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Abstract

In this paper we prove a discretized version of Krylov’s estimate for discretized
Itô processes. As applications, we study the weak and strong convergences for
Euler’s approximation of mean-field SDEs with measurable discontinuous and linear
growth coefficients. Moreover, we also show the propagation of chaos for Euler’s
approximation of mean-field SDEs.
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1 Introduction

1.1 Discretized Krylov’s estimate

Let (Ω,F ,P; (Ft)t>0) be a complete filtration probability space and (Wt)t>0 a d-
dimensional standard Ft-Brownian motion. Let ξt be a d-dimensional Itô process with
the following form

ξt = ξ0 +

∫ t

0

bsds+

∫ t

0

σsdWs, (1.1)

where ξ0 ∈ F0, bs(ω) : R+ × Ω → Rd and σs(ω) : R+ × Ω → Rd ⊗ Rd are bounded
measurable Ft-adapted processes with bound κ0. Suppose that for some κ1 > 0,

det(σs(ω)σ∗s (ω)) > κ1, ∀(s, ω) ∈ R+ × Ω,

where the asterisk stands for the transpose of a matrix. It is well known that for any
T > 0 and p > d+ 1, there exists a constant C > 0 depending only on κ0, κ1, p and d such
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that for all f ∈ Lp([0, T ]×Rd),

E

(∫ T

0

f(s, ξs)ds

)
6 C‖f‖Lp([0,T ]×Rd), (1.2)

and for time-independent f ∈ Lp(Rd) with p > d,

E

(∫ T

0

f(ξs)ds

)
6 C‖f‖Lp(Rd). (1.3)

Such estimates were proven by Krylov in [8], which plays a basic role in the study of
SDEs with measurable coefficients (see also [19] for some extensions).

In this paper we are interesting in showing a discretized version of (1.2). More
precisely, for fixed N ∈ N, we introduce the following discretized Itô process: for k ∈ N,

ξNk := ξN0 +

k−1∑
j=0

bj/N +

k−1∑
j=0

σj ·
(
W(j+1)/N −Wj/N

)
= ξNk−1 + bk−1/N + σk−1 ·

(
Wk/N −W(k−1)/N

)
,

(1.4)

where ξN0 ∈ F0, and for each j ∈ N0 := N ∪ {0}, bj ∈ Rd and σj ∈ Rd ⊗ Rd are Fj/N -
measurable random variables. We aim to establish a discretized version of Krylov’s
estimate for ξNk in the following theorem.

Theorem 1.1. Suppose that for some κ0, κ1 > 0 and any j ∈ N0,

|bj |, ‖σj‖ 6 κ0, det(σjσ
∗
j ) > κ1, a.s.

Then for any p > d+1, there is a constant C = C(p, d, κ0, κ1) > 0 such that for any N ∈ N
and fk ∈ Lp(Rd), k = 1, · · · , N ,

1

N

N∑
k=1

Efk(ξNk ) 6 C

(
1

N

N∑
k=1

‖fk‖pLp(Rd)

)1/p

. (1.5)

Moreover, for any p > d, we have

1

N

N∑
k=1

Ef(ξNk ) 6 C‖f‖Lp(Rd). (1.6)

The motivation of studying the above discretized version of Krylov’s estimate comes
from the study of Euler’s scheme for SDEs with measurable discontinuous coefficients.
Let us consider the following general SDE in Rd:

dXt = bt(Xt)dt+ σt(Xt)dWt, X0 = x, (1.7)

where b : R+ × Rd → Rd is a Borel measurable function and σ : R+ × Rd → Rd ⊗ Rd
is a nondegenerate matrix-valued Borel measurable function and continuous in x. If b
and σ are of linear growth in x uniformly in t, it is well known that SDE (1.7) admits a
unique weak solution Xt (cf. [16]). Moreover, if in addition σ is Lipschitz continuous in x
uniformly in t, then SDE (1.7) admits a unique strong solution (cf. [18]). For h ∈ (0, 1),
consider the following Euler approximation of SDE (1.7):

dXh
t = bth(Xh

th
)dt+ σth(Xh

th
)dWt, Xh

0 = x, (1.8)
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where th := [t/h]h, which can be solved recursively as follows:

Xh
t = Xh

th
+ bth(Xh

th
)(t− th) + σth(Xh

th
)(Wt −Wth), (1.9)

or equivalently, for k = 0, 1, 2, · · · and t ∈ [kh, (k + 1)h),

Xh
t = Xh

kh + bkh(Xh
kh)(t− kh) + σkh(Xh

kh)(Wt −Wkh). (1.10)

One would ask whether it holds

lim
h→0

E

(
sup
t∈[0,T ]

|Xh
t −Xt|2

)
= 0, (1.11)

where the key point of proving the above limit is to show an estimate like (1.5). Notice
that if we take h = 1/N , then ξNk := X

1/N
k/N just takes the same form as in (1.4). In fact,

when σ is Hölder continuous, that is, for some α ∈ (0, 1) and c > 0,

‖σt(x)− σt(y)‖ 6 c|x− y|α,

Gyöngy and Krylov [4, Theorem 4.2] proved that Xh
t allows a density ρht (y) with(∫

Rd
|ρht (y)|qdy

)1/q

6 C(t−d/(2p) + 1), p =
q

q − 1
>
d

α
,

where C = C(d, p, κ0, κ1) > 0, see also [9] for two-sides estimates of ρht (x). From this, it
is easy to derive that for any p > d/α,

E

∫ T

0

f(Xh
th

)dt 6 C‖f‖Lp(Rd).

The above discretized Krylov estimate plays a key role in [4] for showing (1.11) when
b is only bounded measurable. However, by (1.6), the above estimate holds for any
p > d without any continuity assumption on σ. In other words, using (1.6) we can drop
the continuity assumption on σ in Theorem 2.8 of [4]. It should be noticed that in the
remarkable paper [4], under very broad assumptions, Gyöngy and Krylov used Euler’s
polygonal approximation to construct the strong solution for SDE (1.7). We mention
that if b satisfies some monotonicity condition and σ is Lipschitz continuous, Gyöngy
[3] showed the rate of almost surely convergence for Euler’s scheme. Up to now, there
are many works devoted to the study of Euler’s approximation for SDEs with irregular
coefficients under various assumptions, for examples, see [5, 10, 13, 1] and references
therein.

