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Local bounds for stochastic reaction diffusion
equations
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Abstract

We prove a priori bounds for solutions of stochastic reaction diffusion equations with
super-linear damping in the reaction term. These bounds provide a control on the
supremum of solutions on any compact space-time set which only depends on the
specific realisation of the noise on a slightly larger set and which holds uniformly over
all possible space-time boundary values. This constitutes a space-time version of the
so-called “coming down from infinity” property. Bounds of this type are very useful to
control the large scale behaviour of solutions effectively and can be used, for example,
to construct solutions on the full space even if the driving noise term has no decay
at infinity. Our method shows the interplay of the large scale behaviour, dictated by
the non-linearity, and the small scale oscillations, dictated by the rough driving noise.
As a by-product we show that there is a close relation between the regularity of the
driving noise term and the integrability of solutions.
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1 Introduction

We are interested in reaction diffusion equations of the type

(∂t −∆)u = −f(u) + ζ, (1.1)

over Rt ×Rdx where ζ is an irregular distribution. The example we have in mind is the
case where ζ is a random noise term, such as space-time white noise for d = 1, or a noise
which is “white in time and coloured in space” for d ≥ 2. However, we mention right
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Local bounds for stochastic RDE

away that our main result is purely deterministic and the only information about ζ that
enters is its regularity measured in a suitable space of distributions. The non-linearity f
is assumed to be continuous, with super-linear growth at infinity in u.

It is well-known that if f satisfies the so-called Osgood condition, that is if f satisfies∫∞
1

1
f(u)du <∞, then solutions of the ODE ẋ = −f(x) “come down from infinity in finite

time” (see [17]). This means that if x solves the equation over [0, t], then automatically
x(t) satisfies a bound which depends on t, but holds uniformly over all possible choices of
initial datum x(0) > 0. Similar statements can be derived for reaction diffusion equations
based on a comparison principle (see e.g. [19, Chapter 14]) and also stochastic reaction
diffusion equations (see e.g. [4, Theorem 6.2.3] and [5]). These bounds are powerful
tools to study the long-time behaviour of solutions, both in the deterministic and in the
stochastic setting – see e.g. [20] for a construction of invariant measures for stochastic
PDEs based on such bounds.

Our main result, Theorem 3.1, is a space-time version of such a bound for solutions
of (1.1) with f(u) = u|u|m−1 + g where g is bounded. We consider a continuous functions
u : R×Rd → R and we assume that (1.1) holds for (t, x) in a cylinder1, say

P0 := (0, 1)× (−1, 1)d.

Then for R < 1
2 the L∞ norm ‖u‖PR of u on the unit cylinder minus a parabolic boundary

layer of size R
PR := (R2, 1)× (−(1−R), 1−R)d, (1.2)

satisfies a bound which only depends on R and a distributional norm of ζ restricted to
the original cylinder P0:

‖u‖PR 6 C(α, d,m) max
{
R−

2
m−1 , [ζ]

2
2+(m−1)α

α−2,P0
, ‖g‖ 1

m

}
, (1.3)

where [ζ]α−2,P0
the space-time Hölder norm of order α− 2 on P0 (see (3.8) below for a

precise definition), and ‖g‖ refers to the supremum norm of g.
One possible application of the bound (1.3) is the construction of solutions to (1.1)

on the full space. The standard approach to solve stochastic reaction diffusion equations
[21, 10, 8] consists of writing the equation in its mild form and solving the corresponding
fixed point problem using Picard iterations. However, this approach requires a pathwise
uniform-in-x control on ζ, which typically only holds on bounded domains or if ζ decays
at∞; the interesting case of spatially stationary noise cannot be treated directly in this
way. This problem was overcome in [12] where solutions where first constructed on a
sequence of growing tori and then a compactness argument in a space with weights
was used to pass to the limit. The strong localisation obtained in (1.3) should allow to
significantly simplify this construction.

The estimate (1.3) also has an interesting consequence for the stochastic integrability
of u. In fact, we are mostly interested in the case where ζ is a random distribution

with Gaussian tails such that E
[
eε[ζ]

2
α−2,P0

]
is finite for ε > 0 small enough. The estimate

(1.3) then immediately implies that for any R > 0 and for ε > 0 small enough we get

E
[
e
ε‖u‖2+(m−1)α

PR

]
<∞. So ‖u‖PR has lighter tails than Gaussian. We observe that better

pathwise regularity for ζ leads to better integrability with respect to the probability
distribution for u. In the special case of one-dimensional reaction-diffusion equations
where ζ is a space-time white noise, equation (1.1) equipped with suitable boundary
conditions defines a reversible Markov process, and an explicit expression of the equi-
librium measure is available. In Section 7 we argue that in this case the integrability

1Of course the equation (1.1) has to be interpreted in a distributional sense, so this condition means that it
holds when tested against smooth test-functions which are supported in the cylinder, see (3.1).
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Local bounds for stochastic RDE

we derive from estimate (1.3) coincides with the integrability derived from the explicit
invariant measure.

Finally, our method offers a new perspective on singular SPDE. Our starting point
is Hairer’s notion [11] of subcriticality which in the context of (1.1) states, roughly
speaking, that the small scale behaviour of solutions should be determined by the
interplay of the heat operator and the rough driving noise ζ, while on large scales the
non-linearity becomes dominant. We implement this philosophy by regularising (1.1) on
a length scale L by convolving the equation with a suitable regularising kernel, arriving
at

(∂t −∆)uL = −uL|uL|m−1 + g(u)L + ζL + [uL|uL|m−1 − (u|u|m−1)L], (1.4)

where the subscript L denotes a regularised quantity. The extra term [uL|uL|m−1 −
(u|u|m−1)L] on the right hand side appears because regularisation and application of the
polynomial do not commute. We then use a low regularity version of classical Schauder
theory, Lemma B.1, to control the error term [uL|uL|m−1− (u|u|m−1)L]. Using this bound,
the remaining terms can be treated as in the smooth case (see Theorem 4.4).

The theory of regularity structures is indeed a main motivation for this work. A
priori including the “coming-down from infinitiy” property have been proven for singular
SPDEs, namely the dynamic φ2m

2 [16, 20] and φ4
3 models [15, 2, 9] both on compact

domains and on the full space. The works on φ4
3 all relied on Fourier methods, the

method of paracontrolled distributions, rather than the theory of regularity structures.
The bounds obtained there imply coming down from infinity in time only, in the case of φ4

3

on the full space [9] in a weighted space. The ideas presented here can be extended to
these more singular equations when the low regularity Schauder estimate, Lemma B.1,
is replaced by a suitable version of the Schauder estimates from the theory of regularity
structures. This is the content of our companion paper [14]. There we show that our
method significantly simplifes the technical arguments used in [15, 2, 9] and extend its
scope to construct solutions on the full space without the need for weights.

In the more regular case presented here it would be natural to aim to also include
more general non-linearities, such as functions with faster than polynomial growth (e.g.
the exp(φ) model f(u) = sinh(u), see [1]) or functions of slower than polynomial growth
such as f(u) ∼ u log(u)δ for δ > 2. In this case the commutator term arising in (1.4) turns
into

f(uL)− f(u)L.

Unfortunately, our method crucially on the fact that xf ′(x) . f(x) which holds for
polynomial f , but not for functions with exponential growth. Also, another part of our
argument excludes functions that grow to slow (in the proof of Theorem 3.1 we need
to sum Θ(u) := f(u)

u for u = 2−k, k ∈ N), thus essentially restricting us to polynomial f .
However, in the case of a more general non-linearity f , we implement a more standard
argument based on subtracting the solution w to the linear equation

(∂t −∆)w = ζ,

and we do not pass through the regularised equation (1.4). We then get the property of
“coming down from infinity” for the remainder u−w in Corollary 4.6. For example, when
f(u) = sinh(u), the strong damping implies that u “comes down from infinity” much more

quickly than in the polynomial case – in this case the function R−
2

m−1 in (1.3) turns into
Θ−1(R−2), where Θ(R) = sinh(R)

R . For very weak damping f(u) ∼ u log(u)α+2, we obtain

a slow coming down from infinity, of order exp(R−
2
α ). In fact, this method is even easier

than the method we use for the polynomial case, but it has two significant disadvantages:
On the one hand, it is impossible to measure the fine interplay between regularity of ζ
and integrability of u in this way, because the remainder u− w can never have better
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Local bounds for stochastic RDE

integrability than the Gaussian process w. More importantly, the more sophisticated
method we use in the proof of our main theorem is crucial when dealing with more
singular equations [14].

The rest of the paper is structured as follows: In Section 2 we discuss the elementary
case of the stochastic ODE

dx(t) = −|x(t)|m−1x(t)dt+ dw(t),

in which our strategy and also the interplay between the regularity of the noise and
integrability of the solution becomes apparent in a technically simple context. In
Section 3 we introduce the framework and state the main result. The proof is split into
Sections 4–5: In Section 4 we present a proof of the “space-time coming down from
infinity” in the case where ζ is replaced by a smooth function. The argument relies
on a maximum principle. As a Corollary, as discussed above, we derive the bounds on
the remainder u− w in the case of general, not necessarily polynomial f . In Section 5
the result of Section 4 is applied to the regularised equation 1.4 and combined with
Schauder estimates to bound the commutator concluding the proof of our main result.
In Section 6 we discuss the case of a random distribution ζ given by the time-derivative
of the stochastic integral

∫ t
0
σdW for an adapted bounded process σ = σ(s, x) and a

distribution valued Wiener process W with suitable (spatial) covariance operator. We
show Gaussian estimates for [ζ]α−2 and thus better than Gaussian bounds for u. Finally,
in the special case of space-time white noise in one spatial dimension we show that the
integrability obtained from our method coincides with the integrability of the process in
equilibrium obtained from the explicit invariant measure.

