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Abstract

We prove the existence and uniqueness of entropy solutions for nonlinear diffusion
equations with nonlinear conservative gradient noise. As particular applications our
results include stochastic porous media equations, as well as the one-dimensional
stochastic mean curvature flow in graph form.
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1 Introduction

In this work we consider stochastic partial differential equations of the type

du = (A(I)(u) +V-G(a, u)) dt + i (V- 0¥ (w,u)) o dB¥(t) on (0,T) x T
k=1 (1.1)

u(0,z) = &(),

where T? is the d-dimensional torus, 5’“ are independent R-valued Brownian motions,
® : R — R is a monotone function (cf. Assumption 2.2 below) and the coefficients
G:T?xR — R% 0% : T4 x R — R? are regular enough (cf. Assumption 2.3 below). The
main results of this work are the existence and uniqueness of entropy solutions to (1.1)
(Theorem 2.7 below) and the stability of (1.1) with respect to ® (Theorem 4.1 below).
Stochastic partial differential equations of the type (1.1) arise as limits of interacting
particle systems driven by common noise, with notable relation to the theory of mean
field games [35, 36, 37], in the graph formulation of the stochastic mean curvature/curve
shortening flow [30, 47, 9, 11] and as simplified approximating models of fluctuations
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Nonlinear diffusion equations with gradient noise

in non-equilibrium statistical physics [10]. We refer to [14] and the references therein
for more details on these applications. In particular, the results of this work imply the
well-posedness of the stochastic mean curvature flow in one spatial dimension with
spatially inhomogeneous noise, in the graph form,

2 oo
du MdHth(m)\/H|amu|2od5’f(t), (1.2)
k=1

EEESERTE

and thus extend the works [11, 22] which were restricted to noise either satisfying a
smallness condition or being independent of the spatial variable. For an alternative
approach to stochastic mean curvature with spatially inhomogeneous noise based on
stochastic viscosity solutions see [41, 42, 46] and the references therein.

Generalized stochastic porous medium equations of the type

du(t,z) = AD(u(t, z)) dt + B(u)dW; (1.3)

have attracted considerable interest and their well-posedness has been obtained for
several classes of nonlinearities ®, diffusion operators B, boundary conditions and lower
order perturbations. We refer to the monographs [44, 31, 45, 40, 1] for a detailed
account on these developments and to [4, 27, 2, 3, 8, 16, 19, 13] and the references
therein for recent contributions. While linear gradient noise (cf. e.g. [6, 48, 43]), that is,
o¥(z,u) = h*(z)u in (1.1) to some extent can be treated by these methods, the nonlinear
structure of the gradient noise in (1.1) requires entirely different techniques. Only in
recent years, in a series of works [38, 39, 26, 24, 25, 23] a kinetic approach to (simpler
versions of) (1.1) was developed based on rough path methods, cf. also [28, 21, 17, 18],
for numerical methods and regularity/qualitative properties of the solutions. In the most
recent contribution [14] the path-by-path well-posedness of kinetic solutions to (1.1),
with ®(u) = ulu|/™~! for m € (0, 00) (fast and slow diffusion), was proved for the first time
for non-negative initial data, while for sign-changing data the uniqueness was restricted
to the case m > 2. As it is well-known from the theory of rough paths, such path-by-path
methods require stronger regularity assumptions on the diffusion coefficients than what
would be expected based on probabilistic methods. More precisely, when applied to (1.1),
the results of [14] require ak(z,u) € C’J(']I‘d x R) Vk € NN, for some v > 5. Moreover,
the construction of kinetic solutions presented in [14] relies on the fractional Sobolev
regularity of the solutions, which is available only in the particular case ®(u) = |u|™ u,
m € (0, 00).

The key aims of the current work are to obtain well-posedness without sign restric-
tions on the initial data that covers the full spectrum of m for the slow diffusion (m > 1),
to relax the regularity assumptions on the diffusion coefficients ¢*, and to treat a general
class of diffusion nonlinearities ®. These aims are achieved by developing a probabilistic
entropy approach to (1.1) leading to the relaxed regularity assumption (cf. Assumption
2.3 below for details) o*(z,u) € C3(T% x R) Vk € N. The treatment of general diffusion
nonlinearites ® is achieved by using quantified compactness in order to prove stability
of (1.1) with respect to variations in ®. Based on this, the strong convergence of approx-
imations can be shown, without relying on the compactness arguments from [14] which
were restricted to the case ®(u) = |u|™ u. In particular, this generalization allows the
application to the stochastic mean curvature flow. The proof of stability relies on entropy
techniques and a careful control of the errors arising in the corresponding doubling the
variables argument which was initiated in [7] and is disjoint from the kinetic techniques
put forward in [14].

The structure of the article is as follows. In Section 2 we formulate our main results
concerning equations of porous medium type. In Section 3 we gather some lemmata that
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are needed for the proof of our main results. In Section 4, we prove the main estimates
in L;(T%) leading to uniqueness and stability and in Section 5 we show existence and
uniqueness for non-degenerate equations. In Section 6 we use the results if the two
previous sections in order to prove our main theorem. Finally, in Section 7, we explain
the modifications that need to be done in the proof of Theorem 2.7 in order to obtain
existence and uniqueness of solutions of equation (1.2).

1.1 Notation

We fix a filtered probability space (,(F;)epr),P) carrying a sequence
(B%(t))kew,tepo,r) of independent, one-dimensional, (F;)-Wiener processes. We intro-
duce the notations Qr = Q x [0,T], Q7 = [0,T] x T?. Lebesgue and Sobolev spaces
are denoted in the usual way by L, and WF, respectively. When a function space is
given on (2 or €1y, we understand it to be defined with respect to F := Fr and the
predictable o-algebra, respectively. In all other cases the usual Borel o-algebra will be
used. Moreover, throughout the whole article we fix a constant m > 1.

We fix a non-negative smooth function p : R — R which is bounded by 2, supported
in (0,1), integrates to 1 and, for § > 0, we set pg(r) = 0~ 'p(6~'r). When smooth-
ing in time by convolution with py, the property that p is supported on positive times
will be crucial. For spatial regularisation this fact will be irrelevant, but for the sake
of simplicity, we often use pff’d for smoothing in space as well. In the proofs of lem-
mas/theorems/propositions, we will often use the notation a < b which means a < Nb
for a constant N which depends only on the parameters stated in the corresponding
lemma/theorem/proposition. For a function g : T¢ x R — R we will often use the notation

o), 7) = / " g(a.s) ds.

If g does not depend on x € T¢, then we will write [g](r). For a function g on T¢ xR, we will
write g,, 0,¢ for the derivative of g with respect to the real variable r € R and g,,, 0,, ¢ for
the partial derivatives of g in the periodic variable z € T9. If v = (71, ..., 74) € (INU {0})¢
is a multi-index, we will write 8¢ := 87*...9)¢g. For 8 € (0,1), C” will denote the usual
Holder spaces and [-]os will denote the usual semi-norm. In addition, the summation
convention with respect to integer valued indices will be in use. In particular, expressions
of the form a’b’, f?0,, and fi will stand for }_,a’d’,, f'0,, and ), fi respectively,
unless otherwise stated. Finally, when confusion does not arise, in integrals we will drop
some of the integration variables from the integrands for notational convenience.

2 Formulation and main results

Fori,j € {1,...,d}, let us set

') 00 d
1 )
a(z,7) = 5 > ok @, r)olF (@), V() =D o (e,r) ) oli(x,r),
k=1 k=1 j=1

and
fi(z,r) = G'(x,7r) — %bi(m,r).
With this notation we rewrite (1.1) in It6 form
du = (A®(u) + 9y, (a” (z,u)0p,u + b (z,u) + f*(z,u))) dt
+ 0,0 (z,u) dB* (1) (2.1)
u(0) =¢.
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Remark 2.1. Formally, we have
Dy, 0 (z,u) 0 dB*(t) =0y,0 (2, u)dB" ()
1 )
+0,, (0 (z,u)0y,u) + §3mbz(z, w) dt.
In (2.1) we add b’ /2 and then we subtract it from G' in order to make cancellations with
terms coming from the It6 correction when applying 1t6’s formula apparent. Despite the

fact that 9,0’ and 0,, f are of the same nature, they will be treated slightly differently
to exploit these cancellations.

We will often write II(®,¢) to address equation (2.1) with initial condition £ and
nonlinearity ®. To formulate the assumptions on & let us set

a(r) = /P'(r).
Assumption 2.2. The following hold:

(a) The function ® : R — R is differentiable, strictly increasing and odd. The function a
is differentiable away from the origin, and satisfies the bounds

a(0)| < K, |o'(r)| < K|r|*T  ifr >0, 2.2)

as well as

Ir—¢l, if[r[ V[ =1,

2.3
e, if|r| V¢ < 1. (2-3)

Ka(r) > Isi, Klal(r) - [6(0)] {

r =

(b) The initial condition ¢ is an Fy-measurable L,,,(T%)-valued random variable such
that ]E|\g||m+1 (Tay < 00

Assumption 2.3. For i € {1,...,d} we consider functions G* : T x R — R, and o' =
(c*)22, : T¢ x R — Iy such that for alll € {1,...,d}, ¢ € {1,2}, and all multi-indices
v e (N U {0})? with q + |y| < 3, the derivatives 0, Gi, 02, G*, By, G, 010) 0" exist and are
continuous on T% x R. Moreover, there exist & € (m A2)~1,1], 8 € ((28)~,1], B € (0,1),
and a constant Ny € R such that for alli,l € {1,...,d}, r € R we have:

sup oy (o ) lwz, (resy) + [02, (- 0)l s (pe 1) < No, (2.4)

SUP ([or(z, Vesmin) + ||Uf-xl (z, ')”Wolo(]R;lz)) < N, (2.5)

10 (@2} o) Lo < No, (2.6)

sup Gy (2, Ml s (ry + sup 10:(07F03¥) |y < No, (2.7)

(G, () ey + 10 (02, 7)o (D) iy < No(L+ Ir]), (2.8)

102,0: (07 )| Lo + Gl < No (2.9)

Remark 2.4. By Assumption 2.3, it follows that there exists a constant /N; such that, for
allr € R

sup |G (e, )| + sup \(aik(x,r)agf(x,rﬂ < Ny (1+r)), (2.10)

sup [Or, (o F(z, T)Ui’j(xﬂ“))\ +sgplGil(fw)\ S Ni(1+ ), (2.11)

sup o7, (, 7)1, < Ni(1+ 7)), (2.12)

(03 () em(ra sy < Ni(1+ |r)). (2.13)
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We now motivate the concept of entropy solutions. Suppose that we approximate
equation (2.1) with a viscous equation, that is, in place of ®(u) we have ®(u) + eu for
¢ > 0. Let us choose a non-negative ¢ € C°([0,7) x T?¢) and a convex n € C*(R). If
u(= u®) solves the viscous version of (2.1), by It6’s formula we have (formally)

d | on(u)dr= /R (@) =0 () (Wi, G, = b, (w)a” (W)tte; = do’ (W' (u)) dadt

+ /T o )i, + () ddt

+ /T ) en(u)Ad — epn’ (u)|Vul? dedt

_ /T o () (116 ()] + ¥ ()t s, + v, () i

+ ” %q&n"(u) (2&]‘ (W)t U, + 26" (W) g, + D |a;’j(u)|2> dadt

n

+ ” o1 (u)dy, 0 (u) dzdB*(t). (2.14)

By integration by parts and the cancellations we have
d [ twods = [ @)+ 8510000 + 00 (w)b,s,) dads
[ (] = £ = of ¥ () 6, s
(2, () — [ () & dd
en(u)Ag — egn” (u)|Vul? dedt
30 S ot~ IV <u>|2¢> dad

(' (oo’ (w) = o7 '/ (w)d — (07" |(w)ps,) dzdB*(t). (2.15)

Now we want to pass to the limit ¢ | 0. Assuming for the moment that u® converges to
some u as € | 0 we may expect that

T
/ / en(u®)A¢ dxdt — 0.
0o Jrd
In contrast, this may not be valid for the term
T
I = —/ / epn’ (u)|Vul? dadt,
0 JTd

since, in general, Vu5||%2(QT) ~ 71, However, since I, < 0, one may drop the term I,
from the right hand side of (2.15), replace the equality with an inequality, and then pass
to the limit € | 0. This motivates the following definition.

