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Abstract

We consider the thick points of random walk, i.e. points where the local time is a
fraction of the maximum. In two dimensions, we answer a question of [19] and compute
the number of thick points of planar random walk, assuming that the increments are
symmetric and have a finite moment of order two. The proof provides a streamlined
argument based on the connection to the Gaussian free field and works in a very
general setting including isoradial graphs. In higher dimensions, we study the scaling
limit of the set of thick points. In particular, we show that the rescaled number of thick
points converges to a nondegenerate random variable and that the centred maximum
of the local times converges to a randomly shifted Gumbel distribution.
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1 Results

For d ≥ 2, consider a continuous time simple random walk (Yt)t≥0 on Zd with
rate 1. Let us denote Px the law of (Yt)t≥0 starting from x and Ex the associated
expectation. Defining VN = {−N, . . . , N}d, we denote τN the first exit time of VN and(
`tx, x ∈ Zd, t ≥ 0

)
the local times defined by:

τN := inf {t ≥ 0, Yt /∈ VN} and ∀x ∈ VN ,∀t ≥ 0, `tx :=

∫ t

0

1{Ys=x}ds. (1.1)

In 1960, Erdős and Taylor [21] studied the behaviour of the local time of the most
frequently visited site. By translating their work to our context of continuous time
random walk, they proved that

if d = 2,
1

π
≤ lim inf

N→∞

supx∈VN `
τN
x

(logN)2
≤ lim sup

N→∞

supx∈VN `
τN
x

(logN)2
≤ 4

π
P0−a.s.,

if d ≥ 3, lim
N→∞

supx∈VN `
τN
x

logN
= 2E0 [`∞0 ] P0−a.s. (1.2)

and conjectured that the limit also exists in dimension two and is equal to the upper
bound. This conjecture was proved forty years later in a landmark paper [19]. Estimates
on the number of thick points, which are the points where the local times are larger than
a fraction of the maximum, are also given in this paper. Briefly, their proof establishes
the analogous results for the thick points of occupation measure of planar Brownian
motion; taking in particular advantages of symmetries such as rotational invariance and
certain exact computations on Brownian excursions. The discrete case is then deduced
from the Brownian case through strong coupling/KMT arguments. This method requires
all the moments of the increments to be bounded but the authors suspected that only
finite second moments are needed. Later, the article [30] showed that the paper [19]
can be entirely rewritten in terms of random walk giving a proof without using Brownian
motion. The strategy of [30] has then been refined in [3] to treat the case of random
walks on Z2 with symmetric increments having finite moment of order 3 + ε. A crucial
aspect of this latter article consists in controlling the jumps over discs. Such a control is
achieved by developing Harnack inequalities requiring further assumptions on the walk
(Condition A of [3]).

This paper has two purposes. Firstly, we exploit the links between the local times and
the Gaussian free field (GFF) provided by Dynkin-type isomorphisms to give a simpler
and more robust proof of the two-dimensional result. The proof works in a very general
setting (Theorem 3.6). In particular, we weaken the assumptions of [3] answering the
question of [19] about walks with only finite second moments and we also treat the
case of random walks on isoradial graphs. Secondly, we obtain more precise results in
dimension d ≥ 3. Namely, we show that the field {`τNx , x ∈ VN} behaves like the field
composed of i.i.d. exponential variables with mean E0 [`∞0 ] located at each site visited by
the walk. In particular, we show that the centred supremum of the local times as well as
the rescaled number of thick points converge to nondegenerate random variables.
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Thick points of random walk and the Gaussian free field

We first state two results for the planar case. Both are in fact corollaries of a more
general theorem (Theorem 3.6) which will be stated later. We will then present the result
in dimension d ≥ 3.

1.1 Dimension two

Consider Yt = SNt , t ≥ 0, a continuous time random walk on Z2 starting from the
origin where Sn =

∑n
i=1Xi, n ≥ 0, is the jump process with i.i.d. increments Xi ∈ Z2

and (Nt)t≥0 is an independent Poisson process of parameter 1. As before, we consider
the square VN of side length 2N + 1, the first exit time τN of VN and the local times(
`tx, x ∈ Z2, t ≥ 0

)
defined as in (1.1). For any thickness parameter 0 ≤ a ≤ 1, we call

MN (a) the set of a-thick points

MN (a) :=

{
x ∈ VN : `τNx ≥

2

π
√

detG
a(logN)2

}
where G is defined below. Then we have the following:

Theorem 1.1. Assume that the law of the increments is symmetric (i.e. −X d
= X), with

a finite variance and denote G = E [XX ′] the covariance matrix of the increments. Then
we have the following two a.s. limits:

lim
N→∞

maxx∈VN `
τN
x

(logN)2
=

2

π
√

detG
and ∀a ∈ [0, 1), lim

N→∞

log |MN (a)|
logN

= 2(1− a).

This theorem answers a question asked in the last section of [19] with the additional
assumption of symmetry. The assumption of symmetry is needed in our approach since
otherwise we cannot define an associated GFF.

Our approach is sufficiently general that it can handle random walks with a very
different flavour; for instance we discuss here the case of random walk on isoradial
graphs.

We recall briefly the definitions and introduce some notation (we use the same one
as [9]). Let Γ = (V,E) be any connected infinite isoradial graph, with common radius 1,
i.e. Γ is embedded in C and each face is inscribed into a circle of radius 1. Note that if
x, y ∈ V are adjacent then x and y, together with the centres of the two faces adjacent to
the edge {x, y}, form a rhombus. We denote by 2θx,y the interior angle of this rhombus
at x (or at y). See Figure 1 for an example. For instance, the square (resp. triangular,
hexagonal, etc) lattice is an isoradial graph with θx,y = π/4 (resp. π/6, π/3, etc) for all
x ∼ y. We assume the following ellipticity condition:

∃η ∈
(

0,
π

4

)
,∀x ∼ y, θx,y ∈

(
η,
π

2
− η
)
.

Define ∀x ∼ y ∈ V the conductance cx,y = tan(θx,y) and let (Yt)t≥0 be a Markov
jump process with conductances (ce)e∈E . Y is a continuous time walk which waits an
exponential with mean 1/

∑
y∼x cx,y time in each vertex x and then jumps from x to y

with probability cx,y/
∑
z∼x cx,z. Take a starting point x0 ∈ V and denoting dΓ the graph

distance we define for all N ∈ N,

VN := {x ∈ V : dΓ(x, x0) ≤ N}

and as before (equation (1.1)), we consider the first exit time τN of VN and the local
times. We will denote Px the law of the walk (Yt)t≥0 starting from x ∈ V and Ex the
associated expectation.

As confirmed by the theorem below, a sensible definition of a-thick points is given by

MN (a) :=
{
x ∈ VN : `τNx ≥

a

π
(logN)2

}
.
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x

y

θx,y

Figure 1: Isoradial graph and rhombic half-angle. The solid lines represent the edges of
the graph. Each face is inscribed into a dotted circle of radius 1. The centres of the two
faces adjacent to the edge {x, y} are in grey.

Theorem 1.2. We have the following two Px0
-a.s. limits:

lim
N→∞

maxx∈VN `
τN
x

(logN)2
=

1

π
and ∀a ∈ [0, 1), lim

N→∞

log |MN (a)|
logN

= 2(1− a).

Remark 1.3. Theorems 1.1 and 1.2 also hold when we consider the walk stopped at a
deterministic time, N2 say, rather than the first exit time τN of VN , since

lim
N→∞

log τN
logN

= 2 a.s.

(easy to check but can also be seen from these two theorems). They also hold if we
consider discrete time random walks rather than continuous time random walks. In that
case, we have to multiply the discrete local times by the average time the continuous
time walk stays in a given vertex before its first jump. See Remark 1.7 ending Section
1.2 for a short discussion about this.

Let us just confirm that Theorems 1.1 and 1.2 are coherent: in the square lattice
case, the average time between successive jumps by the walk Y of Theorem 1.2 is 1/4

rather than 1. We also mention that it is plausible that the arguments of [30] can be
adapted to show Theorem 1.2. However, we include it here since it is a straightforward
consequence of our approach (Theorem 3.6).

1.2 Higher dimensions

We now come back to the setting of the beginning of Section 1 for d ≥ 3 and we
denote g := E0 [`∞0 ]. In this section, the walk starts at the origin of Zd.

We describe thick points through a more precise encoding by considering for a ∈ [0, 1]

the point measure:

νaN :=
1

N2(1−a)

∑
x∈VN

δ(x/N,`τNx −2ga logN). (1.3)

Let us emphasise that the normalisation factor is equal to 1 when a = 1 and that νaN is
viewed as a random measure on [−1, 1]d ×R. We compare the thick points of random
walk with the thick points of i.i.d. exponential random variables with mean g located at
each site visited by the walk. More precisely, we denoteMN (0) := {x ∈ VN : `τNx > 0}
and taking Ex, x ∈ Zd, i.i.d. exponential variables with mean g independent ofMN (0),
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we define

µaN :=
1

N2(1−a)

∑
x∈MN (0)

δ(x/N,Ex−2ga logN).

We finally denote by τ the first exit time of [−1, 1]d of Brownian motion starting at the
origin and by µocc the occupation measure of Brownian motion starting at the origin and
killed at τ . Then we have:

Theorem 1.4. For all a ∈ [0, 1] there exists a random Borel measure νa on [−1, 1]d ×R
such that, with respect to the topology of vague convergence of measures on [−1, 1]d×R
(on [−1, 1]d × (0,∞) if a = 0), we have:

lim
N→∞

νaN = lim
N→∞

µaN = νa in law.

Moreover, for all a ∈ [0, 1) the distribution of νa does not depend on a and

νa(dx, d`)
(d)
=

1

g
µocc(dx)⊗ e−`/g d`

g
. (1.4)

At criticality, ν1 is a Poisson point process:

ν1 (d)
= PPP

(
1

g
µocc(dx)⊗ e−`/g d`

g

)
. (1.5)

We will see that this statement will imply the following two theorems:

Theorem 1.5. If we define for every a ∈ [0, 1] the set of a-thick points:

MN (a) := {x ∈ VN : `τNx > 2ga logN} ,

then there exist random variables Ma such that for all a ∈ [0, 1]

|MN (a)|
N2(1−a)

(d)−−−−→
N→∞

Ma.

Moreover, for all a ∈ [0, 1) the distribution of Ma does not depend on a and

Ma
(d)
= τ/g. (1.6)

M1 is a Poisson variable with parameter τ/g: for all k ≥ 0

P (M1 = k) =
1

k!
E

[
e−

τ
g

(
τ

g

)k]
. (1.7)

Theorem 1.6. There exists an almost surely finite random variable L such that

sup
x∈VN

`τNx − 2g logN
(d)−−−−→

N→∞
L.

Moreover, L is a Gumbel variable with mode g log(τ/g) (location of the maximum) and
scale parameter g, i.e. for all t ∈ R

P (L ≤ t) = E

[
exp

(
−τ
g
e−t/g

)]
.

To the best of our knowledge, this result is not present in the current literature. A
detailed study of the local times of random walk in dimension greater than two has
been done in a series of papers by Csáki, Földes, Révész, Rosen and Shi (see [13] for
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a survey of this work). In particular, Theorem 1 of [29] and the corollary following
the main theorem of [14] improved the estimate of Erdős and Taylor (equation (1.2)).
By translating their work to our setting of continuous time random walk (see the next
remark), they showed that a.s. for all ε > 0, there exists N0 < ∞ a.s. such that for all
N ≥ N0,

−(4 + ε)g log logN ≤ sup
x∈VN

`τNx − 2g logN ≤ (2 + ε)g log logN.

Let us also mention the fact that Theorem 2 of [29] states that for all ε > 0, almost
surely we have supx∈VN `

τN
x − 2g logN ≥ (2(d− 4)/(d− 2)− ε) log logN for infinitely many

N . This is not in contradiction with our Theorem 1.6 because we only give the typical
behaviour (i.e. at a fixed time) of supx∈VN `

τN
x − 2g logN .

Remark 1.7. We have stated our results in the case of continuous time random walk but
they hold as well for discrete time random walk. As already mentioned, the statements
in the planar case do not need to be changed. The reason for this is because in dimen-
sion two we were essentially comparing exponential (continuous time) or geometrical
(discrete time) variables with mean g logN to ag(logN)2 for some g > 0 and a ∈ (0, 1).
In both cases, if we divide these variables by g logN then they converge to exponential
variables with parameter 1. Thus there is no difference between the continuous time
case and the discrete time one. On the contrary, in higher dimensions, we are comparing
exponential or geometrical variables with mean g to ga logN and these two distributions
have slightly different behaviour. In the discrete time setting, our results claim that
the field composed of the local times behaves like the field composed of independent
geometrical variables with mean g located at each site visited by the walk. Theorems
1.4–1.6 then have to be modified accordingly.

2 Outline of proofs and literature overview

Section 3 will be dedicated to the dimension two whereas Section 4 will deal with the
dimensions greater or equal to three. Let us first describe the two dimensional case.

We first recall the definition of the GFF on the square lattice. With the notations of
Theorem 1.2 in the square lattice case, the Gaussian free field is the centred Gaussian
field φN , indexed by the vertices in VN , whose covariances are given by the Green
function:

E[φN (x)φN (y)] = Ex
[
`τNy
]
.

See [5], [32] for introductions to the GFF. Our argument will simply relate the thick
points of the random walk to those of the GFF: see [25], [22] in the continuum and [8],
[17] in the discrete case.

