
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 24 (2019), no. 98, 1–47.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP312

Nonlinear randomized urn models: a stochastic
approximation viewpoint

Sophie Laruelle ∗ Gilles Pagès †

Abstract

This paper extends the link between stochastic approximation (SA) theory and random-
ized urn models developed in [32], and their applications to clinical trials introduced
in [2, 3, 4]. We no longer assume that the drawing rule is uniform among the balls
of the urn (which contains d colors), but can be reinforced by a function f . This is
a way to model risk aversion. Firstly, by considering that f is concave or convex
and by reformulating the dynamics of the urn composition as an SA algorithm with
remainder, we derive the a.s. convergence and the asymptotic normality (Central Limit
Theorem, CLT ) of the normalized procedure by calling upon the so-called ODE and
SDE methods. An in depth analysis of the case d = 2 exhibits two different behaviors:
a single equilibrium point when f is concave, and, when f is convex, a transition phase
from a single attracting equilibrium to a system with two attracting and one repulsive
equilibrium points. The last setting is solved using results on non-convergence toward
noisy and noiseless “traps” in order to deduce the a.s. convergence toward one of the
attracting points. Secondly, the special case of a Pólya urn (when the addition rule
is the Id matrix) is analyzed, still using result from SA theory about “traps”. Finally,
these results are used to solve another urn model with a more natural nonlinear
drawing rule and we conclude by an example of application to optimal asset allocation
in Finance.
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1 Introduction

In this paper, we introduce and study in depth a class of generalized Pólya urns (with
d colors) characterized by their nonlinear drawing rules. These models appear as a
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Nonlinear randomized urn models: a stochastic approximation viewpoint

generalization of randomized urn models originally devised for clinical trials which take
into account the risk aversion attitude of the prescriber of the treatment. Randomized
urn models have been extensively investigated by various authors (see [2, 3, 4]) during
the last twenty years based on ad hoc martingale arguments to solve a.s. convergence
as well as its rate of convergence. In a recent paper [32] (see also [33, 40]), we revisited,
unified and often extended these results by showing that they can be established by
relying on the main results of Stochastic Approximation (SA) theory, especially a.s.

convergence and weak convergence rate (Central Limit Theorem (CLT )). In a few
words, SA theory is devoted to the search of the zero(s) of a function h : Rd → R

whose values h(θ) cannot be computed directly at a reasonable cost but which admits
a probabilistic representation of the form h(θ) = EH(θ, Z) where the Borel function
H : Rd ×Rd → Rq can be easily computed and the random variable Z can be simulated
at a low computational cost. One defines a recursive procedure based on the function H
as follows

θn+1 = θn − γn+1

(
H(θn, Zn+1) + rn+1

)
, n ≥ 0, θ0∈ Rd, (1.1)

where (γn)n≥1 is a sequence of steps decreasing a.s. to zero at appropriate rates, the
sequence (rn)n≥1 is a sequence of remainder terms and the sequence (Zn)n≥1 is i.i.d.
with the same distribution as Z. This procedure can be rewritten as a perturbation of
the “regular” deterministic zero search procedure by a martingale increment term since
it also reads

θn+1 = θn − γn+1

(
h(θn) + ∆Mn+1 + rn+1

)
, n ≥ 0, θ0∈ Rd, (1.2)

where

∆Mn+1 = H(θn, Zn+1)− E [H(θn, Zn+1) | FZn ] = H(θn, Zn+1)−
[
EH(θ, Z)

]
|θ=θn

= H(θn, Zn+1)− h(θn)

is a martingale increment (with respect to the natural filtration FZ = σ(θ0, Z1, . . . , Zn),
n ≥ 1). The basic paradigm of SA is that, under appropriate assumptions, the sequence
converges a.s. to a zero θ∗ of the mean field function h. Finding out the assumptions
on h, H, and establishing its rate of convergence is the main purpose of SA. Useful
results – a toolbox – are available in the Appendix.

Although the analysis of these urn models with nonlinear drawing rules is more
demanding than those with linear drawing rules, this SA “toolbox” turns out to be still
very efficient (see also [5] and the references therein). SA deals with the asymptotic
behavior of zero search stochastic recursive procedures and goes back to the seminal
paper by Robbins & Monro in the 1950’s. Since then, this theory has been developed
extensively by many authors (see [27, 28, 9, 17, 18] and the references therein for an
overview and historical notes) and has been applied in various directions (Automatic
Control, Mathematical Psychology, Artificial Neural Networks, Statistics, Stochastic
Control, Numerical Probability, etc.).

Considering nonlinear drawing rules leads, once the evolution of the urn composition
is written as a recursive stochastic algorithm of the form (1.1), to consider situations
where the mean field function h of the procedure has several zeros, also called equilib-
rium points in SA theory. Such an equilibrium point represents in practice a potential
asymptotic composition of the urn. In the linear drawing rule setting, it turned out that
this asymptotic urn composition is unique (see [32]).

Among these multiple equilibrium points, some are local attractors (or “targets”), but
others are “parasitic” ones (repeller, saddle points, etc.) and a.s. cannot appear as an
asymptotic urn composition of the procedure. These terms should be understood in the
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Nonlinear randomized urn models: a stochastic approximation viewpoint

sense of the Ordinary Differential Equation (ODE) attached to the mean field function h,
namely θ̇ = −h(θ).

This second aspect, in SA, called the ODE method is the deterministic side of the
theory, essentially borrowed from perturbed dynamical system theory (see [36, 6, 19]
among many others) and allows to improve the results of martingale methods. This
approach which analyzes the asymptotic pseudo-trajectories of the ODEh ẏ = −h(y) and
their shadowing properties to follow the terminology developed in [8, 6], often appears
as a second “refined” step in the analysis. As for the rate, the analogy between the
CLT for SA and urn models is striking. The CLT for SA, which itself relies on the
CLT for arrays of martingale increments, is clearly a strikingly efficient shortcut to
establish the rate of convergence of urn models (see [11, 32, 40]). In the analysis of
this new model of skewed urns presented in this paper, we are facing settings with – a
priori – multiple targets for the urn composition (by target we mean zero of ODEh). To
eliminate those which are parasitic, we take advantage on a third aspect of SA theory,
not yet called upon so far to our best knowledge. These are results which ensure the
a.s. non-convergence of a stochastic algorithm toward a noisy equilibrium point (called
“traps” in [12], see also [37, 35]), but also, in some situations, the a.s. non-convergence
toward noiseless equilibrium points (see [31, 29]).

Let us be more precise on the urn model under consideration in this paper. We
consider an urn containing balls of (at most) d different types (or colors). All random
variables involved in the model are supposed to be defined on the same probability
space (Ω,A,P). Denote by Y0 = (Y i0 )i=1,...,d ∈ Rd+ \ {0} the initial composition of the urn,
where Y i0 is the number of balls of type i ∈ {1, . . . , d} (of course a more natural, though
not mandatory, assumption would be Y0∈ Nd \ {0}). The urn composition at draw n is
denoted by Yn = (Y in)i=1,...,d. At the nth stage, one draws randomly (according to a law
defined further on) a ball from the urn with instantaneous replacement. If the drawn ball
is of type j, then the urn composition is updated by adding Dij

n balls of type i, for every
i ∈ {1, . . . , d}. The procedure is then iterated. The urn composition at stage n, modeled
by an Rd-valued vector Yn, satisfies the following recursive updating rule between times
n and n+ 1:

Yn+1 = Yn +Dn+1Xn+1, n ≥ 0, Y0∈ Rd+ \ {0}, (1.3)

where Dn = (Dij
n )1≤i,j≤d is the addition rule matrix and Xn : (Ω,A,P) → {e1, · · · , ed}

models the type of the drawn ball at time n ({e1, · · · , ed} denotes the canonical basis of
Rd with ej standing for type j). We assume that there is no extinction i.e. Yn∈ Rd+ \ {0}
a.s. for every n ≥ 1: This is always the case if all the entries Dij

n are a.s. non-negative
(see [32]). The filtration of the model is defined by Fn = σ(Y0, Xk, Dk, 1 ≤ k ≤ n), n ≥ 0.

The generating matrices are defined as the Fn-compensator of the additions rule
sequence i.e.

Hn =
[
E
(
Dij
n | Fn−1

)]
1≤i,j≤d , n ≥ 1. (1.4)

We assume that the sequence of generating matrices converges a.s. toward a limiting
generating matrix denoted by H.

Moreover, we make the assumption that Dn and Xn are conditionally independent
given Fn−1 (see (A2) further on). Such a drawing procedure can be performed by using
an exogenous i.i.d. sequence (Un)n≥1 of random variables with uniform distribution on
the unit interval, independent of the sequence (Dn)n≥1, to simulate the above conditional
probabilities.

In this paper, we study two different drawing rules, both associated to a skewing
function f : R+ → R+. We first and mostly investigate the asymptotic behavior of the
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following skewed drawing rules of the form

∀i ∈ {1, . . . , d}, P
(
Xn+1 = ei

∣∣Fn) =
f
(
Y in/(n+ w(Y0))

)∑d
j=1 f(Y jn/(n+ w

(
Y0))

) , n ≥ 0, (1.5)

where w(y) = y1 + · · ·+ yd denotes the weight of a vector y = (y1, . . . , yd)t∈ Rd+ and the
function

f : R+ → R+ is non-decreasing with f(0) = 0 and f(1) = 1. (1.6)

The function f usually satisfies an additional convexity or concavity property.
This drawing rule is called empirical frequency based normalized f -skewed drawing

rule. It is is nonlinear if and only if f 6= IdR+
. When f = IdR+

, we retrieve the linear
drawing rule based on the regular empirical frequency of the types in the urn (see [2, 32]
among others). Most part of the paper (Sections 2, 3, 4, 5) are devoted to the study of
this randomized urn model.

We will see at the end of the paper that results obtained for this family of empirical
frequency-based drawing rules allows us to elucidate a second – somewhat more natural –
way to skew the drawing, called distribution based normalized f -skewed rule. It consists
in changing the conditional distribution of the random variable Xn+1 based this time on
the number of balls of each type in the urn, namely

∀i ∈ {1, . . . , d}, P
(
Xn+1 = ei

∣∣Fn) =
f(Y in)∑d
j=1 f(Y jn )

, n ≥ 0, (1.7)

where the function

f : R+ → R+ is non-decreasing, with f(0) = 0 and is regularly varying with index α > 0

(1.8)
(i.e. for every t > 0, f(tx)

f(x) −→
x→+∞

tα).

Let us remark that, when f = IdR+
, both updating rules (1.5) and (1.7) coincide. In

fact, the normalized f -skewed distribution drawing rule appears as a by-product of the
first one (see Section 6.1) by noting that, if f is bounded on every interval (0,M ] and
regularly varying with index α > 0, then f(tx)

f(x) −→x→∞ tα uniformly in t on every interval

(0, T ], 0 < T < +∞ (see Theorem 1.5.2 p.22 in [10]). Thus, if Yn
n+
∑d
i=1 Y

i
0

lies in a compact

set, then

max
1≤i≤d

∣∣∣∣∣ f(Y in)

f(n+
∑d
i=1 Y

i
0 )
−

(
Yn

n+
∑d
i=1 Y

i
0

)α∣∣∣∣∣ −→n→+∞
0.

Then, we conclude by applying the result related to the f -skewed empirical frequency
based drawing rule to the functions x 7→ xα, α > 0.

Given the generality of the model it turns out to be out of reach to entirely solve
the asymptotic behavior of this skewed urn model in terms of convergence of the urn
composition. We only obtained partial results of variable generality according to the
convexity/concavity of the skewing function f . Thus, in the convex setting, we showed
that even with two urns, a bifurcation phenomenon occurs. The main a.s. convergence
results are the following:

• If the skewing function f is strictly concave and if the generating matrix H is
bi-stochastic, then (see Proposition 2.14), the urn composition satisfies

Ỹn =
Yn

n+ w(Y0)
−→

n→+∞
1/d.
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• If the skewing function f is convex, H is bi-stochastic (resp. irreducible) with µmax

its eigenvalue with the second highest real part satisfying <e(µmax) > df(1/d)
f ′(1/d) (resp.

< 1) and if y(d) = 1/d is a “noisy enough” zero of h, then (see Proposition 2.15),
then

P
(
Ỹn ∼

Yn
n+ w(Y0)

−→
n→+∞

y(d)
)

= 0.

• If d = 2 and f is convex, then (see Theorem 3.10), Yn
w(Yn) converges a.s. toward one

of the stable zeros of the mean function h which can be 1, 2 or even 3, depending
on the urn selection probabilities.

The interpretation of the skewing functions in terms of risk aversion is the following in
the first model: when f is concave, which corresponds to a superlinear reinforcement, the
resulting strategy is risk averse and we will see that it tends to equalize the asymptotic
urn composition whatever the (irreducible) generating matrix H is. As a consequence, it
has a diversifying effect. Conversely a convex skewing function, which corresponds to a
sublinear reinforcement, has a reinforcement effect and tends to amplify the effect of
the limiting generating matrix H. This is illustrated by the results established infection
of the two-urn model (see Section 3)) and the application to adaptive asset allocation in
Section 6.2.

In this paper we both randomize a single urn in the sense that the addition rule
matrix (defined by (1.4)) itself can be random (as introduced in [25, 3, 4] and studied
with SA theory in [32]) and investigate wide non-parametric classes of convex and
concave drawing rules (see (1.5) and (1.7)). A.s. convergence of the urn composition
and that of the drawing rule are proved as well as their convergence rate, either in a
weak or strong sense, depending on the structure of the updating rules. In the particular
case of Pólya’s urns (i.e. when the addition rule matrix Dn is equal to identity), but
implemented here with a convex skewed drawing rule (for generalized Pólya urn, see for
example [24, 41, 16]), “noiseless traps” may appear (i.e. unstable equilibria, noiseless
since they lie at the boundary of the state space). To determine whether they are
parasitic, we develop a dedicated approach, close in spirit to that introduced in [31]
and [29] on the analysis of adaptive bandit algorithms where the authors establish a
kind of “oracle” inequality relying on a specified martingale (see Lemma 5.4 further
on). These results highlight the efficiency of SA theory, even in presence of noiseless
repulsive equilibrium points.

Recently, a system of Pólya’s urns with graph based interactions and a “power
drawing” rule has also been investigated using SA techniques in [7, 15, 39] and the a.s.
convergence of the normalized urn composition is established.

Generalized Pólya Urn models (GPU ) have been widely studied in the literature with
different points of view: “pure” martingale method (see e.g. [21]), algebraic approach
(see e.g. [38]), reinforcement process (see e.g. [38]), branching process (see e.g. [25]),
stochastic approximation (see for example [5, 34]), contraction method (see [26]). These
models also have applications to many areas: Biology, random walks and clinical trials,
statistics and learning, computer science, psychology, economics or finance for instance
(see [41]).

In these adaptive models, the key point is the updating rules of the urn composition
after each drawing given here by (1.5) and (1.7). Basically, we show that (a normalized
version of) this urn composition can be formulated as a classical recursive stochastic
algorithm with step γn = 1

n+w(Y0) where w(Y0) denotes the number of balls in the urn
at time 0. Doing so, we will be in position to first establish the a.s. convergence of
the procedure by calling upon the so-called Ordinary Differential Equation method
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(ODE method) toward a finite set of equilibrium points (but usually not reduced to a
single point). As a second step, we rely on a.s. non-convergence results toward traps
(see [12, 17]) and on a.s. convergence in presence of multiple targets (see [8, 17, 19]).
As a third step, we entirely elucidate the rate of convergence (namely a weak rate
through a CLT or an a.s. rate) by using the Stochastic Differential Equation method
(SDE method, see e.g. [18, 9]). The three main theoretical results from SA are recalled
in a self-contained form in the Appendix. Proofs of such results can be found in classical
textbooks on SA ([9, 17, 18, 28]). As for the CLT , they go back to [27] and [11], see
also [40] more recent results. We will verify once again how powerful these general
theorems are to solve such questions, sparing tedious computations and repetitive
proofs.

Among many fields of application, we present in Section 6 an adaptive asset allocation
procedure based on a reinforcement principle relying on non-linear randomized urns,
illustrated by a first numerical test. One may also consider a similar procedure as a
strategy to update the composition of a portfolio or even a whole fund, based on the
(recent) past performances of the assets.

