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Abstract

We consider an SOS (solid-on-solid) model, with spin values from the set of all integers,
on a Cayley tree of order k ≥ 2 and are interested in tree-automorphism invariant
gradient Gibbs measures (GGMs) of the model. Such a measure corresponds to a
boundary law (a function defined on vertices of the Cayley tree) satisfying a functional
equation. In the ferromagnetic SOS case on the binary tree we find up to five solutions
to a class of period-4 height-periodic boundary law equations (in particular, some
period-2 height-periodic ones). We show that these boundary laws define up to four
distinct GGMs. Moreover, we construct some period-3 height-periodic boundary laws
on the Cayley tree of arbitrary order k ≥ 2, which define GGMs different from the
4-periodic ones.
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1 Introduction

We consider models where an infinite-volume spin-configuration ω is a function from
the vertices of the Cayley tree to a local configuration space E ⊆ Z.

A solid-on-solid (SOS) model is a spin system with spins taking values in (a subset of)
the integers, and formal Hamiltonian

H(ω) = −J
∑
{x,y}

|ωx − ωy|,

where J ∈ R is a coupling constant. As usual, {x, y} denotes a pair of nearest neighbour
vertices.
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Gradient Gibbs measures for the SOS model

For the local configuration space we consider in the present paper the full set E := Z.
The model can be considered as a generalization of the Ising model, which corresponds to
E = {−1, 1}, or a less symmetric variant of the Potts model with non-compact state space.
SOS-models on the cubic lattice were analyzed in [16] where an analogue of the so-called
Dinaburg–Mazel–Sinai theory was developed. Besides interesting phase transitions in
these models, the attention to them is motivated by applications, in particular in the
theory of communication networks; see, e.g., [13], [18].

SOS models in Zd with E = Z have also been used as simplified discrete interface
models which should approximate the behaviour of a Dobrushin-state in an Ising model
when the underlying graph is Zd+1, and d ≥ 1. There is the issue of possible non-
existence of any Gibbs measure in the case of such unbounded spins, in particular in the
additional presence of disorder. (Height-)periodic probability measures on the single-site
spin space Z can not exist. When a proper Gibbs-measure exists, therefore it cannot
be height-periodic. Proper Gibbs measures for the discrete-height Z-valued SOS model
exist in dimensions d ≥ 2, when the inverse temperature β is sufficiently large. This can
be seen by a Peierls argument. For continuous-height models, by contrast, proper Gibbs
measures do not exist in d ≤ 2, while gradient Gibbs measures do exist also in d = 2

[11]. Adding local disorder to the discrete SOS-models spoils the existence of proper
(random) Gibbs measures in dimensions d = 2 [5]. In higher dimensions d ≥ 3 at ‘small
disorder’ the existence of proper (random) Gibbs measures holds [4], [3]. This is proved
using a renormalization group method in the spirit of Bricmont-Kupiainen [6] which is
an iterated expansion method. For continuous-height disordered models on the lattice
even (random) GGMs fail to exist in d = 2 [10] while they do exist in d ≥ 3, for potentials
bounded above and below by a square [7].

In the present paper we show that on the Cayley tree there are several tree-
automorph-ism invariant gradient Gibbs measures. In contrast to tree-automorphism
Gibbs measures which e.g. do not exist on the Cayley tree of dimension one due to the
normalisability condition on probability measures, gradient Gibbs measures always
exist.

For even more background on gradient Gibbs measures on the lattice, also in the
case of real valued state space, we refer to [23], [1], [8] and [2].

If we restrict the local spin space from the set of all integers Z to a finite number,
we arrive at the m-state SOS-model, which is a Potts-type model, but with an SOS-
interaction. Compared to the Potts model, the m-state SOS model has less symmetry:
The full symmetry of the Hamiltonian under joint permutation of the spin values is
reduced to the mirror symmetry, which is the invariance of the model under the map
ωi 7→ m− ωi on the local spin space. Therefore one expects a more diverse structure of
phases.

To the best of our knowledge, the first paper devoted to the SOS model on the
Cayley tree is [19]. In [19] the case of arbitrary m ≥ 1 is treated and a vector-valued
functional equation for possible boundary laws of the model is obtained. Recall that
each solution to this functional equation determines a splitting Gibbs measure (SGM),
in other words a tree-indexed Markov chain which is also a Gibbs measure. Such
measures can be obtained by propagating spin values along the edges of the tree, from
any site singled out to be the root to the outside, with a transition matrix depending
on initial Hamiltonian and the boundary law solution. In particular the homogeneous
(site-independent) boundary laws then define translation-invariant (TI) SGMs. For a
recent investigation of the influence of weakly non-local perturbations in the interaction
to the structure of Gibbs measures, see [2] in the context of the Ising model.

Also the symmetry (or absence of symmetry) of the Gibbs measures under spin
reflection is seen in terms of the corresponding boundary law. For SOS models some
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Gradient Gibbs measures for the SOS model

TISGMs which are symmetric have already been studied in the particular case m = 2

in [19], and m = 3 in [20]. In [14], for m = 2, a detailed description of TISGMs
(symmetric and non-symmetric ones) is given: it is shown the uniqueness in the case
of antiferromagnetic interactions, and existence of up to seven TISGMs in the case of
ferromagnetic interactions. See also [21] for more details about SOS models on trees.

In the situation of an unbounded local spin space the normalisability condition given
in [25] (which is needed to construct a SGM, in other words a tree-indexed Markov chain,
from a given boundary law solution) is not automatically satisfied anymore. In this paper
we are interested in the class of (spatially homogeneous/ tree-automorphism invariant)
height-periodic boundary laws to tree-automorphism invariant spin-translation/height-
shift invariant potentials whose elements violate this normalisability condition. Here, a
spatially homogeneous period-q height-periodic boundary law is a q-periodic function
on the local state space Z. Although the procedure of constructing a Gibbs measures
from boundary laws described in [25] can not be applied to elements of that class, we
are still able to assign a tree-automorphism invariant gradient Gibbs measure (GGM)
on the space of gradient configurations to each such spatially homogeneous height-
periodic boundary law, compare [15]. This motivates the study of spatially homogeneous
height-periodic boundary laws as useful finite-dimensional objects which are are easier
to handle than the non-periodic ones required to fulfill the normalisability condition.
Gradient Gibbs measures describe height differences, Gibbs measures describe absolute
heights. Each Gibbs measure defines a gradient Gibbs measure, but the converse is not
true, which is a phenomenon that is well-known from the lattice. Some more explanation
will be given in the following sections. The main goal of this paper then consists in the
description of a class of boundary solutions for the Z-valued SOS-model which have
periods of 2, 3 and 4 with respect to shift in the height direction on the local state space
Z, and their associated GGMs. Our motivation is to present closed-form solutions, prove
identifiability, and demonstrate the richness of transitions even inside these families.
While the expectation of height-differences is always zero in all of these gradient states,
the states really do differ. This is precisely the conclusion of our discussion of their
identifiability, where we construct families of events which allow to distinguish them.
To see boundary law-dependence, we also refer to Section 5.3 (‘Correlation decay is
governed by the fuzzy chain’) in [15]. The general picture which emerges is that as
the inverse temperature becomes large, more and more gradient states appear. This is
shown by the examples of period up to four, but similar phenomena should appear for
higher periods. Higher periods are not analyzed in the present paper but this is certainly
an interesting topic.