We now explain the interest of exploiting the connection to the GFF. As usual, the
proofs of Theorems 1.1 and 1.2 rely on the method of (truncated) second moment. That
is, a first moment estimate on |MN (a)| gives us the upper bound, while a matching upper
bound on the second moment of |MN (a)| would supply the lower bound. Moreover, it is
necessary to first consider a truncated version of |MN (a)|, where we consider points
that are never too thick at all scales (this is similar to the idea in [6]). Computing
the corresponding correlations is not easy with the random walk, but is essentially
straightforward with the GFF as this is basically part of the definition. As only an upper
bound on the second moment is needed, comparisons to the GFF with Dynkin-type
isomorphisms go in the right direction. We will see that the Eisenbaum’s version will be
the most convenient to work with.

We now state this isomorphism. Consider Γ = (V,E) a non-oriented connected infinite
graph without loops, not necessary planar, equipped with symmetric conductances
(Wxy)x,y∈V . Let E′ be the edge set E′ = {{x, y} : x, y ∈ V,Wxy > 0}. Let Px be the law
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under which (Yt)t≥0 is a symmetric Markov jump process with conductances (Wyz)y,z∈V
(i.e. jump rates Wyz from y to z) starting at x at time 0. Y is thus a nearest neighbour
random walk on (V,E′) but not necessary on Γ = (V,E). As in the isoradial case, we
denote `tx, x ∈ V, t ≥ 0, its local times, x0 a starting point, VN the ball of radius N and
centre x0 for the graph distance of Γ, τN the first exit time of VN . Because Y is a
symmetric Markov process, the following expression is symmetric in x, y:

Ex
[
`τNy
]

= Ey [`τNx ] .

This allows us to define a centred Gaussian field φN whose covariances are given by
the previous expression. φN is called Gaussian free field and we will denote P its law.
The following theorem establishes a relation between the local times and the GFF (see
lectures notes [31] for a good overview of this topic)

Theorem A (Eisenbaum’s isomorphism). For all s > 0 and all measurable bounded
function f : RVN → R,

Ex0
⊗ E

[
f

{(
`τNx +

1

2
(φN (x) + s)2

)
x∈VN

}]

= E

[(
1 +

φN (x0)

s

)
f

{(
1

2
(φN (x) + s)2

)
x∈VN

}]
.

Remark 2.1. We are now going to explain why we chose to use this isomorphism instead
of the maybe more well-known generalised second Ray-Knight theorem. To ease the
comparison, we are going to state this other isomorphism in the setting that is of interest
to us. Consider the graph (VN , EN ) with EN = {{x, y} : x, y ∈ VN ,Wxy > 0}. Let Px be
the law under which (Yt)t≥0 is a symmetric Markov jump process with conductances
(We)e∈EN starting at x at time 0. Let `tx, x ∈ VN , t > 0, be the associated local times
and for u > 0, define τu := inf{t > 0 : `tx0

≥ u} and τx0
:= inf{t > 0 : Yt = x0}. We can

now define P the law under which (ψN (x), x ∈ VN ) is the GFF in VN with zero-boundary
condition at x0, i.e. ψN is a centred Gaussian vector whose covariance matrix is given
by

E[ψN (x)ψN (y)] = Ex
[
`
τx0
y

]
.

The generalised second Ray-Knight theorem states that (see again the lecture notes
[31]): (

`τux +
1

2
ψN (x)2

)
x∈VN

(d)
=

(
1

2

(
ψN (x) +

√
2u
)2
)
x∈VN

(2.1)

under Px0 ⊗ P and P.

It would have been possible to use this isomorphism to show Theorems 1.1 and 1.2.
Compared to the Eisenbaum’s isomorphism above, this has the advantage that the laws
of the GFFs on the left hand side and right hand side are the same. However this has
a drawback: indeed it is necessary to stop the walk where it starts, i.e. at x0. This
isomorphism then leads to a GFF ψN pinned at x0. This is essentially equivalent to
adding a global noise to the Dirichlet GFF φN of order

√
logN which is sufficient to ruin

second moment approach. This noise would have to be removed by hand in order to
apply the method of second moment. This is possible but makes the proof substantially
longer.

The generalised second Ray-Knight isomorphism has been used several times to
study problems related to local times (see for instance [20]). We now mention two works
that are maybe the most relevant to us. The isomorphism (2.1) immediatly gives the
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following stochastic domination:(√
`τux
)
x∈VN

≺
(

1√
2

∣∣∣ψN (x) +
√

2u
∣∣∣)

x∈VN

under Px0 and P. One can actually show a stronger result and replace the absolute value
on the right hand side by max(·, 0) (Theorem 3.1 of [33]). Abe [1] exploited this and used
the symmetry of the GFF to make links between what was called thin points and thick
points of the random walk on the two-dimensional torus, up to a multiple of the cover
time.

Let us also mention that Abe and Biskup [2] have announced a work in preparation
which relates the thick points of random walk to the Liouville quantum gravity in dimen-
sion two. This is in the same spirit as this paper as they also rely on a connection to the
GFF. However, we emphasise some important differences. First, the walk they consider
is on a box and has wired boundary conditions, meaning that the walk is effectively
re-randomised every time it hits the boundary of the box. Second, they consider the
local time profile at a regime comparable to the cover time, so that the comparison to
the GFF is perhaps more clear.

Organisation - planar case: The two-dimensional part of the paper will be organised
as follows. In Section 3.1 we will present the general framework that we treat (Theorem
3.6). We will then show that Theorems 1.1 and 1.2 are simple corollaries. The upper
bound, which is the easy part, will be briefly proved at the end of the same section.
Section 3.2 is devoted to the lower bound. We first show that the probability to have
a lot of thick points does not decay too quickly. This is the heart of our proof and
makes use of the comparison to the GFF. We then bootstrap this argument to obtain
the same statement with high probability, see Lemma 3.8 at the beginning of Section
3.2. This lemma is a key feature of our proof and allows us to use the comparison to
the GFF. Indeed, since we do not require very precise estimates, we can deal with the
change of measure coming from the isomorphism through very rough bounds, such
as: |φN (x0)| ≤ (logN)2 with high probability (see Lemma 3.9). This only introduces a
poly-logarithmic multiplicative error in the estimate of the probabilities that two given
points are thick, and so does not matter for the computation of the fractal dimension of
the number of thick points on a polynomial scale.

If we want more accurate estimates, more ideas are required. For instance, for the
simple random walk on the square lattice, the comparison between the number of thick
points for the random walk and for the GFF breaks down: the two following expectations
converge as N goes to infinity:

lim
N→∞

logN

N2(1−a)
E0

[
#

{
x ∈ VN : `τNx ≥

4a

π
(logN)2

}]
∈ (0,∞), (2.2)

lim
N→∞

√
logN

N2(1−a)
E

[
#

{
x ∈ VN : 1

2φN (x)2 ≥ 4a

π
(logN)2

}]
∈ (0,∞). (2.3)

In the article [7] the thick points of the discrete GFF φN were encoded in point measures
of a similar form as the one we defined in (1.3). The authors showed the convergence of
such measures. As a consequence, they went beyond the estimate (2.3) and showed that

√
logN

N2(1−a)
#

{
x ∈ VN : 1

2φN (x)2 ≥ 4a

π
(logN)2

}
(2.4)

converges in law to a nondegenerate random variable.
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Question 2.2. In the case of simple random walk on the square lattice starting at the
origin, does

logN

N2(1−a)
#

{
x ∈ VN : `τNx ≥

4a

π
(logN)2

}
(2.5)

converge to a nondegenerate random variable as N goes to infinity?

Notice that the renormalisations are different in (2.4) and in (2.5). These differences
suggest scraping the GFF approach if we want optimal estimates. This is what we will
do in higher dimensions.

Update: after this work was completed, this question has been solved in [23], [2]
and [24]. The framework of [24] is the above-described setting of planar random walk
stopped upon hitting the boundary of VN for the first time, whereas [23] works in an
analogue setting for planar Brownian motion. The article [2] considers different type of
walks that are run up to a time proportional to the cover time of a planar graph and that
have wired boundary condition (see Remark 2.1).

We have finished to discuss the two-dimensional case and we now describe the
situation in higher dimensions. The article [18] studied the thick points of occupation
measure of Brownian motion in dimensions greater or equal to three. They obtained
the leading order of the maximum and computed the Hausdorff dimension of the set
of thick points. The article [16], as well as [11], [14], [12], [15] (again, see [13] for a
survey on this series of paper), studied the case of symmetric transient random walk on
Zd with finite variance. One of their results computed the leading order of the maximum
of the local times too. In both [18] and [16], a key feature of the proofs is a localisation
property (Lemma 3.1 of [18] and Lemma 2.2 of [16]) which roughly states that a thick
point accumulates most of its local time in a short interval of time. This property allows
them to consider independent variables and makes the situation simpler compared to
the two-dimensional case.

Let us also mention the paper [10] which studied the scaling limit of the discrete
GFF in dimension greater or equal to three. The authors obtained a result similar to
Theorem 1.4. Namely, they showed that in the limit the field behaves as independent
Gaussian variables. More precisely, they defined a point process analogue to ν1

N (see
(1.3)) which encodes the thickest points of the GFF. They showed that this point process
converges to a Poisson point process. Their situation is simpler because the intensity
measure is governed by the Lebesgue measure rather than the occupation measure of
Brownian motion. In particular, they could use the Stein-Chen method which allowed
them to consider only the two first moments.

Organisation - higher dimensions: Let us now present the main lines of our proofs
and the organisation of the paper. In Section 4.1, Theorems 1.4, 1.5 and 1.6 will all be
obtained from the joint convergence of the sequences of real-valued random variables
νaN (A1 × T1), . . . , νaN (Ar × Tr), for all suitable Ai ⊂ [−1, 1]d and Ti ⊂ R. We will obtain
this fact by computing explicitly all the moments of these variables (Proposition 4.3).
This is actually the heart of our proofs and Section 4.2 will be entirely dedicated to it.
To compute the k-th moment of νaN (A × T ), we will estimate the probability that the
local times in k different points, say x1, . . . , xk, belong to 2ga logN + T . In the subcritical
regime (a < 1), we will be able to assume that these points are far away from each other.
In that case, Lemma 4.6 will show that we can restrict ourselves to the event that there
exists a permutation σ of the set of indices {1, . . . , k} which orders the vertices so that
we have the following: the walk first hits xσ(1), accumulates a big local time in xσ(1), then
hits xσ(2), accumulates a big local time in xσ(2), etc. When the walk has visited xσ(i) it
does not come back to the vertices xσ(1), . . . , xσ(i−1). The local times can thus be treated
as if they were independent.
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At criticality (a = 1), we do not renormalise the number of thick points and we will
a priori have to take into account points which are close to each other. Here, the key
observation - contained in Lemma 4.8 and already present in Corollary 1.3 of [16] - is
that if two distinct points are close to each other, then the probability that they are both
thick is much smaller than the probability that one of them is thick, even if they are
neighbours! This is specific to the dimension greater or equal to 3 and tells that the
thick points do not cluster. Thus, only the points which are either equal or far away from
each other will contribute to the k-th moment.

Section 4.3 will contain the proofs of four intermediate lemmas that are needed to
prove Proposition 4.3 on the convergence of the moments of νaN (A1×T1), . . . , νaN (Ar×Tr)
for suitable Ai ⊂ [−1, 1]d and Ti ⊂ R.

3 Dimension two

3.1 General framework and upper bound

We now describe the general setup for the theorem. Consider Γ = (V,E) a non-
oriented connected infinite graph without loops, not necessary planar, equipped with
symmetric conductances (Wxy)x,y∈V . As before, we take x0 ∈ V a starting point and
write dΓ for the graph distance. We will also write

∀N ∈ N, VN (x0) := {x ∈ V : dΓ(x, x0) ≤ N}.

Let Px be the law under which (Yt)t≥0 is a symmetric Markov jump process with conduc-
tances (Wyz)y,z∈V (i.e. jump rates Wyz from y to z) starting at x at time 0. Y is thus a
nearest neighbour random walk on (V,E′), where E′ = {{x, y} : x, y ∈ V,Wxy > 0}, but
not necessary on Γ. We introduce the first exit time of VN (x0) and the local times:

τN (x0) := inf {t ≥ 0, Yt /∈ VN (x0)} and ∀x ∈ V,∀t ≥ 0, `tx :=

∫ t

0

1{Ys=x}ds.

Finally we will denote Gx0

N the Green function, i.e.:

Gx0

N (x, y) := Ex

[
`τN (x0)
y

]
. (3.1)

If there is no confusion, we will simply write VN , τN and GN instead of VN (x0), τN (x0)

and Gx0

N .

Notation 3.1. For two real-valued sequences (uN )N≥1 and (vN )N≥1 and for some pa-
rameter α, we will denote uN = oα(vN ) if

∀ε > 0,∃N0 = N0(α, ε) > 0,∀N ≥ N0, |uN | ≤ ε |vN | ,

and we will denote uN = Oα(vN ) if

∃C = C(α) > 0,∃N0 = N0(α),∀N ≥ N0, |uN | ≤ C |vN | .

We now make the following assumptions on the graph Γ and on the walk Y :

Assumptions We start with two assumptions on the geometry of the graph Γ.

