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Abstract

In this paper, we established a quadratic transportation cost inequality under the
uniform/maximum norm for solutions of stochastic heat equations driven by multi-
plicative space-time white noise. The proof is based on a new inequality we obtained
for the moments of the stochastic convolution with respect to space-time white noise,
which is of independent interest. The solutions of such stochastic partial differential
equations are typically not semimartingales on the state space.
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1 Introduction

Let (X, d) be a metric space equipped with the Borel σ-field B. Let µ, ν be two Borel
probability measures on the metric space (X, d). The Lp-Wasserstein distance between µ
and ν is defined as

Wp(ν, µ) :=

[
inf

∫∫
X×X

d(x, y)p π(dx,dy)

] 1
p

,

where the infimum is taken over all probability measures π on the product space X ×X
with marginals µ and ν. Recall that the Kullback information (or relative entropy) of ν
with respect to µ is defined by

H(ν|µ) :=

∫
X

log

(
dν

dµ

)
dν,

if ν is absolutely continuous with respect to µ, and +∞ otherwise.
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Talagrand inequalities for SPDEs

Definition 1.1. We say that the measure µ satisfies the Lp-transportation cost inequality
if there exists a constant C > 0 such that for all probability measures ν,

Wp(ν, µ) ≤
√

2CH(ν|µ). (1.1)

The case p = 2 is referred to as the quadratic transportation cost inequality.

Transportation cost inequalities have close connections with other functional inequal-
ities, e.g. Poincare inequalities, logarithmic Sobolev inequalities, and they also imply the
concentration of measure phenomenon.

For a measurable subset A ⊂ X and r > 0, we denote by Ar the r-neighborhood of A,
namely Ar = {x : d(x,A) < r}. We say that µ has normal concentration (or Gaussian tail
estimates) on (X, d) if there are constants C, c > 0 such that for every r > 0 and every
Borel subset A with µ(A) ≥ 1

2 ,

1− µ(Ar) ≤ Ce−cr
2

. (1.2)

The fact that the L1-transportation cost inequality implies normal concentration was
obtained in [16, 17] by Marton and in [23, 24, 25] by Talagrand. An elegant, simple
proof of this fact is also contained in the book [14]. The connection of the quadratic
transportation cost inequality with other functional inequalities was studied in [19] by
Otto and Villani (see also [14]). For other related interesting works, we refer the reader
to [2], [9], [15], [21], [22].

The concentration of measure phenomenon has wide applications, e.g. to stochastic
finance (see [13]), statistics (see [18]) and the analysis of randomized algorithms (see
[5]).

Remark 1.2. The transportation cost inequalities and the concentration of measure
phenomenon depend on the underlying topology of the associated metric space. The
stronger the topology, the stronger the concentration.

In the past decades, many people established quadratic transportation cost inequal-
ities for various kinds of interesting measures. Let us mention several papers which
are relevant to our work. The transportation cost inequalities for stochastic differential
equations were obtained by H. Djellout, A. Guillin and L. Wu in [4]. The measure con-
centration for multidimensional diffusion processes with reflecting boundary conditions
was considered by S. Pal in [20]. The quadratic transportation cost inequalities for
stochastic partial differential equations (SPDEs) driven by Gaussian noise which is white
in time and colored in space were obtained by A. S. Ustunel in [26]. We particularly
like to mention the papers [1] by Boufoussi and Hajji, and [12] by D. Khoshnevisan and
A. Sarantsev, which are the starting point of our work. In the article [1], the authors
obtained the quadratic transportation cost inequality under the L2-distance for stochas-
tic heat equations. In [12], the authors established the quadratic transportation cost
inequality for more general stochastic partial differential equations (SPDEs) under both
the L2-distance and the uniform distance. However, under the uniform distance they
only obtained the quadratic transportation cost inequality for SPDEs driven by additive
space-time white noise. The difficulty is how to get good moment estimates under the
uniform norm for the stochastic convolution with respect to the white noise.

As is well known, one of the essential differences between SPDEs driven by colored
noise and SPDEs driven by space-time white noise is that the solution of the later is not
a semimartingale and therefore in particular Ito formula could not be used.

