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Abstract

This paper consists of two parts. In the first part, we focus on the average of a
functional over shifted Gaussian homogeneous noise and as the averaging domain
covers the whole space, we establish a Breuer-Major type Gaussian fluctuation based
on various assumptions on the covariance kernel and/or the spectral measure. Our
methodology for the first part begins with the application of Malliavin calculus around
Nualart-Peccati’s Fourth Moment Theorem, and in addition we apply the Fourier
techniques as well as a soft approximation argument based on Bessel functions of first
kind.

The same methodology leads us to investigate a closely related problem in the
second part. We study the spatial average of a linear stochastic heat equation driven
by space-time Gaussian colored noise. The temporal covariance kernel γ0 is assumed
to be locally integrable in this paper. If the spatial covariance kernel is nonnegative
and integrable on the whole space, then the spatial average admits the Gaussian
fluctuation; with some extra mild integrability condition on γ0, we are able to provide
a functional central limit theorem. These results complement recent studies on the
spatial average for SPDEs. Our analysis also allows us to consider the case where
the spatial covariance kernel is not integrable: For example, in the case of the Riesz
kernel, the first chaotic component of the spatial average is dominant so that the
Gaussian fluctuation also holds true.
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1 Introduction

Motivated by the Breuer-Major central limit theorem (CLT) [2] and recent studies
on the spatial averages of SPDEs [14, 15, 7], we devote this paper to seeking general
conditions that lead to the Gaussian fluctuations of averages of Gaussian functionals.

Let us briefly introduce our framework. Let W be a d-dimensional homogenous
Gaussian noise with covariance kernel γ, that is, W =

{
W (φ), φ ∈ C∞c (Rd)

}
is a centered

Gaussian family of real random variables, defined on a probability space (Ω,F ,P), with
covariance structure given by

E
[
W (φ)W (ϕ)

]
=

∫
R2d

φ(x)ϕ(y)γ(x− y) dx dy , ∀φ, ϕ ∈ C∞c (Rd), (1.1)

where γ : Rd → R ∪ {+∞} is symmetric with γ−1({∞}) ⊂ {0} and γ(x) = (Fµ)(x) =∫
Rd
e−ix·ξµ(dξ) for some nonnegative tempered measure µ on Rd. These assumptions on

γ ensure that (1.1) defines a nonnegative definite covariance functional and µ is known
as the spectral measure. Notice that γ(0) ∈ R is equivalent to the finiteness of µ(Rd).

It is clear that (1.1) defines an inner product, under which the space C∞c (Rd) can be
extended into a real Hilbert space H. Furthermore, the mapping φ ∈ C∞c (Rd) 7→ W (φ)

extends to a linear isometry between H and the Gaussian Hilbert space spanned by W .
We write W (φ) =

∫
Rd
φ(x)W (dx) and E[W (φ)W (ϕ)

]
= 〈φ, ϕ〉H, for any φ, ϕ ∈ H. This

gives us an isonormal Gaussian process over H.
Now consider a real random variable F ∈ L2(Ω) that is measurable with respect to

W and has the following Wiener chaos expansion:

F (W ) = E[F ] +
∑
p≥1

IWp (fp) , (1.2)

where IWp (·) denotes the pth multiple stochastic integral with respect to W and fp
belongs to the symmetric subspace H�p of the pth tensor product H⊗p, ∀p ∈ N; see [21]
for more details. Along the paper we will denote by ΠpF the orthogonal projection of F
onto the pth Wiener chaos.
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In order to formulate our results, we need to introduce the spatial shifts {Ux, x ∈ Rd}.
For each x ∈ Rd and F given as in (1.2), UxF is defined by

UxF := E[F ] +
∑
p≥1

IWp (fxp ), (1.3)

with1 fxp (y1, . . . , yp) = fp(y1 − x, . . . , yp − x) for any x, y1, . . . , yp ∈ Rd and p ∈ N. Here
is another look at the above definition. For any x ∈ Rd and any ϕ ∈ C∞c (Rd), we
write ϕx(y) = ϕ(y − x) and we introduce Wx, the shifted Gaussian field, defined by
Wx(φ) = W (φx), for any φ ∈ C∞c (Rd), and by extension for any φ ∈ H. The family Wx has
the same covariance structure as W and the associated multiple stochastic integrals
satisfy IWx

p (f) = IWp (fx) for any f ∈ H�p, so that UxF (W ) = F (Wx) shall give us (1.3).
Let F be given as in (1.2). We are interested in the spatial averages of UxF over

BR = {x ∈ Rd : ‖x‖ ≤ R}, with the particular aim at general conditions on the kernels
{fp, p ∈ N} and the covariance kernel γ (and/or the associated spectral measure µ) that
imply

1

σ(R)

∫
BR

UxF dx
law−−−−−→

R→+∞
N(0, 1) , (1.4)

where σ(R) is a normalization constant and N(m, v2) stands for a real normal distribution
with mean m and variance v2.

To illustrate how this spatial averaging is related to the aforementioned Breuer-Major
theorem and to give a flavor of our results, we provide below a particular case (see
Example 1.2) and refer to Section 2 for more general results. Let us first recall the
continuous-time Breuer-Major theorem (in a slightly different form).

Theorem 1.1. Suppose g ∈ L2(R, e−x
2/2dx) has the following orthogonal expansion in

Hermite polynomials {Hp = (−1)pex
2/2 dp

dxp e
−x2/2, p ∈ N} :

g =
∑
p≥m

cpHp with cm 6= 0, m ≥ 1 known as the Hermite rank of g.

Let Y = {Yx, x ∈ Rd} be a centered Gaussian stationary process with covariance
function E[YaYb] = ρ(a− b) such that ρ(0) = 1. Under the condition ρ ∈ Lm(Rd, dx), we
have

R−d/2
∫
BR

g(Yx) dx
law−−−−−→

R→+∞
N(0, σ2) ,

with σ2 := ωd
∑
q≥m c

2
qq!
∫
Rd
ρ(x)m dx ∈ [0,∞), ωd being the volume of B1; see also

[3, 25].

Example 1.2. Now fix a unit vector e ∈ H and put F = g
(
W (e)

)
, then UxF = g

(
Wx(e)

)
=

g
(
Yx
)
, with Yx = W (ex). If g ∈ L2(R, e−x

2/2dx) has Hermite rank m ≥ 1 and∫
Rd

∣∣∣∣∫
R2d

e(a)e(b)γ(a− b− x)dadb

∣∣∣∣m dx < +∞ ,

then Theorem 1.1 produces an example of (1.4). Note that in this example, the Gaussian
functional F = g

(
W (e)

)
depends only on one coordinate while our principal concern is

for Gaussian functionals that may depend on infinitely many coordinates.

Recall the chaos expansions (1.2) and (1.3), and from now on, we consider the case
where F has Hermite rank m ≥ 1, meaning that:

1 For a generalized function f ∈ H, we can define fx as follows. Let {fn, n ∈ N} ⊂ C∞
c (Rd) be an

approximating sequence of f in H, we can define fxn for each n ∈ N and fx to be the limit of the Cauchy
sequence {fxn , n ∈ N} in H. It is routine to verify that the definition of fx does not depend on the particular
choice of the approximating sequence.
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E[F ] = 0, {fj , j = 1, . . . ,m− 1} are zero vectors and fm ∈ H�m is nonzero.

In this case, we write∫
BR

UxF dx =
∑
p≥m

IWp
(
gp,R

)
with gp,R =

∫
BR

fxp dx for each p ≥ m.

In view of Hu and Nualart’s chaotic central limit theorem [11], based on the Fourth
Moment Theorems of Nualart, Peccati and Tudor [23, 26], it is enough to look for
conditions that guarantee the central limit theorem on each fixed chaos, provided one
has some uniform control of the variance of each chaotic component. More precisely, we
have the following general result.

Theorem 1.3. Consider a sequence of centered square integrable random variables
(Fn, n ∈ N) with Wiener chaos expansions Fn =

∑
q≥1 I

W
q (fq,n), where fq,n ∈ H�q for

each q, n ∈ N. Suppose that:

(i) ∀q ≥ 1, q!‖fq,n‖2H⊗q → σ2
q , as n→ +∞;

(ii) ∀q ≥ 2 and ∀r ∈ {1, . . . , q − 1}, ‖fq,n ⊗r fq,n‖H⊗(2q−2r) → 0, as n→ +∞;

(iii) limN→+∞ lim supn→+∞
∑
q≥N q!‖fq,n‖2H⊗q = 0 .

Then, as n→∞, Fn converges in law to N(0, σ2), with σ2 =
∑
q≥1 σ

2
q .

We refer to [20, 22] for more details on this result and to Section 2 for the definition
of the r-contraction ⊗r.

Now let us look at the central limit theorem on each chaos. We fix an integer p ≥ 2

and put

Gp,R = IWp
(
gp,R

)
with σ2

p,R := Var
(
Gp,R

)
. Assume σp,R > 0 for large R, then according to the Fourth

Moment Theorem of Nualart and Peccati [23], we know that

Gp,R
σp,R

law−−−−−→
R→+∞

N(0, 1)

if and only if

lim
R→+∞

1

σ2
p,R

p−1∑
r=1

‖gp,R ⊗r gp,R‖H⊗(2p−2r) = 0 . (1.5)

Moreover, we have the following rate of convergence in the total variation distance, as a
consequence of the Nourdin-Peccati bound (see [20, Chapter 5]):

dTV

(
Gp,R
σp,R

, N(0, 1)

)
≤ C

σ2
p,R

p−1∑
r=1

‖gp,R ⊗r gp,R‖H⊗(2p−2r) . (1.6)

Throughout this paper, we write C for immaterial constants that may vary from line to
line.

In the first part of this paper (Section 2), we will exploit the above ideas to derive
sufficient conditions for (1.4) to hold, with σ(R) growing like CRd/2. Note that the order
of σ(R) matches the result in Theorem 1.1. Without introducing further notation, we
provide another example of (1.4), which is a corollary of our main result (Theorem 2.15);
see Remark 2.16.
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Theorem 1.4. Let the above notation prevail. Assume γ(0) ∈ (0,∞) and γ ∈ Lm(Rd, dx),
where m ≥ 1 is the Hermite rank of F . If we assume in addition that the kernels
fp ∈ L1(Rpd) ∩ H�p, p ≥ m, satisfy∑

p≥m

p!γ(0)p‖fp‖2L1(Rpd) < +∞ , (1.7)

then, R−d/2
∫
BR

UxF dx
law−−−−−→

R→+∞
N(0, σ2), and with spspsp = (s1, . . . , sp), dtptptp = dt1 · · · dtp,

σ2 = ωd
∑
p≥m

p!

∫
R2dp

dspspspdtptptpfp(spspsp)fp(tptptp)

∫
Rd
dz

p∏
j=1

γ(tj − sj + z) ∈ [0,∞).

One may want to compare our Theorem 1.4 with Theorem 1.1 and Example 1.2. We
refer the readers to Section 2 for more results with this flavor and here we briefly give a
literature overview:

1. To the best of our knowledge, problem (1.4) first received attention in the 1976
paper [18] by Maruyama, using the method of moments. Proofs and extensions of
Maruyama’s CLT were published in his 1985 paper [19].

2. In 1983, Breuer and Major provided a CLT [2], motivated by the non-central
limit theorems of Dobrushin, Major, Rosenblatt and Taqqu during 1977-1981 (see
[8, 17, 27, 28, 29]). Unlike these works, Breuer and Major were interested at the
asymptotic normality of nonlinear functionals over stationary Gaussian fields when
the corresponding correlation function decay fast enough. Although Breuer-Major’s
theorem (see Theorem 1.1) takes a simpler form compared to Maruyama’s CLT, it
has found a tremendous amount of applications in theory and practice.

3. Chambers and Slud established further extensions to Maruyama’s CLT in [4] and
obtained the Breuer-Major theorem as a corollary (when assuming the existence
of spectral density). In both [4] and Maruyama’s work [18, 19], the story always
begins with a real stationary Gaussian process with time-shifts {Us, s ∈ R} and
they formulated the chaos expansion based on the spectral (probability) measure.

4. In the present work, we provide sufficient conditions for (1.4) in terms of the
spectral measure. Comparing our assumptions based on the spectral measure
with those in [4], both sets of assumptions essentially cover our Theorem 1.4 as a
particular case, while they are different in their full generality. Moreover, we also
provide sufficient conditions for (1.4) in terms of the covariance kernel.

Our methodology from the first part can be applied to the study of spatial averages
of the stochastic heat equation driven by Gaussian colored noise and this constitutes
the second part of our paper. More precisely, we consider the following stochastic heat
equation with a multiplicative Gaussian colored noise on R+ ×Rd:

∂u

∂t
=

1

2
∆u+ uẆ (1.8)

where the Laplacian ∆ =
∑d
i=1 ∂

2
xi concerns only space variables and the initial condition

is fixed to be u0,x ≡ 1. The notation Ẇ stands for ∂d+1W
∂t∂x1···∂xd and the noise W is formally

defined as a centered Gaussian family
{
W (φ), φ ∈ C∞c (R+ × Rd)

}
, with covariance

structure

E[W (φ)W (ψ)] =

∫
R2

+

dsdtγ0(t− s)〈φ(s, •), γ1 ∗ ψ(t, •)〉L2(Rd)
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=

∫
R2

+

dsdtγ0(t− s)
∫
Rd
µ1(dξ)Fφ(s, ξ)Fψ(t,−ξ) , (1.9)

for any φ, ψ ∈ C∞c (R+ ×Rd), where F denotes the Fourier transform with respect to the
spatial variables and the following two conditions are satisfied:

1. γ0 : R→ [0,∞] is locally integrable and nonnegative-definite,

2. γ1 is a measure, such that γ1 = Fµ1 for some nonnegative tempered measure µ1,
called the spectral measure, satisfying Dalang’s condition (see e.g. [6])∫

Rd

µ1(dξ)

1 + ‖ξ‖2
< +∞. (1.10)

If γ1 is absolutely continuous with respect to the Lebesgue measure on Rd, we still
denote by γ1 its density and then

〈φ(s, •), γ1 ∗ ψ(t, •)〉L2(Rd) =

∫
R2d

φ(s, x)γ1(x− y)ψ(t, y)dxdy.

We will use this notation even if γ1 is a measure. The basic example is d = 1 and γ1 = δ0
and in this case µ1 is (2π)−1 times Lebesgue measure.

We point out that (1.9) defines an inner product, under which C∞c (R+ ×Rd) can be
extended into a Hilbert space H . As we did before, we can build an isonormal process
{W (h), h ∈ H } from {W (h), h ∈ C∞c (R+ ×Rd)}. We denote by IWp (f) the pth multiple

integral of a symmetric element f ∈ H �p. For general f ∈ H ⊗p, we denote by f̃ the
canonical symmetrization of f , that is,

f̃(s1, y1, s2, y2, . . . , sp, yp) =
1

p!

∑
σ∈Sp

f
(
sσ(1), yσ(1), . . . , sσ(p), yσ(p)

)
,

where the sum runs over the permutation group Sp over {1, . . . , p}. Quite often in this
paper, we write f(spspsp, ypypyp) for f(s1, y1, . . . , sp, yp), whenever it is convenient.

For each t ≥ 0, let Ft be the σ-algebra generated by
{
W (φ) : φ is continuous with

support contained in [0, t]×Rd
}

. We say that a random field u = {ut,x, (t, x) ∈ R+ ×Rd}
is adapted if for each (t, x), the random variable ut,x is Ft-measurable.

We interpret equation (1.8) in the Skorokhod sense and recall the definition of mild
solution from [9, Definition 3.1].

Definition 1.5. An adapted random field u =
{
ut,x, t ≥ 0, x ∈ Rd

}
such that E

[
u2
t,x

]
<

+∞ for all (t, x) is said to be a mild solution to equation (1.8) with initial conditoin
u0,· = 1, if for any t ∈ R+, x ∈ Rd, the process {G(t− s, x− y)us,y1[0,t](s) : s ≥ 0, y ∈ Rd}
is Skorokhod integrable and

ut,x = 1 +

∫ t

0

∫
Rd
G(t− s, x− y)us,yW (ds, dy) ,

where G(t, x) = (2πt)−d/2 exp
(
− ‖x‖2/(2t)

)
for t > 0 and x ∈ Rd.

The above stochastic heat equation has a unique mild solution u with explicit Wiener
chaos expansion given by (see [9, Theorem 3.2])

ut,x = 1 +
∑
n≥1

IWn (ft,x,n),

where

ft,x,n(snsnsn, ynynyn) =
1

n!

n−1∏
i=0

G(sσ(i) − sσ(i+1), yσ(i) − yσ(i+1)), (1.11)
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with σ ∈ Sn being such that t > sσ(1) > · · · > sσ(n) > 0. In the above expression we have
used the convention sσ(0) = t and yσ(0) = x. We also refer interested readers to [10, 13]
for more general noises.

Notice that ut,x−E[ut,x] has Hermite rank 1 and it is known that for any fixed t ∈ R+,
{ut,x : x ∈ Rd} is strictly stationary meaning that the finite-dimensional distributions of
the process {ut,x+y, x ∈ Rd} do not depend on y. So the following integral∫

BR

(
ut,x − 1

)
dx (1.12)

resembles the object in (1.4) and we are able to establish its Gaussian fluctuation under
some mild assumptions. The spatial averages (1.12) have been studied in recent articles
[14, 15, 7]:

(i) Huang, Nualart and Viitasaari [14] initiated their study by looking at the one-
dimensional (nonlinear) stochastic heat equation driven by a space-time white
noise.

(ii) Huang, Nualart, Viitasaari and Zheng [15] continued to study the d-dimensional
stochastic heat equation driven by Gaussian noise that is white in time and colored
in space, with the spatial covariance described by the Riesz kernel.

(iii) Delgado-Vences, Nualart and Zheng [7] carried out similar investigation for the
one-dimensional stochastic wave equation.

In the above references, the Gaussian noise is assumed to be white in time, which
gives rise to a martingale structure. This is important for applying Itô calculus (e.g.
Burkholder-Davis-Gundy inequality and Clark-Ocone formula) to obtain quantitative
central limit theorems for (1.12).

In the present paper, we consider a linear stochastic heat equation driven by space-
time colored noise, so Itô calculus can not be applied anymore; while due to the linearity,
an explicit chaos expansion of the solution is available for us to apply the chaotic central
limit theorem (Theorem 1.3).

We define

At(R) :=

∫
BR

(
ut,x − 1

)
dx

and let ΠpAt(R) be the projection of At(R) on the pth Wiener chaos, that is,

ΠpAt(R) := IWp

(∫
BR

ft,x,pdx

)
.

Throughout this paper, we assume that γ0, γ1 are nontrivial, meaning that

γ1(Rd) > 0 and

∫ t

0

∫ t

0

γ0(r − v)drdv > 0

for any t > 0. The following is our main result.

Theorem 1.6. Suppose γ0 : R→ R+ ∪ {+∞} is locally integrable, γ1 satisfies Dalang’s
condition (1.10) and γ1(Rd) <∞. Then as R→ +∞, {R−d/2At(R), t ≥ 0} converges to a
centered continuous Gaussian process {Gt, t ≥ 0} in finite-dimensional distributions. The
covariance structure of G is given by

E[GsGt] =: Σs,t = ωd

∫
Rd

(
E
[
eβs,t(z)

]
− 1
)
dz ∈ (0,∞), (1.13)

where

βs,t(z) :=

∫ s

0

∫ t

0

γ0(r − v)γ1(X1
r −X2

v + z)drdv
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with X1, X2 two independent standard Brownian motions on Rd.
If in addition, there exist some t0 > 0 and some α ∈ (0, 1/2) such that∫ t0

0

∫ t0

0

γ0(r − v)r−αv−αdrdv < +∞, (1.14)

then as R → +∞,
{
R−d/2At(R), t ≥ 0

}
converges weakly to {Gt, t ≥ 0} in the space of

continuous functions C(R+).

Notice that (1.14) is satisfied when γ0 = δ0. In this case γ0 is not a function but the
result can be properly formulated.

One may ask what happens if γ1(Rd) is not finite, and this includes an important
example, the Riesz kernel γ1(z) = ‖z‖−β with β ∈ (0, 2 ∧ d).

Theorem 1.7. Suppose γ0 : R→ R+ ∪ {∞} is locally integrable and γ1(Rd) = +∞.
(1) Assume that µ1 admits a density ϕ1 that satisfies∫

Rd

ϕ1(ξ) + ϕ1(ξ)2

1 + ‖ξ‖2
dξ < +∞. (1.15)

Then, R−dVar
(
Π1At(R)

)
diverges to infinity as R→ +∞ and

lim
R→+∞

R−d
∑
p≥2

Var
(
ΠpAt(R)

)
= ωd

∫
Rd
E
(
eβt,t(z) − βt,t(z)− 1

)
dz ∈ (0,∞).

As a consequence, we have

At(R)√
Var
(
At(R)

) law−−−−−→
R→+∞

N(0, 1).

(2) When γ1(z) = ‖z‖−β for some β ∈ (0, 2 ∧ d), we have

At(R)

Rd−
β
2

law−−−−−→
R→+∞

N(0, κβ), (1.16)

with

κβ :=

(∫ t

0

∫ t

0

drdvγ0(r − v)

)∫
B2

1

dxdy‖x− y‖−β .

Note that the Riesz kernel in part (2) satisfies the modified version of Dalang’s
condition (1.15) if and only if d/2 < β < 2 ∧ d, which is equivalent to

β ∈ (1/2, 1) for d = 1

β ∈ (1, 2) for d = 2

β ∈ (3/2, 2) for d = 3.

(1.17)

In particular, in dimension one, β ∈ (1/2, 1) is equivalent to the fractional noise with
Hurst parameter H ∈ (1/2, 3/4).

Remark 1.8. Unlike previous studies, we consider a noise that is colored in time, and
our results complement, in particular, those in [14, 15]. In [14] where the noise is white
in space and time, the authors were able to obtain the chaotic central limit theorem for
the linear equation (parabolic Anderson model), proving also a rate of convergence in
the total variation distance. The quantitative CLT in the case γ0 = δ0 and γ1(z) = ‖z‖−β ,
was obtained in [15] for the nonlinear equation, and the authors of [15] also proved that
for the linear equation, the first chaos is dominant so the central limit theorem is not
chaotic.
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We point out that in both parts of Theorem 1.7 the first chaos dominates, that is, the
central limit theorem is not chaotic. Moreover, we are able to provide the following
functional version of Theorem 1.7.