The paper is organized as follows. Section 2 presents the framework of skewed
randomized urn models with the required assumptions on both the addition rule matrices
and the generating matrices. After rewriting the dynamics of the urn composition as an
SA procedure in Section 2.2, we analyze in Section 2.4 the equilibrium points and their
stability for the associated ODE when the f -skewed drawing rule is convex/concave. An
in-depth analysis of the 2-color urn is carried out in Section 3. We exhibit several kinds
of behaviors: When f is concave, there is always a unique stable equilibrium point and
when f is convex three generic situations may occur with one, tow or three equilibrium
points (one being parasitic in the last two settings). By calling upon SA result on traps,
we prove the a.s. convergence towards one of the attracting equilibrium points; then
we derive from the SDE method all the possible rates of convergence. In Section 5,
we study the case of Pólya urns – urn dynamics whose addition rule matrix equals to
identity – updated by a skewed drawing rule. We rely on methods borrowed from the
analysis of adaptive bandit algorithms to prove the convergence towards the “targeted
urn composition” and the non-convergence towards traps. Finally, in Section 6, we first
transfer our results to the second type of drawing rule and we conclude by an application
to portfolio allocation.

Notations. For u = (ui)i=1,...,d ∈ Rd, (· | ·) denote the Euclidean inner product and

‖u‖ its related norm, w(u) =
∑d
k=1 u

k denotes its “weight”, ut denotes its transpose,
u ⊗ v = [uivj ]i,j=1,...,d; |||A||| denotes the operator norm of the matrix A ∈ Md,q(R) with
d rows and q columns with respect to the two canonical Euclidean norms. When d=q,
Sp(A) denotes the set of eigenvalues of A. 1=(1 · · · 1)t denotes the unit column vector
in Rd, Id denotes the d× d identity matrix, diag(u) = [δijui]1≤i,j≤d, where δij stands for

the Kronecker symbol and Sd =
{
u ∈ Rd+ :

∑d
i=1 u

i = 1
}

denotes the canonical simplex.

Ed,h = {y ∈ Sd : h(y) = 0} denotes the set of zeros of a function h (defined on a
neighborhood of Sd) called equilibrium points in reference to the ODE ẏ = −h(y). h|A
denotes the restriction of a function h on a subset A of its definition set.

2 Skewed randomized urn models

2.1 Main assumptions and definitions

With the notations and definitions described in the introduction, we are in position
to formulate the main assumptions needed to establish the a.s. convergence of the urn
composition.
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(A1)≡



(i) Addition rule matrix: For every n ≥ 1, the matrix Dn a.s. has non-negati-
ve entries.

(ii) Generating matrix: For every n ≥ 1, the generating matrix

Hn = (Hij
n )1≤i,j≤d a.s. satisfies: ∀ j ∈ {1, . . . , d},

d∑
i=1

Hij
n = c > 0.

(iii) Starting value: The starting urn composition vector Y0∈ Rd+ \ {0}.

The constant c is known as the balance of the urn. In fact, we may assume without
loss of generality, up to a renormalization of Yn, that c = 1. As a matter of fact, we set
for every n ≥ 0, Y cn = Yn

c and Dc
n+1 = Dn+1

c where (Yn, Xn, Dn) satisfies (1.3), then the
couple (Y cn , Xn, D

c
n)n≥1, still satisfies the dynamics (1.3), namely

Y cn+1 = Y cn +Dc
n+1Xn+1, n ≥ 0, Y c0 ∈ Rd+ \ {0},

whereas Hc
n = E[Dc

n|Fn−1] satisfies now (A1)-(iii) with c = 1 i.e. Hc
n is co-stochastic (in

the sense that its transpose is a stochastic matrix). Assumptions (A1)-(i)&(iii) combined
with the drawing rule (1.3) ensure that Yn ∈ Rd+ \ {0}, for every n ≥ 0.

From now on, throughout the paper, we will consider this normalized balanced
version, still designated by Yn and Dn for convenience (i.e. we drop the superscript c).

(A2)≡


(i) The addition rule Dn and the drawing procedure Xn are conditionally

independent given Fn−1.

(ii) ∀j ∈ {1, . . . , d}, supn≥1E
[∥∥D·jn ∥∥2 | Fn−1

]
< +∞ a.s.

⇐⇒ ∀ i, j ∈ {1, . . . , d}, supn≥1E
[
(Dij

n )2 | Fn−1

]
< +∞ a.s.

where D· jn = (Dij
n )i=1,...,d (column vector).

(A3) There exists an irreducible d× d matrix H (with non-negative entries) such that

Hn
a.s.−→

n→+∞
H and

∑
n≥1

|||Hn −H|||2 < +∞ a.s. (2.1)

H is called the limiting generating matrix.

The central object of interest of this paper will be the (quasi-)normalized composition
of the urn at time n defined by

Ỹn =
Yn

n+ w(Y0)
(2.2)

(where the weight function is defined in the introduction). The reason for introducing
such a renormalization factor is that, as established further on in the next subsection,

∀n ≥ 0, E [w(Yn)] = n+ w(Y0).

Then, one may guess that Ỹn is close to the simplex Sd =
{
u∈ Rd+ :

∑d
i=1 u

i = 1
}

and will

possibly asymptotically lie in it. Even note that when the matrices Dn are themselves
co-stochastic, Ỹn is Sd-valued. Therefore, this is a natural deterministic way to normalize
the urn composition vector.

Definition 2.1 (Skewing functions and skewed drawing rules). (a) A function f : R+ → R+

satisfying

f non-decreasing, convex or concave, f(0) = 0 and f(1) = 1 and {f > 0} = (0,+∞)

(2.3)
is called a skewing function.
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(b) Assuming (A1)-(i)&(iii), the f -skewed drawing rule (Xn)n≥1 induced by a skewing
function f is defined by

∀ i ∈ {1, . . . , d}, P
(
Xn+1 = ei

∣∣Fn) =
f(Ỹ in)∑d
j=1 f(Ỹ jn )

, n ≥ 0, (2.4)

where Ỹn is defined by (2.2), and (Yn, Xn, Dn)n≥1 satisfies (1.3).

Of course, such a drawing rule is really skewed only if f 6≡ IdR+
. Note that this

definition is consistent under (A1)-(i)&(iii) since Yn∈ Rd+ \ {0}, for every n ≥ 0 so that

Ỹn∈ Rd+ \ {0}.
We will extensively use that a skewing function f always satisfies that the function

ξ ∈ R+ 7→ f(ξ)
ξ is monotonic (non-decreasing if f is convex, non-increasing if f is concave)

and strictly monotonic if the concavity/convexity of f is itself strict.

2.2 Representation as a stochastic algorithm

The starting point, like in [32], is to reformulate the dynamics (1.3)-(1.5) as a recursive
stochastic algorithm in order to take advantage of classical results from SA theory to
elucidate the asymptotic properties (a.s. convergence) of both the urn composition Yn
and the ball drawing rule Xn. To do so, we start from (1.3) with Y0∈ Rd+ \ {0}. For every
n ≥ 0, we note that

Yn+1 = Yn +Dn+1Xn+1 = Yn + E [Dn+1Xn+1 | Fn] + ∆Mn+1, (2.5)

where

∆Mn+1 := Dn+1Xn+1 − E [Dn+1Xn+1 | Fn] (2.6)

is an Fn-local martingale increment (integrability follows from (A2)-(ii)). By the defini-
tion (1.4) of the generating matrix Hn, we have, owing to the conditional independence
assumption (A2)-(i),

E [Dn+1Xn+1 | Fn] =

d∑
i=1

E
[
Dn+11{Xn+1=ei} | Fn

]
ei =

d∑
i=1

E [Dn+1 | Fn]P
(
Xn+1 = ei | Fn

)
ei

= Hn+1

d∑
i=1

f(Ỹ in)

w(f̃(Ỹn))
ei = Hn+1

f̃(Ỹn)

w(f̃(Ỹn))

where, for every y = (y1, . . . , yd)t∈ Rd+ \ {0},

f̃
(
(y1, . . . , yd)t

)
=
(
f(yi)

)
1≤i≤d∈ R

d
+ \ {0} (2.7)

is a column vector, so that

Yn+1 = Yn +Hn+1
f̃(Ỹn)

w(f̃(Ỹn))
+ ∆Mn+1. (2.8)

Now we can derive a stochastic approximation for the normalized urn composition

Ỹn =
Yn

n+ w(Y0)
, n ≥ 0. First, we have, for every n ≥ 0,

Yn+1

n+1+w(Y0)
=

Yn
n+w(Y0)

+
1

n+1+w(Y0)

(
Hn+1

f̃(Ỹn)

w(f̃(Ỹn))
− Yn
n+w(Y0)

)
+

∆Mn+1

n+1+w(Y0)
.

(2.9)
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Consequently, the sequence (Ỹn)n≥0, satisfies the canonical recursive stochastic approxi-
mation procedure starting from Ỹ0∈ Rd+ \ {0},

Ỹn+1 = Ỹn +
1

n+ 1 + w(Y0)

(
Hn+1

f̃(Ỹn)

w(f̃(Ỹn))
− Ỹn

)
+

1

n+ 1 + w(Y0)
∆Mn+1 (2.10)

or, equivalently,
Ỹn+1 = Ỹn − γn+1h(Ỹn) + γn+1 (∆Mn+1 + rn+1) (2.11)

where the mean field h : Rd \ {0} → Rd of the procedure is defined by

h(y) := y −H f̃(y)

w
(
f̃(y)

) , (2.12)

satisfying

E

[
Ỹn −H

f̃(Ỹn)

w(f̃(Ỹn))

∣∣∣∣∣ Ỹn = y

]
= y −H f̃(y)

w
(
f̃(y)

) .
The sequence γn := 1

n+w(Y0) , n ≥ 1, is its step parameter and

rn+1 := (Hn+1 −H)
f̃(Ỹn)

w(f̃(Ỹn))
is an Fn-adapted remainder term. (2.13)

Equation (2.11) shows that the urn dynamics can be viewed as a recursive zero search
algorithm suggesting to use the SA toolbox to elucidate its asymptotics.

2.3 Boundedness of the normalized urn composition

Our first task is to establish the a.s. boundedness of the sequence (Ỹn)n≥0. By
summing up the components of Ỹn in (2.8), we obtain

w(Yn+1) = w(Yn) +
w(Hn+1f̃(Ỹn))

w(f̃(Ỹn))
+ w(∆Mn+1).

Using that the transpose of the generating matrix Hn+1 is a stochastic matrix by (A1)-(ii)
(with c = 1), we obtain

w(Hn+1f̃(Ỹn)) =

d∑
i=1

(
Hn+1f̃(Ỹn)

)
i

=

d∑
i=1

d∑
j=1

Hij
n+1f(Ỹ jn ) =

d∑
j=1

(
d∑
i=1

Hij
n+1

)
f(Ỹ jn )

= w(f̃(Ỹn)). (2.14)

Consequently, for every n ≥ 0,

w(Yn+1) = w(Yn) + 1 + w(∆Mn+1). (2.15)

Let N0 = 0 and Nn :=
∑n
k=1Xk, n ≥ 1, denote the number of times each type of ball was

drawn between draws 1 and n. For every n ≥ 0,

Nn+1 = Nn +Xn+1 = Nn +
f̃(Ỹn)

w(f̃(Ỹn))
+ ∆M̃n+1,

where ∆M̃n+1 := Xn+1 − E [Xn+1 | Fn] = Xn+1 −
f̃(Ỹn)

w(f̃(Ỹn))

is an Fn-martingale increment. Thus, Ñn :=
Nn
n

satisfies, still for every n ≥ 0,

Ñn+1 = Ñn −
1

n+ 1

(
Ñn −

f̃(Ỹn)

w(f̃(Ỹn))

)
+

1

n+ 1
∆M̃n+1.
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Proposition 2.2. Let (Yn)n≥0 be the urn composition sequence defined by (1.3)-(1.5).

(a) Under the assumptions (A1) and (A2),

w(Yn)

n+ w(Y0)

a.s.−→
n→+∞

1.

(b) If the addition rule matrices Dn themselves are co-stochastic, then w(Yn) = n+w(Y0),
and the sequence (Ỹn)n≥0 lives in the simplex Sd.

Proof. (a) We derive from the identity

Dn+1Xn+1 =

d∑
j=1

D· jn+11{Xn+1=ej}, n ≥ 0,

that

‖Dn+1Xn+1‖2 =

d∑
j=1

∥∥∥D· jn+1

∥∥∥2

1{Xn+1=ej}.

Hence, owing to (A2)-(ii),

E
[
‖Dn+1Xn+1‖2 | Fn

]
=

d∑
j=1

E

[∥∥∥D·jn+1

∥∥∥2

| Fn
]
P
(
Xn+1 = ej | Fn

)
≤ sup

n≥0
sup

1≤j≤d
E

[∥∥∥D·jn+1

∥∥∥2

| Fn
]
< +∞ a.s.

Consequently supn≥1E
[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s. and thanks to the strong law of large

numbers for conditionally L2-bounded local martingale increments, we have Mn

n −→
n→+∞

0

a.s. Finally, it follows from (2.15) that

w(Yn)

n+ w(Y0)
= 1 +

w(Mn)

n+ w(Y0)
−→ 1 a.s. n→ +∞.

(b) In this case w(Mn) = 0, consequently for every n ≥ 0, w(Ỹn) = 1.

2.4 Existence of equilibrium points

As written in (2.11), the urn dynamics appears as a recursive zero search algorithm
with mean field h : Rd \ {0} → Rd whose potential limiting points all lie in the canonical
simplex Sd defined by

Sd = w−1{1} =
{
y ∈ Rd+ |w(y) = 1

}
.

More generally, since the components of Ỹn = Yn
n+w(Y0) are non-negative by construction

and – under (A1)-(A2) – w(Ỹn) = w(Yn)
n+w(Y0) −→

n→+∞
1 a.s., it is clear that P(dω)-a.s., the

sequence (Ỹn(ω))n≥0 is bounded and that the set Y∞(ω) of its limiting values lies in the
simplex Sd. Consequently, we search Sd-valued equilibrium points i.e. points y ∈ Sd such
that h(y) = 0 where h is given by (2.12).

Throughout this section f denotes a skewing function in the sense of (2.3) and H is a
deterministic (co-stochastic) matrix, intended to be a limiting generating matrix as soon
as it is irreducible.

EJP 24 (2019), paper 98.
Page 10/47

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP312
http://www.imstat.org/ejp/


Nonlinear randomized urn models: a stochastic approximation viewpoint

Proposition 2.3. Assume the skewing function f satisfies (2.3).

(a) Let H be a deterministic co-stochastic matrix. The function ϕ
H

: [0, 1]d \ {0} → Sd
defined by ϕ

H
(y) = H f̃(y)

w
(
f̃(y)
) has at least one fixed point. The mean field h defined

by (2.12) has at least one zero y∗ and {h = 0} ⊂ Sd. If H is bi-stochastic, then y(d) := 1
d1

is always such a zero of h.

(b) If, furthermore, for every i, j ∈ {1, . . . , d}, Hij > 0, then for every zero y∗ of h in Sd,

∀ i ∈ {1, . . . , d}, min
1≤j≤d

Hij ≤ y∗,i ≤ max
1≤j≤d

Hij .

Proof. (a) The function ϕ
H

is well-defined on [0, 1]d \{0} since w
(
f̃(y)

)
> 0 on [0, 1]d \{0}

owing to the fact that f > 0 on (0, 1). The function ϕ : y 7→ f̃(y)

w(f̃(y))
clearly maps [0, 1]d\{0}

into Sd. So does ϕ
H

since H is co-stochastic and subsequently maps Sd into Sd. Since
h(y) = y − ϕ

H
(y) by (2.12), it follows that {h = 0} ⊂ Sd.

Now, both functions y 7→ f̃(y) and y 7→ w
(
f̃(y)

)
are continuous on Sd. Moreover

w
(
f̃(y)

)
≥ f

(
1
d

)
> 0 since, for any y = (y1, . . . , yd)t∈ Sd, there exists i0 ∈ {1, . . . , d} such

that yi0 ≥ 1
d so that w

(
f̃(y)

)
≥ f(yi0) ≥ f

(
1
d

)
> 0. Therefore, ϕ

H
is continuous and maps

Sd into Sd. Then, by Brouwer’s Theorem, ϕH has at least one fixed point i.e. {h = 0} 6= ∅.
The last claim is obvious since ϕ(y(d)) = y(d) and H1 = 1.