1.2 Euler’s scheme for DDSDEs

Another goal of this paper is to use Theorem 1.1 to derive the same results as in [4]
for mean-field (also called McKean-Vlasov or distribution-dependent in literature) SDEs
with measurable discontinuous coefficients b and σ. For β > 0, let Pβ(Rd) be the space
of all probability measures on Rd with finite β-order moment, which is endowed with the
weak convergence topology. Let β > 1. Consider the following distribution-dependent
SDE (abbreviated as DDSDE):

dXt = bt(Xt, µXt)dt+ σt(Xt, µXt)dWt, Law of X0 = ν ∈ Pβ(Rd), (1.12)

where µXt stands for the law of random variable Xt and

b : R+ ×Rd × Pβ(Rd)→ Rd, σ : R+ ×Rd × Pβ(Rd)→ Rd ⊗Rd

are Borel measurable functions. Below we make the following assumptions:
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(Hβ) For each x, µ, t 7→ bt(x, µ) and σt(x, µ) are continuous, and for each t, x, µ 7→ bt(x, µ)

and σt(x, µ) are weakly continuous. Moreover, for some β > 1, there is a constant
c0 > 0 such that for all t > 0, x ∈ Rd and µ ∈ Pβ(Rd),

|bt(x, µ)|+ ‖σt(x, µ)‖ 6 c0(1 + |x|+ µ(| · |β)1/β),

and the following nondegenerate condition holds: there is a constant c1 > 0 such
that for all t > 0, x ∈ Rd and µ ∈ Pβ(Rd),

det(σσ∗)(t, x, µ) > c1. (1.13)

(H′β) Let b̄ and σ̄ be two Borel measurable functions on R+ ×Rd ×Rd with values in Rd

and Rd ⊗Rd, respectively. Assume that for each x, y ∈ Rd, t 7→ b̄t(x, y), σ̄t(x, y) are
continuous, and for some c0 > 0 and all t > 0, x, y ∈ Rd,

|b̄t(x, y)|+ ‖σ̄t(x, y)‖ 6 c0(1 + |x|+ |y|).

Moreover, for any µ ∈ Pβ(Rd), define

bt(x, µ) :=

∫
Rd
b̄t(x, y)µ(dy), σt(x, µ) :=

∫
Rd
σ̄t(x, y)µ(dy),

and we also assume the nondegenerate condition (1.13) holds.

The difference between (Hβ) and (H′β) lies in that in the later case,

µ 7→ bt(x, µ), σt(x, µ)

may be not continuous with respect to the weak convergence. Notice that we do not
make any continuity assumptions on b̄, σ̄ in x, y. We now consider the following Euler
approximation of DDSDE (1.12):

dXh
t = bth

(
Xh
th
, µXhth

)
dt+ σth

(
Xh
th
, µXhth

)
dWt, Law of Xh

0 = ν. (1.14)

The following theorem extends [4, Theorem 2.8] to DDSDEs.

Theorem 1.2. Let β > 2, ν ∈ Pβ(Rd) and one of (Hβ) and (H′β) holds.

(i) Suppose that weak uniqueness holds for DDSDE (1.12). Then there is a unique
weak solution X to DDSDE (1.12) with initial law P◦X−1

0 = ν so that Xh converges
to X in distribution. Moreover, for any bounded measurable f ,

lim
h→0

E

(∫ T

0

f(Xh
th

)dt

)
= E

(∫ T

0

f(Xt)dt

)
. (1.15)

(ii) Suppose that pathwise uniqueness holds for DDSDE (1.12). Then there is a unique
strong solution X to DDSDE (1.12) with initial law P ◦X−1

0 = ν so that

lim
h→0

E

(
sup
t∈[0,T ]

|Xh
t −Xt|2

)
= 0. (1.16)

About the weak and strong uniqueness of DDSDE (1.12), by Girsanov’s theorem,
Li and Min [11] obtained the existence and uniqueness of weak solutions when b is
bounded measurable and σ is nondegenerate and Lipschitz continuous. While under
(Hβ) or (H′β), when σ does not depend on µ and is Lipschitz continuous in x and b is
Lipschitz continuous with respect to µ in case (Hβ), Mishura and Veretennikov [12]
showed the strong uniqueness. In a recent work of the present author with Röckner [14],
we established the well-posedness of DDSDEs (1.12) with singular drifts (see also [6]).
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1.3 Propagation of chaos for Euler’s scheme

Below we fix h ∈ (0, 1) and let {ξj , j ∈ N} be a sequence of i.i.d. random variables
in Rd with common distribution ν, and {W j , j ∈ N} a sequence of independent d-
dimensional standard Brownian motions. For numerical reason, we also consider the
following interacting particle approximation for Euler’s scheme: for fixed N ∈ N, we
define for j = 1, · · · , N ,

dXN,j
t = bth

(
XN,j
th

, µNth
)
dt+ σth

(
XN,j
th

, µNth
)
dW j

t , X
N,j
0 = ξj , (1.17)

where µNt is the empirical measure of {XN,j
t , j = 1, · · · , N} defined by

µNt :=
1

N

N∑
i=1

δXN,it
,

where δx stands for the Dirac measure concentrated at point x. In the following, for
simplicity we only consider the case (H′β), and in this case we have

bth
(
XN,j
th

, µNth
)

=
1

N

N∑
i=1

b̄th
(
XN,j
th

, XN,i
th

)
and

σth
(
XN,j
th

, µNth
)

=
1

N

N∑
i=1

σ̄th
(
XN,j
th

, XN,i
th

)
.

For j ∈ N, let X̄j
t be the unique solution of the following Euler scheme:

dX̄j
t = bth

(
X̄j
th
, µX̄jth

)
dt+ σth

(
X̄j
th
, µX̄jth

)
dW j

t , X̄j
0 = ξj . (1.18)

Clearly, {X̄j
· , j ∈ N} is a family of i.i.d. stochastic processes with common distribution as

Xh
· .