Assumption 3.2. #VN (x0) = N2+o(1) and for all x′0 ∈ VN (x0) there exists a subset
QN (x′0) ⊂ VN (x′0) with N2+o(1) points such that

∀α < 2,
∑

x,y∈QN (x′0)

(
N

dΓ(x, y) ∨ 1

)α
= N4+oα(1). (3.2)
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Assumption 3.3. For all η ∈ (0, 1), x′0 ∈ VN (x0), x ∈ QN (x′0) and R ∈ [1, N1−η], we can
find a subset CR(x) ⊂ QN (x′0) which can be thought of as a circle of radius R centred at
x:

∀y ∈ CR(x), log
R

dΓ(x, y)
= oη(logN), (3.3a)

1

#CR(x)2

∑
y,y′∈CR(x)

log

(
R

dΓ(y, y′) ∨ 1

)
= oη(logN). (3.3b)

We now assume that we have good controls on the Green function:

Assumption 3.4. There exists g > 0 such that:

∀x ∈ VN (x0), Gx0

N (x, x) ≤ g logN + o(logN), (3.4a)

∀x′0 ∈ VN (x0),∀x, y ∈ QN (x′0), G
x′0
N (x, y) = g log

(
N

dΓ(x, y) ∨ 1

)
+ o(logN), (3.4b)

∀x′0 ∈ VN (x0),∀x ∈ QN (x′0), G
x′0
N (x′0, x) ≥ (1/N)o(1). (3.4c)

Finally, we assume that the jumps are not unreasonable:

Assumption 3.5. For all KN = N1−o(1) ≤ N , x′0 ∈ VN−KN (x0) and M > 0,

Px′0

(
dΓ

(
x′0, YτKN (x′0)

)
≥ KN +M

)
≤ KNN

o(1)/M. (3.5)

where τKN (x′0) is the first exit time of VKN (x′0).

We now briefly discuss the above assumptions. Note that we have assumed that all the
bounds do not depend on the starting point x′0 ∈ VN (x0). This will be important for our
Lemma 3.8. Assumption 3.3 is needed to go beyond the L2 phase whereas Assumption
3.5 is needed to bootstrap the probability to have a lot of thick points (Lemma 3.8). This
latter assumption can be weakened. We could replace KNN

o(1)/M by f(KNN
o(1)/M)

with a function t ∈ (0,∞) 7→ f(t) ∈ (0,∞) which goes to zero quickly enough as t goes to
zero. For instance, any positive power of t would do.

As confirmed by the theorem below, a sensible definition of a-thick points is given by

MN (a) :=
{
x ∈ VN : `τNx ≥ 2ag(logN)2

}
.

Theorem 3.6. Assuming the above assumptions we have the following two Px0 -a.s.
convergences:

lim
N→∞

maxx∈VN `
τN
x

(logN)2
= 2g and ∀a ∈ [0, 1), lim

N→∞

log |MN (a)|
logN

= 2(1− a).

We now check that Theorems 1.1 and 1.2 are consequences of this last theorem.
Theorem 1.2 naturally fits into the setting of continuous time random walks defined
using symmetric conductances, whereas the setting of Theorem 1.1 corresponds to
the above-described general framework with Γ being the square lattice equipped with
weights Wxy = P (X = y − x). These weights are symmetric thanks to the assumption

X
(d)
= −X. We now need to check that these two setups satisfy Assumptions 3.2–3.5

above.
For the isoradial case, the walk is a nearest-neighbour random walk so Assumption

3.5 is clear. The following lemma checks that all the other assumptions are fulfilled if we
define

∀x′0 ∈ VN (x0), QN (x′0) :=

{
VN/RN (x′0) in the square lattice case,
VεN (x′0) in the isoradial case,
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where RN and ε are defined Lemma 3.7 below, and if we define in both cases

∀x′0 ∈ VN (x0),∀x ∈ QN (x′0),∀R ≥ 1, CR(x) := {y ∈ QN (x′0) : dΓ(x, y) = R}.

Lemma 3.7. 1. Square Lattice. Consider a walk Y as in Theorem 1.1 and denote by
G the covariance matrix of the increments. Let x′0 ∈ Z2 be a starting point. Then
there exists C > 0 independent of x′0 such that for all M > 0,

Px′0

(
dΓ

(
x′0, YτN (x′0)

)
≥ N +M

)
≤ CN/M. (3.6)

Moreover for all η ∈ (0, 1),

∀x, y ∈ VN (x′0), G
x′0
N (x, y) ≤ 1

π
√

detG
log

(
N

|x− y| ∨ 1

)
+ o(logN), (3.7)

∀x, y ∈ V(1−η)N (x′0), G
x′0
N (x, y) ≥ 1

π
√

detG
log

(
N

|x− y| ∨ 1

)
+ oη(logN) (3.8)

and there exists a sequence RN = No(1) such that

∀x ∈ VN/RN (x′0), G
x′0
N (0, x′0) ≥ No(1). (3.9)

2. Isoradial Graphs. Consider a walk Y as in Theorem 1.2. Let x′0 ∈ V be a starting
point. Then for all η ∈ (0, 1),

∀x, y ∈ VN (x′0), G
x′0
N (x, y) ≤ 1

2π
log

(
N

|x− y| ∨ 1

)
+ C, (3.10)

∀x, y ∈ V(1−η)N (x′0), G
x′0
N (x, y) ≥ 1

2π
log

(
N

|x− y| ∨ 1

)
− C(η) (3.11)

for some C,C(η) > 0 independent of x′0. Moreover, there exist c, ε > 0 independent
of x′0 such that

∀x ∈ VεN (x′0), G
x′0
N (x′0, x) ≥ c. (3.12)

Proof. Square lattice. We first start to prove (3.6). By translation invariance, we can
assume that x′0 = 0. We consider the discrete time random (Si)i≥0 associated and we are
going to abusively write τN to denote the first time the discrete time walk exits VN . Take
λ > 0 to be chosen later on. The probability we are interested in is not larger than

P0 (dΓ (SτN−1, SτN ) ≥M) ≤ P0 (∃i ≤ τN − 1, dΓ(Si, Si+1) ≥M)

≤ P0

(
∃i ≤ λN2 − 1, dΓ(Si, Si+1) ≥M

)
+ P0

(
τN > λN2

)
.

As the increments have a finite variance, the first term on the right hand side is not
larger than CλN2/M2 for some C > 0 by the union bound. Secondly,

P0

(
τN > λN2

)
≤ P0 (dΓ (0, SλN2) ≤ N) .

Theorem 2.3.9 of [28] gives estimates on the heat kernel and in particular implies that
there exists C > 0 such that for all x ∈ Z2, P0 (Si = x) ≤ C/i. Hence

P0

(
τN > λN2

)
≤ C ′/λ.

We obtain (3.6) by taking λ = M/N .
Now, (3.7) and (3.8) are consequences of the estimate on the potential kernel a(x)

made in Theorem 4.4.6 of [28]:

a(x) =
1

π
√

detG
log |x|+ o(log |x|) as |x| → ∞
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which is linked to the Green function by:

GN (x, y) =
∑
z∈V cN

Px (YτN = z) a(y − z)− a(y − x). (3.13)

If z ∈ V cN is such that dΓ(x0, z) ≤ N(logN)2, then

1

π
√

detG
logN + oη(logN) ≤ a(y − z) ≤ 1

π
√

detG
logN + o(logN)

where the lower bound (resp. upper bound) is satisfied by all y ∈ V(1−η)N (resp. VN ).
(3.6) implying that Px

(
dΓ (x0, YτN ) ≤ N(logN)2

)
= 1 + o(1), we are thus left to show

that the elements z such that dΓ(x0, z) > N(logN)2 do not contribute to the sum in the
equation (3.13). Thanks to (3.6), we have∑

z∈Z2

dΓ(x0,z)>N(logN)2

Px (YτN = z) log |z|

≤
∞∑
p=0

Px
(
2p ≤ dΓ (x0, YτN ) /(N(logN)2) < 2p+1

)
log
(
N(logN)22p+1

)
≤ C

(logN)2

∞∑
p=0

1

2p
log
(
N(logN)22p+1

)
≤ C ′

logN

which goes to zero as N goes to infinity. It completes the proof of (3.7) and (3.8). (3.9) is
a direct consequence of (3.8).

Isoradial graphs. (3.10) and (3.11) are a direct consequences of Theorem 1.6.2 and
Proposition 1.6.3 of [27] in the case of simple random walk on the square lattice. Kenyon
extended this result to general isoradial graphs (see [26] or Theorem 2.5 and Definition
2.6 of[9]). (3.12) follows from (3.11).

From now on, we will work with a graph Γ and a walk Y which satisfy Assumptions
3.2–3.5. An upper bound on the Green function GN is already enough to prove the upper
bound of Theorem 3.6:

Proof of the upper bound of Theorem 3.6. Let a ≥ 0 and N ≥ 1. For every ε > 0 we
obtain by Markov inequality:

Px0

(
|MN (a)| ≥ N2(1−a)+ε

)
≤ N−2(1−a)−ε

∑
x∈VN

Px0

(
`τNx ≥ 2ga(logN)2

)
.

But for every x ∈ VN , under Px, `τNx is an exponential variable with mean GN (x, x).
Hence by (3.4a),

Px0

(
`τNx ≥ 2ga(logN)2

)
= Px0

(`τNx > 0)Px
(
`τNx ≥ 2ga(logN)2

)
= Px0

(`τNx > 0) exp
(
−2ga(logN)2/GN (x, x)

)
≤ CN−2a+o(1). (3.14)

The upper bound for the convergence in probability follows. To show that

lim sup
N→∞

log |MN (a)|
logN

≤ 2(1− a), Px0−a.s.,

we observe that, taking N = 2n in (3.14),

Px0

(
#
{
x ∈ V2n+1 : `

τ2n+1
x ≥ 2ga (log 2n)

2
}
≥ (2n)2(1−a)+ε

)
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decays exponentially and so is summable. Moreover, if 2n ≤ N < 2n+1,

|MN (a)| ≤ #
{
x ∈ V2n+1 : `

τ2n+1
x ≥ 2ga (log 2n)

2
}
.

Hence the Borel–Cantelli lemma implies that

lim sup
N→∞

log |MN (a)|
logN

≤ 2(1− a) + ε, Px0
−a.s.

This concludes the proof of the upper bound on |MN (a)|. We notice that the above reason-
ing also shows that for all ε > 0, almost surely, for all N large enough, |MN (1 + ε)| = 0.
The upper bound on supx∈VN `

τN
x then follows from{

sup
x∈VN

`τNx ≥ 2g(1 + ε)(logN)2

}
⊂ {|MN (1 + ε)| ≥ 1} .

3.2 Lower bound

We first start this section by establishing a lemma which simplifies a bit the problem:
we only need to show that the probability to have a lot of thick points decays sub-
polynomially. For all starting point x′0 ∈ VN , defineMN (a, x′0) the set of a-thick points in
the ball VN (x′0):

MN (a, x′0) =
{
x ∈ VN (x′0) : `

τN (x′0)
x ≥ 2ga(logN)2

}
.

Lemma 3.8. Suppose that for all starting point x′0 ∈ VN (x0), for all a ∈ (0, 1), ε > 0 and
N ∈ N,

Px′0

(
|MN (a, x′0)| ≥ N2(1−a)−ε

)
≥ pN ,

with pN = pN (a) > 0 decaying slower than any polynomial, i.e. log pN = oa,ε(logN).
Then for all a ∈ (0, 1),

lim inf
N→∞

log |MN (a)|
logN

≥ 2(1− a), Px0−a.s.

Proof. A similar but weaker statement appears in [19] and [30] where they assumed
that pN was bounded away from 0. The idea is to decompose the walk in the ball VN (x0)

into several walks in smaller balls to bootstrap the probability we are interested in.

First of all, let us remark that if pN ∈ (0, 1) decays slower than any polynomial, then
so does (infn≤N pn)N≥1. Consequently, we can assume without loss of generality that the
sequences pN in the statement of the lemma are non increasing.

Fix ε > 0 and take N large and KN ∈ Nmuch smaller than N such that KN = N1−o(1).
Let us introduce the stopping times

σ(0) := 0 and ∀i ≥ 1, σ(i) := inf
{
t > σ(i− 1) : dΓ

(
Yt, Yσ(i−1)

)
≥ KN

}
and

imax := max
{
i ≥ 0, dΓ

(
x0, Yσ(i)

)
≤ N −KN

}
.

Let k ≥ 1. If imax+1 ≥ k, then all the walks
(
Yσ(i)+t, 0 ≤ t ≤ σ(i+ 1)− σ(i)

)
, i = 0 . . . k−1,

are contained in the walk (Yt, 0 ≤ t ≤ τN ). So by a repeated application of Markov
property, we see that for all δ > 0, ifN is large enough so that a(logN)2 ≤ (a+δ)(logKN )2
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(which is possible by assumption on KN ), we have:

Px0

(
|MN (a)| ≤ N2(1−a)−ε

)
≤ sup
x′0∈VN−KN (x0)

Px′0

(
|MKN (a+ δ, x′0)| ≤ N2(1−a)−ε

)k
+ Px0

(imax + 1 ≤ k)

≤ sup
x′0∈VN−KN (x0)

Px′0

(
|MKN (a+ δ, x′0)| ≤ K(2(1−a)−ε)

√
1+δ/a

N

)k
+ Px0

(imax + 1 ≤ k) .

If δ > 0 is small enough we have (2(1 − a) − ε)
√

1 + δ/a < 2(1 − a − δ). Hence with
pN = pN (a+ δ)

Px0

(
|MN (a)| ≤ N2(1−a)−ε

)
≤ (1− pKN )k + Px0

(imax + 1 ≤ k)

≤ (1− pN )k + Px0 (imax + 1 ≤ k) . (3.15)

To conclude, we have to choose KN small enough to ensure that imax is large with
high probability. If the walk were a nearest neighbour random walk, we could say that
imax + 1 ≥ bN/KNc Px0 -a.s. Here, the jumps may be unbounded but large jumps are
costly (Assumption 3.5) so we will be able to recover a lower bound fairly similar on imax.
By the triangle inequality, we have for all k ≥ 1

Px0 (imax + 1 ≤ k) ≤ Px0

(
∃i ≤ k − 1, dΓ

(
Yσ(i), Yσ(i+1)

)
≥ (N −KN )/k

)
≤
k−1∑
i=0

Px0

(
Yσ(i) ∈ VN−KN , dΓ

(
Yσ(i), Yσ(i+1)

)
≥ (N −KN )/k

)
≤ k sup

x′0∈VN−KN
Px′0

(
dΓ

(
x′0, YτKN

)
≥ (N −KN )/k

)
.