(b) Let i∈ {1, . . . , d}. It follows from the identity
d∑
j=1

Hij f(y∗,j)

w(f̃(y∗))
= y∗,i, that min

1≤j≤d
Hij≤

y∗i≤ max
1≤j≤d

Hij since f is non-negative.

Proposition 2.4 (Bi-stochastic case). Let Ed,h := {h = 0} =
{
y∈ Rd+ \ {0} : h(y) = 0

}
⊂

Sd denote the (non-empty) set of equilibrium points.

(a) If H is bi-stochastic, then y(d) := 1
d1∈ Ed,h.

(b) If H=Id, then
{
ẽ
I
, I ⊂ {1, . . . , d}, I 6= ∅

}
⊂ Ed,h, where ẽ

I
= 1
|I|
∑
i∈I e

i with (ei)1≤i≤d

the canonical basis of Rd.

(c) If H=Id and f is a strictly convex or strictly concave skewing function, then

Ed,h =
{
ẽ
I
, I ⊂ {1, . . . , d}, I 6= ∅

}
.

(d) If H is bi-stochastic and irreducible, then Ed,h ⊂
◦
Sd =

{
y ∈ (0, 1)d :

∑d
i=1 y

i = 1
}

.

(e) If H is bi-stochastic, irreducible and f is strictly concave, then Ed,h =
{

1
d1
}

.

Proof. (a) Set y(d) = 1
d1 ∈ Sd. Thus,

f( 1
d )

d·f( 1
d )

= 1
d since f

(
1
d

)
> 0 and, consequently,

d∑
j=1

Hij 1

d
= 1× 1

d
for every i∈ {1, . . . , d}, therefore h

(
y(d)

)
= y(d)− y(d) = 0.

(b) Let I 6= ∅. Then

f(ẽi
I
) =

{
0 if i /∈ I

f
(

1
|I|

)
> 0 if i ∈ I .

Hence, w(f̃(ẽ
I
)) = |I|f

(
1
|I|

)
as well. Consequently h(ẽ

I
) = 0.

(c) Let y∗ ∈ Ed,h. Assume that there exists y∗,i0 , y∗,i1 such that 0 < y∗,i0 < y∗,i1 ≤ 1. Then

y∗,i0 = f(y∗,i0 )

w(f̃(y∗))
and y∗,i1 = f(y∗,i1 )

w(f̃(y∗))
so that f(y∗,i0 )

y∗,i0
= f(y∗,i1 )

y∗,i1
= w(f̃(y∗)). Now, if f or −f
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is strictly convex, then the function ξ ∈ R+ 7→ f(ξ)
ξ is strictly monotonic since f(0) = 0.

This yields a contradiction.
As a consequence, there exists ξ0 ∈ (0, 1] such that y∗,i ∈ {0, ξ0}, i = 1, . . . , d.

Consequently, if Iξ0 = {i : y∗,i = ξ0}, w(f̃(y∗)) = |Iξ0 |f(ξ0) and, for every i ∈ Iξ0 ,
f(y∗,i)

w(f̃(y∗))
= f(ξ0)
|Iξ0 |f(ξ0) = 1

|Iξ0 |
, i.e. h(y∗) = 1

|Iξ0 |
∑
i∈Iξ0

ei. Hence, y∗ = 1
|Iξ0 |

∑
i∈Iξ0

ei so that

ξ0 = 1 and y∗∈
{
ẽI , I ⊂ {1, . . . , d}, I 6= ∅

}
.

(d) Let i0 be such that y∗,i0 = mini y
∗,i. If y∗ /∈

◦
Sd, then y∗,i0 = 0 so that

d∑
j=1

Hi0j
f(y∗,j)

w(f̃(y∗))
= 0

and i0∈ I∗0 = {i : y∗,i = 0} 6= ∅. Let I∗>0 = I \ I∗0 = {j : y∗,j > 0} 6= ∅ since y∗∈ Sd. Let
us show by induction that I∗>0 = {j : y∗,j > 0} and I∗0 = {j = y∗,ij = 0} are not connected
by any power of H which will contradict the irreducibility of H.

Let i0∈ I∗0 and j0∈ I∗>0, then the above equality implies Hi0j0 = 0 since f(y∗,j0) > 0.
Now assume that Hk

ij = 0 for every (i, j)∈ I∗0 × I∗>0. Then

Hk
i0j0 =

d∑
`=1

Hi0`H
k−1
`j0

=
∑
`∈I∗>0

Hi0`H
k−1
`j0

+
∑
`∈I∗0

Hi0`H
k−1
`j0

=
∑
`∈I∗0

Hi0`H
k−1
`j0

= 0.

This contradicts the irreducibility of H since i0 and j0 are not connected through a power
of H.

(e) We know that 1
d1 ∈ Ed,h and that, any y∗ ∈ Ed,h, mini y

∗,i > 0. Let i0 be such that
y∗,i0 = mini y

∗,i. Then

d∑
j=1

Hi0jf(y∗,j) ≥
d∑
j=1

Hi0jf(y∗,i0) = f(y∗,i0)

since H is stochastic. On the other hand, using the concavity of f , we derive that

∀ y∈ Sd, w
(
f̃(y)

)
= d

d∑
j=1

1

d
f(yj) ≤ d · f

(1

d

d∑
j=1

yj

)
= d · f

(1

d

)
.

As a consequence

y∗,i0 =

∑d
j=1H

i0jf(y∗,j)

w(f̃(y∗))
≥ f(y∗,i0)

d · f
(

1
d

) ,
which can be rewritten as f(y∗,i0 )

y∗,i0
≤ f(1/d)

1/d . As ξ 7→ f(ξ)
ξ is (strictly) decreasing since f is

strictly concave and f(0) = 0, it implies that y∗,i0 ≥ 1
d which in turn implies that y∗ = 1

d1

since y∗ ∈ Sd.

Remark 2.5. When H is not bi-stochastic but simply co-stochastic, we have no closed

form for an
◦
Sd-valued equilibrium and we could not manage to establish uniqueness

even if f is (strictly) concave.

Note that, as (f̃ and w are defined on [0, 1]d \ {0}, f̃
(
[0, 1]d \ {0}

)
⊂ [0, 1]d \ {0} and

w
(
f̃(y)

)
> 0 on [0, 1]d \ {0} since f > 0 on (0, 1). Hence on may define the function

ϕ : y 7→ f̃(y)

w(f̃(y))
on [0, 1]d \ {0}. (2.16)
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Lemma 2.6. If f is differentiable on in the neighbourhood of 1
d , then the functions f̃ ,

w ◦ f̃ and ϕ defined on [0, 1]d \ {0} are bounded on (0, 1]d and the last two functions
are differentiable in the neighbourhood of y(d) = 1

d1. Moreover, ϕ(y(d)) = y(d) and the
Jacobian of ϕ at y(d) is given by

Jϕ(y(d)) =



a b . . . . . . b

b a b . . . b
... b

. . .
. . .

...
...

...
. . .

. . . b

b b . . . b a

 with a =
f ′(1/d)(d− 1)

d2f(1/d)
and b = − f ′(1/d)

d2f(1/d)
= − a

d− 1
.

As a symmetric matrix, Jϕ(y(d)) is diagonalizable in the orthogonal group O(d,R) with

eigenvalues 0 (associated to the eigenvector 1) and f ′(1/d)
d f(1/d) with eigenspace the hy-

perplane 1⊥ =
{
u ∈ Rd :

∑d
i=1 u

i = 0
}

. Equivalently, if Proj⊥1⊥ denotes the orthogonal

projection on 1⊥, one has

Jϕ(y(d)) =
f ′(1/d)

d f(1/d)
· Proj⊥1⊥ . (2.17)

Proof. If y ∈ (0, 1)d and f is differentiable in the neighborhood of y1, . . . , yd, then ϕ is
differentiable at y and

∂ϕi

∂yj
(y) = −f(yi)f ′(yj)

w
(
f̃(y)

)2 + δij
f ′(yi)

w
(
f̃(y)

) , 1 ≤ i, j ≤ d. (2.18)

The form of Jϕ(y(d)) follows. Elementary and classical computations show that, for every
real numbers a, b,

det



a b . . . . . . b

b a b . . . b
... b

. . .
. . .

...
...

...
. . .

. . . b

b b . . . b a

 = (a− b)d−1(a+ b(d− 1)),

which in turn implies that the characteristic polynomial of Jϕ(y(d)) is given by (a− b−
λ)d−1(a+ b(d− 1)− λ) so that the eigenvalues are

λ0 = a+ b(d− 1) = 0 (order 1) and λ1 = a− b =
f ′(1/d)

df(1/d)
(order d− 1).

The eigenspace associated to λ0 is clearlyR·1 and that associated to λ1 is 1⊥ =
{
u ∈ Rd :∑d

i=1 u
i = 0

}
, so that Jϕ(y(d))|1⊥ = λ1Id|1⊥ and Jϕ(y(d)) = f ′(1/d)

d f(1/d) · Proj⊥1⊥ .

To go beyond and provide convergence results, especially in the bi-stochastic case,
we will rely on an important tool in SA theory, the ODE method. This method makes
the connection between the asymptotic behaviour of the stochastic algorithm with mean
field h with that of ODEh ≡ θ̇ = −h(θ) (for the results on this theory, we refer to the
Appendix).

Proposition 2.7. (a) From any ξ ∈ Sd, there exists at least one Sd-valued solution
(y(ξ, t))t∈R+

to ODEh starting from ξ.

(b) Assume that the skewing function f is Lipschitz continuous on any closed interval

of (0, 1]. Then, from any ξ ∈
◦
Sd = Sd ∩ (0, 1]d, there exists a unique solution to ODEh

starting from ξ, denoted (Φ(ξ, t))t∈R+
is
◦
Sd-valued.
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Remark 2.8. If f is concave, then it is Lipschitz continuous on [η0, 1] with Lipschitz
coefficient f ′`(η0) ≤ 1 for every η0∈ (0, 1).

Proof. (a) The function h is clearly continuous on the compact set Sd → 1⊥ = {
∑d
i=1 u

i =

0} since it does not contain 0. Hence it is bounded. Let us show that it takes values
in 1⊥. By mimicking (2.14), we prove that, for any co-stochastic matrix (here H)
w(Hf̃(y)) = w

(
f̃(y)

)
for any y∈ Sd. Consequently, w

(
h(y)

)
= 0 i.e. h(y)∈ 1⊥. Then, note

that the Euler scheme of ODEh with step 1
n starting from ξ∈ Sd defined by

ȳnt k+1
n

= ȳnk
n
− 1

nh(ȳnk
n

) = (1− 1
n )ȳnk

n
+ 1

nH
f̃(ȳnk

n

)

w(f̃(ȳnk
n

))

is Sd-valued. Indeed, w
(
h(ȳnk

n

)
)

= 0 so that, by linearity, w(ȳnk+1
n

) = w(ȳnk
n

) = w(ȳn0
n

) =

w(ξ) = 1 is constant equal to 1. Moreover, one shows by induction thanks to the right
hand side of the above right equality that all components of ȳnk

n

are non-negative since

those of ξ∈ Sd are so. Then the interpolated functions defined by

ȳnt = ȳn0 −
∫ t

0

h
(
ȳns
)
ds, t ≥ 0, with s = k

n , s∈ [ kn ,
k+1
n )

are Sd-valued since the simplex is convex, K-Lipschitz continuous with K = K(h) =

supy∈Sd |h(y)|. Consequently, they are relatively compact for the convergence on compact
sets of R+ owing to the Arzela-Ascoli Theorem. Any limiting function y∞ of (ȳn)n≥1 is
Sd-valued and solution to ODEh. On the other hand, the Euler scheme converges owing
to Peano’s theorem to a solution of ODEh.

(b) Let η0∈ (0, 1
d ]. The function f is Lipschitz continuous on [η0, 1]. Hence the (canonical

extensions of) the functions f̃ and w(f̃) on [η0, 1]d are Lipschitz as well. Both are
also bounded. Moreover w

(
f̃(y)

)
≥ f

(
1
d

)
> 0 because for any y = (y1, . . . , yd)t ∈ Sd,

there exists i0 ∈ {1, . . . , d} such that yi0 ≥ 1
d so that w

(
f̃(y)

)
≥ f(yi0) ≥ f

(
1
d

)
> 0.

As a consequence, w(f̃) ≥ 1
2f
(

1
d

)
on a neigbourhood of Sd in [0, 1]d. Therefore, the

functions ϕ
H

: y 7→ H f̃(y)

w
(
f̃(y)
) from Sd ∩ [η0, 1]d to Sd and h = Id − ϕH from Sd ∩ [η0, 1]d to

{
∑d
i=1 u

i = 0} are Lipschitz continuous too in that neighbourhood. Since this holds for
every small enough η0, this guarantees the existence of an Sd-valued flow for ODEh on

Sd ∩ (0, 1]d =
◦
Sd.

Definition 2.9 (Stable equilibrium point). An element y∗ of Sd is a stable equilibrium for
ODEh ≡ ẏ = −h(y) on Sd if there is a (compact) neighborhood K∗ of y∗ in Sd such that

lim
t→+∞

sup
{∣∣y(ξ, t)− y∗

∣∣, ξ∈ K∗, y(ξ, ·) Sd-valued solution to ODEh, y(ξ, 0) = ξ
}

= 0

with a slight abuse of notation since possibly several solutions may start from ξ∈ ∂Sd.
See also Theorem A.2(b).

Remark 2.10. • If the Sd-valued flow of ODEh is well-defined in the neighborhood of y∗

in Sd, this boils down to showing that y(ξ, t) is Sd-valued and converges to y∗ as t→ +∞,
uniformly with respect to ξ in a (compact) neighborhood of y∗ in Sd.
• Since h is differentiable, an equilibrium y∗ is attractive if all the eigenvalues of
Jh(y∗)|1⊥ =

(
Id − HJϕ(y∗)

)
|1⊥ have (strictly) positive real parts, see [6]. If one of

these eigenvalues has a negative real part, then the equilibrium is unstable and, if all
eigenvalues have negative real parts, then the equilibrium is called a repeller.
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We recall the notation y(d) = 1
d introduced in Proposition 2.4. It is a zero of h when

H is bi-stochastic.

Proposition 2.11. Assume H is a bi-stochastic matrix. Then H1⊥ ⊂ 1⊥. Let λ1 =
f ′(1/d)
d·f(1/d) and let µmax be the eigenvalue of the restriction H|1⊥ with the highest real part.

(a) If <e(µmax) < 1
λ1

, then y(d) is a stable equilibrium of ODEh ≡ ẏ = −h(y). Thus, if(
λ1 ≤ 1 and 1 /∈ Sp(H|1⊥)

)
or (λ1 < 1) ,

then y(d) is a stable equilibrium.
In particular the above left condition is satisfied if H is irreducible and f is concave,

whereas the right one is always fulfilled if f is strictly concave over (0, 1/d).

(b) If <e(µmax) > 1
λ1

, then y(d) is unstable (it is even a repeller when H = Id). Note that

if f is convex (resp. strictly over (0, 1
d )), then λ1 ≥ 1 (resp. > 1).

Remark 2.12. • If λ1 > 1 (e.g. if f is strictly convex), then 1
λ1
< 1 and the two opposite

situations <e(µmax) < 1
λ1

and <e(µmax) > 1
λ1

may occur a priori i.e. y(d) may switch from
uniform stability to instability (see Section 3 for the two-type case: d = 2).

• Note that if f is strictly convex and 1∈ Sp(H|1⊥), then y(d) is always unstable.

Proof. (a) It follows from Lemma 2.6 that Jϕ(y(d)) = λ1Proj⊥1⊥ . Hence

Jh
(
y(d)

)
= Id − λ1HProj⊥1⊥ . (2.19)

Hence the restriction of Jh
(
y(d)

)
|1⊥ takes values in 1⊥ since H⊥ ⊂ 1⊥. Consequently,

Jh
(
y(d)

)
|1⊥ =

(
Id−λ1H)|1⊥ . It follows that Sp

(
Jh
(
y(d)

)
|1⊥
)

=
{

1−λ1µ, µ ∈ Sp(H|1⊥)
}
⊂

C.
Every µ∈ Sp(H) satisfies |µ| ≤ 1 since H is bi-stochastic. If λ1 < 1, then |λ1µmax| < 1

and consequently <e(1 − λ1µmax) > 0 which ensures that y(d) is attracting. The other
case follows likewise.

