

µk,N :=
1

N

N∑
n=1

δ(Xn+1,...,Xn+k).

It is reasonable to expect that µk,N tends to the uniform distribution on Uk, which is the
common distribution of (Xn+1, . . . Xn+k) for all but finitely many values of n. In order to
prove this result, we will estimate the second moment of the Fourier transform of µk,N ,
given by

µ̂k,N (m1, . . . ,mk) =

∫
Uk

k∏
j=1

z
mj
j dµk,N (z1, . . . , zk).
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Proposition 4.1. Let m1, . . . ,mk be integers, not all equal to zero. Then, for all N >

N ′ ≥ 0,

E


∣∣∣∣∣∣

N∑
n=N ′+1

k∏
j=1

X
mj
n+j

∣∣∣∣∣∣
2
 ≤ k(N −N ′)

and there exists Cm1,...,mk ≥ 0, independent of N and N ′, such that

N −N ′ ≤ E


∣∣∣∣∣∣

N∑
n=N ′+1

k∏
j=1

X
mj
n+j

∣∣∣∣∣∣
2
 ≤ N −N ′ + Cm1,...,mk .

Moreover, under the same assumption,

E
[
|µ̂k,N (m1, . . . ,mN )|2

]
≤ k

N
,

1

N
≤ E

[
|µ̂k,N (m1, . . . ,mN )|2

]
≤ 1

N
+
Cm1,...,mk

N2
.

Finally, for k ∈ {1, 2}, one can take Cm1 or Cm1,m2 equal to 0, and for k = 3, one can take
Cm1,m2,m3 = 2 if (m1,m2,m3) is proportional to (2, 1,−4) and Cm1,m2,m3 = 0 otherwise.

Proof. We have, using the completely multiplicative extension of Xr to all r ∈ Q∗+:

E


∣∣∣∣∣∣

N∑
n=N ′+1

k∏
j=1

X
mj
n+j

∣∣∣∣∣∣
2
 =

∑
N ′<n1,n2≤N

E
[
X∏k

j=1(n1+j)mj /(n2+j)mj

]
,

and then the left-hand side is equal to the number of couples (n1, n2) in {N ′ + 1, . . . , N}2
such that

k∏
j=1

(n1 + j)mj =

k∏
j=1

(n2 + j)mj . (4.1)

The number of trivial solutions n1 = n2 of this equation is equal to N − N ′, which
gives a lower bound on the second moment we have to estimate. On the other hand,
the derivative of the rational fraction

∏k
j=1(X + j)mj can be written as the product of∏k

j=1(X + j)mj−1, which is strictly positive on R+, by the polynomial

Q(X) =

k∏
j=1

(X + j)

 k∑
j=1

mj

X + j

 .
The polyomial Q has degree at most k− 1 and is non-zero, since (m1, . . . ,mk) 6= (0, . . . , 0)

and then
∏k
j=1(X + j)mj is non-constant. We deduce that Q has at most k − 1 zeros, and

then on R+,
∏k
j=1(X + j)mj is strictly monotonic on each of at most k intervals of R+,

whose bounds are 0, the positive zeros of Q and +∞. Hence, for each choice of n1, there
are at most k values of n2 satisfying (4.1), i.e. at most one in each interval, which gives
the upper bound k(N −N ′) for the moment we are estimating.

Moreover, since
∏k
j=1(X + j)mj is strictly monotonic on an interval of the form [A,∞)

for some A > 0, we deduce that for any non-trivial solution (n1, n2) of (4.1), the minimum
of n1 and n2 is at most A. Hence, there are finitely many possibilities for the common
value of the two sides of (4.1), and for each of these values, at most k possibilities for
n1 and for n2. Hence, for fixed (m1, . . . ,mk), the total number of non-trivial solutions of
(4.1) is finite, which gives the bound N −N ′ + Cm1,...,mk of the proposition.
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The statement involving the empirical measure is deduced by taking N ′ = 0 and by
dividing everything by N2.

The claim for k ≤ 3 is an immediate consequence of the following statement we will
prove now: the only integers n1 > n2 ≥ 1, (m1,m2,m3) 6= (0, 0, 0), such that

(n1 + 1)m1(n1 + 2)m2(n1 + 3)m3 = (n2 + 1)m1(n2 + 2)m2(n2 + 3)m3 (4.2)

are n1 = 7, n2 = 2, (m1,m2,m3) proportional to (2, 1,−4), which corresponds to the
equality:

82 · 9 · 10−4 = 32 · 4 · 5−4.

If m1,m2,m3 have the same sign and are not all zero, (n + 1)m1(n + 2)m2(n + 3)m3 is
strictly monotonic in n ≥ 1, and then we cannot get a solution of (4.2) with n1 > n2. By
changing all the signs if necessary, we may assume that one of the integers m1,m2,m3

is strictly negative and the others are nonnegative. For n ≥ 1, the fraction obtained
by writing (n+ 1)m1(n+ 2)m2(n+ 3)m3 can only be simplified by prime factors dividing
two of the integers n + 1, n + 2, n + 3, and then only by a power of 2. If m2 < 0 and
then m1,m3 ≥ 0, the numerator and the denominator have different parity, and then the
fraction is irreducible for all n: we do not get any solution of (4.2) in this case. Otherwise,
m1 or m3 is strictly negative. If (n1, n2) solves (4.2), let us define s := 1 and j := n2 + 1 if
m1 < 0, and s := −1 and j := n2 + 3 if m3 < 0. The denominators of the two fractions
corresponding to the two sides of (4.2) are respectively a power of j and the same power
of n1 + 2 − s: if (4.2) is satisfied, these denominators should differ only by a power of
2, since the fractions can be only simplified by such a power. Hence, n1 + 2 − s = 2`j

for some ` ≥ 0, and by looking at the numerators of the fractions, we deduce that there
exists r ≥ 0 such that

2r(j + s)m2(j + 2s)m2+s = (2`j + s)m2(2`j + 2s)m2+s .

If ` ≥ 2, the ratios (2`j+s)/(j+s) and (2`j+2s)/(j+2s) are at least (4·2+2)/(2+2) = 5/2

since j ≥ n2 + 1 ≥ 2 and |2s| ≤ 2, and then the ratio between the right-hand side and the
left-hand side of the previous equality is at least (5/2)m2+s+m22−r, which gives

2r ≥ (5/2)m2+s+m2 .

On the other hand, the 2-adic valution of the right-hand side is m2+s since 2`j + 2s ≡ 2

modulo 4, whereas the valuation of the left-hand side is at least r, which gives

2r ≤ 2m2+s .

We then get a contradiction for ` ≥ 2, except in the case m2+s = m2 = 0, where we
already know that there is no solution of (4.2). If ` = 1, we get

2r(j + s)m2(j + 2s)m2+s = (2j + s)m2(2j + 2s)m2+s .