Definition 2.5. An entropy solution of (2.1) is a predictable stochastic process u : Qp —
Lm—i—l(rEd) such that

(i) w € Lpy1(Q7; Lini1(TY))
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(ii) For all f € Cy(R) we have [af](u) € La(Q7; W3 (T?)) and
O, [af](u) = f(u)0z,[a](u).

(iii) For all convex n € C?(R) with 1 compactly supported and all ¢ > 0 of the form
¢ = po with p € C°([0,T)), o € C=(T?), we have almost surely

—/T /Td n(u)py dadt

S/ dx+/ /Td wAG + [a](u) by, dudt
/ /Td = 'l (u )—n/(u)bi(u)) b, dadt

+/0 /Td (' () f3, (u) = [fra,'(w)) & dwdt

+/0T/w< ROLHCIEEAL W[a](u)%) dudt

T
/ ik ik o/ ik, 1 k
[ ] ot — ke~ ofawo.,) drs o). @.16)

Remark 2.6. In [14] a notion of pathwise kinetic solutions to (1.1) has been intro-
duced. It is expected, although not immediate to prove, that in the regime where
both approaches apply, pathwise kinetic solutions and entropy solutions in the sense
of Definition 2.5 coincide. The difficulty in validating this lies in the identification of
the stochastic integral in [14]. In fact, in [14] no meaning is given to the stochastic
integral itself, but solutions are obtained as limits of smooth approximations of the
noise. As a consequence, the identification of the two concepts would require the
proof of a Wong-Zakai approximation result on the approximative level [14, equation
(5.D1.

Theorem 2.7. Let ®, ¢ satisfy Assumptions 2.2 and o, G satisfy Assumption 2.3. Then,
there exists a unique entropy solution of equation (2.1) with initial condition €. Moreover,
if u is the unique entropy solution of equation (2.1) with initial condition 5 then

ests<S}1p Ellu(t) —a(t)| , (rey < NE[I€ - §||L1(Td), (2.17)
where N is a constant depending only on Ny, N1, d and T'.

3 Auxiliary results

In this section we state and we prove some tools that will be used for the proofs of
the main theorem. We begin with two remarks.

Remark 3.1. For any functions f : Rx T? - R, v : T - R, ¢ : T — R (that are
regular enough for the following expressions to make sense) and any a € R we have

/Td Or, () /O“(w) f(r,z)dsdx — /Td o(x) /Ou(x) By, f(r, x) dsdz
:/Td O, 0(2) /a“(f) fr,x)dsdx — /Td o(x) /au(r) Oy, f(r, ) dsdx.
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Remark 3.2. For any f € L;1(0,7) and 6 € (0,7) we have

/ / |dsdt<e/ s)| ds. (3.1)

Lemma 3.3. Let u be an entropy solution (2.1). Then we have that

lim ]E/ / u(t, ) — &(z)|* dedt = 0.
h—>0 Td

Proof. For p. := pE , we have

fIE/ /|utx |2dt<21E/ E(y) = &(@) 0 (x — y)

/ / u(t, z) — &(y)|?0e (z — y) dt. (3.2)

We first estimate the second term on the right hand side for & € [0, T']. Take a decreasing,
non-negative function v € C*°([0,77), such that

1
¥(0) =2, v <2lgon, Ay < —EI[O,h]-
Take furthermore for each 6 > 0, n; € C?(R) defined by

15(0) = n5(0) = 0, 0 (r) = 2lj05-1)(Ir[) + (=Ir| + 07" + 2)Ij5-1,5-149) (7],

and notice that ns(r) — r> as § — 0. Let y € T? and a € R. Then, using the entropy
inequality (2.16) with ¢(¢, ) = v(t)o:(x — y), n(r) = ns(r — a), we obtain

- / ns(u — a)dy(t)ee (= — v)
< 2/775(5—@@5(%—2/)

+N/ (L ™ o™ ) [ D 10nm, 0c(x = )|+ D 10, 0:(x = y)| + 0e(z — y) | ¥(2)

ij

1
+§/ ng (u— a) ZIG (z,u)[?0s(x — y)(t)

/ / s — )0t (u) — [0 14 — )| (W) — [ h(- — )] (w)b,) dBE(2),

where for the second term on the right hand side we have used (2.2), (2.7), (2.11), (2.9),
(2.4), and (2.12). Notice that all the terms are continuous in a € R. Upon substituting
a = £(y) taking expectations, integrating over y € T, and using the bounds on v, one
gets

h
%/0 E/ ns(u(t,z) — £(y))oe(z — y) dt
< 21E/ ns(€(x) — &£(y))o=(z —y)

s 1 t, m+1 m+1 dt
/0 / (L4 Jult,2) "+ () ™)
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+E [ B / )~ ) S alt ) P — ) .

In the limit 6 — 0 this yields
/ / ult2) = €w)Poxte — )t <28 [ [elw) — &) Porlo —y) de
T,y

2h
SE / / (L4 ult, )™+ [6(2) ) de

2h
" QE/ / > otk (@, ult, )P (x — y) dt,

Yok

which implies that

limsup 1 / / u(t,z) — £(y)Po-(a — y) dt < 2 / €(x) — £ Poe(z — 1),

h—0 z,Y

Consequently, by (3.2) we get

limsup = E/ [ty = s@P <3 [ lee) )Pt —v)

h—0 T,y

from which the claim follows, since right hand side goes to 0 as € — 0 due to the
continuity of translations in Ly (T9). O

The proof of the following lemma can be found in [7, Lemma 3.1].

Lemma 3.4. Let Assumption 2.2 hold, let u € L1(2 x Qr) and for some ¢ € (0,1), let
o : R? — R be a non-negative function integrating to one and supported on a ball of
radius €. Then one has the bound

E/ Jult, z) = u(t, y)|e(x — y) < New#t (1 + El|V[a] ()| £, (@r)), (3.3)
t,x,y

where N depends ond, K and T.

We now introduce the definition of the (x)-property, an analog of of which was first
introduced in [15] in the context of stochastic conservation laws. It is somewhat technical
but important in order to obtain the uniqueness of entropy solutions. To be more precise,
as a first step, we will estimate the difference of two entropy solutions provided that one
of them has the (x)-property. In the construction of entropy solutions it will be verified
that, given that the initial condition is sufficiently integrable in w, the constructed
solutions indeed satisfy the (x)-property (see Corollary 3.9 and Lemma 5.3 below).

Let h € C®(R) with »’ € CX(R), o € C®(T¢ x T, ¢ € C>*((0,T)), @ €
Lpns1(Q7; Ly (T?)), and let o satisfy Assumption 2.3. For # > 0, we introduce

do(t,x,8,y) := oz, y)pe(t — s)¢ (t —~2— S> .

We further define

T
Foltooa) = [ [ b - ot a)dn(t,z, s, d5*(5)
0 y
T
[ [t =l asntt.as s
0 Jy
EJP 25 (2020), paper 35. http://www.imstat.org/ejp/
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- [ [ -l aa et dit)

and

B(u,ﬂ,é)):—E/ms)y iz ¢9/ / F(y, 7)od (x, r) didr

—E/t“,ya%@/ / "y, F)ols (x,7) didr

+E/myayi¢e/u (7 — wo (y, P2 (z, u) dF

_]E/ aIJ(z)e/ / h/ (y’ ) k(LIJ T) didr
t,x,s,y .
- /tx s,y ¢9 / / h/ 7‘];/1 (yv F)UZI;] ('ry T) drdr

+E»[msy¢9/ h/T’—u 7y1(ya ) k(l‘,u)df
E Oz d)ol g
+ /t“y ,¢0/ (i — )0 (y, @)o ¥ (z, ) dr

E ,i)olk d

+ /%/ o (y, @)l (,7) dr

—]E/ poh/ (i — u)oy (y, W)olt (x, ), (3.4)
t,x,s,y

where v = u(t,z) and @ = a(s,y).
Remark 3.5. The function Fj is smooth in (¢,z,a) (see, e.g., [34, Exercise 3.15, page
78]).

Set = p(m) = ﬁzﬁ’), which is chosen so that one has 2(’:;131) <p<l

Definition 3.6. A function u € L,, (7 x T?) is said to have the (x)-property if for all

h, 0, v, Ui as above, and for all sufficiently small § > 0, we have that Fy(-,-,u) € Ly (Q7 xT9)
and

]E/ Fo(t,x,u(t,z)) < NO' ™" + B(u, @, 0) (3.5)
t,x

)

hold with some constant N independent of 6.

Remark 3.7. Notice that since ¢ is supported in (0,7") and py(¢t — -) is supported in
[t — 0,t], we have for all sufficiently small 0

t
Fy(t,z,a) :It>9/ Wi — a)oiF (y, @) da(t, x, s,y) dB*(s)
t—0 Jy
L / D)0t 2,5, 9)d5" (5
t—0
_It>0/ /[Ufﬂkh( — a)|(y, @)Dy, ¢o(t, x, s,y) dB¥ (s). (3.6)
t—0Jy
Lemma 3.8. For any \ € (55, 1), k € IN we have for all sufficiently small 6 € (0,1)
E|| 0, Fl|7 ! < NO~MmHIAL (1), (3.7)

L ([0,T7; m+1(Td><]R))

EJP 25 (2020), paper 35. http://www.imstat.org/ejp/
Page 9/43


https://doi.org/10.1214/20-EJP436
http://www.imstat.org/ejp/

Nonlinear diffusion equations with gradient noise

where

m+1 ~ m+1
Lm;—l (Td) + ||u(t) ||L2 (’]I‘d)) dt

N (1) ::E/O (1 + [|a(®)

and N is a constant depending only on Ny, N1, k,d, T, )\, m, and the functions h, g, ¢, but
not on . In particular,

El|0.Foll7

A(m+1)
Ea oW vy S VO AEIAILT (o)) (3.8)

Proof. To ease the notation we suppress the y € T¢ argument in & and the s,y € Qr
arguments in 4. Forany ¢ € N%, [ € IN, j € {0, 1}, we have by the Burkholder-Davis-Gundy
inequality

E|87 05109 Fy (t, x, a)| ™

- ,
SEIi~g / Z (/ L h(a — CL)U;?(?])%@?%) dS]
L t— Y

0 K

+EIi>¢ /t; Zk: (/y O otk (- — a)}(y,ﬂ)@i@f%)Q dS]

Bl / 9 ( / A o*h(- — a)l(y, >aaay1¢9)2ds]
=0k

=C1+Cs + Cs, (3.9)

(m+1)/2

(m+1)/2

(m+1)/2

We deal first with C'3. By Holder’s inequality and (2.4), we have

‘ 2 (m+1)/2
Eli~e / (/5fz+1[03kh('—a)](yﬂ)@g@iayi%) dé’]

t—6 k Yy

¢ lal lal ) (m+1)/2
Bl [ (/ / |az+1h<r—a>|2dr> (/ [ Sletwn) dr>9‘2”+“ ds]

t—0 \Jy J—|q] yJ—=lal g

(m+1)/2

S Elisg / <//| ‘Ial“h )|2dr> @]l 1, (ray 620D ds]

By Holder’s inequality we get

(m+1)/2

t |4l
03 )(1+])EI / / / |aé+1h(,r,_a)|2 dT H || m-;rld)/2
t—0Jy |/ —lal
m— |la‘
< 0" T g IR, / lall s / ja| (=172 / 0L h(r — )|+ dr ds.
y =l

(3.10)

By integrating over a € R, using the fact that /' € C2°(R), integrating over [0, 7] x T¢
and using the estimate (3.1) we obtain

m= +1)(145)+1 m41
| G < gt p-(mn) (1 E/o I ooy (3.11)
In the same manner, one obtains
< (m+1)(145)+1 m+1
man 0T 0~ ]E/0 ||l@ ()HLm+1 (T4) dt. (3.12)
EJP 25 (2020), paper 35. http://www.imstat.org/ejp/

Page 10/43


https://doi.org/10.1214/20-EJP436
http://www.imstat.org/ejp/

Nonlinear diffusion equations with gradient noise

Similarly, by (2.12), Holder’s inequality, and (3.1), we obtain

Cy < 0% gm0t /0 Ty ) (3.13)
t,x,a
Consequently, by (3.11)-(3.13) and (3.9), we obtain
/ E|87 05 09 Fy (t, @, a)| Tt < o~ MEDA+DHINL (7). (3.14)
t,x,a
Choosing j = 0 and summing over all |¢| + ! < k, we obtain
E||8, Fp || <07 N (@), (3.15)

LwL+1([07T];W7IiL+1(Td X]R)) ~

Similarly, choosing j = 1 in (3.14) and summing over all |¢| +{ < k gives

(m+1)
—glmtl)

m—+1
EuaaFe||W;+1([Q,T];WZ+1(TdXR)) 5 0

N (). (3.16)

By interpolating between (3.15) and (3.16) we have for § € [0, 1]

E||aaF9||%1+1([O’T};W%(MR)) < g ED20)/2 0 ()
For arbitrary § € (1/(m+1),1/2), we set A = (1+20)/2, and the claim follows by Sobolev
embedding. O

Corollary 3.9. (i) Let u,, be a sequence bounded in L,,1(Qr x T?), satisfying the (*)-
property uniformly in n, that is, with constant N in (3.5) independent of n. Suppose that
u,, converges for almost all w,t,x to a function u. Then u has the (x)-property.