Theorem 1.9. Suppose γ0 : R→ R+ ∪ {∞} is locally integrable and γ1(Rd) = +∞.
(1) Let the assumptions in part (1) of Theorem 1.7 hold and we assume that the

condition (1.14) is satisfied. We put

Ât(R) :=
∑
p≥2

Πp

(
At(R)

)
,

then as R → ∞, the process
(
R−d/2Ât(R) : t ∈ R+

)
converges in law to a centered

continuous Gaussian process Ĝ with covariance given by

E
[
ĜsĜt

]
:= ωd

∫
Rd
E
[
eβs,t(z) − βs,t(z)− 1

]
dz.

(2) If condition (1.14) is satisfied for some α ∈ (0, 1/2) and γ1(z) = ‖z‖−β for some

β ∈ (0, 2 ∧ d), then the process
(
R−d+ β

2At(R) : t ∈ R+

)
converges in law to a centered

continuous Gaussian process G̃, as R→∞. Here the covariance structure of G̃ is given
by

E
[
G̃sG̃t

]
=

(∫ t

0

∫ s

0

drdvγ0(r − v)

)∫
B2

1

dxdy‖x− y‖−β .

We will organize the rest of our article into three sections. Section 2 begins with a
subsection on some preliminary knowledge, where we provide some important lemmas
for our later analysis. We devote Section 2.2 to the investigation of the central limit
theorems on a fixed chaos by looking at assumptions on the covariance kernel and on the
spectral measure separately. We derive the corresponding chaotic central limit theorems
in Section 2.3. Section 3 is devoted to the proof of Theorems 1.6, 1.7 and 1.9. For
Theorem 1.6. we show the convergence of the finite-dimensional distributions and the
tightness. Theorem 1.7 and Theorem 1.9 are proved as a by-product of the estimations
in the proof of Theorem 1.6. Finally, Section 4 provides the proofs of some technical
results stated in previous sections.

2 Infinite version of the Breuer-Major theorem

2.1 Preliminaries

In this section, we introduce some notation for later reference and we provide several
lemmas needed for our proofs.

Recall from our introduction that {W (h), h ∈ H} is an isonormal Gaussian process
such that for any φ, ψ ∈ H,

E
[
W (φ)W (ψ)

]
= 〈φ, ψ〉H =

∫
R2d

φ(x)ψ(y)γ(x− y)dxdy =

∫
Rd

Fφ(ξ)Fψ(−ξ)µ(dξ),

where γ is the covariance kernel and µ is the spectral measure whose Fourier transform
is γ, understood in the generalized sense. Let Hµ be the Hilbert space of functions
g : Rd → C such that g(−x) = g(x) for µ-almost every x ∈ Rd and∫

Rd
|g(ξ)|2 µ(dξ) < +∞ .

Here z is the complex conjugate of z ∈ C. It is clear that the Fourier transform stands as
a linear isometry from H to Hµ.

EJP 25 (2020), paper 48.
Page 9/54

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP453
http://www.imstat.org/ejp/


Averaging Gaussian functionals

For any integer p ≥ 2, let H⊗p (resp. H�p) the pth tensor product (resp. symmetric
tensor product) of H. Note that for any integer p ≥ 2, the pth multiple stochastic integral
IWp is a linear and continuous operator from H⊗p into L2(Ω). We can define spaces like
H⊗pµ and H�pµ in the obvious manner.

To simplify the display, we introduce some compact notation below.

Notation A: For any R > 0, BR(x) stands for the d-dimensional Euclidean (closed) ball
centered at x with radius R and we have used BR for BR(0). We write vol(A) for the
volume of A ⊂ Rd and ωd = vol(B1). We use ‖ · ‖ to denote the Euclidean norm in any
dimension.

For r ∈ N and xrxrxr = (x1, . . . , xr), we write −xrxrxr for (−x1, . . . ,−xr), dxrxrxr = dx1 · · · dxr
and µ(dxrxrxr) = µ(dx1) · · ·µ(dxr); we also write τ(xrxrxr) = x1 + · · ·+xr. For integers 1 ≤ r < p,
we write (ξ1, . . . , ξp) = ξpξpξp = (ξrξrξr, ηp−rηp−rηp−r) with ξrξrξr = (ξ1, . . . , ξr) and ηp−rηp−rηp−r = (ξr+1, . . . , ξp).
With the above compact notation, we define the contraction operators ⊗r as follows.
For f ∈ H⊗p and g ∈ H⊗q (p, q ∈ N), their r-contraction, with 0 ≤ r ≤ p ∧ q, belongs to
H⊗p+q−2r and is defined by

(f ⊗r g)
(
ξp−rξp−rξp−r, ηq−rηq−rηq−r

)
:=

∫
R2rd

f
(
ξp−rξp−rξp−r, ararar

)
g
(
ηq−rηq−rηq−r, ãrãrãr

) r∏
j=1

γ(aj − ãj)dararardãrãrãr

for ξp−rξp−rξp−r ∈ Rpd−rd and ηq−rηq−rηq−r ∈ Rqd−rd. In particular, f ⊗0 g = f ⊗ g is the usual tensor
product and if p = q, f ⊗p g = 〈f, g〉H⊗p ; see also [20, Appendix B]. Let us introduce some
useful lemmas now.

For p positive, we denote by Jp the Bessel function of first kind with order p:

Jp(x) =
(x/2)p

√
πΓ(p+ 1

2 )

∫ π

0

(sin θ)2p cos
(
x cos θ

)
dθ, x ∈ R ; (2.1)

see [16, (5.10.4)]. Let us also record here

ωd = vol(B1) =
πd/2

Γ
(
1 + d

2

) , (2.2)

with Γ the Euler’s Gamma function.

Lemma 2.1. (1) Given ξ ∈ Rd and R > 0, we have∫
BR

e−iξ·u du = (2πR)d/2‖ξ‖−d/2Jd/2
(
R‖ξ‖

)
,

where Jd/2 is the Bessel function of the first kind with order d/2.

(2) Given a positive real number p, we have

Jp(x) ∼
√

2/(πx) cos
(
x− (2p+ 1)π

4

)
as x→ +∞, (2.3)

Jp(x) ∼ xp

2pΓ(p+ 1)
as x→ 0. (2.4)

As a consequence, we have sup{|Jp(x)| : x ∈ R+} < +∞ and |Jp(x)| ≤ C|x|−1/2 for any
x ∈ R, here C is some absolute constant.

(3) Put `R(x) = ω−1
d ‖x‖−dJd/2(R‖x‖)2, then {`R : R > 0} is an approximation of the

identity.
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Proof. (1) Let us suppose first that R = 1. In this case, one sees that the Fourier
transform of 1{‖u‖≤1} is rotationally symmetric, so without losing any generality, we
assume ξ = (0, . . . , 0, ρ) with ρ = ‖ξ‖ > 0. Then for d ≥ 2,∫

Rd
e−iξ·u1{‖u‖≤1} du

=

∫ 1

−1

e−iρxd
∫
Rd−1

1{‖xd−1xd−1xd−1‖2≤1−x2
d}dxd−1xd−1xd−1 dxd =

∫ 1

−1

e−iρxdωd−1

(
1− x2

d

) d−1
2 dxd

= ωd−1

∫ 1

−1

cos(ρy)
(
1− y2

) d−1
2 dy = ωd−1

∫ π

0

cos(ρ cos(θ)) sin(θ)d dθ

= (2π)d/2ρ−d/2Jd/2(ρ),

where the last equality follows from the expressions (2.2) and (2.1). That is, for d ≥ 2,∫
Rd
e−iξ·u1{‖u‖≤1} du = (2π)d/2‖ξ‖−d/2Jd/2(‖ξ‖).

The above equality also holds true for d = 1, as one can verify by a direct computation
for both sides. So the result in part (1) is established for R = 1. The general case follows
from a change of variable.

(2) The asymptotic behavior of Bessel functions can be found in e.g. page 134 of
the book [16]. The uniform boundedness of Jp on R+ follows immediately from this
asymptotic behavior. By (2.3), we can find some L > 0 such that |Jp(x)| ≤ 1/

√
x for

any x ≥ L, while it follows from (2.1) that |Jp(x)| ≤ C1x
p for any x ≥ 0. It suffices to

pick C = 1 + C1L
p+ 1

2 such that C1 ≤ CL−p−
1
2 to conclude that |Jp(x)| ≤ C|x|−1/2 for any

x ∈ R.

(3) It suffices to show 1 = ‖`1‖L1(Rd). It follows from point (1) that∫
Rd
‖x‖−dJd/2(‖x‖)2dx =

∫
Rd

(
lim
a↓0

1

(2π)d/2

∫
Rd

exp
(
−iξ · x− a

4
‖x‖2

)
1{‖ξ‖≤1}dξ

)2

dx

= lim
a↓0

∫
R2d

dξdξ′1{ξ,ξ′∈B1}
1

(2π)d

∫
Rd

exp
(
−i(ξ + ξ′) · x− a

2
‖x‖2

)
dx

= lim
a↓0

∫
R2d

dξdξ′1{ξ,ξ′∈B1}
exp

(
− ‖ξ + ξ′‖2/(2a)

)
(2πa)d/2

= lim
a↓0

∫
Rd

vol
(
B1 ∩B1(ξ)

)e−‖ξ‖2/(2a)

(2πa)d/2
= ωd ,

where interchanges of integrals and limits are valid due to the dominated convergence
theorem. Our proof of this lemma is finished.

The following lemma has its discrete analogue in [20, (7.2.7)] and for the sake of
completeness, we provide a short proof; see also [25, (3.3)].

Lemma 2.2. If φ : Rd → R belongs to Lp(Rd, dx) for some positive number p. Then for
any r ∈ (0, p), one has

1

Rd(1−rp−1)

∫
BR

|φ(x)|rdx R→+∞−−−−−→ 0 .

Proof. Fix δ ∈ (0, 1). We deduce from Hölder’s inequality that

1

Rd(1−rp−1)

∫
BR

|φ(x)|rdx =
1

Rd(1−rp−1)

∫
BδR

|φ(x)|rdx+
1

Rd(1−rp−1)

∫
BR\BδR

|φ(x)|rdx
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≤ Cδd(1−rp−1)

(∫
Rd
|φ(x)|pdx

)r/p
+ C

(
1− δd(1−rp−1)

)(∫
BR\BδR

|φ(x)|pdx

)r/p
.

Note that for any fixed δ ∈ (0, 1), the second term goes to zero, as R→ +∞, while the
first term can be made arbitrarily small by choosing sufficiently small δ.

At the end of this section, we record a consequence of Young’s inequality.

Lemma 2.3. Suppose ϕ : Rd → R belongs to Lq(Rd, dx) with q = p/(p − 1) for some
integer p ≥ 2. Then, ∥∥ϕ∗p∥∥∞ ≤ ‖ϕ‖pLq(Rd)

, (2.5)

where the p-convolution can be defined iteratively: ϕ∗2 = ϕ ∗ ϕ, ..., ϕ∗p = ϕ ∗ ϕ∗p−1.

Proof. Young’s convolution inequality states that

‖h1 ∗ h2‖Lr(Rd) ≤ ‖h1‖Lp(Rd)‖h2‖Lq(Rd)

for any h1 ∈ Lp(Rd) and h2 ∈ Lq(Rd) with p−1 + q−1 = 1 + r−1 and 1 ≤ p, q, r ≤ ∞. As a
consequence, we obtain the following inequalities:

‖ϕ∗p‖∞ = ‖ϕ ∗ ϕ∗p−1‖∞ ≤ ‖ϕ‖Lq(Rd)‖ϕ∗p−1‖Lq1 (Rd) with q1 = p,

‖ϕ∗p−1‖Lq1 (Rd) = ‖ϕ ∗ ϕ∗p−2‖Lq1 (Rd) ≤ ‖ϕ‖Lq(Rd)‖ϕ∗p−2‖Lq2 (Rd) with q2 = p/2,

‖ϕ∗p−2‖Lq2 (Rd) = ‖ϕ ∗ ϕ∗p−3‖Lq2 (Rd) ≤ ‖ϕ‖Lq(Rd)‖ϕ∗p−3‖Lq3 (Rd) with q3 = p/3,

. . .

‖ϕ∗2‖Lqp−2 (Rd) = ‖ϕ ∗ ϕ‖Lqp−2 (Rd) ≤ ‖ϕ‖Lq(Rd)‖ϕ‖Lqp−1 (Rd) with qp−1 = p
p−1 .

This completes the proof of (2.5).

Recall from our introduction that we consider the case where F =
∑
k≥m I

W
k (fk) has

Hermite rank m ≥ 1 with fk ∈ H�k for each k ≥ m. We write

GR :=

∫
BR

UxF dx =
∑
k≥m

IWk (gk,R) =:
∑
k≥m

Gk,R with gk,R =

∫
BR

fxk dx .

In what follows, we first investigate the central limit theorem on each chaos based on
two sets of assumptions. One involves the covariance kernel γ and the other is based
on the spectral measure µ. This is the content of Section 2.2, and in Section 2.3, we
consider the case where F has a general chaos expansion. In each situation, the random
variable may depend on infinitely many coordinates, which shall be distinguished from
the classical Breuer-Major theorem.

2.2 Central limit theorems on a fixed chaos

Fix an integer p ≥ 2 and note that the random field {IWp (fxp ), x ∈ Rd} is centered,
strictly stationary. We put

E[IWp (fxp )IWp (fyp )] =: Φp(x− y).

Then, if ∫
Rd
|Φp(x)|dx <∞, (2.6)

we have, with the notation Gp,R = IWp (gp,R),

lim
R→+∞

Var(Gp,R)

Rd
= ωd

∫
Rd

Φp(x)dx. (2.7)
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Indeed,

Var(Gp,R) =

∫
B2
R

Φp(x− y)dxdy =

∫
BR

vol
(
BR ∩BR(−z)

)
Φp(z)dz.

Because vol
(
BR ∩BR(−z)

)
/vol(BR) is bounded by one and convergent to one, as R→

+∞, (2.7) follows from (2.6) and the dominated convergence theorem. This fact leads us
to stick on the situation that the normalization σ(R) in (1.4) is of order Rd/2, as R→ +∞.
Such an order is also consistent with the Breuer-Major theorem (see Theorem 1.1).

2.2.1 CLT under assumptions on the covariance kernel

We write

Φp(x) = p!〈fxp , fp〉H⊗p = p!

∫
R2pd

fp(ξpξpξp)fp(ηpηpηp)

p∏
i=1

γ
(
ξi − ηi + x

)
dξpξpξp dηpηpηp .

Therefore, a sufficient condition for (2.6) to hold is the following hypothesis:

(H1) fp ∈ H�p satisfies

∫
Rd

∫
R2pd

|fp(ξpξpξp)fp(ηpηpηp)|
p∏
i=1

|γ|
(
ξi − ηi + x

)
dηpηpηp dξpξpξpdx <∞.

Define

κp(ξpξpξp − ηpηpηp) =

∫
Rd

p∏
i=1

γ(ξi − ηi + z)dz. (2.8)

Then, under (H1),∫
Rd

Φp(x)dx = p!

∫
R2pd

fp(ξpξpξp)fp(ηpηpηp)κp(ξpξpξp − ηpηpηp) dξpξpξp dηpηpηp.

Suppose that γ ∈ Lp(Rd) and fp ∈ L1(Rpd). Then, hypothesis (H1) is satisfied. In fact,
using Hölder’s inequality, we obtain∫

Rd

∫
R2pd

|fp(ξpξpξp)fp(ηpηpηp)|
p∏
i=1

|γ|(ξi − ηi + x)dξpξpξp dηpηpηpdx ≤ ‖γ‖pLp(Rd)
‖fp‖2L1(Rpd) <∞ .

Remark 2.4. (i) In the particular case where p = 1, the conditions f1 ∈ L1(Rd) ∩ H and
γ ∈ L1(Rd) are necessary, since hypothesis (H1) becomes∫

R2d

∣∣f1(t)f1(s)
∣∣ ∫
Rd
|γ|(t− s+ z)dzdtds = ‖f1‖2L1(Rd)‖γ‖L1(Rd) <∞ .

Under these necessary conditions, it is clear that∫
BR

IW1 (fx1 ) dx

is a centered Gaussian random variable with

Var

(∫
BR

IW1 (fx1 ) dx

)
∼ ωdRd‖f1‖2L1(Rd)

∫
Rd
γ(z)dz, as R→ +∞.

(ii) Here is an example of non-integrable covariance kernel: γ(x) = ‖x‖−β, with
β ∈ (0, d). Now let us search for sufficient condition for κp to be well defined. Notice that∫

Rd

p∏
i=1

γ(ai + z) dz =

∫
Rd

p∏
i=1

‖ai + z‖−β dz
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and for a1, . . . , ap mutually distinct, the product
∏p
i=1 ‖ai + z‖−β is integrable near the

singularities. Indeed, choosing ε = 1
2 min{|ai − ak| : 1 ≤ i < k ≤ p}, we can write for

each j = 1, . . . , p,∫
Bε(aj)

p∏
i=1

‖ai + z‖−β dz ≤ C
∫
Bε(aj)

‖aj + z‖−β dz = C

∫
Bε

‖z‖−β dz = C

∫ ε

0

r−βrd−1 dr,

which is finite. Thus, we only need to control the integral at infinity. Notice that for
L > 0 large (that may depend on the ai’s), there exist two constants C1, C2 such that

C1

∫
‖z‖≥L

‖z‖−βp dz ≤
∫
‖z‖≥L

p∏
i=1

‖ai + z‖−β dz ≤ C2

∫
‖z‖≥L

‖z‖−βp dz.

Then the finiteness of the integral at infinity is equivalent to p > d/β. In other words,
the function κp, given in (2.8), makes sense only for p > d/β. This forces us to consider
chaoses of order at least bd/βc+ 1 =: m0. Now for p ≥ m0, the kernel fp ∈ H�p satisfies
(H1) if ∫

R2pd

∣∣fp(xpxpxp)fp(ypypyp)∣∣ ∫
Rd

p∏
i=1

‖xi − yi + z‖−β dzdxpxpxpdypypyp <∞.

The following result is a central limit theorem under some restrictions on γ.

Theorem 2.5. Fix an integer p ≥ 2, fp ∈ H�p and assume that the hypothesis (H1)
holds. Moreover, suppose that one of the following two conditions hold true:

(i) The kernel fp has the form2 fp = sym
(
h1 ⊗ · · · ⊗ hp

)
, where the hj ∈ H satisfy

p∑
i,j=1

∫
Rd

∣∣∣∣∫
R2d

hi(s)hj(t)γ(s− t+ z)dsdt

∣∣∣∣p dz <∞ . (2.9)

(ii) γ ∈ Lp(Rd) and fp ∈ L1(Rpd). (Note that (ii) implies (H1).)

Then
Gp,R
Rd/2

law−−−−−→
R→+∞

N(0, σ2
p),

where

σ2
p = p!ωd

∫
R2pd

fp(spspsp)fp(tptptp)κp(tptptp − spspsp) dtptptp dspspsp.

Proof. In view of the Fourth Moment Theorem of Nualart and Peccati [23], to prove this
central convergence it suffices to establish

lim
R→+∞

1

R2d

∥∥gp,R ⊗r gp,R∥∥2

H⊗(2p−2r) = 0

for r = 1, . . . , p− 1. By definition, we can write

(
gp,R ⊗r gp,R

)
(sp−rsp−rsp−r, tp−rtp−rtp−r) =

∫
R2rd

gp,R(sp−rsp−rsp−r, ararar)gp,R(tp−rtp−rtp−r, brbrbr)

r∏
i=1

γ(ai − bi) dararar dbrbrbr .

2If h1, . . . , hp ∈ H, we denote by sym
(
h1 ⊗ · · · ⊗ hp

)
the symmetrization of the tensor product h1 ⊗ · · · ⊗ hp:

sym
(
h1 ⊗ · · · ⊗ hp

)
:=

1

p!

∑
π∈Sp

hπ(1) ⊗ · · · ⊗ hπ(p) ,

where Sp is the permutation group on the first p positive integers.
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As a consequence,

‖gp,R ⊗r gp,R
∥∥2

H⊗(2p−2r)

=

∫
R4pd

dararar dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dsp−rsp−rsp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−rgp,R(sp−rsp−rsp−r, ararar)gp,R(tp−rtp−rtp−r, brbrbr)

× gp,R(s̃p−rs̃p−rs̃p−r, ãrãrãr)gp,R(̃tp−rt̃p−rt̃p−r, b̃r̃br̃br)

(
r∏
i=1

γ(ai − bi)γ(ãi − b̃i)

)p−r∏
j=1

γ(tj − t̃j)γ(s̃j − sj)


=

∫
B4
R

dx4x4x4

∫
R4dp

dararar dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dsp−rsp−rsp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−rf
x1
p (sp−rsp−rsp−r, ararar)f

x2
p (tp−rtp−rtp−r, brbrbr)

× fx3
p (s̃p−rs̃p−rs̃p−r, ãrãrãr)f

x4
p (̃tp−rt̃p−rt̃p−r, b̃r̃br̃br)

(
r∏
i=1

γ(ai − bi)γ(ãi − b̃i)

)
p−r∏
j=1

γ(tj − t̃j)γ(s̃j − sj) . (2.10)

Shifting the variables from the kernels to the covariance, we write

‖gp,R ⊗r gp,R
∥∥2

H⊗(2p−2r)

=

∫
B4
R

dx4x4x4

∫
R4dp

dararar dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dsp−rsp−rsp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−rfp(sp−rsp−rsp−r, ararar)fp(tp−rtp−rtp−r, brbrbr)

× fp(s̃p−rs̃p−rs̃p−r, ãrãrãr)fp(̃tp−rt̃p−rt̃p−r, b̃r̃br̃br)

(
r∏
i=1

γ(ai − bi + x1 − x2)γ(ãi − b̃i + x3 − x4)

)

×

p−r∏
j=1

γ(tj − t̃j + x2 − x4)γ(s̃j − sj + x3 − x1)

 .

Making the change of variables x1 − x2 = z1, x3 − x4 = z2 and x2 − x4 = z3 (so
x3 − x1 = z2 − z3 − z1), we obtain

R−2d‖gp,R ⊗r gp,R‖2H⊗(2p−2r)

≤ CR−d
∫
B3

2R

dz3z3z3

∣∣∣∣∣
∫
R4dp

dararar dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dsp−rsp−rsp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−rfp(sp−rsp−rsp−r, ararar)

× fp(tp−rtp−rtp−r, brbrbr)fp(s̃p−rs̃p−rs̃p−r, ãrãrãr)fp(̃tp−rt̃p−rt̃p−r, b̃r̃br̃br)

(
r∏
i=1

γ(ai − bi + z1)γ(ãi − b̃i + z2)

)

×

p−r∏
j=1

γ(tj − t̃j + z3)γ(s̃j − sj + z2 − z1 − z3)

 ∣∣∣∣∣. (2.11)

The rest of our proof will be split into two cases.