In this case, the prime factors of 2j + s, which are odd (|s| = 1), should divide j + s or
j + 2s, then 2j + 2s or 2j + 4s, and finally s or 3s. Hence, 2j + s is a power of 3. Similarly,
the odd factors of j + 2s, and then of 2j + 4s, should divide 2j + s or 2j + 2s, and then s
or 3s: 2j + 4s is the product of a power of 2 and a power of 3. If we write 2j + s = 3a,
2j + 4s = 2b3c, we must have |3a − 2b3c| = 3. If a ≤ 1, we have 2j + s ≤ 3. If s = 1,
we get n2 + 1 = j ≤ 1, and if s = −1, we get n2 + 3 = j ≤ 2, which is impossible. If
a ≥ 2, 3a is divisible by 9, and then 2b3c is congruent to 3 or 6 modulo 9, which implies
c = 1, and then |3a−1 − 2b| = 1. Now, by induction, one proves that the order of 2 modulo
3a−1 is equal to 2.3a−2 (i.e. 2 is a primitive root modulo the powers of 3). This result is
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classical, and can be deduced, for example, from Rosen [21], Theorem 8.9. For sake of
completeness, we give a proof here. The result is easy to check be direct computation
for a = 2 and a = 3. Let us assume that it is true for all values until a ≥ 3. The order of 2
modulo 3a is a multiple of the order of 2 modulo 3a−1, and then a multiple of 2.3a−2 by
assumption. On the other hand, it is a divisor of 2.3a−1 by Euler’s theorem. Hence, it is
either 2.3a−2 or 2.3a−1. Moreover, since 2.3a−3 is assumed to be the order of 2 modulo
3a−2 but strictly smaller than the order of 2 modulo 3a−1, we have

22.3a−3

= 1 + u.3a−2

where u is not divisible by 3. Raising to the cube, we deduce

22.3a−2

= 1 + 3u.3a−2 + 3u2.32a−4 + u333a−6 = 1 + v.3a−1

where

v = u+ u2.3a−2 + u3.32a−5

is not divisible by 3 (recall that a ≥ 3 here). Hence, the order of 2 modulo 3a is not 2.3a−2:
it can only be 2.3a−1, which proves by induction that 2 is a primitive root of 3a−1 for
all a ≥ 2. Now, in the present situation, the order of 2 modulo 3a−1, i.e. 2.3a−2, should
divide 2b, since 2b ≡ ±1 modulo 3a−1, and then b ≥ 3a−2 (b = 0 is not possible) which
implies 23a−2 ≤ 3a−1 + 1, i.e. a ∈ {2, 3}.

If a = 2 and s = 1, we get 2j + 1 = 9, j = 4, and then n1 = 7, n2 = 3. We should solve
4m15m26m3 = 8m19m210m3 . Taking the 3-adic valuation gives m3 = 2m2, taking the 5-adic
valuation gives m3 = m2, and then m2 = m3 = 0, which implies m1 = 0.

If a = 2 and s = −1, we get 2j − 1 = 9, j = 5, n1 = 7, n2 = 2, which gives the equation
3m14m25m3 = 8m19m210m3 . Taking the 2-adic valuation gives 2m2 = 3m1 +m3, taking
the 3-adic valuation gives m1 = 2m2, and then (m1,m2,m3) should be proportional to
(2, 1,−4): in this case, we get one of the solutions already mentioned.

If a = 3, 2b should be 8 or 10, and then b = 3, 2j + s = 27, 2j + 4s = 24, j = 14,
s = −1, n1 = 25, n2 = 11. We have to solve 12m113m214m3 = 26m127m228m3 . Taking the
3-adic valuation gives m1 = 3m2, taking the 13-adic valuation gives m1 = m2, and then
m1 = m2 = m3 = 0.

Corollary 4.2. For all (m1, . . . ,mk) ∈ Zk, µ̂k,N (m1, . . . ,mk) converges in L2, and then in
probability, to 1m1=···=mk=0, i.e. to the corresponding Fourier coefficient of the uniform
distribution µk on Uk. In other words, µk,N converges weakly in probability to µk.

In this setting, we also have a strong law of large numbers, with an estimate of
the rate of convergence, for sufficiently smooth test functions. Before stating the
corresponding result, we will show the following lemma, which will be useful:

Lemma 4.3. Let ε > δ ≥ 0, C > 0, and let (An)n≥0 be a sequence of random variables
such that A0 = 0 and for all N > N ′ ≥ 0,

E[|AN −AN ′ |2] ≤ C(N −N ′)N2δ.

Then, almost surely, AN = O(N1/2+ε): more precisely, we have for M > 0,

P

(
sup
N≥1
|AN |/(N1/2+ε) ≥M

)
≤ Kε,δCM

−2,

where Kε,δ > 0 depends only on δ and ε.
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Proof. For `, q ≥ 0, M > 0 and ε′ := (δ + ε)/2 ∈ (δ, ε), we have:

P
(
|A(2`+1).2q −A(2`).2q | ≥M [(2`+ 1).2q]1/2+ε′

)
≤M−2[(2`+ 1).2q]−1−2ε′E

[
|A(2`+1).2q −A(2`).2q |2

]
≤M−2.C.2q.[(2`+ 1).2q]2δ−1−2ε′

≤M−2.C.2−2q(ε′−δ)(2`+ 1)−1−2(ε′−δ).

Since ε′ > δ, we deduce that the probability that

|A(2`+1).2q −A(2`).2q | < M [(2`+ 1).2q]1/2+ε′ (4.3)

for all `, q ≥ 0 is at least 1−DCM−2, where D depends only on ε′ and δ, and then only on
δ and ε. Now, if (4.3) occurs for all `, q ≥ 0, if we take the binary expansion N =

∑∞
j=0 δj2

j

with δj ∈ {0, 1}, and if Nr =
∑∞
j=r δj2

j for all r ≥ 0, then we get |ANr − ANr+1 | = 0 if
δr = 0, and

|ANr −ANr+1 | = |A2r(2(Nr+1/2r+1)+1) −A2r(2Nr+1/2r+1)|

≤M [2r(2(Nr+1/2
r+1) + 1)]1/2+ε′ =M(Nr)

1/2+ε′ ≤MN1/2+ε′

if δr = 1. Adding these inequalities from r = 0 to∞, we deduce that |AN | ≤Mµ(N)N1/2+ε′ ,
where µ(N) is the number of 1’s in the binary expansion of N . Hence,

|AN | ≤M (1 + (logN/ log 2))N1/2+ε′ < BMN1/2+ε,

where B > 0 depends only on ε′ and ε (recall that ε > ε′), and then only on δ and ε. We
then have, for M ′ := BM :

P
(
∃N ≥ 1, |AN | ≥M ′N1/2+ε

)
≤ DCM−2 = DCB2(M ′)−2,

which gives the desired result after replacing M ′ by M .

