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Abstract

The free energy for multiple systems of spherical spin glasses with constrained
overlaps was first studied in [10]. In [24] the authors proved an upper bound of the
constrained free energy using Guerra’s interpolation. In this paper, we prove this
upper bound is sharp. Our approach combines the ideas of the Aizenman–Sims–Starr
scheme in [4] and the synchronization mechanism used in the vector spin models
in [22] and [23]. We derive a vector version of the Aizenman–Sims–Starr scheme
for spherical spin glass and use the synchronization property of arrays obeying the
overlap-matrix form of the Ghirlanda–Guerra identities to prove the matching lower
bound.
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1 Introduction

In [32], Talagrand proved a formula for the free energy of the spherical mixed even-p-
spin model originally considered by Crisanti and Sommers in [9]. It was later extended to
general mixed p-spin models by Chen in [4]. This formula is the analogue of the classical
Parisi formula for the Sherrington–Kirkpatrick model [25, 26] proved in [33].

This paper is on the free energy of multiple copies of spherical spin glasses with
constrained overlaps introduced in [10, 11]. The free energy of this model was studied
in [24], where an analogue of the Guerra replica symmetry breaking bound [15] was
derived and used in several applications. The goal of this paper is to prove that this
upper bound is sharp.

There are several motivations for this paper. In [2], spectral gap estimates for generic
spherical models were proved under various conditions on the Parisi measure. Our free
energy formulas can be used to possibly prove large deviation principles to extend these
spectral gap estimates to the larger class of mixed even-p-spin spherical models. Another
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Free energy of multiple systems of spherical spin glasses

application of the free energy formula is possibly proving that chaos in temperature in
some full-RSB spherical models cannot be detected at the level of the free energy, as
was predicted in [28] and recently proven geometrically in [31]. See [6] for some related
results on temperature chaos for spherical models.

The main tool that allows us to prove the matching lower bound is the overlap
synchronization mechanism developed by Panchenko in [21, 22, 23] to study multi-
species models and models with vectors spins. This mechanism is a consequence of the
ultrametric structure of generalized overlaps that satisfy the Ghirlanda–Guerra identities
[13, 14] which was proved in [19]. Synchronization was used recently in other contexts
in [16, 8], and in this paper we give another application. Besides this, our proof is based
on a variant of the Aizenman–Sims–Starr scheme for spherical models developed in [4].

Lastly, we refer the reader to [18, 17, 5, 3, 12, 30, 7] for other recent work where
various aspects of the spherical models have been studied.

2 Model description

Fix n ≥ 1. The main goal is to find a formula for the free energy of n constrained
copies of spherical spin glasses. The copies are coupled by constraining their overlaps
and can possibly exist at different temperatures. We start by introducing the usual
spherical spin glass model.

Let SN be the sphere in RN of radius
√
N and denote the configuration of the jth

copy by
σ(j) =

(
σ1(j), . . . , σN (j)

)
∈ SN . (2.1)

For p ≥ 2, the p-spin Hamiltonian is denoted by

HN,p(σ(j)) =
1

N (p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1(j) · · ·σip(j), (2.2)

where gi1,...,ip are i.i.d. standard Gaussian for all p ≥ 2 and indices (i1, . . . , ip). The
corresponding even mixed p-spin Hamiltonian for the jth copy at inverse temperature
(βp(j))p≥2 is denoted by

Hj
N (σ) =

∑
p≥2

βp(j)HN,p(σ(j)). (2.3)

We assume that the inverse temperatures satisfy
∑
p≥2 2pβ 2

p (j) <∞ for all j ≤ n, so that
(2.3) is well-defined, and that βp(j) = 0 for odd p.

We now introduce the model for a system of n copies of spherical spin glass. A
configuration of n copies can be viewed as vector spins,

σ = (σ1, . . . , σN ) ∈ (Rn)N , (2.4)

where the vector entries of σ are denoted by

σi =
(
σi(1), . . . , σi(n)

)
∈ Rn. (2.5)

The configurations σ are restricted to the set

SnN =
{
σ ∈ (RN )n | ‖σ(j)‖ =

√
N for all j ≤ n

}
, (2.6)

where ‖ · ‖ is the Euclidean norm on RN . The Hamiltonian of n copies of even mixed
p-spin models of spherical spin glasses is denoted by

HN (σ) =
∑
j≤n

Hj
N (σ). (2.7)
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The upper indices ` ≥ 1 of the configurations σ` index sequences of spin configu-
rations. The Hamiltonian is a Gaussian process indexed by σ` ∈ SnN with covariance
given by functions of normalized inner products. The inner products, or overlaps, of the
configurations of copy σ`(j) and σ`

′
(j′) is denoted by

Rj,j
′

`,`′ = Rj,j
′

`,`′

(
σ`(j),σ`

′
(j′)
)

=
1

N

∑
i≤N

σ`i (j)σ
`′

i (j′). (2.8)

The overlaps of vector configurations σ` and σ`
′

are given by the overlap matrices

R`,`′ = R(σ`,σ`
′
) =

(
Rj,j

′

`,`′

)
j,j′≤n =

1

N

∑
i≤N

σ`i ⊗ σ`
′

i . (2.9)

The overlaps are always normalized by the dimension of the vectors in the inner product.
Let x ∈ Rn and let A = (Aj,j′)j,j′≤n ∈ Rn×n. Consider the real valued convex function

ξj,j′(x) =
∑
p≥2

βp(j)βp(j
′)xp (2.10)

and its matrix valued counterpart

ξ(A) =
(
ξj,j′(Aj,j′)

)
j,j′≤n =

∑
p≥2

(βp ⊗ βp)�A�p, (2.11)

where ⊗ is the outer product on vectors in Rn and � is the Hadamard product on n× n
matrices. It is easy to check that the mixed p-spin Hamiltonian of the copies (2.3) are
centered Gaussian processes with covariance

EHj
N

(
σ`
)
Hj′

N

(
σ`
′)

= Nξj,j′
(
Rj,j

′

`,`′

)
, (2.12)

and the Hamiltonian (2.7) is a centered Gaussian process with covariance

EHN (σ`)HN (σ`
′
) = NSum(ξ(R`,`′)), (2.13)

where the sum of all entries in a matrix is denoted by

Sum(A) =
∑
j,j′≤n

Aj,j′ . (2.14)

2.1 The limit of the free energy

We now define the constrained free energy. LetQ =
(
Qj,j

′)
j,j′≤n be a n×n symmetric

positive semidefinite matrix with off-diagonals, Qj,j
′ ∈ [−1, 1] for j 6= j′ and diagonals

Qj,j = 1. Given ε > 0, we denote the set of spins with constrained self overlaps by

QεN =
{
σ ∈ SnN | ‖R(σ,σ)−Q‖∞ ≤ ε

}
, (2.15)

where ‖ · ‖∞ is the infinity norm on n× n matrices. For an external field ~h =
(
h(j)

)
j≤n ∈

Rn, we define the free energy as

F εN (β,Q) =
1

N
E log

∫
QεN

exp
(
HN (σ) +

∑
j≤n

h(j)
∑
i≤N

σi(j)
)
dλnN (σ), (2.16)

where the reference measure λnN = λ⊗nN is the product of normalized uniform measures
λN on SN .
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We will prove the limit of (2.16) can be expressed as a Parisi type functional. We
begin by introducing some notation. Let

Γn =
{
A | A is a n× n positive-semidefinite matrix

}
, (2.17)

denote the space of n× n matrices, and let

Π =
{
π : [0, 1]→ Γn | π is left-continuous, π(x1) ≤ π(x2) for x1 ≤ x2

}
(2.18)

denote the space of left-continuous monotone paths on Γn. The notation π(x1) ≤ π(x2)

means π(x2)− π(x1) ∈ Γn. Distances between paths are given by the metric

d(π, π̃) =

∫ 1

0

‖π(x)− π̃(x)‖1 dx, (2.19)

where ‖A‖1 =
∑
j,j′ |Aj,j′ |. These paths are the functional order parameters of p-spin

models with vector spins.
Consider a discrete path π ∈ Π connecting 0 and Q,

π(x) = Qk for xk−1 < x ≤ xk for 0 ≤ k ≤ r, π(0) = 0, π(1) = Q. (2.20)

This path can be encoded with a sequence of real numbers

0 = x−1 < x0 < · · · < xr = 1, (2.21)

and a monotone sequence of n× n symmetric positive semi-definite matrices

0 = Q0 ≤ Q1 ≤ · · · ≤ Qr = Q. (2.22)

Recall definition (2.11), and denote

θ(A) =
(
θj,j′(Aj,j′)

)
j,j′≤n = A� ξ′(A)− ξ(A), (2.23)

where ξ′(A) = (ξ′j,j′(Aj,j′))j,j′≤n is the matrix of entry wise derivatives of ξ. The matrix
given by

∆k = ξ′(Qk)− ξ′(Qk−1), 1 ≤ k ≤ r, (2.24)

is positive semidefinite. This can seen by applying the Schur product theorem to the
Hadamard product representation (2.11).

Given a symmetric positive definite matrix Λ, for k ≤ r we define recursively

Λr = Λ, Λk = Λk+1 − xk∆k+1 for 0 ≤ k ≤ r − 1. (2.25)

Let | · | be the determinant of n× n matrices and consider the set

L := L(π) = {Λ ∈ Γn | |Λ0| > 0}. (2.26)

For Λ ∈ L and discrete π ∈ Π, we define the following functional

Pβ,Q(Λ, π) =
1

2

[
tr(ΛQ)− n− log |Λ|+ (Λ−1

0
~h,~h) +

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

(2.27)

−
∑

0≤k≤r−1

xk · Sum
(
θ(Qk+1)− θ(Qk)

)]
. (2.28)

The dependence on β is through the functions ξ and θ defined in (2.11) and (2.23). The
following is the main result:
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Theorem 2.1. For n ≥ 1 and ~h ∈ Rn, the limit of the free energy at inverse temperature
β and constraint Q is given by

lim
ε→0

lim
N→∞

F εN (β,Q) = inf
π,Λ

Pβ,Q(Λ, π). (2.29)

The infimum is over Λ ∈ L and discrete paths given by (2.21) and (2.22) over all r ≥ 1.

Remark. If det(Q) = 0, we show in Lemma 4.2 that for all fixed β and π,

inf
Λ

Pβ,Q(Λ, π) = −∞.

By concentration of measure, this implies that asymptotically degenerate sequences of
vector configurations have exponentially low probability of appearing in the product
Gibbs measure in the N →∞ limit.

Remark. Our form of the Parisi functional Pβ,Q(Λ, π), is missing the 1
2 tr(Λ−1

0 ∆1)

that appears in [24]. This is because we assumed x0 > 0 in (2.21) while x0 = 0 in [24]. By
applying L’Hôpital’s rule and Jacobi’s formula, this term can be recovered by observing

lim
x0→0

1

2x0
log

|Λ1|
|Λ1 − x0∆1|

= lim
x0→0

1

2
|Λ1 − x0∆1|−1 tr(|Λ1 − x0∆1|(Λ1 − x0∆1)−1∆1)

=
1

2
tr(Λ−1

0 ∆1).

2.2 Outline of the paper:

We begin by using an analogue of Guerra’s interpolation to prove the upper bound
in Section 3. In Section 4, we prove the sharpness of functionals that appeared in the
upper bound using classical large deviations. We begin the proof of the lower bound by
using the Poincaré limit to derive an analogue of the Aizenman–Sims–Starr scheme for
high dimensional spherical spin glass models in Section 5. In Section 6, we introduce a
perturbation of the Hamiltonian that will force the overlaps under the asymptotic Gibbs
measure to satisfy the synchronization properties used in the study of vector spin glass
models. In Section 7 we combine all the results and finish the proof of the lower bound
using standard cavity computations.

3 Upper bound — Guerra’s interpolation

Remark. Throughout this paper, we will denote by L any constant that depends only
on the global parameters of the model such as the number of copies n, and the inverse
temperature parameters β. The constant can change even within the same equation.

We begin by proving the upper bound of the free energy.

Lemma 3.1. For n ≥ 1 and ~h ∈ Rn,

lim
ε→0

lim sup
N→∞

F εN (β,Q) ≤ inf
Λ,π

Pβ,Q(Λ, π). (3.1)

A version of this upper bound was proved in Section 2 of [24]. We will provide a
different proof using the Ruelle probability cascades and Guerra’s interpolation. The
main difference is the following proof will hold without the condition that the diagonals
of Λ are greater than 1.