The paper is organized as follows. In Section 2 we first present the preliminaries of
our model. Section 3 then contains a summary on the notion of GGMs on trees and their
construction from homogeneous height-periodic boundary laws. For further details see
[15]. The main part, Section 4, is devoted to the description of a set of homogeneous
period-2, 3 and 4 height-periodic boundary laws for the SOS-model on Z. Solving the
associated boundary law equations for the period-2 and the period-4 height-periodic case
on the binary tree we prove that, depending on the system parameters, this set contains
one up to five elements, yet the number of distinct GGMs assigned to them will turn out
to be at most four. In the last subsection we construct GGMs for period-3 height-periodic
boundary laws on the k-regular tree for arbitrary k ≥ 2.

2 Preliminaries

Cayley tree. The Cayley tree Γk of order k ≥ 1 (or k-regular tree) is an infinite
tree, i.e. a locally finite connected graph without cycles, such that exactly k + 1 edges
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Gradient Gibbs measures for the SOS model

originate from each vertex. Let Γk = (V,L) where V is the set of vertices and L the set of
edges. Two vertices x, y ∈ V are called nearest neighbours if there exists an edge l ∈ L
connecting them. We will use the notation l = {x, y}. A collection of nearest neighbour
pairs {x, x1}, {x1, x2}, ..., {xd−1, y} is called a path from x to y. The distance d(x, y) on
the Cayley tree is the number of edges of the shortest path from x to y.

Furthermore, for any Λ ⊂ V we define its outer boundary as

∂Λ := {x /∈ Λ : d(x, y) = 1 for some y ∈ Λ}.

SOS model. We consider a model where the spin takes values in the set of all integer
numbers Z := {. . . ,−1, 0, 1, . . . }, and is assigned to the vertices of the tree. A (height)
configuration ω on V is then defined as a function x ∈ V 7→ ωx ∈ Z; the set of all height
configurations is Ω := ZV . Take the power set 2Z as measurable structure on Z and
then endow Ω with the product σ-algebra F := σ{ωi | i ∈ V } where σi : Ω→ Z denotes
the projection on the ith coordinate. We also sometimes consider more general finite
subsets Λ of the tree and we write S for the set of all those finite subtrees. Recall here
that the (formal) Hamiltonian of the SOS model is

H(ω) = −J
∑
{x,y}∈L

|ωx − ωy|, (2.1)

where J ∈ R is a constant which we will set to 1 (incorporated in the inverse temperature
β) in the following. As defined above, {x, y} denotes nearest neighbour vertices.

Note that the above Hamiltonian is invariant under the spin-translation/height-shift
t : (tω)i = ωi + 1. (It is given by a gradient interaction potential in the terminology of
[15].) This suggests reducing the complexity of the configuration space by considering
gradient configurations instead of height configurations as will be explained in the
following section.

3 Gradient Gibbs measures and an infinite system of functional
equations

Gradient configurations: Let the Cayley tree be called Γk. We may induce an
orientation on Γk relative to an arbitrary site ρ (which we may call the root) by calling
an edge 〈x, y〉 oriented iff it points away from the ρ. More precisely, the set of oriented
edges is defined by

~L := ~Lρ := {〈x, y〉 ∈ L : d(ρ, y) = d(ρ, x) + 1}.

Note that the oriented graph (V, ~L) also possesses all tree-properties, namely connected-
ness and absence of loops.

For any height configuration ω = (ω(x))x∈V ∈ ZV and b = 〈x, y〉 ∈ ~L the height
difference along the edge b is given by ∇ωb = ωy − ωx and we also call ∇ω the gradient
field of ω. The gradient spin variables are now defined by η〈x,y〉 = ωy − ωx for each

〈x, y〉 ∈ ~L. Let us denote the space of gradient configurations by Ω∇ = Z
~L. Note that in

contrast to the notion used in [23] for the lattice Zd, the gradient configurations defined
above are indexed by the oriented edges of the tree and not by its vertices. Equip the
integers Z with the power set as measurable structure. Having done this, the measurable
structure on the space Ω∇ is given by the product σ-algebra F∇ := σ({ηb | b ∈ ~L}). Clearly
∇ : (Ω,F)→ (Ω∇,F∇) then becomes a measurable map.

For any fixed site x ∈ V and given spin value ωx ∈ Z, each gradient configuration
ζ ∈ Ω∇ (uniquely) determines a height configuration by the measurable map

ϕx,ωx
:

{
Ω∇ → Ω

(ϕx,ωx
(ζ))y = ωx +

∑
b∈Γ(x,y) ζb,

(3.1)
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where Γ(x, y) is the unique path from x to y. From this we get the following two
statements:

1. The linear map ∇ : ZV → Z
~L is surjective and

2. The kernel of ∇ is given by the spatially homogeneous configurations.

Therefore we have the identification

Ω∇ = Z
~L = ZV /Z. (3.2)

Here, = is meant in the sense of isomorphy between Abelian groups. Endowing ZV /Z
with the final σ-algebra generated by the respective coset projection, we can also regard
this isomorphism as an isomorphism between measurable spaces due to the measurability
of the maps ϕx,ωx and ∇.

Note that statement (1) above relies on the absence of loops in trees. For gradient
configurations on lattices in more than one dimension a further plaquette condition is
needed (see [11]). In contrast to this, the following statement (2) is based on connected-
ness of the tree. Therefore, for any finite subtree Λ ∈ S, the isomorphism (3.2) between
measurable spaces restricts to an isomorphism between ZΛ/Z and Z{b∈

~L|b⊂Λ}, where
the sets are endowed with the respective final and product σ-algebra.

Further note that for any w ∈ V the bijection{
ZV → Z

~L ×Z
ω = (ωx)x∈V 7→ (∇ω, ωw)

(3.3)

is an isomorphism with respect to the product σ-algebra on Z
~L ×Z, where the inverse

map is given by (3.1). In the following, this will allow us to easily identify any measure
on ZV with its push-forward on the space Z

~L ×Z.
G ibbs measure: Recall that the set of height configurations Ω := ZV was endowed

with the product σ-algebra ⊗i∈V 2Z, where 2Z denotes the power set of Z. Then, for
any Λ ⊂ V , consider the coordinate projection map σΛ : ZV → ZΛ and the σ-algebra
FΛ := σ(σΛ) of cylinder sets on ZV generated by the map σΛ.

Now we are ready to define Gibbs measures on the space of height-configurations
for the model (2.1) on a Cayley tree. Let ν = {ν(i) > 0, i ∈ Z} be a σ-finite positive
fixed a-priori measure, which in the following we will always assume to be the counting
measure.

Gibbs measures are built within the DLR framework by describing conditional prob-
abilities w.r.t. the outside of finite sets, where a boundary condition is frozen. One
introduces a so-called Gibbsian specification γ so that any Gibbs measure µ ∈ G(γ)

specified by γ verifies

µ(A|FΛc) = γΛ(A|·) µ− a.s. (3.4)

for all Λ ∈ S and A ∈ F . The Gibbsian specification associated to a potential Φ is given
at any inverse temperature β > 0, for any boundary condition ω ∈ Ω as

γΛ(A|ω) =
1

Zβ,ΦΛ

∫
e−βH

Φ
Λ (σΛωΛc )1A(σΛωΛc)ν⊗Λ(dσΛ), (3.5)

where the partition function Zβ,ΦΛ – that has to be non-null and convergent in this count-
able infinite state-space context (this means that Φ is ν-admissible in the terminology of
[12]) – is the standard normalization whose logarithm is often related to pressure or free
energy.