Proof under (i). Using the tensor-product structure of the kernels, we can further bound
(2.11) by

CR−d
∫
B3

2R

dz3z3z3φ(z1)rφ(z2)rφ(z3)p−rφ(z2 − z1 − z3)p−r ,

with

φ(z) :=

p∑
i,j=1

∣∣∣∣∫
R2d

hi(a)hj(b)γ(a− b+ z)dadb

∣∣∣∣ .
In view of (2.9), the function φ belong to Lp(Rd). It follows immediately from Hölder’s
inequality that

R−2d‖gp,R ⊗r gp,R
∥∥2

H⊗(2p−2r) ≤ C
(∫

Rd
φ(z1)pdz1

)
R−d

∫
B2

2R

dz2dz3φ(z2)rφ(z3)p−r
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= C

(∫
Rd
φ(z1)pdz1

)
R−d

(∫
B2R

φ(z2)rdz2

)(∫
B2R

φ(z3)p−rdz3

)
.

Then, we can conclude our proof under the condition (i) by using Lemma 2.2. �

Proof under (ii). Note first that due to Hölder’s inequality,

∫
B2R

(
r∏
i=1

|γ|(ai − bi + z1)

)p−r∏
j=1

|γ|(s̃j − sj + z2 − z1 − z3)

 dz1 ≤
∫
Rd
|γ(z)|p dz ,

which implies that (2.11) can be further bounded by

C‖γ‖p
Lp(Rd)

‖fp‖L1(Rpd)R
−d
∫
B2

2R×R3dp

dz2dz3dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−r

×
∣∣fp(tp−rtp−rtp−r, brbrbr)fp(s̃p−rs̃p−rs̃p−r, ãrãrãr)fp(t̃p−rt̃p−rt̃p−r, b̃r̃br̃br)

∣∣( r∏
i=1

|γ|(ãi − b̃i + z2)

)p−r∏
j=1

|γ|(tj − t̃j + z3)


≤ C

∫
R3dp

dbrbrbrdãrãrãr d̃br̃br̃br dtp−rtp−rtp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−r
∣∣fp(tp−rtp−rtp−r, brbrbr)fp(s̃p−rs̃p−rs̃p−r, ãrãrãr)fp(t̃p−rt̃p−rt̃p−r, b̃r̃br̃br)

∣∣× LR ,

where LR = LR
(
ãrãrãr, b̃r̃br̃br, t̃p−rt̃p−rt̃p−r, tp−rtp−rtp−r

)
is given by

LR = R−d

(∫
B2R

r∏
i=1

|γ|(ãi − b̃i + z2)dz2

)∫
B2R

p−r∏
j=1

|γ|(tj − t̃j + z3)dz3

 .

Note that by Hölder’s inequality and Lemma 2.2,

LR ≤

(
r∏
i=1

1

Rd(1−rp−1)

∫
B2R

|γ|r(ãi − b̃i + z2)dz2

)1/r

×

p−r∏
j=1

1

Rd(1−(p−r)p−1)

∫
B2R

|γ|p−r(tj − t̃j + z3)dz3

1/(p−r)

R→+∞−−−−−→ 0 ,

and that
LR ≤ CR−d‖γ‖rLp(Rd)R

d p−rp ‖γ‖p−r
Lp(Rd)

Rd
r
p = C‖γ‖p

Lp(Rd)
< +∞ .

Thus, it follows from the dominated convergence theorem that, as R→∞,

R−2d‖gp,R ⊗r gp,R‖2H⊗(2p−2r) → 0

for all r ∈ {1, . . . , p− 1}. This completes the proof.

2.2.2 CLT under assumptions on the spectral measure

Let us first study the asymptotic variance using the Fourier transform. Throughout this
section, we are going to assume that µ(dξ) = ϕ(ξ)dξ, that is, the spectral measure is
absolutely continuous with respect to the Lebesgue measure on Rd. Note that ϕ(ξ) =

ϕ(−ξ).
We first write,

Φp(x− y) = p!〈fx, fy〉H⊗p = p!

∫
Rpd

(Ffxp )(ξpξpξp)(Ffyp )(−ξpξpξp) µ(dξpξpξp)

= p!

∫
Rpd

exp
(
− i(x− y) · τ(ξpξpξp)

)
|Ffp|2(ξpξpξp) µ(dξpξpξp) ,
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where τ(ξpξpξp) := ξ1 + · · ·+ ξp. As a consequence of Lemma 2.1, we obtain

Var(Gp,R) = p!

∫
B2
R

∫
Rpd

exp
(
− i(x− y) · τ(ξpξpξp)

)
|Ffp|2(ξpξpξp) µ(dξpξpξp) dxdy

= p!(2πR)d
∫
Rpd
‖τ(ξpξpξp)‖−dJd/2

(
R‖τ(ξpξpξp)‖

)2|Ffp|2(ξpξpξp) µ(dξpξpξp) . (2.12)

Now making the change of variables τ(ξpξpξp) = x yields

Var(Gp,R)R−d = p!(2π)d
∫
Rd
‖x‖−dJd/2

(
R‖x‖

)2
Ψp(x)dx,

where

Ψp(x) :=

∫
Rpd−d

|Ffp|2
(
ξp−1ξp−1ξp−1, x− τ(ξp−1ξp−1ξp−1)

)
ϕ
(
x− τ(ξp−1ξp−1ξp−1)

) p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1. (2.13)

We remark that Ψp is defined almost everywhere on Rd and recall that{
`R(x) := ω−1

d ‖x‖
−dJd/2(R‖x‖)2

}
R>0

is an approximation of the identity. Therefore, it is natural to introduce the following
hypothesis:

(H2) Ψp, defined in (2.13), is uniformly bounded on Rd and continuous at zero.
Under (H2), we have

lim
R→+∞

Var(Gp,R)

Rd
= p!(2π)dωdΨp(0) ,

where

Ψp(0) =

∫
R(p−1)d

|Ffp|2
(
ξp−1ξp−1ξp−1,−τ(ξp−1ξp−1ξp−1)

)
ϕ
(
τ(ξp−1ξp−1ξp−1)

) p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1. (2.14)

Note that for the particular case p = 1, Ψ1(x) = |Ff1|2(x)ϕ(x); if f1 ∈ L1(Rd) and ϕ is
uniformly bounded with continuity at zero, then the function Ψ1 is uniformly bounded
and continuous at zero.

Remark 2.6. (1) Heuristically, we can rewrite Ψp(0) as follows:

Ψp(0) =

∫
{τ(ξpξpξp)=0}

|Ffp|2(ξpξpξp)

p∏
i=1

ϕ(ξi)ν(dξpξpξp),

where ν is the surface measure on the hyperplane {τ(ξpξpξp) = 0}. This is an informal
expression, because the trace of Ffp on the hyperplane {τ(ξpξpξp) = 0} is not properly
defined for an arbitrary kernel fp.

(2) Notice that the quantity Var(Gp,R)
(2πR)dp!ωd

is equal to

∫
Rpd−d

(∫
Rd
dx`R(x)ϕ

(
x− τ(ξp−1ξp−1ξp−1)

)
|Ffp|2

(
ξp−1ξp−1ξp−1, x− τ(ξp−1ξp−1ξp−1)

)) p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1.

It is clear that |Ffp|2(ξp−1ξp−1ξp−1, x − τ(ξp−1ξp−1ξp−1)) is well-defined almost everywhere with
respect to ϕ

(
x − τ(ξp−1ξp−1ξp−1)

)
dx, and ϕ

(
x − τ(ξp−1ξp−1ξp−1)

)
|Ffp|2(ξp−1ξp−1ξp−1, x − τ(ξp−1ξp−1ξp−1)) is integrable

with respect to the probability measure `R(x)dx. We can also read from (2.14) that
the function ξp−1ξp−1ξp−1 7→ |Ffp|2

(
ξp−1ξp−1ξp−1,−τ(ξp−1ξp−1ξp−1)

)
is integrable with respect to the measure

ϕ
(
τ(ξp−1ξp−1ξp−1)

)∏p−1
i=1 ϕ(ξi)dξp−1ξp−1ξp−1.
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To obtain the Gaussian fluctuation of Gp,R, one shall first establish the order of
the variance and then compute the contractions. Our hypothesis (H2) gives the exact
asymptotic behavior of Var(Gp,R). In fact, it is enough to impose a weaker condition,
known as the Maruyama’s condition concerning the variance; see [18].

Proposition 2.7 (Maruyama’s condition). Put

Ψ̂p(h) :=

∫
{‖τ(ξpξpξp)‖≤h}

|Ffp|2(ξpξpξp)µ(dξpξpξp) .

If

0 < lim inf
h↓0

h−d Ψ̂p(h) ≤ lim sup
h↓0

h−d Ψ̂p(h) <∞, (2.15)

then we have, with σ2
p,R = Var(Gp,R)

0 < lim inf
R→+∞

σ2
p,RR

−d ≤ lim sup
R→+∞

σ2
p,RR

−d <∞.

We will provide a proof of Proposition 2.7 in Section 4, see also [4, Corollary 2.2].
The following lemma provides sufficient conditions for (H2) to hold. One of the

conditions is ϕ ∈ Lq(Rd), which is the condition imposed on the spectral density in the
version of the classical Breuer-Major theorem proved in [1, Theorem 2.10].

Lemma 2.8. Suppose that fp ∈ L1(Rpd) ∩ H�p and ϕ ∈ Lq(Rd), with q = p/(p− 1). Then
Ψp is bounded and continuous on Rd, in particular hypothesis (H2) is true.

The proof of Lemma 2.8 is given in Section 4.

Remark 2.9. It is worth comparing the sufficient conditions for the hypotheses (H1)
and (H2) here: {

γ ∈ Lp(Rd) and fp ∈ L1(Rpd)
}
⇒ (H1){

ϕ ∈ Lq(Rd) and fp ∈ L1(Rpd)
}
⇒ (H2).

This is natural in view of the Hausdorff-Young’s inequality. Indeed, q = p/(p− 1) ∈ (1, 2],
so γ = Fϕ belongs to Lp(Rd), provided ϕ ∈ Lq(Rd). Note that both hypotheses imply
that the fluctuation of Gp,R is of order Rd/2; moreover, as we will see shortly, both
hypotheses (γ ∈ Lp(Rd) and ϕ ∈ Lq(Rd)) imply that the fluctuation of Gp,R is Gaussian,
as R tends to infinity.

Let us introduce the following hypothesis, which can be seen as the contraction-
analogue of (H2).

(H3) For 1 ≤ r ≤ p−1 and any δ > 0, Ψ
(r,δ)
p is uniformly bounded on Rd and continuous

at zero, where

Ψ(r,δ)
p (x, y) (2.16)

=

∫
R2pd−2d

dξrξrξrdηp−rηp−rηp−rdξ̃r−1ξ̃r−1ξ̃r−1dη̃p−r−1η̃p−r−1η̃p−r−1|Ffp|2
(
ηp−rηp−rηp−r, ξ̃r−1ξ̃r−1ξ̃r−1, x− τ(ηp−rηp−rηp−r)− τ(ξ̃r−1ξ̃r−1ξ̃r−1)

)
ϕ(ξr)

× |Ffp|2
(
η̃p−r−1η̃p−r−1η̃p−r−1, y − τ(η̃p−r−1η̃p−r−1η̃p−r−1)− τ(ξrξrξr), ξrξrξr

)(r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
1{‖τ(ξrξrξr)+τ(ηp−rηp−rηp−r)‖<δ}

× ϕ(ηp−r)ϕ
(
τ(η̃p−r−1η̃p−r−1η̃p−r−1) + τ(ξrξrξr)− y

)p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

ϕ
(
τ(ηp−rηp−rηp−r) + τ(ξ̃r−1ξ̃r−1ξ̃r−1)− x

)
.

We remark that the function Ψ
(r,δ)
p is defined almost everywhere on R2d and with

the same proof as in Lemma 2.8, we can show that fp ∈ L1(Rpd) and ϕ ∈ Lq(Rd) for
q = p/(p− 1) guarantee (H3).
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Lemma 2.10. Suppose that fp ∈ L1(Rpd)∩H�p and ϕ ∈ Lq(Rd), with q = p/(p−1). Then

for every r ∈ {1, . . . , p− 1} and δ > 0, Ψ
(r,δ)
p is bounded continuous on R2d. In particular

hypothesis (H3) is true.

For the sake of completeness, we provide a proof in Section 4.

Theorem 2.11. Fix an integer p ≥ 2 and fp ∈ H�p satisfying hypotheses (H2) and (H3).
Then,

Gp,R
Rd/2

law−−−−−→
R→+∞

N(0, σ2
p),

where σ2
p = p!(2π)dωdΨp(0), with Ψp(0) given by (2.14).

If (H2) is replaced by the Maruyama’s condition (2.15), we have the following
corollary.

Corollary 2.12. Fix an integer p ≥ 2 and fp ∈ H�p satisfying hypotheses (H3). Assume
that Maruyama’s condition (2.15) holds true. Then,

Gp,R
σp,R

law−−−−−→
R→+∞

N(0, 1),

with σp,R being the standard deviation of Gp,R.

We will omit the proof of this corollary, as it follows simply from Proposition 2.7 and
the following proof of Theorem 2.11.

Proof of Theorem 2.11. It suffices to show the contraction condition (1.5). We spilt the
proof into several steps. We will use Fourier transform to rewrite (2.10) in Steps 1-3 and
we will carry out the asymptotic analysis in Step 4.

Step 1: Plancherel’s formula implies∫
R2rd

fx1
p (sp−rsp−rsp−r, ararar)f

x2
p (tp−rtp−rtp−r, brbrbr)

r∏
i=1

γ(ai − bi)dararar dbrbrbr

=

∫
Rrd

(Frf
x1
p )(sp−rsp−rsp−r, ξrξrξr)(Frf

x2
p )(tp−rtp−rtp−r,−ξrξrξr)µ(dξrξrξr).

and ∫
R2rd

fx3
p (s̃p−rs̃p−rs̃p−r, ãrãrãr)f

x4
p (̃tp−rt̃p−rt̃p−r, b̃r̃br̃br)

r∏
i=1

γ(ãi − b̃i)dãrãrãr d̃br̃br̃br

=

∫
Rrd

(Frf
x3
p )(s̃p−rs̃p−rs̃p−r, ξ̃r̃ξr̃ξr)(Frf

x4
p )(t̃p−rt̃p−rt̃p−r,−ξ̃r̃ξr̃ξr)µ(dξ̃r̃ξr̃ξr) ,

where Fr denotes the Fourier transform with respect to the right-most r variables.

Step 2: Similarly, we have∫
R4(p−r)d

(Frf
x1
p )(sp−rsp−rsp−r, ξrξrξr)(Frf

x2
p )(tp−rtp−rtp−r,−ξrξrξr)(Frf

x3
p )(s̃p−rs̃p−rs̃p−r, ξ̃r̃ξr̃ξr)(Frf

x4
p )(t̃p−rt̃p−rt̃p−r,−ξ̃r̃ξr̃ξr)

×

p−r∏
j=1

γ(ti − t̃i)γ(s̃i − si)

 dtp−rtp−rtp−r dsp−rsp−rsp−r dt̃p−rt̃p−rt̃p−r ds̃p−rs̃p−rs̃p−r

=

∫
R2(p−r)d

(Frf
x1
p )(sp−rsp−rsp−r, ξrξrξr)(Frf

x3
p )(s̃p−rs̃p−rs̃p−r, ξ̃r̃ξr̃ξr)

p−r∏
j=1

γ(s̃i − si)dsp−rsp−rsp−r ds̃p−rs̃p−rs̃p−r


×

∫
R2(p−r)d

(Frf
x2
p )(tp−rtp−rtp−r,−ξrξrξr)(Frf

x4
p )(̃tp−rt̃p−rt̃p−r,−ξ̃r̃ξr̃ξr)

p−r∏
j=1

γ(ti − t̃i)dtp−rtp−rtp−r dt̃p−rt̃p−rt̃p−r


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=

(∫
Rpd−rd

(Fp−rFrf
x1
p )(ηp−rηp−rηp−r, ξrξrξr)(Fp−rFrf

x3
p )(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)µ(dηp−rηp−rηp−r)

)
×
(∫

Rpd−rd
(Fp−rFrf

x2
p )(η̃p−rη̃p−rη̃p−r,−ξrξrξr)(Fp−rFrf

x4
p )(−η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)µ(dη̃p−rη̃p−rη̃p−r)

)
,

where Fp−r denotes the Fourier transform with respect to the left-most p− r variables.
It is clear that the composition of Fp−r and Fr is the usual Fourier transform.

Step 3: Using basic properties of the Fourier transform, we have (Fp−rFrf
x
p )(ξpξpξp) =

e−ix·τ(ξpξpξp)(Ffp)(ξpξpξp). So combining facts from the above steps yields that the second
integral in (2.10) is equal to∫

R2pd

µ(dξrξrξr)µ(dξ̃r̃ξr̃ξr)µ(dηp−rηp−rηp−r)µ(dη̃p−rη̃p−rη̃p−r)(Ffp)(ηp−rηp−rηp−r, ξrξrξr)(Ffp)(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)

× (Ffp)(η̃p−rη̃p−rη̃p−r,−ξrξrξr)(Ffp)(−η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr) e
−ix1·(a+b)e−ix2·(̃b−a)e−ix3·(−ã−b)e−ix4·(ã−b̃) ,

with the notation a = τ(ξrξrξr), b = τ(ηp−rηp−rηp−r), ã = τ(ξ̃r̃ξr̃ξr) and b̃ = τ(η̃p−rη̃p−rη̃p−r) throughout this proof.
It follows from Lemma 2.1 that∫
B4
R

e−ix1·(a+b)e−ix2·(̃b−a)e−ix3·(−ã−b)e−ix4·(ã−b̃) dx4x4x4 = (2πR)2d‖a+ b‖−d/2‖b̃− a‖−d/2

× ‖ã+ b‖−d/2‖ã− b̃‖−d/2Jd/2
(
R‖a+ b‖

)
Jd/2

(
R‖b̃− a‖

)
Jd/2

(
R‖ã+ b‖

)
Jd/2

(
R‖ã− b̃‖

)
.

Thus, we have for r ∈ {1, . . . , p− 1},

IR := (2πR)−2d
∥∥gp,R ⊗r gp,R∥∥2

H⊗(2p−2r) (2.17)

=

∫
R2pd

µ(dξrξrξr)µ(dξ̃r̃ξr̃ξr)µ(dηp−rηp−rηp−r)µ(dη̃p−rη̃p−rη̃p−r)(Ffp)(ηp−rηp−rηp−r, ξrξrξr)(Ffp)(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)

× (Ffp)(η̃p−rη̃p−rη̃p−r,−ξrξrξr)(Ffp)(−η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)‖a+ b‖−d/2‖b̃− a‖−d/2‖ã+ b‖−d/2

× ‖ã− b̃‖−d/2Jd/2
(
R‖a+ b‖

)
Jd/2

(
R‖b̃− a‖

)
Jd/2

(
R‖ã+ b‖

)
Jd/2

(
R‖ã− b̃‖

)
.

Step 4: In what follows, we prove that limR→+∞ IR = 0.

We decompose the above integral into two parts: IR =

∫
Rpd×Dδ

+

∫
Rpd×Dcδ

, with

Dδ = {(ξrξrξr, ηp−rηp−rηp−r) ∈ Rpd : ‖a+ b‖ ≥ δ}.

To ease the presentation, we introduce for every δ ∈ [0,∞),

Tδ(R) :=

∫
{‖τ(ξpξpξp)‖≥δ}

µ(dξpξpξp)|Ffp|2(ξpξpξp)‖τ(ξpξpξp)‖−dJd/2
(
R‖τ(ξpξpξp)‖

)2
.

Note that, by (2.12) and the symmetry of µ, we have

T0(R) =
Var(Gp,R)

p!(2πR)d
,

which, under the hypothesis (H2), converges to ωdΨp(0), as R→ +∞.
Now on Rpd ×Dδ, we can write, using Cauchy-Schwarz inequality,∣∣∣∣∫
Rpd×Dδ

∣∣∣∣ ≤ ∫
Rpd

µ(dξ̃r̃ξr̃ξr)µ(dη̃p−rη̃p−rη̃p−r)|Ffp|(−η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)‖ã− b̃‖−d/2
∣∣Jd/2(R‖ã− b̃‖)∣∣

×
∫
Dδ
µ(dξrξrξr)µ(dηp−rηp−rηp−r)|Ffp|(ηp−rηp−rηp−r, ξrξrξr)‖a+ b‖−d/2

∣∣Jd/2(R‖a+ b‖
)∣∣|Ffp|(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)
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× |Ffp|(η̃p−rη̃p−rη̃p−r,−ξrξrξr)‖b̃− a‖−d/2‖ã+ b‖−d/2
∣∣Jd/2(R‖b̃− a‖)Jd/2(R‖ã+ b‖

)∣∣
≤
√
Tδ(R)

∫
Rpd

µ(dξ̃r̃ξr̃ξr)µ(dη̃p−rη̃p−rη̃p−r)|Ffp|(−η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)‖ã− b̃‖−d/2
∣∣Jd/2(R‖ã− b̃‖)∣∣

×

(∫
Dδ
µ(dξrξrξr)µ(dηp−rηp−rηp−r)|Ffp|2(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)|Ffp|2(η̃p−rη̃p−rη̃p−r,−ξrξrξr)

× ‖b̃− a‖−d‖ã+ b‖−dJd/2
(
R‖b̃− a‖

)2
Jd/2

(
R‖ã+ b‖

)2)1/2

≤
√
Tδ(R)T0(R)

(∫
R2pd

µ(dξ̃r̃ξr̃ξr)µ(dη̃p−rη̃p−rη̃p−r)µ(dξrξrξr)µ(dηp−rηp−rηp−r)|Ffp|2(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)

× |Ffp|2(η̃p−rη̃p−rη̃p−r,−ξrξrξr)‖b̃− a‖−d‖ã+ b‖−dJd/2
(
R‖b̃− a‖

)2
Jd/2

(
R‖ã+ b‖

)2)1/2

= T0(R)3/2
√
Tδ(R) .