The aim of this paper is to prove that under the uniform distance the quadratic
transportation cost inequality holds for stochastic heat equations driven by multiplicative
space-time white noise. Our new contribution is the p-th moment inequalities under the
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Talagrand inequalities for SPDEs

uniform norm we obtained for the stochastic convolution with respect to the space-time
white noise, which is of independent interest. The significance of the inequality is to
allow the order p of the moment to be any positive number, not just for sufficiently
large ones as in the literature. These new estimates allow us to establish the quadratic
transportation cost inequality under the uniform norm for the case of multiplicative
space-time withe noise.

The rest of the paper is organized as follows. In Section 2, we recall the setup
for stochastic heat equations and state the main result of the paper. In Section 3 we
establish the new moment estimates for stochastic convolutions with respect to the
space-time white noise under the uniform norm. Section 4 is devoted to the proof of the
main result. Two auxiliary results are given in the Appendix.

2 Statement of the main result

In this section, we will recall the setup for the stochastic heat equations driven by
space-time white noise and state the main result of the paper. Consider the following
equation:

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + b(u(t, x)) + σ(u(t, x))

∂2W

∂t∂x
(t, x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0, 1),

(2.1)

where u0 ∈ C0([0, 1]), ∂
2W
∂t∂x (t, x) is a space-time white noise on some filtrated probability

space (Ω,F ,Ft,P), here Ft, t ≥ 0 are the argmented filtration generated by the Brownian
sheet {W (t, x); (t, x) ∈ [0,∞)× [0, 1]}. The coefficients b(·), σ(·) : R→ R are deterministic
measurable functions. We say that an adapted, continuous random field {u(t, x) : (t, x) ∈
R+ × [0, 1]} is a solution to the stochastic partial differential equation (SPDE) (2.1) if for
t ≥ 0 and any φ ∈ C2

0 ([0, 1]),∫ 1

0

u(t, x)φ(x) dx =

∫ 1

0

u0(x)φ(x) dx+
1

2

∫ t

0

ds

∫ 1

0

u(s, x)φ′′(x) dx

+

∫ t

0

ds

∫ 1

0

b(u(s, x))φ(x) dx+

∫ t

0

∫ 1

0

σ(u(s, x))φ(x)W (ds,dx), P− a.s. (2.2)

It was shown in [27] that u is a solution to SPDE (2.1) if and only if for t ≥ 0, u satisfies
the following integral equation

u(t, x) =Ptu0(x) +

∫ t

0

∫ 1

0

pt−s(x, y)b(u(s, y)) dsdy

+

∫ t

0

∫ 1

0

pt−s(x, y)σ(u(s, y))W (ds,dy), P− a.s., (2.3)

where Pt, t ≥ 0 and pt(x, y) are the corresponding semigroup and the heat kernel

associated with the operator 1
2
∂2

∂x2 equipped with the Dirichlet boundary condition on
the interval [0, 1].

Introduce the hypotheses

(H.1) There exists a constant Lb such that for all x, y ∈ R,

|b(x)− b(y)| ≤Lb|x− y|. (2.4)

(H.2) There exist constants Kσ and Lσ such that for all x, y ∈ R,

|σ(x)| ≤Kσ,

|σ(x)− σ(y)| ≤Lσ|x− y|. (2.5)
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Talagrand inequalities for SPDEs

It is well known (see [27]) that under the hypotheses (H.1) and (H.2), SPDE (2.1)
admits a unique random field solution u(t, x). In fact, for the existence and uniqueness
the diffusion coefficient σ(·) needs not to be bounded, the stronger assumption (H.2) is
needed for proving the transportation cost inequality. To state the precise result, let us
introduce some constants.

For ε > 0, define

CT,2,ε = inf
q>10

2

q − 2
q−

q
2 ε1−

q
2 (q − 2 + qCT,q)

q
2 , (2.6)

where the constant CT,q has the following bound:

CT,q < q
q
2T

q
4−

3
2

(
2

π

)q (
1√
2π

) q
2 +1(

6q − 8

q − 10

) 3q
2 −2

. (2.7)

Define

C = K2
σ inf

0<ε< 1
3L2
σ

{
3

1− 3εL2
σ

√
2T

π
exp

(
3L2

bT

1− 3εL2
σ

√
2T

π
+

3CT,2,εL
2
σT

1− 3εL2
σ

)}
. (2.8)

Here is the main result.