EJP 24 (2019), paper 104.
Page 5/23

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP364
http://www.imstat.org/ejp/
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In our SOS-model on the Cayley tree, Φ is the unbounded nearest-neighbour potential
with Φ{x,y}(ωx, ωy) = |ωx − ωy| and Φ{x} ≡ 0, so γ is a Markov specification in the sense
that

γΛ(ωΛ = ζ|·) is F∂Λ-measurable for all Λ ⊂ V and ζ ∈ ZΛ. (3.6)

In order to build up gradient specifications from the Gibbsian specifications defined
above, we need to consider the following: Due to the absence of loops in trees, for any
finite subgraph Λ ⊂ Z, the complement Λc is not connected, but consists of at least two
connected components where each of these contains at least one element of ∂Λ. This
means that the gradient field outside Λ does not contain any information on the relative
height of the boundary ∂Λ (which is to be understood as an element of Z∂Λ/Z). More
precisely, let cc(Λc) denote the number of connected components in Λc and note that
2 ≤ cc(Λc) ≤ |∂Λ|.

Applying (3.1) to each connected component, an analogue to (3.2) becomes

ZΛc

/Z = Z{b∈
~L | b⊂Λc} × (Zcc(Λ

c)/Z) ⊂ Z{b∈~L | b⊂Λc} × (Z∂Λ/Z) (3.7)

where “=” is in the sense of isomorphy between measurable spaces. For any η ∈
Ω∇ = ZV /Z, let [η]∂Λ ∈ Z∂Λ/Z denote the image of η under the coordinate projection
ZV /Z→ Z∂Λ/Z with the latter set endowed with the final σ-algebra generated by the
coset projection. Set

F∇Λ := σ((ηb)b⊂Λc) ⊂ T ∇Λ := σ((ηb)b⊂Λc , [η]∂Λ). (3.8)

Then T ∇Λ contains all information on the gradient spin variables outside Λ and also
information on the relative height of the boundary ∂Λ. By (3.7) we have that for any
event A ∈ F∇ the FΛc -measurable function γΛ(A|·) is also measurable with respect to
T ∇Λ , but in general not with respect to F∇Λ . These observations lead to the following:

Definition 3.1. The gradient Gibbs specification is defined as the family of probability
kernels (γ′Λ)Λ⊂⊂V from (Ω∇, T ∇Λ ) to (Ω∇,F∇) such that∫

F (ρ)γ′Λ(dρ | ζ) =

∫
F (∇ϕ)γΛ(dϕ | ω) (3.9)

for all bounded F∇-measurable functions F , where ω ∈ Ω is any height-configuration
with ∇ω = ζ.

Using the sigma-algebra T ∇Λ , this is now a proper and consistent family of probability
kernels, i.e.

γ′Λ(A | ζ) = 1A(ζ) (3.10)

for every A ∈ T ∇Λ and γ′∆γ
′
Λ = γ′∆ for any finite volumes Λ,∆ ⊂ V with Λ ⊂ ∆. The proof

is similar to the situation of regular (local) Gibbs specifications [12, Proposition 2.5].
Let Cb(Ω∇) be the set of bounded functions on Ω∇. Gradient Gibbs measures will

now be defined in the usual way by having their conditional probabilities outside finite
regions prescribed by the gradient Gibbs specification:

Definition 3.2. A measure ν ∈M1(Ω∇) is called a gradient Gibbs measure (GGM) if it
satisfies the DLR equation∫

ν(dζ)F (ζ) =

∫
ν(dζ)

∫
γ′Λ(dζ̃ | ζ)F (ζ̃) (3.11)

for every finite Λ ⊂ V and for all F ∈ Cb(Ω∇). The set of gradient Gibbs measures will be
denoted by G∇(γ).
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Construction of GGMs via boundary laws:
In what follows we may assume the a-priori measure ν on Z to be the counting

measure. On trees with nearest-neighbours potentials Φ such as the one we consider
here, it is possible to use the natural orientations of edges to introduce tree-indexed
Markov chains. These are probability measures µ having the property that for all oriented
edges 〈xy〉 and any ωy ∈ E,

µ(σy = ωy|F(−∞,xy)) = µ(σy = ωy|Fx) µ-a.s.,

where
(−∞, xy) := {w ∈ V | 〈x, y〉 ∈ ~Lw},

denotes the past of the edge 〈x, y〉. One can associate to µ a transition matrix defined to
be any stochastic matrix P = (Pxy)〈xy〉 satisfying for all ωy ∈ E

µ(σy = ωy|Fx) = Pxy(σx, ωy) µ− a.s.

For n.n. interaction potential Φ = (Φb)b, where bonds are denoted b = 〈x, y〉, one first
defines symmetric transfer matrices Qb following the terminology of Cox [9] or Zachary
[25, 26] (see also [12]). Setting

Qb(ωb) = e−
(

Φb(ωb)+|∂x|−1Φ{x}(ωx)+|∂y|−1Φ{y}(ωy)
)

one can rewrite the Gibbsian specification as

γΦ
Λ (σΛ = ωΛ|ω) = (ZΦ

Λ )(ω)−1
∏

b∩Λ6=∅

Qb(ωb).

If for any bond b = 〈x, y〉 the transfer operator Qb(ωb) is a function of gradient spin
variable ζb = ωy − ωx we call the underlying potential Φ a gradient interaction potential.

Now we note the following: On the one hand, each extreme Gibbs measure on a tree
with respect to a Markov specification is a tree-indexed Markov chain (Theorem 12.6
in [12]). On the other hand (Lemma 3.1 in [25]), a measure µ is a Gibbs measure with
respect to a nearest neighbour potential Φ with associated family of transfer matrices
(Qb)b∈L iff its marginals at any finite volume Λ ⊂ V are of the form

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = cΛ(ω∂Λ)
∏

b∩Λ6=∅

Qb(ωb) (3.12)

for some function cΛ : ∂Λ → R+. Taking this into account leads to the concept of
boundary laws that allows to describe the Gibbs measures that are Markov chains on
trees.

Definition 3.3. A family of vectors {lxy}〈x,y〉∈~L with lxy ∈ (0,∞)Z is called a boundary

law for the transfer operators {Qb}b∈L if for each 〈x, y〉 ∈ ~L there exists a constant
cxy > 0 such that the consistency equation

lxy(ωx) = cxy
∏

z∈∂x\{y}

∑
ωz∈Z

Qzx(ωx, ωz)lzx(ωz) (3.13)

holds for every ωx ∈ Z. A boundary law is called to be q-periodic if lxy(ωx + q) = lxy(ωx)

for every oriented edge 〈x, y〉 ∈ ~L and each ωx ∈ Z.

In our unbounded discrete context, there is as in the finite-state space context, a
one-to-one correspondence between boundary laws and tree-indexed Markov chains, but
for some boundary laws only, the ones that are normalisable in the sense of Zachary
[25, 26].
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Definition 3.4 (Normalisable boundary laws). A boundary law l is said to be normalisable
if and only if ∑

ωx∈Z

( ∏
z∈∂x

∑
ωz∈Z

Qzx(ωx, ωz)lzx(ωz)
)
<∞ (3.14)

at any x ∈ V .

The correspondence now reads the following:

Theorem 3.5 (Theorem 3.2 in [25]). For any Markov specification γ with associated
family of transfer matrices (Qb)b∈L we have

1. Each normalisable boundary law (lxy)x,y for (Qb)b∈L defines a unique tree-indexed
Markov chain µ ∈ G(γ) via the equation given for any connected set Λ ∈ S

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = (ZΛ)−1
∏
y∈∂Λ

lyyΛ(ωy)
∏

b∩Λ6=∅

Qb(ωb), (3.15)

where for any y ∈ ∂Λ, yΛ denotes the unique n.n. of y in Λ.

2. Conversely, every tree-indexed Markov chain µ ∈ G(γ) admits a representation of
the form (3.15) in terms of a normalisable boundary law (unique up to a constant
positive factor).