(ii) Let u € Lo(Q2 X Q7). Then one has for all § > 0

IE/ Fy(t,z,u(t,z)) = lim IE/ Fy(t,z,a)pr(u(t,z) —a). (3.17)
t,x A—=0 t,x,a
Proof. (i) We have that lim,,_,o Fy(t, 2, un(t,z)) = Fy(t, z,u(t,x)) for almost all (w,t,x).
Moreover,

[Fo(t, @, un(t, 2))| < 100 F0l| Lo (@ xmylun(t, )] + [F(E, 2, 0)]. (3.18)
By Lemma 3.8, and the fact that E [, |Fy(t,z,0)| < oo, we see that the right hand side

above is uniformly integrable in (w,¢,x). Hence, one can take limits on the left-hand side
of (3.5) to get

lim IE/t Fy(t,z,u,(t,x)) :E/ Fo(t,z,u(t,x)).

n— 00 ta@

By similar (in fact, easier) arguments one can see the convergence of the second term
on the right-hand side of (3.5), and since the constant N was assumed to be independent
of n € IN, we get the claim.

(ii) Writing

‘Fe(t,myu(tmc)) — /Fg(t,%a)p)\(u(t,x) —a) | S M0aFol Lo (@ xR)s
the claim simply follows from Lemma 3.8. O
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4 Stability under the (x)-property

Theorem 4.1. Let (D,¢), (@,f) satisfy Assumption 2.2, and o, G satisfy Assumption 2.3.
Let u, 4 be two entropy solutions of II(®, £), II(®, £) respectively, and assume that u has
the (x)-property. Then,

(i) if furthermore ® = <i>, then

esssup Bllu(t) — a(t)| p, (re) < NE|€ = €], (o), (4.1)
t€[0,T)

where N is a constant depending only on Ny, N1,d and T,
(ii) foralle,§ € (0,1], A € [0,1] and a € (0,1 A (m/2)), we have
Ellu =@z, (@) < NE|E = &l ()

+ Newm i (1 + E||V]a](u)]|z, (@) + N sup El€(-) — &( + )| £y (zay

+ NeT?E(||Lju> g, (1 + |ul)]

L@+ Hazry X+ 1ADIT, @)

£ NC(6,6, NEQ + [0l o) + [T o), (4.2)
where
Ry :=sup{R € [0,00] : |a(r) —a(r)| < A, V|r| < R}, (4.3)

C(5,e, ) = (6% + 6202 4+ 6% 4267 47267 4202 4 &P 4 &F),
and N is a constant depending only on Ny, N1, m, K,d, T, and «.

We collect first some technical results that will be needed for the proof of the above
theorem. Let us first introduce some notation that will be used throughout this section.

Denote . = p?¢, and fix a ¢ € C°((0,T)) such that ||¢|/1__ o) V 102l L. (0,17) < 1-
Introduce, for 6, > 0,

Po.e(t,2,5,y) = po(t — s)oe (x —y) o (5F°) , 0:=(t,2,y) = oc(w — y)(t).
Furthermore, for each § > 0, let s € C*(R) be defined by
15(0) =n5(0) =0, n5(r) = ps(Ir])-

Note that
Ins(r) — |r|| <6, suppny C [-6,4], / In§(r—Q)d¢ <2, |n§|<267" (4.4)
R

For g : T4 x R — R we introduce the notation

l9,0](z,r,a) == [gn;(- — a)](z,7). (4.5)

Finally, with the short hand notation v = u(¢,z) and @ = u(t, y) in the following integral
expressions let us define the quantities

A9 (u, @) ::E/

t,x,y

B [ ([0 00500y, 90 + (10,10 7o) 3~ 01, ) 8,.0.).

3Ly

(1o, 8], w, @)r0,0c + (102, 8)(w,u, @) — nj(w — D (2, 0) ) D, 0.
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also,
BED (w,7) =~ B / Dy, b / / 0% (y, 7)o (z, ) didr
BED (u, 1) :—IE/ ayl@/ / nL (7 — 1)o™ (g, Mo (z,7) didr
B (u, ) = / 0y, 0. / (7 — )t (y, Pt (z, ) d
BED (u,i) =~ B / 00 [ / (. F)oi* (z,r) didr
B0 i) =~ E | ¢5/ / W7 = 1) (g, 7)odE () didr
sTyY
Bf(y‘syé)( u, 1) /t ¢a/ (y, )ajk(m u) dr
B (u, i) =E / 0y, 6 / W (@ — 1)t (y, @) (z, ) dr
T,y
BED) (u, ) / be / il (i — 1) (y, @)t (w,) dr
\T,Y
BE (u,i) = —E | gan (= w)oyi(y, D (o)
sTyY
and
3(55 ZBsé)
and finally,

CEN )= B [ (il )3 o) [f 800,210 115,00, 02,0,

,T

+E / (i — ) fi (5, @)be — [fi, 61y s w)be — L1 6)(y, )0y, b2 -

With this notation we have the following lemmata.

Lemma 4.2. There exists a constant N = N(Ny, N1,d,T) such that for all u,@ € L1(Qr)
and alle, § € (0,1)

8
56
AE (4 Z )(u, @) < NCo(e,6) (Ellull 1, @r) + Ellillz, or))

+N1E/ €25 [0rny,0cl + 2 3 100,6c] + 61 | u— i,
t,x,y ij i

where
Co(g,0) = 0%Pc2 4 6P +6° + e+ &F.

Proof. By Remark 3.1 (with a = 4(t,y)), the relation 0,,,,¢. = —0x,,, ¢, and the identity
n5(r — @) = / ns (r — 7) dr, (4.6)
i@
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we have

]E/My ([aij,(ﬂ(l‘,u, )0z, P + ([ 48]z, u, @) — ny(u— )b (x, u)) 3@@)

:—E/ 1y]¢6/ / (z,r)drdr
t,x,y

u

— E/ (amgbgn(’;(u — @) (z,u) + O, e / n(r — )al? (1) dr> . 4.7)
t,z,y U

5 u

By symmetry we have that

E/” , ([aij, 6] (Y, U, )y, y; P + ([ag 8y, @, w) — 15 (@ — w)bi(y, ﬁ)) ayi%)

=— 0 1y]<;55/ / y 7)drdr
t,x,y

— E/ (c’%m G=ns (@ — w)b' (y, @) + %qﬁe/ 15(F — w)ay] (y,7) d?’) : (4.8)
t,x,y u

—IE/ 6“%(;55/ / ny (r —r)a” (x,r)drdr

- axiyj¢6/ / Lr<onfy (r — 7)a" (z,7)dFdr

Notice that

Similarly

-k

IE/ (“)xiyjqbg/ / Lisonfy (r — 7)a" (z,r)dFdr. (4.9)

0 1y1¢5/ / y, 7 )drdr
t.x,y
IE/ 89;1%(;58/ / I<ins (r —r)a* Iy, 7)drdF
a>u

~-E / Oy, e / / Lo (7 — r)a" (y, 7)drdF. (4.10)
a<u o Ja
By adding (4.7) and (4.8) and using (4.9), (4.10) we obtain
A (1) = AP (u, 1) + A5 (u, ),

where
A (w /~< 24 y]%/ / Liconll (r — 7)a¥ (z,r)dFdr
_E/; 6%91‘?58/ / Lsonf (r — 7)a" (z,r)dFdr
- E/> Doy Pe /“ /“ Le<inf (F — r)a" (y, 7)drdF
_E/; Oaiy; Pe /u /u L>iny (F — r)a” (y, 7)drde (4.11)
and B

u

AED (u,3) = — E / (amms(ua)b%x,u)wzi@ / n(r — @)a¥ (z,7) dr)
t,x,y i ’
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—]E/ <3yi¢en3(ﬂ—u)bi(y,ﬁ) +3y,¢e/ 15(F = w)ay (y, ) dF ) :
t,x,y u
We further set

AED (1) = ‘E/t D, by (u — Wb (z, ) / By berly (@ — w)b' (y, @)
»T,Y , T

= AT (u, @) + A5 (u, ), (4.12)

A ) = - [ (axiqse [ it = ) dr+ 00 [ ahte = el o) b7 )
t,xyy U u

(4.13)

We next estimate A" (u, @) + B (u, 7). Notice that

—E/ aw@/ / Dl (r — #)od® (2, 7)o (y, ) didr
_E / Dyra, b / / Trarnll(r — P03 (2, 7)o (y, 7) didr

+E Oyi,; D / / Iisoni (r — 7)olk (z, 7)o (y, 7) didr.  (4.14)
a>u a Ja B

Bia’é)(u, a

v

By the definition of a”/ we have that
aij (l‘, 7") + aij (ya ) - O-Zk (J?, T)ng(ya ’F)
1 i ~ 1 ~ % i ~
=50 o (z,r) (01" (z,r) — ol (y, 7)) — goﬁk(% P) (o) (@) — ol (y, 7).
Using the fact that d,,,, ¢ = 0z, ¢ We see that
8Iiyj ¢E (a’ij ($7 T) + a‘ij (y7 ) - UZk (CE, T)U}ik (y7 f))

1 . . 5 . . N
:§awiyj d)E(U:k(Iv 7“) - Uik(% T))(Uﬁk ('757 T) - ng(?ﬁ T))
/S Z |a$iyj ¢E|(€ =+ §ﬁ)2 /S Z ‘aﬂfiyj ¢E|(€2 + 62ﬁ)7 (415)

where we have used (2.4) and (2.5). Consequently, by (4.11), (4.14), and (4.15) combined
with the fact that

775 r —7)drdr| < 2|t — ul, (4.16)

we obtain

A= (u,a) 4+ BED (u, i)
SE[ @Y 0 tullatn) = w4 B [ 85 o, bt 0) — i)
t,x,y t

ij sTHY ij

<E / &2 3" Dy, bellult, ) — alt,y)| + 62|l iy or) + Nl yor)s  417)
x,Y

ij
where we have used Assumption 2.3. We proceed with an estimate for A(E 6)( ) +
B (u, @) + B (u, 7). Using the fact that d,,¢. = —8,,¢. we get

.A(s 6)( u, ) = —IB Bmlmbg/ / Licomi(r —7) (a;J] (x,7) — aj( )) drdr
a<u |

-E >u8 qba// Iisomy 7"—7“)( (xr) a]( )) drdr. (4.18)
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By (2.4) and (2.5) we have
a2 (x,7) = a (y,P)| S |r =77 + |z — . (4.19)

(515)(

Again, using the fact that 0,,¢. = —0,,¢. and relabelling i <+ j in B, "’ (u, @), gives

By (u, ) + B (u, )

& o [ et et
—E/Wams//w—r b (7)ot (@, 7) didr
o I A A A L B )

—l—E/ / / Iisenf§ (r — 7) 0y, e (O’Zk(l‘ r)ojk (y,7) — Jik(y,f)aﬁﬁj(x,r)) drdr. (4.20)
a>u Ju Ju

By (2.4) and (2.5) again we have

lk(x T)O’Jk (y,7) — (y, )O']k (z, r)‘ < |r—77|6 + |z — 1yl (4.21)
By adding (4.18) and (4.20) and using (4.19), (4.21), and (4.16), we obtain
A (u, ) + BE (u, @) + B (u, 1)