When H is irreducible, the eigenvalue 1 is simple owing to the Perron-Frobenius
Theorem so that 1 /∈ Sp(H|1⊥).

(b) If f is convex (and f > 0 on (0, 1)), then 0 < f(1/d) ≤ f ′(1/d)/d since f(0) = 0 so that
λ1 ≥ 1. This inequality is strict if f is strictly convex over (0, 1

d ).

Proposition 2.13. (a) If H is bi-stochastic and irreducible and f is strictly concave,
then ODEh has at least one solution starting from every ξ∈ Sd. The flow of ODEh ≡ ẏ =

−h(y), denoted by
(
y(ξ, t)

)
ξ∈
◦
Sd

, t ≥ 0, exists on
◦
Sd and is Sd-valued. Furthermore, still

with y(d) = 1
d ,

lim
t→+∞

sup
{∣∣∣y(ξ, t)− y(d)

∣∣∣, ξ∈ Sd, y(ξ, .) solution to ODEh, y(ξ, 0) = ξ
}

= 0.

(b) If H is simply bi-stochastic (and possibly not irreducible), then the flow, denoted by

y(ξ, t), converges toward y(d) for every ξ∈
◦
Sd.

Proof. (a) First, H being bi-stochastic and irreducible, it follows from Proposition 2.4
that Ed,h = {y(d)}. Let us denote by y(ξ, t) an Sd-valued solution starting from ξ∈ Sd and
by yi(ξ, t), i = 1, . . . , d its components.

Let ξ ∈ Sd\{y(d)} and let i(t) be the right continuous function such that yi(t)(ξ, t) =

minj y
j(ξ, t)∈ [0, 1

d ]. We know that yi(0)(ξ, 0) = ξi(0) < 1
d since ξ 6= y(d). Note that the
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function gi : t 7→ yi(t)(ξ, t) is continuous and right differentiable with a right derivative
given by

(gi)
′
r(ξ, t) =

d∑
j=1

Hi(t)j f(yj(ξ, t))

w(f̃(y(ξ, t)))
− yi(t)(ξ, t) ≥ 1× f(yi(t)(ξ, t))

w(f̃(y(ξ, t)))
− yi(t)(ξ, t).

Note that w(f̃(y(ξ, t))) ≤ d · f
(

1
d

)
since f is concave. It follows that

(gi)
′
r(ξ, t) ≥

f(yi(t)(ξ, t))

d · f
(

1
d

) − yi(t)(ξ, t) ≥ 0, (2.20)

since u 7→ f(u)
u is non-increasing (f is concave and f(0) = 0) and yi(t)(ξ, t) ≤ 1

d for every
t ≥ 0.

If ξi(0) = 0, then yi(t)(ξ, t) ≥ 0, for every t ≥ 0. Assume there exists ε0 > 0 such that
yi(t)(ξ, t) = 0 for every t∈ (0, ε0], then one derives from the integrated form of ODEh
that ∫ ε0

0

 d∑
j=1

Hi(t)j f(yj(ξ, s))

w(f̃(y(ξ, s)))

 ds = 0,

so that, as the above integrand is non-negative and continuous, the function s 7→∑d
j=1H

i(s)j f(yj(ξ,s))

w(f̃(y(ξ,s)))
≡ 0 on [0, ε0]. Let I0 = {i s.t. yi(ξ, ε0) = 0, 1 ≤ i ≤ d} and I1 = Ic0 .

Then, it follows that i(ε0)∈ I0 and Hi(ε0)j = 0, for every j∈ I1, which is not empty since∑
j y

j(ξ, t) = 1. Hence, reasoning like in Proposition 2.4(d), i(ε0) (and more generally
any element of I0) and I1 are not H-connected which contradicts the irreducibility.

Consequently, yi(t)(ξ, t) > 0, t∈ (0, ε0], i.e. y(ξ, t) lives in
◦
Sd and, consequently, lives in

◦
Sd

for every t ≥ 0 by monotonicity of yi(t)(ξ, t).

If ξi(0) > 0, the same conclusion follows simply from the monotonicity of yi(t)(ξ, t).

Finally, for every t > 0, yi(t)(ξ, t) is positive and increasing. We can integrate (2.20)
between a fixed ε > 0 and t > ε as follows

− log

(
d

ξi(0)(ε)

)
≥ log

(
yi(t)(ξ, t)

ξi(0)(ε)

)
≥
∫ t

ε

f(yi(s)(ξ, s))

yi(s)(ξ, s)
− f (1/d)

1/d︸ ︷︷ ︸
≥0

 ds ≥ 0

and the latter integral is increasing in t as long as yi(t)(ξ, t) < 1
d . As the left hand side of

the above string of inequalities is finite, it follows that
∫ +∞

0

(
f(yi(s)(ξ,s))
yi(s)(ξ,s)

− f(1/d)
1/d

)
ds <

+∞. Then, combining that u 7→ f(u)
u is decreasing (by strict concavity) on (0,+∞)

with the fact that yi(t)(ξ, t) is increasing and positive, we derive that the function t 7→
f(yi(t)(ξ,t))
yi(t)(ξ,s)

− f(1/d)
1/d is decreasing. The finiteness of the above integral implies that

f (1/d)

1/d
− f(yi(t)(ξ, t))

yi(t)(ξ, t)
→ 0 as t→ +∞ or, equivalently, that

yi(t)(ξ, t) = min
1≤i≤d

yi(ξ, t)→ 1

d
as t→ +∞.

The convergence of every component yi(ξ, t) follows since y(ξ, t) ∈ Sd. It remains to
prove that the convergence holds uniformly in the starting value (the existence of the
flow i.e uniqueness starting from the boundary of the simplex is not mandatory). First
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note that, h being bounded, the family of all possible solutions ((y(ξ, t)t≥0)ξ∈Sd) of ODEh
are ‖h‖∞-Lipschitz continuous since

y(ξ, t) = ξ −
∫ t

0

h
(
y(ξ, s)

)
ds.

Assume there exists ξn → ξ∞ and tn → +∞ such that
∣∣y(ξn, tn) − y(d)

∣∣ ≥ ε0 ≥ 0.

By Proposition 2.6, 1
d is an attractor of ODEh, hence there exists η0 > 0 such that

sup|ξ−y(d)|≤η0
∣∣y(ξ, t) − y(d)

∣∣ ≤ ε0, t ≥ t0 (the flow does exist in the neighbourhood of
y(d) so that y(ξ, ·) is unique). Consequently, for every t ∈ [0, tn − t0] (at least for n
large enough), |y(ξn, t)− y(d)| > η0. By Ascoli’s Theorem, up to an extraction, one may
assume that y(ξn, ·) converges on compact sets of R+ toward a solution y(ξ∞, ·) of ODEh
since h is continuous. Then, letting n go to infinity shows that this solution satisfies
|y(ξ∞, t)− y(d)| ≥ η0 for every t ≥ 0. This contradicts the fact that any solution starting
from Sd converges toward y(d). We can conclude that all the solutions of ODEh starting
from Sd converge uniformly toward y(d).

(b) is obvious, given the above proof since no component is 0 at t = 0.

Application (I): A.s. convergence of the algorithm when f is concave. When f is

concave and H is bi-stochastic, the mean point y(d) = 1
d of the simplex is the unique a.s.

target of the urn composition.

Proposition 2.14 (When f is concave, y(d) is the target). If H is (deterministic and)
bi-stochastic, irreducible and f is a strictly concave skewing function, then

Ỹn
a.s.−→

n→+∞
y(d) =

1

d
.

Proof. It follows from Proposition 2.13(a) that the flow of ODEh uniformly converges to
y(d). Hence, Theorem A.2(b) from the Appendix implies that the set Θ∞ of the limiting
values of (Ỹn)n≥0 is a.s. is reduced to { 1

d1} which completes the proof.

Application (II): The mean point y(d) may be a noisy trap when f is convex. We
now give a (partial) result in the convex setting (a more precise one is provided in
Section 5 devoted to randomized Pólya’s urns, that is when H = Id). We keep the

notations introduced Propositions 2.11: λ1 = f ′(1/d)
df(1/d) and µmax the eigenvalues of H|1⊥

with the highest real part.
As H is (bi-)stochastic, <e(µmax) ≤ 1. If H is also irreducible, by the Perron-Frobenius

Theorem, we know that <e(µmax) < 1 since the eigenspace of the eigenvalue 1 is one-
dimensional, hence equal to R · 1. On the other hand, when f is convex then λ1 ≥ 1 and
if f is strictly convex, on [0, 1

d ], then λ1 > 1. Consequently there exist matrices H for
which the inequality <e(µmax) > 1

λ1
is satisfied, implying by Proposition 2.11 that, in that

case, y(d) is unstable for ODEh. We show that y(d) may be a noisy trap.

Proposition 2.15 (When y(d) becomes a noisy trap). Assume that (A1) and (A3) are in
force and that the following slightly reinforced version of (A2) holds for some δ > 0

(A2)2+δ ≡ ∀i, j ∈ {1, . . . , d}, sup
n≥1

E
[
‖Dij

n ‖2+δ | Fn−1

]
< +∞ a.s.

Assume that he skewing unction f is convex and H is a bi-stochastic matrix satisfying
<e(µmax) > 1

λ1
so that y(d) is unstable.

If H is invertible or symmetric, then P
(
Ỹn → y(d)

)
= 0.
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Proof. We want to apply Theorem A.3 from the Appendix. The remainder term (2.13)
and the martingale increment fulfill condition (A.3), owing to (A2)2+δ and (A3), once

noted as concerns the remainder, that 0 ≤ f̃
w(f) ≤

d
f(1/d) .

� H symmetric. We will firstly focus on the symmetric case (the invertible case
relies on the same formal proof applied to any nonzero vector v with w(v) = 0). We
have to check that the Jacobian Jh is locally Lipschitz continuous in the neighbourhood
of y(d). Note that h = Id − Hϕ where ϕ is defined in (2.16). This follows from the
expression (2.18) for ∂ϕi

∂xj
having in mind that f ′ is non-decreasing by convexity of f .

Then, we have to check Assumption (A.4). The Jacobian Jh
(
y(d)

)
= Id − λ1HProj⊥1⊥

(see (2.19)) is self-adjoint since H is symmetric and commutes with Proj⊥1⊥ . Hence,
its restriction to 1⊥ leaves 1⊥ stable and is also self-adjoint and its eigenspaces are
orthogonal in 1⊥. In particular, the stable and unstable subspaces K+ and K− as defined
in Theorem A.3 are orthogonal and ∆Mrep

n+1 = Proj⊥K−(∆Mn+1). Consequently, it suffices

to show that, for a unitary eigenvector vector vµ∈ 1⊥ attached to an eigenvalue µ > 1
λ1

(hence lying in K−)

lim inf
n

E
[
‖∆Mrep

n+1‖2 | Fn
]
≥ lim inf

n
E
[
(∆Mn+1|vµ)2 | Fn

]
> 0 a.s.

Elementary computations show (keeping in mind that u⊗ v = [uivj ]1≤i,j≤d) that

E
[
(∆Mn+1|vµ)2 | Fn

]
= vtµ

[
E
[
Dn+1diag(ϕ

H
(Ỹn))Dt

n+1 | Fn
]
− 2ϕ

H
(Ỹn)⊗ Ỹn + Ỹ ⊗2

n

]
vµ.

On the event
{
Ỹn → y(d)

}
, we derive, owing to Assumption (A2), the continuity of ϕ

H

and ϕ
H

(y(d)) = y(d), that

E
[
(∆Mn+1|vµ)2 | Fn

]
= vtµE

[
Dn+1diag

(
y(d)

)
Dt
n+1 | Fn

]
vµ − (vµ|y(d))2 + o(1).

Now, diag
(
y(d)

)
= 1

dId, and (vµ|y(d))2 = 0 since vµ∈ 1⊥. Consequently,

lim inf
n

E
[
(∆Mn+1|vµ)2 | Fn

]
=

1

d
lim inf

n
E
[
‖Dt

n+1vµ‖2 | Fn
]
.

Finally, we not that, owing to Jensen’s Inequality,

E
[
‖Dt

n+1vµ‖2 | Fn
]
≥ ‖Ht

nvµ‖2
a.s.−→ ‖Htvµ‖2 = ‖Hvµ‖2 = µ2 > 0.

� H is invertible (and bi-stochastic). We know that Jh
(
y(d)

)
leaves 1⊥ stable and we

consider its restriction to it in the rest of the proof. If we consider again the stable and
unstable subspaces K+ and K− (in 1⊥) associated to Jh

(
y(d)

)
, as defined in Theorem A.3

and πrep : 1⊥ → K− the projection onto K− alongside K+, then for every unitary vector
v such that w(v) = 0, one has

|∆Mrep
n+1|2 ≥

∣∣(πrep∆Mrep
n+1 | v)

∣∣2 =
∣∣(πrep,tv |∆Mrep

n+1)
∣∣2.

Following the lines of the proof of claim (a) with πrep,tv instead of vµ yields

lim inf
n

E
[
|∆Mrep

n+1|2 | Fn
]
≥ 1

d
‖Hπrep,tv‖2.

As H is invertible, the right hand side of the inequality is always positive for some v
since πrep,t is not identically 0.

Example 2.16. • If we set f(u) = uα, α > 1, d = 2 and Dn = H =

(
p 1− p

1− p p

)
,

p∈ (0, 1), then f is a (strictly) convex skewing function and H is a bi-stochastic matrix.
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Note that λ1 = f ′(1/2)/(2f(1/2)) = α and µmax = 2p − 1. Hence, if p > 1
2 + 1

2α , then

y(2) = ( 1
2 ,

1
2 )t is unstable. Moreover as H

(
1/
√

2

−1/
√

2

)
= (2p− 1)

(
1/
√

2

−1/
√

2

)
, then vµmax

=(
1/
√

2

−1/
√

2

)
and lim infnE

[
(∆Mrep

n+1)2 | Fn
]
≥ 1

2 (2p− 1)2 > 0.

• If we keep f(u)=uα, α>1, with d=3 and Dn=H=

 p a 1− p− a
1− p− a p a

a 1− p−A p

,

p, a ∈ (0, 1), then f is a (strictly) convex skewing function and H is an invertible bi-
stochastic matrix. Note that λ1 = f ′(1/3)/(3f(1/3)) = α and <e(µmax) = 3p−1

2 . Hence, if
p > 2+α

3α , then y(3) = (1
3 ,

1
3 ,

1
3 )t is unstable.

3 Bi-dimensional non linear randomized urn model

When the skewing function f is convex the situation becomes much more involved:

thus, if H is bi-stochastic and irreducible, then y(d) is an equilibrium of h and Ed,h ⊂
◦
Sd

(cf. Proposition 2.4(d)), but Ed,h is not reduced to y(d) (which is a unstable for ODEh
when H = Id).

To start elucidating this case, we limit ourselves in this paper to a two-type urn (d = 2)

and an irreducible matrix H. We will see, as expected, that the asymptotic behavior of
the urn is much more involved since a phase transition appears.

In such a simplified setting, the irreducible co-stochastic generating matrix H can be
written as follows

H =

(
p1 1− p2

1− p1 p2

)
, 0 < pi < 1, i = 1, 2,

and the mean function h of the model is still given by (2.12).
In this section, we assume for simplicity that the skewing function f is differentiable

on (0, 1), so that the mean field h is differentiable too on
◦
S2. Note that, as soon as f is

convex or compact, f ′ can be extended on [0, 1] into a monotonic R̄+-valued function. We
saw that analyzing the a.s. convergence properties essentially boils down to elucidate
the behavior of ODEh on S2 which in turn can be reduced to a one dimension differential
system since the simplex S2 can be parametrized by (u, 1 − u), u ∈ [0, 1], and h is

1⊥ = {z : z1 + z2 = 0}-valued on
◦
S2 so that h2 = 1− h1. Thus, the asymptotic analysis of

ODEh is equivalent to that of

ODEh0 ≡ u̇ = −h0(u) with h0(u) = h1(u, 1− u), u∈ [0, 1].