Remark 3.6. The Markov chain µ defined in (3.15) has the transition probabilities

Pij(ωi, x) = µ(σj = x | σi = ωi) =
lji(x)Qji(x, ωi)∑
y lji(y)Qji(y, ωi)

. (3.16)

The expressions (3.16) may exist even in situations where the underlying boundary law
(lxy)x,y is not normalisable in the sense of Definition 3.4. However, the Markov chain
given by the so defined transition probabilities is in general not positively recurrent
which means that it does not possess an invariant probability measure. More precisely if
the Markov chain defined by (3.16) is of the form (3.15) (and hence of the form (3.12))
then its underlying boundary law must be necessarily normalisable as one can see by
considering (3.15) for Λ = {x}, x ∈ V . Thus, there is no obvious extension of Theorem
3.5 to non-normalisable boundary laws.

Remark 3.7. For k ≥ 2 we also expect tree-automorphism invariant proper Gibbs
measures for the SOS-model (2.1) to exist at sufficiently low temperatures, but are not
aware of a result in the literature. To prove this conjecture, one needs to show existence
of nonperiodic normalisable solutions to the boundary law equation (3.13).

Let us now assume that Qb = Q for all b ∈ L (this holds obviously true for the SOS
model). We call a vector l ∈ (0,∞)Z a (spatially homogeneous) boundary law if there
exists a constant c > 0 such that the consistency equation

l(i) = c

∑
j∈Z

Q(i, j)l(j)

k

(3.17)

is satisfied for every i ∈ Z.
Now assume that the elements of the family (Qb)b∈L do not depend on the bonds i.e.

Qb = Q for all b ∈ L, i.e. the underlying potential is tree-automorphism invariant.
In the case of spatially homogeneous boundary laws the expression (3.14) in the

definition of normalisability reads∑
i∈Z

(∑
j∈Z

Q(i, j)l(j)
)k+1

=
∑
i∈Z

c−
k+1
k

(
c(
∑
j∈Z

Q(i, j)l(j))k
) k+1

k

= c−
k+1
k

∑
i∈Z

l(i)
k+1
k ,
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Gradient Gibbs measures for the SOS model

which means that any spatially homogeneous normalisable boundary law is an element
of the space l1+ 1

k . Thus height-periodic spatially homogeneous boundary laws are never
normalisable in the sense of Definition 3.4.

However, it is possible to assign (tree-automorphism invariant) gradient Gibbs mea-
sures to spatially homogeneous height-periodic boundary laws to tree-automorphism
invariant gradient interaction potentials. The main idea consists in considering for any
boundary law (lxy) to a gradient interaction potential and any finite connected subset
Λ ⊂ V the (in general only σ-finite) measure µΛ on (ZΛ∪∂Λ,⊗i∈Λ∪∂Λ2Z) given by the
assignment (3.15), i.e.

µΛ∪∂Λ(σΛ∪∂Λ = ωΛ∪∂Λ) =
∏
y∈∂Λ

lyyΛ(ωy)
∏

b∩Λ6=∅

Qb(ωb). (3.18)

Then fix any pinning site w ∈ Λ and identify µΛ with its pushforward measure on Z
~L ×Z

under (3.3). This measure has the marginals

µΛ∪∂Λ(σw = i , ηΛ∪∂Λ = ζΛ∪∂Λ) = µΛ∪∂Λ(σw = i)µΛ∪∂Λ(ηΛ∪∂Λ = ζΛ∪∂Λ | σw = i)

= µΛ∪∂Λ(σw = i)
∏
y∈∂Λ

lyyΛ(i+
∑

b∈Γ(w,y)

ζb)
∏

b∩Λ6=∅

Qb(ζb).

(3.19)

If the boundary law l is assumed to be period-q height-periodic, then µΛ∪∂Λ(ηΛ∪∂Λ = · |
σw = i) will depend on i only modulo q. For any class label s ∈ Zq this allows us to obtain

a probability measure νw,s on Z{b∈
~L|b⊂Λ} by setting

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) := ZΛ
w,sµΛ∪∂Λ(ηΛ∪∂Λ = ζΛ∪∂Λ | σw = s)

= ZΛ
w,s

∏
y∈∂Λ

lyyΛ

(
Tq(s+

∑
b∈Γ(w,y)

ζb)
) ∏
b∩Λ6=∅

Qb(ζb),
(3.20)

where ZΛ
w,s is a normalization constant and Tq : Z → Zq denotes the coset projection.

Then one can show the following:

Theorem 3.8 (Theorem 3.1 in [15]). Let (l<xy>)<x,y>∈~L be any period-q height-periodic
boundary law to some gradient interaction potential. Fix any site w ∈ V and any class
label s ∈ Zq. Then the definition

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ
w,s

∏
y∈∂Λ

lyyΛ

(
Tq(s+

∑
b∈Γ(w,y)

ζb)
) ∏
b∩Λ6=∅

Qb(ζb), (3.21)

where Λ with w ∈ Λ ⊂ V is any finite connected set, ζΛ∪∂Λ ∈ Z{b∈
~L|b⊂(Λ∪∂Λ)} and ZΛ

w,s

is a normalization constant, gives a consistent family of probability measures on the
gradient space Ω∇. The measures νw,s will be called pinned gradient measures.

By construction, the pinned gradient measures νw,s on Ω∇ have a restricted gradient
(Gibbs) property in the sense that the DLR-equation (3.11) holds for any finite subgraph
Λ ⊂ V which does not contain the pinning site w (for details see [15]). If the period-
q height-periodic boundary law is now additionally spatially homogeneous and the
underlying potential is tree-automorphism invariant then it is possible to obtain a tree-
automorphism invariant probability measure ν on the the gradient space by mixing
the pinned gradient measures over an appropriate distribution on Zq. In particular,
the so-obtained measure ν is independent of the choice of the pinning site. Thus, the
restricted gradient Gibbs property of each of the pinned gradient measures leads to the
Gibbs property of the measure ν.
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Theorem 3.9 (Theorem 4.1, Remark 4.2 in [15]). Let l be any spatially homogeneous
period-q height-periodic boundary law to a tree-automorphism invariant gradient inter-
action potential on the Cayley tree. Let Λ ⊂ V be any finite connected set and let w ∈ Λ

be any vertex. Then the measure ν with marginals given by

ν(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ

∑
s∈Zq

∏
y∈∂Λ

l
(
s+

∑
b∈Γ(w,y)

ζb
) ∏

b∩Λ6=∅

Q(ζb), (3.22)

where ZΛ is a normalisation constant, defines a spatially homogeneous GGM on Ω∇.

Remark 3.10. Setting nwi (ζΛ∪∂Λ) := | {y ∈ ∂Λ |
∑
b∈Γ(w,y) ζb ≡ i mod q} | the marginals

of the measure ν defined in Theorem 3.9 can be written in the form:

ν(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ(
∑
j∈Zq

∏
i∈Zq

l
nw
i+j(ζΛ∪∂Λ)

i )
∏

b∩Λ6=∅

Q(ζb)

= ZΛ(
∑
j∈Zq

∏
i∈Zq

l
nw
i (ζΛ∪∂Λ)
i+j )

∏
b∩Λ6=∅

Q(ζb).
(3.23)

This representation directly shows that two height-periodic boundary laws will lead to
the same GGM if one is obtained from the other by a cyclic permutation or multiplication
with a positive constant.