We claim that

for any fixed δ > 0, Tδ(R)→ 0, as R→ +∞. (2.18)

Indeed, on {‖τ(ξpξpξp)‖ ≥ δ > 0}, Jd/2
(
R‖τ(ξpξpξp)‖

)2
converges to zero, as R → +∞; and

clearly,

Tδ(R) ≤ δ−d
(

sup
t∈R+

Jd/2(t)2

)∫
‖τ(ξpξpξp)‖≥δ

µ(dξpξpξp)|Ffp|2(ξpξpξp) <∞ ,

so claim (2.18) follows from the dominated convergence theorem. Therefore, the first
part

∫
Rpd×Dδ goes to zero, as R tends to infinity.

Then, it remains to estimate the integral over Rpd × Dcδ. Similarly, we obtain, by
applying Cauchy-Schwarz inequality,∣∣∣∣∣

∫
Rpd×Dcδ

∣∣∣∣∣ ≤
∫
Dcδ
µ(dξrξrξr)µ(dηp−rηp−rηp−r)‖a+ b‖−d/2

∣∣Jd/2(R‖a+ b‖
)∣∣|Ffp|(ηp−rηp−rηp−r, ξrξrξr)

×
√

T0(R)

(∫
Rpd
‖ã+ b‖−d‖b̃− a‖−dJd/2

(
R‖ã+ b‖

)2
Jd/2

(
R‖b̃− a‖

)2
× |Ffp|2(−ηp−rηp−rηp−r,−ξ̃r̃ξr̃ξr)|Ffp|2(η̃p−rη̃p−rη̃p−r,−ξrξrξr)µ

(
dξ̃r̃ξr̃ξr
)
µ
(
dη̃p−rη̃p−rη̃p−r

))1/2

.

Recall that µ is symmetric. We can write, after the change of variable (η̃p−rη̃p−rη̃p−r → −η̃p−rη̃p−rη̃p−r)
and then applying Cauchy-Schwarz inequality,∣∣∣∣∣

∫
Rpd×Dcδ

∣∣∣∣∣ ≤ T0(R)KR,

where

KR : =

∫
Rpd×{‖a+b‖<δ}

µ
(
dξrξrξr
)
µ
(
dηp−rηp−rηp−r

)
µ
(
dξ̃r̃ξr̃ξr
)
µ
(
dη̃p−rη̃p−rη̃p−r

)
‖ã+ b‖−d‖a+ b̃‖−d

× Jd/2
(
R‖ã+ b‖

)2
Jd/2

(
R‖a+ b̃‖

)2|Ffp|2(ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr)|Ffp|2(η̃p−rη̃p−rη̃p−r, ξrξrξr).
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From previous discussion, it holds under hypothesis (H2) that

sup
{
T0(R) : R > 0

}
< +∞.

So it remains to show that KR → 0, as R→ +∞.
Making the following change of variables

ã+ b→ x , (ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr)→
(
ηp−rηp−rηp−r, ξ̃r−1ξ̃r−1ξ̃r−1, x− τ(ηp−rηp−rηp−r)− τ(ξ̃r−1ξ̃r−1ξ̃r−1)

)
b̃+ a→ y , (η̃p−rη̃p−rη̃p−r, ξrξrξr)→

(
η̃p−r−1η̃p−r−1η̃p−r−1, y − τ(η̃p−r−1η̃p−r−1η̃p−r−1)− τ(ξrξrξr), ξrξrξr

)
yields

KR = ω2
d

∫
R2d

dxdy`R(x)`R(y)Ψ(r,δ)
p (x, y),

where Ψ
(r,δ)
p (x, y) is defined in (2.16). By our hypothesis (H3), we have as R→ +∞, that

ω−2
d KR is convergent to

Ψ(r,δ)
p (0, 0)

=

∫
R2pd−2d

dξrξrξrdηp−rηp−rηp−rdξ̃r−1ξ̃r−1ξ̃r−1dη̃p−r−1η̃p−r−1η̃p−r−1|Ffp|2
(
ηp−rηp−rηp−r, ξ̃r−1ξ̃r−1ξ̃r−1,−τ(ηp−rηp−rηp−r)− τ(ξ̃r−1ξ̃r−1ξ̃r−1)

)
× |Ffp|2

(
η̃p−r−1η̃p−r−1η̃p−r−1,−τ(η̃p−r−1η̃p−r−1η̃p−r−1)− τ(ξrξrξr), ξrξrξr

)(r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ
(
τ(ηp−rηp−rηp−r) + τ(ξ̃r−1ξ̃r−1ξ̃r−1)

)
× ϕ(ξr)ϕ(ηp−r)ϕ

(
τ(η̃p−r−1η̃p−r−1η̃p−r−1) + τ(ξrξrξr)

)p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

1{‖τ(ξrξrξr)+τ(ηp−rηp−rηp−r)‖<δ} ,

which converges to zero, as δ ↓ 0. This concludes our proof.

Recall the Hilbert-space notation Hµ and H⊗pµ from the beginning of Section 2. It is
clear that

ξpξpξp ∈ Rpd 7−→ FR(ξpξpξp) := (Ffp)(ξpξpξp)‖τ(ξpξpξp)‖−d/2Jd/2(R‖τ(ξpξpξp)‖)

belongs to H⊗pµ for each R > 0, since Ffp ∈ H⊗pµ and ‖τ(ξpξpξp)‖−d/2Jd/2(R‖τ(ξpξpξp)‖) is
uniformly bounded for any given R > 0 (see Lemma 2.1). We can also define the
corresponding contractions in this framework. For h1 ∈ H⊗pµ and h2 ∈ H⊗qµ (p, q ∈ N),
their r-contraction, with 0 ≤ r ≤ p ∧ q, belongs to H⊗p+q−2r

µ and is defined by

(h1 ⊗r,µ h2)
(
ξp−rξp−rξp−r, ηp−rηp−rηp−r

)
=

∫
Rrd

h1(ξp−rξp−rξp−r, ararar)h2

(
ηp−rηp−rηp−r, ararar

)
µ(dararar) .

One should not confuse this notion with the one introduced in Notation A.
With the notation FR and ⊗r,µ, we can rewrite IR in (2.17) as follows:

IR =

∫
R2pd

dµ FR(ηp−rηp−rηp−r, ξrξrξr)FR(ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr)FR(η̃p−rη̃p−rη̃p−r, ξrξrξr)FR(η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)

=

∫
R2pd

µ(dηp−rηp−rηp−r)µ(dη̃p−rη̃p−rη̃p−r)
(
FR ⊗r,µ FR

)(
ηp−rηp−rηp−r, η̃p−rη̃p−rη̃p−r

)(
FR ⊗r,µ FR

)(
η̃p−rη̃p−rη̃p−r, ηp−rηp−rηp−r

)
=
∥∥FR ⊗r,µ FR∥∥2

H⊗2p−2r
µ

,

where we used the fact that
(
FR ⊗r,µ FR

)(
ηp−rηp−rηp−r, η̃p−rη̃p−rη̃p−r

)
=
(
FR ⊗r,µ FR

)(
η̃p−rη̃p−rη̃p−r, ηp−rηp−rηp−r

)
, which

follows simply from the definition of contraction. Hence, we can formulate the following
Fourth Moment Theorem.
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Theorem 2.13. Fix an integer p ≥ 2 and fp ∈ H�p. Assume (H2), which implies that, in
view of (2.12),

σ2
p := p!(2π)d lim

R→+∞

∥∥FR∥∥2

H⊗pµ
∈ [0,+∞) . (2.19)

Then, the following statements are equivalent:

(S1)
Gp,R
Rd/2

converges in law to N(0, σ2
p), as R→ +∞;

(S2) E
[
G4
p,R

]
R−2d converges to 3σ4

p, as R→ +∞;

(S3) For every r ∈ {1, . . . , p− 1}, ‖FR ⊗r,µ FR‖H⊗2p−2r
µ

→ 0, as R→ +∞.

Remark 2.14. (i) Recall from Lemma 2.1 that on R+, Jd/2(x) ≤ C
(
1 ∧ 1√

x

)
. Therefore,

we obtain the following estimates:

‖FR ⊗r,µ FR‖H⊗2p−2r
µ

≤ C
∥∥F (1) ⊗r,µ F (1)

∥∥
H⊗2p−2r
µ

and

‖FR ⊗r,µ FR‖H⊗2p−2r
µ

≤ C

R2

∥∥F (2) ⊗r,µ F (2)
∥∥
H⊗2p−2r
µ

,

with F (j)(ξpξpξp) := |Ffp|(ξpξpξp)‖τ(ξpξpξp)‖−
d+j−1

2 , j = 1, 2. As a consequence,

(1) if ‖F (1) ⊗r,µ F (1)‖H⊗2p−2r
µ

< ∞ and µ admits a spectral density, then by the

dominated convergence theorem, we have ‖FR ⊗r,µ FR‖H⊗2p−2r
µ

→ 0, which implies the
Gaussian fluctuation;

(2) if ‖F (2) ⊗r,µ F (2)‖H⊗2p−2r
µ

<∞, we deduce from (1.6) that

dTV

(
Gp,R/σp,R, N(0, 1)

)
≤ C/R .

(ii) In view of the Cauchy-Schwarz inequality for contractions, one has

‖F (j) ⊗r,µ F (j)‖H⊗2p−2r
µ

≤ ‖F (j)‖2
H⊗pµ

for j = 1, 2.

So one may intend to assume

‖F (1)‖H⊗pµ ∧ ‖F
(2)‖H⊗pµ <∞ , (2.20)

which, however, is not reasonable in our framework. In fact, (2.19) and (2.4) tell us that
‖FR‖2H⊗pµ , which is equal to

Rd

2dΓ(d2 + 1)2

∫
{τ(ξpξpξp)=0}

|Ffp|2(ξpξpξp)µ(dξpξpξp) +

∫
{‖τ(ξpξpξp)‖>0}

|Ffp|2(ξpξpξp)`R(τ(ξpξpξp))µ(dξpξpξp),

converges to
σ2
p

p!(2π)d
; if we assume (2.20) or we assume the weaker condition

∫
Rpd

(
‖τ(ξpξpξp)‖−d−1 ∧ ‖τ(ξpξpξp)‖−d

)
|Ffp|2(ξpξpξp) µ(dξpξpξp) <∞ ,

then the integral over {‖τ(ξpξpξp)‖ > 0} vanishes asymptotically, so that we can write

Rd

2dΓ(d2 + 1)2

∫
{τ(ξpξpξp)=0}

|Ffp|2(ξpξpξp) µ(dξpξpξp)
R→+∞−−−−−→

σ2
p

p!(2π)d
. (2.21)

This forces the integral in (2.21) to be zero by dominated convergence, so that σ2
p = 0.
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2.3 Chaotic central limit theorems

As a continuation of previous section, we consider the case of infinitely many chaoses
and we derive a chaotic central limit theorem. Recall F ∈ L2

(
Ω
)

admits the following
chaos expansion (1.2) with Hermite rank m ≥ 1:

F (W ) =
∑
p≥m

IWp (fp) with fp ∈ H�p .

Let us introduce the following natural hypothesis:

(H4)
∑
p≥m

p!

∫
R2pd

dtptptp dspspsp |fp|(spspsp)|fp|(tptptp)
∫
Rd

p∏
i=1

|γ|
(
ti − si + z

)
dz <∞.

Recall the notation κp from (2.8) and we put

‖fp‖2κp :=

∫
R2dp

fp(spspsp)fp(tptptp)κp(tptptp − spspsp) dtptptp dspspsp .

So under (H4),
σ2 := ωd

∑
p≥m

p!‖fp‖2κp ∈ [0,∞). (2.22)

Note that an immediate consequence of our hypothesis (H4) is the following result

lim
N→+∞

sup
R>0

R−d
∑

q≥N+1

Var

(∫
BR

IWp (fxp ) dx

)
= 0 . (2.23)

In fact, one can write, similarly as before,

sup
R>0

1

ωdRd

∑
q≥N+1

Var

(∫
BR

IWp (fxp ) dx

)

=
∑

q≥N+1

p!

∫
R2pd

dtptptp dspspsp fp(spspsp)fp(tptptp)

(∫
Rd

vol
(
BR ∩BR(−z)

)
vol(BR)

p∏
i=1

γ
(
ti − si + z

)
dz

)

≤
∑

q≥N+1

p!

∫
R2pd

dtptptp dspspsp
∣∣fp(spspsp)fp(tptptp)∣∣(∫

Rd

p∏
i=1

|γ|
(
ti − si + z

)
dz

)
N→+∞−−−−−→ 0 .

Now we state our main result as a consequence of (2.23), Theorems 2.5 and 1.3.

Theorem 2.15. Suppose F ∈ L2(Ω) admits the chaos expansion (1.2) with Hermite
rank m ≥ 2 and assume that (H4) is satisfied. Suppose that for each p ≥ m, the kernel
fp ∈ H�p satisfies (i) or (ii) in Theorem 2.5. Let σ2 be given by (2.22). Then, as R→ +∞,

R−d/2
∫
BR

UxF (W ) dx converges in law to N(0, σ2) .

Remark 2.16. (1) In Theorem 2.15, we exclude the first chaos for the following obvious
reason. Under the assumption that {f1, γ} ⊂ L1(Rd), R−d/2

∫
BR

IW1 (fx1 )dx is a centered

Gaussian random variable with variance tending to ωd‖f1‖2L1(Rd)

∫
Rd
γ(z)dz, as R→ +∞;

see point (i) in Remark 2.4.

(2) Suppose γ(0) < +∞ or equivalently µ(Rd) < +∞, then γ = Fµ is a function
bounded by γ(0). If γ ∈ Lm(Rd) (for some integer m ≥ 1), then γ ∈ Lp(Rd) for any p ≥ m,
so that ‖γ‖p

Lp(Rd)
≤ γ(0)p−m‖γ‖mLm(Rd). As a result,

∑
p≥m

p!

∫
R2pd

dtptptp dspspsp |fp|(spspsp)|fp|(tptptp)
∫
Rd

p∏
i=1

|γ|
(
ti − si + z

)
dz
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≤
∑
p≥m

p!‖γ‖p
Lp(Rd)

‖fp‖2L1(Rpd) ≤ C
∑
p≥m

p!γ(0)p‖fp‖2L1(Rpd).

This tells us that condition (1.7) implies (H4), so Theorem 1.4 stands as an easy corollary
of our Theorem 2.15 and previous point (1).

We can formulate another chaotic CLT based on the spectral measure.

Theorem 2.17. Suppose that F ∈ L2(Ω) admits the chaos expansion (1.2) with Hermite
rankm ≥ 1. Assume that the spectral measure has a density. Suppose that for each p ≥ m,
the function Ψp defined in (2.13) is continuous at zero and the following boundedness
condition holds (which implies (H2) for each p):

(H4′)
∑
p≥m

p!‖Ψp‖∞ <∞.

Assume additionally that hypothesis (H3) holds for each p ≥ m. Then,

R−d/2
∫
BR

UxF (W ) dx
R→+∞−−−−−→

law
N

0, (2π)dωd
∑
p≥m

p!Ψp(0)

 .

Proof. For m = 1, we should consider the first chaos and it is clear that R−d/2G1,R is
centered Gaussian with variance tending to ωd(2π)dΨ1(0).

Now let us consider higher-order chaoses. For each p ≥ m ∨ 2, hypotheses (H2)
and (H3) hold true. This implies that Gp,RR−d/2 converges in law to N(0, σ2

p), with σp
introduced in Theorem 2.5. In view of the chaotic central limit theorem (Theorem 1.3), it
remains to check condition (2.23). We can write

∑
p≥N+1

Var
(
Gp,R

)
ωdRd

= (2π)d
∑

p≥N+1

p!

∫
Rd
`R(x)Ψp(x) dx ≤ (2π)d

∑
p≥N+1

p!‖Ψp‖∞ ,

where the last inequality follows from the fact that `R(x)dx is a probability measure on
Rd; so hypothesis (H4’) implies (2.23). Hence, our proof is finished.

Corollary 2.18. Suppose that F ∈ L2(Ω) admits the chaos expansion (1.2) with Hermite
rank m ≥ 1 and for each p ≥ m, the kernel fp belongs to L1(Rpd)∩H�p. Assume that the
spectral measure µ is finite with spectral density ϕ such that ϕ is uniformly bounded
with continuity at zero and ∑

p≥m

p!‖Ffp‖2∞‖ϕ‖
p
L1(Rd)

<∞ . (2.24)

Then, R−d/2
∫
BR

UxF (W ) dx
R→+∞−−−−−→

law
N

0, (2π)dωd
∑
p≥m

p!Ψp(0)

 .

Proof. Note that µ is finite, which is equivalent to ϕ ∈ L1(Rd). This implies with
boundedness of ϕ that ϕ ∈ Lq(Rd) for any q > 1. It is clear that for any p ≥ 2 ∨ m,
fp ∈ L1(Rd) ∩ H�p and γ ∈ Lp/(p−1)(Rd), so Lemma 2.10 and Lemma 2.8 ensure that
hypotheses (H2) and (H3) are valid on the pth chaos.

If F has the first chaos with f1 ∈ L1(Rd), then Ψ1 is uniformly bounded with continuity
at zero (the continuity of ϕ at zero is only required at this point). Therefore, G1,RR

−d/2

converges in law to a centered Gaussian with variance (2π)dΨ1(0).
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It remains to notice that Ψp(x) ≤
∥∥|Ffp|2

∥∥
∞ϕ
∗p(x) ≤

∥∥|Ffp|2
∥∥
∞‖ϕ‖

p
Lp/(p−1)(Rd)

by

(2.5). We know that ‖ϕ‖p
Lp/(p−1)(Rd)

≤ ‖ϕ‖∞‖ϕ‖p−1
L1(Rd)

so that (H4’) holds in this setting.
To see this, we write ∑

p≥m

p!‖Ψp‖∞ ≤ C
∑
p≥m

p!‖Ffp‖2∞‖ϕ‖
p
L1(Rd)

,

that is, (H4’) is implied by (2.24). Hence, the proof is done by applying Theorem 2.17.

3 Proof of Theorems 1.6, 1.7 and 1.9

Let ut,x be the mild solution to the linear stochastic heat equation (1.8) with initial
condition u0,x = 1 for all x ∈ Rd, driven by a Gaussian noise with temporal and spatial
covariance kernels being γ0 and γ1, respectively. We assume γ0 : R → [0,∞] locally
integrable and the Fourier transform of γ1 is a nonnegative tempered measure µ1 that
satisfies the Dalang’s condition (1.10).

Recall that

At(R) =

∫
BR

(
ut,x − 1

)
dx =

∞∑
p=1

IWp

(∫
BR

ft,x,pdx

)
,

where, for any integer p ≥ 1, ft,x,p is the kernel appearing in the Wiener chaos expansion
of ut,x (see (1.11)).

Let us introduce some notation for later convenience.

Notation B. For given t > 0 and p ∈ N, ∆p(t) = {spspsp ∈ Rp+ : t > s1 > . . . > sp > 0}
and SIMp(t) = {spspsp ∈ Rp+ : s1 + · · · + sp ≤ t}. For σ ∈ Sp, we write xσpx

σ
px
σ
p = (xσ1 , . . . , x

σ
p ) =

(xσ(1), . . . , xσ(p)), so sσps
σ
ps
σ
p ∈ ∆p(t) means t > sσ(1) > · · · > sσ(p) and we write

∫
∆p(t)

dsσps
σ
ps
σ
p

for
∫

[0,t]p
dspspsp1∆p(t)(s

σ
ps
σ
ps
σ
p ). For fixed integers 1 ≤ r ≤ p − 1, the r-contraction f ⊗r g of

f, g ∈H ⊗p is the element in H ⊗2p−2r given by(
f ⊗r g

)(
sp−rsp−rsp−r, s̃p−rs̃p−rs̃p−r, ξp−rξp−rξp−r, ξ̃p−rξ̃p−rξ̃p−r

)
=

∫
R2r

+

dararardãrãrãr

(
r∏
i=1

γ0(ai − ãi)

)∫
R2dr

dxrxrxrdx̃rx̃rx̃r

×

(
r∏
i=1

γ0(xi − x̃i)

)
f(sp−rsp−rsp−r, ararar, ξp−rξp−rξp−r,xrxrxr)g(s̃p−rs̃p−rs̃p−r, ãrãrãr, ξ̃p−rξ̃p−rξ̃p−r, x̃rx̃rx̃r),

which may be a generalized function.
Here is the plan for the proof of Theorems 1.6 and 1.7. Section 3.1 deals with

computing the limit of the covariance function of the process At(R) as R→ +∞, provided
that γ1(Rd) is finite. Section 3.2 is devoted to the proof of the convergence of the finite-
dimensional distributions, and we prove the tightness of {R−d/2At(R), t ≥ 0} in Section
3.3 under the extra assumption (1.14). As a by-product of the computations in Section
3.1, we provide a proof of Theorem 1.7 in Section 3.4.

3.1 Limiting covariance structure in Theorem 1.6

The main ingredient is the following Feymann-Kac representation.

Lemma 3.1 (Feynman-Kac formula). Let γ0, γ1 be given as in Theorem 1.6 and we fix
t, s > 0. Then for any x, y ∈ Rd, we have

φt,s(x− y) := E
[
ut,xus,y

]
= E

[
eβt,s(x−y)

]
with

βt,s(z) :=

∫ t

0

∫ s

0

γ0(u− v)γ1(X1
u −X2

v + z)dudv,

where X1, X2 are two independent standard Brownian motions on Rd that start at zero.
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We refer to [9, Theorem 3.6] for the proof of a more general statement. We point out
that in this reference, the moment formula is stated for x = y and t = s, see equation
(3.21) therein; one can prove the case x 6= y or t 6= s verbatim.

It follows from Lemma 3.1 that

Σs,t : = lim
R+∞

R−dE
[
At(R)As(R)

]
= lim
R→+∞

R−d
∫
B2
R

(
φt,s(x− y)− 1

)
dxdy

= lim
R→+∞

R−d
∫
Rd

(
φt,s(z)− 1

)
vol
(
BR ∩BR(−z)

)
dz = ωd

∫
Rd

(
φt,s(z)− 1

)
dz,

provided the integral
∫
Rd

(
φt,s(z)− 1

)
dz is finite. Note that in our setting, φ(z) ≥ 1 for

every z ∈ Rd; note also that, since γ1 is integrable,∫
Rd

(
φt,s(z)− 1

)
dz ≥

∫
Rd
E[βt,s(z)]dz

=

(∫ t

0

∫ s

0

γ0(u− v)dudv

)∫
Rd
γ1(z)dz ∈ (0,∞), (3.1)

where the equality follows from Fubini’s theorem.
Note that ∫

Rd

(
φt,s(z)− 1

)
dz =

∑
p≥1

1

p!