Theorem 2.1. Suppose the hypotheses (H.1) and (H.2) hold. Then the law of the
solution u(·, ·) of SPDE (2.1) satisfies the quadratic transportation cost inequality with
the constant C given by (2.8) on the space C([0, T ]× [0, 1]) (with the uniform distance).

Remark 2.2. Our methods can be applied to study SPDEs with the Laplacian operator
replaced by some pseudo differential operators. One needs only some nice heat-kernel
estimates. An example of the kind of operators that can be studied is the fractional
Laplacian L = −(−∆)α, where α ∈ (1, 2). The heat kernel estimates for this operator can
be found in the paper [3].

3 Moment estimates for stochastic convolution under the uni-
form norm

In this section, we will establish some moment estimates for the stochastic convolution
against space-time white noise. Of particular interest are the estimates of the moments
of lower order p. These bounds will play a crucial role in the proof of the main result in
next section. We start with the estimate for large order p.

Proposition 3.1. Let {σ(s, y) : (s, y) ∈ R+ × [0, 1]} be a random field such that the
stochastic integral against space time white noise is well defined. Then for any T > 0,
p > 10, there exists a constant CT,p > 0 such that

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]

≤CT,p
∫ T

0

sup
y∈[0,1]

E |σ(s, y)|p ds. (3.1)

Remark 3.2. The constant CT,p in (3.1) can be bounded as

CT,p < p
p
2 T

p
4−

3
2

(
2

π

)p(
1√
2π

) p
2 +1(

6p− 8

p− 10

) 3p
2 −2

. (3.2)
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Proof. Obviously, we can assume that the right hand side of (3.1) is finite. We employ the
factorization method (see e.g. [8]). Choose α such that 3

2p < α < 1
4 −

1
p . This is possible

because p > 10. Let

(Jασ)(s, y) : =

∫ s

0

∫ 1

0

(s− r)−αps−r(y, z)σ(r, z)W (dr, dz), (3.3)

(Jα−1f)(t, x) : =
sinπα

π

∫ t

0

∫ 1

0

(t− s)α−1pt−s(x, y)f(s, y) dsdy. (3.4)

By the stochastic Fubini theorem (see Theorem 2.6 in [27]), for any (t, x) ∈ R+ × [0, 1],∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy) = Jα−1(Jασ)(t, x). (3.5)

Therefore

sup
(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣
= sup

(t,x)∈[0,T ]×[0,1]

∣∣Jα−1(Jασ)(t, x)
∣∣ , P− a.s.. (3.6)

Recall the well-known Nash-Aronson estimate (see e.g. [7])

0 ≤ pt(x, y) ≤ 1√
2πt

exp−
(x−y)2

2t , ∀x, y ∈ [0, 1]. (3.7)

A straightforward calculation gives∫ 1

0

pt(x, y) dy <1, (3.8)∫ 1

0

pt(x, y)2 dy ≤ sup
y∈[0,1]

pt(x, y)×
∫ 1

0

pt(x, y) dy ≤ C2t
− 1

2 , C2 :=
1√
2π
. (3.9)

By Höler’s inequality, (3.8) and (3.9), we have

E sup
(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
=E sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣ sinπαπ

∫ t

0

∫ 1

0

(t− s)α−1pt−s(x, y)Jασ(s, y) dsdy

∣∣∣∣p
≤
∣∣∣∣ sinπαπ

∣∣∣∣pE sup
(t,x)∈[0,T ]×[0,1]

{∫ t

0

(t− s)α−1

×
(∫ 1

0

pt−s(x, y)|Jασ(s, y)|dy
)

ds

}p
≤
∣∣∣∣ sinπαπ

∣∣∣∣pE sup
(t,x)∈[0,T ]×[0,1]

{∫ t

0

(t− s)α−1

×
(∫ 1

0

pt−s(x, y)|Jασ(s, y)|
p
2 dy

) 2
p

ds

}p

≤
∣∣∣∣ sinπαπ

∣∣∣∣pE sup
(t,x)∈[0,T ]×[0,1]

{∫ t

0

(t− s)α−1

×
(∫ 1

0

pt−s(x, y)2 dy

) 1
2×

2
p
(∫ 1

0

|Jασ(s, y)|p dy

) 1
2×

2
p

ds

}p
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≤
∣∣∣∣ sinπαπ

∣∣∣∣p C2E sup
t∈[0,T ]