2 The ODE case

Before dealing with equation (1.1) we briefly discuss the case of a (stochastic)
ordinary differential equation

dx(t) = −|x(t)|m−1x(t)dt+ dw(t) (2.1)

for a standard Brownian motion w(t) and for m > 1. It is well known that (2.1) defines a
reversible Markov process with respect to the measure

µ(dx) ∝ exp
(
− 2

m+ 1
|x|m+1

)
dx. (2.2)

We seek to derive optimal bounds on solutions of x(t) directly from the equation (2.1).
As a starting point, consider the case of an ordinary differential equation driven by a

regular noise term η

ẋ(t) = −x(t)|x(t)|m−1 + η(t). (2.3)

A simple ODE comparison Lemma, see [20, Lemma 3.8], shows that for t ∈ (0, 1]

|x(t)| 6 C(m) max
{
t−

1
m−1 ,

(
sup
t∈[0,1]

|η(t)|
) 1
m
}
, (2.4)

uniformly over all choices of initial datum x(0). If η is a Gaussian process, such that the
random variable supt∈[0,1] |η(t)| has finite Gaussian moments, this bound implies that for
ε > 0 small enough

E
[
exp(ε|x(1)|2m)

]
<∞. (2.5)

In particular, in this regular case we get much better integrability than under the measure
(2.2). The following deterministic lemma shows that the difference in integrability is
closely related to the regularity of the driving signal.
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As usual, we define the α-Hölder semi-norm as

[w]α = sup
06s<t61

|w(t)− w(s)|
|t− s|α

.

In an attempt to make this proof as similar as possible to the one of our main result,
Theorem 3.1, we relabel the regularity parameter as α

2 for α ∈ (0, 2).

Lemma 2.1. Let w : [0, 1]→ R be α
2 -Hölder continuous for some α ∈ (0, 2) with w(0) = 0.

For some m > 1 let x : [0, 1]→ R be a continuous solution to

x(t) = x(0)−
∫ t

0

|x(s)|m−1x(s)ds+ w(t). (2.6)

Then for t ∈ (0, 1]

|x(t)| . max
{
t−

1
m−1 , [w]

2
2+(m−1)α
α
2

}
. (2.7)

Here and in the proof we use the symbol . for 6 C(α,m).

If w is a random function for which [w]α has Gaussian tails this estimate yields

E
[
exp

(
ε|x(1)|2+(m−1)α

)]
<∞,

for ε small enough. In the Brownian case where α = 1− the exponent 2 + (m − 1)α

becomes 1 +m− in line with (2.2) and as α approaches 2, the exponent becomes 2m in
line with (2.5).

Proof of Lemma 2.1. The proof follows the same steps, as the proof of the PDE result,
Theorem 3.1, even though most are considerably simpler.

Step 1: Local Schauder estimate.
In this context a “Schauder estimate” is trivially derived, simply by writing for 0 < t1 <

t2 < 1

|x(t2)− x(t1)| =
∣∣∣ ∫ t2

t1

x(s)|x(s)|m−1ds+ w(t2)− w(t1)
∣∣∣

6|t2 − t1|‖x‖m[t1,t2] + |w(t2)− w(t1)|,

which can be restated as

[x]α
2 ,(s−L,s) 6 L1−α2 ‖x‖m(s−L,s) + [w]α

2
. (2.8)

Step 2: Application of a comparison lemma.
We regularise equation (2.6) by convolution. To this end we introduce a smooth non-
negative kernel Ψ: R → R which is compactly supported in [0, 1] with

∫
Ψ = 1 and

set ΨL(t) = 1
LΨ( tL ). For any function f : (0, 1) → R and for t ∈ (L, 1) we define the

regularisation fL(t) = f ∗ΨL(t) =
∫ t
t−L ΨL(t− s)f(s)ds.

Convolving the integral equation (2.6) with ΨL and taking a time derivative leads to

ẋL(t) = −xL(t)|xL(t)|m−1 + ẇL(t) + [·m, (·)L]x(t) for t ∈ (L, 1), (2.9)

where we write [·m, (·)L]x =
[
xL|xL|m−1 − (x|x|m−1)L

]
for the commutator term on the

right hand side.
Now we can apply the ODE comparison result (2.4) to get, for all t ∈ (L, 1]

|xL(t)| . max
{

(t− L)−
1

m−1 ,
(

sup
[L,1]

|ẇL|
) 1
m

,
(

sup
[L,1]

∣∣[·m, (·)L]x
∣∣) 1

m
}
. (2.10)
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Step 3: Bound on the commutator.
To replace xL by x and to bound the commutator term on the right hand side, we use the
information on the regularity of x provided by Step 1. Indeed, using the fact that Ψ has
integral 1, we first see for t ∈ (L, 1],

|(xL − x)(t)| =
∣∣∣ ∫ t

t−L
ΨL(t− s)(x(s)− x(t))ds

∣∣∣
6[x]α

2 ,(t−L,t)

∫ t

t−L
ΨL(t− s)|s− t|α2 ds 6 L

α
2 [x]α

2 ,(t−L,t), (2.11)

where [x]α
2 ,I

= sups6=t∈I
|x(t)−x(s)|
|t−s|

α
2

denotes the α
2 -Hölder semi-norm of x restricted to the

interval I. Similarly we establish a bound on the commutator: for s > L,

|[·m, (·)L]x(s)| . ‖x‖m−1
(s−L,s)L

α
2 [x]α

2 ,(s−L,s), (2.12)

where ‖x‖I is the supremum norm of x restricted to the interval I. To see (2.12) we first
write

|[·m, (·)L]x(s)| =
∣∣∣ ∫ s

s−L
ΨL(s− r)

(
xL(s)|xL(s)|m−1 − x(r)|x(r)|m−1

)
dr
∣∣∣.

Then, using the mean value theorem and |xL(s)| 6 ‖x‖(s−L,s), we have

|xL(s)|xL(s)|m−1 − x(r)|x(r)|m−1| 6 m‖x‖m−1
(s−L,s)|xL(s)− x(r)|.

Finally, using the triangle inequality in the form |xL(s)− x(r)| 6 |xL(s)− x(s)|+ |x(s)−
x(r)| 6 2L

α
2 [x]α

2 ,(s−L,s), we arrive at (2.12).

Step 4: Post processing.
Concerning the noise term on the right hand side of (2.10) we write

sup
t∈[L,1]

|ẇL(t)| = sup
t∈[L,1]

∣∣∣ ∫ t

t−L
Ψ̇L(t− s)

(
w(s)− w(t)

)
ds
∣∣∣ . L

α
2−1[w]α

2
. (2.13)

Combining (2.10), (2.12), (2.8) and (2.13) we arrive at

|xL(t)| . max
{

(t− L)−
1

m−1 ,
(
L
α
2−1[w]α

2

) 1
m

,
(
L‖x‖2m−1

(t−L,t)

) 1
m

,(
L
α
2 ‖x‖m−1

(t−L,t)[w]α
2

]) 1
m
}
, t > L.

Combining this estimate with (2.11) and (2.8) this estimate turns into

|x(t)| . max
{

(t− L)−
1

m−1 ,
(
L
α
2−1[w]α

2

) 1
m

,
(
L‖x‖2m−1

(t−L,t)

) 1
m

,(
L
α
2 ‖x‖m−1

(t−L,t)[w]α
2

]) 1
m

, L‖x‖m, Lα
2 [w]α

2

}
, t > L.

Step 5: Choosing L.
We choose L = µ

‖x‖m−1
(0,1)

for µ = µ(α,m) > 0 small enough and consider t satisfying

(t− L)−
1

m−1 6 1
2‖x‖(0,1). Then applying Young’s inequality xy 6 δxp + C(δ)yp

′
for δ > 0

and p, p′ ∈ (0, 1) with 1
p + 1

p′ = 1 multiple times yields

‖x‖((2m−1+µ)‖x‖1−m
(0,1)

,1) 6 max
{1

2
‖x‖(0,1), C[w]

2
2+(m−1)α
α
2

}
, (2.14)

for some constant C = C(α,m). Note that we can assume that (2m−1 + µ)‖x‖1−m(0,1) < 1,

because else we trivially have a bound on ‖x‖(0,1).
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Step 6: Iterating the result.
We now define a finite set 0 = t0 < . . . < tN = 1 by setting tn+1 − tn = (2m−1 +

µ)‖x‖1−m(tn,1) as long as the time tn+1 defined this way stays strictly less than 1. We
terminate the sequence, once this algorithm would produce a tn+1 ≥ 1 in which case
we set tn+1 = tN = 1. Note that (2m−1 + µ)‖x‖1−m(tn,1) is increasing in n so the sequence
necessarily terminates after finitely many steps.