Theorem 1.3. Let β > 2 amd ν ∈ Pβ(Rd). Suppose that (H′β) holds and the initial law ν

has a density φ ∈ Lqloc(Rd) for some q > 1. Then it holds that for any T > 0,

lim
N→∞

sup
j=1,··· ,N

E

(
sup
t∈[0,T ]

|XN,j
t − X̄j

t |2
)

= 0. (1.19)

For fixed h ∈ (0, 1) and N ∈ N, we use Eh and PN to denote the operators of Euler’s
scheme and the interacting particle approximation to DDSDE (1.12), respectively:

Eh : X → Xh, PN : X → (XN,j)j=1,··· ,N .

From the construction, it is easy to see that

EhPN = PNEh.

Under (H′β), suppose that the pathwise uniqueness holds for DDSDE (1.12). Then by
Theorems 1.2 and 1.3, we have

lim
h→0

lim
N→∞

E‖PNEhX −X‖2C([0,T ]) = 0.

Here an open question is to show that

lim
N→∞

lim
h→0

E‖PNEhX −X‖2C([0,T ]) = 0 (1.20)
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and
lim
N→∞

E‖PNE1/NX −X‖2C([0,T ]) = 0.

Obviously, the obstacle is to show the following propagation of chaos under (H′β):

lim
N→∞

E‖PNX −X‖2C([0,T ]) = 0. (1.21)

When b and σ are Lipschitz continuous in x and µ, the above propagation of chaos (1.21)
was proven by Sznitman [17]. Recently, Bao and Huang [2] proved (1.20) by Zvonkin’s
transformation when b and σ are Hölder continuous in x and Lipschitz continuous in µ
with respect to the Wasserstein distance. However, under (H′β), proving (1.21) seems to
be a challenge problem.

1.4 Plan and notations

This paper is organized as follows: In Section 2, we prove Theorem 1.1. In Section 3,
we prove Theorem 1.2. In Section 4, we prove Theorem 1.3. Throughout this paper we
use the following conventions:

• For a matrix σ, we use ‖σ‖ to denote the Hilbert-Schmidt norm of σ.

• For R > 0, we use BR to denote the ball in Rd with radius R and center 0.

• We use A . B (resp. �) to denote A 6 CB (resp. C−1B 6 A 6 CB) for some
unimportant constant C > 1, whose dependence on the parameters can be traced
from the context.

2 Proof of Theorem 1.1

To prove (1.5), we shall use the classical Krylov estimate (1.2). For this we need to
embed ξNk into a continuous Itô process. For k ∈ N0 and t ∈ [k/N, (k + 1)/N), we define

b̃Nt := bk, σ̃Nt := σk

and

XN
t := ξNk + b̃Nt · (t− k/N) + σ̃Nt ·

(
Wt −Wk/N

)
.

In this way, it is easy to see that XN
k/N = ξNk and

XN
t = ξN0 +

∫ t

0

b̃Ns ds+

∫ t

0

σ̃Ns dWs, t > 0.

Similarly, let (fk)k∈N be a family of nonnegative measurable functions in Rd. If we define

f̃N (t, x) :=

∞∑
k=0

fk+1(x)1t∈[k/N,(k+1)/N), t > 0, x ∈ Rd,

then we can write
1

N

N∑
k=1

Efk(ξNk ) =

∫ 1

0

Ef̃N
(
t,XN

tN+

)
dt,

where tN+ := ([tN ] + 1)/N . Moreover, by (1.2) we have for any p > d+ 1 and y ∈ Rd,

∫ 1

0

E
(
f̃N (t,XN

t + y)
)

dt 6 C‖f̃N‖Lp([0,1]×Rd) = C

(
1

N

N∑
k=1

‖fk‖pp

)1/p

. (2.1)
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At this moment, we can not immediately conclude (1.5) because we need to treat
Ef̃N

(
t,XN

tN+

)
rather than Ef̃N (t,XN

t ). Notice that for t ∈ [(k − 1)/N, k/N),

ξNk = XN
t + bk−1 · `kt + σk−1 ·

(
Wk/N −Wt

)
,

where
`kt := k/N − t.

Since Wk/N −Wt is independent with XN
t and bk−1, σk−1, by the change of variable we

have

1

N
Efk(ξNk ) = E

∫ k/N

(k−1)/N

fk
(
XN
t + bk−1`

k
t + σk−1 · (Wk/N −Wt)

)
dt

=

∫ k/N

(k−1)/N

∫
Rd
Efk

(
XN
t + bk−1`

k
t + σk−1y

)
ϕ`kt (y)dydt

=

∫ k/N

(k−1)/N

E

∫
Rd
fk
(
XN
t + y

)
ϕ`kt

(
σ−1
k−1(y − bk−1`

k
t )
)
|detσ−1

k−1|dydt,

where ϕt(y) := (2πt)−d/2e−
|y|2
2t is the distributional density of Brownian motion Wt.

Noting that
|detσ−1

k−1| = 1/|detσk−1| 6 1/
√
κ1,

and

|σ−1
k−1(y − bk−1`

k
t )|2 > c0|y − bk−1`

k
t |2 > c0

2

(
|y|2 − 2|bk−1|2|`kt |2

)
,

we have for λ =
√
c0/2 and t ∈ [(k − 1)/N, k/N),

ϕ`kt (σ−1
k−1(y − bk−1`

k
s)) 6 ec0κ

2
0|`

k
t |/2ϕ`kt (λy) 6 ec0κ

2
0/(2N)ϕ`kt (λy).