∫
Rd
E
[
βt,s(z)

p
]
dz,

where the object βt,s(z) can be understood as the “weighted” intersection local time of
two independent Brownian motions X1 and X2.

In order to show that
∫
Rd

(
φt,s(z) − 1

)
dz < ∞, we first estimate the pth moment of

βt,s(z). Without losing any generality, we assume s ≤ t. Using that γ1 is the Fourier
transform of the spectral density ϕ1, which is continuous and bounded due to the
finiteness of γ1(Rd), we can write

E
[
βs,t(z)

p
]

=

∫
[0,s]p×[0,t]p

 p∏
j=1

γ0(sj − rj)

E
 p∏
j=1

γ1(X1
sj −X

2
rj + z)

 dspspspdrprprp
=

∫
[0,s]p×[0,t]p

∫
Rpd

dξpξpξpdspspspdrprprp

 p∏
j=1

γ0(sj − rj)

 p∏
j=1

ϕ1(ξj)


× E

 p∏
j=1

e
−iξj ·(X1

sj
−X2

rj
+z)


=

∫
[0,s]p×[0,t]p

∫
Rpd

dξpξpξpdspspspdrprprp

 p∏
j=1

γ0(sj − rj)

 p∏
j=1

ϕ1(ξj)

 e−iz·τ(ξpξpξp)

× exp

−1

2

∑
1≤i,j≤p

(si ∧ sj + ri ∧ rj)ξi · ξj

 , (3.2)

which is a nonnegative, uniformly continuous and uniformly bounded function in z.
Indeed, it is clear that 0 ≤ E[βs,t(z)

p] ≤ E[(βs,t(0)p] < +∞ and the uniform continuity
follows from the dominated convergence theorem. Then by the monotone convergence
theorem, we write∫

Rd
E
[
βs,t(z)

p
]
dz = lim

ε↓0

∫
Rd
E
[
βs,t(z)

p
]

exp
(
−ε

2
‖z‖2

)
dz ∈ [0,∞].
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Recall from (3.2) that the finiteness of E
[
βs,t(0)p

]
allows us to apply Fubini’s theorem to

get for any ε > 0,

Tp,ε :=

∫
Rd
E
[
βs,t(z)

p
]

exp
(
−ε

2
‖z‖2

)
dz

= (2π)d
∫

[0,s]p×[0,t]p

∫
Rpd

dξpξpξpdspspspdrprprp

 p∏
j=1

γ0(sj − rj)

 p∏
j=1

ϕ1(ξj)


×G

(
ε, τ(ξpξpξp)

)
exp

−1

2

∑
1≤i,j≤p

(si ∧ sj + ri ∧ rj)ξi · ξj

 ,

which is finite.
Consider first the case p ≥ 2. Using that s ≤ t and

exp

−1

2

∑
1≤i,j≤p

(ri ∧ rj)ξi · ξj

 ≤ 1,

we can bound Tp,ε as follows

Tp,ε ≤ (2π)dΓpt

∫
Rpd

dξpξpξp

∫
[0,t]p

dspspsp

( p∏
j=1

ϕ1(ξj)
)
G
(
ε, τ(ξpξpξp)

)
exp

−1

2

∑
1≤i,j≤p

(si ∧ sj)ξi · ξj

 ,

where Γt :=
∫ t
−t γ0(u)du is finite for each t > 0 in view of the local integrability of γ0.

Making the change of variables ξpξpξp = (η1−η2, . . . , ηp−1−ηp, ηp), yields, with the convention
sp+1 = 0 and η0 = 0,

Tp,ε ≤ (2π)dΓpt p!

∫
Rpd

dξpξpξp

∫
∆p(t)

dspspspe
− 1

2

∑p
j=1(sj−sj+1)‖ξ1+···+ξj‖2G(ε, τ(ξpξpξp))

p∏
j=1

ϕ1(ξj)

= (2π)dΓpt p!

∫
Rd
dηpG(ε, ηp)

∫
Rpd−d

dηp−1ηp−1ηp−1

∫
SIMp(t)

dwpwpwp

p∏
j=1

ϕ1(ηj − ηj−1)e−
1
2wj‖ηj‖

2

.

Put

Qp(ηp) =

∫
Rpd−d

dηp−1ηp−1ηp−1

∫
SIMp(t)

dwpwpwp

 p∏
j=1

ϕ1(ηj − ηj−1)e−
1
2wj‖ηj‖

2

 ,

then we just obtained

Tp,ε ≤ (2π)dΓpt p!

∫
Rd
dηpG(ε, ηp)Qp(ηp).

In the following, we will prove that Qp(ηp) is uniformly bounded and provide an estimate.
We rewrite Qp(ηp) as follows. With hj(η) = exp

(
− 1

2wj‖η‖
2
)
,

Qp(ηp) =

∫
SIMp(t)

dwpwpwp hp(ηp)

∫
Rpd−d

dηk−1ηk−1ηk−1 ϕ1(η1)h1(η1)ϕ1(η2 − η1)h2(η2)

× ϕ1(η3 − η2)h3(η3)× · · · × ϕ1(ηp−1 − ηp−2)hp−1(ηp−1)ϕ1(ηp − ηp−1) .

Using that ϕ1 is bounded, we get∫
Rd
ϕ1(η1)ϕ1(η2 − η1)h1(η1)dη1 ≤ ‖ϕ1‖∞

∫
Rd
ϕ1(η1)h1(η1)dη1. (3.3)
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On the other hand, using (4.3), we have∫
Rd
dηjhj(ηj)ϕ1(ηj+1 − ηj) ≤

∫
Rd
dηjϕ1(ηj)hj(ηj)

for j = 2, . . . , p− 1. So,

Qp(ηp) ≤ ‖ϕ1‖∞
∫

SIMp(t)

dwpwpwpe
− 1

2wp‖ηp‖
2
p−1∏
j=1

∫
Rd
e−wj‖ηj‖

2

ϕ1(ηj)dηj

≤ t‖ϕ1‖∞
∫
Rpd−d

∫
SIMp−1(t)

p−1∏
i=1

ϕ1(ξi)e
− 1

2wi‖ξi‖
2

dwp−1wp−1wp−1dξp−1ξp−1ξp−1

≤ t‖ϕ1‖∞
p−1∑
j=0

(
p− 1

j

)
tj

j!
Dj
N (2CN )p−1−j , (3.4)

where the last inequality follows from Lemma 3.3 in [9], with the notation

CN =

∫
{‖ξ‖≥N}

ϕ1(ξ)

‖ξ‖2
dξ (3.5)

and

DN =

∫
{‖ξ‖≤N}

ϕ1(ξ)dξ.

Notice that these quantities are finite for any N > 0 by condition (1.10). We fix N such
that 0 < 4ΓtCN < 1. This gives us the uniform boundedness of Qp and moreover,

Tp,ε ≤ (2π)dΓpt p!‖Qp‖∞ ≤ ‖ϕ1‖∞(2π)dΓpt p!t(4CN )p−1 exp
( tDN

2CN

)
,

which immediately implies∫
Rd
E
[
βs,t(z)

p
]
dz ≤ ‖ϕ1‖∞(2π)dΓpt p!t(4CN )p−1 exp

( tDN

2CN

)
<∞ (3.6)

and ∑
p≥2

1

p!

∫
Rd
E
[
βs,t(z)

p
]
dz ≤ (2π)d‖ϕ1‖∞t

4CN
exp

( tDN

2CN

)∑
p≥2

(4ΓtCN )p

=
4‖ϕ1‖∞(2π)dtCNΓ2

t

1− 4ΓtCN
exp

( tDN

2CN

)
(3.7)

is finite, since 0 < 4ΓtCN < 1.
To show the integrability of φs,t − 1, it remains to check that∫

Rd
E
[
βs,t(z)

]
dz <∞, (3.8)

which follows from (3.1). Therefore,∫
Rd

(
φs,t(z)− 1

)
dz ≤ tΓt‖γ1‖L1(Rd) +

4‖ϕ1‖∞(2π)dtCNΓ2
t

1− 4ΓtCN
exp

( tDN

2CN

)
<∞.

As a consequence, we proved that, for any s, t ∈ R+,

lim
R→+∞

E[At(R)As(R)]

Rd
= Σs,t = ωd

∫
Rd

(
φs,t(z)− 1

)
dz ∈ (0,∞).
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3.2 Convergence of the finite-dimensional distributions in Theorem 1.6

Fix 0 < t1 < · · · < tn <∞ and put

gq,R(t) = R−d/2
∫
BR

ft,x,qdx .

Then AR := R−d/2
(
At1(R), . . . , Atn(R)

)
falls into the framework of the Proposition 3.2,

the multivariate chaotic central limit theorem borrowed from [3, Theorem 2.1].

Proposition 3.2. Fix an integer n ≥ 1 and consider a family
{
AR, R > 0

}
of random vec-

tors in Rn such that each component of AR = (AR,1, . . . , AR,n) belongs to L2(Ω, σ{W},P)

and has the following chaos expansion

AR,j =
∑
q≥1

IWq (gq,j,R) with gq,j,R symmetric kernels.

Suppose the following conditions (a)-(d) hold:

(a) ∀i, j ∈ {1, . . . , n} and ∀q ≥ 1, E
[
IWq (gq,j,R)IWq (gq,i,R)

] R→+∞−−−−−→ σi,j,q.

(b) ∀i ∈ {1, . . . , n},
∑
q≥1

σi,i,q <∞.

(c) For any 1 ≤ r ≤ q − 1,
∥∥gq,i,R ⊗r gq,i,R∥∥H ⊗(2q−2r)

R→+∞−−−−−→ 0.

(d) ∀i ∈ {1, . . . , n}, lim
N→+∞

sup
R>0

∑
q≥N+1

E
[
IWq (gq,i,R)2

]
= 0.

Then AR converges in law to N(0,Σ) as R → +∞, where Σ =
(
σi,j
)n
i,j=1

is given by

σi,j =
∑
q≥1 σi,j,q.

Proof of conditions (a), (b) and (d): It suffices to prove that for any t, s ∈ R+ and for
any p ≥ 1, p!〈gp,R(t), gp,R(s)〉H ⊗p is convergent to some limit, denoted by σp(t, s) and for
each t ≥ 0, ∑

p≥1

σp(t, t) < +∞ (3.9)

and

lim
N→+∞

sup
R>0

∑
q≥N+1

p!‖gp,R(t)‖2H ⊗p = 0. (3.10)

It is well-known in the literature that the pth moment of βt,t(0) coincides with the
variance of the pth chaotic component of the solution ut,x; see for instance [12]. Then, it
is natural to expect that our verification of condition (a) in Proposition 3.2 will resemble
the computations we have done for E

[
βt,s(z)

p
]
. Moreover, we will see that condition (3.9)

is a consequence of the finiteness of the integral
∫
Rd

(
φt,s(z) − 1

)
dz proved in Section

3.1. The verification of condition (3.10) will be straightforward, as a by-product of the
computations in Section 3.1.

Let us start with the case p = 1. By an easy computation,

〈g1,R(t), g1,R(s)〉H = R−d
∫
B2
R

〈G(t− •, x− •), G(s− •, y − •)〉H dxdy

= (2π)dωd

∫ t

0

∫ s

0

dudvγ0(u− v)

∫
Rd
dξ `R(ξ)ϕ1(ξ)e−

1
2 (t−u+s−v)‖ξ‖2 , (3.11)
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where `R(ξ) is the approximation of the identity introduced in Point (3) of Lemma 2.1.
Since γ1 is integrable on Rd, ϕ1 is uniformly continuous and uniformly bounded. Then,
taking the limit as R→ +∞ in (3.11), yields

〈g1,R(t), g1,R(s)〉H
R→+∞−−−−−→ (2π)dωdϕ1(0)

∫ t

0

∫ s

0

dudvγ0(u− v) = σ1(t, s).

Notice that σ1(t, s) = ωd
∫
Rd
E
[
βs,t(z)

]
dz, in view of (3.1) and (2π)dϕ1(0) = γ1(Rd).

Now let us consider higher-order chaos. For a fixed p ≥ 2, we write

E
[
IWp
(
gp,R(t)

)
IWp
(
gp,R(s)

)]
=

p!

Rd

∫
B2
R

dxdy
〈
ft,x,p, fs,y,p

〉
H ⊗p .

The kernel ft,x,p is a nonnegative function on Rp+ × Rpd, so 〈ft,x,p, fs,y,p〉H ⊗p ≥ 0. We
first write, by using the Fourier transform in space,

〈
ft,x,p, fs,y,p

〉
H ⊗p =

∫
R

2p
+

dspspspds̃p̃sp̃sp

p∏
j=1

γ0(sj − s̃j)
∫
Rpd

µ1(ξpξpξp)Fft,x,p(spspsp, ξpξpξp)Ffs,y,p(s̃p̃sp̃sp,−ξpξpξp).

(3.12)

Note that for sσps
σ
ps
σ
p ∈ ∆p(t), by the change of variables y1 = xσ1 − x, yj = xσj − xσj−1 for j ≥ 2,

we can write, with X1 standard Brownian motion on Rd as before,

1∆p(t)(s
σ
ps
σ
ps
σ
p )

∫
Rdp

dxσpx
σ
px
σ
pe
−ixσpx

σ
px
σ
p ·ξ

σ
pξ
σ
pξ
σ
pG(t− sσ1 , x− xσ1 )

p−1∏
i=1

G(sσi − sσi+1, x
σ
i − xσi+1)

= 1∆p(t)(s
σ
ps
σ
ps
σ
p )e−ix·τ(ξpξpξp)E

 p∏
j=1

exp
(
−i(X1

t −X1
sσj

) · ξσj
)

= 1∆p(t)(s
σ
ps
σ
ps
σ
p )e−ix·τ(ξpξpξp)E

 p∏
j=1

exp
(
−i(X1

t −X1
sj ) · ξj

) , (3.13)

so that

Fft,x,p(spspsp, ξpξpξp) =
1

p!
e−ix·τ(ξpξpξp)E

 p∏
j=1

exp
(
−i(X1

t −X1
sj ) · ξj

) for spspsp ∈ [0, t]p,

Ffs,y,p(s̃p̃sp̃sp,−ξpξpξp) =
1

p!
eiy·τ(ξpξpξp)E

 p∏
j=1

exp
(
i(X1

s −X1
s̃j

) · ξj
) for s̃p̃sp̃sp ∈ [0, s]p.

Keeping in mind the above expressions and making the time changes in (3.12) (from sj
to t− sj and from s̃j to s− s̃j , for j = 1, . . . , p) yields

〈
fs,x,p, ft,y,p

〉
H ⊗p =

1

(p!)2

∫
[0,s]p×[0,t]p

dspspspdrprprp

p∏
j=1

γ0(t− sj − s+ rj)

∫
Rpd

µ1(ξpξpξp)e
−i(x−y)·τ(ξpξpξp)

× E

 p∏
j=1

exp
(
−iX1

sj · ξj
) · E

 p∏
j=1

exp
(
−iX1

rj · ξj
) , (3.14)

since {X1
t −X1

t−u, u ∈ [0, t]} and {X1
s −X1

s−u, u ∈ [0, s]} have the same law as {X1
u, u ∈

[0, t]} and {X1
u, u ∈ [0, s]} respectively. So the expression (3.12) is indeed a function

that depends only on the difference x− y. Furthermore, a quick comparison between
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(3.2) and (3.14) reveals that the only difference is that the variables inside the temporal
covariance kernel are γ0(sj − rj) in (3.2) and γ0(t− sj − s+ rj) in (3.14). Going through
the same arguments that lead to (3.6) and (3.7), we get (with s ≤ t)

p!

∫
Rd
〈ft,z,p, fs,0,p〉H ⊗pdz ≤ (2π)d‖ϕ1‖∞Γpt t(4CN )p−1 exp

( tDN

2CN

)
and E

[
IWp
(
gp,R(t)

)
IWp
(
gp,R(s)

)]
=

p!

Rd

∫
B2
R

dxdy
〈
ft,x,p, fs,y,p

〉
H ⊗p

= p!ωd

∫
Rd
dz
〈
ft,0,p, fs,z,p

〉
H ⊗p

vol
(
BR ∩BR(−z)

)
ωdRd

R→+∞−−−−−→ p!ωd

∫
Rd
dz
〈
ft,0,p, fs,z,p

〉
H ⊗p = σp(t, s),

with

sup
R>0

E
[
IWp (gp,R(t))IWp (gp,R(s))

]
≤ σp(t, s). (3.15)

This completes the verification of condition (a). Notice that

σp(t, t) =
ωd
p!

∫
Rd
E[βt,t(z)

p]dz,

so condition (b) follows from (3.8) and (3.7). To see condition (d), it is enough to use
(3.15) and condition (b).

Proof of condition (c): Given t > 0 and 1 ≤ r ≤ p− 1, we need to prove that

lim
R→+∞

∥∥gp,R(t)⊗r gp,R(t)
∥∥

H ⊗(2p−2r) = 0.

We follow the same routine that leads to (2.17). We put

f(spspsp, ypypyp) = ft,0,p(spspsp, ypypyp),

and in this way, we have ft,x,p = fx, with fx being the spatially shifted version of f. Now
we write (notice that we have the extra temporal variables now)

(2π)−2d
∥∥gp,R(t)⊗r gp,R(t)

∥∥2

H ⊗(2p−2r)

=

∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

 J̃R,
with J̃R = J̃R

(
srsrsr, s̃r̃sr̃sr, vrvrvr, ṽr̃vr̃vr, tp−rtp−rtp−r, t̃p−rt̃p−rt̃p−r,wp−rwp−rwp−r, w̃p−rw̃p−rw̃p−r

)
given by

J̃R =

∫
R2pd

µ1(dξrξrξr)µ1(dξ̃r̃ξr̃ξr)µ1(dηp−rηp−rηp−r)µ1(dη̃p−rη̃p−rη̃p−r)

× (F f)(srsrsr, tp−rtp−rtp−r, ηp−rηp−rηp−r, ξrξrξr)(F f)(s̃r̃sr̃sr,wp−rwp−rwp−r, ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr)‖a+ b‖−d/2‖b̃+ a‖−d/2

× (F f)(vrvrvr, t̃p−rt̃p−rt̃p−r, η̃p−rη̃p−rη̃p−r, ξrξrξr)(F f)(ṽr̃vr̃vr, w̃p−rw̃p−rw̃p−r, η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr)‖ã+ b‖−d/2‖ã+ b̃‖−d/2

× Jd/2
(
R‖a+ b‖

)
Jd/2

(
R‖b̃+ a‖

)
Jd/2

(
R‖ã+ b‖

)
Jd/2

(
R‖ã+ b̃‖

)
,

where F f stands for the Fourier transform with respect to the spatial variables and we
have used the short-hand notation a = τ(ξrξrξr), b = τ(ηp−rηp−rηp−r), ã = τ(ξ̃r̃ξr̃ξr) and b̃ = τ(η̃p−rη̃p−rη̃p−r).
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Recall from previous steps that, with X1 standard Brownian motion on Rd,

(F f)(spspsp, ξpξpξp) = (Fft,0,p)(spspsp, ξpξpξp) =
1

p!
E

exp
(
− i

p∑
j=1

(X1
t −X1

sj ) · ξj
) , (3.16)

which is a positive, bounded and uniformly continuous function in ξpξpξp. As in the proof of
Theorem 2.11 (Step 4), we decompose the integral in the spatial variable into two parts,
that is, we write for any given δ > 0,

J̃R = J̃1,R + J̃2,R :=

∫
R2pd

1{‖a+b‖≥δ} +

∫
R2pd

1{‖a+b‖<δ}.

Similar to the arguments in Step 4 of the proof of Theorem 2.11, by using Cauchy-
Schwarz inequality several times, we can write

J̃1,R ≤ ω2
d

(∫
{‖τ(ξpξpξp)≥δ}

`R(τ(ξpξpξp))
∣∣F f

∣∣2(srsrsr, tp−rtp−rtp−r, ξpξpξp)µ1(dξpξpξp)

)1/2

×
(∫

Rpd
`R(τ(ξpξpξp))

∣∣F f
∣∣2(ṽr̃vr̃vr, w̃p−rw̃p−rw̃p−r, ξpξpξp)µ1(dξpξpξp)

)1/2(∫
Rpd

µ1(dξpξpξp)`R(τ(ξpξpξp))

×
∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ξpξpξp)

)1/2(∫
Rpd

`R(τ(ξpξpξp))
∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, ξpξpξp)µ1(dξpξpξp)

)1/2

.

Therefore, by Cauchy-Schwarz inequality again applied to the integration in time, we get∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

 J̃1,R (3.17)

≤ ω2
d

{∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

(∫
Rpd

`R(τ(ξpξpξp))
∣∣F f

∣∣2(ṽr̃vr̃vr, w̃p−rw̃p−rw̃p−r, ξpξpξp)µ1(dξpξpξp)

)

×
∫
{‖τ(ξpξpξp)≥δ}

`R(τ(ξpξpξp))
∣∣F f

∣∣2(srsrsr, tp−rtp−rtp−r, ξpξpξp)µ1(dξpξpξp)

}1/2

×

{∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

(∫
Rpd

`R(τ(ξpξpξp))
∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ξpξpξp)µ1(dξpξpξp)

)

×
∫
Rpd

`R(τ(ξpξpξp))
∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, ξpξpξp)µ1(dξpξpξp)

}1/2

=: ω2
dV

1/2
1 V

1/2
2 .

We will prove that V1 → 0 as R→ +∞ and V2 is uniformly bounded. For the term V1, we
have the estimate

V1 ≤ Γ2p
t

[∫
[0,t]p

dtptptp

∫
Rpd

`R(τ(ξpξpξp))
∣∣F f

∣∣2(tptptp, ξpξpξp)µ1(dξpξpξp)

]
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×
∫

[0,t]p
dspspsp

∫
{‖τ(ξpξpξp)≥δ}

`R(τ(ξpξpξp))
∣∣F f

∣∣2(spspsp, ξpξpξp)µ1(dξpξpξp)

=: Γ2p
t V11V12.