Applying (2.14) to the equation restarted at the times tn we obtain for n 6 N − 1

‖x‖(tn,1) 6 max
{1

2
‖x‖(tn−1,1), C[w]

2
2+(m−1)α
α
2

}
. (2.15)

We now show that for n < N

‖x‖(tn,1) . max
{
t
− 1
m−1

n+1 , [w]
2

2+(m−1)α
α
2

}
. (2.16)

When the maximum in (2.15) is realised by C[w]
1

1+(m−1)α
2

α
2

, then this follows immediately.

Else, we have for k 6 n, ‖x‖(tn,1) 6 ‖x‖(tk,1)2
k−n and hence

tn+1 =

n∑
k=0

tk+1 − tk = (2m−1 + µ)

n∑
k=0

‖x‖1−m(tk,1)

6(2m−1 + µ)‖x‖1−m(tn,1)

n∑
k=0

2(n−1−k)(1−m) . ‖x‖1−m(tn,1), (2.17)

establishing (2.16). For the end point tN we have either tN−1 > 1
2 or tN − tN−1 > 1

2 . In
the first case we invoke (2.17) for n = N − 1 and in the second case the definition of
tn+1 − tn, in both cases yielding the existence of a constant C such that

‖x‖1−m(tN−1,1) > C ⇒ ‖x‖(tN−1,1) 6 C
1

1−m ,

so (2.16) also holds for n = N . Finally, for intermediate points t ∈ [tn−1, tn] we write

|x(t)| 6 ‖x‖(tn−1,1)

(2.16)

. max
{
t
− 1
m−1

n , [w]
2

2+(m−1)α
α
2

}
6 max

{
t−

1
m−1 , [w]

2
2+(m−1)α
α
2

}
,

so (2.7) follows.

3 Setting and main result

After this short interlude, we now go back to the parabolic equation (1.1). Throughout
the rest of the paper we will say a continuous function u satisfies (1.1) on an open set
B ⊆ Rt ×Rdx if for all smooth functions η which are supported in B we have∫

u(−∂t −∆)η = −
∫
f(u)η +

∫
ζη, (3.1)

where the last integral
∫
ζη should be interpreted as the duality pairing between a distri-

bution and a test function. As usual when dealing with parabolic equations, regularity
will be measured with respect to the metric

d((t, x), (t, x)) = max
{
|x− x|,

√
|t− t|

}
, (3.2)
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Local bounds for stochastic RDE

where | · | denotes the Euclidean norm on Rd. We introduce the parabolic ball of center
z = (x, t) and radius R in this metric d, looking only into the past:

B(z,R) = {z = (t, x) ∈ R×Rd, d(z, z) < R, t < t}. (3.3)

Recall that PR is the cylinder at distance R from P0, as introduced in (1.2). Note that
for R′ < R we have PR′ +B(0, R′ −R) ⊂ PR.

For α ∈ (0, 1), we define the Hölder semi-norm [.]α

[u]α := sup
z 6=z∈R×Rd

|u(z)− u(z)|
d(z, z)α

. (3.4)

We will often deal with local quantities: If B ⊂ R×Rd is a bounded set, then we define
the local α-Hölder semi-norm [.]α,B as in (3.4) with the supremum restricted to z, z ∈ B.
Similarly, ‖.‖ denotes the supremum norm on the whole space R × Rd and ‖.‖B the
supremum norm over B.

To measure distributions in negative Hölder spaces, we introduce a family of mol-
lification operators {(.)L} which are consistent with the scaling given by the heat op-
erator (x, t) = (lx, l2t). For this we fix a non-negative smooth function Ψ with sup-
port in −B(0, 1) with Ψ(z) ∈ [0, 1] for all z and with integral 1 and for L ∈ (0, 1] set
ΨL(x, t) = 1

Ld+2 Ψ
(
x
L ,

t
L2

)
. We define the operator (·)L by convolution with ΨL, noting

that for any L, (·)L is a contraction on with respect to ‖ · ‖. We wish to keep track of the
support of the relevant functions. Since ΨL is compactly support in −B(0, L),

‖hL‖K 6 ‖h‖K+B(0,L) (3.5)

for any bounded set K. Furthermore, we mention the estimate∫
|ΨL(x− y)|d(x, y)αdy 6 Lα, (3.6)

which, as in (2.11) above, immediately implies that for any h ∈ Cα, and for any bounded
set K, we have

‖hL − h‖K 6 Lα sup
z∈K

[h]α,B(z,L). (3.7)

Finally, we define the local Cα−2 semi-norm of a distribution ζ for α− 2 < 0 as

[ζ]α−2,K = sup
L61
‖(ζ)L‖KL2−α. (3.8)

This is a localised version of the Besov norm of Bα−2
∞,∞ as defined, for example in [3,

Theorem 2.34]. Note that, [ζ]α−2,K depends only on the behaviour of the distribution ζ on

the set K +B(0, 1) (i.e. if ζ and ζ̃ coincide when tested against test-functions supported
in this set, then [ζ − ζ̃]α−2,K = 0). Multiplication with a smooth function is a continuous
operation with respect to this norm. We have for any smooth and compactly supported
function η

[ηζ]α−2 6 C(η)[ζ]α−2,supp(η). (3.9)

Estimates of this type are classical and are typically proved by choosing a convenient
mollifying kernel ΨL, see e.g. [18] for estimates based on kernels ΨL satisfying a semi-
group property in L, or [3, Section 2.4] for a proof in the language of Littlewood-Paley
theory. We refer to [18, Lemma A3] for a proof that norms defined for different kernels
are equivalent. More complicated bounds of this type are also essential in our companion
paper [14] and are discussed there at length.

We now state our main result, to be proven in Section 5.
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Local bounds for stochastic RDE

Theorem 3.1. Assume that f(u) = u|u|m−1 + g(u) with m > 1, g bounded and ζ is of
regularity α−2 for some α > 0 in the sense of (3.8). There exists a constant C = C(α,m, d)

such that if u is continuous and solves (1.1) on the cylinder P0 in the sense of of (3.1)
then for all R ∈ (0, 1

2 ),

‖u‖PR 6 C max

{
R−

2
m−1 , [ζ]

2
2+(m−1)α

α−2,P0
, ‖g‖ 1

m

}
. (3.10)

4 Maximum principle

4.1 Assumptions and statement

We prove a space-time version of “coming down from infinity” when there is no
distribution of negative regularity involved, but we allow for a more general non-linearity.
Let u be a C2 function defined for z ∈ R×Rd, for which the following holds point-wise
for z ∈ P0 when u(z) > 0:

(∂t −∆)u 6 −f(u) + g. (4.1)

Assumption 4.1. We make the following assumptions on f and g:

1. g is a bounded function;

2. f is C2 and f ′′(u) > 0 for u > 0;

3. there exists a constant c > 1 such that uf ′(u) > cf(u) for u > 0.

Define Θ(u) = f(u)
u . By (3), Θ is increasing for u > 0.

Theorem 4.2. Let u ∈ C∞ satisfy (4.1) for functions f and g satisfying Assumption 4.1.
There exist λ = λ(d) > 0 and C = C(c, d) such that the following point-wise bound on u
holds for all (t, x) ∈ (0, 1)× (−1, 1)d:

u(x, t) 6 C max
{

Θ−1
( 1

λ2 min{t, (1− xi)2, (1 + xi)2, i = 1...d}

)
, f−1(‖g‖)

}
. (4.2)

Note that min{t, (1− xi)2, (1 + xi)
2, i = 1...d} is exactly the square of the distance to

the boundary of [0, 1] × [−1, 1]d in the parabolic metric. Since a similar bound can be
obtained for −u under a suitable symmetry assumption, this gives a bound on ||u||PR ,
depending only on R.

The condition uf ′(u) > cf(u) with c > 1 is verified exactly for f(u) = u|u|c−1, hence
any function with at least polynomial growth is included in this theorem. For such
monomials, Θ−1 becomes x 7→ x

1
c−1 . For functions with faster growth, the bound is

going to be even stronger. However, some functions with super-linear but not polynomial
growth are not included. For example f(u) = u log(1 + u)α for α > 0. For this example,
uf ′(u)
f(u) = 1 + uα

(1+u) log(1+u) → 1 as u → ∞, so point (3) in Assumption 4.1 is violated.
We can still get a result in that case, under a slightly weaker, but also slightly more
complicated set of assumptions:

Assumption 4.3. We make the following assumptions on f and g:

1. g is a bounded function;

2. f is C2 and uf ′(u) > f(u) and there exist two C2 functions f1 and f2 such that
f = f1f2;

3. f ′′1 > 0 for u > 0;

4. f2 > c > 0 for u > 0 and

f2(u) > max
{ 1(

uf ′1(u)
f1(u) − 1

)2 ,
1

uf ′1(u)
f1(u) − 1

}
. (4.3)

Define now Θ(u) = f1(u)
u . Θ is increasing for u > 0 by condition (4).
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Local bounds for stochastic RDE

In the example where we want to take f1(u) = u log(1 + u)α for α > 0, one can easily

check that in order to satisfy condition (4), f2 should be
(

1+u
αu

)2
log(1+u)2

α and hence

f(u) = (1+u)2

α2u log(1 + u)2+α and Θ−1(x) = exp(x
1
α )− 1. Note that this condition is slightly

more restrictive than the Osgood condition
∫∞

1
1

f(u)du <∞, which would be satisfied by

the function with slightly slower growth f(u) = u log(1 + u)1+α for α > 0. Still we believe
that our condition may be sharp, and that the slightly stronger growth requirement is
due to a genuine difference between the ODE and the PDE setting.