Assumption 3.5 allows us to bound this last probability: there exists (εN )N≥1 ⊂ (0,∞)

which converges to zero such that if M > 0,

Px′0

(
dΓ

(
x′0, YτKN

)
≥M +KN

)
≤ KNN

εN /M.

Hence

Px0
(imax + 1 ≤ k) ≤ k2KNN

εN

N − (k + 1)KN
.

Coming back to the estimate (3.15) and taking k = (logN)/pN , we have obtained

Px0

(
|MN (a)| ≤ N2(1−a)−ε

)
≤ (1− pN )(logN)/pN + Px0

(imax + 1 ≤ (logN)/pN )

≤
(

sup
0<p<1

(1− p)1/p

)logN

+ C
(logN)2KNN

εN

(pN )2(N − (1 + (logN)/pN )KN )
.

We can choose

KN =
p2
N

(logN)4
N1−εN = N1−o(1)

so that the previous estimates gives

Px0

(
|MN (a)| ≤ N2(1−a)−ε

)
≤ C/(logN)2.

We now conclude as in the proof of the upper bound of Theorem 3.6. We apply the
Borel–Cantelli lemma along the sequence (2p)p∈N which yields

lim inf
p→∞

log |M2p(a)|
log (2p)

≥ 2(1− a), Px0
−a.s.

This finishes the proof of the lemma because log
(
2p+1

)
/ log (2p)→ 1 as p→∞.
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As mentioned at the end of Section 2, when we will use Eisenbaum’s isomorphism,
we will have to bound from above expectations of the form:

E

[
1 +

φN (x0)

s
;A

]
:= E

[(
1 +

φN (x0)

s

)
1A

]
for some given event A. We will use the following elementary lemma which we state
here only for convenience:

Lemma 3.9. For all N large enough and for all events A,

E

[(
1 +

φN (x0)

s

)
;A

]
≤ (logN)2P(A) +N− logN .

Proof. Using (3.4a), we have:

E

[(
1 +

φN (x0)

s

)
;A

]
≤ (logN)

2 P(A) + E

[(
1 +

φN (x0)

s

)
1{1+φN (x0)/s≥(logN)2}

]
≤ (logN)

2 P(A) + exp

(
− s

2

2g
(logN)3(1 + o(1))

)
,

which concludes the lemma.

We now provide our proof of the lower bound of Theorem 3.6. In the following, we
write our arguments with the starting point x0 but note that the same also works for all
starting points x′0 ∈ VN (x0), which is required to apply Lemma 3.8.

Proof of the lower bound of Theorem 3.6. During the entire proof we will fix some small
η > 0. To ease notations, we will denote QN := QN (x0). Recall that if x ∈ QN and
1 ≤ R ≤ N1−η, Assumption 3.3 gives the existence of a subset CR(x) ⊂ QN which
can be thought of as a circle of radius R around x. We will denote Mx

R the operator
corresponding to taking the mean value of a function on this circle: if f is a function
defined on QN , then

Mx
Rf =

1

#CR(x)

∑
y∈CR(x)

f(y) ∈ R.

We use Eisenbaum’s isomorphism with some s > 0 (s = 1 will do). Let εN = 1/
√

logN

and for some b > a (to be chosen later on, close to a) and φN a GFF independent of the
walk, we define the good events at x:

Gb,ηN (x, `τN ) =

{
Mx
R`

τN ≤ 2gb

(
log

N

R

)2

,∀R ∈ (2p)p∈N ∩
{

1, . . . , N1−η}} ,
GηN (x, φN ) =

{
Mx
R

(
1

2
(φN + s)2

)
≤ εN

(
log

N

R

)2

,∀R ∈ (2p)p∈N ∩
{

1, . . . , N1−η}} ,
and

Gb,ηN (x) = Gb,ηN (x, `τN ) ∩GηN (x, φN ). (3.16)

We require the points to be never to thick at any scales (similar to [6]). We restrict our-
selves to QN (the subset of VN where we control the Green function GN ) by considering:

M̃N (a) =MN (a) ∩QN
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and we will abusively write
∣∣∣M̃N (a) ∩Gb,ηN

∣∣∣ when we mean
∑
x∈QN 1{x∈M̃N (a)}1{Gb,ηN (x)}.

The Paley–Zigmund inequality gives:

Px0

(
|MN (a)| ≥ 1

2
Ex0
⊗ E

[∣∣∣M̃N (a) ∩Gb,ηN
∣∣∣]) ≥ 1

4

Ex0
⊗ E

[∣∣∣M̃N (a) ∩Gb,ηN
∣∣∣]2

Ex0
⊗ E

[∣∣∣M̃N (a) ∩Gb,ηN
∣∣∣2]

and it remains to estimate the first and second moments on the right hand side.

First Moment Estimate Firstly, we estimate the first moment without restricting to
any event. Thanks to assumptions (3.4b) and (3.4c) and because, starting from x, the
law of `τNx is exponential, we have:

Ex0

[∣∣∣M̃N (a)
∣∣∣] =

∑
x∈QN

Px0

(
`τNx ≥ 2ga(logN)2

)
=
∑
x∈QN

GN (x0, x)

GN (x, x)
Px
(
`τNx ≥ 2ga(logN)2

)
=
∑
x∈QN

GN (x0, x)

GN (x, x)
exp

(
−2ga(logN)2

GN (x, x)

)
= N2−2a+o(1).

To estimate the probability P (GηN (x, φN )) we will first derive a large deviation es-
timate for Mx

R

(
(φN + s)2

)
. The estimate we obtain is rough and does not take into

account the fact that if R is large we should expect Mx
R

(
(φN + s)2

)
to be close to its

mean. Writing N (µ, σ2) a Gaussian variable with mean µ and variance σ2, by Jensen’s
inequality we have ∀λ > 0 and ∀t ∈ (0, 1/(2g))

P
(
Mx
R

(
(φN + s)2

)
≥ λ logN

)
≤ e−tλE

[
exp

(
t

logN
Mx
R

(
(φN + s)2

))]
≤ e−tλ 1

#CR(x)

∑
y∈CR(x)

E

[
exp

(
t

logN
(φN (y) + s)2

)]
≤ e−tλE

[
exp

{
(tg + o(1))N (o(1), 1 + o(1))2

}]
≤ C(t)e−tλ

where 0 < C(t) < ∞ because tg is smaller than 1/2. Hence, we have obtained: for all
t ∈ (0, 1/(2g)), there exists C(t) ∈ (0,∞) such that

∀x ∈ QN ,∀1 ≤ R ≤ N1−η,∀λ > 0,P
(
Mx
R

(
(φN + s)2

)
≥ λ logN

)
≤ C(t)e−tλ. (3.17)

Hence, using the above estimate with t = 1/(4g) for instance, if x ∈ QN , the probability
that the good event at x linked to φN does not hold is:

P (GηN (x, φN )c) ≤
∑

R=2p, p∈N
1≤R≤N1−η

P

(
Mx
R

(
1

2
(φN + s)2

)
> εN

(
log

N

R

)2
)

≤
∑

R=2p, p∈N
1≤R≤N1−η

P

(
Mx
R

(
1

2
(φN + s)2

)
> η2εN (logN)2

)

≤ exp (−C(η)εN logN) −−−−→
N→∞

0

for some C(η) > 0. By independence of φN and the local times of the random walk, we
thus have

Px0
⊗ P

(
`τNx ≥ 2ga(logN)2, Gb,ηN (x)

)
= (1− oη(1))Px0

(
`τNx ≥ 2ga(logN)2, Gb,ηN (x, `τN )

)
.
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Now, using the Eisenbaum’s isomorphism and Lemma 3.9, we can bound from above the

probability Px0

(
`τNx ≥ 2ga(logN)2, Gb,ηN (x, `τN )

c
)

, for a given x ∈ QN , by the sum over

R ∈ {2p, p ∈ N} ∩ [1, N1−η] of

Px0

(
`τNx ≥ 2ga(logN)2,Mx

R (`τN ) ≥ 2gb

(
log

N

R

)2
)

≤ E

[(
1 +

φN (x0)

s

)
; |φN (x) + s|2 ≥ 4ga(logN)2,Mx

R

(
|φN + s|2

)
≥ 4gb

(
log

N

R

)2 ]
≤ (logN)2P

(
|φN (x) + s|2 ≥ 4ga(logN)2,Mx

R

(
|φN + s|2

)
≥ 4gb

(
log

N

R

)2
)

+O
(
N− logN

)
.

By taking δ = 2
√
a/g, we can bound from above the probability appearing in the last

equation by:

(2 + o(1))P

(
φN (x) ≥ (2

√
ga+ o(1)) logN,Mx

R

(
|φN + s|2

)
≥ 4gb

(
log

N

R

)2
)

= (2 + o(1))P

(
eδφN (x)1{

Mx
R((φN+s)2)≥4gb(log N

R )
2
} ≥ N2

√
gaδ+o(1)

)
≤ N−4a+o(1)E

[
eδφN (x)1{

Mx
R((φN+s)2)≥4gb(log N

R )
2
}]

= N−4a+o(1)e
δ2

2 E[φN (x)2]P̃

(
Mx
R((φN + s)2) ≥ 4gb

(
log

N

R

)2
)

where P̃ is the shifted probability:

dP̃

dP
= eδφN (x)− δ22 E[φN (x)2].

By Cameron–Martin theorem, under this new probability, φN has the same covariance
structure but the mean of φN (y) is now given by:

CovP(φN (y), δφN (x)) = (2
√
ga+ oη(1)) log

N

dΓ(x, y)
= (2
√
ga+ oη(1)) log

N

R
if y ∈ CR(x).

As we have taken b > a, we can apply our tail estimate (3.17) to show that,

Px0

(
`τNx ≥ 2ga(logN)2, Gb,ηN (x, `τN )

c
)
≤ N−2a−t+o(1)

for some small t > 0 which may depend on η, a and b. With the estimate on the first
moment without the event Gb,ηN , this shows that:

Ex0 ⊗ E
[∣∣∣M̃N (a) ∩Gb,ηN

∣∣∣] ≥ N2(1−a)+o(1).

Second Moment Estimate To control the second moment, we adapt the ideas of
[6] to our framework: let x, y ∈ QN such that dΓ(x, y) ≤ N1−η. We can find some
R ∈ (2p)p∈N, R ≤ N1−η such that

1

2
(dΓ(x, y) ∨ 1) ≤ R ≤ dΓ(x, y) ∨ 1.
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As before, we apply the Eisenbaum isomorphism, Lemma 3.9, an exponential Markov
inequality, and using the fact that by Cauchy–Schwarz |Mx

RφN | ≤
√
Mx
R((φN + s)2) + s,

we have:

Px0
⊗ P

(
`τNx and `τNy ≥ 2ga(logN)2, Gb,ηN (x), Gb,ηN (y)

)
≤ (2 + o(1))(logN)2P

(
φN (x) and φN (y) ≥ (2

√
ga+ o(1)) logN,

Mx
RφN ≤

(
2
√
gb+ oη(1)

)
log

N

R

)
+N− logN

≤ N−4a+o(1)

(
N

dΓ(x− y) ∨ 1

)4a

P̃

(
Mx
RφN ≤

(
2
√
gb+ oη(1)

)
log

N

R

)
+N− logN (3.18)

where P̃ denotes the shifted probability defined by

dP̃

dP
= eδφN (x)+δφN (y)− δ22 E[(φN (x)+φN (y))2] with δ = 2

√
a

g
.

By Cameron–Martin theorem, under the probability P̃, φN has the same covariance
structure but the mean of φN (z) is now given by:

CovP(φN (z), δφN (x) + δφN (y)) = (4
√
ga+ oη(1)) log

N

R
if z ∈ CR(x)

by our particular choice of R. Thanks to Assumptions (3.4b) and (3.3b), one can check
that the variance of Mx

RφN is equal to (g + oη(1)) log N
R . Hence

P̃

(
Mx
RφN ≤

(
2
√
gb+ oη(1)

)
log

N

R

)
≤ P

(
N (0, 1) ≤ −

(
2(2
√
a−
√
b) + oη(1)

)√
log

N

R

)

≤
(
N

R

)−2(2
√
a−
√
b)2+oη(1)

.

Again thanks to our particular choice of R, we have obtained:

Px0
⊗ P

(
`τNx , `τNy ≥ 2ga(logN)2, Gb,ηN (x), Gb,ηN (y)

)
≤ N−4a+oη(1)

(
N

dΓ(x, y) ∨ 1

)4a−2(2
√
a−
√
b)2

.

As a < 1, we can choose b > a close enough to a to ensure that the exponent 4a−2(2
√
a−√

b)2 is less than 2. We can then sum over all x, y ∈ QN such that |x− y| ≤ N1−η and use
assumption (3.2) to find that:

Ex0
⊗ E

[∣∣∣M̃N (a) ∩Gb,ηN
∣∣∣2] ≤ N4(1−a)+oη(1) +

∑
x,y∈QN

dΓ(x,y)≥N1−η

Px0

(
`τNx , `τNy ≥ 2ga(logN)2

)
.

We eventually treat our last sum noticing that the probability in this sum is not larger
than (using (3.18) without the term P̃(· · · )):

N−4a+o(1)

(
N

dΓ(x, y)

)4a

≤ N−4a+4aη+o(1).
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This shows that the second moment is not larger than N4(1−a+aη)+oη(1). To come back to
the probability we wanted to bound from below, this implies:

Px0

(
|MN (a)| ≥ N2(1−a)+o(1)

)
≥ N−4aη+oη(1).

As this is true for all η > 0, it means that the probability is not less than (1/N)o(1). We
can then use Lemma 3.8 to conclude the proof of Theorem 3.6.