Hence, for γ = p
d+1 and q = γ

γ−1 , by Hölder’s inequality we further have

1

N

N∑
k=1

Efk(ξNk ) .
∫
Rd

(
N∑
k=1

∫ k/N

(k−1)/N

Efk
(
XN
t + y

)
ϕ`kt (λy)dt

)
dy

6
∫
Rd

(
N∑
k=1

∫ k/N

(k−1)/N

Efk
(
XN
t + y

)γ
dt

) 1
γ
(

N∑
k=1

∫ k/N

(k−1)/N

|ϕ`kt (λy)|qdt

) 1
q

dy

=

∫
Rd

(
E

∫ 1

0

f̃N (t,XN
t + y)γdt

) 1
γ

(
N

∫ 1/N

0

|ϕt(λy)|qdt

) 1
q

dy.

By Krylov’s estimate (2.1), we obtain

1

N

N∑
k=1

Efk(ξNk ) . ‖f̃N‖Lγ(d+1)([0,1]×Rd)

∫
Rd

(
N

∫ 1/N

0

|ϕt(λy)|qdt

) 1
q

dy. (2.2)

Note that by the change of variable and the scaling property of ϕt(y),

∫
Rd

(
N

∫ 1/N

0

ϕt(λy)qdt

) 1
q

dy =

∫
Rd

(∫ 1

0

ϕt/N (λy)qdt

) 1
q

dy

= Nd/2

∫
Rd

(∫ 1

0

ϕt(λy
√
N)qdt

) 1
q

dy = λ−d
∫
Rd

(∫ 1

0

ϕt(y)qdt

) 1
q

dy.
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The desired estimate (1.5) now follows by (2.2) and showing that the last integral is
finite. In fact, by the change of variable, for some c = c(d, q) > 0,

∫
Rd

(∫ 1

0

ϕt(y)qdt

) 1
q

dy = c

∫
Rd
|y|

2
q−d

(∫ ∞
|y|2

t
dq
2 −2e−tdt

) 1
q

dy

.
∫
B1

|y|
2
q−d

(∫ ∞
0

t
dq
2 −2e−tdt

) 1
q

dy +

∫
Bc1

|y|
2
q−d

(∫ ∞
|y|2

t
dq
2 −2e−tdt

) 1
q

dy <∞.

As for (1.6) it follows by using (1.3) in the above proof.

Remark 2.1. When bj and σj are nonrandom, the estimate (1.5) is trivial because ξNk ,
k = 1, · · · , N are Gaussian random variables. However, in the general case, we only
know that ξNk is a nondegenerate semimartingale with respect to Fk/N . Here it is quite
interesting to give a purely probabilistic proof for Theorem 1.1. It should be noticed that
(1.2) can be derived from (1.5) by discretized approximation.

3 Proof of Theorem 1.2

The following lemma is standard by Burkholder and Gronwall’s inequalities.

Lemma 3.1. Let β > 2. Under (Hβ) or (H′β), for any T > 0, there is a constant C > 0

such that for all h ∈ (0, 1),

E

(
sup
t∈[0,T ]

|Xh
t |β
)

6 C(1 + E|X0|β), (3.1)

and for any s, t ∈ [0, T ],

E|Xh
s −Xh

t |β 6 C|s− t|β/2. (3.2)

Proof. Note that

Xh
t = X0 +

∫ t

0

bsh
(
Xh
sh
, µXhsh

)
ds+

∫ t

0

σsh
(
Xh
sh
, µXhsh

)
dWs. (3.3)

For simplicity, we let |Xh
t |∗ := sups∈[0,t] |Xh

s |. By Burkholder’s inequality and the linear
growth of b and σ, we have

E|Xh
t |β∗ . E|X0|β +

∫ t

0

(
1 + E|Xh

sh
|β + µXhsh

(| · |β)
)

ds

. E|X0|β +

∫ t

0

(
1 + E|Xh

s |β∗
)

ds,

which implies (3.1) by Gronwall’s inequality. As for (3.2), it follows by (3.3) and (3.1).

Let Qh be the law of (Xh
· ,W·) in product space C × C, where C is the continuous

functions space. By (3.2), since β > 2, (Qh)h∈(0,1) is tight. Therefore, by Prokhorov’s
theorem, there are a subsequence hn → 0 as n→∞ and Q ∈ P(C× C) so that

Qn := Qhn → Q weakly.

Now, by Skorokhod’s representation theorem, there are a probability space (Ω̃, F̃ , P̃)

and random variables (X̃n, W̃n) and (X̃, W̃ ) defined on it such that

(X̃n, W̃n)→ (X̃, W̃ ), P̃− a.s. (3.4)

EJP 24 (2019), paper 131.
Page 8/17

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP390
http://www.imstat.org/ejp/


A discretized version of Krylov’s estimate and its applications

and

P̃ ◦ (X̃n, W̃n)−1 = Qn = P ◦ (Xhn ,W )−1, P̃ ◦ (X̃, W̃ )−1 = Q. (3.5)

Define F̃n
t := σ(W̃n

s , X̃
n
s ; s 6 t). Notice that

P(Wt −Ws ∈ ·|Fs) = P(Wt −Ws ∈ ·)⇒ P̃(W̃n
t − W̃n

s ∈ ·|F̃n
s ) = P̃(W̃n

t − W̃n
s ∈ ·).

In other words, W̃n
t is an F̃n

t -Brownian motion. Thus, by (3.3) and (3.5) we have

X̃n
t = X̃n

0 +

∫ t

0

bsn
(
X̃n
sn , µX̃nsn

)
ds+

∫ t

0

σsn
(
X̃n
sn , µX̃nsn

)
dW̃n

s , (3.6)

where sn := shn = [s/hn]hn.
To take the limits, we recall a result of Skorokhod [15, p.32].

Lemma 3.2. Let {fn(t), t > 0, n ∈ N} be a sequence of measurable F̃n
t -adapted pro-

cesses. Suppose that

(i) For every T, ε > 0, there is an Mε > 0 such that for all n,

P̃

{
sup
t∈[0,T ]

|fn(t)| > Mε

}
6 ε.

(ii) For each t, fn(t)→ f(t) in probability as n→∞, and for every T, ε > 0,

lim
δ→0

lim
n→∞

sup
|t−s|6δ,s,t∈[0,T ]

P̃(|fn(t)− fn(s)| > ε) = 0,

or for every T, ε > 0,

lim
n→∞

P̃

{
sup
t∈[0,T ]

|fn(t)− f(t)| > ε

}
= 0.