Theorem 4.4. Let u ∈ C∞ solve (4.1) for functions f and g satisfying Assumption 4.3.
There exist λ = λ(d) > 0 and C = C(c, d) such that the following point-wise bound on u,
holds for all (t, x) ∈ (0, 1)× (−1, 1)d:

u(x, t) 6 C max
{

Θ−1
( 1

λ2 min{t, (1− xi)2, (1 + xi)2, i = 1...d}

)
, f−1(‖g‖)

}
. (4.4)

Theorem 4.2 is implied by Theorem 4.4 by choosing f1 = f and f2 = 1
(c−1)2 .

Remark 4.5. The fact that under these more general assumptions Θ is not simply defined
by f(u)/u but instead grows more slowly, is the reason why we do not get an equivalent
of Theorem 3.1, in the case of slower than polynomial growth.

4.2 Bound on the remainder

A first corollary of this result is a “coming down from infinity” result for the singular
equation (1.1) with general non linearity. In the manner of [6], we expand around the
solution to the linear equation: let w solve

(∂t −∆)w = ζ on P0. (4.5)

Below in Section 6 we construct w as the solution on the whole space of the heat equation
with a ζ cut-off outside of P0, for which ‖w‖ is bounded by [ζ]α−2, but this particular
choice is not essential. Define v = u− w. If u is a solution to

(∂t −∆)u(z) = −f(u) + g(u, z) + ζ,

where we assume that f, g satisfies the Assumption 4.3 then v is a solution to

(∂t −∆)v(z) = −f(v + w) + g(v + w, z) (4.6)

on P0. We now use the w-dependent decomposition f(v+w) = f̃(v, z) + g̃(v, z) defined by

f̃(v, z) =

{
f(v + w) if |v(z)| ≥ 2|w(z)|
f
(
v
2

)
else,

and g̃(v, z) = f(v + w) − f̃(v, z). Then, on the one hand by monotonicity of f we have
f̃(v, z) > f( v2 ) and on the other hand ‖g̃‖ 6 f(3‖w‖). The Assumptions 4.3 are then

satisfied with f̃ and g + g̃ and we can apply Theorem 4.4 to get a bound on v, and then
the triangle inequality to get bounds on u. We have

f−1(‖g + g̃‖) 6 f−1(2‖g‖) + 6‖w‖.

A corollary of Theorem 4.4 is then:

Corollary 4.6. Assume ζ ∈ Cα−2 for some α > 0. If u is solution to (1.1) and w is solution
to (4.5), then there exists constants C = C(c, d, α) and λ = λ(d) such that

‖u‖PR 6 C max
{

Θ−1((λR)−2), f−1(2‖g‖), ‖w‖
}
. (4.7)
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Keeping in mind the motivation of stochastic PDEs, where ζ is the white noise,
the drawback of the expansion around the solution to the linear equation is that the
integrability of u that we get out of this result is at best the one of w. As we will see in
Section 7, Theorem 4.4 allows for better estimates than this in the polynomial case.

4.3 Proof of Theorem 4.4

We split the proof of the theorem in two lemmas. Lemma 4.7 states conditions on
a function η that imply a bound on the product uη, and Lemma 4.8 gives a particular
choice of η that satisfies the conditions of Lemma 4.7 and implies Theorem 4.4.

Lemma 4.7. Let η be a continuous function defined on R+ × [−1, 1]d, C2 and strictly
positive on the interior and such that η = 0 on the boundary. Assume that η satisfies the
following inequalities:

(∂t −∆)η

η
+ 2
|Oη|2

η2
6
η

2
f(

1

η
), (4.8)

and

0 6 η 6
1

f−1(‖g‖)
. (4.9)

Then if u solves (4.1) it satisfies the bound uη 6 2.

Proof. Take u satisfying (4.1). Either uη attains its maximum on [0, 1]× [−1, 1]d at some
point z0 ∈ (0, 1]× (−1, 1)d, or it is non-positive, in which case u 6 0 in [0, 1]× {|x| 6 1}.
Assuming this is not the case, we get that at the maximum point, 0 = O(uη)(z0), i.e.

Ou(z0) = −Oη
η
u(z0). (4.10)

If z0 ∈ {1} × (−1, 1)d, then ∂tηu(z0) > 0. Else, ∂tηu(z0) = 0. Additionally, ∆ηu(z0) 6 0

and therefore at the maximum we have

0 6(∂t −∆)(uη) = η(∂t −∆)u+ u(∂t −∆)η − 2Ou · Oη
(4.1);(4.10)

6 − η(f(u)− g) + u
(

(∂t −∆)η + 2
|Oη|2

η

)
.

Then we get from (4.8)

f(u)

u
6
η

2
f
(1

η

)
+
‖g‖
u

6 2 max
{η

2
f
(1

η

)
,
‖g‖
u

}
. (4.11)

If the maximum is realised by the first term, then f(u)
u 6 ηf( 1

η ). Since uf ′(u) > f(u),

u 7→ f(u)
u is increasing, we have that at z0, uη 6 1. If the maximum is realised by the

second term, then it has to be bigger than the first one:

η

2
f
(1

η

)
6
‖g‖
u
⇒ uη 6 2

‖g‖
f( 1

η )
.

We then have that at z0, uη 6 2 under the condition (4.9).

Thus proving a bound on u reduces to choosing a suitable function η satisfying the
inequalities (4.8) and (4.9). Ideally, we would like to take η directly as

η(x, t) = min
{

Θ−1
( 1

λ2t

)−1

,Θ−1
( 1

λ2(1− xi)2

)−1

, i = 1...d, f−1(‖g‖)−1
}
.
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Local bounds for stochastic RDE

This almost works as the individual function within the min do satisfy (4.8). Indeed, for

example η(x, t) = Θ−1
(

1
λ2t

)−1

satisfies

∂tη =
λ2

(λ2t)2

1

Θ′ ◦Θ−1( 1
λ2t )

η2. (4.12)

We use v = Θ−1( 1
λ2t ) 6

1
η and f = f1f2. Given that Θ′(y) =

f ′1(y)
y − f1(y)

y2 , we get

∂tη

η2f( 1
η )

6
λ2

f( 1
η )

Θ(v)2

Θ′(v)
6

λ2

f1(v)f2(v)

Θ(v)2

Θ′(v)
=

λ2

f2(v)

1
vf ′1(v)
f1(v) − 1

.

Applying the condition (4.3) gives a bound on this, independent of v, establishing (4.8).
Unfortunately, taking the min of these functions is not an admitted operation due to
the discontinuity of the derivative at the points where we join two solutions (recall
that while the minimum of two supersolutions is a supersolution the maximum of two
supersolutions in general is not).

In the following Lemma we overcome this problem by replacing the non-smooth
function min{x1, . . . , xn} in the above definition of η by the smooth function

1

x−1
1 + . . . x−1

n

.

Lemma 4.8. For z = (t, x) ∈ (0,∞)× (−1, 1), we define

η(x, t) =
1

Θ−1( 1
λ2t ) +

∑d
i=1

(
Θ−1( 1

λ2(1+xi)2 ) + Θ−1( 1
λ2(1−xi)2 )

)
+ f−1(‖g‖)

, (4.13)

where λ = (28d+ 1)−
1
2 and we continuously extend with the value 0 on the boundary of

the domain. Then η satisfies (4.8) and (4.9) and

1

η
6 (2d+ 1)Θ−1

( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
+ f−1(‖g‖) (4.14)

This choice of η guarantees a bound on u that is related to the distance from the
boundary of [0, 1]× [−1, 1]d, independently of the boundary conditions. Lemmas 4.7 and
4.8 imply directly Theorem 4.4.

Proof. The condition (4.9) is obvious, and so is (4.14). We have a bit more:

(2d+ 1)Θ−1
( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
>

1

η
− f−1(‖g‖) > Θ−1

( 1

λ2 mini{t, (1 + xi)2, (1− xi)2}

)
. (4.15)

We will now check (4.8). For the time variable, we have as in (4.12)

∂tη =
λ2

(λ2t)2

1

Θ′ ◦Θ−1( 1
λ2t )

η2,

and we have already seen that this implies

∂tη

η2f( 1
η )

6 λ2.
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We now consider the spatial derivatives.

∂iη =
1

λ2

( 2

(1 + xi)3

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

− 2

(1− xi)3

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)
η2,

∂2
i η =− 1

λ2

( 6

(1 + xi)4

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

+
6

(1− xi)4

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)
η2

+
1

λ4

( 4

(1 + xi)6

Θ′′ ◦Θ−1( 1
λ2(1+xi)2 )(

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

)3 +
4

(1− xi)6

Θ′′ ◦Θ−1( 1
λ2(1−xi)2 )(

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)3)η2

+
2

λ4

( 2

(1 + xi)3

1

Θ′ ◦Θ−1( 1
λ2(1+xi)2 )

− 2

(1− xi)3

1

Θ′ ◦Θ−1( 1
λ2(1−xi)2 )

)2

η3.