T, Y i [

t,xyy

S8 E(fulaon + o) T E [ €Y nodllutt o)~ atty)l. @22
t i

»T,Y

We proceed with the estimation of A% 5)( i) + B (u, i) + B (u, ). Recall that

Agfl‘s)(u,u) = Aéfﬁ(u a) + A;l‘s%( @), see (4.12). Using the fact that 0, ¢. = —0s,¢-
and the definition of b*, we see that

BE (u, @) + AP (u, @)

—E / Dy e / n (7 — w)o™ (3, P)od* (z,u) dF — B / D, ey (u — Wb ()
t,x,y u tx,y

—E / Or, e / Fr = w)odk (@) (0 (@ u) — o (y, 1)) dr
Using this, (2.5), and
/ n'(F —u)dr <2, (4.23)
R
we see that

BE (u, @) + AP (u, @)

SETEQ fulon) VE [ 9n0e [ i - wodte) (o3 0) ~ 0w w) dr
u

t,x,y

= éﬁeilE(l + Hu||L1(QT)) =+ E/ 3x1¢e7lfs(ﬂ - ’U,)O':Jcl:(x, U) (O’:;k(l‘7 ’LL) - Uik(ya u))
t,x,y

1
— e E(L+[ull 1, (gn))+E / O ey (=)o () (21— 1) / o™t (y+0(z—y), ) db.
t,x,y 0
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Similarly;,

B (@) + A (u, )
55’36‘1E(1+IIfLIIL1<QT>)—E/tx yayi%né(ﬂ—woﬁ}f(y,ﬂ)(yz—xz) /01 ot (z+0(y—=),a)do.
Using the relation 0, ¢, = —0,, $., we obtain

AS (@) + B (u, @) + B (u, @)

S0P B+ ([l Ly @) + @y (@r) + E O b (@ — u) (w1 — Y1)

x (oz;f(x,w/ol otk (v 4 0z >,u>d9—7o—’;’;<y7a>/01 ot o+ 00y ). ) b )

S B+ ullpy@r) + il ny @) + E/ |0z, Pe |21 — i
t,x,y
1

X

1
wtb(a,) [ o o+ 0la =)0 d0 - o) [ o
o 0

ok (x4 0(y —x), ) d@‘ . (4.24)

By (2.12) and (2.4) we have

1

1
O';I:((E,u)/ rz,(y—’_g(m_ )7u)d9—0if(y,ﬂ)/
0 0

ik ik ik ~\ ik ~
ol (, u)oth, (v,u) — ol (y, W), (4.0)|. (4.25)

m,($+9( x), ) d&‘

Se(l 4+ [ul + |a]) +

rT]

By (2.6) we have

otz ualk, (2, 0) — o2 (y, Dok, (4,)|

S|oth @, w)ols, (2, 0) = o2t (g, werth, (g, w)| + Ju — al
S (P +e)(L+ |al) + |u—il, (4.26)

where for the last inequality we have used (2.4), (2.12), and (2.13). Combining (4.24),
(4.25), and (4.26), we obtain

AS (u, @) + BS ™ (u, @) + BY Y (u, )

5(5@5*1 +€+5R)E(1+ Hu||L1(QT) + ”ﬂ”Ll(QT))JFE/ 5Z|6%¢E| lu—a|. (4.27)

t,x,y

We proceed with the estimation of the remaining terms. By (2.4) and (4.23) we have

BED) / ¢5/ / W — P)o™ (9,7 drol (a,r) d¢

SE Pelu — al. (4.28)
t,x,y
Also,
)6 j
B i —E [ o / = W (y,r) drol® (@, u)
t,x,y
SPE(L+ ullz,@m) + E / bt (@ — ok (y, )2 (x, u).
t,x,y

EJP 25 (2020), paper 35. http://www.imstat.org/ejp/

Page 17/43


https://doi.org/10.1214/20-EJP436
http://www.imstat.org/ejp/

Nonlinear diffusion equations with gradient noise

Similarly;,

BED (w,a) S 6B+ [lall, @) + B Getls (u — @)alt (y, woyy, (z,a).

t,x,y
Hence,
BEY (w,@) + BEY (u,@) S B+ |[ull oy @ + lallz, @)
+E [ geloit (y, )0l (@, u) — 03" (y, @)o? (x, 1)
t,x,y

S (07 + e+ B+ [lull L, r) + 1l Ly @r)
+E delu — . (4.29)

t,x,y
The claim follows by adding (4.33), (4.17), (4.22), (4.27), (4.28), and (4.29). O

Lemma 4.3. There exists a constant N = N(Ny, N1,d,T) such that for all u, @ € L1(Qr)
and alle,§ € (0,1)

CE(u, ) < N(eP + 6P MEQ + ||ull 1y @r) + iz, (@r))

d
+NIE/ <5Z|axi¢e||u_a+¢e|u_ﬂ|> :
t,z,y

i=1

Proof. By Remark 3.1, (4.6), and the relation 0,,¢. = —0,,¢., we get
E/ (_[ ﬁmi,é](x,u, ’EL)¢E _[ L(S](‘Tvuﬂﬂ)aﬂﬁiqss)
t,x,y
+E / (= 01y ). — £ )5, 5 )0, 2)
=5 [ 0. / / Lol (7 — ) (i, 7) — fi(w,1)) didr
B / Be.6¢ / / Lesonfl(F = ) (fily, ) — filw, 1)) didr

=/ o ([ = nsiaenars [- o moa)

d
§1E/ ((€+56)Zazi¢eluﬂl+¢sluﬂ> ,
t,x,y

=1

where for the last inequality we have used (2.7) and (2.9). Moreover, we have
B[ jla= ) (7 (o) - 1200 ) 0.
t,x,y

< P14+ Bllullzy(on) + E / fu — il

t,z,y

where we have used (2.9) and (2.8). Consequently,

CD(u,@) S (P + 6% E1 + [lull 1, @r) + lill, @n)

d
+E/ <5Z|3x1¢5||uﬁ+¢€|uﬂ|> )
t,x,y

i=1

which finishes the proof. O
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We are now ready to proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. The majority of the proof is identical for (i) and (ii), so their
separation is postponed to the very end.

We apply the entropy inequality (2.16) for v = u(t,x) with ns(- — a) in place of 5
and ¢y (-, s,y) in place of ¢, for some s € [0,7], y € T¢, a € R. Assuming that ¢ is
sufficiently small, one has ¢y (0,2, s,y) = 0, and thus we get

—/ ng(u—a)at(bg}gg/ [a2,(5](u,a)Am¢9’€
t,x t,x
”76 s Wy aﬂcac 5 ';J’(; ) Wy — 15 - bl ) 8327- 5
+/ (10, 01, 0,002, 60.c + (102, 0]y, @) = mj(u — )b (2, 0) ) D, G0, )

+/t (' (u—a) fi (z,u)do,c — [fly.,0)(z,u,a)dg.c — [fL,0)(x,u,a)0y, do.c)
+/‘<§/ =@ lot ) Pone - nﬂu—@N[K)%mJ

/ / (u — a)do™ (2, u) — [0, 8)(z, u, )gp.c — [0, 8] (, 1, @)Dn, dp.c) dBH(0).
(4.30)

Notice that all the expressions in (4.30) are continuous in (a, s,y). We now substitute
a = u(s,y), integrate over (s,y), and take expectations. For the last term in (4.30) this
is justified by (3.18). All of the other terms are continuous in a and can be bounded
by N(|a|™ + X) with some constant NV and some integrable random variable X (recall
(2.2)), so that substituting ¢ = 4(s,y) and integrating out s, y, and w, results in finite
quantities.

After writing the analogous inequality with the roles of u,t,x and u, s,y reversed,
using the symmetry of 75, and adding both inequalities, one arrives at

E / ns(t — @) (Ouoe + Oue)
t,x,s,y

<E ([a2, 0] (u, W) Ay g + [a2, 0](, u) Ay )

T8,y

E

+

\N

([aij7 5] (I, u, ﬂ)a%x] ¢918 + ([a;]] ’ 5](1‘, u, 11) - 7]:5(“ - r&’)bl(xv u)) 3m¢0,e)
t,x,s,y
+B / (10, 019, w0)Dy, 60,2 + ([0 0)(y iy w) = m (i — )b (3, 0)) Oy, 0. )
+ IE/ (ng(u - a)f;, (Z‘,u)¢075 - [f:zpé](xvu’a)(b@,e - [ ;76](']:7 u?a)a$i¢075)
t,x,s,y

+E/t (T)t/;(ﬂ’ - u)fau (y7 )¢95 - [ ﬁziaé](yaﬁa u)¢9,s - [ : 5}(yau u) yld)ﬁ s)
B [ ( 0 3 o2 o). == a>|vr[a]<u)|2<z>e,g>
HE/ ( Zlay, Y @)|*o.c — 115 (u a)|vy[a](a)|2¢9,s>

t

+1E/ Fg(s,y)+E/ Fi(t,z), (4.31)
S7y

t,x
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where u = u(t,z), & = U(s,y), o, = do(t,z,s,y), and

Fesy l/ / ngu—aqhggo (J; u) — [ff;,&](xua)%’g

- [0_7k 6](1‘ U, a) IL¢9 a) dﬁ ( )] ;

a=4(s,y)

T
F2(t,) = [ / / (i — @) o 0™ (4, @) — [0, 6)(y, @ @) .-

- [Jika 5] (ya 17,, a)aﬂﬁz ¢9,€) dﬂk(s)]

a=u(t,x)

For the term containing F(} at the right hand side of (4.31) we have the following: 0, ¢g .
is supported on [s, s + 6], hence the integration in ¢ is over [s, (s + 8) A T|. Then we plug
in a quantity with is Fs;-measurable. Therefore, this term vanishes in expectation (a
rigorous justification follows from a limiting procedure similar to (3.17)). We now pass
to the # — 0 limit. For this, we use [7, Proposition 3.5, see also p.15] and the (x)-property
with h =7’ and ¢ = g. to get

—E/t ns(u — @)0rpe < IE/ ([a%, 8)(u, @) Augpo,c + [0%, 8] (@, u) Ay o)

t,x,s,y

+ A (u, @) + € (u, @)

+ ]E/ (;U:sl(u —a) ) lo3 (@)oo —nf (u— ﬂ)Vx[a](“)2¢s>
t,x,y k
L, ~ ik )2 4 u a)(a)|?
+ ]E/ (2776 (u—a) Z o (y, W) " — m5 (u — @) |V [a](a)] ¢5>
t,x,y k

+ B (u, @). (4.32)
Notice that that by (2.5) and (2.13) we have that for all x,y € T<¢ and r,7r € R
0%, (,7) — 04, (Y, P, < NJr =7+ N(1+ [r])]z - y|7,

where N depends only on Ny, N1, and d. Under this condition and under Assumption
2.2 (a) it is shown in [7, Theorem 4.1, p.13-15, see (4.8) and (4.18) therein] that for all
a € (0,1A (m/2)) we have

Bﬁme+E/ ([0, 8] (u, @) Agdp,c + [6°,6](@ u) Ay )
t,x,8,y
L ~ ik 2 " U 2
- (2% (o= 1) Sl 026 — s~ DIVl ) @)
t,x,y k

1 -
+E | <2 O ILATIE S ns'w—a)vy[a](an%s)
t,x,y

S*(5 + ot +e “2%e + 672)\2) (1 + HUHTT:L(QT) + ”ﬁ| T:L(QT))
+e 2 (Bl > r, 1+ DT, (0 + Elljazr, 0+ [T 0r)- (4.33)
Hence, by the above inequality, Lemma 4.2, and Lemma 4.3, we obtain for all
g,6€(0,1)

E / s — )i
t,x,y
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S O S NEQH [l o + 1177 o)

e 2 (B Tz s (14 DI @ + Bl s 1+ DT 0n)
+E/ £2 57 D,y 0l — u|+E/ e Onpellu—+E [ pelu—1l
t,x,y

ij t,x,y i t,x,y

with
C(e,6,A) 1= (07 + 6272 + 6P 4 %671 + 72682 + e N2 &P + &F),

which by virtue of

~ )

’E/ né(u_ﬂ)6t¢e_E/ ‘u_'mat(be S
t,x,y t,x,y

gives

_E/ \U_ﬁ|Qeat<P
t,x,y

S 0(5 J, /\)E(l + ||U||zl+i1(QT) + ||ﬂ||zly::1(QT))