Consider the sequence of real numbers

0 = x−1 < x0 < · · · < xr = 1, (3.2)

and the sequence of n× n positive semi definite matrices

0 = Q0 ≤ Q1 ≤ · · · ≤ Qr = Q. (3.3)
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Let (vα)α∈Nr be the weights of the Ruelle probability cascades [29] corresponding to the
sequence (3.2). For paths α1, α2 ∈ Nr, we denote the common vertices by

α1 ∧ α2 = min
{

0 ≤ j ≤ r | α1
1 = α2

1, . . . , α
1
j = α2

j , α
1
j+1 6= α2

j+1

}
(3.4)

and α1 ∧ α2 = r if α1 = α2. Consider independent centered Gaussian processes Z(α) =(
Zj(α)

)
j≤n and Y (α) indexed with α ∈ Nr and covariances

Cov(Z(α1), Z(α2)) = ξ′(Qα1∧α2), (3.5)

Cov(Y (α1), Y (α2)) = Sum
(
θ(Qα1∧α2)

)
. (3.6)

Let Zi(α) be an independent copy of Z(α) also independent of Y (α). A Gaussian interpo-
lation argument will bound the free energy with functions of these Gaussian processes.

Lemma 3.2. For all N > 0, there exists a constant L such that

F εN (β,Q) ≤ 1

N
E log

∑
α∈Nr

vα

∫
QεN

exp
(∑
i≤N

∑
j≤n

σi(j)
(
Zji (α) + h(j)

))
dλnN (σ)

− 1

N
E log

∑
α∈Nr

vα exp
√
NY (α) + Lε. (3.7)

Proof. The result follows from Gaussian interpolation. For 0 ≤ t ≤ 1, we define the
interpolating Hamiltonian

Ht(σ, α) =
√
tHN (σ) +

∑
i≤N

∑
j≤n

σi(j)
(√

1− tZji (α) + h(j)
)

+
√
t
√
NY (α),

on SnN ×Nr. For a given a constraint Q, we define the interpolating free energy function

ϕ(t) =
1

N
E log

∑
α∈Nr

vα

∫
QεN

expHt(σ, α) dλnN (σ).

Let 〈·〉t be the average on QεN ×Nr with respect to the Gibbs measure

G(dσ, α) ∝ vα expHt(σ, α) dλnN (σ).

A straightforward computation shows

ϕ′(t) =
1

N
E
〈 ∂
∂t
Ht(σ, α)

〉
t
.

By Gaussian integration by parts [20, Lemma 1.1],

1

N
E
〈 ∂
∂t
Ht(σ, α)

〉
t

=
1

2
E
〈

Sum
(
ξ(R1,1)−R1,1 � ξ′(Qα1∧α1) + θ(Qα1∧α1)

)〉
t

(3.8)

− 1

2
E
〈

Sum
(
ξ(R1,2)−R1,2 � ξ′(Qα1∧α2) + θ(Qα1∧α2)

)〉
t
. (3.9)

We use convexity to bound (3.9). Since βp = ~0 for odd p, ξj,j′(x) is a convex function
for all j, j′ ≤ n and therefore lies above all its tangent lines. That is,

ξj,j′(a)− aξ′j,j′(b) + θj,j′(b) ≥ 0 for all a, b ∈ R.

which implies, Sum
(
ξ(R1,2)−R1,2 � ξ′(Qα1∧α2) + θ(Qα1∧α2)

)
is non-negative. To bound

(3.8) we use definition (2.23) and notice (3.8) is equal to

E
〈

Sum
(
ξ(R1,1)− ξ(Qα1∧α1)− (R1,1 −Qα1∧α1)� ξ′(Qα1∧α1)

)〉
t
. (3.10)
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The self overlaps are constrained, so ‖R1,1 −Qα1∧α1‖∞ ≤ ε. The Lipschitz continuity of
ξ implies (3.8) is bounded by Lε, for some constant L that does not depend on N .

These bounds on (3.8) and (3.9) imply

ϕ′(t) ≤ Lε. (3.11)

By the mean value theorem, (3.11) gives us the upper bound

ϕ(1) ≤ ϕ(0) + Lε, (3.12)

where

ϕ(1) = F εN (β,Q) +
1

N
E log

∑
α∈Nr

vα exp
√
NY (α), (3.13)

ϕ(0) =
1

N
E log

∑
α∈Nr

vα

∫
QεN

exp
(∑
i≤N

∑
j≤n

σi(j)
(
Zji (α) + h(j)

))
dλnN (σ). (3.14)

Rearranging terms finishes the proof of the upper bound.

The terms in (3.7) containing Y (α) and Z(α) can be computed explicitly using the
recursive construction of the Ruelle probability cascades [20, Theorem 2.9]. Recalling
the covariance structure in (3.6), a recursive computation [20, Chapter 3] shows

lim sup
N→∞

1

N
E log

∑
α∈Nr

vα exp
√
NY (α) =

∑
0≤k≤r−1

xk · Sum
(
θ(Qk+1)− θ(Qk)

)
. (3.15)

The term in (3.7) containing Z(α) can be computed similarly after decoupling the
constraint on QεN using Lagrange multipliers and rotational invariance [24, Lemma 1].
Let νN be the standard Gaussian measure on RN . We write ω(j) ∈ RN in its polar

coordinate form ω(j) = (sjσ(j)), where sj = ‖ω(j)‖√
N
∈ R+ and σ(j) =

√
Nω(j)
‖ω(j)‖ ∈ SN . Let

γN denote the law of sj under νN . By rotational invariance, the law of σ(j) under νj is
λN , and σ(j) and sj are independent. We express (3.14) in terms of a Gaussian integral.

Lemma 3.3. There exists a δ ∈ (0, ε), such that (3.14) is bounded above by

1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnN (ω)− n log νN (EδN )

N
+ Lδ

(3.16)

where the δ shell around QεN is denoted by

Ωε,δN =
{
ω = (sjσ(j))j≤n ∈ (RN )n | σ ∈ QεN , sj ∈ [

√
1− δ,

√
1 + δ] for all j ≤ n

}
(3.17)

and the δ neighbourhood of the radial component is denoted by

EδN = {x ∈ RN | ‖x‖ ∈ [
√

(1− δ)N,
√

(1 + δ)N ]}.

Proof. We will use a Gaussian interpolation argument. Let Z̃ji (α) be an independent
copy of Zji (α). For 0 ≤ t ≤ 1, we define the interpolating Hamiltonian

Ht(ω, α) =
√
t
(∑
i≤N

∑
j≤n

σi(j)Z̃
j
i (α)

)
+
√

1− t
(∑
i≤N

∑
j≤n

ωi(j)Z
j
i (α)

)
+
∑
i≤N

∑
j≤n

σi(j)h(j),

on Ωε,δN ×Nr. The corresponding interpolating free energy function is denoted by

ϕ(t) =
1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

expHt(ω, α) dνnN (ω).
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Let 〈·〉t be the average on Ωε,δN ×Nr with respect to the Gibbs measure

G(dω, α) ∝ vα expHt(ω, α) dνnN (ω).

By Gaussian integration by parts,

ϕ′(t) =
1

N
E
〈 ∂
∂t
Ht(ω, α)

〉
t

= E

〈
E
∂Ht(ω

1, α1)

∂t
·Ht(ω

1, α1)−E∂Ht(ω
1, α1)

∂t
·Ht(ω

2, α2)

〉
t

.

Computing the covariances, we get

ϕ′(t) =
1

2
E
〈

Sum
(
R(σ1,σ1)� ξ′(Qα1∧α1)−R(ω1,ω1)� ξ′(Qα1∧α1)

)〉
t

− 1

2
E
〈

Sum
(
R(σ1,σ2)� ξ′(Qα1∧α2)−R(ω1,ω2)� ξ′(Qα1∧α2)

)〉
t
.

Since ωi(j) = sjσi(j) and sj ∈ [
√

1− δ,
√

1 + δ], we have the bound

Sum
(
R(σ1,σ2)� ξ′(Qα1∧α2)−R(ω1,ω2)� ξ′(Qα1∧α2)

)
≤ δn2‖ξ′(1)‖∞.

By the triangle inequality,
|ϕ′(t)| ≤ n2δ‖ξ′(1)‖∞ = Lδ,

resulting in the bound
ϕ(1) ≤ ϕ(0) + Lδ. (3.18)

The ending term of the interpolation can be simplified using rotational invariance of νN ,

ϕ(1) =
1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp

(∑
i≤N

∑
j≤n

σi(j)
(
Z̃ji (α) + h(j)

))
dνnN (ω)

=
1

N
E log

∑
α∈Nr

vα

∫
[
√

1−δ,
√

1+δ]n

∫
QεN

exp

(∑
i≤N

∑
j≤n

σi(j)
(
Z̃ji (α) + h(j)

))
dλnN (σ)dγnN (s)

=
1

N
E log

∑
α∈Nr

vα

∫
QεN

exp

(∑
i≤N

∑
j≤n

σi(j)
(
Z̃ji (α) + h(j)

))
dλnN (σ) +

n log νN (EδN )

N
.

(3.19)

Substituting (3.19) into (3.18) gives the bound

1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp

(∑
i≤N

∑
j≤n

σi(j)
(
Z̃ji (α) + h(j)

))
dνnN (ω) (3.20)

≤ 1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp

(∑
i≤N

∑
j≤n

(
sjσi(j)Z̃

j
i (α) + σi(j)h(j)

))
dνnN (ω)

− n log νN (EδN )

N
+ Lδ.

On the set Ωε,δN , the Cauchy–Schwarz inequality implies∣∣∣∣∑
j≤n

∑
i≤N

(
sjσi(j)h(j)− σi(j)h(j)

)∣∣∣∣ ≤ δ√N∑
j≤n

‖σ(j)‖ · |h(j)| ≤ δLN.

Therefore, we can replace σi(j)h(j) with ωi(j)h(j) in the upper bound of (3.20) and
absorb the error into Lδ giving

1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnN (ω)− n log νN (EδN )

N
+ Lδ,

the required upper bound in (3.16).
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We now explicitly compute the upper bound of (3.16). We denote the subset of RNn

constrained by coupling the overlaps with,

Ω̃εN =
{
ω ∈ (RN )n | Rj,j

′(
ω,ω

)
∈ [Qj,j

′
− ε,Qj,j

′
+ ε] for all j, j′ ≤ n

}
. (3.21)

For δ < ε, Ωε,δN ⊂ Ω̃2ε
N so (3.16) is bounded above by

1

N
E log

∑
α∈Nr

vα

∫
Ω̃2ε
N

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnN (ω)− n log νN (EδN )

N
+ Lε.

(3.22)
For any ω ∈ Ω̃2ε

N and Λ ∈ L,∥∥∥∥ ∑
j,j′≤n

Λj,j
′
Qj,j

′
− 1

N

∑
j,j′≤n

∑
i≤N

Λj,j
′
ωi(j

′)ωi(j)

∥∥∥∥
1

≤ 2ε‖Λ‖1.