To obtain sufficient criteria for two GGM νl and ν l̃ associated to two distinct height-
periodic boundary laws l and l̃ with l0 = l̃0 = 1 being distinct we first observe that νl = ν l̃

if and only if ∑
j∈Zq

∏
i∈Zq

l
nw
i+j(ζΛ∪∂Λ)

i∑
j∈Zq

∏
i∈Zq

l̃
nw
i+j(ζΛ∪∂Λ)

i

=
Z l̃Λ
ZlΛ

(3.24)

for all finite subtrees Λ and ζΛ∪∂Λ ∈ Z{b∈L|b⊂Λ∩∂Λ}.
Thus νl = ν l̃, if and only if for any finite subtree Λ there is a constant c(Λ) > 0, such

that ∑
j∈Zq

∏
i∈Zq

l
ni+j

i = c(Λ)
∑
j∈Zq

∏
i∈Zq

l̃
ni+j

i (3.25)

for all vectors (n0, n2, . . . , nq−1) ∈ N0 with
∑
i∈Zq

ni = |∂Λ|. If we take a single-bond
volume Λ = {b}, where b ∈ L, we obtain the marginal

ν(ηb = ζb) = Zb
∑
s∈Zq

l(s)l(s+ ζb)Q(ζb) = Zb(
∑
j∈Zq

∏
i∈Zq

l
ni+j(ζb)
i )Qb(ζb). (3.26)

From this we get that if νl = ν l̃ then condition (3.25) is fulfilled for all vectors
(n0, n1, . . . , nq−1) ∈ {0, 1, 2}q with

∑
i∈Zq

ni = 2.

We will now conclude some statements on identifiability of GGM with respect to the
class of boundary laws which we will describe in the following section.

Lemma 3.11. Let l and l̃ be two period-2 height-periodic boundary laws with l0 = l̃0 = 1.
Denote l1 = a1, l̃1 = a2.

Then
νl = ν l̃ if and only if a1 = a2 or a1a2 = 1 (3.27)

Proof. Let us first prove that νl = ν l̃ if a1 = a2 or a1a2 = 1. Using the marginals
representation given in Remark 3.10 we have that νl = ν l̃ if and only if∑

j∈{0,1}
∏
i∈{0,1} l

nw
i+j(ζΛ∪∂Λ)

i∑
j∈{0,1}

∏
i∈{0,1} l̃

nw
i+j(ζΛ∪∂Λ)

i

= const(Λ ∪ ∂Λ) (3.28)
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for any finite subtree Λ and ζΛ∪∂Λ ∈ Z{b∈L|b⊂Λ∪∂Λ}. Let n = |∂Λ| ≥ 3 then the vectors
(n0, n1)(ζΛ∪∂Λ) are of the form (n−m,m) for some integer 0 ≤ m ≤ n. Inserting this into

(3.28) we conclude that νl = ν l̃ if and only if for all n ≥ 3 which can be realized as the
number of points in the boundary of a finite subtree and any 0 ≤ m1,m2 ≤ n we have:

an−m1
1 + am1

1

an−m1
2 + am1

2

=
an−m2

1 + am1
1

an−m2
2 + am2

2

. (3.29)

We may further assume m1 = 0 and write m = m2. Then this equation reduces to

an1 + 1

an2 + 1
=
an−m1 + am1
an−m2 + am2

, (3.30)

which holds true if a2 = (a1)−1.
To prove the other direction we must show that a1 = a2 and a1a2 = 1 are the only

solutions to the system (3.30):
For any x > 0 set f(n,m)(x) := xn+1

xn−m+xm . Then (3.30) is equivalent to f(n,m)(a1) =

f(n,m)(a2). Consider any 0 < m < n. Clearly f(n,m) is continuous, strictly decreasing on
(0, 1) and strictly increasing on (1,∞), which means that for any x ∈ (0, 1] there is at
most one y ∈ [1,∞) with f(n,m)(x) = f(n,m)(y). Since f(n,m)(x) = f(n,m)(

1
x ) we have that

f(n,m)(a1) = f(n,m)(a2) if and only if a1 = a2 or a1a2 = 0.

Lemma 3.12. Consider any period-4 height-periodic boundary law of the type

l
(a,b)
i =


1, if i ≡ 0 or 2 mod 4

a, if i ≡ 1 mod 4

b, if i ≡ 3 mod 4

and denote the associated GGM by ν(a,b). Let (a1, b1), (a2, b2) be two such boundary laws.
If ν(a1,b1) = ν(a2,b2) then necessarily

a1 + b1 = a2 + b2 or

(ai + bi)(aj + bj) = 4.

Proof. Consider the marginal on a set Λ := {b}, where b ∈ L is any edge. Inserting the
vectors (n0, n1, n2, n3) = (2, 0, 0, 0), (1, 1, 0, 0) and (1, 0, 1, 0) into (3.25) we conclude that
if ν(a1,b1) = ν(a2,b2) then there is some constant c > 0 with

1. a2
1 + b21 + 2 = c(a2

2 + b22 + 2),

2. a1 + b1 = c(a2 + b2) and

3. 1 + a1b1 = c(1 + a2b2).

Adding twice the third equation to the first we obtain

(a1 + b1)2 + 4 = c((a2 + b2)2 + 4),

which in combination with (2) gives

(a1 + b1)2 + 4

(a2 + b2)2 + 4
=
a1 + b1
a2 + b2

. (3.31)

Setting x := a1 + b1 and y := a2 + b2 leads to the equation x2+4
y2+4 = x

y which is equivalent
to

(x− y)(xy − 4) = 0.

This completes the proof.
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Lemma 3.13. Consider the k-regular tree, k ≥ 2, and a period-3 height-periodic bound-
ary law of the type

l
(c)
i =

{
1, if i ≡ 0 mod 3

c, else.

Denote the associated GGM by ν(c). Then the following holds true:

a) ν(c1) = ν(c2) if and only if for any n ∈ N we have f(m0,m1,m2)(c1) = f(m0,m1,m2)(c2)

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2)}3 with m0 +m1 +m2 = 2(n(k− 1) + 2),
where

f(m0,m1,m2)(x) :=
xm0 + xm1 + xm2

1 + 2xn(k−1)+2
, x > 0.

b) ν(c1) = ν(c2) if and only if c1 = c2.

c) The GGMs associated to the nontrivial members of this family of solutions are all
different from the GGMs associated to the solutions given by the family of boundary
laws defined in Lemma 3.12.

Proof. The structure of the proof is similar to the proof of Lemma 3.12:

a) First note that for any subtree of the k-regular tree with n vertices we have
n(k + 1) − 2(n − 1) = n(k − 1) + 2 points in the outer boundary which follows by
induction on n (see [22]). Thus ν(c1) = ν(c2) if and only if for each n ∈ N the
equation (3.25) holds true for all (n0, n1, n2) ∈ N0

3 with n0 + n1 + n2 = n(k− 1) + 2.
This is equivalent to the existence of some λ > 0 depending only on k and n with

c
(n0+n1)
1 + c

(n0+n2)
1 + c

(n1+n2)
1 = λ(c

(n0+n1)
2 + c

(n0+n2)
2 + c

(n1+n2)
2 ),

for all such vectors (n0, n1, n2).