Then it holds that for every T > 0,∫ T

0

fn(t)dW̃n
t
n→∞→

∫ T

0

f(t)dW̃t, in probability.

Using the above lemma we can show the following limits by the discretized Krylov
estimate.

Lemma 3.3. Under (Hβ) or (H′β), for each t > 0, the following limits hold∫ t

0

bsn

(
X̃n
sn , µX̃nsn

)
ds→

∫ t

0

b
(
s, X̃s, µX̃s

)
ds, (3.7)∫ t

0

σsn

(
X̃n
sn , µX̃nsn

)
dW̃n

s →
∫ t

0

σ
(
s, X̃s, µX̃s

)
dW̃s (3.8)

in probability as n→ 0,

Proof. We only prove (3.8) in case (H′β). The others are similar and easier. Below for
simplicity we shall drop the tilde. In case (H′β), define

σ̄εt (x, y) := σ̄t(·, ·) ∗ %ε(x, y), σεt (x, µ) :=

∫
Rd
σ̄εt (x, y)µ(dy),
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A discretized version of Krylov’s estimate and its applications

where (%ε)ε∈(0,1) is a family of mollifiers in Rd ×Rd with support in Bε × Bε. For fixed
ε ∈ (0, 1), since σ̄ε is continuous and linear growth in x, y, by (3.4) and Lemma 3.2 (see
also [4, Lemma 3.1]), it is easy to see that for fixed ε ∈ (0, 1),∫ t

0

σεsn

(
Xn
sn , µXnsn

)
dWn

s →
∫ t

0

σεs (Xs, µXs) dWs

in probability as n→∞. Indeed, it suffices to prove the following two limits:∫ t

0

σεsn

(
Xn
sn , µXnsn

)
dWn

s →
∫ t

0

σεs
(
Xn
s , µXns

)
dWn

s , (3.9)∫ t

0

σεs
(
Xn
s , µXns

)
dWn

s →
∫ t

0

σεs (Xs, µXs) dWs (3.10)

in probability as n →∞. Limit (3.9) follows by (3.2) and the continuity of t 7→ σεt (x, y),
and limit (3.10) follows by (3.4) and Lemma 3.2. Therefore, it remains to prove that∫ t

0

σεsn

(
Xn
sn , µXnsn

)
dWn

s →
∫ t

0

σsn

(
Xn
sn , µXnsn

)
dWn

s (3.11)

in probability uniformly in n as ε→ 0, and∫ t

0

σεs (Xs, µXs) dWs →
∫ t

0

σs (Xs, µXs) dWs in probability as ε→ 0. (3.12)

We only show (3.11). By Itô’s isometric formula, we have

E

∣∣∣∣∫ t

0

[
σεsn

(
Xn
sn , µXnsn

)
− σsn

(
Xn
sn , µXnsn

)]
dWn

s

∣∣∣∣2
=

∫ t

0

E

∥∥∥σεsn (Xn
sn , µXnsn

)
− σsn

(
Xn
sn , µXnsn

)∥∥∥2

ds

6
∫ t

0

E
∥∥σ̄εsn (Xn

sn , X̄
n
sn

)
− σ̄sn

(
Xn
sn , X̄

n
sn

)∥∥2
ds =: Jnε (t),

where X̄n
· is an independent copy of Xn

· . More precisely, (Xn, X̄n) solves the following
equation (the Euler scheme):{

dXn
t = btn

(
Xn
tn , µXntn

)
dt+ σtn

(
Xn
tn , µXntn

)
dWt,

dX̄n
t = btn

(
X̄n
tn , µX̄ntn

)
dt+ σtn

(
X̄n
tn , µX̄ntn

)
dW̄t,

(3.13)

where (W,Xn
0 ) and (W̄ , X̄n

0 ) are independent and have the same distributions. In order
to use the discretized Krylov estimate to show

lim
ε→0

sup
n
Jnε (t) = 0, (3.14)

we use a standard stopping time technique. For R > 0, we define a stopping time

τnR := inf{t > 0 : |Xn
t | ∨ |X̄n

t | > R},

and make the following decomposition:

Jnε (t) =

∫ t

0

E
(
1t>τnR‖σ̄sn(Xn

sn , X̄
n
sn)− σ̄εsn(Xn

sn , X̄
n
sn)‖2

)
ds

+

∫ t

0

E
(
1t<τnR‖σ̄sn(Xn

sn , X̄
n
sn)− σ̄εsn(Xn

sn , X̄
n
sn)‖2

)
ds =: Jn,1R,ε(t) + Jn,2R,ε(t).
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For Jn,1R,ε(t), by Hölder’s inequality, (3.1) and Chebyshev’s inequality we have

Jn,1R,ε(t) 6 P(t > τnR)
β−2
β

(∫ t

0

E‖σ̄sn(Xn
sn , X̄

n
sn)− σ̄εsn(Xn

sn , X̄
n
sn)‖βds

) 2
β

.

(
E
(

supt∈[0,T ] |Xn
t | ∨ |X̄n

t |β
)

Rβ

) β−2
β (∫ t

0

(
1 + E|Xn

sn |
β + E|X̄n

sn |
β
)

ds

) 2
β

6 C/Rβ−2 → 0 uniformly in n, ε as R→∞. (3.15)

For Jn,2R,ε(t), we can not directly use the discretized Krylov estimate to conclude

lim
ε→0

sup
n
Jn,2R,ε(t) = 0, ∀t, R > 0, (3.16)

because the Euler scheme (3.13) has unbounded coefficients. We need to cutoff the
coefficients. Let χR(x) be a nonnegative smooth cutoff function with χR(x) = 1 for
|x| < R and χR(x) = 0 for |x| > R+ 1. Define

bn,Rt (x) := bt(x, µXntn )χR(x), σn,Rt (x) := σt(xχR(x), µXntn ).