Therefore, adding and subtracting 1
2

∑
i≤N ((Λ − I)ωi, ωi) from the exponent implies

(3.22) can be bounded above by

1

N
E log

∑
α∈Nr

vα

∫
Ω̃2ε
N

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

)
− 1

2

∑
i≤N

((Λ− I)ωi, ωi)
)
dνnN (ω)

+
1

2
tr(ΛQ)− n

2
− n log νN (EδN )

N
+ 2ε‖Λ‖1 − Lε. (3.23)

Since Ω̃2ε
N ⊂ (RN )n, if we define the function,

Yr,i(α) =
1

(2π)n/2

∫
Rn

exp
(∑
j≤n

ωi(j)
(
Zji (α) + h(j)

)
− 1

2

∑
j,j′≤n

Λj,j
′
ωi(j)ωi(j

′)
)
dωi (3.24)

then our upper bound (3.23) can be written as

1

N
E log

∑
α∈Nr

vα
∏
i≤N

Yr,i(α) +
1

2
tr(ΛQ)− n

2
− n log νN (EδN )

N
+ ε‖Λ‖1 − Lε. (3.25)

The term containing Yr,i(α) in (3.25) can be computed recursively. Let ~zk = (zjk)j≤n
be a Gaussian vector with covariance ∆k defined in (2.24) and let ~zk be independent
for 1 ≤ k ≤ r. For i ≤M let ~zk,i be an independent copy of ~zk. We define the recursion
starting with

Yr,i = log
1

(2π)n/2

∫
Rn

exp

(∑
j≤n

ωi(j)
( ∑

1≤k≤r

zjk,i + h(j)
)
− 1

2

∑
j,j′≤n

Λj,j
′
ωi(j)ωi(j

′)

)
dωi

(3.26)
with subsequent values for 0 ≤ k ≤ r − 1 given recursively by

Yk,i =
1

xk
logEk expxkYk+1,i, (3.27)

where Ek refers to expectation with respect to the random vector ~zk+1,i. The ~zi are
i.i.d. so Y0,i = Y0,1 for all i ≤ N . The recursive representation of the average in [20,
Theorem 2.9] implies (3.25) can be written as

Y0,1 +
1

2
tr(ΛQ)− n

2
− n log νN (EδN )

N
+ ε‖Λ‖1 − Lε. (3.28)

In this model, Y0,1 has a closed form. Starting from the start of the recursion, a direct
computation (see equation (2.17) in [24]) shows

Yr,1 = −1

2
log |Λ|+ 1

2

(
Λ−1

( ∑
1≤k≤r

~zk,1 + ~h
)
,
( ∑

1≤k≤r

~zk,1 + ~h
))

. (3.29)
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Here (·, ·) is the scalar product of vectors in Rn. The first term is non-random and will
propagate through the recursion. The second term can be computed recursively using
the following result:

Lemma 3.4. Let g be a Gaussian vector with covariance C. Then for any y ∈ Rn and
x ∈ (0, 1],

1

x
logE exp

(x
2

(
A−1(y + g ), y + g

))
=

1

2x
log

|A|
|A− xC|

+
1

2

(
(A− xC)−1y, y

)
.

Proof. The one dimensional case was proven in [32, Lemma 3.5]. We will prove the
analogous result for Rn. The expectation can be computed explicitly as follows,

E exp
(x

2

(
A−1(y + g ), y + g

))
=

(
|C|−1

(2π)n

)1/2 ∫
Rn

exp
(x

2

(
A−1(y + z ), y + z

)
− 1

2

(
C−1z, z

))
dz

=

(
|C|−1

(2π)n

)1/2 ∫
Rn

exp
(x

2

(
(A− xC)−1y, y

)
− 1

2

(
(C−1 − xA−1)(z −By ), (z −By )

))
dz

=

(
|C|−1

|C−1 − xA−1|

)1/2

exp
(x

2

(
(A− xC)−1y, y

))
where the matrix B is given by

B = x(C−1 − xA−1)−1A−1.

The conclusion follows immediately if we rewrite the matrices in the normalizing constant
as,

(C−1 − xA−1) = C−1(A− xC)A−1,

which implies
|C−1 − xA−1| = |C|−1|A− xC||A|−1.

Using Lemma 3.4 to compute the recursion gives the appropriate closed form.

Corollary 3.5. If |Λ0| > 0, then

Y0,1 = −1

2
log |Λ|+ 1

2

(
Λ−1

0
~h,~h

)
+

1

2

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

. (3.30)

Proof. Using Lemma 3.4 to compute the expectation of the second term in (3.29) recur-
sively implies

Yr−1,1 = −1

2
log |Λ|+ 1

2xr
log

|Λr|
|Λr − xr−1∆r|

(3.31)

+
1

2

(
(Λr − xr−1∆r)

−1
( ∑

1≤k≤r−1

~zk,1 + h
)
,
( ∑

1≤k≤r−1

~zk,1 + h
))

. (3.32)

Again, the terms in (3.31) are non-random, so they propagate through the recursion.
Computing the terms in (3.32) inductively using repeated applications of Lemma 3.4
implies

Y0,1 = −1

2
log |Λ|+ 1

2

(
Λ−1

0
~h,~h

)
+

1

2

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

. (3.33)
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Notice νN concentrates around the sphere of radius
√
N in high dimensions, so the

Gaussian term will vanish in the limit by the weak law of large numbers. That is, for any
δ > 0,

lim
N→∞

n log νN (EδN )

N
= lim
N→∞

n log(P(| 1
N

∑N
i=1 g

2
i − 1| ≤ δ))

N
= 0, (3.34)

where g1, g2, . . . are i.i.d. standard normals. The other terms vanish by taking ε→ 0, so
combining (3.30) and (3.34) with (3.28), gives the bound

lim
ε→0

lim sup
N→∞

1

N
E log

∑
α∈Nr

vα

∫
QεN

exp
(∑
i≤N

∑
j≤n

σi(j)
(
Zji (α) + h(j)

))
dλnN (σ)

≤ 1

2

(
tr(ΛQ)− n− log |Λ|+ (Λ−1

0
~h,~h) +

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

)
. (3.35)

The upper bound in (3.35) holds for all Λ ∈ L. Applying the bounds (3.35) and
(3.15) to (3.12) and taking the infimum over all discrete paths encoded by the monotone
sequences (3.2) and (3.3) shows

lim
ε→0

lim sup
N→∞

F εN (β,Q) ≤ inf
Λ,π

Pβ,Q(Λ, π), (3.36)

completing the proof of the upper bound.

4 Sharpness of the upper bound

We now prove for every fixed path π, the upper bound (3.35) is asymptotically sharp
in the sense that it attains equality after minimizing over Λ. This fact will be used again
when a similar functional appears in the proof of the lower bound. The proof of this
sharpness for the replica symmetric case can be found in [24, Lemma 4]. We will provide
a proof of the general case below.

Let π be any fixed discrete monotone path characterized by the sequences (3.2) and
(3.3) and denote the functional appearing in (3.16) by

f1
N (π) =

1

N
E log

∑
α∈Nr

vα

∫
Ωε,δN

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnN (σ). (4.1)

We will prove the matching lower bound of (3.35) by decoupling the functional f1
N (π)

from the constraint Q and explicitly computing its value recursively.

Lemma 4.1. For all 0 < δ < ε,

lim inf
N→∞

f1
N (π) ≥ inf

Λ

1

2

(
tr(ΛQ)− n− log |Λ|+ (Λ−1

0
~h,~h) +

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

)
.

Recall (3.21), the subset of RNn constrained by coupling the overlaps,

Ω̃δN =
{
ω ∈ (RN )n | ‖R

(
ω,ω

)
−Q‖∞ ≤ δ

}
. (4.2)

Clearly, there exists a δ∗ < ε such that Ωε,δN ⊇ Ω̃δ
∗

N , so

f1
N (π) ≥ 1

N
E log

∑
α∈Nr

vα

∫
Ω̃δ
∗
N

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnN (ω). (4.3)

We introduce the Lagrange multipliers Λ ∈ L defined in (2.26). Like in the proof of
the upper bound, since ‖R(ω,ω) −Q‖∞ ≤ δ∗ for ω ∈ Ω̃δ

∗

N , adding and subtracting the
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quadratic form 1
2

∑
i≤N ((Λ− I)ωi, ωi) from the exponent implies (4.3) is bounded below

by

1

N
E log

∑
α∈Nr

vα

∫
Ω̃δ
∗
N

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

)
− 1

2

∑
i≤N

((Λ− I)ωi, ωi)
)
dνnN (ω)

+
1

2
tr(ΛQ)− n

2
− δ∗‖Λ‖1. (4.4)

We view the quantity on the first line of (4.4) as a function of Λ and the region of
integration. In general, we denote this integral over sets V ⊂ (RN )n by

ΦV (Λ)=
1

N
E log

∑
α∈Nr

vα

∫
V

exp
(∑
i≤N

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

)
− 1

2

∑
i≤N

((Λ− I)ωi, ωi)
)
dνnN (ω)

(4.5)
and the integral over the whole space by

F (Λ) := ΦRNn(Λ). (4.6)

The map V 7→ ΦV (Λ) is monotone and, in particular, ΦV (Λ) ≤ F (Λ). Furthermore, the
function F (Λ) does not depend on N , and was computed using the recursion (3.27)
giving the closed form in Corollary 3.5,

F (Λ) =
1

2

(
− log |Λ|+

(
Λ−1

0
~h,~h

)
+

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

)
. (4.7)

We will prove that minimizing over Λ removes the dependence on the constraint Q
asymptotically. We start by showing there exists a unique Λ∗ that minimizes 1

2 tr(ΛQ) +

F (Λ) if the lower bound (4.15) is finite.

Lemma 4.2. Given a positive semi-definite constraint Q:

1. If Q is degenerate, then

inf
Λ

(1

2
tr(ΛQ) + F (Λ)

)
= −∞. (4.8)

2. If Q is non-degenerate, then there exists a Λ∗ ∈ L that minimizes 1
2 tr(ΛQ) + F (Λ)

and satisfies
∂

∂t

(1

2
tr
(
(Λ∗ + tB)Q

)
+ F (Λ∗ + tB)

)∣∣∣
t=0

= 0 (4.9)

for any symmetric matrix B.

Proof. Consider the eigendecomposition of Λ ∈ L,

Λ = UDUT.

Using this change of variables and (2.25), we see (4.7) can be rewritten in terms of U
and D as,

1

2
tr(ΛQ) + F (Λ) =

1

2

(
tr
(
DUTQU

)
− log |D|

+
((
D −

∑
0≤k<r

xkU
T∆k+1U

)−1

(UTh), (UTh)
)

+
∑

0≤k≤r−1

1

xk
log
|D −

∑
k+1≤`<r x`U

T∆`+1U |
|D −

∑
k≤`<r x`U

T∆`+1U |

)
. (4.10)
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In this form, the infimum is over positive semidefinite diagonal matrices D and orthogo-
nal matrices U such that |D −

∑
0≤`<r x`U

T∆`+1U | > 0,

inf
Λ

(1

2
tr(ΛQ) + F (Λ)

)
= inf
D,U

(1

2
tr(UDUTQ) + F (UDUT)

)
.

Case (1): Suppose Q is degenerate, i.e. |Q| = 0. There exists an orthogonal matrix
U , corresponding to the eigendecomposition of Q, such that D̃ = UTQU and D̃11 = 0.
Given this U , we choose diagonal matrix D with diagonal entries large enough such that
all the Gershgorin discs of D −

∑
k≤`<r x`U

T∆`+1U are contained in the positive real
half plane for all k ≤ r − 1. In particular for all k ≤ r − 1, the smallest eigenvalue of
D −

∑
k≤`<r x`U

T∆`+1U is strictly positive and will remain bounded away from zero if
we increase the value of the first diagonal element. That is, there exists a c > 0 such that

lim inf
D11→∞

λmin

(
D −

∑
k≤`<r

x`U
T∆`+1U

)
≥ c > 0 for all k ≤ r − 1. (4.11)

We fix all entries Djj for 2 ≤ j ≤ n and show (4.10) diverges to −∞ as we take the first
entry D11 →∞. For the above choice of D and U , we have

tr
(
DUTQU

)
− log |D| =

n∑
i=1

Dii(U
TQU)ii −

n∑
i=1

logDii

=

n∑
i=2

Dii(U
TQU)ii −

n∑
i=2

logDii − logD11,

which implies

lim
D11→∞

(
tr
(
DUTQU

)
− log |D|

)
= −∞. (4.12)

We will now show that the remaining terms of (4.10) are finite. Let νkmin denote the
smallest eigenvalue ofD−

∑
k≤`<r x`U

T∆`+1U . By (4.11), we have lim infD11→∞ νkmin ≥
c for all k ≤ r − 1. Bounding the quadratic form with the largest eigenvalue of the
associated matrix implies

lim
D11→∞

((
D −

∑
0≤k<r

xkU
T∆k+1U

)−1

(UTh), (UTh)
)
≤
(
ν0
min

)−1‖h‖2 ≤ c−1‖h‖2 <∞.

(4.13)
The logarithm terms in (4.10) can be bounded by the minimum eigenvalues in a

similar manner. It suffices to show an arbitrary term in the sum is bounded, that is,

lim
D11→∞

1

xk
log
|D −

∑
k+1≤`<r x`U

T∆`+1U |
|D −

∑
k≤`<r x`U

T∆`+1U |
<∞. (4.14)

If we define the matrices Ak := D −
∑
k≤`<r x`U

T∆`+1U and Bk := xkU
T∆k+1U , then

log
|D −

∑
k+1≤`<r x`U

T∆`+1U |
|D −

∑
k≤`<r x`U

T∆`+1U |
= log

|Ak +Bk|
|Ak|

= log |A−1
k (Ak+Bk)| = log |I+A−1

k Bk|.