Elementary computations show that, for every u∈ [0, 1],

h0(u) = u− p1f(u) + (1− p2)f(1− u)

f(u) + f(1− u)
(3.1)

and

h′0(u) = 1− (p1 + p2 − 1)
f ′(u)f(1− u) + f(u)f ′(1− u)

(f(u) + f(1− u))
2 . (3.2)

We will now determine the combinatorics and the nature of the equilibrium points
depending on the parameters p1 and p2.

Note that H is bi-stochastic if and only if p1 = p2. Note also that h0

(
1
2

)
=
p2 − p1

2
whatever the skewing function f is.
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3.1 Counting equilibrium points

It follows from (3.1) that the equation h0(u) = 0 reads

(p1 − u)f(u) + (1− p2 − u)f(1− u) = 0. (3.3)

As preliminary remarks, note that:

– if p1 = 1− p2, then u∗ = p1 is the unique solution of (3.3) because f > 0 on (0, 1] and
h′0(u∗) = 1 > 0 so that u∗ is a stable equilibrium.

– For every u∈ [0, 1],
h0(u) + h0(1− u) = p2 − p1. (3.4)

– Hence, h′0 is symmetric and h′′0 is antisymmetric w.r.t. 1
2 . In particular h′′0

(
1
2

)
= 0.

– When the generating matrix H is bi-stochastic (if and only if p1 = p2), then h0 itself
is symmetric w.r.t. 1

2 and u∗ = 1
2 is always solution to (3.3). Thus, if h′0

(
1
2

)
= 0, as

h′′0
(

1
2

)
= 0, the status of the equilibrium u∗ requires to investigate higher order (see

Example in Section 3.2 devoted to the bi-stochastic case).

– Since h0(0) = −(1− p2) < 0 and h0(1) = 1− p1 > 0, h0 always has (as expected) at
least one zero on (0, 1).

Let u∗ be a solution of (3.3). From Proposition 2.3(b), we have that any zero u∗ of h0

lies in I∗ := [p1 ∧ (1− p2), p1 ∨ (1− p2)] (or in its interior
◦
I∗).

Proposition 3.1. Let p1, p2∈ (0, 1) and let f be a skewing function.

(a) If p1 + p2 ≤ 1, then h0 has a unique zero, lying in I∗ (and in
◦
I∗ if p1 + p2 < 1).

(b) If p1 + p2 > 1 and f is concave, then h0 has a unique zero u∗, lying in
◦
I∗.

(c) If p1 +p2 > 1 and f is convex, then h0 has at least one zero, lying in
◦
I∗. If, furthermore,

the function f̄(u) = f(u)
f(u)+f(1−u) is convex on [0, 1/2], then h0 may have one, two or three

zeros, all lying in
◦
I∗. However, when f ′(1) ≤ 2f(1/2)

p1+p2−1 , then h0 is increasing and h0

subsequently has a unique zero u∗, lying in
◦
I∗.

Proof. (a) As f is non-decreasing and non-negative, h′0 > 0 when p1 + p2 ≤ 1, therefore
h0 is increasing with h0(0) = p2 − 1 < 0 and h0(1) = 1− p1 > 0, so h0 has a unique zero
lying in I∗.

(b) Assume that p1 + p2 > 1. Then it is obvious that p1 and 1− p2 are not solutions of (3.3)
which can be rewritten as

g1(u) = g2(u) on J = [0, 1] \ {p1, 1− p2},

where

g1(u) =
f(1− u)

p1 − u
, u∈ [0, 1] \ {p1} and g2(u) =

f(u)

u− 1 + p2
, u∈ [0, 1] \ {1− p2}. (3.5)

Let us compute the first derivative of these functions: We obtain, for u∈ J ,

g′1(u) =
f(1− u)− f ′(1− u)(p1 − u)

(p1 − u)2
and g′2(u) =

f ′(u)(u− 1 + p2)− f(u)

(u− 1 + p2)2
.

As f is concave non-negative and f(0) = 0, f(u)− uf ′(u) ≥ 0, u∈ [0, 1]. Let us show that,
as 0 < p1, p2 < 1, g′1 > 0 and g′2 < 0 on I∗. In fact,

g′2(u) =
uf ′(u)− f(u)− (1− p2)f ′(u)

(u− 1 + p2)2
≤ 0 since f ′(u) ≥ 0.
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If uf ′(u)− f(u)− (1− p2)f ′(u) = 0, then (1− p2)f ′(u) ≤ 0 so that f ′(u) = 0 since p2 < 1.
Hence so that f ≡ 0 on [0, u] which contradicts the positivity of f on (0, 1) as a skewing
function. This shows that g′2 < 0. One shows likewise that g′1 > 0. Hence (3.3) has a

unique solution u∗ ∈
◦
I∗.

(c) If p1 + p2 > 1 and f is convex, then f ′(0) exists in R+ and f ′(0) ≤ f(1) − f(0) = 1.
Note that h0(1/2) = p2−p1

2 which sign depends on p2 − p1. Moreover, one checks that
h′0(u) = 1− (p1 + p2− 1)f̄ ′(u) by (3.2) so that h′0 is non-increasing on [0, 1/2] owing to the
convexity of f̄ . Hence h0 is concave on [0, 1/2].

(To help understanding the following reasoning, see Figure 1-(right) where several
situations are illustrated).

� If p2 > p1, then h0(1/2) > 0 and h′0(0) = 1− (p1 + p2− 1)f ′(0) ≥ (1− p1) + (1− p2) >

0. Thus h′0 has at most one zero u0 ∈ (0, 1/2). If such is the case, h0 attains at u0

its maximum h0(u0) ≥ h0(1/2) > 0 on [0, 1/2] and h0 has a unique zero u∗1 (lying in
(0, u0) ∩ I∗ = (1− p2, u0)) on [0, 1/2] with h′0(u∗1) > 0. Otherwise h0 is increasing and has
again only one zero u∗1∈ (1−p2, 1/2) with h′0(u0) > 0. On [1/2, 1], using the symmetry (3.4)
of h0 w.r.t. 1/2, we derive that h0 has no zero on (1/2, 1) if u0 does not exist and that,
otherwise, their number depends on the sign of h0(1 − u0) = p2 − p1 − h0(u0). If
h0(1− u0) > 0 there is again no zero on (1/2, 1), if h0(1− u0) = 0, u∗2 = 1− u0 is the only
zero in (1/2, 1) ∩ I∗ = (1/2, p1) (with h′0(u∗2) = 0) and, finally, if h0(1− u0) < 0, there are
two additional zeros u∗2 and u∗3 in (1/2, p1) such that h′0(u∗2) < 0 and h′0(u∗3) > 0.

� If p2 < p1, one can make the same reasoning as above with the function u 7→
−h0(1− u). This yields to the following three possible situations: one zero u∗1∈ (1/2, p1)

with h′0(u∗1) > 0; two zeros u∗1 ∈ (1 − p2, 1/2) with h′0(u∗1) = 0 and u∗2 ∈ (1/2, p1) with
h′0(u∗2) > 0; three zeros u∗1, u∗2∈ (1− p2, 1/2) with h′0(u∗1) > 0, h′0(u∗2) < 0 and u∗3∈ (1/2, p1)

with h′0(u∗3) > 0.

Finally, if f̄ ′(1) < (p1 + p2 − 1)−1 on (0, 1), then h0 is increasing on [0, 1] and has a
unique zero. As f is convex, f ′(u) ≤ f ′(1), u ∈ [0, 1], and f(u) + f(1 − u) ≥ 2f(1/2),
u ∈ [0, 1]. Thus f̄ ′(u) ≤ f ′(1)/(2f(1/2)) and we obtain the required condition.

Example 3.2. of phase transition (I): Convex power skewing function. Let us
illustrate the strictly convex setting by considering the family of strictly convex functions
f(u) = fα(u) = uα, α > 1. Thus the functions f̄α(u) = uα

uα+(1−u)α are convex on [0, 1/2] (1).

We also assume p1 + p2 > 1. Then Equation h0(u) = 0 (see (3.3)) can be rewritten as

ϕ1(u) = ϕ2(u) on I∗,

where

ϕ1(u) = (p1−u)f(u) = (p1−u)uα and ϕ2(u) = (u−1+p2)f(1−u) = (u−1+p2)(1−u)α.

Then, the first derivatives of these functions read

ϕ′1(u) =
(
αp1 − (α+ 1)u

)
uα−1 and ϕ′2(u) =

(
(α+ 1)(1− u)− αp2

)
(1− u)α−1.

Each of these two derivatives ϕ′i has only one zero lying in I∗ which are the maximum
of each function ϕi, i = 1, 2: u1 = αp1

α+1 for ϕ′1 and u2 = 1 − αp2
α+1 for ϕ′2. As p1 + p2 > 1,

we have that 1 − αp2
α+1 <

αp1
α+1 . Besides, we have ϕ1(1 − p2) = (p1 + p2 − 1)(1 − p2)α > 0,

ϕ1(p1) = 0, ϕ2(1 − p2) = 0 and ϕ2(p1) = (p1 + p2 − 1)(1 − p1)α > 0. Therefore, we have
three possibilities (of course consistent with claim (c) of the above proposition):

1The second derivative reads, if we set ϕα(u) = fα(u) + fα(1− u),

f̄ ′′α(u) = (α− 1)(1− 2u)ϕ−2
α (u) + 2α(u(1− u))α−1

(
(1− u)α−1 − uα−1

)
ϕ−3
α (u) ≥ 0 on [0, 1/2].
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• If ϕ1

(
1− αp2

α+1

)
> ϕ2

(
1− αp2

α+1

)
, then (3.3) has a unique solution lying in I∗.

• If ϕ1

(
1− αp2

α+1

)
= ϕ2

(
1− αp2

α+1

)
, then (3.3) has two solutions lying in I∗.

• If ϕ1

(
1− αp2

α+1

)
< ϕ2

(
1− αp2

α+1

)
, then (3.3) has three solutions lying in I∗.

In this parametric setting, as f ′(1) = α, it follows from Proposition 3.1 that the
simpler criterion for the existence of a unique attractive equilibrium reads

1 < p1 + p2 ≤ 1 +
21−α

α
.

To exhibit a transition phase with three equilibrium points, this condition need to be
violated. However it is not a sufficient condition. This is illustrated by Figure 1 below:
Choose p1 and p2 such that p1 + p2 > 1. The critical value α0 is clearly strictly larger
than the barrier suggested by the criterion. For example, for p1 = 0.7 and p2 = 0.75,
α0 ≈ 3.09 > min{α > 1 : p1 + p2 > 1 + 21−α

α } ≈ 1.54.

Figure 1: Equilibrium points for f(u) = uα depending on α ∈ (0, 5] with p1 = 0.7 and
p2 = 0.75. Left: Bifurcation appears at α0 ≈ 3.09. Right: Examples of function h0 with
one zero for α = 2, two zeros for α ≈ 3.09, three zeros for α = 4.

Example 3.3. with f convex on [0, 1], f̄ not convex on [0, 1/2], p1 + p2 > 1 (I). Let
t0∈ (0, 1

2 ) and β ≥ 1. For every positive real constants λ > 0, we define

f(t) = fλ,t0(t) =
t+ λ(t+ t0 − 1)β1{1−t0≤t≤1}

1 + λtβ0
, t∈ [0, 1]. (3.6)

The function f is clearly continuous, positive on (0, 1], convex as sum of two convex
functions and one checks it is differentiable on [0, 1]. On the other hand, f̄(0) = 0

and f̄(t) = t for every t ∈ [t0, 1 − t0] so that f̄ ′ ≡ 1 on [t0, 1 − t0]. Hence, there exists

ξ0 ∈ (0, t0) such that f̄ ′(ξ0) = f̄(t0)−f̄(0)
t0

= 1. If f̄ were convex on [0, 1
2 ], then f ′ would be

non-decreasing, hence constant on [ξ0,
1
2 ] since f̄ ′(1/2) = 1. This is impossible since f̄ is

not affine on any such intervals [ξ, t0] so that f̄ is not convex on [0, 1/2].

� Non-symmetric case (p1 6= p2). We also assume in this setting that

0 < p2 ≤ p1, p1 + p2 > 1, 2(1− p2) < 1−p1
1−p1+1−p2 and t0∈

(
2(1− p2), 1−p1

1−p1+1−p2

)
. (3.7)

As p1 + p2 > 1, one may rewrite (3.1) as

h0(u) = u− (1− p2)− (p1 + p2 − 1)f̄(u)
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so that
h0(t0) = t0(2− (p1 + p2))− (1− p2) < p2 − p1 ≤ 0.

Hence h0(t0) < 0. Moreover, since t0/2 > 1− p2,

h0(t0/2) = t0/2− (1− p2)− (p1 + p2 − 1)f̄λ,t0(t0/2) and lim
λ→+∞

fλ,t0(t0/2) = 0,

we derive that there exists λ0 = λ(t0, p1, p2) > 0 such that, for every λ > λ0, h(t0/2) > 0.
Using the closed form f̄(t) = t

1+(λ/c)(t0−t)β , t∈ [0, t0], for f̄ , one shows after elemen-

tary though tedious computations that for large enough λ, h′0 has only one zero in (0, t0)

so that h0 is unimodal on (0, t0) (increasing then decreasing on (0, t0)). Combining all
these facts proves that h0 has exactly two zeros u∗1 and u∗2 in (1− p2, t0) for large enough
λ.

Now, by the symmetry equation (3.4), we know that h0 is convex on [1 − t0, 1] and
h0(1 − t0) = p2 − p1 − h0(t0). In particular, h0(1 − t0) > 0 if t0 ∈ (0, 1−p1

1−p1+1−p2 ). In that
case, h0 has a third zero u∗3 on (t0, 1 − t0) by intermediate value theorem. Finally, as
h0(1 − t0/2) = p2 − p1 − h0(t0/2) < 0 and h0(1) > 0, h0 has two further zeros u∗4 and u∗5
on (1− t0, p1).

As a conclusion, for the above function f , under the Condition (3.7) there are five
equilibrum points for this urn model (see Figure 2-(left)) for λ large enough. Such a
condition is fulfilled e.g. by choosing

t0 = 1/4, β = 2, p1 = 0.95, p2 = 0.90.

� Focus on the case p1 = p2 = p ∈ (3/4, 1) (bi-stochastic matrix H). We temporarily
denote for convenience h0,λ the function h0 associated to the skewing function fλ,t0
defined in (3.6). It follows from the previous case that supt∈[0,t0] h0,λ(t) ≥ h0,λ(t0) →
t0/2− (1− p) > 0 as λ→ +∞ whereas, for λ = 0, f̄(t) = t so that h0,λ(t) = (2t− 1)(1− p)
and supt∈[0,t0] h0,λ(t) = (2t0 − 1)(1− p) < 0. Consequently there exists λ0 > 0 such that
supt∈[0,t0] h0,λ(t) = 0 by continuity of h0,λ(t) in (λ, t). As λ → h0,λ(t) is increasing we
derive (see Figure 2-(right)) that:

– if 0 < λ < λ0, h0 has only one zero, namely u∗1 = 1
2 by symmetry, with h′0(1/2) > 0.– if

λ = λ0, h0 has three zeros: u∗1∈ (1− p, t0) with h′0(u∗3) = 0, u∗2 = 1/2 with h′0(u∗2) = 0 and
u∗3 = 1− u∗1 with h′0(u∗3) = 0. – if λ > λ0, th0 has five zeros: u∗1, u∗2∈ (1− p, t0), u∗3 = 1/2

and u∗4 = 1− u∗2, u∗5 = 1− u∗1 with h′0(u∗2i−1) > 0, i = 1, 2, 3 and h′0(u∗2i) < 0, i = 1, 2.

The status of the corresponding equilibrium points of the urn model is discussed in
the next section.

3.2 Stability of equilibrium points of ODEh0

Once elucidated the existence and the number of equilibrium points u∗ of ODEh0
, we

have to determine their nature i.e. the sign of h′0(u∗).
Let u∗∈ {h0 = 0} ⊂ I∗. We deduce from (3.1) that the condition h0(u∗) = 0 reads

(u− p1)f(u) + (u− 1 + p2)f(1− u) = 0.