4 Higher dimensions

4.1 Proofs of Theorems 1.4, 1.5 and 1.6

This section is devoted to the proofs of Theorems 1.4, 1.5 and 1.6. Let us first recall
the setting and introduce some new notations. Consider a continuous time (rate 1)
random walk (Yt)t≥0 on Zd for d ≥ 3 and denote Px and Ex its law and expectation
starting from x. Writing VN = {−N, . . . , N}d, we consider the first exit time of VN and
the first hitting time of x:

τN := inf{t ≥ 0, Yt /∈ VN},∀x ∈ Zd, τx := inf{t ≥ 0 : Yt = x}. (4.1)

We will denote G and GN the Green function on Zd and on VN respectively: for all
x, y ∈ Zd,

G(x, y) := Ex

[∫ ∞
0

1{Yt=y}dt

]
and GN (x, y) := Ex

[∫ τN

0

1{Yt=y}dt

]
. (4.2)

Finally, we denote g := G(0, 0) the value of G on the diagonal and ω(x, dz) the harmonic
measure on [−1, 1]d: for all x ∈ [−1, 1]d, E ⊂ ∂[−1, 1]d, ω(x,E) denotes the probability
that a Brownian motion starting from x exits [−1, 1]d through E. In the following, if
x ∈ Rd, we will denote bxc one element of Zd which is closest to x.

Let us first recall the behaviour of GN in dimension greater or equal to 3:

Lemma 4.1. For all η ∈ (0, 1), we have the following estimates:

∀x ∈ VN , GN (x, x) ≤ g,
∀x ∈ V(1−η)N , GN (x, x) ≥ g +Oη

(
N2−d) .

Moreover, if ad = d/2 Γ(d/2− 1)π−d/2, we have for all x 6= y ∈ VN ,

GN (x, y) = ad

(
|x− y|2−d − qN (x, y)

)
where qN (x, y) ≥ O

(
|x− y|−d

)
and for all x̃, ỹ ∈ (−1, 1)d, we have the following pointwise

estimate:

lim
N→∞

Nd−2qN (bNx̃c , bNỹc) =

∫
∂[−1,1]d

|ỹ − z̃|2−d ω(x̃, dz̃) =: q(x̃, ỹ). (4.3)

The proof of this lemma will be given in Section 4.3. As mentioned in Section 2, a key
point is to show that all the moments of the number of thick points converge which is
the purpose of the next proposition. Before stating it, let us introduce some notations.

Notation 4.2. If k ≥ 1 and q ≥ 1, we denote by f(k → q) the number of ways to partition
a set with k elements into q non empty sets. As this is equal to the number of surjective
functions from {1 . . . k} to {1 . . . q} divided by q!, we have

f(k → q) =
1

q!

q∑
i=1

(
q

i

)
(−1)q−iik. (4.4)

If X is a topological space we will denote by B(X) the class of Borel sets of X.
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Proposition 4.3. Let r ≥ 1 and for all i = 1 . . . r, take ki ≥ 1, Ai ∈ B([−1, 1]d) such that
the Lebesgue measure of Āi\A◦i vanishes, Ti ∈ B(R) with inf Ti > −∞. Moreover, we
assume that the Ai × Ti’s are pairwise disjoint. By denoting k = k1 + · · ·+ kr we define

m(Ai × Ti, ki, i = 1 . . . r) :=

(
ad
g

)k r∏
i=1

(∫
Ti

e−t/g
dt

g

)ki
(4.5)

×
∑
σ∈Sk

∫
A
k1
1 ×···×A

kr
r

k−1∏
i=0

(∣∣yσ(i+1) − yσ(i)

∣∣2−d − q (yσ(i), yσ(i+1)

))
dy1 . . . dyk

with the convention yσ(0) = 0.
1. Subcritical regime: let a ∈ [0, 1) and if a = 0 assume furthermore that Ti ⊂ (0,∞)

for all i. Then

lim
N→∞

E0

[
r∏
i=1

{νaN (Ai × Ti)}ki
]

= m(Ai × Ti, ki, i = 1 . . . r). (4.6)

2. At criticality,

lim
N→∞

E0

[
r∏
i=1

{
ν1
N (Ai × Ti)

}ki]

=
∑

1≤qi≤ki
i=1...r

(
r∏
i=1

f(ki → qi)

)
m (Ai × Ti, qi, i = 1 . . . r) . (4.7)

The previous results also hold if we replace νaN by µaN .

We postpone the proof of this proposition to the next section and we now explain how
we can deduce Theorems 1.4, 1.5 and 1.6 from it. We start with Theorem 1.4.

Proof of Theorem 1.4. This proof will be decomposed in three small parts. First, we
will show that the previous proposition implies the joint convergence of (νaN (A1 ×
T1), . . . , νaN (Ar × Tr)) with suitable Ai’s and Ti’s. The second part is relatively standard
and shows that it then implies the convergence in law of the sequence of random
measures {νaN , N ≥ 1}. The third part is dedicated to the identification of the limiting
measures.

Step 1. Take a ∈ [0, 1]. Let us first show that the previous proposition implies the
convergence of the joint distribution (νaN (A1 × T1), . . . , νaN (Ar × Tr)) where the Ai’s and
Ti’s are as in the statement of the proposition. As all their moments converge, we just
need to check that the limiting moments do not grow too rapidly. Take k1 . . . kr ≥ 1. We
notice that for all x ∈ [−1, 1]d,

0 ≤
∫

[−1,1]d

(
|y − x|2−d − q(x, y)

)
dy ≤

∫
[−1,1]d

|y − x|2−d dy

≤
∫

[−2+x,2+x]d
|y − x|2−d dy = C

for some universal constant C depending only on the dimension d. Hence there exists C ′

depending on d and on the Ti’s such that

m(Ai × Ti, ki, i = 1 . . . r) ≤ C ′ kk! (4.8)

with k = k1 + · · · + kr. In particular, it implies that the moment generating function
associated to those moments has a positive radius of convergence and they determine
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a unique law. It thus proves the claimed convergence in the subcritical regime. At
criticality, we notice that for all q ≤ k,

∑
1≤qi≤ki
i=1...r

1{q1+···+qr=q}

r∏
i=1

f(ki → qi)

is not larger than the number of ways to partition a set of k elements into no more than
q parts which is equal to qk/(q!). Using (4.8), it implies that

∑
1≤qi≤ki
i=1...r

(
r∏
i=1

f(ki → qi)

)
m (Ai × Ti, qi, i = 1 . . . r)

≤
k∑
q=r

C ′ qq!
∑

1≤qi≤ki
i=1...r

1{q1+···+qr=q}

r∏
i=1

f(ki → qi) ≤
k∑
q=r

C ′ qqk ≤ C ′ kkk+1 ≤ C̃kk!.

Again the radius of convergence of the associated moment generating function is positive
and it gives the required convergence in the critical case as well. We will denote
νa(A1 × T1), . . . , νa(Ar × Tr) random variables which have the limiting distribution of
(νaN (A1 × T1), . . . , νaN (Ar × Tr)).

Step 2. We now show the convergence of the sequence of random measures {νaN , N ≥
1}. Recalling that the underlying topology is the topology of vague convergence, it is
enough to show that for all function φ : [−1, 1]d ×R→ [0,∞) which are C∞ with compact
support (included in [−1, 1]d × (0,∞) if a = 0),

〈νaN , φ〉 :=

∫
[−1,1]d×R

φ(x, t)dνaN (x, t)

converges in distribution. It is enough to check that for all L-Lipschitz function h : R→ R,
E0 [h(〈νaN , φ〉)] converges. By Lemma 4.10, we can uniformly approximate φ by a sequence
of functions (φp)p≥1 taking the following form:

φp =

p∑
i=1

a
(p)
i 1

A
(p)
i ×T

(p)
i

where A(p)
i ∈ B([−1, 1]d) with the Lebesgue measure of Ā(p)

i \(A
(p)
i )◦ vanishing, T (p)

i ∈
B(R) with inf T

(p)
i > −∞ (inf T

(p)
i > 0 if a = 0) and a

(p)
i ∈ C. By the joint convergence

proven in Step 1, for all p ≥ 1,

lim
N→∞

〈νaN , φp〉
(d)
= 〈νa, φp〉

and we can define the law (by dominated convergence theorem for instance)

〈νa, φ〉
(d)
:= lim

p→∞
〈νa, φp〉 .

We are going to show that we can exchange the two limits, i.e. that 〈νaN , φ〉 converges
in law to 〈νa, φ〉. Recalling that h is L-Lipschitz, |E0 [h(〈νaN , φ〉)]− E0 [h(〈νa, φ〉)]| is not
larger than

|E0 [h (〈νaN , φp〉)]− E0 [h (〈νa, φp〉)]|+ LE0 [〈νaN , |φ− φp|〉]
+ |E0 [h(〈νa, φ〉)]− E0 [h (〈νa, φp〉)]| .
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By the first part of the proof, the first term goes to zero as N goes to infinity. If t0 ∈ R is
such that the support of φ is included in [−1, 1]d × (t0,∞), then the second term is not
larger than

L ‖φ− φp‖∞E0

[
νaN ([−1, 1]d × (t0,∞))

]
−−−−→
N→∞

L2−pE0

[
νa([−1, 1]d × (t0,∞))

]
.

Thus the limit of the second term goes to zero when p→∞. The third term goes to zero
by definition and we have proved

lim
N→∞

E0 [h(〈νaN , φ〉)] = E0 [h(〈νa, φ〉)] .

Step 3. The convergence of the sequence of random measures {νaN , N ≥ 1} has thus
been proved. We are now going to identify the limit. What we did in Step 1 and Step
2 shows that the limiting distribution is entirely determined by the limiting moments
from Proposition 4.3. In particular, the same conclusion holds for both {νaN , N ≥ 1}
and {µaN , N ≥ 1} and this shows that these two sequences converge and have the
same limiting distribution. We are now going to show that the limiting measures can
be expressed in terms of the occupation measure µocc and a Poisson point process
as explained in Theorem 1.4. We start with the subcritical regime (a < 1). Take
Ai × Ti, i = 1 . . . r, as in Proposition 4.3, k1, . . . , kr ≥ 1 and denote k = k1 + · · ·+ kr. As

(x, y) 7→ ad

(
|x− y|2−d − q(x, y)

)
is the Green function associated to Brownian motion killed at the first exit time τ of
[−1, 1]d (see equation (3.15) of [4] for instance), it is not hard to see that

E0

[
r∏
i=1

µocc(Ai)
ki

]

=
∑
σ∈Sk

∫
A
k1
1 ×···×A

kr
r

k−1∏
i=0

ad
(∣∣yσ(i+1) − yσ(i)

∣∣− q (yσ(i), yσ(i+1)

))
dy1 · · · dyk

with the convention yσ(0) = 0. Thus

E

[
r∏
i=1

(
1

g
µocc(Ai)

∫
Ti

e−ti/g
dti
g

)ki]
= m(Ai × Ti, ki, i = 1 . . . r). (4.9)

This proves the identification (1.4) of the limiting measure in the subcritical regime. Let
us now consider the critical case a = 1. Recalling the definition of f in (4.4) we see
that the equation (4.30) of Lemma 4.9 implies that if P1(λ1), . . . , Pr(λr) are independent
Poisson random variables with parameters λ1, . . . , λr,

E
[
P1(λ1)k1 . . . Pr(λr)

kr
]

=
∑

1≤qi≤ki
i=1...r

(
r∏
i=1

f(ki → qi)

)
λq11 . . . λqrr .

Using (4.9), this now shows (1.5) and it concludes the proof.

We now move on to the proof of Theorem 1.5.

Proof of Theorem 1.5. Take a ∈ [0, 1]. In the proof of Theorem 1.4 we showed that

|MN (a)| /N2(1−a) = νaN ([−1, 1]d × (0,∞))

converges to νa([−1, 1]d × (0,∞)). The identities (1.6) and (1.7) come from (1.4) and
(1.5) and from the fact that µocc([−1, 1]d) = τ a.s.
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We will finish this section by proving Theorem 1.6.

Proof of Theorem 1.6. Let t ∈ R. Because the discrete random variables

ν1
N

(
[−1, 1]d × (t,∞)

)
, N ≥ 1,

converge in law to a Poisson distribution with parameter τe−t/g/g, we have

lim
N→∞

P0

(
sup
x∈VN

`τNx − 2g logN ≤ t
)

= lim
N→∞

P0

(
ν1
N

(
[−1, 1]d × (t,∞)

)
= 0
)

= E

[
exp

(
−τ
g
e−t/g

)]
.

This concludes the proof.

4.2 Proof of Proposition 4.3

In this section, we will prove Proposition 4.3 stated in the previous section. We are
first going to lay the groundwork by stating some technical lemmas which will be used
in the proof of Proposition 4.3. These lemmas, except the next one, will be proven in
Section 4.3.

We start with a well-known and easy lemma that we state for convenience. This
lemma is valid for more general Markov chains.

Lemma 4.4. For all subset A ⊂ Zd, starting from x, `τAx and YτA1{τA<∞} are indepen-
dent.

Proof. Consider a trajectory of the random walk Y starting at x and killed at τA. We can
decompose it according to the excursions away from x. There is a geometric number of
independent excursions. The last one is conditioned to not come back to x whereas the
previous ones are i.i.d. excursions conditioned to come back to x. To conclude the proof,
we notice that YτA1{τA<∞} depends on the last excursion whereas `τAx depends on the
previous ones.

Remark 4.5. This lemma implies in particular that conditioned on YτA1{τA<∞} and
starting from x, `τAx is still an exponential variable with mean Ex [`τAx ]. We also want to
emphasise that this lemma is no longer true if the walk does not start at x.