We claim that V11 is uniformly bounded and V12 vanishes asymptotically as R→ +∞. In
view of (3.16), making the change of variables

tj = t− sj and ηj = ξ1 + · · ·+ ξj for each j = 1, . . . , p, with η0 = 0,

we obtain, using (3.4)

V11 =
1

(p!)2

∫
[0,t]p

dspspsp

∫
Rpd

µ1(dξpξpξp)`R(τ(ξpξpξp))

E
exp

(
− i

p∑
j=1

X1
sj · ξj

)2

=
1

p!

∫
∆p(t)

dspspsp

∫
Rpd

µ1(dξpξpξp)`R(τ(ξpξpξp)) exp

− p∑
j=1

(sj − sj+1)‖ξ1 + · · ·+ ξj‖2


=
1

p!

∫
Rd
dηp`R(ηp)

∫
Rpd−d

dηp−1ηp−1ηp−1

∫
SIMp(t)

dwpwpwp

p∏
j=1

e−wj‖ηj‖
2

ϕ1(ηj − ηj−1)

≤ t

p!
‖ϕ1‖∞

p−1∑
j=0

(
p− 1

j

)
tj

j!
Dj
NC

p−1−j
N < +∞.

In the same way, we have

V12 ≤

(∫
{‖τ1‖≥δ}

dτ1`R(τ1)

)
t‖ϕ1‖∞
p!

p−1∑
j=0

(
p− 1

j

)
tj

j!
Dj
NC

p−1−j
N ,

which converges to zero as R tends to infinity. By the same arguments, we can get
the uniform boundedness of V2 as R tends to infinity. Thus, the term (3.17) does not
contribute to the limit of

∥∥gp,R(t)⊗r gp,R(t)
∥∥2

H ⊗(2p−2r) as R→ +∞.
Now let us look at the second term and we need to prove that

XR : =

∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

 J̃2,R
R→+∞−−−−−→ 0.

We can first rewrite ω−2
d J̃2,R as we did for

∫
Rpd×Dcδ

in the proof of Theorem 2.11. In fact,

using Cauchy-Schwarz multiple times, we obtain

ω−2
d J̃2,R ≤

∫
{‖a+b‖<δ}

µ1(dξrξrξr)µ1(dηp−rηp−rηp−r)
√
`R(a+ b) F f

(
srsrsr, tp−rtp−rtp−r, ηp−rηp−rηp−r, ξrξrξr

)
×
(∫

Rpd
µ1(dξ̃r̃ξr̃ξr)µ1(dη̃p−rη̃p−rη̃p−r)`R(ã+ b̃)

∣∣F f
∣∣2(ṽr̃vr̃vr, w̃p−rw̃p−rw̃p−r, η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr

))1/2
{∫

Rpd
µ1(dξ̃r̃ξr̃ξr)

× µ1(dη̃p−rη̃p−rη̃p−r)`R(ã+ b)`R(a+ b̃)
∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, η̃p−rη̃p−rη̃p−r, ξrξrξr
)∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr
)}1/2

≤

[(∫
Rpd

µ1(dξ̃r̃ξr̃ξr)µ1(dη̃p−rη̃p−rη̃p−r)`R(ã+ b̃)
∣∣F f

∣∣2(ṽr̃vr̃vr, w̃p−rw̃p−rw̃p−r, η̃p−rη̃p−rη̃p−r, ξ̃r̃ξr̃ξr
))
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×

(∫
{‖a+b‖<δ}

µ1(dξrξrξr)µ1(dηp−rηp−rηp−r)`R(a+ b)
∣∣F f

∣∣2(srsrsr, tp−rtp−rtp−r, ηp−rηp−rηp−r, ξrξrξr
))]1/2

×

[∫
{‖a+b‖<δ}×Rpd

µ1(dξrξrξr)µ1(dηp−rηp−rηp−r)µ1(dξ̃r̃ξr̃ξr)µ1(dη̃p−rη̃p−rη̃p−r)

×
∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr
)∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, η̃p−rη̃p−rη̃p−r, ξrξrξr
)
`R(ã+ b)`R(a+ b̃)

]1/2

:= Ṽ
1/2
1 Ṽ

1/2
2 .

Therefore,
ω−2
d XR ≤

√
X1,RX2,R,

where

X1,R : =

∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

 Ṽ1

is uniformly bounded over R > 0, as one can verify by the same arguments as before,
and

X2,R :=

∫
[0,t]4p

dsrsrsrds̃r̃sr̃srdvrvrvrdṽr̃vr̃vrdtp−rtp−rtp−rdt̃p−rt̃p−rt̃p−rdwp−rwp−rwp−rdw̃p−rw̃p−rw̃p−r

(
r∏
i=1

γ0(si − s̃i)γ0(vi − ṽi)

)

×

p−r∏
j=1

γ0(tj − t̃j)γ0(wj − w̃j)

∫
{‖a+b‖<δ}×Rpd

µ1(dξrξrξr)µ1(dηp−rηp−rηp−r)µ1(dξ̃r̃ξr̃ξr)µ1(dη̃p−rη̃p−rη̃p−r)

×
∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr
)∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, η̃p−rη̃p−rη̃p−r, ξrξrξr
)
`R(ã+ b)`R(a+ b̃)

≤ Γ2p
t

∫
[0,t]2p

ds̃r̃sr̃srdt̃p−rt̃p−rt̃p−rdvrvrvrdwp−rwp−rwp−r

∫
{‖a+b‖<δ}×Rpd

µ1(dξrξrξr)µ1(dηp−rηp−rηp−r)µ1(dξ̃r̃ξr̃ξr)µ1(dη̃p−rη̃p−rη̃p−r)

×
∣∣F f

∣∣2(s̃r̃sr̃sr,wp−rwp−rwp−r, ηp−rηp−rηp−r, ξ̃r̃ξr̃ξr
)∣∣F f

∣∣2(vrvrvr, t̃p−rt̃p−rt̃p−r, η̃p−rη̃p−rη̃p−r, ξrξrξr
)
`R(ã+ b)`R(a+ b̃)

= Γ2p
t

∫
R2pd

µ1(dξpξpξp)µ1(dξ̃p̃ξp̃ξp)1{‖ξ1+···+ξr+ξ̃r+1+···+ξ̃p‖<δ}`R
(
τ(ξpξpξp)

)
`R
(
τ(ξ̃p̃ξp̃ξp)

)
×

(∫
[0,t]p

dspspsp
∣∣F f

∣∣2(spspsp, ξ̃p̃ξp̃ξp))(∫
[0,t]p

dtptptp
∣∣F f

∣∣2(tptptp, ξpξpξp)) .
Using (3.16) and a change of variable in time, we can rewrite the last expression as
follows

X2,R ≤
Γ2p
t

(p!)2

∫
R2pd

µ1(dξpξpξp)µ1(dξ̃p̃ξp̃ξp)1{‖ξ1+···+ξr+ξ̃r+1+···+ξ̃p‖<δ}`R
(
τ(ξpξpξp)

)
`R
(
τ(ξ̃p̃ξp̃ξp)

)
×
∫

[0,t]2p
dspspspdtptptpE

exp
(
− i

p∑
j=1

X1
sj · ξ̃j

)E
exp

(
− i

p∑
j=1

X2
tj · ξj

) .
For spspsp ∈ ∆p(t), we write

E

exp
(
− i

p∑
j=1

X1
sj · ξ̃j

) = exp

− p∑
j=1

sσ(j) − sσ(j+1)

2
‖ξ̃σ(1) + · · ·+ ξ̃σ(j)‖2

 .
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Then ∫
[0,t]p

dspspspE

exp
(
− i

p∑
j=1

X1
sj · ξ̃j

)
=
∑
σ∈Sp

∫
SIMp(t)

dw̃pw̃pw̃p exp

− p∑
j=1

w̃j
2
‖ξ̃σ(1) + · · ·+ ξ̃σ(j)‖2


and in the same way,∫

[0,t]p
dtptptpE

exp
(
− i

p∑
j=1

X2
tj · ξj

)
=
∑
π∈Sp

∫
SIMp(t)

dwpwpwp exp

− p∑
j=1

wj
2
‖ξπ(1) + · · ·+ ξπ(j)‖2

 .

By a further change of variables ξπ(1) + · · · + ξπ(j) = ηj and ξ̃σ(1) + · · · + ξ̃σ(j) = η̃j for
given σ, π, we can write

1{‖ξ1+···+ξr+ξ̃r+1+···+ξ̃p‖<δ} = 1{‖L(ηpηpηp,η̃p̃ηp̃ηp)‖<δ},

where L(ηpηpηp, η̃p̃ηp̃ηp) stands for linear combinations of η1, . . . , ηp, η̃1, . . . η̃p that depend on σ, π.
With this notation, we have

X2,R ≤
Γ2p
t

(p!)2

∑
σ,π∈Sp

∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)

∫
SIMp(t)2

dwpwpwpdw̃pw̃pw̃p

∫
R2pd−2d

dηp−1ηp−1ηp−1dη̃p−1η̃p−1η̃p−1

×

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
wj
2 ‖ηj‖

2

ϕ1(η̃j − η̃j−1)e−
w̃j
2 ‖η̃j‖

2


× ϕ1(ηp − ηp−1)ϕ1(ηp − ηp−1)e−

wp
2 ‖ηp‖

2− w̃p2 ‖η̃p‖
2

1{‖L(ηpηpηp,η̃p̃ηp̃ηp)‖<δ}

=:
Γ2p
t

(p!)2

∑
σ,π∈Sp

∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)Eσ,πδ (ηp, η̃p)

where Eσ,πδ is defined in an obvious way. By the arguments leading to (3.4), it is clear
that Eσ,πδ is uniformly bounded. It follows that

lim sup
R→+∞

∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)Eσ,πδ (ηp, η̃p)

= lim sup
R→+∞

∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)Eσ,πδ (ηp, η̃p)1{‖ηp‖<δ,‖η̃p‖<δ}.

For fixed σ, π ∈ Sp, we have the decomposition L(ηpηpηp, η̃p̃ηp̃ηp) = L1(ηp, η̃p) + L2(ηp−1ηp−1ηp−1, η̃p−1η̃p−1η̃p−1),
where L1(ηp, η̃p) stands for a linear combination of ηp and η̃p, while L2(ηp−1ηp−1ηp−1, η̃p−1η̃p−1η̃p−1) stands
for linear combinations of η1, . . . , ηp−1, η̃1, . . . , η̃p−1. Notice that L1 and L2 also depend
on σ, π. If ‖ηp‖, ‖η̃p‖ < δ, then there exists some constant K = K(σ, π) such that

‖L1(ηp, η̃p)‖ < Kδ,

thus 1{‖L(ηpηpηp,η̃p̃ηp̃ηp)‖<δ} ≤ 1{‖L2(ηp−1ηp−1ηp−1,η̃p−1η̃p−1η̃p−1)‖<(K+1)δ}. As a consequence,∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)Eσ,πδ (ηp, η̃p)1{‖ηp‖<δ,‖η̃p‖<δ}
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≤ t2‖ϕ1‖2∞
∫
R2d

dηpdη̃p`R(ηp)`R(η̃p)

∫
SIMp−1(t)2

dwp−1wp−1wp−1dw̃p−1w̃p−1w̃p−1

∫
R2pd−2d

dηp−1ηp−1ηp−1dη̃p−1η̃p−1η̃p−1

×

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
wj
2 ‖ηj‖

2

ϕ1(η̃j − η̃j−1)e−
w̃j
2 ‖η̃j‖

2

1{‖L2(ηp−1ηp−1ηp−1,η̃p−1η̃p−1η̃p−1)‖<(K+1)δ}

= t2‖ϕ1‖2∞
∫

SIMp−1(t)2
dwp−1wp−1wp−1dw̃p−1w̃p−1w̃p−1

∫
R2pd−2d

dηp−1ηp−1ηp−1dη̃p−1η̃p−1η̃p−1

×

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
wj
2 ‖ηj‖

2

ϕ1(η̃j − η̃j−1)e−
w̃j
2 ‖η̃j‖

2

1{‖L2(ηp−1ηp−1ηp−1,η̃p−1η̃p−1η̃p−1)‖<(K+1)δ}

=: t2‖ϕ1‖2∞Tδ(σ, π).

By previous arguments,∫
SIMp−1(t)2

dwp−1wp−1wp−1dw̃p−1w̃p−1w̃p−1

∫
R2pd−2d

dηp−1ηp−1ηp−1dη̃p−1η̃p−1η̃p−1

×

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
wj
2 ‖ηj‖

2

ϕ1(η̃j − η̃j−1)e−
w̃j
2 ‖η̃j‖

2

 <∞.

Therefore, taking into account that L2(ηp−1ηp−1ηp−1, η̃p−1η̃p−1η̃p−1) 6= 0 for almost every ηp−1ηp−1ηp−1 and η̃p−1η̃p−1η̃p−1,
we obtain Tδ(σ, π)→ 0, as δ ↓ 0 and

lim sup
R→+∞

X2,R ≤ t2‖ϕ1‖2∞
∑

σ,π∈Sp

Tδ(σ, π),

which converges to zero, as δ ↓ 0. This concludes the proof of condition (c).
Combing the above steps, we conclude that if t1, t2, . . . , tn ∈ R+, then

R−d/2
(
At1(R), . . . , Atn(R)

) law−−−−−→
R→+∞

N
(

0,
(
Σti,tj

)n
i,j=1

)
,

where Σti,tj is defined in (1.13).

3.3 Proof of tightness in Theorem 1.6

In this section, we are going to prove the tightness of
{At(R)
Rd/2

, t ≥ 0
}

under the extra
condition (1.14). Under this condition, one can see easily that

Γt,α :=

∫ t

0

∫ t

0

γ0(r − v)r−αv−αdrdv < +∞ (3.18)

for any t > 0.
Recall that α ∈ (0, 1/2) is fixed. For any T > 0, we will show for any 0 < s < t ≤ T

and any integer k ∈ [2,∞)

R−d/2
∥∥At(R)−As(R)

∥∥
Lk(Ω)

≤ C|t− s|α, (3.19)

where C = CT,k,α is a constant that depends on T, k and α. If we pick a large k such that
kα > 2, we get the desired tightness by Kolmogorov’s criterion. To show (3.19), we first
derive the Wiener chaos expansion of At(R)−As(R) and apply the hypercontractivity
property of the Ornstein-Uhlenbeck semigroup (see e.g. [21]) that allows us to estimate
the Lk(Ω)-norm by the L2(Ω)-norm on a fixed Wiener chaos.

We know that

ut,x = 1 +

∫
R+×Rd

G(t− s1, x− y1)1[0,t)(s1)us1,y1W (ds1, dy1)
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and if we put

d(s, t, x; s1, y1) = G(t− s1, x− y1)1[0,t)(s1)−G(s− s1, x− y1)1[0,s)(s1)

for s < t, we can write

ut,x − us,x =

∫
R+×Rd

d(s, t, x; s1, y1)us1,y1W (ds1, dy1).

We can write d(s, t, x; s1, y1) = d1(s, t, x; s1, y1) + d2(s, t, x; s1, y1) with

d1(s, t, x; s1, y1) = 1[0,s)(s1)
[
G(t− s1, x− y1)−G(s− s1, x− y1)

]
(3.20)

and

d2(s, t, x; s1, y1) = 1[s,t)(s1)G(t− s1, x− y1). (3.21)

According to [5, Lemma 3.1], there exists some constant Cα that depends on α such that∣∣d1(s, t, x; s1, y1)
∣∣ ≤ Cα(t− s)α(s− s1)−αG(4t− 4s1, x− y1)1[0,s)(s1). (3.22)

Now we can express At(R)−As(R) as a sum of two chaos expansions that correspond
to d1 and d2:

At(R)−As(R) =
∑
p≥1

∫
BR

IWp
(
g1,p,x

)
dx+

∑
q≥1

∫
BR

IWq
(
g2,q,xdx

)
=:
∑
p≥1

J1,p,R +
∑
q≥1

J2,q,R,

where Ji,p,R =
∫
BR

IWp
(
gi,p,x

)
dx for i ∈ {1, 2} and

g1,p,x(spspsp, ypypyp) =
1

p!

∑
σ∈Sp

1∆p(s)(s
σ
ps
σ
ps
σ
p )d1(s, t, x; sσ1 , y

σ
1 )

p−1∏
j=1

G(sσj − sσj+1, y
σ
j − yσj+1)

g2,p,x(spspsp, ypypyp) =
1

p!

∑
σ∈Sp

1∆p(s,t)(s
σ
ps
σ
ps
σ
p )G(t− sσ1 , x− yσ1 )

p−1∏
j=1

G(sσj − sσj+1, y
σ
j − yσj+1),

with ∆p(s, t) = {t > s1 > · · · > sp > s}.
Let us first estimate the L2(Ω)-norm of J2,p,R in several familiar steps. As in (3.12),

(3.13) and (3.14), we write for p ≥ 1, with X1, X2 independent standard Brownian
motions on Rd,

〈
g2,p,x, g2,p,y

〉
H ⊗p =

1

(p!)2

∫
[0,t−s)2p

dspspspdrprprp

p∏
j=1

γ0(sj − rj)
∫
Rpd

µ1(dξpξpξp)e
−i(x−y)·τ(ξpξpξp)

× E

exp

−i p∑
j=1

ξj ·X1
sj

E
exp

−i p∑
j=1

ξj ·X2
rj

 ,
which is a nonnegative function in x, y that only depends on the difference x−y. Observe
that this inner product coincides with 1

(p!)2E
[
βt−s,t−s(x− y)p

]
for every p ≥ 1, see (3.2).

Therefore, for p ≥ 2, we can write by using (3.6)∥∥J2,p,R

∥∥2

L2(Ω)
= p!

∫
B2
R

dxdy
〈
g2,p,x, g2,p,y

〉
H ⊗p ≤ p!ωdRd

∫
Rd
dz
〈
g2,p,0, g2,p,z

〉
H ⊗p
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=
ωdR

d

p!

∫
Rd
dzE

[
βt−s,t−s(z)

p
]

≤ ωdRd‖ϕ1‖∞(2π)dΓpt−s(t− s)(4CN )p−1 exp
( (t− s)DN

2CN

)
≤ (t− s)Rd

{
(2π)dωd‖ϕ1‖∞ exp

(TDN

2CN

)}
ΓpT (4CN )p−1.

Hence, as a consequence of the hypercontractivity property (see e.g. [20, Corollary
2.8.14]), we have for k ≥ 2

1

Rd/2

∥∥∥∥∥∥
∑
p≥2

J2,p,R

∥∥∥∥∥∥
Lk(Ω)

≤ 1

Rd/2

∑
p≥2

‖J2,p,R‖Lk(Ω) ≤
1

Rd/2

∑
p≥2

(k − 1)p/2 ‖J2,p,R‖L2(Ω)

≤
√
t− s

{
(2π)dωd‖ϕ1‖∞ exp

(TDN

2CN

)
/(4CN )

}1/2∑
p≥1

[
4(k − 1)ΓTCN

]p/2
=
√
t− s

{
(2π)dωd‖ϕ1‖∞ exp

(TDN

2CN

)}1/2
√

(k − 1)ΓT

1− 2
√

(k − 1)ΓTCN
, (3.23)

provided 0 < 4(k − 1)ΓTCN < 1, which is always valid for some N > 0. For p = 1, we
have, in view of (3.1),

R−d/2‖J2,1,R‖Lk(Ω) = ckR
−d/2‖J2,1,R‖L2(Ω) ≤ ck

(∫
Rd
E[βt−s,t−s(z)]dz

)1/2

≤ ck
√
t− s(ΓT ‖γ1‖L1(Rd))

1/2,

where ck = (E[|Z|k])1/k, with Z ∼ N(0, 1).
Now let us estimate the L2(Ω)-norm of J1,p,R. Put

d̂1(s, t, x; s1, y1) = (s− s1)−αG(4t− 4s1, x− y1)1[0,s)(s1)

and

ĝ1,p,x(spspsp, ypypyp) =
1

p!

∑
σ∈Sp

1∆p(s)(s
σ
ps
σ
ps
σ
p )d̂1(s, t, x; sσ1 , y

σ
1 )

p−1∏
j=1

G(sσj − sσj+1, y
σ
j − yσj+1).

From (3.22) we deduce that∣∣∣〈g1,p,x, g1,p,y

〉
H ⊗p

∣∣∣ ≤ C2
α(t− s)2α

〈
ĝ1,p,x, ĝ1,p,y

〉
H ⊗p .

Similarly as before, we can write(
F ĝ1,p,x

)
(spspsp, ξpξpξp) =

1

p!

∑
σ∈Sp

1∆p(s)(s
σ
ps
σ
ps
σ
p )e−ix·τ(ξpξpξp)(s− sσ1 )−α

× E
[
e
−i

∑p
j=1(X1

4t−X
1
4sσ1

+X1
sσ1
−X1

sσ
j

)·ξσj
]
,

from which we see that
〈
ĝ1,p,x, ĝ1,p,y

〉
H ⊗p is a nonnegative function that depends only

on the difference x− y and is given by〈
ĝ1,p,x, ĝ1,p,y

〉
H ⊗p

=

∫
[0,s]2p

dspspspdrprprp

p∏
j=1

γ0(sj − rj)
∫
Rpd

µ1(dξpξpξp)
(
F ĝ1,p,x

)
(spspsp, ξpξpξp)

(
F ĝ1,p,y

)
(rprprp,−ξpξpξp)
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=
1

(p!)2

∑
σ,π∈Sp

∫
∆p(s)2

dsσps
σ
ps
σ
pdr

π
pr
π
pr
π
p

∏p
j=1 γ0(sj − rj)

(s− sσ1 )α(s− rπ1 )α

∫
Rpd

µ1(dξpξpξp)e
−i(x−y)·τ(ξpξpξp)

× E
[
e
−i

∑p
j=1(X1

4t−X
1
4sσ1

+X1
sσ1
−X1

sσ
j

)·ξσj
]
E

[
e
−i

∑p
j=1(X1

4t−X
1
4rπ1

+X1
rπ1
−X1

rπ
j

)·ξπj
]
. (3.24)

Then, we can write for p ≥ 2,∥∥J1,p,R

∥∥2

L2(Ω)
= p!

∫
B2
R

dxdy
〈
g1,p,x, g1,p,y

〉
H ⊗p ≤ C2

α(t− s)2αp!