Plugging this equality into the expression (3.2) for h′0(u∗) shows that, for such equilibrium
points u∗,

h′0(u∗) = 1− f ′(u∗)(p1 − u∗) + f ′(1− u∗)(u∗ − 1 + p2)

f(u∗) + f(1− u∗)
. (3.8)

Indeed, when we compute h′0, we have

h′0(u) = 1− p1f
′(u)− (1− p2)f ′(1− u)

f(u) + f(1− u)
+
f ′(u)− f ′(1− u)

f(u) + f(1− u)
× p1f(u) + (1− p2)f(1− u)

f(u) + f(1− u)
.
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Figure 2: Examples of function h0 with f̄ non-convex: f defined by (3.6) with t0 = 1/4

and β = 2. Left : 5 equilibrium points for p1 = 0.95, p2 = 0.9 and λ = 200, 500, 1000. Right :
p1 = p2 = p = 0.9, one equilibrium point for λ = 100, two for λ = 138 and three for
λ = 180.

As h0(u∗) = 0, we use p1f(u∗)+(1−p2)f(1−u∗)
f(u∗)+f(1−u∗) = u∗ to derive (3.8).

The function h0 has at most three zeros owing to Proposition 3.1. Therefore, each
such zero u∗ of h0 has three possible “status” (see e.g. Figure 1-(right)):

• If there exists ε0 > 0 such that the following two restrictions of the function h0

satisfy h0|(u∗−ε0,u∗) < 0 and h0|(u∗,u∗+ε0) > 0, then u∗ is a stable equilibrium point.
This is the case e.g. if h′0(u∗) > 0 or, more generally, if the first non zero derivative
at u∗ has an odd order and is positive.

• If there exists ε0 > 0 such that h0|(u∗−ε0,u∗) > 0 and h0|(u∗,u∗+ε0) < 0, then u∗ is an
unstable equilibrium point (or a repeller). This is the case e.g. if h′0(u∗) < 0 or if
the first non-zero derivative at u∗ has an odd order and is negative.

• If h0 has a constant sign over an interval (u∗ − ε0, u
∗ + ε0), for some ε0 > 0, then

u∗ is a semi-stable equilibrium point (one-sided stable and one-sided unstable (2)).
This is the case if h′0(u∗) = 0 and the first non-zero derivative at u∗ occurs at an
even order. The simplest case is when h′′0(u∗) exists and is non-zero.

Then it is an elementary exercise to derive the following proposition, if one keeps in
mind that h0(0) = −(1− p2) < 0 and h0(1) = 1− p1 > 0.

Proposition 3.4. Let p1, p2∈ (0, 1). Let f be a skewing function. Assume that f satisfies
one of the additional assumptions in claims (a)-(b)-(c) of Proposition 3.1. Then

(i) If h0 has a unique equilibrium point, then it is stable.

(ii) If h0 has two equilibrium points, then one is stable and one is semi-stable.

(iii) If h0 has three equilibrium points, then the lowest and the highest ones are stable
and the one in the middle is unstable.

When f is concave, we have (a)-(i); when f and f̄ are convex, (a)-(iii).

Remark 3.5. From a heuristic viewpoint? stable equilibrium points are those obtained
from zeros of h0 occurring when h0 crosses the abscissa axis in an ascending sense.

2We mean by right semi-stable that the solution of u(u0, t) of ODEh starting from u0 satisfies u(u0, t)→ u∗

as t → +∞ for u0 > u∗ in the right neighbourhood of u∗ and lim inft→+∞ |u(u0, t) − u∗| > 0 if u0 > u∗ in
the left (resp. right) neighbourhood of u∗. Left semi-stability is defined accordingly and one-sided semi-stable
corresponds to any of these two behaviours.
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Example 3.6. of phase transition (II). We still consider the family f(u) = uα, α > 1.
The “bifurcation” has been established in part I. Now we want to elucidate what happens
at α0. The critical two equilibrium case occurs at α0 ≈ 3.09. By continuity of (α, u) 7→ uα

and monotony in α and u, it is clear that at least one – in fact exactly one – of the two
equilibrium points u∗ satisfies h0(u∗) = 0 and that h0 does not change its sign around
u∗ so that h′0(u∗) = 0. To determine its status we have to look at the sign of the second
derivative h′′0(u∗) (see Figure 3). In fact elementary computations show that, for any
u∈ [0, 1] such that h0(u) = h′0(u) = 0,

h′′0(u) = (1− p1 − p2)αuα−2(1− u)α−2

× (α− 1)(1− 2u)(uα + (1− u)α)− 2αu(1− u)(uα−1 − (1− u)α−1)

(uα + (1− u)α)3
> 0.

Hence, u∗ is semi-stable (stable on the right and unstable on the left).

Figure 3: Second derivative of h0 for f(u) = u3.09 with p1 = 0.7 and p2 = 0.75.

Example 3.7. with f convex on [0, 1], f̄ not convex on [0, 1/2], p1 + p2 > 1, 0 <

p1, p2 < 1 (II). Under the assumption (3.7), one has:
– In case of 5 equilibrium points (u∗i )1/≤i≤5, u∗2i−1, i = 1, 2, 3 are stable, u∗2i, i = 1, 2 are
unstable.
– In case of 3 equilibrium points (u∗i )1/≤i≤3 when p1 = p2 > 3/4, u∗2i−1, i = 1, 2, are
semi-stable, u∗2 = 1/2, i = 1, 2 are unstable.

It remains to show that the algorithm does not converge towards the repulsive
equilibrium point, denoted by û in what follows. To show that there is an excitation in
the repulsive direction, we have to prove that assumption (A.4) holds (see Theorem A.3
in the Appendix).

Proposition 3.8. Assume that (A1), (A2) and (A3) hold. Let û be an unstable equilibrium
point for h0 satisfying h′0(û) < 0. Then

P
(
Ỹn → (û, 1− û)

)
= 0.

Proof. From the proof of Proposition 2.15, we know that the remainder term and the
martingale increment satisfy respectively (A.3) (with δ = 0). Then we rely on the remark
that follows Theorem A.3. It follows from (3.2) that h′0 is locally Lipschitz continuous.
We know that {Ỹn → (û, 1 − û)} = {Ỹ 1

n → û}, so we may focus on the first component.
We rely on Theorem A.3 in the Appendix and adopt its notation, namely

∆Mrep
n+1 = ∆M1

n+1.
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Using Assumption (A1), we obtain

∆Mrep
n+1 = D11

n+1X
1
n+1 +D12

n+1X
2
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))
.

Therefore

E
[∥∥∆Mrep

n+1

∥∥ ∣∣Fn] = E
[ ∣∣∆M1

n+1

∣∣ ∣∣Fn]
=

f(Ỹ 1
n )

w(f̃(Ỹn))
E

[∣∣∣∣∣D11
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣ ∣∣∣Fn
]

+
f(Ỹ 2

n )

w(f̃(Ỹn))
E

[∣∣∣∣∣D12
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣ ∣∣∣Fn
]
.

By Jensen’s inequality applied to both conditional expectations in the right hand side,
we obtain

E
[∥∥∆Mrep

n+1

∥∥ ∣∣∣Fn] ≥ f(Ỹ 1
n )

w(f̃(Ỹn))

∣∣∣∣∣H11
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣
+

f(Ỹ 2
n )

w(f̃(Ỹn))

∣∣∣∣∣H12
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣ .
Owing to (A5)v, H

ij
n+1

a.s.−→
n→+∞

Hij , where Hii = pi and Hij = 1 − pj , 1 ≤ i, j ≤ 2.

Furthermore, on Ŷ∞ =
{
ω : Ỹ 1

n (ω)→ û
}

,

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

a.s.−→
n→+∞

û.

Consequently,

f(Ỹ 1
n )

w(f̃(Ỹn))

∣∣∣∣∣H11
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣ a.s.−→
n→+∞

f(û)

f(û) + f(1− û))
|p1 − û| > 0

and

f(Ỹ 2
n )

w(f̃(Ỹn))

∣∣∣∣∣H12
n+1 −

H11
n+1f(Ỹ 1

n ) +H12
n+1f(Ỹ 2

n )

w(f̃(Ỹn))

∣∣∣∣∣ a.s.−→
n→+∞

f(û)

f(û) + f(1− û))
|1− p2 − û| > 0

since û ∈
◦
I∗. Thus (A.4) is satisfied and by applying Theorem A.3 in the Appendix,

P(Ŷ∞) = 0.

Example 3.9. (bi-stochastic generating matrix H). If p1 = p2 = p∈ (0, 1) then (H is

bi-stochastic) ( 1
2 ; 1

2 ) is an equilibrium and h′0(1/2) = 1− f ′(1/2)
2f(1/2) (2p− 1).

– If f is convex and 2p− 1 ≤ 0, then h′0
(

1
2

)
> 0 and the equilibrium is unique (since h′0 is

increasing).

– If f is convex and 2p− 1 > 0, then we have three possibilities:

• If p > 1
2 + f(1/2)

f ′(1/2) , then h′0(1/2) < 0, so that P(Ŷ∞) = 0.

• If p = 1
2 + f(1/2)

f ′(1/2) , then h′0(1/2) = 0. But h′′0(1/2) = 0, so we need to investigate
higher order.

• If p < 1
2 + f(1/2)

f ′(1/2) , then h′0(1/2) > 0, so 1/2 is stable.

If f(u) = uα, the first case also reads α > 1
2p−1 . For the second case, higher order

analysis leads to h(3)
0 (1/2) > 0, so that the equilibrium is stable.
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3.3 A.s. convergence

Theorem 3.10. Let (Yn)n≥0 be the urn composition sequence defined by (1.3)-(1.5).
Under the assumptions (A1), (A2), (A3) and the empirical frequency based f -skewed
drawing rule,

(a)
Yn

w(Yn)

a.s.−→
n→+∞

(U∗, 1 − U∗) where U∗ is a random variable taking values in
{
u∗ :

h0(u∗) = 0 and u∗ is not
unstable for ODEh0

}
.

(b) The proportions of drawing each type of ball satisfies

Ñn =
1

n

n∑
k=1

Xk
a.s.−→

n→+∞


f(U∗)

f(U∗) + f(1− U∗))

f(1− U∗)
f(U∗) + f(1− U∗))

 .

Proof. First, we will prove that (a)⇒ (b), then (a).

(a)⇒ (b). For every n ≥ 1, we have

E [Xn | Fn−1] =

2∑
i=1

f(Ỹ in−1)

w(f̃(Ỹn−1))
ei =

f̃(Ỹn−1)

w(f̃(Ỹn−1))

and, by construction ‖Xn‖2 = 1, so that E
[
‖Xn‖2 | Fn−1

]
= 1. Hence, the martingale

M̃n =

n∑
k=1

Xk − E [Xk | Fk−1]

k

a.s.&L2

−→
n→+∞

M̃∞ ∈ L2.

Finally, it follows from the Kronecker Lemma that

1

n

n∑
k=1

Xk −
1

n

n∑
k=1

f̃(Ỹk−1)

w(f̃(Ỹk−1))

a.s.−→
n→+∞

0.

This proves the announced implication owing to the Césaro Lemma since f̃

w(f̃)
is contin-

uous at every point of S2.

(a) The algorithm is bounded by construction since it is [0, 1]-valued. Assumption (A2)

implies that supn≥0E
[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s. and Assumption (A3) implies that

rn
a.s.−→

n→+∞
0. The set {h = 0} is finite hence Ỹn a.s. converges toward a zero of h (see

Theorem A.2(c) in the appendix). Moreover, it follows from Proposition 3.4 devoted to
attractiveness that this zero cannot be a repulsive (a point at which h′0 is negative).

4 Weak rate of convergence

To establish a CLT for the sequence (Ỹn)n≥0 on a convergence event
{
Ỹn → y∗

}
, we

need to make the following additional assumptions:

(A4) The addition rules Dn a.s. satisfy on the event
{
Ỹn → y∗

}
∀k∈ {1, . . . , d},

{
(i) supn≥1E

[
‖D·kn ‖2+δ | Fn−1

]
≤ κ < +∞ for a δ > 0,

(ii) E
[
D·kn (D·kn )t | Fn−1

]
−→

n→+∞
Cky∗ ,

where Cky∗ = (Cky∗,ij)1≤i,j≤d, k = 1, . . . , d, are d× d positive definite matrices.
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Note that (A4)⇒(A2) since E
[
‖D·kn ‖2 | Fn−1

]
≤
(
E
[
‖D·kn ‖2+δ | Fn−1

]) 2
2+δ .

Also note that, if the matrices Dn are deterministic (hence co-stochastic) then Cky∗ =

lim
n
D.k
n ⊗D.k

n so that 1tCky∗1 = 1 for every k∈ {1, . . . , d}.
Let v = (vn)n≥1 be a sequence of positive real numbers.

(A5)v The matrices Hn and H satisfy on the event
{
Ỹn → y∗

}
n vnE

[
|||Hn −H|||2

]
−→

n→+∞
0. (4.1)

To establish the weak rate of convergence we cannot restrict ourselves to the simplex
as we essentially did for the convergence result since we must take into account the
rate of convergence of the algorithm Ỹn toward the simplex which is itself non trivial in
general. Actually, we saw in (2.15) that

w
(
Ỹn
)
− 1 =

w(Mn)

n+ w(Y0)
.

Elementary computations show, under Assumptions (A1), (A3), (A4)-(i) and if Ỹn →
y∗, that

E
[
w(Mn)2 | Fn−1

]
→ σ2(y∗) = 1t

∑d
k=1 f(yk∗ )C

k
y∗

w(f̃(y∗))
1− 1.

Note that, if the matrices Dn are deterministic then σ2(y∗) = 0 which is expected since
in that case Ỹn is Sd-valued. Owing to Condition (A4), Lindeberg’s CLT for arrays of
martingale applies to

(w(M`)√
n

)
1≤`≤n (see e.g. Corollary 3.1, p.58 in [22]), if one keeps in

mind that or that (A4)-(ii) implies the usual condition as a straightforward application
of Markov inequality). Consequently

√
n
(
w
(
Ỹn
)
− 1
)

=
n

n+ w(Y0)

w(Mn)√
n

Lstably−→ N
(
0;σ∗(y∗)

)
on the event

{
Ỹn → y∗

}
.

4.1 Strictly concave case with irreducible bi-stochastic limiting generating ma-
trix

Assume that H is bi-stochastic and irreducible and that the skewing function is

strictly concave. We know from Proposition 2.14 that Ỹn → y(d) = 1
d a.s. On the other

hand we know from (2.17) in Lemma 2.6 and (the proof of) Proposition 2.11 (see (2.19))
that

Jh
(
y(d)

)
= Id − λ1HProj⊥1⊥ still with λ1 =

f ′(1/d)

d · f(1/d)
< 1.

As H is (co-)stochastic, we know that 1 is its eigenvalue with the highest real part so
that the eigenvalue of Jh

(
y(d)

)
with the lowest real part is 1− λ1 > 0.

The Central Limit Theorem stated in the proposition below holds “stably” i.e. for the

stable weak convergence in the following sense: Zn
Lstably−→ Z∞ defined on a probability

space (Ω,A,P) with values in a Polish space (E, d) if, for every f ∈ C(E,R) and every
A ∈ A, E1Af(Zn) → E1Af(Z∞) as n → +∞ (see [23] for more insight on stable
convergence).

Proposition 4.1 (Weak rate). Assume that the skewed drawing rule f is strictly concave
and H is irreducible and bi-stochastic. Assume (A1), (A3), (A4) hold.

(a) If f ′(1/d) < d
2f(1/d) and (A5)v holds with vn = 1, then

√
n
(
Ỹn − y(d)

) Lstably−→ N
(
0; Σ∗

)
with Σ∗ =

∫ +∞

0

e−u(Jh(y∗)− I22 )tΓ∗e−u(Jh(y∗)− I22 )du
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with

Γ∗ =

∑d
k=1 f(y∗,k)Cky∗

w
(
f̃(y∗)

) − y∗(y∗)t. (4.2)

(b) If f ′(1/d) = d
2f(1/d) and (A5)v holds with vn = log n, then√

n

log n

(
Ỹn − y(d)

) Lstably−→ N
(
0; Σ∗

)
with

Σ∗ = lim
n

1

n

∫ n

0

e
−u
(
Jh(y∗)− Id2

)t
Γ∗e
−u
(
Jh(y∗)− Id2

)
du. (4.3)

(c) If f ′(1/d) > d
2f(1/d) and (A5)v holds with vn = n1−2λ1+η for some η > 0, then

n1−λ1
(
Ỹn − y(d)

)
converges a.s. toward a finite random variable.