Note that the last line is equal to ∂iη
η2 2η∂iη = 2 (∂iη)2

η , hence it will cancel when com-

puting −∂2
i η + 2 (∂iη)2

η . For the remaining terms, we use v1,i = Θ−1( 1
λ2(1+xi)2 ) and

v2,i = Θ−1( 1
λ2(1−xi)2 ) and we get:

1

λ2f( 1
η )

(
− ∂2

i η

η2
+ 2

(∂iη)2

η3

)
=

6Θ(v1,i)
2

f( 1
η )(

f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)
+

6Θ(v2,i)
2

f( 1
η )(

f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)

− 4Θ(v1,i)
3

f( 1
η )

f ′′(v1,i)
v1,i

− 2
v1,i

(
f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)

(
f ′1(v1,i)
v1,i

− f1(v1,i)

v2
1,i

)3

− 4Θ(v2,i)
3

f( 1
η )

f ′′(v2,i)
v2,i

− 2
v2,i

(
f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)

(
f ′1(v2,i)
v2,i

− f1(v2,i)

v2
2,i

)3
.

Using that f is increasing, the bound (4.15) and f = f1f2, we have that f( 1
η ) >

f1(vj,i)f2(vj,i) for j ∈ {1, 2}. We also know that f ′′2 > 0, hence we get:

1

f( 1
η )

(
− ∂2

i η

η2
+ 2

(∂iη)2

η3

)
6

6λ2

f2(v1,i)(
f ′1(v1,i)v1,i

f1(v1,i)
− 1)

+
6λ2

f2(v2,i)(
f ′1(v2,i)v2,i

f1(v2,i)
− 1)

+
8λ2

f2(v1,i)(
f ′1(v1,i)v1,i

f1(v1,i)
− 1)2

+
8λ2

f2(v2,i)(
f ′1(v2,i)v2,i

f1(v2,i)
− 1)2

.

We conclude this proof by using the condition (4.3) and the value λ = (28d+ 1)−
1
2 .

5 Proof of Theorem 3.1

From now on, f(u) = |u|m−1u. In particular, Theorem 4.2 holds with Θ−1(R−2) =

R−
1

m−1 . The proof relies on two arguments. The small scale oscillations are controlled via
Schauder theory and the large scale behaviour through the maximum principle derived
in Section 4, which applies only to regular objects. A connection between the two is
established via the convolution of the equation with the kernel introduced in Section 3,
which produces a commutator term. The technicality of the proof lies in balancing the
contribution of the commutator and the contribution of the irregular noise.

Throughout the proof, . will denote a bound up to a multiplicative constant which
may change from line to line, but will only depend on d, m and α. We will also write um

as a short-hand for u|u|m−1, as in the case when m is an odd integer.
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Step 1: Local Schauder estimate We claim that for any R > 0, for any k > 2,

[u]α,B(z,R) . sup
L6kR

L2−α‖(1{B(z,kR)}(∂t −∆)u)L‖+ (kR)−α‖u‖B(z,kR)

6(kR)2−α‖u‖mB(z,kR) + (kR)2−α‖g‖+ [ζ]α−2,B(z,kR)

+ (kR)−α‖u‖B(z,kR). (5.1)

We prove this estimate by applying a cut-off functions and using the low-regularity
Schauder estimate given in Lemma B.1. By scaling and translation, it is enough to prove
for some Cα function U ,

[U ]α,B(0, 12 ) . sup
L61

L2−α‖(1{B(0,1)}(∂t −∆)U)L‖+ ‖U‖B(0,1). (5.2)

Indeed, since [u]α,B(0, 1k ) 6 [u]α,B(0, 12 ), if we have (5.2), define U(t, x) = u((kR)2(t −
t0), kR(x− x0)). Then

‖u‖B(z,kR) = ‖U‖B(0,1), [u]α,B(z,R) = (kR)α[U ]α,B(0, 1k )

sup
L6kR

L2−α‖(1{B(z,kR)}(∂t −∆)u)L‖ = sup
L61

L2−α‖(∂t −∆)(U1{B(0,1)})L‖.

We proceed to prove (5.2). Let η be a cut-off function, with value 1 on B(0, 1
2 ) and 0 on

B(0, 1)C , and such that ‖Oη‖ 6 4 and ‖(∆ + ∂t)η‖ 6 4. Then

(∂t −∆)Uη = η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη). (5.3)

By applying Lemma B.1 to Equation (5.3) we get that:

[Uη]α . sup
0<L<1

L2−α‖(η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη))L‖. (5.4)

We apply the triangle inequality and make use of (3.9) to bound each of these terms as
follows.

‖(η(∂t −∆)U)L‖ . ‖(1{B(0,1)}(∂t −∆)U)L‖,
‖(U(∂t + ∆)η)L‖ 6 ‖U(∂t + ∆)η‖ . ‖U‖B(0,1),

‖(O.(UOη))L‖ = sup
z

∫
(UOη)(z − z).OΨL(z)dz

6‖UOη‖‖OΨL‖L1

.
1

L
‖U‖B(0,1).

Since α < 1, we have

sup
0<L<1

L2−α‖(η(∂t −∆)U + U(∂t + ∆)η − 2O.(UOη))L‖

. ‖(1{B(0,1)}(∂t −∆)U)L‖+ ‖U‖B(0,1).

This concludes the proof of (5.2), hence the proof of (5.1).

Step 2: Application of the maximum principle We convolve the equation (1.1) with
ΨL, where L ∈ (0, 1) will be specified later:

(∂t −∆)uL = −(uL)m + gL + ζL + ((uL)m − (um)L) . (5.5)
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The anti-symmetry of u 7→ um and Theorem 4.4 implies that for all 0 < R′ < R < 1
2 ,

‖uL‖PR . max
{( 1

(R−R′)2

) 1
m−1

, ‖g‖ 1
m , ‖ζL‖

1
m

PR′
,(

‖(uL)m − (um)L‖PR′
) 1
m

}
. (5.6)

The goal is now to balance the commutator and the term with the noise. This will be
done by choosing the parameter L appropriately in Step 5 below.

Step 3: Bounds on the commutator We need estimates on the commutator (uL)m −
(um)L. This is obtained as u is Cα, using the moment bounds (3.6) and (3.7).

((uL)m − (um)L)(z) =

∫
ΨL(z − z) (uL(z)m − u(z)m) dz

=

∫
ΨL(z − z)

∫ 1

0

((u)L(z)− u(z))m (λ(u)L(z) + (1− λ)u(z))
m−1

dλdz

6m‖u‖m−1
B(z,L)

∫
ΨL(z − z) (uL(z)− u(z) + u(z)− u(z)) dz

6m‖u‖m−1
B(z,L)

∫
ΨL(z − z)

(
Lα[u]α,B(z,L) + [u]α,B(z,L)d(z, z)α

)
dz

62m‖u‖m−1
B(z,L)L

α[u]α,B(z,L).

Since this is true for all z ∈ PR,

‖(uL)m − (um)L‖PR 6 2m‖u‖m−1
PR−L

sup
z∈PR

[u]α,B(z,L)L
α. (5.7)

Using the local Schauder estimate (5.1) gives, for any k > 2:

‖(uL)m − (um)L‖PR . L2k2−α(‖u‖2m−1
PR−kL

+ ‖u‖m−1
PR−kL

‖g‖)

+ ‖u‖m−1
PR−L

sup
z∈PR

[ζ]α−2,B(z,kR)L
α + k−α‖u‖mPR−kL . (5.8)

Step 4: Boot-strapping We show here that for k, L such that 2(k + 1)L 6 1, with as
before k > 2, and for 1 > R > 2(k + 1)L, we have

‖u‖PR . max
{
R

2
1−m , ‖g‖ 1

m ,
(
[ζ]α−2,P0L

α−2
) 1
m , (L2k2−α)

1
m ‖u‖2−

1
m

P0
,(

L2k2−α) 1
m ‖u‖1−

1
m

P0
‖g‖ 1

m ,
(
‖u‖m−1

P0
[ζ]α−2,P0

Lα
) 1
m , k−

α
m ‖u‖P0

L2k2−α‖u‖mP0
, L2k2−α‖g‖, Lα[ζ]α−2,P0

, k−α‖u‖P0
,
}
. (5.9)

We need to be careful with the sets that are concerned by the norms since our different
estimates always require a bit more space. We use the bound (3.7) and the Schauder
estimate (5.1) with L playing the role of R:

‖u‖PR 6‖uL‖PR + Lα sup
z∈PR

[u]α,B(z,L) (5.10)

6‖uL‖PR−L + L2k2−α(‖u‖mPR−kL + ‖g‖)

+ Lα[ζ]α−2,PR−kL + k−α‖u‖PR−kL .
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Local bounds for stochastic RDE

Defining r = kL allows to apply the bounds (5.6), (5.8) and (3.8). As r > 0, Pr ⊂ P0.