+e 2 (Bl juzr, A+ [uDIIT, (or) + Elljazr, (1 + DI, or)

+ IE/ 52Z|6xing6|<p|ufﬂ|+]E/ 52\3@95|¢|u7ﬂ|
t,x,y i

ij t,x,y

+E/ 0=p|u — 4. (4.34)
t,2,y
Let s,t € (0,T), with s < ¢, be Lebesgue points of the function

t ]E/ lu(t, z) — a(t,y)|o(x — y),

s

and fix some v > 0 such that v < t — s and t + vy < T. We now make use of the
freedom of choosing ¢: choose in (4.34) ¢ = ¢, € C>((0,T)) obeying the bound

lenllzocqo.r)y V I0epnllzy (o)) < 1, such that
Jim len = Clwg o,y = 0,

where ¢ : [0,7] — R is such that ((0) = 0 and ¢/ = v I, 54y — 7 ' L1 44+. After letting
n — oo we obtain

t+y
fna// w(ry ) — ilr, ) oc(z — ) dr
T,y

_ WE/:M/ lu(r,z) — a(r,y)|o(z — y) dr

< CESNEQ+ [l o + 11T o))

+e 2 (Bl fjuzr, 1+ [T, (@r) + Bljazr, (1 + [G)IZ, o)

t+y
+ E/ / 23" Or, 00(@ — )l a5, 7) — (s, )| ds
0 T,y ij

t+y
+E/0 / e 0r,0( — W)l[u(s2) — (5, 9)] + oz — y)llu(s, z) — (s, )] ds,
T,y i
(4.35)
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which, after letting v | 0, gives

E/ fu(t, ) — (t, )| o= (z — 1) —E/ fu(s, ) — (s, v)lee (& — ) < M,

) Y

where M is the right hand side of (4.35) with v = 0 Notice that the above inequal-
ity holds for almost all s < ¢. After averaging over s € (0,7) for some v > 0 we
obtain

E/ fult, ) — a(t,y)lo-(z — )
<M+ ]E// u(s,2) — (s, 1) o-(z — 1) ds.

Letting v — 0, we obtain by virtue of Lemma 3.3,

E / fut, ) — it y)|ee(x — y) < M + B / €@) — EWloe—y).  (4.36)

0y HY

We now prove (ii). We integrate (4.36) over ¢t € (0,s) for some s < T and we

E/S/Wm(t,x)—a(uy)ms(x—y)dt

<m/|g Ew)l+ 7 s ElIE() — &+ 1)l ey

+TC(e, 6 VEA+ [ull 21 o + 1817 o)

+ T (Bl Lujzr, (L + DT, @r) + Elaizry X+ GDIL, @)

s t
+ IE)/O /O /x7yg2izj|aminge($_y)|U(C7x) —a(¢,y)| d¢dt

+E / / / | E3 rele =G ) = WG + et ) = )l dt
(4.37)

Then, notice that for an approximation of the identity o. we have
B[ futta)-ata) B [ fult) - alt. oo - )
t,x t,x,y
< IE/ lu(t,x) — u(t,y)|os(z — y).
t,z,y

Moreover, notice that ¢|d,, 0| and €2|9,,,, 0. are also approximations of the identity
(up to a constant). From these observations, we obtain by virtue of (4.37) and Lemma

3.4
E/S/|u(t,m)—a(t,x)|dt
SE [ lg@) - &a)l+ sup BEC) &+ Ml e
+ C(e,0, E(1 + ||u||?:+11(QT) + [|@ ||Lm+1(QT))
+ e (Bl > r U+ [uDIT, @r) + Bl gz r L+ 1EDIT, (0r))
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+em e (1+ Bl|V[a) (W)l (or))

+ ]E/OS/Ot/mu(Qx)—ﬂ(C,x)d(dt.

Gronwall’s lemma leads to (ii). In order to prove (i), we choose in (4.36) A\ = 0 and
Ry = oo (recall the definition of M) to obtain

E / fu(t, ) — a(t, )| ge(z — )
<E / €() — )l o=(z — v)

)

+C(e, 0)E(L + ||uH1ZL7j+11(QT) + HQH?IL(QT))

t
+E / / 25 By, 00(x — 9)luls, 2) — (s, y)| ds
0 Ja,y ij

t
+E / / &S 0r 0 — )5, 2) — (5, 9)] + el — y)[uls, 2) — a5, y)] ds, (4.38)
0 Jz,y i

with .
C(e,8) = (6% +6%Pe™2 + 6Pt + 27571 + 7252 + &P + £F).

We now choose v € ((m A 2)7! k) such that 28v > 1 (recall that 8 € (2%)~1,1]) and
a < 1A (m/2) such that —2 + (2a)(2v) > 0. Setting § = €% then yields C(e,8) — 0 as
€ — 0. Consequently, by letting € — 0 in (4.38) and using the continuity of translations
in L; we obtain

t

Ellu(t) —a(t)| L, ey S El[E - £||L1(Td) +/0 Ellu(s) — a(s)| 1, (ray ds.

The above relation holds for almost all ¢ € [0,T]. Hence, (4.1) follows by Gronwall’s
lemma. O

5 Approximations

In Section 4 we showed that if we have two entropy solutions of equation (2.1) with
the same initial condition, then they coincide provided that one of them satisfies the
(x)-property. Hence, in order to conclude the existence and uniqueness of entropy
solutions, it suffices to show the existence of an entropy solution possessing the (x)-
property. To do so, we use a vanishing viscosity approximation. In order to prove the
strong (probabilistically) existence of solutions for the approximating equations, we use
a technique from [20], where a characterization of the convergence in probability is used
to show that weak existence combined with strong uniqueness implies strong existence.
This has been used in the past in the context of SPDEs (see [29, 19] and the references
therein). For the proof of the following Proposition see [7, Proposition 5.1].

Proposition 5.1. Let ¢ satisfy Assumption 2.2 (a) with a constant K > 1. Then, for all

n there exists an increasing function ®,, € C*°(R) with bounded derivatives, satisfying
Assumption 2.2 (a) with constant 3K, such that a,,(r) > 2/n, and

‘slu<p la(r) — a,(r)] < 4/n. (5.1)
Let ®,, be as above and set
&n = (—n) V(£ An). (5.2)
EJP 25 (2020), paper 35. http://www.imstat.org/ejp/
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Definition 5.2. An L,-solution of equation I1(®,,,&,) is a continuous Ly(T?)-valued
process i, such that u, € Ly(Qr, W3 (T%)), V®,,(u,) € La(Qr, Lo(T?)), and the equality

(un(t,-), @) = (&n, @) —/O (V@i (un(s,), V) + (a" (u)0s,u + V' (u) + f'(u), 0s,0) ds
- [ (@ (s, Vo) ask
holds for all $ € C>(T?), almost surely for all t € [0, 7).

If u,, is an Lo-solution of II(®,,, &, ), then the following estimates hold (see Lemma A.1
in the Appendix)

ESUP ||un||1[),2(1rd) + Ellv[an](un)niz Qr) <N(1+ EHgn”p Td)) (5.3)
Esup [|2n | gﬁjl oy + EV®, (un)l7,0m < N1 +E|&| ﬁ:jl(w))’ (5.4)

where the constant N depends only on Ny, N1, K, T, d,p and m (but not on n € IN). Notice
that |, | is bounded by n, which implies that the right hand side of the above inequalities
is finite. Moreover, by construction of ¢,, one concludes that for all p > 2

Esup lunll}, opay + EIVIaa) @)}, op < N +EIENT, qa)), (5.5)

Esup lunll 757 ay + BIV@n(un)lZ o) < NA+EIENTT pa), (5.6)

with N depending only on Ny, Ny, K, T, d, p and m. Finally, since a,, > 2/n > 0, we have
[Vun| < N(n)|Van](un)],

B[ Va0, < oo (5.7)

Lemma 5.3. For each n € N, let u,, be an Ly-solution of I1(®,,,£,,). Then, u,, has the
(x)-property. If in addition ||£|| 1, ) has moments of order 4, then the constant N in (3.5)
is independent of n.

Proof. Fix 6 > 0 small enough so that (3.6) holds. To ease notation we drop the lower
index in Fy. We proceed by two approximations: first, as in Corollary 3.9 (ii), the
substitution of w, (¢, z) into F(¢,x, ) is smoothed, and second, u,, is regularised.
For a function f € Ly(T¢) let f( := (p,)®? % f denote its mollification. Then, .
satisfies (pointwise) the equation
dug) = A(q)n(un))h) + 0, (™ (tn) Oz, un + b (un) + fi(un))w) dt
+ 00, (0™ (un)) ) dB(2). (5.8)

We note that

’E/twaF(t,x,a)pA(un(t,x)fa) fE/maF(t 2, a)px (ul) (t, ) — a)’

3Ly

= ‘]E/t (F(t,z,a) — F(t,z,a + ul) (t, x) — U (t,2))) pa(un(t, z) — a)’

(12 1/2 ) 1/2
<N (Bllun = a3 0n)  (BIOFIE rery) =0, (5.9)

as v — 0. By (3.6) we have EF(t,2z,a)X = 0 for any F;_y-measurable bounded random
variable X. Hence,
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EF(ta z, a)p)\ (USL’Y) (t7 :17) - a)
— BF(t,2,0)[or (6 (t,2) — a) — pa(u) (¢ — 6,2) — a)].

By (5.8) and It6’s formula one has
/ F(t,z,a) (p,\(u(f)(t, z)—a) — pr(ul)(t —0,z) — a))
t,xr,a

_ /t Pt z,a) /t P (5,2) — a) A (1)) ds

-0

sy

¢
+ F(t,x, a)/ p')\(ugﬂ)(s, x) — a)dy, (a (, Up ) Oz, Uun (s, 2) + bi(x, un))m ds
t,x,a t—0

t

+ [ Ptz / P (5,2) — @)D, (0™ (1)) dB¥(s)
t,r,a t—0

1 [t as ,
+ / F(t,z, a)§ / , px(ug)(s, x)—a) E |0y, (0% (, un))('”|2 ds
t,x,a t— k=1

t

[ Ft.ra) / P (5, 2) — a) (B, (20, 1un)) P ds
t,z,a t—0

=) + o +c) + o) + ). (5.10)

By (3.6) and integration by parts (in ) we have
t
0= [ teo [ VaF(tsap @) 6.0 - 0) - V()
t,z,a t—0
+ F(t,z,0)p5 (ul (s,2) — a)Vul) (s,2) - V(D (un)) " ds

o ~(11 12)
=)+l

After integration by parts with respect to a, by the Cauchy-Schwarz inequality, inequali-
ties (3.1), (5.4) and Lemma 3.8, we have

t
ElC{V| = E| It>9/ 9Vxé‘aF(t,x,a)pA(ugﬂ)(sm) —a) - V(@ () ds|
t,x,a t—
1/2 1/2
< NO(EIVa0.F I} 0pury)  (BIVEa(un)llE, o))
< N(n)o*—+. (5.11)

Similarly, this time integrating by parts twice in a« we have for all sufficiently small
6e€(0,1)

m+41 %
E|C{?| < No*~n (EHWS?’ : v<q>n(un))”>llL;"@T)) L

To bound the right-hand side, note that by (5.7), Vug) — Vu, in L,(Q; L2(Qr)), for any
p, and by (5.6), V(®,,(u,))) — V&, (u,) in Ly(Q; Lo(Qr)). Therefore, by (5.3)

~ () | 5 iy
}/%Envun ’ v(q)n(un)) “LI(QT) = EHV’LLn : vq)n(un)”Ll(QT)

2(m+1)

= B|V]an)(un) 1l < N(n).  (5.12)
Together with (5.11), we therefore get
lim sup E|C§2| < N(n)o*~H. (5.13)
v—0 ’
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We now estimate C/(\Q,)Y + C/(\%E/. After integrating by parts in « we have
(2) (4)
C)\,’Y + C)\N -

t
—/ 8%,F(t,x,a)/ p')\(usl'y)(s,x)—a)(aij(x,un)(?xjun(s,m)—kbi(x,un)+fi(x,u,L))(7)ds
t,xr,a