Bounding this with the largest eigenvalue, we see

log |I +A−1
k Bk| ≤ n log λmax(I +A−1

k Bk).

Using submultiplicativity of the spectral norm and the lower bound on the smallest
eigenvalue of Ak in (4.11), we have

λmax(I+A−1
k Bk) = 1+λmax(A−1

k Bk) ≤ 1+λmax(A−1
k )λmax(Bk) ≤ 1+c−1λmax(Bk) <∞,
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giving the required bound in (4.14).
Therefore, for a particular U , we can construct a sequence of diagonal matrices

D with arbitrary large first diagonal element such that 1
2 tr(UDUTQ) + F (UDUT) is

unbounded. In particular, we have

inf
Λ

(1

2
tr(ΛQ) + F (Λ)

)
= −∞.

Case (2): Consider the case when Q is positive definite. We will prove that (4.7) attains
a minimum at some point Λ∗ ∈ L. By Hölder’s inequality, F (Λ) is a convex function of
Λ, so any local minimizer is also a global minimizer. We will prove that the minimizer
is attained in a compact subset of Γn under the spectral norm on symmetric matrices
‖Λ‖2 = λmax(Λ).

Because Q is positive definite, the diagonal elements of UTQU is positive and
uniformly bounded away from 0 for all orthogonal matrices U . That is, the first term in
(4.10) can be bounded below by

tr
(
DUTQU

)
−log |D| =

∑
j≤n

(
Djj(U

TQU)jj−log |Djj |
)
≥
∑
j≤n

(
Djjλmin(Q)−log |Djj |

)
which clearly diverges to∞ if any diagonal element Djj →∞. The remaining terms in
(4.10) are non-negative, so 1

2 tr(ΛQ) + F (Λ) → ∞ if ‖Λ‖2 → ∞. Since Λ−Λ0 ≥ 0, we
also have 1

2 tr(ΛQ) + F (Λ)→∞ if ‖Λ0‖2 →∞ by monotonicity.
By definition (2.25), we have Λk+1 = Λk + xk∆k+1. By submultiplicativity of ‖ · ‖2,

‖∆k+1‖2 = ‖ΛkΛ
−1
k ∆k+1‖2 ≤ ‖Λk‖2‖Λ−1

k ∆k+1‖2,

so the last term in (4.7) can be bounded below by

log
|Λk+1|
|Λk|

=log |I + xkΛ
−1
k ∆k+1|≥ log(1 + xk‖Λ−1

k ∆k+1‖2)≥ log(1 + xk‖Λk‖−1
2 ‖∆k+1‖2).

Let k∗ be the smallest index such that ∆k∗+1 6= 0, then it is clear the above term diverges
as ‖Λk∗‖2 → 0. Since the sequence (3.3) is monotone, we have ‖Λ0‖2 = ‖Λk∗‖2. The
rest of the terms in (4.7) are bounded or positive for fixed π, so 1

2 tr(ΛQ) + F (Λ)→∞ if
‖Λ0‖ → 0.

We have shown, 1
2 tr(ΛQ)+F (Λ) is unbounded if ‖Λ0‖2 → 0 or ‖Λ0‖2 →∞. Therefore,

there exists a 0 < c < C <∞ such that the minimizer is attained in the compact set

L∗ = {Λ ∈ Γn | c ≤ ‖Λ0‖2 ≤ C} ⊆ L.

The matrix B =
∑

0≤k≤r xk∆k is a fixed positive semidefinite matrix, so the map f :

Γn → R defined by f(Λ) = ‖Λ−B‖2 = ‖Λ0‖2 is continuous. Therefore, L∗ = f−1([c, C])

is closed and clearly bounded, so it is compact. By the extreme value theorem, there
exists a Λ∗ ∈ L such that 1

2 tr(ΛQ) + F (Λ) attains its minimum at Λ∗. Furthermore, our
function is convex and Λ∗ is an interior point of L, so the minimizer Λ∗ is unique and
satisfies the critical point condition,

∂

∂t

(1

2
tr
(
(Λ∗ + tB)Q

)
+ F (Λ∗ + tB)

)∣∣∣
t=0

= 0,

for all symmetric matrices B.

Lemma 4.1 is trivially satisfied when the infimum is −∞, so we focus on the non-
degenerate case moving forward. We now prove asymptotic sharpness of the upper
bound using a standard large deviations calculation to decouple the constraints.
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Lemma 4.3. For any δ∗ > 0 and positive definite Q,

lim inf
N→∞

ΦΩ̃δ
∗
N

(Λ) +
1

2
tr(ΛQ) ≥ inf

Λ

(1

2
tr(ΛQ) + F (Λ)

)
. (4.15)

Proof. Consider the partition

(RN )n = Ω̃δ
∗

N ∪
( ⋃
j,j′≤n

V +
j,j′

)
∪
( ⋃
j,j′≤n

V −j,j′
)

where

V +
j,j′ =

{
ω | Rj,j

′
(ω,ω) ≥ Qj,j

′
+ δ∗

}
, (4.16)

V −j,j′ =
{
ω | Rj,j

′
(ω,ω) ≤ Qj,j

′
− δ∗

}
. (4.17)

Recall the monotone function ΦV defined in (4.5). For Λ∗ satisfying (4.9), by considering
values near this critical point, we will show there exists a constant c > 0 such that for all
half-spaces V in (4.16) or (4.17)

ΦV (Λ∗) ≤ F (Λ∗)− c. (4.18)

We only show this for V = V −j,j′ for j 6= j′. The proof for the other cases are similar. For

all t ≥ 0 and ω ∈ V −j,j′ ,
tRj,j

′
(ω,ω) ≤ t(Qj,j

′
− δ∗).

Let B be a matrix such that Bj,j
′

= Bj
′,j = 1 and is zero everywhere else. Adding and

subtracting 1
2 tNR

j,j′(ω,ω) and 1
2 tNR

j′,j(ω,ω) in the exponent, by symmetry of Q, we
have

ΦV (Λ∗) ≤ t(Qj,j
′
− δ∗) + ΦV (Λ∗ + tB)

≤ t(Qj,j
′
− δ∗) + F (Λ∗ + tB)

= −tδ∗ − 1

2
tr(Λ∗Q) +

1

2
tr((Λ∗ + tB)Q) + F (Λ∗ + tB) =: U(t). (4.19)

Since U(0) = F (Λ∗), the critical point condition (4.9) implies U ′(0) = −δ∗. In particular,
there is a t∗ such that U(t∗) < U(0). Since (4.19) holds for all t > 0, there is a c such that

ΦV (Λ∗) ≤ U(t∗) ≤ U(0)− c = F (Λ∗)− c.

Recall the sets (4.16), (4.17), and (4.2) form a partition of (RN )n. A consequence of
the recursion in the Ruelle probability cascades (see equation (118) in the proof of [22,
Lemma 7] or the proof of [23, Lemma 6]) implies

F (Λ∗) ≤
log(2n2 + 1)

Nx0
+ max

(
max
V

ΦV (Λ∗),ΦΩ̃δ
∗
N

(Λ∗)
)

where the maximum over V is over the halfspaces of the form (4.16), (4.17). Our bounds
in (4.18) ensures we cannot have

F (Λ∗) ≤
log(2n2 + 1)

Nx0
+ max

V
ΦV (Λ∗)

for N sufficiently large. Therefore, we must have

F (Λ∗) ≤
log(2n2 + 1)

Nx0
+ ΦΩ̃δ

∗
N

(Λ∗).

Taking N →∞ completes the proof.
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The proof of Lemma 4.1 follows by applying Lemma 4.3 to (4.4),

lim
ε→0

lim inf
N→∞

f1
N (π) ≥ inf

Λ

1

2

(
tr(ΛQ)− n− log |Λ|+ (Λ−1

0 h, h) +
∑

0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

)
.

We have shown that Theorem 2.1 is trivially satisfied for degenerate constraint
Q just from examining the upper bound. The case for positive definite constraint Q
is much harder and will require some preliminary work before attempting the cavity
computations. We begin by introducing a variant of the Aizenman–Sims–Starr scheme.

5 The Aizenman–Sims–Starr scheme

Before we can complete the cavity computations to prove the lower bound, we first
prove an analogue of the Aizenman–Sims–Starr scheme [1] for spherical spin glass
models with vector spins. The extension to this model is non-trivial because the uniform
measure on the sphere is not a product measure, so the usual proof of the scheme fails.

This section follows the proof of the Aizenman–Sims–Starr scheme adapted for
spherical models in [4]. The main difference is the Aizenman–Sims–Starr scheme (see
Lemma 6.3) will be with respect to a Gaussian reference measure as opposed to the
surface measure in [4]. This form was chosen for convenience, because it matches the
form of the functional (3.23).

To simplify notation, we first prove an analogue of the Aizenman–Sims–Starr scheme
with no external field. We will explain how to reintroduce the external field at the end of
Section 6. Consider the partition function with ~h = ~0 for a system of size N ,

ZN (Q, ε) =

∫
QεN

exp
(
HN (σ)

)
dλnN (σ) (5.1)

and the corresponding partition function for a system of size M +N ,

ZM+N (Q, ε) =

∫
QεM+N

exp
(
HN+M (ρ)

)
dλnM+N (ρ). (5.2)

We denote spin configurations from the system of size M +N with ρ = (σ,ω) ∈ SnM+N

where σ ∈ RN denotes the bulk coordinates and ω ∈ RM denotes the cavity coordinates.
We proceed like the traditional Aizenman–Sims–Starr scheme and split the Hamilto-

nian into the cavity fields [20, Section 3.5]

HM+N (σ,ω)
d
=
∑
j≤n

Hj
M,N (σ) +

∑
i≤M

∑
j≤n

ωi(j)Z
j
i (σ) + r(ρ), (5.3)

HN (σ,ω)
d
=
∑
j≤n

Hj
M,N (σ) +

√
M
∑
j≤n

Y j(σ). (5.4)

Here, HM,N (σ) :=
∑
j≤nH

j
M,N (σ) is defined like HN (σ) but with normalization (M +

N)−(p−1)/2. The covariance of this Hamiltonian is given by

EHj
M,N (σ`)Hj′

M,N (σ`
′
) = (M +N)ξj,j′

( N

M +N
Rj,j

′

`,`′

)
. (5.5)

The cavity fields Z(σ) and Y (σ) in (5.3) and (5.4) are centered Gaussian processes with
covariances:

EZji (σ`)Zj
′

i′ (σ
`′) = δi,i′ξ

′
j,j′
(
Rj,j

′

`,`′

)
+O

(M
N

)
, (5.6)

EY j(σ`)Y j
′
(σ`

′
) = θj,j′

(
Rj,j

′

`,`′

)
+O

(M
N

)
, (5.7)
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and the remainder term r(ρ) has covariance,

Er(ρ `)r(ρ `
′
) = O

( M2

M +N

)
. (5.8)

We will prove that we can replace the cavity fields Z(σ) and Y (σ) with centered Gaussian
fields zi(σ) and y(σ) taking values in Rn indexed by σ ∈ SnN , with covariances

Ezji (σ
`)zj

′

i′ (σ
`′) = δi,i′ξ

′
j,j′
(
Rj,j

′

`,`′

)
, (5.9)

Eyj(σ`)yj
′
(σ`

′
) = θj,j′

(
Rj,j

′

`,`′

)
. (5.10)

Let 〈·〉M,N be the average with respect to the Gibbs measure,

GM,N (dσ) =
expHM,N (σ) dλnN (σ)

ZM,N (Q, ε)
, (5.11)

on QεN , with normalization

ZM,N (Q, ε) =

∫
QεN

exp
(
HM,N (σ)

)
dλnN (σ). (5.12)

We start as usual with the inequality

lim inf
N→∞

1

N
E logZN (Q, ε) ≥ 1

M
lim inf
N→∞

(
E logZM+N (Q, ε)− E logZN (Q, ε)

)
=

1

M
lim inf
N→∞

(
E log

ZM+N (Q, ε)

ZM,N (Q, ε)
− E log

ZN (Q, ε)

ZM,N (Q, ε)

)
. (5.13)

The surface measure λM+N appearing in ZM+N is not a product measure, so the standard
proof of the Aizenman–Sims–Starr does not apply after this point. Instead, recall that
the δ shell around QεM is denoted by

Ωε,δM =
{
ω = (sjτ (j))j≤n ∈ (RM )n | τ ∈ QεM , sj ∈ [

√
1− δ,

√
1 + δ] for all j ≤ n

}
, (5.14)

where sj ∈ R+ and τ(j) ∈ SM are the radial and angular components of the polar form
of ω(j) (see after (3.15) for the formulas). We will prove the following lower bound of
(5.13).