{∫ t

0

(t− s)α−1− 1
2p

(∫ 1

0

|Jασ(s, y)|p dy

) 1
p

ds

}p

≤
∣∣∣∣ sinπαπ

∣∣∣∣p C2E sup
t∈[0,T ]

[(∫ t

0

(t− s)(α−1− 1
2p ) p

p−1 ds

) p−1
p ×p

×
(∫ t

0

∫ 1

0

|Jασ(s, y)|p dyds

) 1
p×p

]

≤
∣∣∣∣ sinπαπ

∣∣∣∣p C2 ×

(∫ T

0

s(α−1− 1
2p ) p

p−1 ds

)p−1

×
∫ T

0

∫ 1

0

E|Jασ(s, y)|p dyds

≤C ′T,p sup
(s,y)∈[0,T ]×[0,1]

E

∣∣∣∣∫ s

0

∫ 1

0

(s− r)−αps−r(y, z)σ(r, z)W (dr, dz)

∣∣∣∣p , (3.10)

where we have used the condition α > 3
2p , so that

C ′T,p,α =

∣∣∣∣ sinπαπ

∣∣∣∣p C2 ×

(∫ T

0

s(α−1− 1
2p ) p

p−1 ds

)p−1

× T

=

∣∣∣∣ sinπαπ

∣∣∣∣p C2

(
p− 1

αp− 3
2

)p−1

Tαp−
1
2 <∞. (3.11)

For any fixed (s, y) ∈ [0, T ]× [0, 1], let

Zt :=

∫ t

0

∫ 1

0

(s− r)−αps−r(y, z)σ(r, z)W (dr, dz), t ∈ [0, s].

Then it is easy to see that {Zt}t∈[0,s] is a real-valued martingale (on the interval [0, s]).
Applying the Bukrholder-Davis-Gundy inequality (see Proposition 4.4 in [11] and also
[27]), we have for t ∈ [0, s],

E|Zt|p ≤(4p)
p
2E〈Z〉

p
2
t

=(4p)
p
2E

(∫ t

0

∫ 1

0

(s− r)−2αps−r(y, z)
2σ(r, z)2 drdz

) p
2

. (3.12)

Taking 2
p -th power on both sides of the above inequality, using (3.9) and Hölder’s

inequality, we get∥∥∥∥∫ s

0

∫ 1

0

(s− r)−αps−r(y, z)σ(r, z)W (dr, dz)

∥∥∥∥2

Lp(Ω)

= ‖Zs‖2Lp(Ω)

≤4p

∥∥∥∥∫ s

0

∫ 1

0

(s− r)−2αps−r(y, z)
2σ(r, z)2 drdz

∥∥∥∥
L
p
2 (Ω)

≤4p

∫ s

0

∫ 1

0

(s− r)−2αps−r(y, z)
2 ‖σ(r, z)‖2Lp(Ω) drdz

≤4p

∫ s

0

(s− r)−2α

(∫ 1

0

ps−r(y, z)
2 dz

)
sup
z∈[0,1]

‖σ(r, z)‖2Lp(Ω) dr

≤4C2p

∫ s

0

(s− r)−2α− 1
2 sup
z∈[0,1]

‖σ(r, z)‖2Lp(Ω) dr

≤4C2p

(∫ s

0

(s− r)(−2α− 1
2 )× p

p−2 dr

) p−2
p

×

(∫ s

0

sup
z∈[0,1]

‖σ(r, z)‖pLp(Ω) dr

) 2
p

. (3.13)

EJP 24 (2019), paper 129.
Page 6/15

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP388
http://www.imstat.org/ejp/


Talagrand inequalities for SPDEs

Therefore we take p
2 -th power on both sides of the above inequality to obtain

sup
(s,y)∈[0,T ]×[0,1]

E

∣∣∣∣∫ s

0

∫ 1

0

(s− r)−αps−r(y, z)σ(r, z)W (dr, dz)

∣∣∣∣p
≤C ′′T,p ×

∫ T

0

sup
z∈[0,1]