Now, consider the k-th moment of νaN (A× T ). To compute it, we will have to esti-
mate the probability that in k different points, say x1, . . . , xk, the local times belong to
2ga logN + T . To capture the correlations of those local times, we will denote by E (to
ease notation, we omit the dependence in N and x1, . . . , xk) the number of excursions
between the xi’s before the time τN . More precisely, if we define

ς0 := inf {t ≥ 0 : Yt ∈ {x1, . . . , xk}} ,
∀p ≥ 1, ςp := inf

{
t ≥ ςp−1 : Yt ∈ {x1, . . . , xk}\

{
Yςp−1

}}
,

then
E := max {p ∈ N, ςp ≤ τN} (4.10)

with the convention max∅ = −∞. The lemma below studies some properties of E.
It roughly states that the typical way to visit all the points x1, . . . , xk corresponds to
E = k − 1. It means that there exists a permutation σ of the set of indices {1, . . . , k} so
that we have the following: the walk first hits xσ(1), then hits xσ(2), etc. When the walk
has visited xσ(i) it does not come back to the vertices xσ(1), . . . , xσ(i−1). We will denote
Sk the set of permutations of {1, . . . , k}.
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Lemma 4.6. There exist Ck > 0 and an integrable function

U :
{

(y1, . . . , yk) ∈
(
[−1, 1]d\{0}

)k
: ∀i 6= j, yi 6= yj

}
→ (0,∞) (4.11)

such that the following is true. For all (y1, . . . , yk) and (y′1, . . . , y
′
k) where U is defined we

have

U(y1, . . . , yk) ≤ max
0≤i 6=j≤k

(∣∣y′i − y′j∣∣
|yi − yj |

)d−2

U(y′1, . . . , y
′
k) (4.12)

with the convention y0 = y′0 = 0. For all p ≥ k−1 and all x1, . . . , xk non zero and pairwise
distinct elements of VN ,

P0 (E = p, τxi < τN ∀i = 1 . . . k) ≤ Cp+1
k

(
max
i 6=j
|xi − xj |2−d

)p−k+1

N (2−d)kU
(
x1

N , . . . ,
xk
N

)
.

(4.13)
Moreover, if x1 = bNy1c , . . . , xk = bNykc, for y1, . . . , yk non zero and pairwise distinct
elements of (−1, 1)d, we have the following pointwise estimate:

lim
N→∞

N (d−2)kP0 (E = k − 1, τxi < τN ∀i = 1 . . . k)

=

(
ad
g

)k ∑
σ∈Sk

k−1∏
i=0

(∣∣yσ(i+1) − yσ(i)

∣∣2−d − q (yσ(i), yσ(i+1)

))
(4.14)

with the convention yσ(0) = 0.

Remark 4.7. It is important for us to give a better estimate than

∀p ≥ k − 1,P0 (E = p, τxi < τN ∀i = 1 . . . k) ≤ Cpk max
i
|xi|2−d

(
max
i 6=j
|xi − xj |2−d

)p
because the function

(y1, . . . , yk) ∈
k∏
i=1

(−1, 1)d 7→ max
i
|yi|2−d

(
max
i 6=j
|yi − yj |2−d

)k−1

∈ (0,∞)

is not integrable if (k − 1)(d− 2) ≥ d.
As mentioned in Section 2, in the subcritical regime we will be able to restrict

ourselves to points x1, . . . , xk which are far away from each other. At criticality we will
have to deal with points which are close to each other. The following lemma shows that
two distinct close points are not thick at the same time with high probability:

Lemma 4.8. For x, y ∈ Zd, consider a sequence
(
`∞,ix , `∞,iy

)
, i ≥ 1, of i.i.d. variables

with the same law as
(
`∞x , `

∞
y

)
under Px. If x 6= y, then for all p ≥ 1, there exists εp > 0

independent of x and y such that for all t ∈ R,

P

(
p∑
i=1

`∞,ix ,

p∑
i=1

`∞,iy ≥ 2g logN + gt

)
≤ N−2−εp+o(1).

We have now all the ingredients we need to start the proof of Proposition 4.3.

Proof of Proposition 4.3. To ease notations, we will restrict ourselves to the case of the
k-th moment of νaN (A× T ) for A ∈ B([−1, 1]d) such that the Lebesgue measure of Ā\A◦
vanishes and T ∈ B(R) with inf T > −∞ (inf T > 0 if a = 0). Indeed, the proof of the
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general case follows almost entirely along the same lines and throughout the proof we
will explain which arguments need to be changed to treat the case of mixed moments

E0

[
r∏
i=1

{νaN (Ai × Ti)}ki
]
.

When we will refer to the general case, k will denote k1 + · · ·+ kr.
In the following, we will take N large enough so that 2ga logN + T ⊂ (0,∞). To ease

notations, we will denote

MN := νaN (A× T ) and AN := {x ∈ VN : x/N ∈ A}. (4.15)

The k-th moment of MN can be written as

E0

[
(MN )

k
]

= N−2(1−a)k
∑

x1,...,xk∈AN

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T
)
.

For some rN = No(1) (to be chosen later on), we introduce the set of well-separated
points

AN,k :=

{
(x1, . . . , xk) ∈ (AN\{0})k : min

i6=j
|xi − xj | > 2rN

}
.

The proof will be decomposed in four parts. The first one will estimate the contribution
of AN,k to the k-th moment of MN . This part does not need to treat the subcritical (a < 1)
and critical (a = 1) cases separately. Then, the second part shows that the contribution
of points (x1, . . . , xk) ∈ (AN )k\AN,k to the k-th moment of MN vanishes in the subcritical
regime. The third part deals with the critical case and handles the points that are close
to each other. The fourth part will briefly show the results on µaN .

Contribution of points far away from each other, νaN . The goal of this part is to
show that for all a ∈ [0, 1],

lim
N→∞

N−2(1−a)k
∑

(x1,...,xk)∈AN,k

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T
)

= m(A× T, k). (4.16)

We will write

MN,k := N−2(1−a)k
∑

(x1,...,xk)∈AN,k

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T
)
.

For a given x ∈ VN\∂VN , the Lebesgue measure of the set {y ∈ (−1, 1)d : bNyc = x} is
(1/N)d. Hence we can write

MN,k = N (d−2+2a)k

∫
∏k
i=1(−1,1)d

P0

(
`τNbNy1c, . . . , `

τN
bNykc ∈ 2ga logN + T

)
× 1{(bNy1c,...,bNykc)∈AN,k}dy1 . . . dyk. (4.17)

We will first bound from above the integrand. This will provide us the domination we
need in order to apply the dominated convergence theorem and we will be left to show
the pointwise limit.

Let (x1, . . . , xk) ∈ AN,k. By definition of E (equation (4.10)), if the walk visits all the
xi’s before τN , then E ≥ k − 1. Thus

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T,E ≤ k − 2
)

= 0.
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In this paragraph, we will use Lemma 4.6 to show that the probability

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T,E ≥ k
)

is very small. First, by denoting t := inf T/g, we can bound

P0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T,E ≥ k
)
≤ P0

(
`τNx1

, . . . , `τNxk > 2ga logN + gt, E ≥ k
)
.

Starting from x1, the law of the time spent in x1 before hitting ∂VN ∪ {x2, . . . , xk} is an
exponential law with mean at most g. Also, if E = p, the number of excursions from x1

to {x2, . . . , xk} before τN is not larger than p. Hence, by Lemma 4.4 conditioned on the
event {E = p, τxi < τN ∀i ≤ k}, the joint law (`τNx1

, . . . , `τNxk ) is stochastically dominated
by the law of k independent Gamma random variables with shape parameter p+ 1 and
scale parameter g. Using the claim (4.31) of Lemma 4.9 about the Gamma distribution,
it implies that

P0

(
`τNx1

, . . . , `τNxk > 2ga logN + gt|E = p, τxi < τN ∀i ≤ k
)

≤ N−2ake−kt
kp∑
q=0

(2a logN + t)q
kq

q!
.

By definition of AN,k, mini 6=j |xi − xj | ≥ 2rN . Let U(x1, . . . , xk) be as in Lemma 4.6. Then

P0

(
`τNx1

, . . . , `τNxk > 2ga logN + gt, E ≥ k
)

=
∑
p≥k

P0 (E = p, τxi < τN ∀i ≤ k)

× P0

(
`τNx1

, . . . , `τNxk > 2ga logN + gt|E = p, τxi < τN ∀i ≤ k
)

≤ N−(d−2+2a)ke−ktU
(x1

N
, . . . ,

xk
N

)∑
p≥k

(
Ckr

2−d
k

N

)p kp∑
q=0

(2a logN + t)q
kq

q!

= N−(d−2+2a)ke−ktU
(x1

N
, . . . ,

xk
N

)∑
q≥0

((2a logN + t)k)q

q!

∑
p≥dq/ke∨k

(
Ckr

2−d
k

N

)p
≤ C ′kN−(d−2+2a)ke−ktU

(x1

N
, . . . ,

xk
N

)∑
q≥0

((2a logN + t)k)q

q!

(
Ckr

2−d
k

N

)dq/ke∨k
≤ C ′′k r

2−d
2

N N−(d−2+2a)ke−ktU
(x1

N
, . . . ,

xk
N

)∑
q≥0

{
(2a logN + t)kC

1
2k

k r
2−d
2k2

N

}q
/q! (4.18)

because
⌈
q
k

⌉
∨ k ≥ k

2 + q
2k for all q ≥ 0. If we choose rN = exp

(√
logN

)
= No(1) for

instance, then (2a logN + t)kC
1/(2k)
k r

(2−d)/(2k2)
N goes to zero and we have obtained:

P0

(
`τNx1

, . . . , `τNxk ≥ 2ga logN + gt, E ≥ k
)
≤ o(1)N−(d−2+2a)ke−ktU

(x1

N
, . . . ,

xk
N

)
. (4.19)

According to Lemma 4.6, the function (y1, . . . , yk) ∈ (−1, 1)k 7→ U(y1, . . . , yk) ∈ (0,∞)

is integrable. Moreover, the equation (4.12) of Lemma 4.6 implies that if y1, . . . , yk ∈
(−1, 1)d are such that (bNy1c , . . . , bNykc) ∈ AN,k, then

U

(
bNy1c
N

, . . . ,
bNykc
N

)
≤ Ck,dU(y1, . . . , yk)

for some Ck,d > 0. Coming back to the equation (4.17) we have thus shown with the
equation (4.19) that:

MN,k = o(1) +N (d−2+2a)k

∫
∏k
i=1(−1,1)d

dy1 . . . dyk1{(bNy1c,...,bNykc)∈AN,k} (4.20)

× P0

(
`τNbNy1c, . . . , `

τN
bNykc ∈ 2ga logN + T,E = k − 1

)
.
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Our last task consists in controlling the probability appearing in the equation (4.20).
By Lemma 4.4, conditioning on the event {E = k−1, τxi < τN ∀i = 1 . . . k}, the local times

`τNxi , i = 1 . . . k, are independent exponential variables with mean Exi

[
`
τN∧minj 6=i τxj
xi

]
≤ g.

Consequently,

P0(`τNx1
, . . . ,`τNxk ∈ 2ga logN + T,E = k − 1)

≤ N−2ak

(∫
T

1

g
e−s/gds

)k
P0 (E = k − 1, τxi < τN ∀i ≤ k) . (4.21)

Using the first estimate of Lemma 4.6, it implies that MN,k is bounded and it also
provides us the domination we need to use the dominated convergence theorem. We
have already done everything we need for the pointwise convergence. Indeed, if x1 =

bNy1c , . . . , xk = bNykc, for y1, . . . , yk non zero and pairwise distinct elements of (−1, 1)d,
Lemma 4.6 provides an explicit expression for the pointwise limit

lim
N→∞

N (d−2)kP0 (E = k − 1, τxi < τN ∀i = 1 . . . k)

and a small modification of the arguments in the proof of Lemma 4.6 shows that

EbNyic

[
`
τN∧minj 6=i τbNyjc
bNyic

]
= g +Oy1,...,yk

(
N2−d) .

Hence

lim
N→∞

N2kaP0

(
`τNx1

, . . . , `τNxk ∈ 2ga logN + T |E = k − 1, τxi < τN ∀i = 1 . . . k
)

=

(∫
T

e−s/g dsg

)k
.

Moreover,

1{∀i 6=j,yi∈A◦\{0},yi 6=yj} ≤ lim inf
N→∞

1{(bNy1c,...,bNykc)∈AN,k}

≤ lim sup
N→∞

1{(bNy1c,...,bNykc)∈AN,k} ≤ 1{∀i 6=j,yi∈Ā\{0},yi 6=yj}.

Notice the interior A◦ and the closure Ā in the previous inequalities. As we have
supposed that the Lebesgue measure of Ā\A◦ vanishes, putting things together leads to
the convergence of MN,k to(
ad
g

)k (∫
T

e−s/g
ds

g

)k ∑
σ∈Sk

∫
Ak
×
k−1∏
i=0

(∣∣yσ(i+1) − yσ(i)

∣∣2−d − q(yσ(i), yσ(i+1))
)
dy1 . . . dyk

with the convention yσ(0) = 0. This completes the proof of (4.16).

Subcritical regime, νaN . We now show how the previous part allows us to conclude the
proof in the subcritical regime. Suppose that a < 1. We show that the k-th moment of MN

converges towards m(A× T, k) by induction on k ≥ 1. Thanks to (4.16), it only remains
to control the contribution of points (x1, . . . , xk) ∈ (AN )k\AN,k to the k-th moment of
MN . This contribution is at most

C(k, d)N−2(1−a)krdN
∑

x1,...,xk−1∈AN

P0

(
`τNx1

, . . . , `τNxk−1
∈ 2ga logN + T

)
= C(k, d)N−2(1−a)rdNE0

[
(MN )

k−1
]
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which goes to zero: this is clear for k = 1 (because rN = No(1) and a < 1) and comes
from the induction hypothesis for k ≥ 2. With (4.16), we have shown that

E0

[
(MN )

k
]

= m(A× T, k) + o(1).