Setting

m0

m1

m2

 :=

1 1 0

1 0 1

0 1 1

n0

n1

n2

, i.e.

n0

n1

n2

 = 1
2

 1 1 −1

1 −1 1

−1 1 1

m0

m1

m2

 this

is equivalent to
cm0
1 + cm1

1 + cm2
1 = λ(cm0

2 + cm1
2 + cm2

2 )

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2}3 with m0 +m1 +m2 = 2(n(k − 1) + 2).
Hence we have ν(c1) = ν(c2) if and only if

cm0
1 + cm1

1 + cm2
1

cm0
2 + cm1

2 + cm2
2

=
cm̃0
1 + cm̃1

1 + cm̃2
1

cm̃0
2 + cm̃1

2 + cm̃2
2

for all vectors (m0,m1,m2), (m̃0, m̃1, m̃2). Fixing (m̃0, m̃1, m̃2) = (0, n(k−1)+2, n(k−
1) + 2) this is equivalent to

cm0
1 + cm1

1 + cm2
1

cm0
2 + cm1

2 + cm2
2

=
1 + 2c

n(k−1)+2
1

1 + 2c
n(k−1)+2
2

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2}3 with m0 +m1 +m2 = 2(n(k − 1) + 2)

which proves the first statement.

b) Consider a single-bond marginal Λ = {b}, b ∈ L and insert the vectors (n0, n1, n2) =

(2, 0, 0) and (1, 1, 0) in (3.26). If ν(c1) = ν(c2) then there is a constant λ > 0 with

i) 1 + 2c21 = λ(1 + 2c22) and

ii) c21 + 2c1 = λ(c22 + 2c2).
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From this we obtain the polynomial equation in c1:

c21(4c2 − 1)− 2c1(1 + 2c22) + c2(c2 + 2) = 0. (3.32)

Dividing out the linear term (c1 − c2) we arrive at

c1(4c2 − 1)− c2 − 2 = 0. (3.33)

In the second step we will show that the assumption ν(c1) = ν(c2) and c1 6= c2
leads to a contradiction. This will be done by considering 3.13 for n → ∞. Take
any real numbers 0 < a0 < a1 < a2 < k − 1 where a0 + a1 + a2 = 2(k − 1).
Then there is a sequence (m0(n),m1(n),m2(n))n∈N such that for all n ∈ N we
have (m0(n),m1(n),m2(n)) ∈ {0, 1, . . . , n(k − 1) + 2)}3 and m0(n)+m1(n)+m2(n) =

2(n(k − 1) + 2) with the property that mi(n)
n

n→∞→ ai, i ∈ {0, 1, 2}. If ν(c1) = ν(c2)

and c1 6= c2 then by (3.33) we have c2 = c1+2
4c1−1 , so we may assume 1

4 < c1 < 1 < c2.
From 3.13 we obtain

lim
n→∞

1

n
log f(m0(n),m1(n),m2(n))(c1) = lim

n→∞

1

n
log f(m0(n),m1(n),m2(n))(c2)

Hence, taking into account the assumption 0 < c1 < 1 < c2, this implies

a0 log(c1) = (a2 − (k − 1)) log(c2), (3.34)

where the limiting behaviour of the l.h.s can be seen by writing cm0(n)
1 + c

m1(n)
1 +

c
m2(n)
1 = c

m0(n)
1 (1+c

m1(n)−m0(n)
1 +c

m2(n)−m0(n)
1 ) and then inserting mi(n) = ain+εi,n

where εi,n
n→∞→ 0. The r.h.s. follows similarly. Now (3.34) is equivalent to

log(c2)

log(c1)
=

a0

a2 − (k − 1)
. (3.35)

As c2 is uniquely given by (3.33) and (3.35) holds true for all choices of (a0, a1, a2) in
the allowed range, the assumption ν(c1) = ν(c2) and c1 6= c2 leads to a contradiction.

c) Let l(a,b) denote any period-4 height-periodic boundary law as defined in Lemma
3.12 and let l(c) be any period-3 height-periodic boundary law as defined above. We
will consider each of them as a period-12 height-periodic boundary law. Take
Λ = {b}, b ∈ L and insert the vectors (n0, n1, . . . , n11) = (1, 1, 0, 0, . . . , 0) and
(1, 0, 0, 1, 0, 0, . . . , 0) into (3.26). If ν(a,b) = ν(c) then there is a constant λ > 0

with

i) 6(a+ b) = 4λ(2c+ c2) and

ii) 6(a+ b) = 4λ(1 + 2c2)

From this we get c2 − 2c+ 1 = 0 which leads to c = 1.

Remark 3.14. Lemma 3.11 can also be concluded from Lemma 3.12 and the fact that
two height-periodic boundary laws lead to the same GGM if one is obtained from the
other by cyclic permutations or multiplication with a positive constant.

4 Tree-automorphism invariant solutions

In this section we calculate height-periodic solutions to the spatially homogeneous
boundary law equation for the SOS-model.
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Remark 4.1. In [24] Shlosman considers the situation on the lattice Z2 with local state
space Z and a general strictly convex symmetric gradient interaction potential (written
in the DLR-formalism the results can be found in section 6.3 of [12]). He shows that at
sufficiently large β there are states which arise as perturbations of staircase-like infinite-
volume groundstates. Shlosman’s staircase states do not possess reflection-invariance
on the lattice by construction, and have a non-zero expectation of the height-difference
in the direction of the staircase. By contrast, the gradient states on trees we construct
in our paper have the full tree-automorphism invariance. Therefore the expectations of
height-differences are zero in our gradient states, in this sense they have “tilt zero”.

First let β > 0 be any inverse temperature and set θ := exp(−β) < 1. The transfer
operator Q then reads Q(i − j) = θ|i−j| for any i, j ∈ Z, and a spatially homogeneous
boundary law, now denoted by z, is any positive function on Z solving the system (3.17),
whose values we will denote by zi instead of z(i). Further notice that a boundary law
is only unique up to multiplication with any positive prefactor. Hence we may choose
this constant in a way such that we have z0 = 1. At last set Z0 := Z \ {0}. Taking into
account these prerequisites, the boundary law equation (3.17) now reads

zi =

(
θ|i| +

∑
j∈Z0

θ|i−j|zj

1 +
∑
j∈Z0

θ|j|zj

)k
, i ∈ Z0. (4.1)

4.1 A simplification of the system (4.1)

Let z(θ) = (zi = zi(θ), i ∈ Z0) be a solution to (4.1). Denote

li ≡ li(θ) =

−1∑
j=−∞

θ|i−j|zj , ri ≡ ri(θ) =

∞∑
j=1

θ|i−j|zj , i ∈ Z0. (4.2)

It is clear that each li and ri can be a finite positive number or +∞.

Lemma 4.2. For each i ∈ Z0 we have

• li < +∞ if and only if l0 < +∞;

• ri < +∞ if and only if r0 < +∞.

Proof. The proof follows from the following equalities

li =

 θil0 +
∑−1
j=i(θ

j−i − θi−j)zj , if i ≤ −1

θil0, if i ≥ 1.
(4.3)

ri =

 θ−ir0 +
∑i
j=1(θi−j − θj−i)zj , if i ≥ 1

θ−ir0, if i ≤ −1.
(4.4)

In what follows, we will always assume that l0 < +∞ and r0 < +∞. Denoting
ui = u0

k
√
zi (for some u0 > 0) from (4.1) we get

ui = C · (· · ·+ θ2uki−2 + θuki−1 + uki + θuki+1 + θ2uki+2 + . . . ), i ∈ Z,

for some C > 0.
This system can be written as

ui = C

+∞∑
j=1

θjuki−j + uki +

+∞∑
j=1

θjuki+j

 , i ∈ Z. (4.5)
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Proposition 4.3. A vector u = (ui, i ∈ Z), with u0 = 1, is a solution to (4.5) if and only if
for ui (= k

√
zi) the following holds

uki =
ui−1 + ui+1 − τui
u−1 + u1 − τ

, i ∈ Z, (4.6)

where τ = θ−1 + θ = 2 cosh(β).