Let (Xn,R, X̄n,R) solve the following equation in R2d (no coupling):{
dXn,R

t = bn,Rtn
(
Xn,R
tn

)
dt+ σn,Rtn

(
Xn,R
tn

)
dWt, X

n,R
0 = Xn

0 ,

dX̄n,R
t = bn,Rtn

(
X̄n,R
tn

)
dt+ σn,Rtn

(
X̄n,R
tn

)
dW̄t, X̄

n,R
0 = X̄n

0 ,

where (W,Xn
0 ) and (W̄ , X̄n

0 ) are the same as in (3.13). From the construction, one sees
that

(Xn
t , X̄

n
t ) = (Xn,R

t , X̄n,R
t ), t < τnR. (3.17)

Moreover, it is easy to see that (Xn,R, X̄n,R) is a discretized R2d-valued Itô process with
coefficients satisfying the assumptions in Theorem 1.1 uniformly in n. Thus, for fixed
R > 0 and any p > 2d+ 1, by (3.17) and (1.5) we have

Jn,2R,ε(t) =

∫ t

0

E
(
1t<τnR‖σ̄sn(Xn,R

sn , X̄n,R
sn )− σ̄εsn(Xn,R

sn , X̄n,R
sn )‖2

)
ds

6
∫ t

0

E
(
1|Xn,Rsn |∨|X̄

n,R
sn |<R

‖σ̄sn(Xn,R
sn , X̄n,R

sn )− σ̄εsn(Xn,R
sn , X̄n,R

sn )‖2
)

ds

=

∫ hn

0

E
(
1|Xn0 |∨|X̄n0 |<R‖σ̄0(Xn

0 , X̄
n
0 )− σ̄ε0(Xn

0 , X̄
n
0 )‖2

)
ds

+

∫ t

hn

E
(
1|Xn,Rsn |∨|X̄

n,R
sn |<R

‖σ̄sn(Xn,R
sn , X̄n,R

sn )− σ̄εsn(Xn,R
sn , X̄n,R

sn )‖2
)

ds

. hn +

(∫ t

0

‖σ̄sn(·, ·)− σ̄εsn(·, ·)‖2pL2p(BR×BR)ds

)1/p

. hn +

(∫ t

0

‖σ̄s(·, ·)− σ̄εs(·, ·)‖
2p
L2p(BR×BR)ds

)1/p

+

(∫ t

0

‖σ̄s(·, ·)− σ̄sn(·, ·)‖2pL2p(BR+1×BR+1)ds

)1/p

=: hn + IRε (t) +KR
n (t),
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A discretized version of Krylov’s estimate and its applications

where hn ↓ 0 as n→∞, and the constants contained in the above . may depend on R.
By the dominated convergence theorem and the continuity of t 7→ σt(x, y), we have

lim
ε→∞

IRε (t) = 0, lim
n→∞

KR
n (t) = 0,

which in turn implies the limit (3.16), and so (3.14). Thus we complete the proof.

Proof of (i) of Theorem 1.2. Using the above lemma and taking limits for both sides of
(3.6), one finds that (X̃, W̃ ) solves the following SDE:

X̃t = X̃0 +

∫ t

0

bs

(
X̃s, µX̃s

)
ds+

∫ t

0

σs

(
X̃s, µX̃s

)
dW̃s. (3.18)

Since the weak uniqueness holds for DDSDE (1.12), any weak solutions have the same
distribution. Hence, the whole Euler approximation Xh weakly converges to the unique
weak solution X in distribution. As for (1.15), it follows by Krylov’s estimate (1.5).

In order to show (ii) of Theorem 1.2, we need the following important observation
due to [4, Lemma 1.1], which has the root of Yamada-Watanabe’s theorem.

Lemma 3.4. Let (Zh)h∈(0,1) be a family of random elements in a Polish space (E, ρ).
Then Zh converges in probability to an E-valued random element as h → 0 if and
only if for every pair of subsequences (Zhn , Z`n)n∈N, there exists a subsubsequence
(Zhn(k)

, Z`n(k)
)k∈N that converges in distribution to a random element in E × E, which

supports on the diagonal {(x, y) ∈ E × E : x = y}.

Proof. We use a contradiction method. Suppose that Zh does not converge in probability.
Then there is an ε > 0 such that for any δ > 0, there are hδ and `δ less than δ such that

P
{
ρ(Zhδ , Z`δ) > ε

}
> ε.

Thus we can choose two subsequences Zhn and Z`n such that

inf
n∈N

P
{
ρ(Zhn , Z`n) > ε

}
> ε. (3.19)

By the assumption, there is a subsubsequence (Zhn(k)
, Z`n(k)

)k∈N such that

lim
k→∞

E
(
ρ(Zhn(k)

, Z`n(k)
) ∧ 1

)
= 0.

Clearly, this is contradict with (3.19). By the completeness of (E, ρ), we complete the
proof.

Now we are in a position to give

Proof of (ii) of Theorem 1.2. Let Xhn and X`n be two subsequences of Xh. Clearly, by
Lemma 3.1, the law of (Xhn , X`n ,W )n∈N in C×C×C is tight. As above, by Skorokhod’s
embedding theorem, there exist subsequences n(k), a probability space (Ω̃, F̃ , P̃), carry-
ing stochastic processes (X̃hn(k) , X̂`n(k) , W̃ k) and (X̃, X̂, W̃ ) such that(

X̃hn(k) , X̂`n(k) , W̃ k
)
k→∞→

(
X̃, X̂, W̃

)
P̃− a.s.

and for each k ∈ N,

P̃ ◦
(
X̃hn(k) , X̂`n(k) , W̃ k

)−1

= P ◦
(
Xhn(k) , X`n(k) ,W

)−1
.
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As in showing (3.18), one sees that (X̃, W̃ ) and (X̂, W̃ ) are two solutions of DDSDE (1.12)
defined on the same probability space with the same initial values X̃0 = X̂0. The latter
point is due to

P̃(X̃0 = X̂0) > lim
k→∞

P̃
(
X̃
hn(k)

0 = X̂
`n(k)

0

)
= lim
k→∞

P
(
X
hn(k)

0 = X
`n(k)

0

)
= 1.