1 [ .
+ F(t,x,a)§/ YD) (s, x) — a) Z| (z,un)) )2 ds
t 9 k=1

t,x,a

— F(t,x7a)/t apA( ul) (s, ) — a)dy, (u n)("’)(aij(x7un)aw].un(s,x) + 0% (2, up ) ds

t,x,a
1 o0
( ) N 1k
+/t’I7aF(t,x,a)/t P (ul) (s, x) a22:1| (,u)dp,u) V2 d
t [e ]

+ F(t,x,a)/ P (ul) (s, x) Z (2, )0y u)('Y)(UJk(x u))) st

t,z,a t—0 k=1
Hence,

lim sup E\ng,y C§\4ﬁy |

~—0
¢
<B| [ 0uFna) [ (o) — @)@ (0, o) + 0 ) ds
t,x,a t—0
1t
/ OuaF(t,x,0)= / pra(un(s,z) —a Z|a’k z,up)|? ds| . (5.14)
t,x,a 2 t—0
k=1

Using the identity

P (tn, — a)a™ (z, 1)y, un,

=0, [a" P\ (- = a)l(@,un) — [0 PA(- = @))(@, un),

integration by parts (in z and a), as well as the linear growth of o, b* and the bounded-
ness of a¥/, a¥ , one derives similarly to (5.11) the estimate

» Yo

hmsupE|C/\ (4)| < NO'H(1 + Ellu,ll7, (@r) )1/2 < N(n)o'—. (5.15)

v—0

We continue with an estimate for 0(5) We have
t
lim sup BJC{Y) | < B / Ft.o.a) [ ph(un = a) (o un)onu+ £, <un>>\
y— x t—0

< / 0o F(t, a)/t GP,\( )(f:(fﬂ,un)axiu—&-f;i(un))’

t B
<E|[ 0,0.F(t,2,a) / Ui —a)
t_

t,x,a

+E

[ ourtaa) [ I = )=o)

< NOH(1+ Bllua 3, gp)"* < N(n)o' (5.16)

Next, we estimate Cg?’). By It0’s isometry

3
B = //9 a)oy! (. 7)o
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— ([0 (- — a))(y, W)do + [0 h(- — a)](y, @)Dy, ) ) pr(ul (s,2) — )Da, (07F (2, 1)) ds.

TX;

Using Remark 3.1 and letting v — 0 gives

: 3 _ ik
tim BC{), =~ | " / ,7) iy daphy (1 — )02 (2, )y
= / G ) dF g (1n — @)t (2, )
a,t,x,y ’
= / B — )0, (4, 7) dFgoph (1 — )2 (2, 1)y
a,t,x,y Ja
IE)/ / h(F (Y, ) didop) (un —a)oi?(gc,un)
a,t,x,y Ja
-I-IE/ h(i — a)pooyy (y, @) ph (un — a)ol*(, un) Oy,
a,t,r,y
+E h( )¢90—y1 (yv )p)\(u _a) jk(xvun)
a,t,r,y
6
=y D;.

i=1

By integration by parts we get
i
D1+ D3 =+ E/ / B (7 — a)oik (y, 7) dir Oy, pg px (n —a)olk (z, Up, ) O, U,
a,t,r,y
+ IE/ t W (7 — a)ois (y,7) digepr(un — a)ol* (x, un) O, un
a,t,x,y Ja

=_ IE/ 8ij,i¢9/ B (7 — a)oi® (y,7) df/ ’ ox(r — a)al®(z,r)dr
a,t,x,y u

“E[ 9,0 / WG =)ot [ palr = a)ad s
a,t,x,y m

/ Oz, 00 / W (7 = a)org, (v, 7) dF / pa(r — a)ol (@, r) dr
a,t,zr,y a i

_E / b6 / W — a)oi® (y,7) dF / pa(r — a)o?® (z,7) dr.
a,t,xz,y a ’

=

Similarly
Dy + Dy :IE/ / W (7 — a)o* (y,7) dFdy, papa(un — a)ai’;(z, Un)
a,t,z,y Ja
A8 [ [ 0o 7)o, = ot (.
atzyJa
and
Ds; =— E/ R (@ — a)qbga (y, @)px(un — a)af:k(x,un)(?wjun
a,t,z,y
“E [ o ulla- o) [ oo dr
a,t,x,y [
+E/ doh/ (T — a)a;’j(y, @) / ox(r — a)aﬁ’gﬁj (x,r)dr.
a,t,x,y I ’
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Hence, one easily sees that

lim lim EC(?’) B(un,@,0), (5.17)

A—=0~v—0

where B is defined in (3.4). Putting all of (3.17), (5.9), (5.10), (5.13), (5.15), (5.16), and
(5.17) together, we conclude

IE/ F(t,z,u,(t,x)) < hmsuphmsupE\C( )\ +hmsuphmsupE(|C§\2i +C(4) |)
t,x

A—0 y—0

)

+ 111;1_5}})1p 1113{1_s)up IE|C | + ;lir%) alflgb IBC’)\’7

(n)91 4+ Bup,a, ),

as claimed. Moreover, if IE||§H‘£2(W) < 00, then by virtue of (5.5) and (5.6) it is clear that
in (5.11), (5.12), (5.15), (5.16) we can choose N independent of n € IN, which completes
the proof. O

Proposition 5.4. Suppose Assumptions 2.3-2.2 hold. Then, for each n € N, equation
I1(®,,&,) has a unique Ly-solution u,,.

Proof. We fix n € N, and since n is fixed, in order to ease the notation we drop the
n-dependence and we relabel ¢ := &, ¢ := &, (®, is given in Proposition 5.1 and
&, is given in (5.2)) and we are looking for a solution u. Let (e;)5, C C°°(TY) be an
orthonormal basis of Ly(T¢) consisting of eigenvectors of (I — A), and let TI; : W, !

V, := span{ey, ..., ¢;} be the projection operator, that is, for v € W{l

1I;v _ZW v, e;) W€
Then, the Galerkin approximation
du; =1I; (A@(ul) + ari (aij (ul)amj u; + bi(ul) + f”(ul))) dt
+ 10,0,, 0% (uy) dB* (t) (5.18)
U(O) = nga

is an equation on V; with locally Lipschitz continuous coefficients having linear growth.
Consequently, it admits a unique solution u;, for which we have

uy € Lo(Qp; WH(TY)) N Ly (€ C([0, T); Lo(TY)).

After applying It6’s formula for the function u — ||u||%2 (tay, for p > 2, after standard
arguments (see for example the proof of Lemma A.1 in the Appendix) one obtains

T
E [ lulfyy o @t < N+ BIE o). (5.19

and forall p > 2 )
E?ng”ul( )”L (1) < N(1 +E||§Hi2(1‘d))~ (5.20)

In these inequalities the constant N is independent of [ € IN. In W, !(T%) we have almost
surely, for all ¢ € [0, 7]

w(t) = E + /0 I (AB(wr) + By, (a7 ()0 + Vi (wr) + Fi(w)) ds
+ /0 1,0, 0% (u;) dB¥ (s)

= JL+ J2(t) + JP(t).
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By Sobolev’s embedding theorem and (5.19) combined with the boundedness of ¢*/ and
the linear growth of b’ and f? we get

supEHJl || supEHJl < 0.

/3 (10,7 W5 H(Td)) = ”Wl ([0,T); W5 1(T4))

By [12, Lemma 2.1], the linear growth of ¢ and (5.20) we have

3P
SUP B My o,y rayy < 2°

for all « € (0,1/2) and p > 2. By these two estimates and by (5.19) we obtain

SUp B[lwallyy 22 o 30w+ coopnacio.riwg crayy) < 0

By virtue of [12, Theorem 2.1 and Theorem 2.2] one can easily see that the embedding

Wi/((0,T); W3 (T9) N Lo ([0, T]; W3 (T))
< X = Lo([0, TY; La(T%) N C([0, T]; W5 2(T))

is compact. It follows that for any sequences (I,)4en, (I;)qen, the laws of (w,,ug,) are

tight on X x X. Let us set
=1
=> —B*(t)ex
k=1 b

where (¢x)32  is the standard orthonormal basis of l;. By Prokhorov’s theorem, there
exists a (non-relabelled) subsequence (u,,u;,) such that the laws of (u,,u;,, ) on
Z =X x X xC([0,T];l2) are weakly convergent. By Skorohod’s representation theorem,
there exist Z-valued random variables (a,a,B), (g, U7, Bq), g € IN, on a probability
space ({0, F,P) such that in Z, P-almost surely

(an,, 07, , By) = (10,0, B), (5.21)

as | — oo, and for each ¢ € IN, as random variables in Z

—~ — 5.\ d
(ulq,u[q7ﬂq) = (ulq,U[q7B). (522)
Moreover, upon passing to a non-relabelled subsequene, we may assume that

(t,,u,) — (4, ), for almost all (@, ¢, x). (5.23)

BE(t) == V2K (B(t), ex)s,. It is easy to see that 3%, k € NN, are independent, standard,
real-valued F;-Wiener processes. Indeed, they are F;-adapted by definition and they
are independent since 3* are. We only have to show that they are F;-Wiener processes.
Let us fix s < t and let V be a bounded continuous function on C([0, s]; W, ?(T¢)) x
C([0, s]; W, 2(T?)) x C([0, 5];12). For each | € N we have

E(BE(t) — BE(5))V (@, |j0,8]> U7, |j0.5]> Bal0,5])
=E(B*(t) — B*(s)V (w, 0,81, uz, (0,51 Blio,s1) = 0,

Let (-Ft)te[o 1) be the augmented filtration of G; := o(u(s), u(s),B(s);s < t), and let

which by using uniform integrability and passing to the limit ¢ — co shows that Bk(t)
is a G;-martingale. Similarly, |3*(¢)|> — ¢ is a G;-martingale. By continuity of 3*(¢) and
|3%(t)|? — t, and the fact that their supremum in time is integrable in w, one can easily
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see that they are also ]j‘t-marting~ales. Hence, by Lévy’s characterization theorem (see,
e.g., [33, p.157, Theorem 3.16]) 3* are F;-Wiener processes.
We now show that 4 and @ both satisfy the equation

dv = A®(v) + 0y, (a” (2,0)dp,v + b'(x,v) + f'(z,v)) dt
+ 8,0 (2, 0) dBF(t)

Notice that due to (5.19), we have
@ € Ly(Qp; Wi (TY)).

Let us set

=
—
—
I
>

(t) — a(0) — /0 (AD(a) + D, (a" (0)Dy, 0+ 0" (0) + f(0))) ds
Amw:mmwwmm—lH@m@@»um@W@mma+w@n+ﬂ@m)@
Amo:umo—mwnjéHum@mn+¢wwwm%w@+Wwﬁ+ﬁwJ»%-

We will show that for any ¢ € W, ?(T?) and k € IN, the processes

M (t) := (M(t), ¢)W2’2(Td)a
t+ oo
M2(t) = (M(t)v(b)?;y;?(qrd) - / Z ‘(8zi0ik(ﬁ),¢)wg2(qrd)|2 ds,
0 k=1
and .
Mg’k(t) = Bk(t)(M(t)7 ¢)W2*2(Td) - /[) (6£10'7'k'(,&), ¢)W2*2(Td) ds

are continuous ft-martingales. We first show that they are continuous G;-martingales.
Assume for now that ¢ = (I — A)?w), where 1 € Vi,- For, i = 1,2,3, let us also define
the processes M;,M; similarly to M?, but with M, 4, d,,0"(.) replaced by Mq,ﬁl\q,
I, 0,,0%*(-) and My, w,, 11;,0,,0%(-), respectively. Let us fix s < ¢ and let V be a
bounded continuous function on C([0, s]; W, %(T%)) x C([0, s];l2). We have that

¢
(Mq(t)vqb)vv;?(ﬂrd) :/0 (quawigik(ulq)v¢)W;2(Td)dﬁk(s)-

It follows that M qi are continuous JF;-martingales. Hence,

IEV(ulq

(0,515 47, | 10.5] Bli0,s1) (Mg () — M(s)) =0,
which combined with (5.22) gives

EV (i,

10,51 U7, |[0,]: Balj0,.51) (Mi(t) — Mi(s)) = 0. (5.24)

Next, notice that

T T
B |0, 88) — A8, 0) 2 | a0 = [ [(B0) ~ B0, 20),, |
B T
SE [l lwn 20 629
0
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where the convergence follows from (5.21) and the fact that