Proof.

a) Necessity: From (4.5) we get

ui−1 + ui+1

= C

 ∞∑
j=1

θjuki−1−j +

∞∑
j=1

θjuki+1−j + uki−1 + uki+1 +

∞∑
j=1

θjuki−1+j +

∞∑
j=1

θjuki+1+j


= C

θ−1
∞∑

m=1
m=j+1

θmuki−m − uki−1 + θ

∞∑
j′=1

j′=j−1

θj
′
uki−j′ + θuki + uki−1 + uki+1

+θ

∞∑
n=1

n=j−1

θnuki+n + θuki + θ−1
∞∑
j̄=1

j̄=j+1

θj̄uki+j̄ − u
k
i+1


= C

(θ−1 + θ)

∞∑
j=1

θjuki−j + 2θuki + (θ−1 + θ)

∞∑
j=1

θjuki+j


= (θ−1 + θ)ui + C(θ − θ−1)uki .

Thus
ui−1 + ui+1 − (θ−1 + θ)ui = C(θ − θ−1)uki , i ∈ Z. (4.7)

Since u0 = 1 dividing both sides of (4.7) by the expression obtained in the case
i = 0 we get (4.6).

b) Sufficiency: Assume (4.6) holds. Then we get (4.7) with some C = C̃. Write this
equality for i replaced by i+ 1− j, i.e.

ui−j + ui−j+2 − (θ−1 + θ)ui+1−j = C̃(θ − θ−1)uki+1−j , i, j ∈ Z. (4.8)

Multiply both sides of (4.8) by θj and sum over j = 1, 2, . . . . Here, absolute
convergence of all occurring infinite sums is guaranteed by the assumption l0 < +∞
and r0 < +∞ and the fact that θ < 1. Then after rearrangement/simplifications we
get

θui+1 − ui = C̃(θ − θ−1)

∞∑
j=1

θjuki+1−j .

Dividing both sides of this equality by θ we get

ui+1−θ−1ui = C̃(θ−θ−1)

∞∑
j=1

θj−1uki+1−j = C̃(θ−θ−1)

 ∞∑
m=1

m=j−1

θmuki−m + uki

 . (4.9)

Now rewrite (4.7) for i replaced by i+ j, C is replaced by C̃ and multiply both sides
of the obtained equality by θj then sum over j = 1, 2, . . . . After simplifications we
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get

θui − ui+1 = C̃(θ − θ−1)

∞∑
j=1

θjuki+j . (4.10)

Adding (4.9) and (4.10) we get the ith equation of (4.5) with C replaced by C̃. For
u0 = 1 we get C̃ = C.

Lemma 4.4. If l0 < +∞ and r0 < +∞ then we have

l0 =
θ − u−1

u−1 + u1 − τ
, r0 =

θ − u1

u−1 + u1 − τ
.

Proof. Using (4.6) we get

l0 =

−1∑
j=−∞

θ−jzj =

−1∑
j=−∞

θ−jukj =

−1∑
j=−∞

θ−j
uj−1 + uj+1 − τuj
u−1 + u1 − τ

.

Compute the following

−1∑
j=−∞

θ−j(uj−1 + uj+1 − τuj)

= θ−1
−1∑

j=−∞
θ−j+1uj−1 + θ

−1∑
j=−∞

θ−j−1uj+1 − τ
−1∑

j=−∞
θ−juj

= θ − u−1 + (θ−1 + θ − τ)

−1∑
j=−∞

θ−juj .

Since θ−1 + θ − τ = 0 we get the formula of l0. The case r0 is similar.

By this Lemma we have

1 + l0 + r0 =
θ − θ−1

u−1 + u1 − τ
. (4.11)

The equation (4.6) can be separated into the following independent recurrence
equations

u−i−1 = (u−1 + u1 − τ)uk−i + τu−i − u−i+1, (4.12)

ui+1 = (u−1 + u1 − τ)uki + τui − ui−1, (4.13)

where i ≥ 0, u0 = 1 and u−1, u1 are some initial numbers. Note that for i = 0 the above
equations are trivially fulfilled for all values of u1 and u−1. Hence it suffices to consider
(4.12) and (4.13) for i ≥ 1.

4.2 A class of period-4 height-periodic solutions to (4.6)

In this subsection we shall describe the two-parameter family of solutions to (4.6)
which have the form

un =


1, if n = 0 or 2 mod 4,

a, if n = 1 mod 4,

b, if n = 3 mod 4,

(4.14)

where a and b some positive numbers. Such a solution defines a periodic two-sided
infinite sequence, i.e.

..., a, 1, b, 1, a, 1, b, 1, a, 1, b, ... (4.15)
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The equations (4.12) and (4.13) give the following system of equations

(a+ b− τ)bk + τb− 2 = 0

(a+ b− τ)ak + τa− 2 = 0.
(4.16)

For simplicity we consider the case k = 2 and give full analysis of the system (4.16).
In case k = 2 subtracting from the first equation of the system the second one we get

(b− a)[(a+ b)2 − τ(a+ b) + τ ] = 0.

This gives three possible cases:

a = b, and a =
1

2
(τ ±

√
τ2 − 4τ)− b for τ ≥ 4. (4.17)

• Case a = b. In this case from the first equation of (4.16) we get

2a3 − τa2 + τa− 2 = 0. (4.18)

One easily gets the following solutions to this equation (recall that τ > 2):

– If τ ≤ 6 then the equation (4.18) has unique solution a0 = 1.

– If τ > 6 then there are three solutions (see Fig. 1)

a0 = 1, a1 =
1

4
(τ − 2−

√
(τ − 2)2 − 16), a2 =

1

4
(τ − 2 +

√
(τ − 2)2 − 16).

Note that these 2-periodic solutions can be already found in [15] (recall that
τ = 2 cosh(β)).

• Case a+ b = 1
2 (τ +

√
τ2 − 4τ). In this case from the second equation of (4.16) we

get

(τ −
√
τ2 − 4τ)a2 − 2τa+ 4 = 0.

Which for τ ≥ 4 has the solutions

a3 =
τ −

√
τ2 − 4τ + 4

√
τ2 − 4τ

τ −
√
τ2 − 4τ

, a4 =
τ +

√
τ2 − 4τ + 4

√
τ2 − 4τ

τ −
√
τ2 − 4τ

.

Using (4.17) we get b3 = a4 and b4 = a3.

• Case a+ b = 1
2 (τ −

√
τ2 − 4τ). In this case similarly as in previous case we obtain

(τ +
√
τ2 − 4τ)a2 − 2τa+ 4 = 0

which for τ ≥ 2 + 2
√

5 has the following solutions

a5 =
τ −

√
τ2 − 4τ − 4

√
τ2 − 4τ

τ +
√
τ2 − 4τ

, a6 =
τ +

√
τ2 − 4τ − 4

√
τ2 − 4τ

τ +
√
τ2 − 4τ

.

Using (4.17) we get b5 = a6 and b6 = a5. Clearly all of these solutions are positive
(see Fig. 2).

Taking into account the freedom of cyclic permutations of boundary laws we thus
proved the following:
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Figure 1: The graphs of the functions a1, a2 giving period-2 height-periodic boundary
laws. The graphs of the functions b1, b2 giving period-3 height-periodic boundary laws.
As a2 = a−1

1 , both 2-periodic boundary laws lead to the same GGM.

Proposition 4.5. The periodic solutions of the form (4.15) depend on the parameter
τ = 2 cosh(β) in the following way.

1. If τ ≤ 4 then there is a unique solution with a = b = 1.

2. If 4 < τ ≤ 6 then there are exactly two solutions with a = b = 1 and a = a3, b = b3.

3. If 6 < τ < 2 + 2
√

5 then there are exactly four solutions with a = b = 1, a = b = a1,
a = b = a2 and (a, b) = (a3, b3).