From this lemma, we deduce the following:

Proposition 4.4. Almost surely, µk,N weakly converges to µk. More precisely, the
following holds with probability one: for all u > k/2, for all continuous functions f from
Uk to C such that ∑

m∈Zk
|f̂(m)| ||m||u <∞,

|| · || denoting any norm on Rk, and for all ε > 0,∫
Uk
fdµk,N =

∫
Uk
fdµk +O(N−1/2+ε).

Remark 4.5. By Cauchy-Schwarz inequality, we have

∑
m∈Zk

|f̂(m)|(1 + ||m||)u ≤

 ∑
m∈Zk

|f̂(m)|2(1 + ||m||)4u
1/2 ∑

m∈Zk
(1 + ||m||)−2u

1/2

,

which implies that the assumption on f given in the proposition is satisfied for all f in
the Sobolev space Hs as soon as s > k.

Unfortunately, the proposition does not apply if f is a product of indicators of arcs.
The weak convergence implies that∫

Uk
fdµk,N −→

N→∞

∫
Uk
fdµk

even in this case, but we don’t know at which rate this convergence occurs.
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Proof. From Proposition 4.1, and Lemma 4.3 applied to ε > 0, δ = 0 and

AN := Nµ̂k,N (m),

we get, for all m ∈ Zk\{0}, M > 0,

P

(
sup
N≥1
|µ̂k,N (m)|/N−1/2+ε ≥M

)
≤ kKε,0M

−2

For fixed u > k/2, we apply this estimate to M = ||m||u and get

P

(
sup
N≥1
|µ̂k,N (m)|/N−1/2+ε ≥ ||m||u

)
≤ kKε,0||m||−2u.

Since −2u < −k, we deduce, by Borel-Cantelli lemma, that almost surely,

sup
N≥1
|µ̂k,N (m)|/(N−1/2+ε||m||u) ≤ 1

for all but finitely many m ∈ Zk\{0}. Therefore, almost surely,

sup
m∈Zk\{0}

sup
N≥1
|µ̂k,N (m)|/(N−1/2+ε||m||u) <∞

i.e.
µ̂k,N (m) = O(N−1/2+ε||m||u)

for m ∈ Zk\{0}, N ≥ 1. Almost surely, this estimates simultaneously occurs for all
rationals u > k/2 and ε > 0 (with a random implicit constant in O, depending on u and ε)
and then for all reals u > k/2 and ε > 0.

Let us now assume that this almost sure property holds, let us fix u > k/2, ε > 0,
and let f be a function satisfying the assumptions of the proposition. Since the Fourier
coefficients of f are summable (i.e. f is in the Wiener algebra of Uk), the corresponding
Fourier series converges uniformly to a function which is necessarily equal to f , since it
has the same Fourier coefficients. We can then write:

f(z1, . . . , zk) =
∑

m1,...,mk∈Z
f̂(m1, . . . ,mk)

k∏
j=1

z
mj
j ,

which implies∫
Uk
fdµk,N =

∑
m∈Zk

f̂(m)µ̂k,N (m) =

∫
Uk
fdµk +

∑
m∈Zk\{0}

f̂(m)µ̂k,N (m).

By assumption, the last sum is dominated by

N−1/2+ε
∑
m∈Zk

|f̂(m)|||m||u,

which is finite by the assumptions made in the proposition, and then O(N−1/2+ε).

5 Moments of order different from two

Since we have a law of large numbers on µk,N , with rate of decay of order N−1/2+ε,
it is natural to look if we have a central limit theorem. In order to do that, a possibility
consists in studying moments of sums in n of products of variables from Xn+1 to Xn+k.
For the sums

∑N
n=1Xn, we do not have convergence to a non-zero Gaussian random
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variable after normalization by 1/
√
N . Indeed, the second moment of the absolute value

of the renormalized sum 1√
N

∑N
n=1Xn is equal to 1, so if this variable converges to a

non-zero complex Gaussian variable, we need to have the convergence of

E

[
1√
N

∣∣∣∣∣
N∑
n=1

Xn

∣∣∣∣∣
]

towards a non-zero constant. In [12], Harper, Nikeghbali and Radziwiłł prove that
the quantity just above decays at most like (log logN)−3+o(1) when N goes to infinity,
whereas a conjecture by Helson [14] states that it tends to 0. The order of magnitude of
the left-hand side has later been found by Harper in [10]: it is (log logN)−1/4, which in
particular proves Helson’s conjecture.

On the other hand, an equivalent of the moments of 1√
N

∣∣∣∑N
n=1Xn

∣∣∣ of even integer

order are computed in [12] and [13], and they are not bounded with respect to N : the
moment of order 2p is equivalent to an explicit constant times (logN)(p−1)2 . The order
of magnitude of the moments of any positive order, not necessarily integer, is given by
Harper in [10] and [11].

In the case of sums different from
∑N
n=1Xn, the moment computations involve

arithmetic problems of different nature: here, we look in some detail the case of the
sum

∑N
n=1XnXn+1. In this case, the fact that consecutive, and then necessarily coprime

integers are involved gives more independence than when we study the sum
∑N
n=1Xn.

In particular, it seems reasonable to expect that
∑N
n=1XnXn+1 satisfies the same central

limit theorem as the sum of i.i.d. uniform variables on the unit circle, and that this fact
can be proven by moment computations. The convergence of the second moment is
obvious, and we will now show that the convergence of the fourth moment also occurs.
We start with the following result:

Proposition 5.1. We have

E

∣∣∣∣∣
N∑
n=1

XnXn+1

∣∣∣∣∣
4
 = 2N2 −N + 8N (N) + 4N=(N),

where N (N) (resp. N=(N)) is the number of solutions of the diophantine equation
a(a+ 1)d(d+ 1) = b(b+ 1)c(c+ 1) such that the integers a, b, c, d satisfy 0 < a < b < c <

d ≤ N (resp. 0 < a < b = c < d ≤ N ). Moreover, for all ε > 0, there exists Cε > 0,
independent of N , such that for all N ≥ 8,

N/2 ≤ 8N (N) + 4N=(N) ≤ CεN3/2+ε.

Hence,

E

∣∣∣∣∣
N∑
n=1

XnXn+1

∣∣∣∣∣
4
 = 2N2 +Oε(N

3/2+ε).

Proof. Expanding the fourth moment, we immediately obtain that it is equal to the total
number of solutions of the previous diophantine equation, with a, b, c, d ∈ {1, 2, . . . , N}.
One has 2N2−N trivial solutions: N(N − 1) for which a = c 6= b = d, N(N − 1) for which
a = b 6= c = d, N for which a = b = c = d. It remains to count the number of non-trivial
solutions. Such a solution has a minimal element among a, b, c, d. This element is unique:
if two minimal elements are on the same side, then necessarily a = b = c = d, if two
minimal elements are on different sides, then the other elements should be equal, which
also gives a trivial solution. Dividing the number of solutions by four, we can assume
that a is the unique smallest integer, which implies that d is the largest one. For b = c,
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we get N=(N) solutions, and for b 6= c, we get 2N=(N) solutions, the factor 2 coming
from the possible exchange between b and c.