∫
B2
R

dxdy
〈
ĝ1,p,x, ĝ1,p,y

〉
H ⊗p

≤ C2
α(t− s)2αp!ωdR

d

∫
Rd
dz
〈
ĝ1,p,0, ĝ1,p,z

〉
H ⊗p . (3.25)

By the same trick of inserting exp(−ε2 ‖z‖
2), we have∫

Rd
dz
〈
ĝ1,p,0, ĝ1,p,z

〉
H ⊗p = lim

ε↓0

∫
Rd
dz
〈
ĝ1,p,0, ĝ1,p,z

〉
H ⊗pe

− ε2‖z‖
2

=: lim
ε↓0

T̂p,ε, (3.26)

where T̂p,ε is equal to∫
[0,s]2p

dspspspdrprprp

p∏
j=1

γ0(sj − rj)
∫
Rpd+d

dzµ1(dξpξpξp)
(
F ĝ1,p,0

)
(spspsp, ξpξpξp)

(
F ĝ1,p,z

)
(rprprp,−ξpξpξp)

=
(2π)d

(p!)2

∑
σ,π∈Sp

∫
∆p(s)2

dsσps
σ
ps
σ
pdr

π
pr
π
pr
π
p

∏p
j=1 γ0(sj − rj)

(s− sσ1 )α(s− rπ1 )α

∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp))

× E
[
e
−i

∑p
j=1(X1

4t−X
1
4sσ1

+X1
sσ1
−X1

sσ
j

)·ξσj
]
E

[
e
−i

∑p
j=1(X1

4t−X
1
4rπ1

+X1
rπ1
−X1

rπ
j

)·ξσj
]
. (3.27)

Note that for sσps
σ
ps
σ
p ∈ ∆p(s), 2t− 2sσ1 > 2s− 2sσ1 >

1
2 (s− sσ1 ) so that

E

exp

−i p∑
j=1

(X1
4t −X1

4sσ1
+X1

sσ1
−X1

sσj
) · ξσj


= e−(2t−2sσ1 )‖τ(ξpξpξp)‖2e−

1
2

∑p−1
j=1 (sσj−s

σ
j+1)‖ξσj+1+···+ξσp ‖

2

≤ e− 1
2 (s−sσ1 )‖τ(ξpξpξp)‖2e−

1
2

∑p−1
j=1 (sσj−s

σ
j+1)‖ξσj+1+···+ξσp ‖

2

= E

exp

−i p∑
j=1

(X1
s −X1

sσj
) · ξσj

 = E

exp

−i p∑
j=1

(X1
s −X1

sj ) · ξj


= exp

−1

2
Var

p∑
j=1

(X1
s −X1

sj ) · ξj

 . (3.28)

Therefore, we can write

T̂p,ε ≤
(2π)d

(p!)2

∫
[0,s]2p

dspspspdrprprp

∏p
j=1 γ0(sj − rj)

(s− s1)α(s− r1)α

∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp))

× E
[
e
−i

∑p
j=1(X1

s−X
1
sj

)·ξj
]
E
[
e
−i

∑p
j=1(X1

s−X
1
rj

)·ξj
]
1{s1>s2∨···∨sp}1{r1>r2∨···∨rp}

≤ (2π)dΓp−1
s

(p!)2

∫
[0,s]p+1

dr1ds1 · · · dsp
γ0(s1 − r1)

(s− r1)α(s− s1)α
1{s1>s2∨···∨sp}

×
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp)) exp

−1

2
Var

p∑
j=1

(X1
s −X1

sj ) · ξj

 .
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By the usual time change (r1, sj)→ (s− r1, s− sj), we have

T̂p,ε ≤
(2π)dΓp−1

s

(p!)2

∫
[0,s]p+1

dr1ds1 · · · dsp
γ0(s1 − r1)

rα1 s
α
1

1{s1<s2∧···∧sp}

×
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp)) exp

−1

2
Var

p∑
j=1

X1
sj · ξj

 .

Note that for s1 < s2 ∧ · · · ∧ sp

exp

−1

2
Var

p∑
j=1

X1
sj · ξj

 = e−
s1
2 ‖τ(ξpξpξp)‖2 exp

−1

2
Var

p∑
j=2

(X1
sj −X

1
s1) · ξj


= e−

s1
2 ‖τ(ξpξpξp)‖2 exp

−1

2
Var

p∑
j=2

X1
sj−s1 · ξj

 .

Then, by another time change (sj − s1 → sj) for j ≥ 2, we can write

T̂p,ε ≤
(2π)dΓp−1

s

(p!)2

∫ s

0

∫ s

0

dr1ds1
γ0(s1 − r1)

rα1 s
α
1

∫
[0,s−s1]p−1

ds2 · · · dsp

×
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp))e
− 1

2 s1‖τ(ξpξpξp)‖2e
− 1

2 Var
∑p
j=2X

1
sj
·ξj

≤ (2π)dΓp−1
s

(p!)2

(∫ s

0

∫ s

0

dr1ds1
γ0(s1 − r1)

rα1 s
α
1

)
×
∫

[0,s]p−1

ds2 · · · dsp
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp))e
− 1

2 Var
∑p
j=2X

1
sj
·ξj

=
(2π)dΓp−1

s

(p!)2

(∫ s

0

∫ s

0

dr1ds1
γ0(s1 − r1)

rα1 s
α
1

)
(p− 1)!

∫
SIMp−1(s)

dw2 · · · dwp

×
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp)) exp

−1

2

p∑
j=2

wj‖ξ2 + · · ·+ ξj‖2
 . (3.29)

Now making the change of variables ηj = ξ1 + · · ·+ ξj yields

∫
SIMp−1(s)

dw2 · · · dwp
∫
Rpd

µ1(dξpξpξp)G(ε, τ(ξpξpξp)) exp

−1

2

p∑
j=2

wj‖ξ2 + · · ·+ ξj‖2


=

∫
SIMp−1(s)

dw2 · · · dwp
∫
Rd
dηpG(ε, ηp)

∫
Rpd−d

dηp−1ηp−1ηp−1

(
ϕ1(η1)e−

1
2wp‖ηp−η1‖

2
)

×
(
ϕ1(η2 − η1)ϕ1(η3 − η2)e−

1
2w2‖η2−η1‖2

)(
ϕ1(η4 − η3)e−

1
2w3‖η3−η1‖2

)
× · · · ×

(
ϕ1(ηp − ηp−1)e−

1
2wp−1‖ηp−1−η1‖2

)
.

Moreover, we can apply (4.3) and (4.2) to the integral with respect to the variables
dη2, dη3, . . . , dηp−1, dη1 in order to get∫

Rd
dη2ϕ1(η2 − η1)ϕ1(η3 − η2)e−

1
2w2‖η2−η1‖2 ≤

∫
Rd
ϕ1(ξ)2e−

1
2w2‖ξ‖2dξ∫

Rd
dη3ϕ1(η4 − η3)e−

1
2w3‖η3−η1‖2 ≤

∫
Rd
ϕ1(ξ)e−

1
2w3‖ξ‖2dξ

. . . . . .
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∫
Rd
dηp−1ϕ1(ηp − ηp−1)e−

1
2wp−1‖ηp−1−η1‖2 ≤

∫
Rd
ϕ1(ξ)e−

1
2wp−1‖ξ‖2dξ∫

Rd
dη1ϕ1(η1)e−

1
2wp‖ηp−η1‖

2

≤
∫
Rd
ϕ1(ξ)e−

1
2wp‖ξ‖

2

dξ.

Thus, with Γs,α =
∫ s

0

∫ s
0
dr1ds1γ0(s1 − r1)r−α1 s−α1 , we have

T̂p,ε ≤
(2π)dΓp−1

s ‖ϕ1‖∞Γs,α
p!p

∫
SIMp−1(s)

dw2 · · · dwp
∫
Rpd−d

p∏
j=2

ϕ1(ξj)e
− 1

2wj‖ξj‖
2

≤ (2π)dΓp−1
s ‖ϕ1‖∞Γs,α
p!p

p−1∑
j=1

(
p− 1

j

)
sj

j!
Dj
N (2CN )p−1−j by (3.4)

≤
(2π)d‖ϕ1‖∞Γs,α exp

(
sDN/(2CN )

)
p!p

(4CNΓs)
p−1.

Therefore, for p ≥ 2,∥∥J1,p,R

∥∥2

L2(Ω)
≤ (t− s)2αRd

{
(2π)dC2

αωd‖ϕ1‖∞Γs,α exp
(
sDN/(2CN )

)}
(4CNΓs)

p−1.

For p = 1, it is easier to get the desired bound. Indeed, from (3.27), it follows that

T̂1,ε = (2π)d
∫ s

0

∫ s

0

ds1dr1γ0(s1 − r1)(s− s1)−α(s− r1)−α
∫
Rd
dξϕ1(ξ)G(ε, ξ)

× E
[
e−i(X

1
4t−X

1
4s1

)·ξ
]
E
[
e−i(X

1
4t−X

1
4r1

)·ξ
]
≤ (2π)d‖ϕ1‖∞Γs,α,

so that
∥∥J1,1,R

∥∥2

L2(Ω)
≤ (t− s)2αRd

{
(2π)dC2

αωd‖ϕ1‖∞Γs,α

}
. Hence,

1

Rd/2

∥∥∥∥∥∥
∑
p≥1

J1,p,R

∥∥∥∥∥∥
Lk(Ω)

≤ 1

Rd/2

∑
p≥1

(k − 1)p/2 ‖J1,p,R‖L2(Ω)

≤ (t− s)α
{

(2π)dC2
αωd‖ϕ1‖∞

[
1 + exp(TDNC

−1
N )
]
Γs,α

}1/2∑
p≥0

[
4(k − 1)ΓTCN

]p/2

= (t− s)α

{
(2π)dC2

αωd‖ϕ1‖∞
[
1 + exp(TDNC

−1
N )
]
Γs,α

}1/2

1− 2
√

(k − 1)ΓTCN
, (3.30)

provided 0 < 4(k − 1)ΓTCN < 1, which is always valid for some N > 0.
Combing (3.23) and (3.30), we get (3.19) and hence the desired tightness. �

3.4 Proof of Theorem 1.7

We are going to show that, under the hypotheses of Theorem 1.7, the first chaos
dominates and, as a consequence, the proof of the central limit theorem reduces to the
computation of the limit variance of the first chaos. The proof will be done in several
steps.

Step 1. We have shown in the proof of Theorem 1.6 that, if γ0 is locally integrable, γ1 is
integrable and Dalang’s condition (1.10) is satisfied, then for any integer p ≥ 2,

Var
(

ΠpAt(R)
)
∼ σp(t, t)Rd as R→ +∞ and

∑
p≥2

σp(t, t) <∞. (3.31)

EJP 25 (2020), paper 48.
Page 42/54

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP453
http://www.imstat.org/ejp/


Averaging Gaussian functionals

The above results also hold true, provided γ0 is locally integrable and the modified
version of Dalang’s condition (1.15) is satisfied. To see the latter point, it is enough to
proceed with the same arguments but replacing the estimate (3.3) by∫

Rd
ϕ1(η1)ϕ1(η2 − η1)h1(η1)dη1 ≤

∫
Rd
ϕ1(η1)2h1(η1)dη1,

obtained by applying (4.2). Then, we can use the same arguments as in the proof of [9,
Lemma 3.3], with CN , DN replaced by

C ′N =

∫
{‖ξ‖≥N}

ϕ1(ξ) + ϕ1(ξ)2

‖ξ‖2
dξ and D′N =

∫
{‖ξ‖≤N}

(
ϕ1(ξ) + ϕ1(ξ)2

)
dξ.

In this way, instead of the inequality (3.4), we can get

Qp(ηp) ≤ t
p−1∑
j=0

(
p− 1

j

)
tj

j!
(D′N )j(2C ′N )p−1−j (3.32)

and by choosing large N such that 0 < 4ΓtC
′
N < 1, we can get instead of (3.6)∫

Rd
E
[
βs,t(z)

p
]
dz ≤ (2π)dΓpt p!t(4C

′
N )p−1 exp

( tD′N
2C ′N

)
<∞ (3.33)

and as a result, ∑
p≥2

1

p!

∫
Rd
E
[
βt,t(z)

p
]
dz < +∞,

which is equivalent to (3.31).

Step 2. For the first chaotic component, if γ1 /∈ L1(Rd), then

R−dVar
(

Π1At(R)
)
→∞ as R→ +∞.

This observation, together with Step 1, justifies part (1) of Theorem 1.7.

Step 3. When γ1(z) = ‖z‖−β for some β ∈ (0, 2 ∧ d), let us first compute the variance of
Π1At(R). We have

Var
(
Π1At(R)

)
=

∫ t

0

∫ t

0

dudvγ0(u− v)

∫
Rd
dξ

∫
B2
R

dxdye−i(x−y)·ξcd,β‖ξ‖β−de−
1
2 (u+v)‖ξ‖2 ,

for some constant cd,β . Then making change of variables (x, y, ξ)→ (Rx,Ry, ξ/R) yields

Var
(
Π1At(R)

)
R2d−β =

∫ t

0

∫ t

0

dudvγ0(u− v)

∫
Rd
dξ

[∫
B2

1

dxdye−i(x−y)·ξ

]
cd,β‖ξ‖β−de−

u+v

2R2 ‖ξ‖
2

.

(3.34)

This expression is increasing in R and it converges, as R→ +∞, to∫ t

0

∫ t

0

dudvγ0(u− v)

∫
Rd
dξ

∫
B2

1

dxdye−i(x−y)·ξϕ1(ξ) = κβ ∈ (0,∞).

Then, it suffices to show that
∑
p≥2 Var

(
ΠpAt(R)

)
= o(R2d−β), which implies the central

limit theorem (1.16) immediately. For p ≥ 2, we read from (3.12), (3.13) and (3.14) that

Var
(
ΠpAt(R)

)
=
cpd,β
p!

∫
B2
R

dxdy

∫
[0,t]2p

dspspspdrprprp

p∏
j=1

γ0(sj − rj)
∫
Rpd

dξpξpξp

 p∏
j=1

‖ξj‖β−d

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× e−i(x−y)·τ(ξpξpξp)e
− 1

2 Var
∑p
j=1 ξj ·X

1
sj e
− 1

2 Var
∑p
j=1 ξj ·X

2
rj .

Note that ∫
B2
R

dxdye−i(x−y)·τ(ξpξpξp) = (2πR)dωd`R
(
τ(ξpξpξp)

)
≥ 0.

Then by similar arguments as before, we obtain

Var
(
ΠpAt(R)

)
≤
cpd,β
p!

∫
B2
R

dxdy

∫
[0,t]2p

dspspspdrprprp

p∏
j=1

γ0(sj − rj)
∫
Rpd

dξpξpξp

 p∏
j=1

‖ξj‖β−d


× e−i(x−y)·τ(ξpξpξp) exp

−1

2
Var

p∑
j=1

ξj ·X1
sj


≤ cpd,βΓpt

∫
B2
R

dxdy

∫
SIMp(t)

dwpwpwp

∫
Rpd

dξpξpξp

( p∏
j=1

‖ξj‖β−d
)
e−i(x−y)·τ(ξpξpξp)e−

1
2

∑p
j=1 wj‖ξ1+···+ξj‖2 .

By the usual change of variables ηj = ξ1 + · · · + ξj , with η0 = 0, and (x, y, ηp) →
(Rx,Ry, ηp/R), we obtain

Var
(
ΠpAt(R)

)
≤ cp−1

d,β ΓptR
d

∫
SIMp(t)

dwpwpwp

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

‖ηj − ηj−1‖β−de−
1
2wj‖ηj‖

2


×
∫
Rd
dηp‖ηpR−1 − ηp−1‖β−d

∫
B2

1

dxdye−i(x−y)·ηpe−wp‖ηp‖
2/(2R2). (3.35)

Let us first analyze the part in the display (3.35), which can be rewritten as

Rd−β
∫
Rd
dηp‖ηp −Rηp−1‖β−d

∫
B2

1

dxdye−i(x−y)·ηpe−wp‖ηp‖
2/(2R2)

≤ Rd−β
∫
B2

1

dxdy

∫
Rd
dηp‖ηp −Rηp−1‖β−de−i(x−y)·ηp

= c−1
d,βR

d−β
∫
B2

1

dxdye−i(x−y)·ηp−1R‖x− y‖−β =: Rd−βUR(ηp−1). (3.36)

The function UR defined above is uniformly bounded by c−1
d,β

∫
B2

1
dxdy‖x − y‖−β and

for ηp−1 6= 0, by the Riemann-Lebesgue’s Lemma, 0 ≤ UR(ηp−1) converges to zero as
R→ +∞. As a result,

R−2d+β
∑
p≥2

Var
(
ΠpAt(R)

)
≤
∑
p≥2

tΓpt c
p
d,β

∫
SIMp−1(t)

dwp−1wp−1wp−1

∫
Rpd−d

dηp−1ηp−1ηp−1

×

p−1∏
j=1

‖ηj − ηj−1‖β−de−
1
2wj‖ηj‖

2

UR(ηp−1)

≤ t

(∫
B2

1

dxdy‖x− y‖−β
)∑
p≥2

Γpt

∫
SIMp−1(t)

dwp−1wp−1wp−1

×
∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
1
2wj‖ηj‖

2

 .

By using (4.3) for the integration with respect to dηp−1, . . . , dη3, dη2 inductively, we get

∑
p≥2

Γpt

∫
SIMp−1(t)

dwp−1wp−1wp−1

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

ϕ1(ηj − ηj−1)e−
1
2wj‖ηj‖

2


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≤
∑
p≥2

Γpt

∫
SIMp−1(t)

dwp−1wp−1wp−1

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

ϕ1(ηj)e
− 1

2wj‖ηj‖
2

 ,

which is a convergent series by previous discussion. Then by dominated convergence
and the Riemann-Lebesgue’s lemma, we have∑

p≥2

Var
(
ΠpAt(R)

)
= o(R2d−β).

This tells us that the first chaos is indeed dominant and we have the desired Gaussian
fluctuation (1.16). This concludes the proof of Theorem 1.7. �

3.5 Proof of Theorem 1.9

Part (1): The proof of the functional CLT for Ât(R) can be done exactly by the same
arguments from Sections 3.1, 3.2 and 3.3 except for using (3.32) and (3.33) instead of
(3.4) and (3.6). So we leave the details for interested readers and refer to the forthcoming
work [24] for similar situation when dealing with parabolic Anderson model driven by
rough noise.

Part (2): By results in part (2) of Theorem 1.7, R−d+ β
2 Ât(R) converges to the zero

process in finite-dimensional distributions. So our proof consists in two parts:

(i) We prove
{
R−d+ β

2 Π1

(
At(R)

)
: t ∈ R+

}
R→∞−−−−→

law
G̃.

(ii) We prove
{
R−d+ β

2 Ât(R) : t ≥ 0
}

converges in law (hence in probability) to the zero

process, as R→∞. This will follow from the tightness of
{
R−d+ β

2 Â•(R) : R > 0
}

.

Proof of (i): It is clear that R−d+ β
2 Π1

(
At(R)

)
= R−d+ β

2

∫ t
0

∫
Rd
Gt−r(x−z)W (dr, dz), t ∈ R+

is a centered Gaussian process with

R−2d+βE
[
Π1

(
At(R)

)
Π1

(
As(R)

)]
=

∫ t

0

∫ s

0

dudvγ0(u− v)

∫
Rd
dξ

[∫
B2

1

dxdye−i(x−y)·ξ

]
cd,β‖ξ‖β−de−

(t−u+s−v)
2R2 ‖ξ‖2

by the same change of variables as in (3.34). By monotone convergence, we have

R−2d+βE
[
Π1

(
At(R)

)
Π1

(
As(R)

)] R→∞−−−−→
∫ t

0

∫ s

0

dudvγ0(u− v)

∫
B2

1

dxdy‖x− y‖−β .

This implies easily the convergence in finite-dimensional distributions. As in section 3.3,
we let s < t and write

Π1

(
At(R)

)
−Π1

(
As(R)

)
= J1,1,R + J2,1,R

with J1,1,R :=
∫ s

0

∫
Rd

(∫
BR

d1(s, t, x; s1, y1)dx
)
W (ds1, dy1) and

J2,1,R :=

∫ t

0

∫
Rd

(∫
BR

d2(s, t, x; s1, y1)dx

)
W (ds1, dy1),

where d1, d2 are introduced in (3.20), (3.21) and∣∣d1(s, t, x; s1, y1)
∣∣ ≤ C(t− s)α(s− s1)−αG(4t− 4s1, x− y1)1[0,s)(s1).

As before, we can write∥∥J1,1,R

∥∥2

L2(Ω)
=

∫ s

0

∫ s

0

ds1ds2γ0(s1 − s2)

∫
R2d

dy1dy2‖y1 − y2‖−β
∫
B2
R

dx1dx2

EJP 25 (2020), paper 48.
Page 45/54

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP453
http://www.imstat.org/ejp/


Averaging Gaussian functionals

× d1(s, t, x1; s1, y1)d1(s, t, x2; s2, y2)

≤ C(t− s)2α

∫ s

0

∫ s

0

ds1ds2γ0(s1 − s2)(s− s1)−α(s− s2)−α
∫
R2d

dy1dy2‖y1 − y2‖−β

×
∫
B2
R

dx1dx2G(4t− 4s1, x1 − y1)G(4t− 4s2, x2 − y2)

= C(t− s)2α

∫ s

0

∫ s

0

ds1ds2γ0(s1 − s2)(s− s1)−α(s− s2)−α
∫
Rd
dξcd,β‖ξ‖β−d

×
∫
B2
R

dx1dx2e
−i(x1−x2)·ξe−(2t−2s1+2t−2s2)‖ξ‖2

≤ C(t− s)2α

∫ s

0

∫ s

0

ds1ds2γ0(s1 − s2)s−α1 s−α2

∫
Rd
dξcd,β‖ξ‖β−d

×
∫
B2
R

dx1dx2e
−i(x1−x2)·ξ.