By the pathwise uniqueness, we obtain X̃ = X̂. Thus by Lemma 3.4, we conclude that
Xh converges in probability to a random elelment X in C as h ↓ 0. Using Lemma 3.3,
one sees that X is a solution of DDSDE (1.12). Moreover, the convergence (1.16) follows
by (3.1) and the dominated convergence theorem.

4 Propagation of chaos: Proof of Theorem 1.3

In this section we use induction to prove Theorem 1.3. First of all, we prepare several
lemmas. The following lemma is the same as in Lemma 3.1. We omit the details.

Lemma 4.1. Let β > 2. Under (H′β), for any T > 0, there is a constant C > 0 such that
for all N ∈ N and j = 1, · · · , N ,

E

(
sup
t∈[0,T ]

|XN,j
t |β

)
6 C(1 + E|ξj |β). (4.1)

Lemma 4.2. Let β > 2. Under (H′β), for any T > 0, there is a constant C > 0 such that
for all N ∈ N and j = 1, · · · , N ,

E

∣∣∣∣∣ 1

N

N∑
i=1

(
bt(X̄

j
t , µX̄jt

)− b̄t(X̄j
t , X̄

i
t)
)∣∣∣∣∣

2

6 C/N. (4.2)

Proof. Notice that
µX̄1

t
= · · · = µX̄Nt .

For simplicity, if we define

b̂t(x, y) := bt(x, µX̄1
t
)− b̄t(x, y),

then the left hand side of (4.2) denoted by I can be written as

I = E

∣∣∣∣∣ 1

N

N∑
i=1

b̂t(X̄
j
t , X̄

i
t)

∣∣∣∣∣
2

=
1

N2

N∑
i,k=1

E〈b̂t(X̄j
t , X̄

i
t), b̂t(X̄

j
t , X̄

k
t )〉.

For i 6= j 6= k, since X̄i
t , X̄

j
t , X̄

k
t are independent, we have

E〈b̂t(X̄j
t , X̄

i
t), b̂t(X̄

j
t , X̄

k
t )〉 = 0.

Therefore, by Lemma 4.1 and the linear growth of b̂, we get

I 6
2

N2

N∑
i=1

E|b̂t(X̄j
t , X̄

i
t)|2 6

C

N2

N∑
i=1

(
1 + E|X̄j

t |2 + E|X̄i
t |2
)
6 C/N.

The proof is complete.

Lemma 4.3. Let m ∈ N and f : R+ ×Rd ×Rd → Rm be a locally bounded measurable
function with

|ft(x, y)| 6 c(1 + |x|+ |y|).
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Let fεt (x, y) := ft(·) ∗ %ε(x, y) be the mollifying approximation. Define

A f
N,ε(t) := sup

j=1,··· ,N
E

∫ t

0

|fsh − fεsh |
2(XN,j

sh
, µNsh)ds, (4.3)

Ā f
N,ε(t) := sup

j=1,··· ,N
E

∫ t

0

|fsh − fεsh |
2(X̄j

sh
, µX̄jsh

)ds. (4.4)

Let β > 2 and ν ∈ Pβ(Rd). Suppose that (H′β) holds and the initial law ν has a density

φ ∈ Lqloc(Rd) for some q > 1. Then we have

lim
ε→0

lim
N→∞

A f
N,ε(t) = 0, lim

ε→0
lim
N→∞

Ā f
N,ε(t) = 0.

Proof. We only prove the first limit. For simplicity, we write

F εt (x, y) := |ft(x, y)− fεt (x, y)|2.

Without loss of generality we assume t > h. Notice that

E

∫ t

0

F εsh(XN,j
sh

, µNsh)ds = hEF ε0 (XN,j
0 , µN0 ) + E

∫ t

h

F εsh(XN,j
sh

, µNsh)ds =: I
(1)
N,ε + I

(2)
N,ε.

For I(1)
N,ε, by the assumption we have

I
(1)
N,ε =

h

N

N∑
i=1

EF ε0 (XN,j
0 , XN,i

0 ) =
h

N

∫
Rd
F ε0 (x, x)φ(x)dx

+
h(N − 1)

N

∫
R2d

F ε0 (x, y)φ(x)φ(y)dxdy =: I
(11)
N,ε + I

(12)
N,ε .

For I(11)
N,ε , we clearly have

lim
N→∞

sup
ε
I

(11)
N,ε 6 lim

N→∞

C

N

∫
Rd

(1 + |x|2)φ(x)dx = 0.

For I(12)
N,ε , if we define BR := {(x, y) ∈ Rd × Rd : |x| < R, |y| < R} for R > 0, then by

Hölder’s inequality and φ ∈ Lqloc(Rd),

I
(12)
N,ε 6

∫
BR

F ε0 (x, y)φ(x)φ(y)dxdy +

∫
BcR

F ε0 (x, y)φ(x)φ(y)dxdy

.

(∫
BR

|F ε0 (x, y)|
q
q−1 dxdy

) q−1
q
(∫

BR

|φ(x)φ(y)|qdxdy

) 1
q

+

∫
BcR

(1 + |x|2 + |y|2)φ(x)φ(y)dxdy

.

(∫
BR

|F ε0 (x, y)|
q
q−1 dxdy

) q−1
q

(∫
|x|<R

|φ(x)|qdx

) 2
q

+
1

Rβ−2

∫
R2d

(1 + |x|β + |y|β)φ(x)φ(y)dxdy,

where the constant C contained in . is independent of N,R, ε. By the dominated
convergence theorem and first letting ε→ 0 and then R→∞, we get

lim
ε→0

sup
N
I

(12)
N,ε = 0.
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Next we treat I(2)
N,ε and write

I
(2)
N,ε =

1

N
E

∫ t

h

F εsh(XN,1
sh

, XN,1
sh

)ds+
1

N

N∑
i=2

E

∫ t

h

F εsh(XN,1
sh

, XN,i
sh

)ds =: I
(21)
N,ε + I

(22)
N,ε .