Lemma 5.1. Let νM be the standard normal distribution on RM . There exists a constant
L such that for any ε > 0 and M ≥ 1, there exists a δ ∈ (0, ε) such that (5.13) is bounded
below by

1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (ω)

〉
M,N

− E log
〈

exp
√
My(σ)

〉
M,N

)
− Lδ. (5.15)

The main difference between the bound (5.15) and the traditional Aizenman–Sims–
Starr representation is the Gaussian reference measure appearing in the first cavity
field. This measure appears as a consequence of the Poincaré limit, which states that
the standard Gaussian measure in RM is the limiting distribution of projected uniform
distributions on SN+M as N tends to infinity.
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5.1 Poincaré limit

We first explain a method to asymptotically decouple λM+N into an approximate
product measure over the spheres SN × SM . The distribution of the projection of SN+M

onto RM under λN+M converges weakly to the Gaussian distribution νM on RM in the
Poincaré limit [27]. In particular, the distribution of the cavity coordinates under the
normalized surface measure will be approximately Gaussian for large N . For large M ,
νM will concentrate around SM . We first introduce some notation and state this result in
one dimension.

For K ≥ 1, we denote the unit sphere in RK with S1
K and |S1

K | its surface area. Let

AM,N =

M∏
j=1

[
−
√
M +N + 1− j,

√
M +N + 1− j

]
, (5.16)

be a subset of RM representing the domain of the cavity coordinates. We define the
density on RM ,

dνM,N (x) = fM,N (x) dx,

where

fM,N (x) = bM,N

M∏
j=1

(
1−

x2
j

M +N + 1− j

)M+N−j−2
2

, (5.17)

with normalizing coefficient

bM,N =

M∏
j=1

|S1
M+N−j |

|S1
M+N+1−j |

√
M +N + 1− j

.

The pointwise limit of (5.17) converges to the standard normal distribution on RM

dνM (x) = fM (x) dx,

where

fM (x) := lim
N→∞

fM,N (x) =

(
1

2π

)M/2

exp

(
−‖x‖

2

2

)
.

Lastly, we define the coefficients

a1 = 1, a`(x) =

`−1∏
j=1

√
1 +

1− x2
j

M +N − j
for 1 < ` ≤M + 1 (5.18)

and the corresponding map for ψ : SN ×AM,N → SM+N given by

ψ(σ,ω) =
(
σ1aM+1(ω), . . . , σNaM+1(ω), ω1a1(ω), . . . , ωMaM (ω)

)
for σ ∈ SN and ω ∈ AM,N . The surface measure on SM+N can be decoupled as follows:

Lemma 5.2. [4, Lemma 3] Suppose g is a nonnegative function defined on SM+N . Then
for ρ = (σ,ω) ∈ SM+N we have∫

SM+N

g(ρ) dλM+N (ρ) =

∫
AM,N

∫
SN

g(ψ(σ,ω)) dλN (σ)dνM,N (ω).

We will need a multidimensional version of this argument. To simplify notation,
for n copies of SN+M , we define aj` := a`(ω(j)) keeping the dependence on the cavity
coordinate ω(j) implicit. Similarly, we define

Ψ(σ,ω) =
(
ψ
(
σ(j),ω(j)

))
j≤n

=
(
ajM+1σ1(j), . . . , ajM+1σN (j), aj1ω1(j), . . . , ajMωM (j)

)
j≤n

,
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to represent the transformation applied coordinate-wise. The following result explains
how the surface measure on SM+N decouples asymptotically.

Corollary 5.3. Suppose g is a nonnegative function defined on SnM+N . Then for ρ =

(σ,ω) ∈ SnM+N we have∫
SnM+N

g(ρ) dλnM+N (ρ) =

∫
SnN

∫
AnM,N

g
(
Ψ(σ,ω)

)
dνnM,N (ω)dλnN (σ). (5.19)

Proof. We apply Lemma 5.2 to each coordinate j ≤ n. The region of integration is a
product set and we are integrating a non-negative function, so we are able to rearrange
the order of integration by Fubini’s Theorem.

We apply Corollary 5.3 to lower bound ZM+N (Q, ε) with an integral over the product
set of bulk and cavity coordinates. To simplify notation, we denote the transformed
coordinates with

ρ̃ = (σ̃, ω̃) := Ψ(σ,ω) (5.20)

where

σ̃ =
(
ajM+1σ1(j), . . . , ajM+1σN (j)

)
j≤n and ω̃ =

(
aj1ω1(j), . . . , ajMωM (j)

)
j≤n (5.21)

are the respective transformed bulk and cavity coordinates. For an arbitrary non-negative
function g on SnM+N , (5.19) implies∫

QεM+N

g(ρ) dλnM+N (ρ) =

∫
SnM+N

1QεM+N
(ρ)g(ρ) dλnM+N (ρ)

=

∫
SnN

∫
AnM,N

1QεM+N
(σ̃, ω̃)g(σ̃, ω̃) dνnM,N (ω)dλnN (σ). (5.22)

We first split the integral over QεM+N into a product set over QεN × Ω
ε/2,δ
M for suitably

chosen δ.

Lemma 5.4. For any ε > 0 and N sufficiently large, there exists a δ ∈ (0, ε) such that

1QεM+N
(σ̃, ω̃) ≥ 1QεN (σ)1

Ω
ε/2,δ
M

(ω). (5.23)

Proof. We will find conditions on δ such that (5.23) holds. Let δ > 0 and take σ ∈ QεN
and ω ∈ Ω

ε/2,δ
M . The overlaps of the transformed coordinates ρ̃ defined in (5.20) satisfy

R(ρ̃, ρ̃) =
N

M +N
R(σ̃, σ̃) +

M

M +N
R(ω̃, ω̃). (5.24)

The set Ω
ε/2,δ
M is bounded, so the corresponding transformed overlaps R(σ̃, σ̃) and

R(ω̃, ω̃), can be approximated by the standard overlaps R(σ,σ) and R(τ , τ ) of configu-
rations σ and τ on the spheres SN and SM respectively.

Firstly, since ‖ω(j)‖2 < M(1 + δ) for all ω ∈ Ω
ε/2,δ
M and j ≤ n, we have the relation

lim
N→∞

(
N − ajM+1a

j′

M+1N
)

=
‖ω(j)‖2 + ‖ω(j′)‖2

2
−M ≤Mδ. (5.25)

Since Rj,j
′
(σ̃, σ̃) = ajM+1a

j′

M+1R
j,j′(σ,σ), for all N sufficiently large∥∥∥ N

N +M
R(σ̃, σ̃)− N

N +M
R(σ,σ)

∥∥∥
∞
≤ LMδ

N +M
. (5.26)
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Secondly, Ω
ε/2,δ
M is a compact set so limN→∞ a`(ω) = 1 uniformly for all 1 < ` ≤ M .

Therefore,
lim
N→∞

‖R(ω̃, ω̃)−R(ω,ω)‖∞ = 0,

uniformly on Ω
ε/2,δ
M . Likewise, on Ω

ε/2,δ
M , ‖ω(j)− τ (j)‖2 = ‖sjτ (j)− τ (j)‖2 ≤ δM for all

j ≤ n, so
‖R(ω,ω)−R(τ , τ )‖∞ ≤ δ.

Therefore, the triangle inequality implies for all ω ∈ Ω
ε/2,δ
M ,∥∥∥ M

N +M
R(ω̃, ω̃)− M

N +M
R(τ , τ )

∥∥∥
∞
≤ LMδ

N +M
. (5.27)

For any σ ∈ QεN and ω ∈ Ω
ε/2,δ
M , (5.26) and (5.27) imply for N sufficiently large∥∥R(ρ̃, ρ̃)−Q

∥∥
∞ =

∥∥∥ N

M +N

(
R(σ̃, σ̃)−Q

)
+

M

M +N

(
R(ω̃, ω̃)−Q

)∥∥∥
∞

≤
∥∥∥ N

M +N

(
R(σ,σ)−Q

)
+

M

M +N

(
R(τ , τ )−Q

)∥∥∥
∞

+
LMδ

N +M

≤ Nε

N +M
+

Mε

2(N +M)
+

LMδ

M +N

= ε+
M

N +M

(
Lδ − ε

2

)
.

Choosing δ ≤ ε
2L , we have ∥∥R(ρ̃, ρ̃)−Q

∥∥
∞ ≤ ε.

In particular, this means{
(σ̃, ω̃) ∈ QεN+M

}
⊇
{
σ ∈ QεN

}
×
{
ω ∈ Ω

ε/2,δ
M

}
,

completing the proof.

Applying Lemma 5.4 to (5.22) and taking g(ρ) = expHM+N (ρ), we have for N

sufficiently large

E logZM+N (Q, ε) ≥ E log

∫
QεN

∫
Ω
ε/2,δ
M

exp
(∑
j≤n

Hj
M+N

(
σ̃, ω̃

))
dνnM,N (ω)dλnN (σ). (5.28)

Consequently, we are able to decouple the surface measure, which resolves the first
major obstacle in the proof of the Aizenman–Sims–Starr representation.

5.2 Proof of Lemma 5.1

Using (5.28), we can derive a lower bound for the first term in (5.13).

Lemma 5.5. For every ε > 0, there exists a δ ∈ (0, ε) such that

lim inf
N→∞

E log
ZM+N (Q, ε)

ZM,N (Q, ε)
≥ lim inf

N→∞
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (ω)

〉
M,N

− LMδ. (5.29)

Proof. We start by splitting the left hand side of (5.29) in three parts

E log
ZM+N (Q, ε)∫

Ω
ε/2,δ
M

JM,N dνnM,N (ω)
+ E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M,N (ω)∫

Ω
ε/2,δ
M

JM,N dνnM (ω)
+ E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M (ω)

ZM,N (Q, ε)
,

(5.30)
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where

JM,N := JM,N (ω) =

∫
QεN

exp
(∑
j≤n

Hj
M,N (σ) +

∑
j≤n

∑
i≤M

ωi(j)z
j
i (σ)

)
dλnN (σ).

We bound each of the terms in (5.30) separately.

Step 1: We show the first term in (5.30) satisfies

lim inf
N→∞

E log
ZM+N (Q, ε)∫

Ω
ε/2,δ
M

JM,N dνnM,N (ω)
≥ −LMδ. (5.31)

Recall the lower bound (5.28)

E logZM+N (Q, ε) ≥ E log

∫
QεN

∫
Ω
ε/2,δ
M

exp
(∑
j≤n

Hj
M+N

(
σ̃, ω̃

))
dνnM,N (ω)dλnN (σ). (5.32)

We now use Gaussian interpolation to control the term on the right hand side.

Recall the Gaussian fields in (5.3) and (5.9). We define the interpolating Hamiltonian

Ht(ρ) =
∑
j≤n

Hj
1,t(ρ) +Hj

2,t(ρ) +Hj
3,t(ρ). (5.33)

For σ ∈ QεN , ω ∈ Ω
ε/2,δ
M , using the corresponding transformed coordinates (5.21), the

Gaussian processes in (5.33) are given by

Hj
1,t(ρ) =

√
tHj

M,N

(
σ̃
)

+
√

1− tH̃j
M,N (σ), (5.34)

Hj
2,t(ρ) =

∑
i≤M

ωi(j)
(√

tajiZ
j
i (σ̃) +

√
1− tzji (σ)

)
, (5.35)

Hj
3,t(ρ) =

√
t r
(
σ̃, ω̃

)
. (5.36)

The Gaussian process H̃j
M,N is an independent copy of Hj

M,N . Let

ϕ(t) = E log

∫
QεN

∫
Ω
ε/2,δ
M

exp
(
Ht(σ,ω)

)
dνnM,N (ω)dλnN (σ) (5.37)

be the corresponding interpolating Hamiltonian. By Gaussian integration by parts,

ϕ′(t) =
1

2

∑
j,j′≤n

∑
k≤3

E

〈
E
∂Hj

k,t(ρ
1)

∂t
·Hj′

k,t(ρ
1)− E

∂Hj
k,t(ρ

1)

∂t
·Hj′

k,t(ρ
2)

〉
t

(5.38)

where 〈·〉t is the average with respect to the Gibbs measure on QεN × Ω
ε/2,δ
M proportional

to exp(Ht) with respect to the reference measure λnN × νnM,N . We now compute the
covariances of the cavity fields in (5.33).