T
/ r: — &l ey dt
0

are uniformly integrable on 2 (which in turn follows from (5.19)). Notice also that for
v € W4(T?) we have

(11, 8y, (a¥ (v) Dy, v), ) Wiy =~ (0" (0)02,v,02,) ,, iya)

= ([aij](v)’aijd’)m(ird) + ([aﬁi](v)ﬁﬂﬁ)h(w) :

Since [a%](u)(x,r), [a%](z,r) are Lipschitz continuous in r € R uniformly in z (by As-

i

sumption 2.3), we get

dt

T
E/ ‘qu (8$J (alj (@)8%@) — 8%_ ((17'] (ﬂ)awba), (b) W;z('ll’d)
0
5 T
SE/ |4 — ]| £, (ray — 0. (5.26)
0

Similarly one shows that

T
]E/O ’(quam(bi(ﬁl:wrfi(@)) —am(b"(a)+fi(a)),¢)wz,2md) dt = 0. (5.27)

Hence, by (5.25), (5.26), (5.27), and (5.21) we see that for each ¢t € [0, T]

(My(t), @)ywy2(pay = (M(8), @)y (pay (5.28)

in probability. Then, one can easily verify that M:(t) — M(t) in probability. Moreover,
for any ¢ € W{Z(’]l“d) and any p > 2 we have, by (5.22) and (5.20)

t p
supE‘(Mq(t), ¢)W2’2(Td) ‘p =supE / (qual'ialk(ulq)7 ¢)W2*2(Td) Bk(s)
q q 0

/S ”d’H;;Vz—?(Td)E(l + Hg||lz2(1*d))

From this, one easily deduces that for each i = 1,2,3, and ¢ € [0, 7], M; (t) are uniformly
integrable. Hence, we can pass to the limit in (5.24) to obtain

EV (0,5, @j0,58]0,5)) (M (t) — M'(s)) = 0. (5.29)

In addition, using the continuity of M (t) in ¢, uniform integrability, and the fact that
Uq(I + A)?V}, is dense in W5 *(T9), it follows that (5.29) holds also for all ¢ € W, *(T9).
Hence, for all ¢ € W, ?(T%), M’ are continuous G;-martingales having all moments
finite. In particular, by Doob’s maximal inequality, they are uniformly integrable (in ?),
which combined with continuity (in ¢) implies that they are also ]:'t—martingales. By [29,
Proposition A.1] we obtain that almost surely, for all ¢ € W %(T%), t € [0, T]

(ﬂ(t)’ ¢)W2*2(’]Pd) = (ﬁ(0)7 ¢)W2*2(’]rd) +/O (8@0'”“(@)’ ¢)W;2(Td) d/ék(s)

[ (ABE) + 01, (0 (@00, (1) + (00). D2y .
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Notice that (0) £ ¢, which implies that @(0) € Ly,11(T?%) almost surely. Choosing
¢ = (1+ A4 for ¢p € C=(T?), we obtain that for almost all (@, t)

(6t), 6) oty = (@(0), ) oty — / (00, () + ()00, u + V() + £ (1), 9, ) oo,
t
- / (0™ (8), B, ) oy AB*(5).

If follows (see [31]) that @ is a continuous LQ(Td)-Valued Fi-adapted process. Hence, @
is an Ly-solution of equation II(®, &) (on (L, (F});, P) with driving noise (5%)%2,) where
& :=4(0). Again, by standard arguments, for all p > 2 one has the estimate

T
Eigglla(t)\\ip(w) +]E/O /Td "=Vl dzdt < N(L+ BT 3a)-

Using this and It6’s formula (see, e.g., [32]) for the function

u'—>/z77(u)Q,

and It6’s product rule, one can see that @ is an entropy solution (on (Q, (f«})t, 113) with
driving noise (3*)°,) with initial condition ¢ := 4(0). In the exact same way @ is an
Ly-solution and an entropy solution of II(®, ) (again, on (€, (F});, P) with driving noise
(B*)22.,) with € := @(0). Further, we have for § > 0

B~ Elw; 2cna) > 8) < 57 BIE = Ellyy2ra)

< lim inf 6~ B, (0) ~ 4, (0)]lw; o

T . —1 e _F _
= hqlgggf(s EllquE Hl(1€||W;2(Td) =0.

Hence 4 and @ are both entropy solutions with the same initial condition. Moreover, by
Lemma 5.3 they have the (x)-property. Hence, by Theorem 4.1 we conclude that @ = .
By [20, Lemma 1.1] we have that the initial sequence (v;);°, converges in probability
in X to some u € X. Using this convergence and the uniform estimates on u;, it is then
straight-forward to pass to the limit in (5.18) and to see that the limit v is indeed an
Ls-solution. O

We are ready to proceed with the proof of Theorem 2.7.

6 Proof of the main theorem

Proof of Theorem 2.7. Step 1: As a first step we prove the existence of a solution having
the (x)-property under the auxiliary assumption that E||¢ ”Aig(qrd) < oo. Let u, be the
solutions of I1(®,,, &,,) constructed in Proposition 5.4. Based on Theorem 4.1 (ii), we will
show that (u,),en is a Cauchy sequence in L;(Q7; L1 (T9)). Let g > 0, v € (mA2)"1 )
such that 26v > 1 and a < 1 A (m/2) such that —2 + (2a)(2v) > 0, ¢ € (0,1), § = %,
n < n/, and A = 8/n. Thanks to (5.1), we have that Ry > n. Recalling the uniform
estimates (5.5), and the triangle inequality

El|&n (+) = & (- + )|z, (ray < BIEC) — EC + 2|y (ray + 2E[1§ — &l 2, (9),
the right-hand side of (4.2) (with v = u,, % = u,) is bounded by

M(E) + NE”f - fn’HLl(Td) + NE||§ - fn”Ll(Td) + Ne2p72
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+ NeT? B (| ju, 120 (1 + [un])]

L@z + w120+ luw DT, @r)):

where M(e) — 0 as € — 0. Choose € > 0 such that M(e) < ¢y9. Then, we can choose ng
sufficiently large so that for ng < n < n’ we have

NE||€ = &z, (ray + NE[E = &nllz, (ray + Ne7?n ™2 < ep.
The same is true for the term

Ne2B(|| T, j5n (1 + |un))]

7 (@ + iz DT, r)-

thanks to the uniform integrability (in (w,t,x)) of 1 + |u,|™, which follows from (5.6).
Hence, for ng < n <n’, one has

IE/ |tn (t, ) — wp (t, )] < 3eg.
t,x

Therefore, since ¢y > 0 was arbitrary, (u,),en converges in Li(Qr; Li (T?)) to a limit u.
Moreover, by passing to a subsequence, we may also assume that
lim u, =u, foralmostall (w,t,z)€ Qp x T (6.1)
n—oo

Consequently, by Lemma 5.3, (5.6), and Corollary 3.9 (i), v has the (x)-property. In
addition, it follows by (5.6) that for any ¢ < m + 1,

(|un(t,z)|7)5%, is uniformly integrable on Q7 x T<. (6.2)

We now show that u is an entropy solution. From now on, when we refer to the
estimates (5.5), we only use them with p = 2. By the estimates in (5.6), it follows that u
satisfies Definition 2.5, (i).

Let f € Cy(R). For each n, we clearly have [a,f](u,) € Lao(Qp; W (T?)) and
O, [0 f)(tn) = f(un)0y,[a,](u,). Also, we have |[a, f](r)] < ||f]lz.3K]|r|(™TD/2 for all
r € R, which combined with (5.5) and (5.6) gives that that

S AICH T AP

Hence, for a subsequence we have [a, f](u,) — vy, [a,](u,) — v for some vy, v €
Ly(Qr; W(T?)). By (5.1) and (6.1),(6.2) it is easy to see that v; = [af](u), v = [a](u).
Moreover, for any ¢ € C>°(T?), B € F, we have

n—oo

Els / O, [af)(u)é = lim EI / O [0 f] (1)

~ lim Bl / F (1), [a] (1) 8

n—oo

=Elp [ f(u)0x[a](u)o,
t,x

where for the last equality we have used that 9,,[a,](un) — 9.,[a](u) (weakly) and
f(u,) — f(u) (strongly) in Ly(Q7; Lo(T%)). Hence, (ii) from Definition 2.5 is also satisfied.
We now show (iii). Let n and ¢ be as in (iii) and let B € F. By Itd6’s formula (see, e.g.,
[32]) for the function

u /n(u)g,

xT
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and It6’s product rule, we have
—EI 000 < EI ) (0
B/mmu J0up < Bl [/n(é )6(0)
0)der+ /t ([ain/](un)A(ZS + [aijn/](“n)(ﬁxiw)

I W) = 1 ()b (un) )

\\\

(1) = [ )(0)) &
/ % (1) Dot )76 = 1) Vo ]<u7,,>|2¢>

/ / (un)do i (wn) = (o7, 7' (un) — (0751 (n) b, ) dﬁk(t)] :
(6.3)

Notice that 9, [vn"an](un) = /1 (un)0s, [an](un). As before we have (after passing
to a subsequence if necessary) 0., [vn"an](un) — Ou, [vV17a](u) in Lo(Qr; Lo(T?)). In
particular, this implies that d,, [\ﬁan](un) — Oy, [\ﬁa]( ) in La(Qr x T, ii), where
di :=Ip¢ dP ® dx ® dt (recall that ¢ > 0). This implies that

Els [ on'@|Vial@P <lminfELs [ 60" (w)|Vian) ().
t,x t,x

On the basis of (6.1), (6.2) and the construction of £,, and a,, one can easily see that the
remaining terms in (6.3) converge to the corresponding ones from (2.16).

Hence, taking liminf in (6.3) along an appropriate subsequence, we see that u
satisfies Definition 2.5, (iii).

To summarise, we have shown that if in addition to the assumptions of Theorem 2.7
L (T4) < 00, then there exists an entropy solution to (2.1) which has
the (x)-property (therefore, it is also unique by Theorem 4.1). In addition, we can pass
to the limit in (5.5)-(5.6) to obtain that

Esup [ullZ, ) + EIVIa (L, g < N+ BT, xa):
(6.4)

Esup ||u||"'+1<m +E[VAW)I3,p) < N+ EIEITL ga))-

with a constant N depending only on Ny, N1,d, K, T and m.

Step 2: We now remove the extra condition on £. For n € N, let &, be defined again
by , = (n A&) V (—n) and let u(,) be the unique solution of £(®,&,). Notice that by
step 1, u(,) has the (x)-property. Hence, by Theorem 4.1 (i) we have that (u(,)) is a
Cauchy sequence in L;(Q7; L1(T%)) and therefore has a limit u. In addition, u, satisfy
the estimates (6.4) uniformly in n € IN. With the arguments provided above it is now
routine to show that u is an entropy solution.

We finally show (2.17) which also implies uniqueness. Let u be an entropy solution of
£(®,€). By Theorem 4.1 we have

esssup B / [y () — (1, )| < B / 6 (2) — €(2)]

t€[0,T]
where u,) are as above. We then let n — oo to finish the proof. O
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7 Stochastic mean curvature flow

In this section we demonstrate the proof of well-posedness for the one-dimensional
stochastic mean curvature flow in graph form by minor modifications of the techniques
developed in the previous sections.

The stochastic mean curvature flow describes the evolution of a curve M; = ¢(t, My) C
R?, t € [0,T) given by the flow ¢ : [0,T] x My — R? satisfying

d¢(ta a?,y) = I_{)Aft(¢(tvxvy)) dt + Z Vﬂft(qb(t"r’ y))hk('xay) © dﬁk(t)v

k=1

—
where H )y, ((z,y)) is the mean curvature vector of M, at the point (z,y) € M; and
vm, (z,y) denotes the normal vector of M, at (z,y) € M,. Assuming that M, is the level
set of a function f(¢,-) : R> — R, one derives the SPDE

i

= wriav (g

) dt + > " hF|Vf] o dB(2).
k=1

In the graph case, that is, when f(z,y) = y — v(z) the above equation becomes

= V14 |vs]?0; ( ) t+th z,0)\/1+ |vg|2 0 dB"(2). (7.1)

\/7

In [11] the well-posedness of (7.1) is shown under the assumption that ! = ¢, for some
€ <+v/2and h* = 0 for k # 1. Here, we assume that h*(z,y) = h¥(x). Hence, taking the
derivative in z in the above equation, we derive the following SPDE for u = v,

du =0y arctan(u) dt + Za (W*(2)V/1 4+ u2) o dB¥(t). (7.2)
For a function ® : R — R, let £(®, ) denote the periodic problem
du = Ad(u dt+Za RF(2)V/1+u2) o dB¥(t)  in[0,T] x T¢,

with initial condition £. Therefore, we aim to solve £(®,&) for ®(u) = arctan(u). As
mentioned above, the proofs of the statements in this section are almost identical to the
corresponding ones of the previous sections. For this reason, we will restrict to pointing
out the differences.