E |σ(r, z)|p dr, (3.14)

where the condition α < 1
4 −

1
p was used to see that

C ′′T,p,α =(4C2p)
p
2 ×

(∫ T

0

r(−2α− 1
2 )× p

p−2 dr

) p−2
2

=(4C2p)
p
2 ×

(
p− 2

p
2 − 2− 2αp

) p−2
2

T
p
4−1−αp <∞. (3.15)

Combining (3.10) with (3.14), we obtain

E sup
(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
≤CT,p

∫ T

0

sup
z∈[0,1]

E |σ(r, z)|p dr, (3.16)

where

CT,p = min
3
2p<α<

1
4−

1
p

C ′T,p,α × C ′′T,p,α. (3.17)

In view of (3.11), (3.15) and (3.9), a straightforward calculation leads to

CT,p < p
p
2 T

p
4−

3
2

(
2

π

)p(
1√
2π

) p
2 +1(

6p− 8

p− 10

) 3p
2 −2

. (3.18)

This completes the proof of the estimate (3.1). �

Lemma 3.3. Let σ(s, y) be as in Proposition 3.1, then for any T > 0, p > 10, λ > 0, there
exists a constant CT,p > 0 such that

P

(
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣ > λ

)

≤P

(∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds > λp

)

+
CT,p
λp

Emin

{
λp,

∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds

}
. (3.19)

Here the constant CT,p is the same as the constant CT,p in (3.1).

Proof. For any λ > 0, define

Ωλ :=

{
ω ∈ Ω :

∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds ≤ λp
}
. (3.20)
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By Chebyshev’s inequality, we have

P

(
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣ > λ

)

≤P(Ω\Ωλ) + P

(
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣ 1Ωλ > λ

)

≤P(Ω\Ωλ) +
1

λp
E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣1Ωλ

∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]
. (3.21)

Now, we introduce the random field

σ̃(s, y) := σ(s, y)1{ω∈Ω:
∫ s
0

supy∈[0,1] |σ(r,y)|p dr≤λp}. (3.22)

Note that the stochastic integral of σ̃(·, ·) with respect to the space time white noise is
well defined. Since for any ω ∈ Ωλ,∫ t

0

∫ 1

0

|σ(s, y)− σ̃(s, y)|2 dsdy = 0, ∀ t ∈ [0, T ], (3.23)

by the local property of the stochastic integral (see Lemma A.1 in Appendix),

1Ωλ

∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

=1Ωλ

∫ t

0

∫ 1

0

pt−s(x, y)σ̃(s, y)W (ds,dy), P− a.s.. (3.24)

Hence using the bound (3.1), we get

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣1Ωλ

∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]

=E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣1Ωλ

∫ t

0

∫ 1

0

pt−s(x, y)σ̃(s, y)W (ds,dy)

∣∣∣∣p
]

≤E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ̃(s, y)W (ds,dy)

∣∣∣∣p
]

≤CT,pE
∫ T

0

sup
y∈[0,1]

|σ̃(s, y)|p ds

≤CT,pEmin

{
λp,

∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds

}
. (3.25)

Combining (3.21) with (3.25), we obtain (3.19). �

Proposition 3.4. Let {σ(s, y) : (s, y) ∈ R+ × [0, 1]} be a random field such that the
stochastic integral against space time white noise is well defined. Then the following
two estimates hold:

(i) for any T > 0, 0 < p ≤ 10, q > 10, there exists a constant CT,p,q such that

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]

≤CT,p,qE

[∫ T

0

sup
y∈[0,1]

|σ(s, y)|q ds

] p
q

. (3.26)
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(ii) For any T > 0, 0 < p ≤ 10, ε > 0, there exists a constant CT,p,ε such that

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]

≤εE

[
sup

(s,y)∈[0,T ]×[0,1]

|σ(s, y)|p
]

+ CT,p,εE

∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds. (3.27)

Remark 3.5. The significance of the estimates (3.26) and (3.27) is that they allow p to
be small, which is crucial for the proof of the transportation cost inequality in the next
section.