For all ` ≤ M + 1 and j ≤ n, aj`(ω) → 1 uniformly on Ω
ε/2,δ
M by compactness. The

leading terms of (5.6) and (5.8) do not grow in N , so by continuity the terms (5.35) and
(5.36) in (5.38) vanish in the limit.

We now compute the covariances containing Hj
1,t. The covariance of (5.5) is order N ,

so it is not obvious that the differences of the covariances are small. We resolve this by
using identity (5.25) and applying the mean value theorem. If we let aji (ω

1) := ai(ω
1(j)),
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then

lim
N→∞

∣∣∣E∂Hj
1,t(ρ

1)

∂t
·Hj′

1,t(ρ
2)
∣∣∣

= lim
N→∞

(M +N)
∣∣∣ξ′j,j′( N

M +N
ajM+1(ω1)aj

′

M+1(ω2)Rj,j
′

1,2

)
− ξ′j,j′

( N

M +N
Rj,j

′

1,2

)∣∣∣
≤ lim
N→∞

‖ξ′(1)‖1
∣∣∣∣N(ajM+1(ω1)aj

′

M+1(ω2)− 1
)∣∣∣∣

≤ ‖ξ′(1)‖1δM,

uniformly on QεN × Ω
ε/2,δ
M for all j, j′ ≤ n. In particular, limN→∞ sup0≤t≤1 |ϕ′(t)| ≤ LMδ.

The mean value theorem implies

lim inf
N→∞

E log
ZM+N (Q, ε)∫

Ω
ε/2,δ
M

JM,N dνnM,N (ω)
≥ lim inf

N→∞

(
ϕ(1)− ϕ(0)

)
≥ − lim sup

N→∞
sup

0≤t≤1
|ϕ′(t)| ≥ −LMδ,

finishing the bound of (5.31).

Step 2: We show the second term in (5.30) satisfies

lim inf
N→∞

E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M,N (ω)∫

Ω
ε/2,δ
M

JM,N dνnM (ω)
≥ 0.

This proof is identical to the proof of Lemma 5 in [4]. The key observation is fM,N , the
density of νM,N , converges to fM (ω), the density of νM . Since log(1− x) ≥ −x− x2 for
x < 0.5, for N sufficiently large, we have

log
fM,N (x)

fM (x)
= log bM,N +

M∑
j=1

M +N − 2− j
2

· log
(
1−

x2j
M +N + 1− j

)
− M

2
log

1

2π
+
‖x‖2

2

≥ log bM,N +

M∑
j=1

(
M +N + 1− j

2

)
·
(
−

x2j
M +N + 1− j −

x4j
(M +N + 1− j)2

)

− M

2
log

1

2π
+
‖x‖2

2

≥ log
bM,N

(2π)−M/2
− ‖x‖

4

2N
.

To simplify notation, let fnM (ω) :=
∏
j≤n fM (ω(j)) and fnM,N (ω) :=

∏
j≤n fM,N (ω(j)).

Jensen’s inequality implies

E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M,N (ω)∫

Ω
ε/2,δ
M

JM,N dνnM (ω)
= E log

∫
Ω
ε/2,δ
M

JM,N (ω)fnM (ω)
fnM,N (ω)

fnM (ω) dω∫
Ω
ε/2,δ
M

JM,N (ω)fnM (ω)dω

≥ E

∫
Ω
ε/2,δ
M

JM,N (ω)fnM (ω) log
fnM,N (ω)

fnM (ω) dω∫
Ω
ε/2,δ
M

JM,N (ω)fnM (ω) dω

≥ n log
bM,N

(2π)−M/2
− n(1 + δ)2M2

2N
.

Since bM,N → (2π)−M/2, we have

lim inf
N→∞

E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M,N (ω)∫

Ω
ε/2,δ
M

JM,N dνnM (ω)
≥ lim inf

N→∞
n log

bM,N

(2π)−M/2
− n(1 + δ)2M2

2N
= 0.
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Step 3: By definition of 〈·〉M,N , the last term in (5.30) satisfies

lim inf
N→∞

E log

∫
Ω
ε/2,δ
M

JM,N dν
n
M (ω)

ZM,N (Q, ε)

= lim inf
N→∞

E log
〈∫

Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (τ )

〉
M,N

.

Step 4: Combining the inequalities in Step 1, Step 2, and Step 3 with the factorization
(5.30) finishes the proof.

We now derive a lower bound for the second term appearing in (5.13).

Lemma 5.6. We have

lim
N→∞

−E log
ZN (Q, ε)

ZM,N (Q, ε)
≥ lim
N→∞

−E log
〈

exp
√
My(σ)

〉
M,N

.

Proof. The proof by Gaussian interpolation is standard, see for example [4, Lemma 2].
Consider the interpolating Hamiltonian,

Ht(σ) =
∑
j≤n

(
Hj
M,N (σ) +

√
t
√
MY j(σ) +

√
1− t

√
Myj(σ)

))
,

Recalling (5.4), consider the corresponding interpolating function,

ϕ(t) = E log

∫
QεN

expHt(σ)dλN (σ).

Differentiating ϕ, we have

ϕ′(t) =
1

2
E

〈
E
∂Ht(σ

1)

∂t
·Ht(σ

1)− E∂Ht(ρ
1)

∂t
·Ht(σ

2)

〉
t

where 〈·〉t is the Gibbs average on QεN with respect to the Hamiltonian Ht(σ). The
covariances are given by

E
∂Ht(σ

1)

∂t
·Ht(σ

2) = M
∑
j,j′≤n

(
EY j(σ1)Y j

′
(σ2)− Eyj(σ1)yj

′
(σ2)

)
= O

(M
N

)
,

for any σ1,σ2 ∈ QεN . Integrating ϕ′(t), we have

ϕ(1) = ϕ(0) +O
(M
N

)
.

Notice (5.4) implies ϕ(1) = ZN (Q, ε). Taking N → ∞, and normalizing both sides by
ZM,N (Q, ε) finishes the proof.

The proof of Lemma 5.1 is now immediate.

Proof of Lemma 5.1. Applying Lemma 5.5 and Lemma 5.6 to (5.13), we have the lower
limit of (5.13) is bounded below by

1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (ω)

〉
M,N

− E log
〈

exp
√
My(σ)

〉
M,N

))
− Lδ,

finishing the proof of Lemma 5.1.
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6 Perturbation, Ghirlanda–Guerra identities, and their
consequences

Using the Aizenman–Sims–Starr scheme, we can approximate the lower bound of
the free energy with continuous functionals of the distribution of the overlap array. In
particular, we have the terms

E log
〈∫

Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (ω)

〉
M,N

and E log
〈

exp
√
My(σ)

〉
M,N

,

appearing in Lemma 5.1 are continuous functionals of the distributions of the overlap
array (R`,`′)`,`′≥1 under the Gibbs measure E(GM,N )⊗∞ [23, Theorem 1.3]. Before
computing the value of the lower bound in the limit, we must first understand the
limiting distribution of this overlap. Our main tool is a perturbation of the Gibbs measure
that, in the limit, will force the overlaps to satisfy the matrix version of the Ghirlanda–
Guerra identities [22, Theorem 3] that in turn imply a powerful synchronization property
[22, Theorem 4] in addition to the main consequences of the usual identities [20, Section
3]. These consequences will be summarized at the end of this section.

In this section, we introduce this perturbation of the Hamiltonian. We face two
main obstacles. Firstly, the usual proof of the Ghirlanda–Guerra identities requires the
self-overlaps R(σ,σ) to be constant, which is not immediate in our setting because
self-overlaps are only constrained to lie within an ε window Q. Secondly, we need to find
a suitable perturbation to give us the matrix version of the Ghirlanda–Guerra identities.
Both of these issues are resolved in detail in Section 4 and Section 5 of [22]. They can
be adapted to our setting with a few minor modifications.

6.1 Modified coordinates:

We begin by introducing a transformation of the coordinates that was used to control
the self overlaps in the vector spin models [22, Section 3]. This transformation will fix
the self overlaps allowing us to apply the usual proof of the Ghirlanda–Guerra identities.

We use essentially the same change of variables as defined in [22, Section 3] with
two main differences. Firstly, since we only need to find a bound for positive definite
constraintsQ, we do not need to truncate the constraints like in [22]. Secondly, the spins
σi are bounded by a universal constant in the vector spin models, while the individual
spins in the spherical models have entries bounded by N . In our setting, we will need to
use a slightly different approach to obtain the relevant bounds on the distortion.

Let λmin(Q) > 0 denote the smallest eigenvalue of Q. We first state this transforma-
tion as it appears in Section 3 of [22].

Lemma 6.1. [22, Lemma 4] Let ε < λmin(Q). For each positive definite matrix R such
that ‖R − Q‖∞ ≤ ε, there exists a positive semidefinite matrix A = A(R) such that
ARAT = Q.

Furthermore, we have the bounds

tr
(

(A− I)R(A− I)T
)
≤ L
√
ε (6.1)

and, for any R1, R2 such that both ‖R1 −Q‖∞ ≤ ε and ‖R2 −Q‖∞ ≤ ε,

‖A(R1)−A(R2)‖∞ ≤
L

ε
‖R1 −R2‖∞. (6.2)

In the spherical model, we will also need uniform control on ‖A(R)‖∞. Since our
constant Q is positive definite, this fact follows as an immediate consequence of (6.1)
and (6.2).
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Corollary 6.2. If ε ≤ 1, each matrix A(R) constructed in Lemma 6.1, also satisfies the
bound

‖A(R)‖∞ ≤ L. (6.3)

Proof. We first find a bound on A = A(Q). Since Q is positive definite, by the Cholesky
decomposition, there exists an invertible matrix B such that Q = BBT. By (6.1), we
have

tr
(

(A− I)Q(A− I)T
)

= tr
(

(A− I)BBT(A− I)T
)

= ‖(A− I)B‖2F ≤ L
√
ε.

By norm equivalence, we see

‖(A− I)B‖2 ≤ ‖(A− I)B‖2F ≤ L
√
ε.

Since B is invertible and the ‖ · ‖2 norm is sub-multiplicative we have,

‖A− I‖2 = ‖(A− I)BB−1‖2 ≤ ‖(A− I)B‖2‖B−1‖2.

Therefore, by norm equivalence, if we assume ε ≤ 1,

‖A− I‖∞ ≤
√
n‖A− I‖2 ≤ L

√
n
√
ε‖B−1‖2 ≤ L

√
n‖B−1‖2,

which implies A(Q) is uniformly bounded for all ε ≤ 1.
Furthermore, by (6.2), for any A(R) such that ‖R−Q‖∞ ≤ ε, we have

‖A(R)−A(Q)‖∞ ≤
L

ε
‖R−Q‖∞ ≤ L. (6.4)

Therefore, all matrices A(R) lie within a closed ball around A(Q), which implies that
‖A(R)‖∞ is uniformly bounded for all ε ≤ 1.

Remark: Corollary 6.2 also holds if we assume is Q is only positive semidefinite. The
matrix A(R) has an explicit construction in the proof of Lemma 4 in [22], that only
depended on a subset of the eigenvalues of Q. Therefore, there are finitely many
possible constructions of A(Q), so we can apply the bound (6.4) to each possible values
A(Q) to conclude the uniform bound ‖A(R)‖∞ ≤ L.

Lemma 6.1 implies there exists a coordinate transform that fixes the self overlaps.
For each σ ∈ QεN , suppose Aσ = A(R(σ,σ)) is chosen as in Lemma 6.1. Denote the
modified coordinates by σ̂ = (Aσσi)i≤n := Aσσ and observe the corresponding modified
overlap satisfies

R(σ̂, σ̂) = R(Aσσ,Aσσ) =
1

N

∑
i≤N

(Aσσi)(Aσσi)
T = AR(σ,σ)AT = Q. (6.5)

The bounds (6.1), (6.2), and (6.3) are used to show the modified overlap matrix is
close to the usual overlap. Notice that,

‖R(σ̂`, σ̂`
′
)−R(σ`,σ`

′
)‖∞ ≤ ‖R(σ̂`, σ̂`

′
)−R(σ`, σ̂`

′
)‖∞ + ‖R(σ`, σ̂`

′
)−R(σ`,σ`

′
)‖∞.