This is exactly (4.6) in the case r = 1. In the general case of a mixed moment, we recover
the result by the exact same method.

At criticality, νaN . Let us now consider the critical case a = 1. Unlike in the subcritical
regime, the points (x1, . . . , xk) ∈ (AN )k\AN,k will contribute to E0

[
(MN )k

]
. We first

notice that the points (x1, . . . , xk) ∈ (AN )k with one of the xi’s being equal to zero do not
contribute. Indeed, by ignoring the points which are within a distance 2rN to each other
or to zero, which contributes at most CrdN for every such point, we have:∑
(x1,...,xk)∈(AN )k

∃i,xi=0

P0

(
`τNx1

, . . . , `τNxk ∈ 2g logN + T
)

≤ Ck
k−1∑
l=0

(
CrdN

)k−1−l ∑
∀i=1...l,|xi|≥2rN
∀i 6=j,|xi−xj |≥2rN

P0

(
`τN0 , `τNx1

, . . . , `τNxl ∈ 2g logN + T
)
.

The last sum is over l different points and we require the local times to be large in l + 1

different points. We can then use the same arguments as in Section 4.2 (all the points
are far away from each other) to show that this last sum is at most CN−2. As rN = No(1)

it shows that this contribution vanishes.
We are going to estimate∑

(x1,...,xk)∈(AN\{0})k\AN,k

P0

(
`τNx1

, . . . , `τNxk ∈ 2g logN + T
)
. (4.22)

If (x1, . . . , xk) ∈ (AN\{0})k\AN,k, by definition of AN,k, it means that there are at
least two balls B(xi, rN ) which overlap. In the following, we will partition the set
(AN\{0})k\AN,k according to the maximum number r (r ≤ k − 1) of balls which do not
overlap. We will denote by xip , p = 1 . . . r, the centres of such balls and we will partition
the set of indices trp=1Ip = {1, . . . , k} such that for all p = 1 . . . r, i ∈ Ip,

∣∣xi − xip ∣∣ ≤ 2rN .
See Figure 2. The reader should think of the balls as small balls which are far away from
each other. The choice of the partition (Ip) may be not unique. In this case, we make an
arbitrary choice.

Our decomposition is thus:

(AN\{0})k\AN,k =

k−1⋃
r=1

⋃
trp=1Ip

={1,...,k}

WN,k,r,(Ip)

where

WN,k,r,(Ip) =

{
(x1, . . . , xk) ∈ (AN\{0})k :

∀p 6= q,∃ip ∈ Ip, iq ∈ Iq,
∣∣xip − xiq ∣∣ > 2rN ,

∀i ∈ Ip,
∣∣xi − xip ∣∣ ≤ 2rN

}
.

For a given WN,k,r,(Ip), the contribution to the sum (4.22) of the elements (x1, . . . , xk) ∈
WN,k,r,(Ip) such that for all p = 1 . . . r, for all i, j ∈ Ip, xi = xj is equal to∑

(y1,...,yr)∈AN,r

P0

(
`τNy1

, . . . , `τNyr ∈ 2g logN + T
)
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xi1

xi2
xi, i ∈ I2\{i2}

rN

2rN

Figure 2: Decomposition of (AN\{0})k\AN,k. The balls in solid lines do not overlap.
Here r = 2.

which converges to m(A× T, r) (see (4.16)). As the number of ways to partition the set
{1, . . . , k} into r non empty sets is exactly equal to f(k → r), the claim of the proposition
is equivalent to saying that the contribution of WN,k,r,(Ip) to the sum (4.22) comes only
from these points. In other words, if we denote

W 6=N,k,r,(Ip) =
{

(x1, . . . , xk) ∈WN,k,r,(Ip) : ∃p = 1 . . . r, ∃i, j ∈ Ip, xi 6= xj
}

then we are going to show that∑
(x1,...,xk)∈W 6=

N,k,r,(Ip)

P0

(
`τNx1

, . . . , `τNxk ∈ 2g logN + T
)
−−−−→
N→∞

0.

By denoting t := inf T/g, we can first bound:

P0

(
`τNx1

, . . . , `τNxk ∈ 2g logN + T
)
≤ P0

(
`∞x1

, . . . , `∞xk > 2g logN + gt
)
.

If (x1, . . . , xk) ∈ W 6=N,k,r,(Ip), then there exists p0 ∈ {1, . . . , r} and jp0
∈ Ip0

such that
xip0

6= xjp0
. To bound from above this last sum, for each p 6= p0 we keep track of only

one xk, k ∈ Ip, by considering xip . As for all k ∈ Ip,
∣∣xk − xip ∣∣ ≤ 2rN , our estimate is

increased by a multiplicative factor of order rdN for each point that we forget. For p = p0,
we keep track of both xip0

and xjp0
. Furthermore, xjp0

will absorb all the xip , p 6= p0

which are within a distance 2rN of xjp0
. This procedure implies that:∑

(x1,...,xk)∈W 6=
N,k,r,(Ip)

P0

(
`∞x1

, . . . , `∞xk > 2g logN + gt
)

(4.23)

≤ C
r∑
s=1

(rdN )k−s−1
∑

x0,...,xs∈AN
x0 6=x1,|x0−x1|≤2rN

∀i 6=j,{i,j}6={0,1},|xi−xj |>2rN

P0

(
`∞x0

, . . . , `∞xs > 2g logN + gt
)

where C > 0 may depend on d, k, r. We will conclude by showing that this last sum is not
larger than N−ε for some ε > 0. Take s ∈ {1, . . . , r} and (x0, x1, . . . , xs) as in the previous
sum. If s = 1 it means that we just need to control the local times `∞x0

, `∞x1
. This has

already been done in Lemma 4.8 and we are going to explain the slightly more delicate
case s ≥ 2. The idea is fairly similar to the one we used in the subcritical regime. Let us
denote E the number of excursions between the sets {x0, x1}, {x2}, . . . , {xs}. First of all,
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let us notice that if we take pmax ≥ s, a small modification of the equation (4.18) gives:∑
x0,...,xs∈AN

x0 6=x1,|x0−x1|≤2rN
∀i6=j,{i,j}6={0,1},|xi−xj |>2rN

P0

(
`∞x0

, . . . , `∞xs > 2g logN + gt, E ≥ pmax

)

≤ C(s, d)(rN )d
∑

x1,...,xs∈AN
∀i 6=j,|xi−xj |>2rN

P0

(
`∞x1

, . . . , `∞xs > 2g logN + gt, E ≥ pmax

)
≤ Ce−str(pmax−s)(2−d)+d

N N−ds
∑

x1,...,xs∈AN
∀i 6=j,|xi−xj |>2rN

U
(x1

N
, . . . ,

xs
N

)
≤ Ce−str(pmax−s)(2−d)+d

N .

Hence if pmax is large enough, the negative power (pmax − s)(2− d) + d of rN will kill the
positive power (k − s− 1)d of rN in the equation (4.23) and we are now left to control:∑

x0,...,xs∈AN
x0 6=x1,|x0−x1|≤2rN

∀i6=j,{i,j}6={0,1},|xi−xj |>2rN

P0

(
`∞x0

, . . . , `∞xs > 2g logN + gt, E < pmax

)
.

Thanks to Lemmas 4.9 and 4.8 and using the notations in those lemmas, we have

P0

(
`∞x0

, . . . , `∞xs > 2g logN + gt|E = p, τ{x0,x1}, τx2
, . . . , τxs <∞

)
≤ P (Γ(p+ 1, g) > 2g logN + gt)

s−1
P

∀α = 0, 1,

p+1∑
i=1

Ai∑
j=1

`ixα,j > 2g logN + gt


≤ N−2s−εp .

By summing (4.13) of Lemma 4.6 over all p ≥ s− 1, we also have

P0

(
E = p, τ{x0,x1}, τx2

, . . . , τxs <∞
)
≤ 2 max

α=0,1
P0 (τxα , τx2

, . . . , τxs <∞)

≤ CN (2−d)s max
α=0,1

U
(xα
N
,
x2

N
, . . . ,

xs
N

)
.

We have obtained the existence of ε > 0 such that∑
x0,...,xs∈AN

x0 6=x1,|x0−x1|≤2rN
∀i 6=j,{i,j}6={0,1},|xi−xj |≥2rN

P0

(
`∞x0

, . . . , `∞xs > 2g logN + gt, E < pmax

)

≤ N−ds−ε
∑

x0,...,xs∈AN
x0 6=x1,|x0−x1|≤2rN

∀i6=j,{i,j}6={0,1},|xi−xj |≥2rN

max
α=0,1

U
(xα
N
,
x2

N
, . . . ,

xs
N

)

≤ C(d)(rN )dN−ds−ε
∑

x1,...,xs∈AN
∀i 6=j,|xi−xj |≥2rN

U
(x1

N
,
x2

N
, . . . ,

xs
N

)
≤ C(rN )dN−ε

where we justify as before the last inequality thanks to the integrability of U and by

(4.12). This concludes the proof of the estimates on E0

[
{νaN (A× T )}k

]
at criticality

(equation (4.7) with r = 1).
In the general case of a mixed moment, we have to deal with points{

(x1, . . . , xk) ∈ (A1N\{0})k1 × · · · × (ArN\{0})kr : ∃i 6= j, |xi − xj | ≤ 2rN
}
.

As before, we decompose this set according to blocks of points which are close to each
other. Again, only points which are equal inside a same block will contribute. As we have
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assumed that the Ai × Ti’s are pairwise disjoint, they will not interact between each
other meaning that if 1 ≤ i 6= j ≤ r, if xi ∈ Ai and xj ∈ Aj , either xi 6= xj or Ti ∩ Tj = ∅.
Now, take ri ≤ ki for i = 1 . . . r. We notice that the number of ways to partition the sets
{1, . . . , ki} into ri non empty sets, for i = 1 . . . r, is equal to

r∏
i=1

f(ki → ri).

Thus, the contribution of points (x1, . . . , xk) ∈ (A1N\{0})k1 × · · · × (ArN\{0})kr such that
for all i = 1 . . . r, {xk1+···+ki−1+1, . . . , xk1+···+ki} is composed of ri well-separated points
converges to (

r∏
i=1

f(ki → ri)

)
m(Ai × Ti, ri, i = 1 . . . r).

This shows (4.7) in the general case r ≥ 1.

Estimates on µaN . We now briefly end the proof of Proposition 4.3 by explaining how
the results for µaN are obtained. Take a ∈ [0, 1], T ∈ B(R) and A ⊂ [−1, 1]d such that
the Lebesgue measure of Ā\A◦ vanishes. By definition of f(k → r) and since (Ex)x∈VN
are i.i.d. exponential variables with mean g independent ofMN (0), the normalised k-th
moment E0

[
(µaN (A× T ))k

]
is equal to

1

N2(1−a)k
E0

 ∑
x1,...,xk∈AN∩MN (0)

1{Ex1
,...,Exk∈2ga logN+T}



=
1

N2(1−a)k

k∑
r=1

f(k → r)E0

 ∑
x1,...,xr∈AN∩MN (0)

∀i 6=j,xi 6=xj

1{Ex1
,...,Exr∈2ga logN+T}



=
1

N2(1−a)k

k∑
r=1

f(k → r)N−2ar

(∫
T

e−s/g
ds

g

)r
E0

 ∑
x1,...,xr∈AN
∀i 6=j,xi 6=xj

1{`τNx1
,...,`

τN
xr >0}

 .
We have already shown that

lim
N→∞

1

N2r
E0

 ∑
x1,...,xr∈AN
xi 6=xj∀i 6=j

1{`τNx1
,...,`

τN
xr >0}

 = m(A× (0,∞), r)

so E0

[
(µaN (A× T ))

k
]

converges to

k∑
r=1

f(k → r)

(∫
T

e−s/g
ds

g

)r
m(A× (0,∞), r)×

{
1 if a = 1 or r = k

0 if a < 1 and r < k

which is exactly the stated result. The extension to the general case of a mixed moment
is obtained exactly as for νaN .

4.3 Proof of technical lemmas

We start this section by proving Lemma 4.1 which gives estimates on the Green
function GN (defined in (4.2) as well as the Green function G on Zd) in dimension greater
of equal to 3.
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Proof of Lemma 4.1. As in dimension 2, these estimates follow from [27] and [28]: Propo-
sition 1.5.8 in [27] gives

GN (x, y) = G(x, y)−
∑

z∈∂VN

Px (YτN = z)G(z, y) (4.24)

and Theorem 4.3.1 in [28] (or Theorem 1.5.4 in [27] for a slightly worse estimate) gives

G(x, y) = ad |x− y|2−d +O
(
|x− y|−d

)
as |x− y| → ∞. (4.25)

Our two first estimates on the Green function on the diagonal follow since if y ∈ V(1−η)N

for some η > 0, then for all z ∈ ∂VN , |z − y| ≥ ηN . The lower bound on qN (x, y) follows
as well. We are going to explain how to obtain the pointwise limit estimate (4.3). Take
x̃ 6= ỹ ∈ (−1, 1)d. By (4.24) and (4.25), we have

Nd−2GN (bNx̃c , bNỹc) = ad |x− y|2−d − adEbNx̃c

[∣∣∣∣YτNN − ỹ
∣∣∣∣2−d

]
+Ox̃,ỹ

(
N2−d) .

By Donsker’s invariance principle, starting from bNx̃c, YτN /N converges in law to the
exit distribution of [−1, 1]d of Brownian motion starting from x̃. We thus obtain (4.3).

We now move on to the proof of Lemma 4.6. We consider k non zero and pairwise
distinct points x1, . . . , xk ∈ VN and we recall the definitions of E and of the stopping
times ςp in (4.10).