Making the change of variables (x1, x2, ξ)→ (Rx1, Rx2, ξ/R) yields

∥∥J1,1,R

∥∥2

L2(Ω)
≤ C(t− s)2αR2d−β

∫ s

0

∫ s

0

ds1ds2γ0(s1 − s2)s−α1 s−α2

∫
Rd
dξcd,β‖ξ‖β−d

×

(∫
B2

1

dx1dx2e
−i(x1−x2)·ξ

)
= C(t− s)2αR2d−βΓs,α

∫
B2

1

dxdy‖x− y‖−β ,

where Γs,α is given as in (3.18). Now let us estimate
∥∥J2,1,R

∥∥2

L2(Ω)
:

∥∥J2,1,R

∥∥2

L2(Ω)
=

∫ t

s

∫ t

s

ds1ds2γ0(s1 − s2)

∫
R2d

dy1dy2‖y1 − y2‖−β
∫
B2
R

dx1dx2

×G(t− s1, x1 − y1)G(t− s2, x2 − y2)

=

∫ t

s

∫ t

s

ds1ds2γ0(s1 − s2)

∫
Rd
dξcd,β‖ξ‖β−d

∫
B2
R

dx1dx2e
−i(x1−x2)·ξe−

(2t−s1−s2)
2 ‖ξ‖2

≤ R2d−β
∫ t

s

∫ t

s

ds1ds2γ0(s1 − s2)

∫
Rd
dξcd,β‖ξ‖β−d

∫
B2

1

dx1dx2e
−i(x1−x2)·ξ

≤ R2d−β(t− s)

(∫
B2

1

dxdy‖x− y‖−β
)(∫ t

−t
γ0(s1)ds1

)
.

Hence given T ∈ (0,∞), we have for any 0 < s < t ≤ T and for any k ∈ [2,∞),∥∥Π1

(
At(R)

)
−Π1

(
As(R)

)∥∥
Lk(Ω)

= ck
∥∥Π1

(
At(R)

)
−Π1

(
As(R)

)∥∥
L2(Ω)

≤ C(t− s)α,

where ck is the Lk(Ω)-norm of Z ∼ N(0, 1) and the constant C does not depend on R,
s or t. This gives us the desired tightness and hence leads to the functional CLT for{

Π1

(
At(R)

)
: t ∈ R+

}
.

Proof of (ii): Given T ∈ (0,∞), we consider any 0 < s < t ≤ T and as before, we write

Πp(At(R))−Πp(As(R)) = J1,p,R + J2,p,R.

Then following the arguments that led to (3.35), we have

∥∥J2,p,R

∥∥2

L2(Ω)
≤ CpRd

∫
SIMp(t−s)

dwpwpwp

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

‖ηj − ηj−1‖β−de−
wj‖ηj‖

2

2


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×
∫
Rd
dηp‖ηpR−1 − ηp−1‖β−d

∫
B2

1

dxdye−i(x−y)·ηpe−wp‖ηp‖
2/(2R2)

≤ CpR2d−β
∫

SIMp(t−s)
dwpwpwp

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

‖ηj − ηj−1‖β−de−
wj‖ηj‖

2

2

 , see (3.36)

≤ CpR2d−β(t− s)
∫

SIMp−1(t−s)
dwp−1wp−1wp−1

∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

‖ηj − ηj−1‖β−de−
wj‖ηj‖

2

2 .

By using (4.3) under the Dalang’s condition, we have∫
Rpd−d

dηp−1ηp−1ηp−1

p−1∏
j=1

‖ηj − ηj−1‖β−de−
wj‖ηj‖

2

2 ≤
p−1∏
j=1

∫
Rd
dηj‖ηj‖β−de−

wj‖ηj‖
2

2

so that by the same application of Lemma 3.3 in [9] as in (3.4), we deduce∥∥J2,p,R

∥∥2

L2(Ω)
≤ CR2d−β(t− s)(4CN )p−1.

where CN > 0 can be chosen arbitrarily small for large enough N , see (3.5).
Now let us estimate

∥∥J1,p,R

∥∥2

L2(Ω)
: Following the arguments around (3.25), (3.26),

(3.24), (3.28) and (3.29), we can write

∥∥J1,p,R

∥∥2

L2(Ω)
≤ C(t− s)2α 1

p!

∫
B2
R

dxdy
∑

σ,π∈Sp

∫
∆p(s)2

dsσps
σ
ps
σ
pdr

π
pr
π
pr
π
p

∏p
j=1 γ0(sj − rj)

(s− sσ1 )α(s− rπ1 )α

×
∫
Rpd

µ1(dξpξpξp)e
−i(x−y)·τ(ξpξpξp) exp

−1

2
Var

p∑
j=1

(X1
s −X1

sj ) · ξj

 ,

since
∫
B2
R
dxdye−i(x−y)·τ(ξpξpξp) is nonnegative;

≤ C(t− s)2αΓs,αΓp−1
s

p

∫
B2
R

dxdy

∫
SIMp−1(s)

dw2 · · · dwp

×
∫
Rpd

µ1(dξpξpξp)e
−i(x−y)·τ(ξpξpξp) exp

−1

2

p∑
j=2

wj‖ξ2 + · · ·+ ξj‖2
 .

Then by the usual change of variables ηj = ξ1 + · · ·+ ξj and (x, y, ηp)→ (Rx,Ry,
ηp
R ), we

have∫
B2
R

dxdy

∫
Rpd

µ1(dξpξpξp)e
−i(x−y)·τ(ξpξpξp) exp

−1

2

p∑
j=2

wj‖ξ2 + · · ·+ ξj‖2


=

∫
B2
R

dxdy

∫
Rpd

dηpηpηp‖ηp − ηp−1‖β−de−i(x−y)·ηpe−
1
2

∑p
j=2 wj‖ηj−η1‖

2
p−1∏
j=1

‖ηj − ηj−1‖β−d

= R2d−β
∫
Rpd−d

dηp−1ηp−1ηp−1e
− 1

2

∑p−1
j=2 wj‖ηj−η1‖

2

p−1∏
j=1

‖ηj − ηj−1‖β−d


×

(∫
B2

1

dxdy

∫
Rd
dηp‖ηp −Rηp−1‖β−de−i(x−y)·ηpe−

wp
2 ‖ηpR

−1−ηp−1‖2
)

≤

∫
B2

1
dxdy‖x− y‖−β

cd,β
R2d−β

∫
Rpd−d

dηp−1ηp−1ηp−1e
− 1

2

∑p−1
j=2 wj‖ηj−η1‖

2
p−1∏
j=1

‖ηj − ηj−1‖β−d
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≤ CR2d−β
p−1∏
j=1

∫
Rd
dηje

− 1
2wj‖ηj‖

2

‖ηj‖β−d

where the last inequality is a consequence of (4.3). So an application of Lemma 3.3 from
[9] yields ∥∥J1,p,R

∥∥2

L2(Ω)
≤ C(t− s)2α(4CNΓs)

p−1.

Therefore, for large enough N , we deduce from the hypercontractivity property that for
any k ∈ [2,∞)∥∥Ât(R)− Âs(R)

∥∥
Lk(Ω)

≤
∑
p≥2

(k − 1)p/2
(∥∥J1,p,R

∥∥
L2(Ω)

+
∥∥J2,p,R

∥∥
L2(Ω)

)
≤ C(t− s)αR2d−β

∑
p≥2

([
4(k − 1)CNΓs

]p/2
+
[
4(k − 1)CN

]p/2) ≤ C(t− s)αR2d−β .

This proves (ii), and hence concludes our proof. �

4 Proof of technical results

Proof of Proposition 2.7. Recall the definition of Ψp, which is defined almost everywhere
by the following change of variables:∫

Rpd
‖τ(ξpξpξp)‖−dJd/2(R‖τ(ξpξpξp)‖)2|Ffp|2(ξpξpξp)µ(dξpξpξp) =

∫
Rd
dx‖x‖−dJd/2(R‖x‖)2Ψp(x)

with Ψp(x) almost everywhere equal to∫
Rpd−d

|Ffp|2(ξp−1ξp−1ξp−1, x− τ(ξp−1ξp−1ξp−1))ϕ(x− τ(ξp−1ξp−1ξp−1))

p−1∏
j=1

ϕ(ξj)dξp−1ξp−1ξp−1 .

We write

σ2
p,RR

−d = ωdp!(2π)d
∫
Rd
`R(x)Ψp(x)dx ≥ ωdp!(2π)d

∫
{‖x‖≤R−1}

Rd`1(Rx)Ψp(x)dx

and for y = Rx ∈ B1, we have

(2π)dωd`1(y) =

(∫
B1

e−iy·udu

)2

=

(∫
B1

cos(y · u)du

)2

∈
[

cos(1)2ω2
d, ω

2
d

]
. (4.1)

As a consequence,

σ2
p,RR

−d ≥ p!ω2
d cos(1)2Rd

∫
‖x‖≤R−1

Ψp(x)dx

= p!ω2
d cos(1)2Rd

∫
{‖τ(ξpξpξp)‖≤R−1}

|Ffp|2(ξpξpξp)µ(dξpξpξp) = p!ω2
d cos(1)2RdΨ̂p(R

−1).

This gives us
lim inf
R→+∞

σ2
p,RR

−d ≥ ωd cos(1)2p! lim inf
R→+∞

RdΨ̂p(R
−1) > 0 .

For the upper bound, we proceed as follows:

σ2
p,RR

−d = ωdp!(2π)d
∫
Rd
`R(x)Ψp(x)dx

= ωdp!(2π)d
∫
‖x‖≤R−1

Rd`1(Rx)Ψp(x)dx+ ωdp!(2π)d
∫
‖x‖>R−1

`R(x)Ψp(x)dx .
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It follows from (4.1) that

(2π)d
∫
‖x‖≤R−1

Rd`1(Rx)Ψp(x)dx ≤ ωdRd
∫
‖x‖≤R−1

Ψp(x)dx = ωdR
dΨ̂p(R

−1) .

By Lemma 2.1, there exists some absolute constant C such that `R(x) ≤ C(R/n)dn−1 for
n ≤ R‖x‖ < n+ 1. Therefore,∫

‖x‖>R−1

`R(x)Ψp(x)dx =

∞∑
n=1

∫
nR−1≤‖x‖<(n+1)R−1

`R(x)Ψp(x)dx

≤ C
∞∑
n=1

∫
nR−1≤‖x‖<(n+1)R−1

(R/n)dn−1Ψp(x)dx

= CRd
∞∑
n=1

n−d−1
(

Ψ̂p(
n+ 1

R
)− Ψ̂p(

n

R
)
)

= CRd
∞∑
n=2

Ψ̂p(n/R)
[
(n− 1)−d−1 − n−d−1

]
≤ CRd

∞∑
n=2

Ψ̂p(n/R)n−1(n− 1)−d−1

= CRd
∑

2≤n≤Rδ+1

Ψ̂p(n/R)n−1(n− 1)−d−1 + CRd
∑

n>Rδ+1

Ψ̂p(n/R)n−1(n− 1)−d−1,

where δ = d/(d+ 1). This implies

∫
‖x‖>R−1

`R(x)Ψp(x)dx ≤ C

(
sup

h≤R−1+Rδ−1

Ψ̂p(h)

hd

) ∑
2≤n≤Rδ+1

nd−1

(n− 1)d+1


+ CΨ̂p(∞)

∑
n>Rδ+1

n−1Rd

(n− 1)d+1

≤ C

(
sup

h≤R−1+Rδ−1

Ψ̂p(h)h−d

)
+ C .

Therefore,
lim sup
R→+∞

σ2
p,RR

−d ≤ C + C lim sup
R→+∞

Ψ̂p(h)h−d <∞ .

This finishes our proof.

Proof of Lemma 2.8. Notice that the condition fp ∈ L1(Rpd) implies Ffp is uniformly
continuous and bounded. We fix a generic z ∈ Rd, and we write

|Ψp(x)−Ψp(z)| ≤
∫
Rpd−d

∣∣∣∣∣|Ffp|2
(
ξp−1ξp−1ξp−1, x− τ(ξp−1ξp−1ξp−1)

)
ϕ
(
x− τ(ξp−1ξp−1ξp−1)

)
− |Ffp|2

(
ξp−1ξp−1ξp−1, z − τ(ξp−1ξp−1ξp−1)

)
ϕ
(
z − τ(ξp−1ξp−1ξp−1)

)∣∣∣∣∣
p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1

≤ A1(x) +A2(x),

where

A1(x) :=

∫
Rpd−d

∣∣∣∣∣|Ffp|2
(
ξp−1ξp−1ξp−1, x− τ(ξp−1ξp−1ξp−1)

)
− |Ffp|2

(
ξp−1ξp−1ξp−1, z − τ(ξp−1ξp−1ξp−1)

)∣∣∣∣∣
× ϕ

(
x− τ(ξp−1ξp−1ξp−1)

) p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1
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and

A2(x) :=

∫
Rpd−d

|Ffp|2
(
ξp−1ξp−1ξp−1, z − τ(ξp−1ξp−1ξp−1)

)∣∣∣∣∣ϕ(x− τ(ξp−1ξp−1ξp−1)
)
− ϕ

(
z − τ(ξp−1ξp−1ξp−1)

)∣∣∣∣∣
p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1.

Estimation of A1: We write

A1(x) ≤ sup
ηp−1ηp−1ηp−1∈Rpd−d

∣∣∣|Ffp|2
(
ηp−1ηp−1ηp−1, x− τ(ηp−1ηp−1ηp−1)

)
− |Ffp|2

(
ηp−1ηp−1ηp−1, z − τ(ηp−1ηp−1ηp−1)

)∣∣∣
×
∫
Rpd−d

ϕ
(
x− τ(ξp−1ξp−1ξp−1)

) p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1.

The first factor tends to zero as x → 0, due to the uniform continuity of Ffp. We
rewrite the second factor as the p-convolution ϕ∗p(x) and we deduce from (2.5) that∥∥ϕ∗p∥∥∞ ≤ ‖ϕ‖pLq(Rd)

. Thus, we obtain that A1(x)→ 0, as x→ 0. Moreover, the previous

computations also lead to A1(x) ≤
∥∥|Ffp|2

∥∥
∞‖ϕ‖

p
Lq(Rd)

<∞.

Estimation of A2: Using the boundedness of Ffp, we write

A2(x) ≤ C
∫
Rpd−d

∣∣∣ϕ(x− τ(ξp−1ξp−1ξp−1)
)
− ϕ

(
z − τ(ξp−1ξp−1ξp−1)

)∣∣∣ p−1∏
i=1

ϕ(ξi)dξp−1ξp−1ξp−1

= C

∫
Rd
dy
∣∣ϕ(x− y)− ϕ(z − y)

∣∣(∫
Rpd−2d

ϕ
(
y − τ(ξp−2ξp−2ξp−2)

) p−2∏
i=1

ϕ(ξi)dξp−2ξp−2ξp−2

)

= C

∫
Rd

∣∣ϕ(x− y)− ϕ(z − y)
∣∣ϕ∗p−1(y) dy ≤ C

∥∥ϕ(x− •)− ϕ(z − •)
∥∥
Lq(Rd)

‖ϕ∗p−1‖Lp(Rd),

where we made the change of variables ξp−1ξp−1ξp−1 → (ξp−2ξp−2ξp−2, y − τ(ξp−2ξp−2ξp−2)) in the first equality.
We know from the proof of (2.5) that ‖ϕ∗p−1‖Lp(Rd) ≤ ‖ϕ‖

p−1
Lq(Rd)

, so

A2(x) ≤ C‖ϕ‖p−1
Lq(Rd)

∥∥ϕ(x− •)− ϕ(z − •)
∥∥
Lq(Rd)

x→z−−−→ 0 .

The above bound also indicates that A2 is uniformly bounded.
Hence we conclude our proof by combining the above two estimates.

Proof of Lemma 2.10. Let us first prove the boundedness. Since fp ∈ L1(Rpd), Ffp is

uniformly bounded, so that
∣∣Ψ(r,δ)

p (x, y)
∣∣ ≤ Cϕ∗p(x)ϕ∗p(y) ≤ C‖ϕ‖2p

Lq(Rd)
, where the last

inequality follows from (2.5). Now let us show the continuity. To ease the presentation,
we define

Mx,y ≡Mx,y

(
ξrξrξr, ξ̃r−1ξ̃r−1ξ̃r−1, ηp−rηp−rηp−r, η̃p−r−1η̃p−r−1η̃p−r−1

)
= |Ffp|2

(
ηp−rηp−rηp−r, ξ̃r−1ξ̃r−1ξ̃r−1, x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
|Ffp|2

(
η̃p−r−1η̃p−r−1η̃p−r−1, y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1), ξrξrξr

)
.

Suppose xn, yn ∈ Rd converge to x and y respectively, as n→ +∞. Then∣∣Ψ(r,δ)
p (x, y)−Ψ(r,δ)

p (xn, yn)
∣∣

≤
∫
R2pd−2d

dξrξrξrdξ̃r−1ξ̃r−1ξ̃r−1dηp−rηp−rηp−rdη̃p−r−1η̃p−r−1η̃p−r−11{‖τ(ξrξrξr)+τ(ηp−rηp−rηp−r)‖<δ}

(
r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ(ξr)ϕ(ηp−r)

×

p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

∣∣∣∣∣Mx,yϕ
(
y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)
ϕ
(
x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
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−Mxn,ynϕ
(
yn − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)
ϕ
(
xn − τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)∣∣∣∣∣ ≤ A1,n +A2,n ,

where

A1,n =

∫
R2pd−2d

dξrξrξrdξ̃r−1ξ̃r−1ξ̃r−1dηp−rηp−rηp−rdη̃p−r−1η̃p−r−1η̃p−r−11{‖τ(ξrξrξr)+τ(ηp−rηp−rηp−r)‖<δ}

(
r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ(ξr)ϕ(ηp−r)

×

p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

ϕ
(
y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)
ϕ
(
x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
×
∣∣Mx,y −Mxn,yn

∣∣
A2,n =

∫
R2pd−2d

dξrξrξrdξ̃r−1ξ̃r−1ξ̃r−1dηp−rηp−rηp−rdη̃p−r−1η̃p−r−1η̃p−r−11{‖τ(ξrξrξr)+τ(ηp−rηp−rηp−r)‖<δ}

(
r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ(ξr)ϕ(ηp−r)

×

p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

Mxn,yn

∣∣∣∣∣ϕ(y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)
)
ϕ
(
x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
− ϕ

(
yn − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)
ϕ
(
xn − τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)∣∣∣∣∣ .
It follows immediately from the first part of our proof that

A1,n ≤ C‖ϕ‖2pLq(Rd)
sup

{
|Mxn,yn −Mx,y| : ξrξrξr, ξ̃r−1ξ̃r−1ξ̃r−1, ηp−rηp−rηp−r, η̃p−r−1η̃p−r−1η̃p−r−1

}
n→+∞−−−−−→ 0 ,

due to the uniform continuity of Ffp. Now, using ‖Ffp‖∞ <∞, we write

A2,n ≤ C
∫
R2pd−2d

dξrξrξrdξ̃r−1ξ̃r−1ξ̃r−1dηp−rηp−rηp−rdη̃p−r−1η̃p−r−1η̃p−r−1

(
r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ(ξr)ϕ(ηp−r)

×

p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

∣∣∣∣∣ϕ(y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)
)
ϕ
(
x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
− ϕ

(
yn − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)
ϕ
(
xn − τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)∣∣∣∣∣ ≤ C(A21,n +A22,n),

with

A21,n :=

∫
R2pd−2d

dξrξrξrdξ̃r−1ξ̃r−1ξ̃r−1dηp−rηp−rηp−rdη̃p−r−1η̃p−r−1η̃p−r−1

(
r−1∏
i=1

ϕ(ξi)ϕ(ξ̃i)

)
ϕ(ξr)ϕ(ηp−r)

×

p−r−1∏
j=1

ϕ(ηj)ϕ(η̃j)

∣∣∣∣∣ϕ(y − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)
)
− ϕ

(
yn − τ(ξrξrξr)− τ(η̃p−r−1η̃p−r−1η̃p−r−1)

)∣∣∣∣∣
× ϕ

(
x− τ(ξ̃r−1ξ̃r−1ξ̃r−1)− τ(ηp−rηp−rηp−r)

)
= ϕ∗p(x)

∫
Rpd−d

dξp−1ξp−1ξp−1

(
p−1∏
i=1

ϕ(ξi)

)∣∣∣ϕ(y − τ(ξp−1ξp−1ξp−1)
)
− ϕ

(
yn − τ(ξp−1ξp−1ξp−1)

)∣∣∣
and smilarly,

A22,n := ϕ∗p(yn)

∫
Rpd−d

dξp−1ξp−1ξp−1

(
p−1∏
i=1

ϕ(ξi)

)∣∣∣ϕ(x− τ(ξp−1ξp−1ξp−1)
)
− ϕ

(
xn − τ(ξp−1ξp−1ξp−1)

)∣∣∣ .
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Put ϕy(x) = ϕ(x− y), so we can rewrite∫
Rpd−d

dξp−1ξp−1ξp−1

(
p−1∏
i=1

ϕ(ξi)

)∣∣∣ϕ(x− τ(ξp−1ξp−1ξp−1)
)
− ϕ

(
xn − τ(ξp−1ξp−1ξp−1)

)∣∣∣ =
(
ϕ∗p−1 ∗ |ϕ−x − ϕ−xn |

)
(0),

which is bounded by∥∥ϕ∗p−1
∥∥
Lp(Rd)

‖ϕ−x − ϕ−xn‖Lq(Rd) ≤
∥∥ϕ∥∥p−1

Lq(Rd)
‖ϕ−x − ϕ−xn‖Lq(Rd)

n→+∞−−−−−→ 0 ,

that is, A22,n → 0, as n → +∞. The same arguments also imply that A21,n → 0, as
n→ +∞. This concludes our proof.

Lemma 4.1. Let ϕ1 be given as in Theorem 1.6. Then for any x, y ∈ Rd and s > 0, we
have ∫

Rd
e−s‖η‖

2

ϕ1(η − x)ϕ1(y − η)dη ≤
∫
Rd
e−s‖η‖

2

ϕ2
1(η)dη (4.2)

and ∫
Rd
e−s‖η‖

2

ϕ1(η − x)dη ≤
∫
Rd
e−s‖η‖

2

ϕ1(η)dη. (4.3)

Proof. It suffices to prove it for x = y, as the general case follows from the Cauchy-
Schwarz inequality and symmetry of ϕ1.

Put h(η) = e−s‖η‖
2

, then its Fourier transform Fh is a nonnegative function. Then,
we write, using Plancherel’s identity and the fact ϕ2

1 = 1
(2π)2d

F (γ1 ∗ γ1)∫
Rd
h(η)ϕ1(η − x)2dη =

∫
Rd
h(η + x)

1

(2π)2d
F (γ1 ∗ γ1)(η)dη

=

∫
Rd

(Fh)(a)eiax
1

(2π)2d
(γ1 ∗ γ1)(a)da (γ1 is also nonnegative)

≤
∫
Rd

(Fh)(a)
1

(2π)2d
(γ1 ∗ γ1)(a)da =

∫
Rd
h(η)ϕ1(η)2dη ,

which proves (4.2). The same argument also leads easily to (4.3).
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