Proof. First note that Ỹn → y(d) a.s. under the assumptions owing to Proposition 2.14.
We will check the three assumptions of Theorem A.5 (CLT for SA algorithms) recalled
in the Appendix. The parameter Λ which rules the regime of the rate is given here by
Λ = 1−λ1 which justifies the above three cases. Secondly Assumption (A4) ensures that
Condition (A.6) is satisfied since

sup
n≥1

E
[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s. and E

[
∆Mn∆M t

n | Fn−1

] a.s.−→
n→+∞

Γ∗.

To be more precise on the convergence on the right-hand side, we have

E
[
∆Mn+1∆M t

n+1 | Fn
]

=

d∑
k=1

P(Xn+1 = ek | Fn)
(
E
[
D·kn+1(D·kn+1)t | Fn

]
− E [Dn+1Xn+1 | Fn]E [Dn+1Xn+1 | Fn]

t
)

=

d∑
k=1

f(Ỹ kn )

w(f̃(Ỹn))
E
(
D·kn+1(D·kn+1)t | Fn

)
−

(
Hn+1

f̃(Ỹn)

w(f̃(Ỹn))

)(
Hn+1

f̃(Ỹn)

w(f̃(Ỹn))

)t
a.s.−→

n→+∞
&Γ∗ =

∑d
k=1 f(y∗k)Cky∗

w(f̃(y∗))
− y∗(y∗)t.

Finally, using (A5)v with the appropriate sequence (vn)n≥1, one proves in the three
cases that the remainder sequence (rn)n≥1 defined by (2.13) satisfies (A.7). This follows

from the fact that f̃(Ỹn)

w(f̃(Ỹn))
is bounded.

4.2 Back to the “convex” bi-dimensional case

In this section, we elucidate the rate of convergence of the algorithm, mostly in the
weak sense. To this end, it is more convenient to deal with its original 2-dimensional
form.

Theorem 4.2 (Weak rate). Assume (A1), (A3), (A4) hold. Every equilibrium point
y∗ ∈ S2 is of the form y∗ = (u∗, 1 − u∗) where u∗ is solution to (3.3) and lies in I∗ =

[p1 ∧ (1− p2), p1 ∨ (1− p2)], and

Sp
(
Jh(y∗)

)
=
{

1, 1− ρ∗
}
,
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where

ρ∗ = ρ(y∗) =
f ′(u∗)(p1 − u∗) + f ′(1− u∗)(u∗ − 1 + p2)

f(u∗) + f(1− u∗)
.

(a) If p1 + p2 ≤ 1 and (A5)v holds with vn = 1, n ≥ 1, then y∗ is unique, stable, Yn → y∗

a.s. and

√
n
(
Ỹn − y∗

) Lstably−→
n→+∞

N (0,Σ∗) with Σ∗ =

∫ +∞

0

e−u(Jh(y∗)− I22 )tΓ∗e−u(Jh(y∗)− I22 )du

and Γ∗ =
f(u∗)C1

y∗ + f(1− u∗)C2
y∗

w(f̃(y∗))
− y∗(y∗)t.

(b) If p1 + p2 > 1, we have three possible rates of convergence on an event
{
Ỹn → y∗

}
,

where y∗∈ E2,h is not unstable, depending on ρ∗ = λ(y∗):

(i) If 0 < ρ∗ < 1
2 and (A5)v holds with vn = 1, n ≥ 1, then

√
n
(
Ỹn − y∗

) Lstably−→
n→+∞

N (0,Σ∗) on
{
Ỹn → y∗

}
,

where Σ∗ is formally defined like in item (a).

(ii) If ρ∗ = 1
2 and (A5)v holds with vn = log n, n ≥ 1, then√

n

log n

(
Ỹn − y∗

)
L−→

n→+∞
N (0,Σ∗) where Σ∗ is given by (4.3).

(iii) If 1
2 < ρ∗ < 1 and (A5)v holds with vn = n1−2ρ∗+η, η > 0, then n1−ρ∗(Ỹn − y∗)→ Υ

a.s. converges as n→ +∞ where Υ is a finite random variable.

Remark 4.3. • The condition 0 < ρ∗ < 1
2 is satisfied as soon as

(f ′(1− p1) + f ′(1− p2))(p1 + p2 − 1)

f(1− p1) + f(1− p2)
<

1

2
if f is concave,

(f ′(p1) + f ′(p2))(p1 + p2 − 1)

f(1− p1) + f(1− p2)
<

1

2
if f is convex,

by using the monotonicity of f and f ′ and that u∗ ∈ (1− p2, p1).

• If f(y) = y, then y∗ is unique, is given by

y∗ =
( 1− p2

2− p1 − p2
,

1− p1

2− p1 − p2

)
and ρ∗ = p1 + p2 − 1.

Thus, if p1 + p2 <
3
2 , then the recursive procedure (2.11) satisfies a regular CLT ; if

p1 + p2 = 3
2 , (2.11) satisfies Theorem 4.2(b)-(ii); and if p1 + p2 >

3
2 , (2.11) admits an

a.s.-rate of convergence.

• In [13, 14], the properties of the random variable Υ are deeply investigated in the more
standard framework of Pólya’s urn with deterministic addition rule matrix. It is shown
to be solution to a smoothing equation obtained by a smart decomposition of the urn
into canonical components. Thus, it is proved that its distribution is characterized by its
moments. It is clear that such results are out of reach of standard SA techniques although
it would be challenging to check whether similar results about Υ in the randomized and
nonlinear framework are true.
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Proof. We again rely on Theorem A.5 from the Appendix. Elementary though tedious
preliminary computations yield the following formula for the Jacobian Jh(y) of h at
y∈ Rd+ \ {0}. We obtain

Jh(y)=


1+ f ′(y1)

f(y1)+f(y2)

(
p1f(y

1)+(1−p2)f(y2)
f(y1)+f(y2)

− p1
)

f ′(y2)
f(y1)+f(y2)

(
p1f(y

1)+(1−p2)f(y2)
f(y1)+f(y2)

− (1− p2)
)

f ′(y1)
f(y1)+f(y2)

(
(1−p1)f(y1)+p2f(y2)

f(y1)+f(y2)
− (1− p1)

)
1+ f ′(y2)

f(y1)+f(y2)

(
(1−p1)f(y1)+p2f(y2)

f(y1)+f(y2)
− p2

)
.

As all equilibrium points y∗ lie in the simplex S2, we have y∗2 = 1− y∗1. Combined
with the constraint h(y∗) = 0 (see (3.3)), we finally obtain the following formula only true
at equilibrium points:

Jh(y∗) =

1 + f ′(y∗1)
f(y∗1)+f(1−y∗1)

(
y∗1 − p1

) f ′(1−y∗1)
f(y∗1)+f(1−y∗1)

(
y∗1 − (1− p2)

)
f ′(y∗1)

f(y∗1)+f(1−y∗1)

(
p1 − y∗1

)
1 + f ′(1−y∗1)

f(y∗1)+f(1−y∗1)

(
1− p2 − y∗1

)
 .

Then, one easily checks that the spectrum of Jh(y∗) is real given by

Sp (Jh(y∗)) = {1, 1− ρ∗} .

(a) When p1 ≤ 1 − p2, we know from Proposition 3.1(a) that the equilibrium point
y∗ = (u∗, 1− u∗) is unique and u∗ lies in I∗. Moreover, we know from Theorem 3.10(a)

that Yn → y∗ a.s. Hence ρ∗ ≤ 0 so that 1 is the lowest eigenvalue of Jh(y∗). Consequently,
we are in the “regular” case of the CLT for SA (Theorem A.5(a) in the Appendix) since
1 > 1

2 .
Then, following the lines of the proof of Proposition 4.1, we check that Assump-

tion (A4) ensures that Condition (A.6) is satisfied with Γ∗ =
f(y∗1)C1

y∗ + f(1− y∗1)C2
y∗

w(f̃(y∗))
−

y∗(y∗)t. Finally, using (A5)v, the remainder sequence (rn)n≥1 defined by (2.13) satis-

fies (A.7) since f̃(Ỹn)

w(f̃(Ỹn))
is bounded.

(b) If p1 + p2 > 1, then ρ∗ > 0 which explains the three cases. The rest of the proof is the
same as above, given the convergence event {Ỹn → y∗}.

5 Pólya urn with concave reinforced drawing rule: a bandit ap-
proach

By Pólya urn, we mean in this section that the matrices Dn involved in the drawing
rule all satisfy Dn = Id, n ≥ 1. Moreover we assume that the drawing rue is still
skewed following (2.4) where the function f is concave/convex and that the initial urn
composition vector Y0 ∈ Rd+ \ {0}. Note that when f(u) = u, then the urn dynamics is
that of a regular Pólya urn with d colors.

In such a framework, H = Hn = Id, n ≥ 1, therefore H is no more irreducible and we
cannot use the results proved in Sections 2 and 3.

We still normalize Yn by setting Ỹn := Yn
n+w(Y0) , n ≥ 0. The sequence (Ỹn)n≥0 satisfies

the following recursive stochastic algorithm (obvious consequence of (2.10))

Ỹn+1 = Ỹn −
1

n+ 1 + w(Y0)

Ỹn − f̃(Ỹn)

w
(
f̃(Ỹn)

)
+

1

n+ 1 + w(Y0)
∆Mn+1, n ≥ 1, (5.1)

where
∆Mn+1 := Xn+1 − E [Xn+1 | Fn] (5.2)
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is a true (Fn)n≥0 martingale increment. Let us remark that, in this setting,

w(Yn)

n+ w(Y0)
=
n+ w(Y0)

n+ w(Y0)
= 1, n ≥ 0,

so that the sequence
Ỹn∈ Sd, for every n ≥ 0,

since it has non-negative components.
The special case of a linear drawing rule f(y) = y is entirely elucidated by the

celebrated Athreya-Karlin theorem recalled below for completeness.

Theorem 5.1 (Athreya-Karlin’s Theorem, see [1]). Let (Yn)n≥0 be the urn composition
sequence defined by (1.3) and (1.5) with Dn = Id, n ≥ 1, and a linear drawing rule
(i.e. (2.4) with f(u) = u). Then, if Y0∈ Rd \ {0} is deterministic, there exists a random
vector Ỹ∞ having values in the simplex Sd such that

Ỹn =
Yn

w(Yn)

a.s.−→
n→+∞

Ỹ∞ a.s.

Furthermore,

(i) Ỹ∞ has a Dirichlet distribution with parameter Y0.

(ii) In particular, if d = 2, Ỹ 1
∞ has a Beta distribution with parameters Y 1

0 and Y 2
0 (in

particular, Ỹ 1
∞ has a uniform distribution on [0, 1] if Y 1

0 = Y 2
0 = 1).

Now, we investigate the case f 6= IdR+
by borrowing tools to adaptive bandit models

analysis (see [31, 29, 30]). First note that, as Ỹn lives in the simplex Sd, the function
f only needs to be defined on [0, 1]. Moreover, we will no longer ask f to be convex or
concave on (0, 1) but require existence and finiteness of the derivatives at 0 and 1.

We will have to deal in this section with noiseless traps, that is parasitic equilibrium
points long on the boundary of the simplex Sd. The term noiseless refers to the fact
that the martingale increment in the canonical decomposition (2.11) of the algorithm
vanishes at such point, otherwise Ỹn could exit the simplex. However there are examples
of recursive algorithms converging toward such a noiseless equilibrium point: this is
the case of the so-called bandit algorithm investigated in [31] and [29]. To elucidate
how the algorithm behaves in the neighbourhood of such points, we need to have more
precise information how the skewing function f itself behaves near 0 and 1. This study
will require new tools, still based on a martingale approach but of a different nature of
what we used so far in a somewhat hidden by calling upon classical results of SA theory.

To this end we make the following assumption on the function f :

f is continuous, non-decreasing, f(0)=0, f(1)=1, f >0 on (0, 1], with finite right
derivative at 0 and left derivative at 1.

By a slight abuse of notation, we will denote f ′(0) and f ′(1) these two derivatives. A

typical example could be f(u) = 4
(
u− 1

2

)3
+ 1

2 , u ∈ [0, 1].

Theorem 5.2. (a) Let I ( {1, . . . , d} be non-empty. If f satisfies f ′(0) > |I|f
(

1
|I|
)
, then,

for every deterministic initial value such that Y j0 > 0 for some j /∈ I,

P
(
Ỹ∞ = ẽI

)
= 0.

(b) If d = 2 and the right second derivative of f at 0 exists, the above conclusion still
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holds if f ′(0) = 1 and f ′(1) + f ′′(0)
2 > 1.

(c) If f is strictly concave then Ed,h = {ẽ
I
, I ⊂ {1, . . . , d}, I 6= ∅} and, for every starting

value Y0∈ (0,+∞)d,
Ỹn

a.s.−→ ẽ{1,...,d} = y(d) as n→ +∞.

Remark 5.3. • In claim (b), if f(0) = 0, f(1) = 1, f ′r(0) = 1 and f is convex or concave,
then f = Id, so this case is interesting only out of the concave/convex framework.

• If Y i0 = 0 for some i∈ {1, . . . , d}, then, as proved below, Y in = 0 for every n ≥ 0. So,
as soon as Y0 ∈ Rd+ \ {0}, one may apply the above result (c) to the urn restricted to

I ′ = {i∈ I, Y i0 > 0} to prove that Ỹn → ẽI′ as n→ +∞.

Proof. (a)-(b) It follows from (1.3) and the fact that Dn ≡ Id that, if Y i0 = 0 for some i,
then Y in = 0 for every instant n ≥ 0. So, up to a reduction of the dimension d, we may
always assume that Y i0 > 0, i = 1, . . . , d. As a consequence we may assume that, for

every n ≥ 0, mini Ỹ
i
n > 0. Our aim is to prove that P

(
Ỹ j∞ = 0

)
= 0, for every j /∈ I. To

this end, we will show that {Ỹ j∞ = 0} ⊂ {L̃∞ = 0} where L̃∞ is the terminal value of a
non-negative martingale. Then we will apply an “oracle” inequality to this martingale.
Without loss of generality, we may assume that, up to a permutation, 1 /∈ I and j = 1 in
what follows.

Step 1: First, we define the function h̃ by

h̃(y) = 1− f(y1)

y1w(f̃(y))
1{y1 6=0}, y∈ Sd,

which satisfies h̃(y) < 1, for every y∈ Sd \ {y : y1 = 0}.
Starting from the dynamics of Ỹ 1

n given by (5.1), we have, for every n ≥ 0,

Ỹ 1
n+1 = Ỹ 1

n −
1

n+ 1 + w(Y0)

(
Ỹ 1
n −

f(Ỹ 1
n )

w
(
f̃(Ỹn)

))+
1

n+ 1 + w(Y0)
∆M1

n+1

= Ỹ 1
n

(
1− 1

n+ 1 + w(Y0)
h̃
(
Ỹ 1
n

))
+

1

n+ 1 + w(Y0)
∆M1

n+1.

We derive that the (non-negative) sequence

L̃n :=
Ỹ 1
n∏n

k=1

(
1− 1

k+w(Y0) h̃(Ỹ 1
k−1)

) , n ≥ 0, (5.3)

is a non-negative martingale satisfying the recursive equation L̃0 = Ỹ 1
0 and

L̃n+1 = L̃n +
1

n+ 1 + w(Y0)

∆M1
n+1∏n+1

k=1

(
1− 1

k+w(Y0) h̃(Ỹ 1
k−1)

) , n ≥ 0.

– Case (a) If f ′(0) > |I|f
(

1
|I|
)
, then h̃(y) −→ κ := 1 − f ′(0)

|I|f
(

1
|I|

) < 0 as y → ẽ
I
. Therefore,

one has on the event
{
Ỹn → ẽ

I

}
, Ỹ 1

n → 0 so that h̃
(
Ỹ 1
n−1

)
a.s.∼ κ < 0. This in turn implies,

still on this event, that
∏n
k=1

(
1− 1

k+w(Y0) h̃(Ỹ 1
k−1)

)
a.s.−→ +∞. It follows from its definition

in (5.3) that L̃n
a.s.−→ 0 on

{
Ỹn → ẽ

I

}
since 0 ≤ Ỹ 1

n ≤
w(Yn)
n+w(Y0)

a.s.−→ 1. Consequently, we get{
Ỹn → ẽ

I

}
⊂
{
L̃n → 0

}
.
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– Case (b) (Case d = 2). In that case the function h̃ can be viewed as a function of
y1 on [0, 1] since y1 + y2 = 1 on S2. As f ′(0) = 1 and f ′′(0) exists, a second order

Taylor expansion shows that h̃(y) = y1
(
(1 − f ′(1) − f ′′(0)

2 ) + O(y1)
)

as y1 → 0 so that

h̃(y) < 0 for y in the neighborhood of ẽ{2}. Hence, with in mind ẽ{2} = e2, we still have{
Ỹn → e2

}
=
{
Ỹ 1
n → 0

}
⊂
{
L̃n → 0

}
.