The lower boundN/2 comes from the solutions (1, 3, 3, 8) and (1, 2, 5, 9) for 8 ≤ N ≤ 24,
and from the solutions of the form (n, 2n+ 1, 3n, 6n+ 2) for N ≥ 25.

Let us now prove the upper bound. We start by slightly simplifying the equation by
introducing the odd integers A = 2a+1, B = 2b+1, C = 2c+1, D = 2d+1, which should
satisfy:

(A2 − 1)(D2 − 1) = (B2 − 1)(C2 − 1).

If A,B,C,D are large, then AD and BC should be odd and close to each other. It is then
quite natural to introduce

δ := (AD −BC)/2,

which is expected to be small with respect to A,B,C,D. More precisely, since B and C
are closer to each other than A and D, we need

A2 − 1 +D2 − 1 > B2 − 1 + C2 − 1,

and then δ > 0, since

A2D2 −B2C2 = A2 +D2 −B2 − C2 > 0.

The last equality, gives, after factorizing the left-hand side and replacing BC by AD− 2δ:

4δ(AD − δ) = A2 +D2 − (B − C)2 − 2AD + 4δ,

and in particular

A2 − 2(2δ + 1)AD +D2 + 4δ(δ + 1) = (B − C)2 ≥ 0.

If we neglect the term 4δ(δ + 1), expected to be small with respect to AD, we get the
positivity of a quadratic form in A and D, which gives a restriction on the possible values
of the ratio D/A. More precisely, if we assume 1 < D/A ≤ 2δ + 2, we deduce

AD

(
1

2δ + 2
− 4δ − 2 + 2δ + 2

)
+ 4δ(δ + 1) ≥ 0,

and then

AD ≤ 4δ(δ + 1)

2δ − (1/4)
= 2(δ + 1)

(
1− 1

8δ

)−1

≤ 2(δ + 1)

(
1 +

1

7δ

)
≤ 2δ + 2 + (4/7),

AD ≤ 2δ + 1 since it is an odd integer, and then BC = AD − 2δ ≤ 1, which gives a
contradiction. Any solution should then satisfy D/A > 2δ+2. We now discuss in function
of the value of δ. For δ >

√
N , we have necessarily A < D/(2

√
N +2) ≤ (2N +1)/(2

√
N +

2) = O(
√
N), and then a = O(

√
N), and then there are only O(N3/2) possibilities for the

couple (a, d). Now, b and c should be divisors of a(a + 1)d(d + 1) = O(N4), and by the
classical divisor bound, we deduce that there are O(N ε) possibilities for (b, c) when a

and d are chosen. Hence, the number of solutions for δ >
√
N is bounded by the estimate

we have claimed.
It remains to bound the number of solutions for δ ≤

√
N : we will get a bound for the

number of solutions for each value of δ, which will be multiplied by
√
N at the end. Each

solution should satisfy

A2 − 2(2δ + 1)AD +D2 + 4δ(δ + 1) = (B − C)2,
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i.e. by writing the quadratic form in A and D as a difference of squares:

[D − (2δ + 1)A]2 + 4δ(δ + 1) = 4δ(δ + 1)A2 + (B − C)2.

We know that D ≥ A(2δ+2), and then 0 < D− (2δ+1)A ≤ 2N +1, which gives, for each
value of δ, O(N) possibilities for D − (2δ + 1)A. For the moment, let us admit that for
each of these possibilities, there are O(N ε) choices for B − C and A. Then, for fixed
δ, we have O(N1+ε) choices for (D − (2δ + 1)A,A,B − C). For each choice, B − C,A,D
are fixed, and then also BC = AD − 2δ, and finally B and C. Hence, we have O(N1+ε)

solutions for each δ ≤
√
N , and then O(N3/2+ε) solutions by counting all the possible δ.

The claim we have admitted is a consequence of the following fact we will prove now:
for ε > 0, the number of representations of M in integers by the quadratic form X2+PY 2

is O(M ε), uniformly in the strictly positive integer P . Indeed, for such a representation,
the ideal (X + Y

√
−P ) should be a divisor of (M) in the ring of integers OP of Q[

√
−P ],

and each such ideal gives at most 6 couples (X,Y ) representing M . Indeed, the group
of invertible elements in OP has order at most 6. This fact is classical (see for example
Jarvis [16], Chapter 6), and can be proven as follows: if α+ β

√
−P is invertible in OP for

α, β ∈ Q, then α− β
√
−P is also invertible in OP , and

(α+ β
√
−P ) + (α− β

√
−P ) = 2α

is an integer since it is in OP , whereas

(α+ β
√
−P )(α− β

√
−P ) = α2 + Pβ2

is an invertible integer, necessarily equal to 1. Hence, α+ β
√
−P is a complex number

of modulus 1, with real part equal to −1,−1/2, 0, 1/2 or 1, i.e. a fourth root or a sixth
root of unity. We now only need to bound the number of divisors of (M) in OP by O(M ε),
uniformly in P . The number of divisors of (M) is

∏
p(vp(M) + 1), where we have the

prime ideal decomposition
(M) =

∏
p

pvp(M).

Now, by considering the decomposition of prime numbers as products of ideals, we
deduce:

(M) =
∏

p∈P, p inert

(p)vp(M)
∏

p∈P, p ramified

p2vp(M)
p

∏
p∈P, p split

pvp(M)
p pp

vp(M),

pp denoting an ideal of norm p, and then the number of divisors of (M) is∏
p∈P, p inert

(vp(M)+1)
∏

p∈P, p ramified

(2vp(M)+1)
∏

p∈P, p split

(vp(M)+1)2 ≤
∏
p∈P

(vp(M)+1)2 = [τ(M)]2,

where τ(M) is the number of divisors, in the usual sense, of the integer M . This gives
the desired bound O(M ε).

Remark 5.2. Using the previous proof, one can show the following quite curious prop-
erty: all the solutions of a(a+ 1)d(d+ 1) = b(b+ 1)c(c+ 1) in integers 0 < a < b ≤ c < d

satisfy d/a > 3 + 2
√
2. Indeed, let us assume the contrary. With the previous notation,

3 + 2
√
2 ≥ d/a ≥ D/A > 2δ + 2, and then δ = 1, which gives A2 − 6AD +D2 + 8 ≥ 0, i.e.