Proof. The estimate (3.26) can be easily derived from (3.19) and Lemma A.2 in Appendix
as follows:

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣p
]

=

∫ ∞
0

pλp−1P

(
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds,dy)

∣∣∣∣ > λ

)
dλ

≤
∫ ∞

0

pλp−1P

(∫ T

0

sup
y∈[0,1]

|σ(s, y)|q ds > λq

)
dλ

+ CT,q

∫ ∞
0

pλp−1−qEmin

{
λq,

∫ T

0

sup
y∈[0,1]

|σ(s, y)|q ds

}
dλ

=CT,p,qE

[∫ T

0

sup
y∈[0,1]

|σ(s, y)|q ds

] p
q

, (3.28)

where

CT,p,q := 1 + CT,q
q

q − p
, (3.29)

and the constant CT,q is defined in (3.17).

Let us now prove the assertion (ii) in Proposition 3.4. From (3.26) it follows that for
any q > 10,

E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(s, y)W (ds, dy)

∣∣∣∣p
]

≤CT,p,qE

[∫ T

0

sup
y∈[0,1]

|σ(s, y)|q ds

] p
q

≤CT,p,qE

[
sup

(s,y)∈[0,T ]×[0,1]

|σ(s, y)|q−p ×
∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds

] p
q

=CT,p,qE

 sup
(s,y)∈[0,T ]×[0,1]

|σ(s, y)|
(q−p)p
q ×

(∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds

) p
q


≤εE

[
sup

(s,y)∈[0,T ]×[0,1]

|σ(s, y)|p
]

+ CT,p,q × CT,p,q,εE
∫ T

0

sup
y∈[0,1]

|σ(s, y)|p ds, (3.30)
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where we have used the following Young inequality

ab ≤ ε

CT,p,q
a

q
q−p + CT,p,q,ε b

q
p ,

CT,p,q,ε :=p

(
q − p
ε/CT,p,q

) q−p
p

q−
q
p . (3.31)

Set

CT,p,ε := inf
q>10

CT,p,q × CT,p,q,ε. (3.32)

Combining (3.29) and (3.31) gives

CT,p,ε = inf
q>10

p

q − p
q−

q
p ε1−

q
p (q − p+ qCT,q)

q
p , (3.33)

where the constant CT,q is bounded by the right hand side of (3.2) with p replaced by q.
Now, (3.27) follows from (3.30) with the constant CT,p,ε defined above. �

4 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. Let µ be the law of the random
field solution u(·, ·) of SPDE (2.1), viewed as a probability measure on C([0, T ]× [0, 1]).
First we recall a lemma proved in [12] describing the probability measures ν that are
absolutely continuous with respect to µ.

Let ν � µ on C([0, T ] × [0, 1]). Define a new probability measure Q on the filtered
probability space (Ω,F , {Ft}0≤t≤T ,P) by

dQ :=
dν

dµ
(u) dP. (4.1)

Denote the Radon-Nikodym derivative restricted on Ft by

Mt :=
dQ

dP

∣∣∣∣
Ft
, t ∈ [0, T ].

Then Mt, t ∈ [0, T ] forms a P-martingale. The following result was proved in [12].

Lemma 4.1. There exists an adapted random field h = {h(s, x), (s, x) ∈ [0, T ] × [0, 1]}
such that Q− a.s. for all t ∈ [0, T ],∫ t

0

∫ 1

0

h2(s, x) dsdx <∞

and W̃ : [0, T ]× [0, 1]→ R defined by

W̃ (t, x) := W (t, x)−
∫ t

0

∫ x

0

h(s, y) dsdy, (4.2)

is a Brownian sheet under the measure Q. Moreover,

Mt = exp

(∫ t

0

∫ 1

0

h(s, x)W (ds,dx)− 1

2

∫ t

0

∫ 1

0

h2(s, x) dsdx

)
, Q− a.s., (4.3)

and

H(ν|µ) =
1

2
EQ

[∫ T

0

∫ 1

0

h2(s, x) dsdx

]
, (4.4)

where EQ stands for the expectation under the measure Q.
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Proof of Theorem 2.1. Take ν � µ on C([0, T ]×[0, 1]). Define the corresponding measure
Q by (4.1). Let h(t, x) be the corresponding random field appeared in Lemma 4.1. Then
the solution u(t, x) of equation (2.1) satisfies the following SPDE under the measure Q,

u(t, x) =Ptu0(x) +

∫ t

0

∫ 1

0

pt−s(x, y)b(u(s, y)) dsdy

+

∫ t

0

∫ 1

0

pt−s(x, y)σ(u(s, y)) W̃ (ds,dy)