‖uL‖PR−L .max
{

(R− (k + 1)L)
2

1−m , ‖g‖ 1
m , ‖ζL‖

1
m

Pr
, ‖(uL)m − (um)L‖

1
m

Pr

}
. max

{
(R− (k + 1)L)

2
1−m , ‖g‖ 1

m ,
(
[ζ]α−2,P0

Lα−2
) 1
m , (L2k2−α)

1
m ‖u‖2−

1
m

P0
,(

L2k2−α) 1
m ‖u‖1−

1
m

P0
‖g‖ 1

m ,
(
‖u‖m−1

P0
[ζ]α−2,P0

Lα
) 1
m , k−

α
m ‖u‖P0

}
. (5.11)

If we start with R > 2(k + 1)L then R− (k + 1)L > R
2 . Putting together (5.11) and (5.10)

gives (5.9).

Step 5: Choosing L In order to balance the term containing ζ in (5.9), we see that we
should assign the value L = µ

‖u‖
m−1

2
P0

for some µ ∈ (0, 1) to be chosen. Note also that as

µ ∈ (0, 1), (µα−2 ∨ µα) = µα−2. Furthermore, we impose µ2k2−α 6 1. Consequently, (5.9)
becomes

‖u‖PR . max
{
R

2
1−m , (1 + (µ2k2−α)

1
m )‖g‖ 1

m ,
(
µα−2‖u‖(m−1) 2−α

2

P0
[ζ]α−2,P0

) 1
m

,

((µ2k2−α ∨ k−α)
1
m + (µ2k2−α ∨ k−α))‖u‖P0 ,

µ2k2−α‖u‖1−mP0
‖g‖, µα

‖u‖(m−1)α2
P0

[ζ]α−2,P0

}
. (5.12)

Step 6: Identification of terms We claim that the bound above implies that there
exists a positive constants C such that:

‖u‖PR 6 C max
{
R

2
1−m , ‖g‖ 1

m , [ζ]
1

1+(m−1)α
2

α−2,P0
,

1

2C
‖u‖P0

}
. (5.13)

We need to interpolate some of the arguments of the maximum in (5.12) with argu-
ments of our goal (5.13). The first two terms are already in the right form. For the next
one, Young’s inequality gives that for any γ > 0,(

µα−2‖u‖(m−1) 2−α
2

P0
[ζ]α−2,P0

) 1
m

. µ
α−2
m max

{
γ‖u‖P0

, γ
α−2
2

m−1
+α [ζ]

1
1+(m−1)α

2

α−2,P0

}
.

The next term is also in the right form, provided one chooses first k large, and then µ
small. The last two terms can not be dealt with with classical interpolation, since they
involve negative powers of ‖u‖P0

. For the first one, we state that always one of the
following is true, for any γ > 0:

‖u‖−(m−1)
P0

‖g‖ 6 γ‖u‖P0
or ‖u‖mP0

6
1

γ
‖g‖.

The first case gives the last argument of our objective for γ small enough. The second
case gives ‖u‖PR 6 ‖u‖P0

6 ( 1
γ ‖g‖)

1
m . We proceed similarly for the last term. One of the

following is always true:

µα‖u‖−(m−1)α2
P0

[ζ]α−2,P0
6 µαγ‖u‖P0

or ‖u‖1+(m−1)α2
P0

6
1

γ
[ζ]α−2,P0

.

Once again the first case gives the last argument of our objective for µαγ small enough,

and the second case gives ‖u‖PR 6 ‖u‖P0
6 ( 1

γ [ζ]α−2,P0
)

1
1+(m−1)α

2 . We can then choose k
large, µ and γ small to get the desired constant C.
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Local bounds for stochastic RDE

Step 7: Iterating the result The last argument of the maximum (5.13) is greater than
the first one for all R such that

R 6 R1 :=

(
1

2C
‖u‖P0

) 1−m
2

.

Let us check that this is not in contradiction with R1 > 2(k + 1)L. By defintion of L
and R1,

2(k + 1)L = 2(k + 1)
µ

‖u‖
m−1

2

P0

= 2(k + 1)µ(2C)
1−m

2 R1 6 R1 ⇔ 2(k + 1)µ(2C)
1−m

2 6 1.

Since C > 1 and m > 1, it is enough to have 2(k + 1)µ 6 1. This can be done since µ is
chosen after k.

From this point, the result (5.13) can be iterated to get bounds for smaller and smaller
parabolic boxes.

‖u‖P(R+Rn−1)
6 C max

{ 1

2C
‖u‖PRn−1

, ‖g‖ 1
m , [ζ]

1
1+(m−1)α

2

α−2,P0
,

1

R
2

m−1

}
.

Define Rn recursively by

Rn −Rn−1 =

(
1

2C
‖u‖PRn−1

) 1−m
2

=

(
1

2C

‖u‖P0

2n−1

) 1−m
2

. (5.14)

We conclude by summing those increments:

Rn =

n∑
k=1

Rk −Rk−1 =

n∑
k=1

(
1

2C

‖u‖P0

2k−1

) 1−m
2

.

=

(
‖u‖P0

2C

) 1−m
2

n−1∑
k=0

(2
1−m)

2 )k .

(
‖u‖P0

2C

) 1−m
2

(5.15)

The same arguments as in the proof of Lemma 2.1 concludes the proof of Theorem 3.1.

6 Mutiplicative noise

We present one example of equation where our result applies. Let (Ω,F ,Ft,P) be a
filtered probability space and let (W (t, η), t ≥ 0, η ∈ C∞0 (Rd)) be a Brownian motion with
spatial covariance operator K on Ω. We assume that K is given by the convolution with
a function with controlled blow-up near the origin, i.e.

Kφ(x) =

∫
Rd
K(x− x′)φ(x′)dx′, (6.1)

for K ∈ C∞(Rd \ {0}) satisfying

|K(x)| 6 1

|x|λ
, (6.2)

for some λ < 2. If λ > 1 and d = 1, we allow additionally for a Dirac mass in the origin,
in which case (6.1) turns into

Kφ(x) =

∫
R

K(x− x′)φ(x′)dx′ + φ(x). (6.3)
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In other words (W (t, η), t ≥ 0, η ∈ C∞0 (Rd)) is a centred Gaussian process with covari-
ances given either by

EW (t, φ)W (t′, φ′) = (t ∧ t′)
∫
Rd

∫
Rd
φ(x)K(x− x′)φ′(x′)dxdx′

or in the one-dimensional case

EW (t, φ)W (t′, φ′)

= (t ∧ t′)
[ ∫

R

∫
R

φ(x)K(x− x′)φ′(x′)dxdx′ +
∫
R

φ(x)φ′(x)dx
]
.

Let (σ(t, x), t ≥ 0, x ∈ Rd) be a progressively measurable process, with a deterministic
L∞ bound, without loss of generality |σ(t, x)| 6 1. Let u(t, x) be a continuous process
which satisfies the SPDE

du = (∆u− f(u) + g(u))dt+ σdW (6.4)

on P0, with f satisfying the Assumptions 4.3. More precisely, for all η ∈ C∞(R × Rd)
compactly supported in P0 we assume that the following holds almost surely:∫ ∫

u(−∂t −∆)ηdtdx

=

∫ ∫
(−f(u, z) + g(u, z))ηdtdx+

∫ ∫
η(x)σ(t, x)dxdW (t, x), (6.5)

where
∫ ∫

η(x)σ(t, x)dxdW (t, x) should be interpreted as a stochastic integral, as defined
in [8, Chapter 4]. The following lemma shows that the results of our deterministic
analysis are applicable to this stochastic case.

The previous results do not depend on the particular choice of convolution kernel Ψ.
We apply it with Ψ̃ defined as

Ψ̃ = Ψ 1
2
∗Ψ 1

2
, (6.6)

where Ψ is as defined in Section 3. It is clear that Ψ̃ is still non-negative, smooth and
compactly supported in B(0, 1). We still write (·)L for the convolution with ΨL but we
define the Cα−2 norm with respect to Ψ̃

[ζ]α−2,C = sup
0<L61

‖(ζL
2

)L
2
‖CL2−α

Lemma 6.1. We define a family of random variables (ζ(η), η ∈ C∞0 (R×Rd)) by

ζ(η) =

∫ ∫
η(x)σ(t, x)dxdW (t, x).

Then there exists a random distribution ζ̃ on Ω which almost surely takes values in Cα−2

for any α < 2−λ
2 and such that for ε > 0 small enough

E
[
exp

(
ε[ζ̃]2α−2,P0

)]
<∞. (6.7)

Furthermore ζ̃ is a modification of ζ in the sense that for all η ∈ C∞0 (R×Rd) we have
almost surely

ζ̃(η) = ζ(η).

We have the following corollaries.
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Corollary 6.2. Let u solve the SPDE (6.4) in the sense of (6.5) for f and g satisfying
Assumption 4.3. Define Θ(u) = f1(u)

u . Then there exists ε0 = ε0(c, d, α) > 0 such that for
0 < ε 6 ε0,

E

[
exp

(
ε
(

sup
0<R6 1

2

‖u‖PR
Θ−1((λR)−2)

)2
)]

<∞.