(2a+ 1)2 − 6(2a+ 1)(2d+ 1) + (2d+ 1)2 + 8 ≥ 0,

4(a2 − 6ad+ d2)− 8a− 8d+ 4 ≥ 0,
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a contradiction since 1 < d/a ≤ 3 + 2
√
2 implies a2 − 6ad+ d2 ≤ 0. The bound 3 + 2

√
2 is

sharp, since we have the solutions of the form (u2k, u2k+1, u2k+1, u2k+2), where

ur :=
(1 +

√
2)r + (1−

√
2)r − 2

4
.

A consequence of the previous proposition corresponds to a bound on all the moments
of order 0 to 4:

Corollary 5.3. We have, for all q ∈ [0, 2],

cq + o(1) ≤ E

∣∣∣∣∣ 1√
N

N∑
n=1

XnXn+1

∣∣∣∣∣
2q
 ≤ Cq + o(1),

where cq = 2−(q−1)− ≥ 1/2 and Cq = 2(q−1)+ ≤ 2.

Proof. Hölder inequality implies that the logarithm of the 2q-th moment of a nonnegative
random variable is a convex function of q. Now, we have proven that this logarithm is
equal to 0 for q = 0 and q = 1 and to ln 2 + o(1) for q = 2. The corollary can now be
deduced from the following fact, easy to check: if f is a convex fonction from [0, 2] to R
such that f(0) = f(1) = 0, f(2) = 1, then

f(x) ≤ 0 · 1x∈[0,1) + (x− 1)1x∈[1,2] = (x− 1)+

and
f(x) ≥ (x− 1)1x∈[0,1) + 0 · 1x∈[1,2] = −(x− 1)−.

We have proven that the fourth moment of
∣∣∣ 1√

N

∑N
n=1XnXn+1

∣∣∣ converges to 2, which

is also the limit of the fourth moment of
∣∣∣ 1√

N

∑N
n=1 Zn

∣∣∣ where (Zn)n≥1 are i.i.d. random

variables, uniform on the unit circle. Unfortunately, we are not able to prove a similar
convergence for higher moments, and then we do not know how to prove a central limit
theorem. However, the following result holds:

Proposition 5.4. If for all integers q≥1, the number of non-trivial solutions (n1, . . . , n2q)∈
{1, . . . , N}2q of the diophantine equation

q∏
r=1

nr(nr + 1) =

q∏
r=1

nq+r(nq+r + 1)

is negligible with respect to the number of trivial solutions when N → ∞ (i.e. o(Nq))
then we have

1√
N

N∑
n=1

XnXn+1 −→
N→∞

NC,

where NC denotes a standard Gaussian complex variable, i.e. (N1 + iN2)/
√
2 where

N1,N2 are independent standard real Gaussian variables.

Proof. If

YN :=
1√
N

N∑
n=1

XnXn+1,

then for integers q1, q2 ≥ 0, the moment E[Y q1N YN
q2
] is equal to N−(q1+q2)/2 times the

number of solutions (n1, . . . , nq1+q2) ∈ {1, . . . , N}q1+q2 of

q1∏
r=1

nr(nr + 1) =

q2∏
r=1

nq1+r(nq1+r + 1).
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If 0 ≤ q1 < q2, there are at most Nq1 choices for n1, . . . , nq1 , and once these integers
are fixed, at most No(1) choices for nq1+1, . . . , nq1+q2 by the divisor bound. Hence, the
moment tends to zero when N →∞, and we have the same conclusion for 0 ≤ q2 < q1.
Finally, if 0 ≤ q1 = q2 = q, by assumption, the moment is equivalent to N−q times
the number of trivial solutions of the corresponding diophantine equation, i.e. to the
corresponding moment for the sum of i.i.d. variables, uniform on the unit circle. By the
central limit theorem,

E[|YN |2q] −→
N→∞

E[|NC|2q].

We have then proven that for all integers q1, q2 ≥ 0,

E[Y q1N YN
q2
] −→
N→∞

E[|N q1
C NC

q2
],

which gives the claim.

We have proven the assumption of the previous proposition for q ∈ {1, 2}, however,
our method does not generalize to larger values of q. The divisor bound gives immediately
a domination by Nq+o(1) for the number of solutions, and then it seems reasonable to
expect that the arithmetic constraints implied by the equation are sufficient to save
at least a small power of N . Note that the situation is different for the sum

∑N
n=1Xn:

for example, for q = 2, the number of non-trivial solutions of the equation n1n2 = n3n4

for 1 ≤ n1, n2, n3, n4 ≤ N is not o(N2), as we can see by considering the equalities
a(2b) = b(2a) for a and b odd, a < b.

The previous proposition giving a “conditional CLT” can be generalized to the sums
of the form

N∑
n=1

k∏
j=1

X
mj
n+j ,

when the mj ’s have the same sign. The situation is more difficult if the mj ’s have
different signs since the divisor bound alone does not directly give a useful bound on the
number of solutions.

6 Convergence of the empirical measure in the case of roots of
unity

Here, we suppose that (Xp)p∈P are i.i.d. uniform on the set Uq of q-th roots of unity,
q ≥ 1 being fixed. With the notation of the previous section, we now get:

Proposition 6.1. Let m1, . . . ,mk be integers, not all divisible by q, let ε > 0 and let
N > N ′ ≥ 0. Then,

E


∣∣∣∣∣∣

N∑
n=N ′+1

k∏
j=1

X
mj
n+j

∣∣∣∣∣∣
2
 ≤ Cq,k,ε(N −N ′)N ε

and

E
[
|µ̂k,N (m1, . . . ,mN )|2

]
≤ Cq,k,ε
N1−ε ,

where Cq,k,ε > 0 depends only on q, k, ε.

Proof. We can obviously assume that m1, . . . ,mk are between 0 and q − 1, which gives
finitely many possibilities for these integers, depending only on q and k. We can then
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suppose that m1, . . . ,mk are fixed at the beginning. We have to upper bound the number
of couples (n1, n2) on {N ′ + 1, . . . , N}2 such that∏k

j=1(n1 + j)mj∏k
j=1(n2 + j)mj

∈ (Q∗+)
q,

where, in this proof, (Q∗+)
q denotes the set of q-th powers of positive rational numbers.

Now, any positive integer r can be decomposed as a product of a “smooth” integer whose
prime factors are all strictly smaller than k, and a “rough” integer whose prime factors
are all larger than or equal to k. If the “rough” integer is denoted ]k(r), the condition
just above implies:

]k

(∏k
j=1(n1 + j)mj

)
]k

(∏k
j=1(n2 + j)mj

) ∈ (Q∗+)
q.