+

∫ t

0

∫ 1

0

pt−s(x, y)σ(u(s, y))h(s, y) dsdy. (4.5)

Consider the solution of the following SPDE:

v(t, x) =Ptu0(x) +

∫ t

0

∫ 1

0

pt−s(x, y)b(v(s, y)) dsdy

+

∫ t

0

∫ 1

0

pt−s(x, y)σ(v(s, y)) W̃ (ds,dy). (4.6)

By Lemma 4.1 it follows that under the measure Q, the law of (v, u) forms a coupling of
(µ, ν). Therefore by the definition of the Wasserstein distance,

W2(ν, µ)2 ≤ EQ
[

sup
(t,x)∈[0,T ]×[0,1]

|u(t, x)− v(t, x)|2
]
.

In view of (4.4), to prove the quadratic transportation cost inequality

W2(ν, µ) ≤
√

2CH(ν|µ), (4.7)

it is sufficient to show that

EQ

[
sup

(t,x)∈[0,T ]×[0,1]

|v(t, x)− u(t, x)|2
]
≤ CEQ

[∫ T

0

∫ 1

0

h2(s, y) dsdy

]
(4.8)

when the right hand side of (4.8) is finite. For simplicity, in the sequel we still denote EQ

by the symbol E. From (4.6) and (4.5) it follows that

E

[
sup

(t,x)∈[0,T ]×[0,1]

|v(t, x)− u(t, x)|2
]
≤ 3(I + II + III), (4.9)

where

I :=E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)
[
b(v(s, y))− b(u(s, y))

]
dsdy

∣∣∣∣2
]
,

II :=E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)
[
σ(v(s, y))− σ(u(s, y))

]
W̃ (ds,dy)

∣∣∣∣2
]
,

III :=E

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)σ(u(s, y))h(s, y) dsdy

∣∣∣∣2
]
.

By Holder’s inequality and (3.9), the term I can be estimated as follows:

I ≤L2
bE

[
sup

(t,x)∈[0,T ]×[0,1]

∣∣∣∣∫ t

0

∫ 1

0

pt−s(x, y)|v(s, y)− u(s, y)|dsdy
∣∣∣∣2
]
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≤L2
bE

{
sup

(t,x)∈[0,T ]×[0,1]

[(∫ t

0

∫ 1

0

pt−s(x, y)2 dsdy

)

×
(∫ t

0

∫ 1

0

|v(s, y)− u(s, y)|2 dsdy

)]}

≤
√

2T

π
L2
bE

∫ T

0

∫ 1

0

|v(s, y)− u(s, y)|2 dsdy

≤
√

2T

π
L2
b

∫ T

0

E

[
sup

(r,y)∈[0,s]×[0,1]

|v(r, y)− u(r, y)|2
]

ds. (4.10)

For the term II, applying the estimate (3.27) we obtain that for any ε > 0,

II ≤εE

[
sup

(t,x)∈[0,T ]×[0,1]

|σ(v(t, x))− σ(u(t, x))|2
]

+ CT,2,εE

∫ T

0

sup
y∈[0,1]

|σ(v(s, y))− σ(u(s, y))|2 ds

≤εL2
σE

[
sup

(t,x)∈[0,T ]×[0,1]

|v(t, x)− u(t, x)|2
]

+ CT,2,εL
2
σ

∫ T

0

E

[
sup

(r,y)∈[0,s]×[0,1]

|v(r, y)− u(r, y)|2
]

ds. (4.11)

The term III can be bounded as follows:

III ≤K2
σE

{
sup

(t,x)∈[0,T ]×[0,1]

[(∫ t

0

∫ 1

0

pt−s(x, y)2 dsdy

)

×
(∫ t

0

∫ 1

0

h2(s, y) dsdy

)]}

≤
√

2T

π
K2
σE

[∫ T

0

∫ 1

0

h2(s, y) dsdy

]
. (4.12)

Set

Y (t) := E

[
sup

(s,x)∈[0,t]×[0,1]

|v(s, x)− u(s, x)|2
]
. (4.13)

Putting (4.9)-(4.12) together, we obtain

Y (T ) ≤3

√
2T

π
L2
b

∫ T

0

Y (s) ds+ 3εL2
σY (T ) + 3CT,2,εL

2
σ

∫ T

0

Y (s) ds

+ 3

√
2T

π
K2
σE

[∫ T

0

∫ 1

0

h2(s, y) dsdy

]
. (4.14)