For n € I, let b,, be the unique real function on R defined by the following properties

1. b, is continuous and odd
2. b,(r)=—r(1+72)"3/2forr € [0,n]
3. b, is linear on [n, ¢,], vanishes on [¢,, o), and

1
b 7.3
n 2\/ 1+ WI1tn2 (7.3)

n=t e 0= [ @
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Ao (r) := (1 +|r[)7Y2, &, (r) := arctan(r).
We introduce

< oo, forallp > 2}.

L= {u - Qp — Ly(T) css sTl]lpE||u(t)\|§2(W)

Remark 7.1. By virtue of (7.3) we have that for alln € NU {c0}, r € R,
1 <
lan(r)] —

Assumption 7.2. The function h = (h*)$2, : T — 5 is in C3(T; 1), and for a constant
No

2(1+ |r|).

[hlles () < No.
Assumption 7.3. For allp > 2, ]EH§H’£2(T) < 0.
Remark 7.4. From now on we use the notation of Section 2 with d = 1, and

o (x,7) = h¥(x)\/1 + |r[2.
Moreover, notice that o* satisfies Assumption 2.3 with k = 8 = B =1.

Definition 7.5. Let n € N U {co0}. An entropy solution of £(®,,, &) is a stochastic process
u € L such that

(i) Forall f € C,(R) we have [a,, f](u) € La(Qr; W3(T)) and

(ii) For all convex n € C?(R) with " compactly supported and all ¢ > 0 of the form
¢ = o with ¢ € C([0,T)), o € C*°(T), we have almost surely

/ / ¢tdxdt</n(§)¢(0)dz

/ / [a20'](w)A¢ + [an| () A) ddt
/0 /w (l(az + 50000 1(w) = 7' (Wb (1)) ¢a, dadt
+f ' | o ) 3butw) + o)) o dad
“ T /. GWWZI f(u)l2¢—n"(U)IV[an](u)|2¢> drdt

k
+ [ 0ot ~ koo~ ot Yo dras o)

With the notation of Definition 3.6 we define:

Definition 7.6. A function v € L is said to have the (xx)-property if there exists a
p € (0,1) such that for all i € L, h, g, ¢ as in the Definition 3.6, and for all sufficiently
small § > 0, we have that Fy(-,-,u) € L1(Qr x T) and

E [ Fy(t,z,u(t,z)) < NO* " + B(u,,0) (7.4)

t,x

for some constant N independent of 6.
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Choosing m = 3 in (3.7) from Lemma 3.8 gives the following.
Lemma 7.7. For any A € (3/4,1), k € N we have

E0aFol, ) < NI+ ess u Ella(t)7,cr), (7.5)

)

[0.T): W} (TxR)

where N depends only on Ny, k,d,T, A\, and the functions h, g, @, u, but not on 6.
Similarly to Corollary 3.9 one has:

Corollary 7.8. (i) Let u,, be a sequence bounded in Ly(2r x T), satisfying the (xx)-
property uniformly in n, that is, with constant N in (7.4) independent of n. Suppose that
u, converges for almost all w,t,z to a function u. Then u has the (xx)-property.

(ii) Let u € Lo(Q2 X Q7). Then one has for all § > 0

E Fp(t,z,u(t,z)) = ;in%IE/ Fo(t,z,a)pr(u(t,x) —a). (7.6)

t,x t,x,a

Theorem 7.9. Suppose that Assumption 7.2 holds and let 5,5 satisfy Assumption 7.3.
Forn,n’ € NU{oo}, let u, @ be entropy solutions of £(®,,£), £(P,,&) respectively, and
assume that u has the (%x)-property. Then,

(i) if furthermore n = n’, then

esssup Bu(t) — a(t)||z, (r) < NE[[§ - 5||L1(T). (7.7)
t€[0,T]

(ii) Ifu € Ly(Qr; W4 (T)), then for alle,6 € (0,1], A € [0, 1], we have

Ellu = llz, @r) < NE|I€ = &l L, ()
+ Ne(1+ E[0s[an](w) |7, (g + ElulZ, o)

+ N sup IE)||{;:() - g( + M)z, ()

|h|<=
+ NE_QE(”I\MZRx(l + |u|)HL1(QT) + ||I\17,|2Rx(1 + |ﬂ’|)HL1(QT))
+NC(6,6, VE( + [[ull7, 00 + 1ll7,(@m): (7.8)
where
Ry :=sup{R € [0,00] : |an(r) — an (r)| < A, V|r| < R}, (7.9)

C(6,e,A) = (0+ 6% 2+ +e20 " +e°N\ +o),
and N is a constant depending only on Ny, d, and T'.

Proof. The proof is mostly a repetition of the proof of Theorem 4.1 (withm =1, K = 1, and
B = 1) with very small modifications. Therefore, we only point out these modifications.
One proceeds as in the proof of Theorem 4.1 up to (4.33). There, we claim that (4.33)
holds with a = 1. This follows if one reproduces the proof of [7, Theorem 4.1, (4.8) and
(4.18) therein] (with m = 1) with only one difference: In order to estimate the term D,
(see [7, (4.13)]), one uses that sup,, sup,. |a,, ()| < oo to obtain the estimate

D1 < 6% fu —l,

in place of [7, (4.16)]. Proceeding then as in the proof of Theorem 4.1 one obtains (4.36)
with m =1, K =1, and 8 = 1. From there, (i) follows exactly as in Theorem 4.1. For (ii),
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the only difference to the proof of Theorem 4.1 is that instead of Lemma 3.4, one uses
the following

E/t lu(t, z) —u(t,y)|o:(x —y)

1
SE/t /|x—y||um<x+e<y—m>>|degs<x—y)

f RGN ) ER U
E//' il 0ty e

<eN (Enaz[an](u)nwﬂ + Bl (@0 () 20000
<eN (1+ Ella[on] () 3 0p) + Bl om) ) -

with N independent of n (where we have used Remark 7.1). O

Similarly to (5.5)-(5.6), we have that if u,, are Lo-solutions to £(¢, ®,,) for n € IN, then
forallp > 2

Esup [unll7, vy + ElOz[an](un)l7, 0y < NA+EIENT, ) (7.10)

Esup 1l v+ B0 (1) 30y < N+ B, ) (7.11)

where N depends only on Ny, T,d, and p. Using these estimates, Corollary 7.8, and
Lemma 7.7, one proves the following analogue of Lemma 5.3:

Lemma 7.10. Let Assumptions 7.2-7.3 hold, and for eachn € N, let u,, be an Ly-solution
of £(®,,,£). Then, u,, has the (xx)-property and the constant N in (7.4) is independent of
n.

Moreover, similarly to Proposition 5.4 one proves the following.

Proposition 7.11. Let Assumptions 7.2-7.3 hold. Then, for eachn € N, equation &(®,,, )
has a unique Ly-solution u,,.

Finally, using Proposition 7.11, Lemma 7.10, and Theorem 7.9, we obtain the following
theorem in a similar manner as Theorem 2.7 is concluded from Proposition 5.4, Lemma
5.3, and Theorem 4.1.

Theorem 7.12. Let Assumptions 7.2-7.3 hold. Then, there exists a unique entropy
solution of £(®., £). Moreover, if i is the unique entropy solution of £(®..,§), then
esssup Bl[u(t) — @(t)| L, (r) < NE[I€ = €1, (), (7.12)

t<T

where N is a constant depending only on Ny and T'.

Remark 7.13. Notice that in Theorem 7.9 (ii), there is the extra assumption that u €
Lo(Qr; W4 (T)) as compared to Theorem 4.1 (ii). However, this does not cause any
complication since the approximating sequence u,, of Proposition 7.11 satisfies this
condition.

A Appendix

Lemma A.1l. Let Assumptions 2.2 and 2.3 hold. Let ®,, and &,, be as in Proposition 5.1
and (5.2) respectively, let u be an Ly-solution of TI(®,,,&,,), and let p € [2,00). Then there
exists a constant N depending only on K, Ny, N1,T,d,m, and p such that

Esup [l pa) + BNV ()1 ) € N+ BNl ). (A1)
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Esup [ullf,}, @r) T EIVR()[L,00p) < NO BT (pa)- (A.2)

Proof. We start with (A.1). By It0’s formula we have
lw(t)1Z, ey =NEnllT, ey — 2/0 (O, P () + @™ (u) Oy u + b (w) + f*(u), O, u) py(1ay ds

t
—2/( *(u), Oz ) 1y vy 3" ( /Z:HU“C )0z, + 0 (W7, (pa) ds
0

0 k=1
=1€nll3, ray + / Z o (@)II3, () = 20, () + [ (1), ) () ds
t .
—2/ (ozk(u)7 Oz, W) L, (T4) dﬁk(s). (A.3)
0
Using that &, is increasing and (2.12), we get
2 2 i 2 3
[, ey < N + 160l s ra + / (N lull3 ) + (F (), Do) ey ) ds
t
=2 [ (0™ ). 00} 1.rey d545)
0
Notice that

(i (u), B0 L2<Td>|\/ ., i) ) da
/Td[fl I, da

S+ HUHLg(Td)a (A.4)

where for the last inequality we used (2.11), and the fact that [f?] € W11(T¢) for almost
all (w,t) € Qp (which in turn follows from (2.11) and (2.10)). Raising to the power p/2,
taking suprema up to time ¢’ and expectations, gives

t/
B (01 oy <N (1 BIEI gy + [ Boup LI, o 5
<t/ 0 t<s
t p/2
—|—]Esgp / (Ulk(u),axiu)b(w)dﬂk(s) ] (A.5)
1<t |Jo

By the Burkholder-Davis-Gundy inequality we have

/2 t/ p/4
< NE (/ Z(Uik(u)aamiu)iZ(qrd) ds) :
0k

E sup
<t/

t ) p
/0 (0™ (u), D, 0) e A5 (5)

As above
(Uik(“)aain)Lg(Td) = / O, [Uik](x,u) — [U;k}(x,u) dr = —/ [a;]f](x,u) dx.
Td Td

By Minkowski’s inequality and (2.12) one has

i ( /T o)) d:c>2 < N [full7, o).

k=1
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Consequently,
t p/2
Esup| [ (0% (). 0,,0)1.0 45"()
t<t’ |J0
+ p/4
<N + NE (/0 |u||iz(1rd)>
P —1 p

<N -+ B (0] + < N/O Esup [u(0) 1 e (A.6)

which combined with (A.5) gives,
Esup [u(t)|f, gy < N1+ B, ) (8.7)

by virtue of Gronwall’s lemma, provided that the right hand side of (A.6) is finite. The
latter can be achieved by means of a standard localization argument the details of which
are left to the reader. Going back to (A.3) after rearranging, raising to the power p/2,
and taking expectations gives

p/2

]EHV[unKU)HLQ(QT) <N |E[&|7 L2(Q) +

T
/0 (Ui’k(u)ﬁziu)@(qrd) g (s)

p/2
e[ (Za““ 0,0 + 1) awlunmﬂ) s

which by (2.12), (A.4), (A.6), and (A.7) gives

El|Viau) ()17, o) < N1+ EIE7, par). (A.8)

Hence, we have shown (A.1). The estimate (A.2) is proved in a similar way. Namely, one
first applies It6’s formula for the function u — ||u||erl (@) (see, e.g., [5, Lemma 2]) and
by arguments similar to those used above, one derlves the estimate

ESUPHU( T,

S N(L+E[léa]7

Ty < T ey (A.9)

Ly (T)

Writing It6’s formula (see, e.g., [32]) for the function

u > / / r)drdz
']I‘d

and using the properties of ®,, and (A.9), the estimate

E”V(I’n(u)HQLZ(QT) < N1+ Ean”zLi_:l(Td))a

follows in the same way as (A.8) follows from (A.7). This finishes the proof. O
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