Now, the numerator and the denominator of this expression can both be written in a
unique way as a product of a q-th perfect power and an integer whose p-adic valuation
is between 0 and q − 1 for all p ∈ P. If the quotient is a q-th power, necessarily the
numerator and the denominator have the same “q-th power free” part. Hence, there
exists a q-th power free integer g such that

]k

 k∏
j=1

(n1 + j)mj

 , ]k

 k∏
j=1

(n2 + j)mj

 ∈ gNq,
Nq being the set of q-th powers of positive integers. Hence, the number of couples
(n1, n2) we have to estimate is bounded by∑

g≥1,q -th power free

[N (q, k, g,N ′, N)]2,

where N (q, k, g,N ′, N) is the number of integers n ∈ {N ′ + 1, . . . , N} such that

]k

 k∏
j=1

(n+ j)mj

 ∈ gNq.
If a prime number p ∈ P divides n + j and n + j′ for j 6= j′ ∈ {1, . . . , k}, it divides
|j − j′| ∈ {1, . . . , k − 1}, and then p < k. Hence, the rough parts of (n+ j)mj are pairwise
coprime. Now, if g1, . . . , gk are the q-th power free integers such that ]k[(n+ j)mj ] ∈ gjNq,
we have g1g2 . . . gk ∈ gNq. Now, g1, . . . , gk are coprime, and then g1g2 . . . gk is q-th power
free, which implies g1 . . . gk = g. Hence

N (q, k, g,N ′, N) ≤
∑

g1g2...gk=g

|{n ∈ {N ′ + 1, . . . N}, ∀j ∈ {1, . . . , k}, ]k[(n+ j)mj ] ∈ gjNq}| .

Let us now fix an index j0 such that mj0 is not multiple of q. We have

N (q, k, g,N ′, N) ≤
∑

g1g2...gk=g

|{n ∈ {N ′ + 1, . . . N}, ]k[(n+ j0)
mj0 ] ∈ gj0Nq,∀j 6= j0,

rad(gj)|(n+ j)}| ,

where rad(gj) denotes the product of the distinct prime factors of gj . The condition on
(n+ j0)

mj0 means that for all p ∈ P, p ≥ k,

mj0vp(n+ j0) ≡ vp(gj0) (mod. q),
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i.e. vp(gj0) is divisible by gcd(mj0 , q) and

(mj0/ gcd(mj0 , q))vp(n+ j0) ≡ vp(gj0)/ gcd(mj0 , q) (mod. ρj0),

where ρj0 := q/ gcd(mj0 , q). Since mj0/ gcd(mj0 , q) is coprime with ρj0 , the last congru-
ence is equivalent to a congruence modulo ρj0 between vp(n + j0) and a fixed integer,
which is not divisible by ρj0 if and only if p divides gj0 . We deduce that the condition on
(n+ j0)

mj0 implies that ]k(n+ j0) ∈ h(q,mj0 , gj0)N
ρj0 , i.e.

n+ j0 = αh(q,mj0 , gj0)A
ρj0 ,

where α is a ρj0 -th power free integer whose prime factors are strictly smaller than k, A
is an integer and h(q,mj0 , gj0) is an integer depending only on q, mj0 and gj0 , which is
divisible by rad(gj0). For a fixed value of α, the values of A should be in the interval

I =
((

(N ′ + j0)/[αh(q,mj0 , gj0)]
)1/ρj0 , ((N + j0)/[αh(q,mj0 , gj0)]

)1/ρj0 ] ,
whose size is at most

[rad(gj0)]
−1/ρj0 [(N + j0)

1/ρj0 − (N ′ + j0)
1/ρj0 ] ≤ 1 +

(
N −N ′

rad(gj0)

)1/2

,

by the concavity of the power 1/ρj0 , the fact that ρj0 ≥ 2 since mj0 is not divisible by q,
which implies x1/ρj0 ≤ 1 +

√
x. Now, the conditions on n+ j for j 6= j0 imply a condition

of congruence for αh(q,mj0 , gj0)A
ρj0 , modulo all the primes dividing one of the gj ’s for

j 6= j0. These primes do not divide α, since α has all prime factors smaller than k, and gj
divides ]k[(n+j)mj ]. They also do not divide h(q,mj0 , gj0), since this integer has the same
prime factors as gj0 , which is prime with gj . Hence, we get a condition of congruence for
Aρj0 modulo all primes dividing gj for some j 6= j0. For each of these primes, this gives
at most ρj0 ≤ q congruence classes for A, and then, by the chinese reminder theorem,

we get at most qω(
∏
j 6=j0

gj) classes modulo
∏
j 6=j0 rad(gj), where ω denotes the number

of prime factors of an integer. The number of integers A ∈ I satisfying the congruence
conditions is then at most:

qω(
∏
j 6=j0

gj)

[
1+

1∏
j 6=j0 rad(gj)

(
1+

(
N −N ′

rad(gj0)

)1/2
)]
≤ [τ(g)]log q/ log 2

[
2+

(
N −N ′

rad(g)

)1/2
]
,

where τ(g) denotes the number of divisors of g. Now, α has prime factors smaller than
k and p-adic valuations smaller than q, which certainly gives α ≤ (k!)q. Hence, by
considering all the possible values of α, and all the possible g1, . . . , gk, which should
divide g, we deduce

N (q, k, g,N ′, N) ≤ (k!)q[τ(g)]k+(log q/ log 2)

[
2 +

(
N −N ′

rad(g)

)1/2
]
.

If N (q, k, g,N ′, N) > 0, we have necessarily

g ≤
k∏
j=1

(N + j)mj ≤ (N + k)kq ≤ (1 + k)kqNkq.

Using the divisor bound, we deduce that for all ε > 0, there exists C(1)
q,k,ε such that for all

g ≤ (1 + k)kqNkq,

2(k!)q[τ(g)]k+(log q/ log 2) ≤ C(1)
q,k,εN

ε,
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and then

N (q, k, g,N ′, N) ≤ C(1)
q,k,εN

ε

[
1 +

(
N −N ′

rad(g)

)1/2
]
,

i.e.
N (q, k, g,N ′, N)− C(1)

q,k,εN
ε ≤ C(1)

q,k,εN
ε(N −N ′)1/2(rad(g))−1/2

which implies(
N (q, k, g,N ′, N)− C(1)

q,k,εN
ε
)

+
≤ C(1)

q,k,εN
ε(N −N ′)1/2(rad(g))−1/2

since the right-hand side is nonnegative. Summing the square of this bound for all
possible g gives ∑

g≥1,q -th power free

(
N (q, k, g,N ′, N)− C(1)

q,k,εN
ε
)2

+

≤
(
C

(1)
q,k,ε

)2

N2ε(N −N ′)
∑

g≥1,q -th power free

1g≤(1+k)kqNkq

rad(g)
.