For I(21)
N,ε , by (4.1) we have

lim
N→∞

sup
ε
I

(21)
N,ε 6 lim

N→∞

C

N
E

∫ t

h

(1 + |XN,1
sh
|2)ds = 0.

For I(22)
N,ε , using the discretized Krylov estimate and the same argument as in showing

(3.7), we also have
lim
ε→0

sup
N
I

(22)
N,ε = 0.

Combining the above limits, we complete the proof.

Now we can give

Proof of Theorem 1.3. By equations (1.17), (1.18) and Burkholder’s inequality we have

E

(
sup
s∈[0,t]

|XN,j
s − X̄j

s |2
)

. E
∫ t

0

∣∣∣bsh(XN,j
sh

, µNsh
)
− bsh

(
X̄j
sh
, µX̄jsh

)∣∣∣2ds

+ E

∫ t

0

∣∣∣σsh(XN,j
sh

, µNsh
)
− σsh

(
X̄j
sh
, µX̄jsh

)∣∣∣2ds

. E
∫ t

0

∣∣∣bεsh(XN,j
sh

, µNsh
)
− bεsh

(
X̄j
sh
, µX̄jsh

)∣∣∣2ds

+ E

∫ t

0

∣∣∣σεsh(XN,j
sh

, µNsh
)
− σεsh

(
X̄j
sh
, µX̄jsh

)∣∣∣2ds

+ A b
N,ε(t) + Ā b

N,ε(t) + A σ
N,ε(t) + Ā σ

N,ε(t),

where for f = b and σ, fεt (x, y) := ft ∗%ε(x, y) is the mollifying approximation, and A f
N,ε(t)

and Ā f
N,ε(t) are defined by (4.3) and (4.4), respectively. Now let χR(x, y) be a smooth

function with

χR(x, y) = 1, |x| ∨ |y| < R, χR(x, y) = 0, |x| ∨ |y| > R+ 1.

For f = b or σ, by definition, we make the following decomposition:

E

∫ t

0

∣∣∣fεsh(XN,j
sh

, µNsh
)
− fεsh

(
X̄j
sh
, µX̄jsh

)∣∣∣2ds

= E

∫ t

0

∣∣∣ 1

N

N∑
i=1

(
fεsh
(
XN,j
sh

, XN,i
sh

)
− fεsh

(
X̄j
sh
, X̄i

sh

)) ∣∣∣2dt

6
1

N

N∑
i=1

E

∫ t

0

∣∣fεsh(XN,j
sh

, XN,i
sh

)
− fεsh

(
X̄j
sh
, X̄i

sh

)∣∣2 dt

6
2

N

N∑
i=1

E

∫ t

0

∣∣fε,Rsh (XN,j
sh

, XN,i
sh

)
− fε,Rsh

(
X̄j
sh
, X̄i

sh

)∣∣2 ds

+
4

N

N∑
i=1

E

∫ t

0

|fεsh − f
ε,R
sh
|2
(
XN,j
sh

, XN,i
sh

)
ds

+
4

N

N∑
i=1

E

∫ t

0

|fεsh − f
ε,R
sh
|2
(
X̄j
sh
, X̄i

sh

)
ds

=:
1

N

N∑
i=1

(
I i,j
R,1 + I i,j

R,2 + I i,j
R,3

)
,
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where

fε,Rsh (x, y) = fεsh(x, y)χR(x, y).

Since f is linear growth, we have

|fεsh − f
ε,R
sh
|(x, y) 6 C(1|x|>R + 1|y|>R)(1 + |x|+ |y|).

Thus, by Hölder’s inequality and (4.1), we have

I i,j
R,2 . E

∫ t

0

(
1|XN,jsh

|>R + 1|XN,ish
|>R

) (
1 + |XN,j

sh
|2 + |XN,i

sh
|2
)
ds

.
∫ t

0

(
P(|XN,j

sh
| > R) + P(|XN,i

sh
| > R)

) β−2
β ds

.
1

Rβ−2

∫ t

0

(
E|XN,j

sh
|β + E|XN,i

sh
|β
) β−2

β ds 6
C

Rβ−2
,

where C is independent of N, i, j. Similarly, we also have

sup
i,j

I i,j
R,3 6

C

Rβ−2
.

For I i,j
R,1, since (x, y) 7→ fε,Rsh (x, y) is Lipschitz continuous, we have

I i,j
R,1 6 Cε,RE

∫ t

0

(
|XN,j

sh
− X̄j

sh
|2 + |XN,i

sh
− X̄i

sh
|2
)

ds.

Combining the above calculations we obtain that for all t ∈ [0, T ],

sup
j=1,··· ,N

E

(
sup
s∈[0,t]

|XN,j
s − X̄j

s |2
)

6 Cε,R sup
j=1,··· ,N

∫ t

0

E|XN,j
sh
− X̄j

sh
|2ds

+ C/Rβ−2 + A b
N,ε(t) + Ā b

N,ε(t) + A σ
N,ε(t) + Ā σ

N,ε(t). (4.5)

Here we can not use Gronwall’s inequality to derive the result. We shall use the induction
method to show (1.19). First of all, we clearly have

E|XN,j
0 − X̄j

0 |2 = 0.

Suppose that we have shown that for some k ∈ N0,

lim
N→∞

sup
j=1,··· ,N

E

(
sup

s∈[0,kh]

|XN,j
s − X̄j

s |2
)

= 0.

Then for t = (k + 1)h, by (4.5) we have

sup
j=1,··· ,N

E

(
sup
s∈[0,t]

|XN,j
s − X̄j

s |2
)

6 Cε,Rh sup
j=1,··· ,N

k∑
m=0

E|XN,j
mh − X̄

j
mh|

2

+ C/Rβ−2 + A b
N,ε(t) + Ā b

N,ε(t) + A σ
N,ε(t) + Ā σ

N,ε(t).

Firstly letting N → ∞ and then R → ∞ and ε → 0, by Lemma 4.3 and the induction
hypothesis, we obtain (1.19) for t = (k + 1)h. The proof is complete.
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