Proof. Let ρ be a cut-off outside P0 supported on P0 + B(0, 1), and w be the bounded
solution to

(∂t −∆)w = ρξ,

vanishing for t < −2. From Lemma B.2, ‖w‖ . [ξ]α−2. Using Corollary 4.6 and Lemma 6.1
finishes the proof.

Using Theorem 3.1 in the case f(u) = u|u|m−1, we have the more optimal estimate as
follows:

Corollary 6.3. Let u solve the SPDE (6.4) in the sense of (6.5) where f(u, z) = u|u|m−1

and g is bounded. Then there exists ε0 = ε0(m, d, α) > 0 such that for 0 < ε 6 ε0,

E

[
exp

(
ε
(

sup
0<R6 1

2

R
2

m−1 ‖u‖PR
)2+(m−1)α

)]
<∞.

The proof of Lemma 6.1 relies on the following technical lemma.

Lemma 6.4. The supremum sup0<L61 ‖ζL‖
2p
P0
L2p(2−α) is bounded by the supremum over

dyadic L only,

sup
0<L61

‖ζL‖2pP0
L2p(2−α) . sup

L=2−k61

‖ζL‖2pP0+B(0,1)L
2p(2−α). (6.8)

Proof. By splitting the interval (0, 1) into [2−n, 2−n+1) for n > 1, it is enough to prove
that uniformly in n > 1 and λ ∈ (0, 1)

‖ζ2−n(1+λ)‖ . 2−n(α−2) sup
L=2−k61

L2−α‖ζL‖. (6.9)

This is a direct consequence of Lemma A.1 applied with Υ = Ψ2−n(1+λ) and θ = 2−m for
some integer m large enough.

Proof of Lemma 6.1. This Lemma is a variant of [16, Lemma 9] and we refer the reader
to this Lemma for the construction of a suitable modification of ζ. Here we only show
the exponential integrability bound (6.7), using a similar argument as in [18, Lemma
4.1]. Throughout this proof, . denotes a bound up to a constant that depend only on the
dimension.

In the expansion in series of the exponential, we can exchange expectation and sum:

E
[

exp
(
ε2 sup

0<L61
‖(ζL

2
)L

2
‖2P0

L2(2−α)
)]

=

∞∑
p=0

ε2p
E
[
sup06L61 ‖(ζL

2
)L

2
‖2pP0

L2p(2−α)
]

p!
.

Applying Lemma 6.4, we can bound the supremum over all L by the sum over dyadic L.

E

[
sup

0<L61
‖(ζL

2
)L

2
‖2pP0

L2p(2−α)

]
6

∑
L=2−k6 1

2

E
[
‖(ζL)L‖2pP0+B(0,1)

]
L2p(2−α).

Young’s inequality implies

‖(ζL)L‖P0+B(0,1) 6 ‖ζL‖Lq,P0+B(0,2)‖ΨL‖Lq′ ,
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where the subscript means that the Lq norm of ζL is taken over P0 +B(0, 2) and where

q′ = q−1
q . By scaling, ‖ΨL‖Lq′ . L−

d+2
q . We apply this with q = 2p.

E
[
‖(ζL)L‖2p

]
. E

[
‖ζL‖2pL2p,P0+B(0,2)

]
L−(d+2)

= E

[∫
P0+B(0,2)

ζL(t, x)2pdtdx

]
L−(d+2)

. sup
z∈P0+B(0,2)

E
[
ζL(z)2p

]
L−(d+2).

We bound E
[
ζL(z)2p

]
using the boundedness of σ. Without loss of generality, we show

the computation for z = (0, 0). By the Burkholder-Davies-Gundy inequality,

E
[
ζL(0, 0)2p

]
= E

[(∫
(0,1)

∫
Rd

ΨL(t, x)σ(t, x)dW (t, x)
)2p
]

. pp
(∫ ∫ ∫

ΨL(t, x)ΨL(t, x′)σ(t, x)σ(t, x′)K(x− x′)dtdxdx′
)p

+ 1{d=1,λ>1}p
p
(∫ ∫

ΨL(t, x)2σ(t, x)2dtdx
)p

. pp(L−λ−2 + 1{d=1,λ>1}L
−d−2)p . ppL−p(λ+2).

We get that E
[
‖(ζ)L‖2p

]
L2p(2−α) . ppLp(2−2α−λ)−(d+2). Since 2− 2α− λ > 0, for p large

enough, ∑
L=2−k6 1

2

E
[
‖(ζL)L‖2p

]
L2p(2−α) . pp

1

1− 2−p(2−2α−λ)+(d+2)
.

By Stirling’s formula, for p large enough,

ε2p
E
[
sup06L61 ‖(ζL

2
)L

2
‖2pL2p(2−α)

]
p!

. ε2pep
√
p,

hence for ε < e−2, (6.7) is verified.

7 Invariant measure and optimality

In this last section, we consider a special case of the SPDE considered in Section 6,
namely the case of a one-dimensional reaction-diffusion equation driven by an additive
space-time white noise. We aim to argue that in this case the bound obtained in
Corollary 6.3 is optimal in terms of stochastic integrability.

Let d = 1 and let W be as in Section 6 with covariance operator Kη(x) = η(x). It
is well-known [7, Section 11.2] that if we impose Dirichlet boundary conditions on the
space-interval [−1, 1], then (6.5) defines a reversible Markov process with respect to the
measure

1

Z
exp

(
−
∫ 1

−1

1

m+ 1
|u(x)|m+1dx

)
µ(du), (7.1)

where µ is the law of an appropriately scaled Brownian bridge and Z is a normalisation
constant. From the explicit expression (7.1) one can immediately read off that under this
measure the following expectations are finite for α < 1

2 and ε small enough

E

[
exp

(
ε

∫ 1

−1

|u|m+1dx
)]

<∞ and E
[
exp

(
ε[u]2α

)]
<∞. (7.2)

EJP 25 (2020), paper 17.
Page 20/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP397
http://www.imstat.org/ejp/


Local bounds for stochastic RDE

The following proposition, the proof of which is given in Appendix C, shows how to
interpolate these two estimates to get optimal stochastic integrability for the supremum
norm ‖u‖.
Proposition 7.1. If u ∈ Cα(−1, 1) and um+1 is integrable, then u is bounded and we
have the following interpolation:

(‖u‖(−1,1)

2

)1+α(m+1)

6 max{[u]α‖u‖α(m+1)
m+1 , ‖u‖1+α(m+1)

m+1 }, (7.3)

where ‖.‖m+1 refers to the Lm+1 norm on [−1, 1].

Since 2α < 1,

‖u‖(m+1)α
m+1 [u]α 6 ‖u‖m+1

m+1 + [u]2α.

Hence, (7.2) implies that for ε small,

E
[
exp

(
ε‖u‖1+(m+1)α

)]
<∞. (7.4)

On the other hand, from Theorem 3.1 and from Corollary 6.3, we get

E
[

exp
(
ε(2−

2
m−1 ‖u‖P 1

2

)2+(m−1)α
)]

<∞. (7.5)

Therefore, for α→ 1
2 , the exponents in (7.4) and (7.5) both converge to m+3

2 .

A Technical lemma

For a multi-index m ∈ Nd+1, denote |m| = 2m0 +
∑d
k=1mk the parabolic index, and

m! =
∏d
k=0mk!.

Lemma A.1. Let Υ and Ψ be two C∞ kernels supported in B(0, RΥ) and B(0, RΨ) respec-
tively. Assume that for some odd integer β > 0 and for all multi-indices n with |n| 6 β it
holds

∫
Rd+1 z

nΨ(z) = δn=0. For R > 0 set R := R+RΥ + 2RΨ. Then for θ < θ0(Ψ) and for
any function or distribution ζ

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R). (A.1)

Here and in the proof . means 6 C(Ψ, β).

Proof. Define inductively ω0 = Υ and ωk+1 = ωk − Ψθk ∗ ωk. Since Ψ cancels all
polynomials of degree less than β, one can see from Taylor’s formula that

∫
|ωk −

Ψθk ∗ ωk| . θ(β+1)k sup|n|=β+1,β+2

∫
|∂nωk| and

∫
|∂n(ωk −Ψθk ∗ ωk)| .

∫
|∂nωk|, hence by

induction ∫
|ωk| . Ckθ(β+1)k sup

|n|=β+1,β+2

∫
|∂nΥ|. (A.2)

This bound shows the convergence of the telescopic sum

Υ =

∞∑
k=0

Ψθk ∗ ωk (A.3)

for θ small enough.
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We can then write

‖ζ ∗Υ‖B(0,R) =
∥∥∥ ∞∑
k=0

Ψθk ∗ ωk ∗ ζ
∥∥∥
B(0,R)

6
∞∑
k=0

‖ζ ∗Ψθk‖B(0,R)

∫
|ωk|

6 sup
L=θk61

Lβ‖ζ ∗ΨL‖B(0,R)

∞∑
k=0

Ckθk sup
|n|=β+1,β+2

∫
|∂nΥ|.

The following Lemma shows that the assumption of vanishing moments for Ψ can be
removed from the previous Lemma at the expense of making the domain on the right
hand side yet a bit larger.