To control the first term, by the Cauchy–Schwarz inequality we have,

‖R(σ̂`, σ̂`
′
)−R(σ`, σ̂`

′
)‖∞ ≤ sup

j,j′≤n

1

N

∣∣∣∣ N∑
i=1

Aσσ
`
i (j)Aσσ

`′

i (j′)− σ`i (j)Aσσ
`′

i (j′)

∣∣∣∣
≤ 1

N
sup
j,j′≤n

‖(Aσ − I)σ`(j)‖‖Aσσ
`′(j′)‖

≤ sup
j≤n

‖(Aσ − I)σ`(j)‖√
N

‖Aσ‖∞

≤ ‖Aσ‖∞ tr(R((Aσ − I)σ`, (Aσ − I)σ`))1/2.
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Using observation (6.5), the bounds (6.1) and (6.3) imply

‖R(σ̂`, σ̂`
′
)−R(σ`, σ̂`

′
)‖∞ ≤ Lε1/4.

A similar computation applied to the second term gives a similar bound,

‖R(σ`, σ̂`
′
)−R(σ`,σ`

′
)‖∞ ≤ Lε1/4.

Therefore, the modified overlap only differs from the overlap by a factor of ε1/4,

‖R(σ̂`, σ̂`
′
)−R(σ`,σ`

′
)‖∞ ≤ Lε1/4. (6.6)

The bounds (6.6) and (6.2) will ensure this change of variables will not affect the limiting
values in the perturbed Aizenman–Sims–Starr scheme that we introduce next.

6.2 Perturbed Hamiltonian:

We now define the perturbation that will force the overlaps to satisfy the matrix
version of the Ghirlanda–Guerra identities in [22]. This perturbation is identical to the
one introduced in Section 5 of [22]. We summarize the key steps below.

We denote the family of parameters

θ = (p,m, n1, . . . , nm, ν
1, . . . , νm). (6.7)

For each θ, there exists Gaussian processes hθ(σ) indexed by σ ∈ SnN with mean 0 and
covariance

Cθ`,`′ = Cov
(
hθ(σ

`), hθ(σ
`′)
)

=
∏
j≤m

(
R�p`,`′ν

j , ν j
)nj

. (6.8)

Furthermore, for ν ∈ [−1, 1]n and σ ∈ SnN , the covariance is bounded by n2p(n1+···+nm).
We denote the countable set of parameters with

Θ = {θ | p ≥ 1,m ≥ 1, n1, . . . , nm ≥ 1, ν 1, . . . , νm ∈ ([−1, 1] ∩Q)n}. (6.9)

Let j0 : ([−1, 1] ∩Q)n → N be a one-to-one function. We denote an enumeration of θ ∈ Θ

with
j(θ) = p+ n1 + · · ·+ nm + j0(ν 1) + · · ·+ j0(νm) + 22m. (6.10)

Let (uθ)θ∈Θ be a random sequence of i.i.d. uniform random variables in [1, 2]. We define
the interpolating Hamiltonian,

hN (σ) =
∑
θ∈Θ

2−j(θ)n2(n1+···+nm)uθhθ(σ). (6.11)

The covariance of this process is bounded by 1, and given explicitly by

Cov
(
hN (σ`), hN (σ`

′
)
)

=
∑
θ∈Θ

2−2j(θ)n4(n1+···+nm)u2
θ

∏
j≤m

(
R�p`,`′ν

j , ν j
)nj

. (6.12)

For 1
4 < γ < 1

2 , we denote the sequence sN = Nγ . Recall the modified coordinates
defined in the previous section denoted with σ̂ = (Aσσi)i≤N . We define the perturbed
Hamiltonian

Hpert
N (σ) = HN (σ) + sNhN (σ̂), (6.13)

and the corresponding perturbed partition function

ZpertN (Q, ε) =

∫
QεN

exp
(
Hpert
N (σ) +

∑
i≤N

∑
j≤n

h(j)σi(j)
)
dλnN (σ). (6.14)

Since s2N
N → 0, a straightforward Gaussian interpolation argument shows

lim inf
N→∞

1

N
E logZN (Q, ε) = lim inf

N→∞

1

N
E logZpertN (Q, ε). (6.15)
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6.3 Perturbed Aizenman–Sims–Starr scheme:

The Aizenman–Sims–Starr scheme proved in Section 5 has to be modified slightly to
account for the extra perturbation term in the Hamiltonian. Let 〈·〉pert be the average on
QεN with respect to the Gibbs measure

GpertN (σ) =
exp

(
Hpert
M,N (σ) +

∑
i≤N h(j)σi(j)

)
ZpertM,N (Q, ε)

, (6.16)

where Hpert
M,N (σ) = HM,N (σ) + sNhN (σ̂) and

ZpertN (Q, ε) =

∫
QεN

exp
(
Hpert
M,N (σ) +

∑
i≤N

∑
j≤n

h(j)σi(j)
)
dλnN (σ). (6.17)

The following modification of Lemma 5.1 will be used in the proof of lower bound.

Lemma 6.3. For sN = Nγ , h = ~0 and σ̂ = (Aσσi)i≤N we have

lim inf
N→∞

1

N
E logZpertN ≥ 1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ̂)

)
dνnM (ω)

〉
pert

− E log
〈

exp
√
My(σ̂)

〉
pert

)
− Lδ − Lε1/4. (6.18)

Proof. Only a small modification needs to be made to adapt the proof of Lemma 5.1 to
this setting. We start from the bound in (5.13),

lim inf
N→∞

1

N
E logZpertN (Q, ε) ≥ 1

M
lim inf
N→∞

(
E logZpertM+N (Q, ε)− E logZpertN (Q, ε)

)
. (6.19)

Since the sNhN (σ̂) terms in the perturbed Hamiltonian are independent with all other
Gaussian processes, we can leave the sNhN terms untouched by the interpolations in
the proof of Lemma 5.1. The exact same computations imply that Lemma 5.1 can be
applied in this setting to conclude that (6.19) is bounded below by

1

M
lim inf
N→∞

(
E log

∫
QεN

∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ) +HM,N (σ)

+ sN+MhN+M (Aρρ̃)
)
dνnM (ω) dλnN (σ)

− E log

∫
QεN

exp
(√

My(σ) +HM,N (σ) + sNhN (Aσσ)
)
dλnN (σ)

)
− Lδ, (6.20)

after canceling the normalization terms. The perturbation term sN+MhN+M (Aρρ̃) needs
to appear as sNhN (σ̂) in the normalization (6.17). We can use an interpolation to show
that we can replace perturbation term at the cost of a small error term that vanishes as
N →∞.

Consider the interpolating Hamiltonian

Ht(ρ) =
∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ) +HM,N (σ) +

√
tsN+MhN+M

(
Aρρ̃

)
+
√

1− tsNhN (σ̂),

and the interpolating free energy

ϕ(t) = E log

∫
QεN

∫
Ω
ε/2,δ
M

exp
(
Ht(σ,ω)

)
dνnM,N (ω)dλnN (σ). (6.21)
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Conditionally on uθ, to show that |ϕ′(t)| = o(1) after integrating by parts, we will need to
control∣∣∣∣EdHt(ρ

1)

dt
Ht(ρ

2)

∣∣∣∣ =
∣∣∣s2
N+MEhN+M

(
Aρ1 ρ̃

1)hN+M

(
Aρ2 ρ̃

2)− s2
NEhN (σ̂1)hN (σ̂2)

∣∣∣
=
∣∣∣(N +M)2γg(R(Aρ1 ρ̃

1,Aρ2 ρ̃
2))−N2γg(R(Aσ1σ1,Aσ2σ2))

∣∣∣,
(6.22)

where g is the covariance function of hN given by (6.12). The function g and its derivatives
is bounded on compacts uniformly for all parameters uθ. Using (5.24) and (5.25)

‖R(ρ̃ 1, ρ̃ 2)−R(σ1,σ2)‖∞

= sup
j,j′≤n

∣∣∣∣ (ajM+1(ω1)aj
′

M+1(ω2)N −N)Rj,j
′
(σ1,σ2)

M +N
− MRj,j

′
(σ1,σ2)

M +N
+
MRj,j

′
(ω̃1, ω̃2)

M +N

∣∣∣∣
= O(N−1),

and therefore, by Lemma 6.1,

‖R(Aρ1 ρ̃
1,Aρ2 ρ̃

2)−R(Aσ1(σ1),Aσ2(σ2))‖∞ = ‖Aρ1R(ρ̃1, ρ̃2)AT
ρ2 −Aσ1R(σ1,σ2)AT

σ2‖∞

≤ L‖R(ρ̃1, ρ̃2)−R(σ1,σ2)‖∞
ε

= O((Nε)−1).

Using the Taylor series of g(R(Aρ1 ρ̃
1,Aρ2 ρ̃

2)) around R(Aσ1σ1,Aσ2σ2), we see

(N +M)2γg(R(Aρ1 ρ̃
1,Aρ2 ρ̃

2)) = (N +M)2γg(R(Aσ1σ1,Aσ2σ2)) +O(N−1−2γ/ε).

Since (N +M)2γ −Nγ = O(N−1−2γ) we see (6.22) satifies∣∣∣(N +M)2γg(R(Aρ1 ρ̃
1,Aρ2 ρ̃

2))−N2γg(R(Aσ1σ1,Aσ2σ2))
∣∣∣ = O(N−(1−2γ)/ε).

The above bound holds uniformly for uθ, so combined with the fact γ < 1
2 , means that

we can replace sN+MhN+M (Aρρ̃) with sNhN (σ̂) and the error introduced vanishes as
N →∞. Normalizing both terms in (6.20) by E logZpertM,N (Q, ε) implies

lim inf
N→∞

1

N
E logZpertN ≥ 1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ)

)
dνnM (ω)

〉
pert

− E log
〈

exp
√
My(σ)

〉
pert

)
− Lδ. (6.23)

When we characterize the limiting distribution of the overlap array, we will require the
self overlaps to be constant. Replacing σ with the modified coordinates σ̂ in the cavity
fields achieves this. Starting from (6.23), an interpolation argument will prove that the
cavity fields can be replaced with

E log
〈∫

Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)z
j
i (σ̂)

))
dνnM (ω)

〉
pert

, (6.24)

and

E log
〈

exp
√
My(σ̂)

〉
pert

(6.25)
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at the cost of Lε1/4 error. We only prove (6.24) because the proof of (6.25) is almost
identical.

Consider the Hamiltonian,

Zji (σ; t) =
√
tzji (σ) +

√
1− tzji (σ̂),

and the corresponding interpolating function

ϕ(t) = E log
〈∫

Q
ε/2
M

exp
( ∑
i≤M

∑
j≤n

τi(j)Z
j
i (σ; t)

)
dλnM (τ )

〉
pert

.

Let R̂`,`′ := R(σ̂`, σ̂`
′
), a standard integration by parts computation will show

|ϕ′(t)| ≤
∥∥∥R1,1 �

(
ξ′(R1,1)− ξ′(R̂1,1)

)
−R1,2 �

(
ξ′(R1,2)− ξ′(R̂1,2)

)∥∥∥
∞

≤ n2ξ′(1)
(
‖R1,1 − R̂1,1‖∞ + ‖R1,2 − R̂1,2‖∞

)
≤ Lε1/4

since ‖R1,1 − R̂1,1‖∞ ≤ Lε1/4 by Lemma 6.1 and (6.6). Integrating the quantity above
implies

ϕ(0) ≥ ϕ(1)− sup
t∈[0,1]

|ϕ′(t)| ≥ ϕ(1)− Lε1/4.

The bound for (6.25) is similar to above, and is proved using the interpolation

Y (σ; t) =
√
ty(σ) +

√
1− ty(σ̂).

Applying the bounds (6.24) and (6.25) to (6.23) finishes the proof.