Now, since all numbers up to (1 + k)kqNkq have prime factors smaller than this quantity,
we deduce, using the multiplicativity of the radical:

∑
g≥1,q -th power free

1g≤(1+k)kqNkq

rad(g)
≤

∏
p∈P,p≤(1+k)kqNkq

q−1∑
j=0

1

rad(pj)


≤

∏
p∈P,p≤(1+k)kqNkq

(
1 +

q − 1

p

)

≤
∏

p∈P,p≤(1+k)kqNkq

(
1− 1

p

)1−q

which, by Mertens’ theorem, is smaller than a constant, depending on k and q, times
logq−1(1 +N). We deduce that there exists a constant C(2)

q,k,ε > 0, such that

∑
g≥1,q -th power free

(
N (q, k, g,N ′, N)− C(1)

q,k,εN
ε
)2

+
≤ C(2)

q,k,εN
3ε(N −N ′).

Now, it is clear that ∑
g≥1,q -th power free

N (q, k, g,N ′, N) = N ′ −N,

since this sum counts all the integers n from N ′ + 1 to N , regrouped in function of the

q-th power free part of ]k
(∏k

j=1(n+ j)mj
)

. Using the inequality x2 ≤ (x − a)2+ + 2ax,

available for all a, x ≥ 0, we deduce∑
g≥1,q -th power free

[N (q, k, g,N ′, N)]2 ≤ C(2)
q,k,εN

3ε(N −N ′) + 2C
(1)
q,k,εN

ε(N −N ′).

This result gives the first inequality of the proposition, for

Cq,k,ε = C
(2)
q,k,ε/3 + 2C

(1)
q,k,ε/3.

The second inequality is obtained by taking N ′ = 0 and dividing by N2.
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Corollary 6.2. For all (m1, . . . ,mk) ∈ Zk, µ̂k,N (m1, . . . ,mk) converges in L2, and then in
probability, to the corresponding Fourier coefficient of the uniform distribution µk,q on
Ukq . In other words, µk,N converges weakly in probability to µk,q.

We also have a strong law of large numbers.

Proposition 6.3. Almost surely, µk,N weakly converges to µk,q. More precisely, for all
(t1, . . . , tk) ∈ (Uq)

k, the proportion of n ≤ N such that (Xn+1, . . . , Xn+k) = (t1, . . . , tk) is
almost surely q−k +O(N−1/2+ε) for all ε > 0.

Proof. By Lemma 4.3 and Proposition 6.1, we deduce that almost surely, for all ε > 0,
0 ≤ m1, . . . ,mk ≤ q − 1, (m1, . . . ,mk) 6= (0, 0, . . . , 0),

µ̂k,n(m1, . . . ,mk) = O(N−1/2+ε).

Since we have finitely many values of m1, . . . ,mk, we can take the O uniform in
m1, . . . ,mk. Then, by inverting discrete Fourier transform on Ukq , we deduce the
claim.

7 More general distributions on the unit circle

In this section, (Xp)p∈P are i.i.d., with any distribution on the unit circle. We will
study the empirical distribution of (Xn)n≥1, but not of the patterns (Xn+1, . . . , Xn+k)n≥1

for k ≥ 2. More precisely, the goal of the section is to prove a strong law of large
numbers for N−1

∑N
n=1 δXn when N goes to infinity. We will use the following result, due

to Halász, Montgomery and Tenenbaum (see [7], [8], [5], [20], [28] p. 343):

Proposition 7.1. Let (Yn)n≥1 be a multiplicative function such that |Yn| ≤ 1 for all n ≥ 1.
For N ≥ 3, T > 0, we set

M(N,T ) := min
|λ|≤2T

∑
p∈P,p≤N

1−<(Ypp−iλ)
p

.

Then: ∣∣∣∣∣ 1N
N∑
n=1

Yn

∣∣∣∣∣ ≤ C [(1 +M(N,T ))e−M(N,T ) + T−1/2
]
,

where C > 0 is an absolute constant.

From this result, we show the following:

Proposition 7.2. Let (Yn)n≥1 be a random multiplicative function such that (Yp)p∈P are
i.i.d., with P[|Yp| ≤ 1] = 1, P[Yp = 1] < 1 and P[Yp = −1] < 1. Then, almost surely, for all
c ∈ (0, 1− |E[<(Y2)]|)

1

N

N∑
n=1

Yn = O((logN)−c).

Proof. First, we observe that for 1 < N ′ < N integers, λ > 0,∑
p∈P,N ′<p≤N

p−1−iλ =

∫ N

N ′

dθ(x)

x1+iλ log x

=

[
θ(x)

x1+iλ log x

]N
N ′

+

∫ N

N ′

(
(1 + iλ)

x2+iλ log x
+

1

x1+iλ x log2 x

)
θ(x)dx,

where, by a classical refinement of the prime number theorem,

θ(x) :=
∑

p∈P,p≤x

log p = x+OA(x/ log
A x)
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for all A > 1. The bracket is dominated by 1/ log(N ′), the second part of the last integral
is dominated by ∫ ∞

N ′

dx

x log2 x
=

∫ ∞
logN ′

dy

y2
= 1/ log(N ′),

and the error term of the first part is dominated by (1 + λ)/ logA(N ′). Hence

∑
p∈P,N ′<p≤N

p−1−iλ = IN ′,N,λ +OA

(
1

logN ′
+

λ

logAN ′

)
,

where

IN ′,N,λ = (1 + iλ)

∫ N

N ′

dx

x1+iλ log x
= (1 + iλ)

∫ λ logN

λ logN ′

e−iy

y
dy.

Now, for all a ≥ 1, ∫ ∞
a

e−iy

y
dy =

[
e−iy

−iy

]∞
a

−
∫ ∞
a

e−iy

iy2
dy = O(1/a),

which gives

IN ′,N,λ =

∫ λ logN

λ logN ′

e−iy

y
dy +O(1/ logN ′).

Now, the integral of (sin y)/y on R∗+ is conditionally convergent: (sin y)/y tends to 1 when
y → 0 and the convergence of the integral at∞ is easily deduced from an integration by
parts. Hence, the integral of (sin y/y) on any interval of R∗+ is uniformly bounded, which
implies

=(IN ′,N,λ) = O(1).

We deduce

=

 ∑
p∈P,N ′<p≤N

p−1−iλ

 = OA

(
1 +

λ

logAN ′

)
.