4. If τ ≥ 2 + 2
√

5 then there are exactly five solutions with a = b = 1, a = b = a1,
a = b = a2, (a, b) = (a3, b3) and (a, b) = (a5, b5),

where the values ai and bi are defined above.

4.3 Gradient Gibbs measures described by period-4 height-periodic boundary
laws: Identifiability

In this subsection we will apply the Lemmas 3.11 and 3.12 on identifiability to the
gradient Gibbs measures which correspond to the periodic solutions given in Proposition
4.5. Note that a solution described by the parameters (a, b) corresponds to the boundary
law

z(a2,b2)
n =


1, if n = 0 or 2 mod 4,

a2, if n = 1 mod 4,

b2, if n = 3 mod 3.

(4.19)

We will denote the GGM assigned by Theorem 3.9 to a boundary law z
(a2,b2)
n by ν(a2,b2).
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Figure 2: The graphs of the functions (a3, a4) and (a5, a6) giving period-4 height-periodic
boundary laws.

• Case 4 < τ ≤ 6: We have a2
3 + b23 ≥ 2( 1

2 (a3 + b3))2 = 2( τ
τ−
√
τ2−4τ

)2 > 2 = 12 + 12,

so a2
3 + b23 6= 12 + 12 and (12 + 12)(a2

3 + b23) 6= 4. Thus ν(a2
3,b

2
3) 6= ν(1,1) by Lem-

ma 3.12.

• Case 6 < τ < 2+2
√

5: We have a1 < 1 < a2 and a2
3+b23 > 2( 1

16 (τ+
√
τ2 − 4τ)2) ≥ 2a2

2.

Further, as a1a2 ≡ 1, by Lemma 3.11 we have that ν(a2
1,a

2
1) ≡ ν(a2

2,a
2
2). At last

(a2
3 + b23)(a2

2 + a2
2) > (a2

3 + b23)(a2
1 + a2

1) > 4(a1a2)2 = 4. Thus we have three different
GGMs associated to boundary laws of the type (4.19) via Theorem 3.9.

• Case τ ≥ 2 + 2
√

5: We still have: a2
1 < 1 < a2

2 < a2
3 + b23 and a1a2 ≡ 1, so again

ν(a2
1,a

2
1) ≡ ν(a2

2,a
2
2). Further a2

5 + b25 ≤ 2b25 < 2. As a1(τ) is monotonically decreasing
in τ and a5(τ)2 + b5(τ)2 is monotonically increasing in τ it suffices to numerically
calculate 2a1(2 + 2

√
5)6 = ( 1

2 (
√

5− 1))2 < 0.4 < 0.76 < a5(2 + 2
√

5)2 + b5(2 + 2
√

5)2

to obtain: 2a2
1 < a2

5 + b25 < 2 < 2a2
2 < a2

3 + b23. Thus we have four different GGMs
associated to boundary laws of the type (4.19) via Theorem 3.9.

Hence we have proven the following

Theorem 4.6. For the SOS model (2.1) on the binary tree with parameter τ = 2 cosh(β)

the following assertions hold

1. If τ ≤ 4 then there is precisely one GGM associated to a boundary law of the type
(4.19) via Theorem 3.9.

2. If 4 < τ ≤ 6 then there are precisely two such GGMs.

3. If 6 < τ < 2 + 2
√

5 then there are precisely three such GGMs.

4. If τ ≥ 2 + 2
√

5 then there are precisely four such measures.
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4.4 Period-3 height-periodic boundary laws on the k-regular tree.

To also describe gradient Gibbs measures on the k-regular tree for arbitrary k ≥ 2,
we consider a 1-parameter family of period-3 height-periodic boundary laws which can
be examined easily. Assume un, n ∈ Z has the form

un =

{
1, n = 0 mod 3

a, n 6= 0 mod 3,
(4.20)

where a > 0. Then, by (4.13) and (4.12), a should satisfy

2ak+1 − τak + (τ − 1)a− 1 = 0. (4.21)

This equation has the solution a = 1 independently of the parameters (τ, k). Dividing
both sides by a− 1 we get

2ak + (2− τ)(ak−1 + ak−2 + · · ·+ a) + 1 = 0. (4.22)

The equation (4.22) has again the solution a = 1 iff τ = τ0, where

τ0 :=
2k + 1

k − 1
.

It is well known (see [17], p.28) that the number of positive roots of the polynomial
(4.22) does not exceed the number of sign changes of its coefficients. It is obvious that
2− τ < 0. Thus the number of positive roots of the polynomial (4.22) is at most 2.

The following lemma gives the full analysis of the equation (4.22):

Lemma 4.7. For each k ≥ 2, there is exactly one critical value of τ = 2 cosh(β), called
τc = τc(k), such that

1. τc < τ0;

2. if τ < τc then (4.22) has no positive solution;

3. if τ = τc then the equation has a unique positive solution;

4. if τ > τc, τ 6= τ0 then it has exactly two solutions;

5. if τ = τ0, then the equation has two solutions, one of which is a = 1.

Proof. Solving (4.22) with respect to τ we get

τ = ψk(a) := 2 +
2ak + 1

ak−1 + ak−2 + · · ·+ a
.

We have ψk(a) > 2, a > 0 and ψ′k(a) = 0 is equivalent to

2

k−1∑
j=1

(k − j)ak+j−1 −
k−1∑
j=1

jaj−1 = 0. (4.23)

The last polynomial equation has exactly one positive solution, because signs of its
coefficients changed only one time, and at a = 0 it is negative, i.e. −1 and at a = +∞ it
is positive. Denote this unique solution by a∗. Then ψk(a) has unique minimum at a = a∗,
and lima→0 ψk(a) = lima→+∞ ψk(a) = +∞ (see Fig. 3). Thus

τc = τc(k) = min
a>0

ψk(a) = ψk(a∗).

Note that a∗ 6= 1, i.e. a = 1 does not satisfy (4.23). Therefore

τ0 = ψk(1) > τc = min
a>0

ψk(a) = ψk(a∗).

These properties of ψk(a) completes the proof.
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Figure 3: The graphs of the function ψ3(a).

Thus taking into account Lemma 3.13 and Lemma 4.7 we obtain the following:

Theorem 4.8. For the SOS-model on the k-regular tree, k ≥ 2, with parameter τ =

2 cosh(β) there are numbers 0 < τc < τ0 such that the following holds:

1. If τ < τc then there are no GGM corresponding to nontrivial period-3 height-periodic
boundary laws of the type (4.20) via Theorem 3.9.

2. At τ = τc there is a unique GGM corresponding to a nontrivial period-3 height-
periodic boundary law of the type (4.20) via Theorem 3.9.

3. For τ > τc, τ 6= τ0 (resp. τ = τ0) there are exactly two such (resp. one) GGMs.

The GGMs described above are all different from the GGMs mentioned in Theorem 4.6.

Remark 4.9. In case k = 2 one easily finds τc(2) = 2(1 +
√

2) ≈ 4.83 and τ0 = 5. Two
positive solutions are (see Fig. 1):

a = b1,2 :=
1

4
(τ − 2±

√
(τ − 2)2 − 8)

Remark 4.10. It was shown in Section 5 of [15] that the equations for period-3 height-
periodic boundary laws of the general form

zi =


1, i = 0 mod 3

a, i = 1 mod 3

b, i = 2 mod 3,

(4.24)

can be identified with the boundary law equations of a Potts model on the same regular
tree at a different effective inverse temperature. An explicit discussion of the transition
temperature was given only on the binary tree. This correspondence however explains
that all period-3 height-periodic boundary law solutions are of the type (4.20).
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