Remark: We assumed ~h = ~0 in the computations above to simplify notation. If ~h was
non-zero, then the lower bound (6.18) in Lemma 6.3 is of the form

1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)
(
zji (σ̂) + h(j)

))
dνnM (ω)

〉
pert

(6.26)

− E log
〈

exp
√
My(σ̂)

〉
pert

)
− Lδ. (6.27)

where 〈·〉pert is the average on QεN with respect to the Gibbs measure with external field,

GN (dσ) ∝ exp
(
Hpert
M,N (σ̂) +

∑
i≤N

∑
j≤n

h(j)σi(j)
)
dλnN (σ). (6.28)

The bound (6.27) follows by a simple modification of the above proof. The external
field can be decoupled into its cavity and non-cavity coordinates immediately,∑

i≤M+N

∑
j≤n

h(j)ρi(j) =
∑
i≤N

∑
j≤n

h(j)σi(j) +
∑
i≤M

∑
j≤n

h(j)ωi(j). (6.29)

The first summation appears in the Gibbs average (6.28) and the second summation
appears in the cavity field term (6.26). However, the external field in the exponent of
(5.28) will appear as ∑

i≤N

∑
j≤n

h(j)ajM+1σi(j) +
∑
i≤M

∑
j≤n

h(j)ajiωi(j) (6.30)
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in Step 1 of the proof of Lemma 5.5. To resolve this issue, notice for ω ∈ Ω
ε/2,δ
M each

term aj`(ω)→ 1 uniformly on Ω
ε/2,δ
M for all ` ≤M . For the M + 1 coefficient, we also have

lim
N→∞

N |ajM+1 − 1| =
(
M

2
− ‖ω(j)‖2

2

)
≤ Mδ

2
.

Therefore, by the Cauchy–Schwarz inequality, for all (σ,ω) ∈ QεN × Ω
ε/2,δ
M and j ≤ n we

have ∥∥∥∥∑
i≤N

h(j)ajM+1σi(j) +
∑
i≤M

h(j)ajiωi(j)−
∑
i≤N

h(j)σi(j)−
∑
i≤M

h(j)ωi(j)

∥∥∥∥
∞

≤ ‖~h‖∞N |ajM+1 − 1|+M‖~h‖∞ sup
i≤M
|aji − 1|

≤ LMδ

for N sufficiently large. Therefore, we can replace the external field in (6.30) with (6.29)
and absorb the LMδ error into the right hand side of (6.23).

6.4 Consequences of the perturbation:

The lower bound (6.27) is a continuous functional of the distribution of the modified
arrays (R(σ̂`, σ̂`

′
))`,`′≥1 under the Gibbs average E(GpertN )⊗∞ [23, Lemma 8], so it suf-

fices to study the distribution of the modified array. To this end, we state matrix version
of the Ghirlanda–Guerra identities and several of its consequences. These are identical
to [22, Section 5] and can now be applied in this setting with no modification.

The entries of the overlaps are in [−1, 1], so the probability distributions on fi-
nite dimensional subsets of the infinite array are tight. Therefore, by the selection
theorem, there exists a subsequence such that all finite dimensional distributions of
(R(σ̂`, σ̂`

′
))`,`′≥1 converge weakly. Furthermore, there exists a non-random sequence

of parameters (uNθ ) (see [22, Lemma 5] and [20, Lemma 3.3]), possibly changing in N ,
such that the limiting array, denoted by (R̂`,`′)`,`′≥1 also satisfies a matrix version of the
Ghirlanda–Guerra identities.

Consider k replica of this limiting array, R̂k = (R̂`,`′)`,`′≤k, we have:

Lemma 6.4. [22, Theorem 3] Given any measurable function ϕ : Rm → R and f = f(Rk),
the array satisfies the Ghirlanda–Guerra identities

Ef(R̂k)C1,k+1 =
1

k
Ef(R̂k)EC1,2 +

1

k

k∑
`=2

Ef(R̂k)C1,`, (6.31)

where
C`,`′ = ϕ

(
(R̂�p`,`′ν

1, ν 1), . . . , (R̂�p`,`′ν
m, νm)

)
. (6.32)

We have two main consequences of Lemma 6.4. If we take ~νi = ei the standard basis
vectors in Rn, (6.31) implies the traces of the overlap array, denoted by (T`,`′)`,`′≥1 =

(tr(R̂`,`′))`,`′≥1, satisfy the usual Ghirlanda–Guerra identities,

Ef(T k)g(T1,k+1) =
1

k
Ef(T k)Eg(T1,2) +

1

k

k∑
`=2

Ef(T k)g(T1,`), g : R→ R. (6.33)

where T k = (T`,`′)`,`′≤k is a sample of k replicas from the array of traces and g is a
measurable function. In particular, we are able to apply all the consequences of the
standard Ghirlanda–Guerra identities to (T`,`′)`,`′≥1.

Furthermore, (6.31) implies a synchronization property for overlap matrices [22, 23]:
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Lemma 6.5. There is a function Φ : R+ → Γn such that

R̂`,`′ = Φ
(
tr(R̂`,`′)

)
a.s. (6.34)

Furthermore, this function is non-decreasing, Φ(x1) ≤ Φ(x2) for all x1 ≤ x2, and Lipshitz
continuous, ‖Φ(x2)− Φ(x1)‖1 ≤ L|x2 − x1|.

Lemma 6.4 and Lemma 6.5 will allow us to characterize the distribution of the limiting
array in the final step of the proof of the lower bound.

7 Lower bound — Cavity computations

We now have the tools to prove the lower limit of the free energy. The remainder of
the proof is standard and almost identical to other spin glass models (see Chapter 3 of
[20] or the proof of the lower bound in [23] and [22]). We will summarize the steps and
reiterate the importance of the synchronization mechanism.

Let Q be a positive definite constraint. Starting from the Aizenman–Sims–Starr
scheme (6.27), we have lim infN→∞ F εN (β,Q) is bounded below by

1

M
lim inf
N→∞

(
E log

〈∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)
(
zji (σ̂) + h(j)

))
dνnM (ω)

〉
pert

(7.1)

− E log
〈

exp
√
My(σ̂)

〉
pert

))
− Lδ − Lε1/4.

From [23, Lemma 8], the averages on (7.1) are continuous functionals of the distribu-
tion of the modified infinite array (R̂N,M

`,`′ )`,`′≥1 := (R(σ̂`, σ̂`
′
))`,`′≥1. To compute this

lower bound explicitly, it suffices to understand the limiting distribution of the array
(R̂N,M

`,`′ )`,`′≥1 under the perturbed Gibbs measure E(GpertN )⊗∞ defined in (6.16) for a

deterministic choice of parameters (uNθ ) such that Lemma 6.4 holds. By the selection
theorem, there exists a subsequence such that(

R̂N,M
`,`′

)
`,`′≥1

d→ (R̂M
`,`′)`,`′≥1.

The diagonal elements of this array are constant, so by Lemma 6.4, the limiting array
(R̂M

`,`′)`,`′ satisfies the generalized Ghirlanda–Guerra identities (6.31) and the synchro-
nization property (6.34). In particular, there exists a function Φ : [0, 1] → Γn such
that

R̂M
`,`′ = Φ(tr(R̂M

`,`′))

almost surely. Recall that Φ is non-decreasing and Lipschitz. This allows us to ap-
proximate its distribution with a random measure generated by the Ruelle probability
cascades.

We begin by characterizing the array (tr(R̂M
`,`′))`,`′≥1 consisting of the traces of the

limiting array. As a consequence of the generalized Ghirlanda–Guerra identities (6.33),
the array of traces also satisfies the usual Ghirlanda–Guerra identities. We denote the
distribution of tr(R̂M

1,2) with

µ(q) = P
(
tr(R̂M

1,2) ≤ q
)
. (7.2)

Following the usual proof of the lower bound (see Chapter 3 of [20]) there exists a
sequence of cumulative distribution functions (µk)k≥1 such that µk → µ in L1,

lim
k→∞

∫ n

0

|µk(q)− µ(q)| dq = 0.
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For each k, we can encode the discrete probability measures with a sequences of
parameters

x−1 = 0<x0 <x1 < . . . < xr = 1

0 = q0 < q1 < . . . < qr = n= tr(Q)
(7.3)

such that
µk(q) = xp for qp ≤ q < qp+1. (7.4)

Let (vα)α∈Nr be the Ruelle probability cascades corresponding to (7.3). Let (α`)`≥1 be
an i.i.d. sample from Nr according to the weights (vα)α∈Nr , it follows that the array

(T k`,`′)`,`′≥1 = (qα`∧α`′ )`,`′≥1

also converges to (tr(R̂M
`,`′))`,`′≥1 by Theorem 2.13 and Theorem 2.17 in [20].

From here, we use the synchronization mechanism to recover a sequence of monotone
paths in Π that describes the distribution of the limiting overlap matrix array (R̂N,M

`,`′ )`,`′≥1.
We define

Qk
`,`′ = Φ(T k`,`′),

and observe (Qk
`,`′)`,`′≥1 converges to the distribution of (R̂M

`,`′)`,`′≥1 because Φ is Lips-
chitz. It also follows that the discrete path

πk(x) = Qk for xk−1 < x ≤ xk for 0 ≤ k ≤ r, π(0) = 0, π(1) = Q. (7.5)

induced by
x−1 = 0< x0 < x1 < . . . < xr = 1

0 =Q0 ≤Q1 ≤ . . . ≤Qr =Q.
(7.6)

where Q` = Φ(q`) for 0 ≤ ` ≤ r is a discretization of the path associated with the limiting
array. To see this, recall (7.2) and define

π(x) := Φ(µ−1(x)) ∈ Π,

where µ−1 : [0, 1]→ R+ is the quantile distribution of µ. Similarly, for discrete µk given
by (7.4), the paths

πk(x) := Φ(µ−1
k (x)) ∈ Π,

are a discrete approximation of π [23, Equation (71)],

d(π, πk) =

∫ 1

0

‖π(x)−πk(x)‖1 dx ≤ n
∫ 1

0

| tr(π(x))−tr(πk(x))| dx = n

∫ 1

0

|µ(x)−µk(x)| dx.

In particular, we have d(π, πk)→ 0 as µk → µ in L1.
Recall the Gaussian processes Zji (α) and Y (α) defined in the (3.5) and (3.6) and

consider the following functionals of the discrete paths associated with the approximating
arrays (Qα`∧α`′ )`,`′≥1:

f1
M (π) =

1

M
E log

∑
α∈Nr

vα

∫
Ω
ε/2,δ
M

exp
( ∑
i≤M

∑
j≤n

ωi(j)
(
Zji (α) + h(j)

))
dνnM (ω), (7.7)

f2
M (π) =

1

M
E log

∑
α∈Nr

vα exp
√
MY (α). (7.8)

The covariances of Zji (α) and zji (σ̂), and Y (α) and y(σ̂) are given by the same functions
of arrays so the difference of the functionals (7.7), (7.8) and the functional appearing in
(7.1) can be approximated by the same continuous bounded function of the array [23,
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Lemma 8]. In summary, by choosing a discretization µk close enough to µ in L1, we can
find a corresponding discrete path π̂M := πk encoded by the sequences (7.6) such that

lim inf
N→∞

F εN (β,Q) ≥ f1
M (π̂M )− f2

M (π̂M )− Lδ − Lε1/4. (7.9)

The lower bound holds for all M , so we can take a sub-sequential limit as M →∞.
However, we cannot apply Lemma 4.1 to compute the lower bound, because the paths
π̂M may change in M . To resolve this, notice that by monotonicity of the paths, π̂M → π̂

along some subsequence [23, Section 7]. Furthermore, there exists a discretization π̂ε of
π̂ such that d(π̂, π̂ε) ≤ ε1/4. This approximation will introduce at most Lε1/4 error by the
Lipschitz continuity of f1

M (π) and f2
M (π), so

lim inf
N→∞

F εN (β,Q) ≥ lim inf
M→∞

(
f1
M (π̂ε)− f2

M (π̂ε)
)
− Lδ − Lε1/4.

These paths are now fixed, so we can now compute its limit as M →∞. Applying Lemma
4.1 to decouple the constraint on Q asymptotically shows

lim inf
M→∞

f1
M (π̂ε) ≥ inf

Λ

1

2

(
tr(ΛQ)− n− log |Λ|+ (Λ−1

0
~h,~h) +

∑
0≤k≤r−1

1

xk
log
|Λk+1|
|Λk|

)
,

where (Λk)0≤k≤r are defined with respect to the sequences (xk)−1≤k≤r and (Qk)0≤k≤r
encoded by π̂ε. By the recursive computations (3.15),

lim
M→∞

f2
M (π̂ε) =

∑
0≤k≤r−1

xk · Sum
(
θ(Qk+1)− θ(Qk)

)
.

Taking ε→ 0 and consequently δ → 0 removes all the error terms, so we conclude

lim
ε→0

lim inf
N→∞

F εN (β,Q) ≥ inf
Λ,π

Pβ,Q(π,Λ). (7.10)
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