Bounding the sum on primes smaller than N ′ by taking the absolute value, we get:∣∣∣∣∣∣=
 ∑
p∈P,p≤N

p−1−iλ

∣∣∣∣∣∣ ≤ log log(3 +N ′) +OA

(
1 +

λ

logAN ′

)
,

and then by taking N ′ = e(logN)10/A , for N large enough depending on A,∣∣∣∣∣∣=
 ∑
p∈P,p≤N

p−1−iλ

∣∣∣∣∣∣ ≤ 10 log logN

A
+OA

(
1 +

λ

log10N

)
,

lim sup
N→∞

sup
0<λ≤log10N

(log logN)−1

∣∣∣∣∣∣=
 ∑
p∈P,p≤N

p−1−iλ

∣∣∣∣∣∣ ≤ 10/A,

and then by letting A→∞ and using the symmetry of the imaginary part for λ 7→ −λ,

sup
|λ|≤log10N

∣∣∣∣∣∣=
 ∑
p∈P,p≤N

p−1−iλ

∣∣∣∣∣∣ = o(log logN)
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for N →∞. This estimate can also be deduced from known bounds on the Riemann zeta
function on the line < = 1 + 1/ logN . Now, for all ρ whose real part is in [−1, 1), we have

min
|λ|≤log10N

∑
p∈P,p≤N

1−<(ρ p−iλ)
p

≥ min
|λ|≤log10N

∑
p∈P,p≤N

1−<(ρ)<(p−iλ)
p

− max
|λ|≤log10N

∣∣∣∣∣∣
∑

p∈P,p≤N

=(ρ)=(p−iλ)
p

∣∣∣∣∣∣ .
The first term is at least the sum of 1− |<(ρ)| divided by p, and then at least [1− |<(ρ)|+
o(1)] log logN . The second term is o(log logN) by the previous discussion. Hence,

min
|λ|≤log10N

∑
p∈P,p≤N

1−<(ρ p−iλ)
p

≥ [1− |<(ρ)|+ o(1)] log logN. (7.1)

Now, let ρ := E[Y2], and Zp,λ := <[(Yp − ρ)p−iλ]. The variables (Zp,λ)p∈P are centered,
independent, bounded by 2. By Hoeffding’s lemma (see, for example, Massart [18], p.
21), for all u ≥ 0,

E[euZp,λ/p] ≤ e2(u/p)2 ,

and then by independence,

E[eu
∑
p∈P,p≤N Zp,λ/p] ≤ e2u2 ∑

p∈P,p≤N p−2

≤ e2u2(π2/6) ≤ e4u2

,

P

 ∑
p∈P,p≤N

Zp,λ
p
≥ (log logN)3/4

≤e−(log logN)3/2/8E

[
e(1/8)(log logN)3/4

∑
p∈P,p≤N

Zp,λ
p

]
≤e−(log logN)3/2/8e4[(1/8)(log logN)3/4]2 = e−(log logN)3/2/16.

Applying the same inequality to −Zp,λ, we deduce

P

∣∣∣∣∣∣
∑

p∈P,p≤N

<[(Yp − ρ)p−iλ]
p

∣∣∣∣∣∣ ≥ (log logN)3/4

 ≤ 2e−(log logN)3/2/16,

P

 max
|λ|≤log10N,λ∈(log−1N)Z

∣∣∣∣∣∣
∑

p∈P,p≤N

<[(Yp − ρ)p−iλ]
p

∣∣∣∣∣∣ ≥ (log logN)3/4


= O

(
log11N e−(log logN)3/2/16

)
.

The derivative of the last sum in p with respect to λ is dominated by∑
p∈P,p≤N

log p

p
= O(logN)

and then the sum cannot vary more than O(1) when λ runs between two consecutive
multiples of log−1N . Hence,

P

 max
|λ|≤log10N

∣∣∣∣∣∣
∑

p∈P,p≤N

<[(Yp − ρ)p−iλ]
p

∣∣∣∣∣∣ ≥ (log logN)3/4 +O(1)


= O

(
(logN)11−

√
log logN/16

)
= O(log−10N).

EJP 25 (2020), paper 59.
Page 25/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP456
http://www.imstat.org/ejp/


On consecutive values of random completely multiplicative functions

If we define, for k ≥ 1, Nk as the integer part of ek
1/5

, we deduce, by Borel-Cantelli
lemma, that almost surely, for all but finitely many k ≥ 1,

max
|λ|≤log10Nk

∣∣∣∣∣∣
∑

p∈P,p≤Nk

<[(Yp − ρ)p−iλ]
p

∣∣∣∣∣∣ ≤ (log logNk)
3/4 +O(1).

If this event occurs, we deduce, using (7.1),

min
|λ|≤log10Nk

∑
p∈P,p≤N

1−<(Yp p−iλ)
p

≥ [1− |<(ρ)|+ o(1)] log logNk.

Then, by Proposition 7.1, we get∣∣∣∣∣ 1

Nk

Nk∑
n=1

Yn

∣∣∣∣∣ ≤ C [(1 + [1− |<(ρ)|+ o(1)] log logNk) (logNk)
−(1−|<(ρ)|)+o(1) +

√
2 log−5Nk

]
.

Since −(1− |<(ρ)|) ≥ −1 > −5, we deduce∣∣∣∣∣ 1

Nk

Nk∑
n=1

Yn

∣∣∣∣∣ = O((logNk)
−(1−|<(ρ)|)+o(1)),

which gives the claimed result along the sequence (Nk)k≥1. Now, if N ∈ [Nk, Nk+1], we
have, since all the Yn’s have modulus at most 1,∣∣∣∣∣ 1

Nk

Nk∑
n=1

Yn −
1

N

N∑
n=1

Yn

∣∣∣∣∣ ≤
∣∣∣∣∣ 1N

N∑
n=Nk+1

Yn

∣∣∣∣∣+
(

1

Nk
− 1

N

) ∣∣∣∣∣
Nk∑
n=1

Yn

∣∣∣∣∣
≤ N −Nk

N
+Nk

(
1

Nk
− 1

N

)
=

2(N −Nk)
N

≤ 2(e(k+1)1/5 − ek1/5 + 1)

ek1/5 − 1

= O
(
e(k+1)1/5−k1/5 − 1 + e−k

1/5
)

= O(k−4/5) = O(log−4N).

This allows to remove the restriction to the sequence (Nk)k≥1.

Using Fourier transform, we deduce a law of large numbers for the empirical measure
µN = 1

N

∑N
n=1 δXn , under the assumptions of this section.

Proposition 7.3. If for all integers q ≥ 1, P[X2 ∈ Uq] < 1, then almost surely, µN tends
to the uniform measure on the unit circle.

Proof. For all m 6= 0, Xm
2 takes its values on the unit circle, and it is not a.s. equal to

1. Applying the previous proposition to Yn = Xm
n , we deduce that µ̂N (m) tends to zero

almost surely, which gives the desired result.

Proposition 7.4. If for q ≥ 2, X2 ∈ Uq almost surely, but P[X2 ∈ Ur] < 1 for all strict
divisors r of q, then almost surely, µN tends to the uniform measure on Uq. More
precisely, almost surely, for all t ∈ Uq, the proportion of n ≤ N such that Xn = t is
q−1 +O((logN)−c), as soon as

c < inf
1≤m≤q−1

(1− E[<(Xm
2 )]) ,

this infimum being strictly positive.

Proof. The infimum is strictly positive since by assumption, P[Xm
2 = 1] < 1 for all

m ∈ {1, . . . , q−1}. Now, we apply the previous result to Yn = Xm
n for all m ∈ {1, . . . , q−1},

and we get the claim after doing a discrete Fourier inversion.
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