Lemma A.2. Let Υ and Ψ be two C∞ kernels supported in B(0, RΥ) and B(0, RΨ) re-
spectively. Let β > 0 be an odd integer and for R > 0 set R := R+RΥ + 5RΨ. Then for
θ < θ0(Ψ) and for any function or distribution ζ

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R). (A.4)

Here and in the proof . means 6 C(Ψ, β).

Proof. For any β > 0, we build from Ψ a kernel Ψ′ that satisfies the hypothesis of
Lemma A.1.

We define An,m =
∫
zn∂mΨ(z)dz and observe that since Ψ is compactly supported

and since
∫

Ψ = 1, we have

An,m =

{
0 if |n| 6 |m|, n 6= m,

(−1)|m|m! if n = m.

Hence for any β > 0, (An,m)|n|,|m|6β is an invertible linear system. By continuity of the
coefficients, for r small enough,

Arn,m =

∫
zn∂m(Ψr ∗Ψ)(z)dz (A.5)

is also an invertible linear system. Hence, there exists coefficients (am)|m|6β such that∑
|m|6β

am

∫
zn∂m(Ψr ∗Ψ)(z)dz =

{
1 if n = 0

0 else.
(A.6)

Set ω(0) =
∑
|m|6β am∂

mΨr and Ψ′ = ω(0) ∗Ψ, then∫
znΨ′(z)dz =

{
1 if n = 0

0 for 0 < |n| < β.
(A.7)

We can therefore apply Lemma A.1 with Ψ′ to get

‖ζ ∗Υ‖B(0,R) . sup
|n|=β+1,β+2

∫
|∂nΥ| sup

L=θk61

Lβ‖ζ ∗ΨL‖B(0,R+RΥ+2RΨ′ )
.

We have also

‖ζ ∗Ψ′L‖B(0,R+RΥ+2RΨ′ )
= ‖ζ ∗ΨL ∗ ω(0)

L ‖B(0,R+RΥ+2RΨ′ )

6 ‖ζ ∗ΨL‖B(0,R+RΥ+5RΨ)

∫
|ω(0)|.
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B Low regularity Schauder estimate

We give here a proof of a low regularity Schauder estimate in our setting.

Lemma B.1. Let u be a function in Cα for a α ∈ (0, 1) and let f := (∂t − ∆)u. There
exists a constant C = C(α, d) such that

[u]α 6 C sup
0<L<∞

L2−α‖fL‖. (B.1)

Proof. Throughout the proof . will denote a bound up to a multiplicative constant,
which may change from line to line, but which always depends only on α and d. Define
N = supL61 L

2−α‖fL‖. Since (·)L denotes the convolution with a smooth kernel, it
commutes with derivatives. We know that for L < 1, for any l ∈ span{1, xi, i ∈ {1, ..., d}},
we have on R×Rd,

(∂t −∆)(uL − l) = fL.

For z0 ∈ B(0, 1), for some S > 0 to be fixed below, define v> as the solution to

(∂t −∆)v> = 1{B(z0,S)}fL, v>|∂B(z0,S) = 0,

where ∂B(z0, S) = {z = (t, x), d(z, z0) = S, t 6 t0} is the parabolic boundary of B(z0, S).
The first interesting inequality we get from standard heat equation estimates [13,
Cor.8.1.5] is

‖v>‖ . S2‖fL‖ 6 S2Lα−2N. (B.2)

Define v< = uL − v>. As (∂t − ∆)v< = 0 on B(z0, S) for any differential operator
D ∈ {∂t, ∂i∂j , i, j ∈ {1, ..., d}},

‖Dv<‖BS
2

. S−2 inf
l
‖uL − l‖B(z0,S),

where l runs over all function spanned by 1 and xi, i ∈ {1, ..., d}. Therefore, for any R < S
2 ,

for the same range of operator D, for a suitably chosen lR ∈ span{1, xi, i ∈ {1, ..., d}},

‖v< − lR‖B(z0,R) 6 R2‖Dv<‖B(z0,R) .

(
R

S

)2

inf
l
‖uL − l‖B(z0,S).

Using the definition of v< and the triangle inequality,

‖uL − lR‖B(z0,R) − ‖v>‖B(z0,R) .

(
R

S

)2

inf
l
‖uL − l‖B(z0,S).

From (B.2),

1

Rα
‖uL − lR‖ .

(
R

S

)2−α
1

Sα
inf
l
‖uL − l‖B(z0,S)

+

(
S

L

)2(
L

R

)α
N. (B.3)

Furthermore, from (3.7) we get,

1

Rα
‖u− lR‖B(z0,R) .

1

Rα
‖uL − lR‖B(z0,R) +

(
L

R

)α
[u]α. (B.4)

Similarly, for any l ∈ span{1, xi, i ∈ {1, ..., d}}

1

Sα
‖uL − l‖B(z0,S) .

1

Sα
‖u− l‖B(z0,S) +

(
L

S

)α
[u]α. (B.5)

EJP 25 (2020), paper 17.
Page 23/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP397
http://www.imstat.org/ejp/


Local bounds for stochastic RDE

Hence for 0 < ε < 1, for L = εR = ε2S, (B.3) and (B.4), (B.5) give:

1

Rα
inf
l
‖u− l‖B(z0,R) . ε2−α

1

Sα
inf
l
‖u− l‖B(z0,S) (B.6)

+(εα + ε2α)[u]α + εα−4N. (B.7)

Note that [u]α ∼ supz0 supS
1
Sα inf l ‖u− l‖B(z0,S), hence

[u]α . (ε2−α + εα + ε2α)[u]α + εα−4N. (B.8)

By making ε small enough, we can absorb [u]α in the right hand side of (B.8) into the left
hand side, concluding the proof of the Schauder estimate (B.1).

Corollary B.2. Let f be compactly supported in B(0, R) and let u be the unique bounded
solution to (∂t −∆)u = f which vanishes for t 6 −R2. Then for α ∈ (0, 1) there exists a
constant C = C(α, d) such that

[u]α 6 C sup
0<L62R

L2−α‖fL‖, (B.9)

and
‖u‖ 6 CRα sup

L62R
L2−α‖fL‖. (B.10)

Proof. By a scaling argument, we can show the result fo R = 1
2 . We first show an

equivalence of kernels by applying Lemma A.2 with β > 1 − α and Υ = ΨL − Ψ∗ΨL−1.
Since f has compact support, we do not need to keep track of the domains. There exists
a θ < 1 and a constant C = C(Ψ, β) such that:

‖fL − (f1)L−1‖ 6 C sup
|n|=β+1,β+2

∫
|∂n(ΨL −Ψ ∗ΨL−1)| sup

S=θk
Sβ‖fS‖

Therefore, we can write

L2−α‖f‖L 6 L2−α‖(f1)L−1‖+ L2−αCL−β−1 sup
S=θk

Sβ‖fS‖

6 L2−α(L− 1)−d−2‖f1‖+ CL1−α−β sup
S61

S2−α‖fS‖

6
(
L2−α(L− 1)−d−2 + CL1−α−β

)
sup
S61

S2−α‖fS‖.

Therefore the supremum can be taken over scales L 6 2R. In the proof of Lemma B.1,
the only place where the hypothesis [u]α <∞ was used was in (B.8). This assumption
can be removed as by regularising the equation first, we have that uniformly for any
τ > 0,

[uτ ]α . sup
L62R

L2−α‖(fτ )L‖ 6 sup
L62R

L2−α‖fL‖,

and as u is continuous, we can pass to the limit for τ → 0.
For (B.10), we write u = uR + (u− uR). For the second term we get

‖u− uR‖ 6 Rα[u]α
(B.9)

. Rα sup
0<L62R

L2−α‖fL‖.

For the smooth part uR we write (∂t −∆)uR = fR we use a standard L∞ estimate for the
heat equation with compactly supported right hand side [13, Thm 8.4.2] and get

‖uR‖ . R2‖fR‖ . Rα sup
0<L62R

L2−α‖fL‖.
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C Proof of Proposition 7.1

For any interval I ⊂ [−1, 1],

|u(t)| − 1

|I|

∣∣∣ ∫
I

u(s)ds
∣∣∣ 6 1

|I|

∫
I

|u(t)− u(s)|ds 6 1

|I|

∫
I

[u]α,I |t− s|α.

If t ∈ I, |t− s|α 6 Iα. We can apply Jensen’s inequality.

|u(t)| 6
(

1

|I|

∫
I

|u(s)|m+1ds

) 1
m+1

+ |I|α[u]α,I .

And since this is true for any I ⊂ [−1, 1], we have for any choice of 0 < x 6 2,

‖u‖J 6 x−
1

m+1 ‖u‖m+1 + xα[u]α,J .

If ‖u‖m+1 > [u]α then choose x = 1 to get ‖u‖(−1,1) 6 2‖u‖m+1. Else choose x =

(‖u‖m+1/[u]α)
m+1

1+α(m+1) 6 1 and get ‖u‖(−1,1) 6 2[u]
1

1+α(m+1)
α ‖u‖

α(m+1)
1+α(m+1)

m+1 . In conclusion,

‖u‖(−1,1) 6 2 max{‖u‖m+1, [u]
1

1+α(m+1)
α ‖u‖

α(m+1)
1+α(m+1)

m+1 }.
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