Proof of Lemma 4.6. As mentioned just before Lemma 4.6, if E = k−1 and τxi < τN ∀i =

1 . . . k then the stopping times ςp, p = 0 . . . k − 1, define a permutation σ of the set of
indices {1, . . . , k} which keeps track of the order of visits of the set {x1, . . . , xk}. By a
repeated application of Markov property, we thus have:

P0 (E = k − 1, τxi < τN ∀i = 1 . . . k) =
∑
σ∈Sk

P0

(
τxσ(1)

< τN ∧min
j 6=1

τxσ(j)

)
(4.26)

×
k−1∏
i=1

Pxσ(i)

(
τxσ(i+1)

< τN ∧ min
j 6=i,i+1

τxσ(j)

)
Pxσ(k)

(
τN < min

j 6=k
τxσ(j)

)
.

But for all σ ∈ Sk and i = 1 . . . k − 1,

Pxσ(i)

(
τxσ(i+1)

< τN ∧ min
j 6=i,i+1

τxσ(j)

)
≤ Pxσ(i)

(
τxσ(i+1)

< τN
)

=
GN (xσ(i), xσ(i+1))

GN (xσ(i+1), xσ(i+1))
.

We bound from below the denominator GN (xσ(i+1), xσ(i+1)) by 1 and from above the

numerator GN (xσ(i), xσ(i+1)) by C
∣∣xσ(i) − xσ(i+1)

∣∣2−d (see Lemma 4.1). Coming back to
(4.26), this leads to

P0 (E = k − 1, τxi < τN ∀i = 1 . . . k) ≤ Ck
∑
σ∈Sk

k−1∏
i=0

∣∣xσ(i) − xσ(i+1)

∣∣2−d .
with the convention xσ(0) = 0.

The general case p ≥ k − 1 follows from the same lines but now the order of visits
of the set {x1, . . . , xk} is not as simple as before. In the following, σ ∈ Sk will keep
track of the order of new visits of the vertices x1, . . . , xk: xσ(1) is the first vertex visited
among the xi’s, xσ(2) the second one... We will focus on the transitions which explore
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new vertices, so we introduce the notion: (σ, f) ∈ Sk × {1, . . . , k}{2,...,k} is said to be
admissible if

∀i = 2 . . . k, f(i) ∈ {σ(1), . . . , σ(i− 1)}.

xf(i) will denote the vertex visited just before visiting the vertex xσ(i). Now we define

U(x1, . . . , xk) :=
∑

(σ,f) admissible

∣∣xσ(1)

∣∣2−d k−1∏
i=1

∣∣xσ(i+1) − xf(i+1)

∣∣2−d . (4.27)

By keeping track of the transitions where new vertices are discovered (in a chronological
sense) and by noticing that all the others occur with a probability which is not larger
than Ck maxi 6=j |xi − xj |2−d, we have

P0 (E = p, τxi < τN ∀i = 1 . . . k) ≤ (Ck)p+1

(
max
i6=j
|xi − xj |2−d

)p−k+1

U(x1, . . . , xk)

= (Ck)p+1

(
max
i 6=j
|xi − xj |2−d

)p−k+1

N (2−d)kU
(x1

N
, . . . ,

xk
N

)
.

This proves (4.13).
We notice that (4.12) is immediate from the definition of (y1, . . . , yk) ∈ (−1, 1)k 7→

U(y1, . . . , yk) and we now check that it is integrable. Take (σ, f) admissible. There is only
one occurrence of yσ(k) in the product, so we can first integrate:∫

(−1,1)d

∣∣yσ(k) − yf(k)

∣∣2−d dyσ(k) ≤
∫

(−2,2)d+yf(k)

∣∣yσ(k) − yf(k)

∣∣2−d dyσ(k) = C.

We then proceed inductively by integrating next with respect to yσ(k−1), and so on. This
proves that U is integrable.

We now turn to (4.14). If x1 = bNy1c , . . . , xk = bNykc, for y1, . . . , yk non zero and
pairwise distinct elements of (−1, 1)d, then there exists η ∈ (0, 1) such that for all N
large enough, xi ∈ V(1−η)N , |xi| ≥ ηN and for all i 6= j, |xi − xj | ≥ ηN . Hence Lemma 4.1
implies

Px1

(
τx2

< τN ∧min
j 6=1

τxj

)
= Px1

(τx2
< τN )− Px1

(
∃j 6= 1, τxj < τx2

< τN
)

≥ Px1
(τx2

< τN )− (k − 2) max
j 6=1

Px1

(
τxj < τN

)
Pxj (τx2

< τN )

≥ Px1 (τx2 < τN )− Ck(ηN)2(2−d)

which leads to:

lim
N→∞

Nd−2Px1

(
τx2 < τN ∧ min

j /∈{1,2}
τxj

)
= lim
N→∞

Nd−2Px1 (τx2 < τN )

=
ad
g

(
|y1 − y2|2−d − q(y1, y2)

)
.

We deduce (4.14) by (4.26).

We now prove Lemma 4.8.

Proof of Lemma 4.8. Let x 6= y ∈ VN and let us denote

pxy := Px (τy <∞) = Py (τx <∞) and θxy = Ex [`τyx ] = Ey
[
`τxy
]
.
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By decomposing the walk along the different excursions between x and y, by Lemma 4.4
we see that starting from x the joint law of

(
`∞x , `

∞
y

)
can be stochastically dominated by:

(
`∞x , `

∞
y

)
�

 A∑
j=1

`x,j ,

A∑
j=1

`y,j


where A is a geometric random variable with failure probability

(pxy)
2

= Px (∃0 < s < t, Ys = y, Yt = x)

and `x,j , `y,j , j ≥ 1, are i.i.d. exponential variables with mean θxy independent from A. A
is the number of round trips between x and y and `x,j is the time spent in x during the
j-th round trip. Let us mention that it is not an exact equality in distribution but only a
stochastic domination. Indeed, we exactly have: starting from x,

`∞x
(d)
=

A∑
j=1

`x,j , (4.28)

but the number of `y,j ’s we have to sum up is A (resp. A− 1) if the last visited vertex is
y (resp. x). However this stochastic domination is sufficient for our purposes.

Let p ≥ 0. For all i = 1 . . . p + 1 we stochastically dominate as above
(
`∞,ix , `∞,iy

)
by

variables with a superscript i and we have

P

(
p+1∑
i=1

`∞,ix ≥ 2g logN + gt,

p+1∑
i=1

`∞,iy ≥ 2g logN + gt

)

≤ P

p+1∑
i=1

Ai∑
j=1

`ix,j ≥ 2g logN + gt,

p+1∑
i=1

Ai∑
j=1

`iy,j ≥ 2g logN + gt

 .

Conditioned on the value of
∑p+1
i=1 A

i, the variables
∑p+1
i=1

∑Ai

j=1 `
i
x,j and

∑p+1
i=1

∑Ai

j=1 `
i
y,j

are two independent Gamma variables. We can thus use the claim (4.31) of Lemma 4.9
and

P

(
p+1∑
i=1

`∞,ix ≥ 2g logN + gt,

p+1∑
i=1

`∞,iy ≥ 2g logN + gt

)

≤ N−4g/θxye−2t
∞∑
n=0

P

(
p+1∑
i=1

Ai = n+ p+ 1

)
2(n+p)∑
q=0

1

q!

(
4
g

θxy
logN

)q

= N−4g/θxye−2t
(
1− p2

xy

)p+1
∞∑
n=0

p2n
xy

(
n+ p

p

) 2(n+p)∑
q=0

1

q!

(
4
g

θxy
logN

)q
≤ C(p, t)N−4g/θxy

∞∑
q=0

1

q!

(
4
g

θxy
logN

)q ∑
n≥(dq/2e−p)+

(n+ p) . . . (n+ 1)p2n
xy . (4.29)

We are going to bound from above the last sum indexed by n. Let us first notice
that pxy and θxy are linked by a simple formula. Indeed, (4.28) implies that Ex [`∞x ] =

E [A]E [`x,1], meaning that g = θxy/
(
1− p2

xy

)
. Then

inf
x6=y

g(1− pxy)/θxy = inf
x 6=y

1/(1 + pxy) > 1/2
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so we can find λ > 1 such that infx 6=y g(1 − λpxy)/θxy > 1/2. If the index q in the
equation (4.29) is large enough, say q ≥ q0(p), then for all n ≥ dq/2e − p we have
2 log(λ)n ≥ p log(n+ p) and we can bound∑

n≥(dq/2e−p)+

(n+ p) . . . (n+ 1)p2n
xy ≤

∑
n≥dq/2e−p

(n+ p)pp2n
xy

≤
∑

n≥dq/2e−p

(λpxy)
2n ≤ C(p) (λpxy)

q
.

If q < q0(p), we bound the sum indexed by n by some constant depending on p. Overall,
coming back to the equation (4.29), we can further bound from above the probability we
are interested in by:

C ′(p, t)N−4g/θxy

(logN)q0(p)−1 +

∞∑
q=q0(p)

1

q!

(
4
g

θxy
λpxy logN

) ≤ C ′′(p, t)N−4
g(1−λpxy)

θxy .

We have chosen λ to make sure that the previous exponent is smaller than −2 which is
exactly what was required.

We now state and prove elementary Lemma 4.9 (recall the definition of f(k → q) in
(4.4)).

Lemma 4.9. 1. Poisson distribution: For λ > 0, consider P (λ) a Poisson random variable
with parameter λ. Then for all k ≥ 1,

E
[
P (λ)k

]
=

k∑
q=1

f(k → q)λq. (4.30)

2. Gamma distribution: For k, p ≥ 1 and θ > 0, consider Γ1(p, θ), . . . ,Γk(p, θ) k i.i.d.
Gamma random variables with shape parameter p and scale parameter θ, which have the
law of the sum of p independent exponential variables with mean θ. Then for all T > 0,

P (∀i = 1 . . . k,Γi(p, θ) ≥ T ) ≤ e−k Tθ
k(p−1)∑
q=0

(
k
T

θ

)q
/(q!). (4.31)

Proof of Lemma 4.9. 1. Poisson distribution: The moment generating function of P (λ) is
given by: for all u ∈ R

E
[
euP (λ)

]
= exp(λ(eu − 1)) =

∞∑
q=0

λq

q!
(eu − 1)q =

∞∑
q=0

λq

q!

q∑
i=1

(
q

i

)
(−1)q−ieiu

=

∞∑
q=0

λq

q!

q∑
i=1

(
q

i

)
(−1)q−i

∞∑
k=0

ik
uk

k!
=

∞∑
k=0

uk

k!

k∑
q=0

λqf(k → q)

where f is defined in (4.4). This proves (4.30).
2. Gamma distribution: The probability we are interested in is equal to

P (Γ1(p, θ) ≥ T )
k

= e−k
T
θ

(
p−1∑
q=0

(
T

θ

)q
/q!

)k
= e−k

T
θ

k(p−1)∑
q=0

(
T

θ

)q ∑
0≤q1,...,qk≤p−1
q1+···+qk=q

1

q1! . . . qk!
.

By looking at the power series of x 7→ (ex)k we find that∑
0≤q1,...,qk≤p−1
q1+···+qk=q

1

q1! . . . qk!
≤

∑
q1,...,qk≥0
q1+···+qk=q

1

q1! . . . qk!
=
kq

q!

which concludes the proof of (4.31).
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We finish this paper by stating a lemma of measure theory. We include a proof for
completeness and because we have not found any reference for this lemma.

Lemma 4.10. Let φ : [−1, 1]d × R → R be a C∞ function with compact support. Then
there exists a sequence (φp)p≥1 of functions converging uniformly to φ such that for all
p ≥ 1,

φp =

p∑
i=1

a
(p)
i 1

A
(p)
i ×T

(p)
i

where A(p)
i ∈ B([−1, 1]d) with the Lebesgue measure of Ā(p)

i \(A
(p)
i )◦ vanishing, T (p)

i ∈
B(R) with inf T

(p)
i > −∞ and a(p)

i ∈ C.

Proof. Let ε > 0. As φ is C∞ with compact support, the Fourier series of φ converges
uniformly. We can thus find K ≥ 1, ckx,kt ∈ C, kx ∈ Zd, kt ∈ Z and t0 ∈ R such that the
uniform norm of

φ−
∑

kx∈Zd,‖kx‖≤K
kt∈Z,|kt|≤K

ckx,kte
ikx·xeikt·t1(t0,∞)

is smaller than ε. This procedure separates the variables x and t. Now, writing u+ and
u− the positive and negative parts of a real u, we decompose

eikx·x = (cos(kx · x))+ − (cos(kx · x))− + i (sin(kx · x))+ − i (sin(kx · x))− .

Hence, we conclude this lemma by decomposing these four previous functions into sums
of simple functions and we do the same thing for the variable t. We are going to detail
this. In particular, we are going to explain how to ensure that the boundary of the Borel
sets linked to the simple functions have zero Lebesgue measure. Let ϕ : Rd → [0,∞)

be a continuous bounded function. We take ξ > 0 such that the Lebesgue measure of
ϕ−1 ({k2−p − ξ, k ≥ 1, p ≥ 1}) vanishes. It is possible because the set of non suitable ξ’s
is at most countable. Now we introduce

ψp :=

p2p∑
k=0

k2−p1Ap,k where Ap,k = ϕ−1
([
k2−p − ξ, (k + 1)2−p − ξ

))
.

Thanks to our choice of ξ, the Lebesgue measure of Āp,k\A◦p,k vanishes. Also, since ϕ+ ξ

is positive and bounded, 0 ≤ (ϕ + ξ) − ψp ≤ 2−p for all p large enough. We have thus
uniformly approximated ϕ by simple functions with Borel sets of the form we desired.
This concludes the proof of the lemma.
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