Recall that (see e.g. Theorem 3.13 in [6])

E

[
sup

(t,x)∈[0,T ]×[0,1]

|u(t, x)|2
]
<∞, (4.15)

E

[
sup

(t,x)∈[0,T ]×[0,1]

|v(t, x)|2
]
<∞. (4.16)
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Hence Y (T ) <∞ for any T > 0. Taking any ε < 1
3L2

σ
, we deduce from (4.14) that

Y (T ) ≤ 3L2
b

1− 3εL2
σ

√
2T

π

∫ T

0

Y (s) ds+
3CT,2,εL

2
σ

1− 3εL2
σ

∫ T

0

Y (s) ds

+
3K2

σ

1− 3εL2
σ

√
2T

π
E

[∫ T

0

∫ 1

0

h2(s, y) dsdy

]
. (4.17)

Clearly, (4.17) still holds if we replace T with any t ∈ [0, T ]. Applying Gronwall’s
inequality, we obtain

Y (T ) ≤K2
σ inf

0<ε< 1
3L2
σ

{
3

1− 3εL2
σ

√
2T

π
exp

(
3L2

bT

1− 3εL2
σ

√
2T

π
+

3CT,2,εL
2
σT

1− 3εL2
σ

)}

× E

[∫ T

0

∫ 1

0

h2(s, y) dsdy

]
. (4.18)

This proves (4.8) with the constant C to be

C = K2
σ inf

0<ε< 1
3L2
σ

{
3

1− 3εL2
σ

√
2T

π
exp

(
3L2

bT

1− 3εL2
σ

√
2T

π
+

3CT,2,εL
2
σT

1− 3εL2
σ

)}
, (4.19)

where, according to (3.33) and (3.2),

CT,2,ε = inf
q>10

2

q − 2
q−

q
2 ε1−

q
2 (q − 2 + qCT,q)

q
2 , (4.20)

and the constant CT,q is bounded by

CT,q < q
q
2T

q
4−

3
2

(
2

π

)q (
1√
2π

) q
2 +1(

6q − 8

q − 10

) 3q
2 −2

. (4.21)

Hence the proof of Theorem 2.1 is complete. �

A Appendix

The following local property of the Walsh stochastic integral against space-time white
noise is similar to that of the Ito integral.

Lemma A.1. Let {σ(t, x) : (t, x) ∈ [0, T ]×[0, 1]} be a random field such that the stochastic
integral against space time white noise is well defined. Let Ω0 ⊂ Ω be a measurable
subset such that for a.s. ω ∈ Ω0,∫ T

0

∫ 1

0

|σ(t, x)|2 dtdx = 0. (A.1)

Then for a.s. ω ∈ Ω0, ∫ T

0

∫ 1

0

σ(t, x)W (dt,dx) = 0. (A.2)

Proof. The local property can be similarly proved as that of Ito integral. We only outline
the proof here. Firstly, we note that the local property obviously holds when σ(·, ·) is
a simple process. When σ(t, x) is a bounded, continuous random field, we can prove
the local property through an approximation of σ by a sequence of simple processes.
For the general random field σ(·, ·), the local property can be proved by further two
approximations, first by bounded random fields and then by continuous random fields. �
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Lemma A.2. Let X ≥ 0 be a random variable, then for any 0 < p < q,

EXp =

∫ ∞
0

pxp−1P(X > x) dx, (A.3)∫ ∞
0

Emin{xq, X}
xq

pxp−1 dx =
q

q − p
E
[
X

p
q

]
. (A.4)

Proof. (A.3) and (A.4) can be easily proved by the Fubini theorem. (A.4) is similar to
Lemma 2 in [10], for completeness, we provide the proof here.

∫ ∞
0

Emin{xq, X}
xq

pxp−1 dx =E

∫ X
1
q

0

pxp−1 dx+ E

[
X

∫ ∞
X

1
q

pxp−1−q dx

]
=E

[
X

p
q

]
− p

p− q
E

[
X
(
X

1
q

)p−q]
=

q

q − p
E
[
X

p
q

]
. � (A.5)
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