Step 2 Oracle inequality. The end of the proof is based on the following (short) “oracle”
lemma already used in [31] in a somewhat hidden manner (see the proof of Lemma 1),
reproduced and proved here for the reader’s convenience.

Lemma 5.4 (Oracle inequality, see [31]). Let (Mn)n≥0 be a positive L2-bounded martin-
gale with predictable quadratic variation process (〈M〉n)n≥0 (3). Let M∞ = a.s.- limnMn.
Then

∀n ≥ 0, P
(
M∞ = 0

∣∣Fn) ≤ E [〈M〉∞ − 〈M〉n ∣∣Fn]
M2
n

.

Lemma 5.4. It is sufficient to observe that, for every n ≥ 0,

P
(
M∞ = 0

∣∣Fn) =
E
[
1{M∞ =0}M

2
n

∣∣∣Fn]
M2
n

≤
E
[
(M∞ −Mn)

2
∣∣∣Fn]

M2
n

=
E
[〈
M
〉
∞ −

〈
M
〉
n

∣∣Fn]
M2
n

.

First we note that

E
[
(∆L̃n+1)2

∣∣Fn] =

(
1

n+ 1 + w(Y0)

)2
E
[
(∆M1

n+1)2
∣∣Fn](∏n+1

k=1

(
1− h̃(Ỹ 1

k−1)

k+w(Y0)

))2

and

E
[(

∆M1
n+1

)2 ∣∣Fn] =
f(Ỹ 1

n )
(
w
(
f̃(Ỹn)

)
− f(Ỹ 1

n )
)

w
(
f̃(Ỹn)

)2 ≤ d− 1

f(1/d)2

since w(f(y)) ≥ f
(

maxi yi
)
≥ f(1/d) and Ỹn∈ Sd. As a consequence

E
[
(∆L̃n+1)2

∣∣Fn] =
1

(n+ 1 + w(Y0))2

(∏n+1
k=1

(
1− h̃(Ỹ 1

k−1)

k+w(Y0)

))2

f(Ỹ 1
n )
(
w
(
f̃(Ỹn)

)
−f(Ỹ 1

n )
)(

w
(
f̃(Ỹn)

))2 .

Then, applying Lemma 5.4 to the non-negative martingale (L̃n)n≥1 yields

P
(
L̃∞ = 0

∣∣Fn) ≤ E
[
〈L̃〉∞ − 〈L̃〉n

∣∣Fn]
L̃2
n

=
1

L̃2
n

E

[ ∞∑
k=n+1

F (Ỹ 1
k−1)

(k + w(Y0))2

(∏k
`=1

(
1− h̃(Ỹ 1

`−1)

`+w(Y0)

))2

∣∣∣∣∣Fn
]
,

3i.e. the (a.s.) unique predictable process null at 0 such that (M2
n − 〈M〉n)n≥0 is martingale.
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where the function F , defined by F (y) :=
f(y1)

(
w(f̃(y))−f(y1)

)
(w(f̃(y)))

2 , y ∈ (0, 1] × [0, 1]d−1, is

clearly non-negative and bounded by κd := (d− 1)/f(1/d)2. Consequently,

P
(
L̃∞ = 0

∣∣Fn)
≤ κd

L̃2
n

∞∑
k=n+1

1

(k + w(Y0))2
E

[
Ỹ 1
k−1∏k−1

`=1

(
1− h̃(Ỹ 1

`−1)

`+w(Y0)

)
︸ ︷︷ ︸

=L̃k−1

(
1− 1

k+w(Y0) h̃(Ỹ 1
k−1)

)−1

∏k
`=1

(
1− h̃(Ỹ 1

`−1)

`+w(Y0)

) ∣∣∣∣∣Fn
]
.

Let h̃
+

:= max(h̃, 0), so that h̃ ≤ h̃
+
≤
∥∥h̃

+

∥∥
∞. First note that h̃

+
(y) ≤ 1− f(y1)

d·y1 < 1, for

every y ∈ Sd \ {y1 = 0} since w(f̃(y)) ≤ d and we assumed f(y1) > 0 on (0, 1]. Moreover,
lim supy1→0 h̃(y) ≤ 1 − f ′(0)/d < 1 since f ′(0) > 0 by assumption. As a consequence

‖h̃+

∥∥
∞ < 1.

In 2-dimensions, under the additional assumption in the critical case (f ′(0) = 1), the
extension of the function h over [0, 1] is negative so that h̃+ ≡ 0.

Finally, we obtain(
1−

h̃(Ỹ 1
k−1)

k + w(Y0)

)−1

≤

(
1−

‖h̃+

∥∥
∞

k + w(Y0)

)−1

, k ≥ 1.

Then, as E
[
L̃k−1

∣∣∣Fn] = L̃n for every k ≥ n+ 1, since M̃ is a (P,Fn)-martingale,

P(L̃∞ = 0
∣∣Fn)

≤ κd

L̃2
n

∞∑
k=n+1

1

(k + w(Y0))2

L̃n(
1− ‖h̃

+
‖∞

k+w(Y0)

)∏n
`=1

(
1− h̃(Ỹ 1

`−1)

`+w(Y0)

)∏k
`=n+1

(
1− ‖h̃

+
‖∞

`+w(Y0)

)
=

κd

L̃n
∏n
`=1

(
1− h̃(Ỹ 1

`−1)

`+w(Y0)

) ∞∑
k=n+1

1(
1− ‖h̃

+
‖∞

k+w(Y0)

)
(k + w(Y0))2

∏k
`=n+1

(
1− ‖h̃

+
‖∞

`+w(Y0)

)
≤ κd

C0Ỹ 1
n

∞∑
k=n+1

1

(k + w(Y0))2
exp

(
−

k∑
`=n+1

log

(
1−

‖h̃
+
‖∞

`+ w(Y0)

))
(5.4)

where C0 = w(Y0)
1+w(Y0) ∈ (0, 1) since 1− ‖h̃

+
‖∞

k+w(Y0) > 1− 1
k+w(Y0) ≥ C0.

Note that log(1−u) ≥ − u
1−u0

, u∈ (0, u0). Applying this inequality with u0 = 1
n+1+w(Y0)

yields, for every ` ≥ n+ 1,

log

(
1−

‖h̃
+
‖∞

`+ w(Y0)

)
≥ −

(
1 +

1

n+ w(Y0)

)
‖h̃

+
‖∞

`+ w(Y0)
.

Hence

k∑
`=n+1

log

(
1−

‖h̃
+
‖∞

`+ w(Y0)

)
≥ −‖h̃

+
‖∞
(

1 +
1

n+ w(Y0)

) k∑
`=n+1

1

`+ w(Y0)

≥ −‖h̃
+
‖∞
(

1 +
1

n+ w(Y0)

)∫ k

n

du

u+ w(Y0)

= −‖h̃+‖∞
(

1 +
1

n+ w(Y0)

)
log

(
k + w(Y0)

n+ w(Y0)

)
.
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Plugging this inequality into (5.4) and using that Ỹ 1
n =

Y 1
n

n+w(Y0) ,

P
(
L̃∞ = 0 | Fn

)
≤ κd(n+ w(Y0))

C0Y 1
n

+∞∑
k=n+1

e
(1+ 1

n+w(Y0)
)‖h̃

+
‖∞ log

(
k+w(Y0)

n+w(Y0)

)
(k + w(Y0))2

.

As ‖h̃
+
‖∞ < 1, there exists n0 such that for every n ≥ n0, 1 − (1 + 1

n+w(Y0) )‖h̃
+
‖∞ > 0.

Hence

P
(
L̃∞ = 0 | Fn

)
≤ κd(n+ w(Y0))

C0Y 1
n

∞∑
k=n+1

(n+ w(Y0))
−(1+ 1

n+w(Y0)
)‖h̃

+
‖∞

(k + w(Y0))
2−(1+ 1

n+w(Y0)
)‖h̃

+
‖∞

=
κd(n+ w(Y0))

1−(1+ 1
n+w(Y0)

)‖h̃
+
‖∞

C0Y 1
n

∞∑
k=n+1

1

(k + w(Y0))
2−(1+ 1

n+w(Y0)
)‖h̃

+
‖∞

≤ κd(n+ w(Y0))
1−(1+ 1

n+w(Y0)
)‖h̃

+
‖∞

C0Y 1
n

∫ +∞

n

du

(u+ w(Y0))
2−(1+ 1

n+w(Y0)
)‖h̃

+
‖∞

≤ κd
C0Y 1

n

1

1− (1 + 1
n+w(Y0) )‖h̃+‖∞

.

Now, it remains to prove that Y 1
n

a.s.−→ +∞. Let Y 1
∞ := limn Y

1
n (the components of Yn are

non-decreasing). One checks that

{
Y 1
∞ < +∞

}
=
⋃
n≥0

⋂
k>n

Uk > f(
Y 1
n

k−1+w(Y0) )

f(
Y 1
n

k−1+w(Y0) ) + f(1− Y 1
n

k−1+w(Y0) )

 ,

then, for every n ≥ 0,

P
(
Y 1
∞ < +∞ |Y 1

n = y
)

=
∏
k>n

(
1− f(y/(k − 1 + w(Y0)))

f(y/(k − 1 + w(Y0))) + f(1− y/(k − 1 + w(Y0)))

)
= 0,

since
∑
k≥1

f(y/k + w(Y0))

f(y/k + w(Y0)) + f(1− y/k + w(Y0))
= +∞ because f ′(0) > 0. Therefore

Y 1
∞ = +∞ a.s.

On the other hand, the closed martingale P
(
L̃∞ = 0| Fn

)
→ 1{L̃∞=0} a.s. and in L1

so that
1{L̃∞=0} = 0 a.s. i.e. P(L̃n → 0) = P(L̃∞ = 0) = 0

which in turn implies that P
(
Ỹ 1
∞ = 0

)
since it was proved in Step 1 that {Ỹ 1

n → 0} ⊂

{L̃n → 0}.
(c) The fact that Ed,h = {ẽ

I
, I ⊂ {1, . . . , d}, I 6= ∅} follows from Proposition 2.4(c). As

Y i0 > 0, i ∈ {1, . . . , d}, we derive from what precedes that P
(
Ỹn → ∂Sd

)
= 0. As a

consequence, following Theorem A.2, P(dω)-a.s., the compact connected flow invariant
set Θ∞(ω) of limiting values of (Ỹn(ω))n≥0 is a minimal connected attractor of ODEh

in
◦
Sd. We know from Proposition 2.11(b) that y(d) = 1

d1 is a uniformly attracting point
ODEh and from Proposition 2.13(b) that the flow of ODEh (y(y0, t))

t≥0,y0∈
◦
Sd

converges

toward 1
d1, so it converges uniformly with respect to y0 ∈ Θ∞(ω). Consequently, one

concludes by Theorem A.2 that Θ∞(ω) = {y(d)} (otherwise it would have an internal
attractor). Hence Ỹn

a.s.−→ y(d).
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6 An extension and an example of application

6.1 Distribution based normalized f-skewed rule

Let us recall that this alternative distribution rule (1.7) reads

∀ i∈ {1, . . . , d}, P(Xn+1 = ei | Fn) =
f(Y in)∑d
j=1 f(Y jn )

, n ≥ 0,

where f has regular variation with index α > 0 in the sense that for every t > 0,
f(tx)

f(x)
−→
x→∞

tα and f is bounded on each interval (0,M ]. Then, by applying Theorem 1.5.2

p.22 in [10],
f(tx)

f(x)
−→
x→∞

tα uniformly in t on each (0, b], 0 < b <∞.

We can reformulate the dynamics (1.3)-(1.7) into a recursive stochastic algorithm
like in the Section 2.2, and we obtain the following recursive procedure satisfied by the
sequence (Ỹn)n≥0:

Ỹn+1 = Ỹn − γn+1

(
Ỹn −H

Ỹ αn

w(Ỹ αn )

)
+ γn+1

(
∆Mn+1 + r̂n+1

)
(6.1)

with the step γn = 1
n+w(Y0) , Ỹ αn =

(
(Ỹ in)α

)
1≤i≤d

and an Fn-measurable remainder term

given by

r̂n+1 := Hn+1
f̃(Yn)

w(f̃(Yn))
−H Ỹ αn

w(Ỹ αn )
. (6.2)

Notice that, in the empirical frequency based normalized skewing case (defined by (1.5)),

the remainder term was rn+1 = (Hn+1 −H) f̃(Ỹn)

w(f̃(Ỹn))
, therefore assumption (A3) implied

directly that rn
a.s.−→

n→+∞
0 since

∥∥∥ f̃(Ỹn)

w(f̃(Ỹn))

∥∥∥ ≤ √d. Our aim in this section is simply to use

the uniform convergence of the regular variation to prove that the successive required
assumption on the remainder term are satisfied by r̂n+1.

By the same arguments as those used in Section 2.2, we check that w(Yn) sat-
isfies (2.15). Moreover, the quantity Ñn := 1

n

∑n
k=1Xk can also by re-written as a

stochastic recursive procedure as follows

Ñn+1 = Ñn −
1

n+ 1

(
Ñn −

Ỹ αn

w(Ỹ αn )

)
+

1

n+ 1

(
∆M̃n+1 + r̃n+1

)
,

where r̃n+1 =
f̃(Yn)

w(f̃(Yn))
− Ỹ αn

w(Ỹ αn )
, thus r̃n+1 ∈ Fn.

Theorem 6.1 (Distribution based normalized f -skewed rule, a.s. convergence). Let d = 2.
Assume that (A1), (A2) and (A3) hold.
(a) If 0 < α ≤ 1, then h has a unique zero y∗ ∈ I∗ and

w(Yn)

n+ w(Y0)

a.s.−→
n→+∞

1,
Yn

w(Yn)

a.s.−→
n→+∞

y∗ and Ñn
a.s.−→

n→+∞

(y∗)α

w((y∗)α)
.

(b) If α > 1, then either h has a unique zero y∗ ∈ I∗ or ODEh has two attracting
equilibrium points in I∗ (as we have established in Section 2.3). Thus, the stochastic
recursive procedure a.s. converges to one of the possible limit values.

Proof. By the same arguments like in Section 2.3, w(Yn) satisfies (2.15), therefore
Proposition 2.2 holds. Consequently, Ỹn lies in a compact of R+, thus

max
1≤i≤d

∣∣∣∣ f(Y in)

f(n+ w(Y0))
−
(

Yn
n+ w(Y0)

)α∣∣∣∣ −→n→+∞
0.
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Set ain =
f(Y in)

f(n+w(Y0)) and bin = (Ỹ in)α, i ∈ {1, . . . , d}. Then, for every i ∈ {1, . . . , d},

ain
w(an)

− bin
w(bn)

=
ain − bin
w(bn)

+
ain

w(an)

(
1− w(an)

w(bn)

)
.

But

w(bn) =

d∑
i=1

(Ỹ in)α ≥

{ (∑d
i=1 Ỹ

i
n

)α
= w(Ỹn)α if α ∈ [0, 1]

d1−αw(Ỹn)α if α > 1
,

therefore

w(bn) ≥ w(Ỹn)α

d(α−1)+
∼
a.s.

(n+ w(Ỹ0))α

d(α−1)+
.

Consequently, for every i ∈ {1, . . . , d},

ain
w(an)

− bin
w(bn)

≤
max1≤i≤d |ain − bin|+

∑d
j=1 |ajn − bjn|

w(bn)
,

i.e.

max
1≤i≤d

∣∣∣∣ ain
w(an)

− bin
w(bn)

∣∣∣∣ ≤ d+ 1

w(bn)
max

1≤i≤d
|ain − bin|

a.s.−→
n→+∞

0.

Thus

|r̂n+1| ≤ |||H||| max
1≤i≤d

∣∣∣∣ ain
w(an)

− bin
w(bn)

∣∣∣∣+ |||Hn+1 −H|||
a.s.−→

n→+∞
0,

and, in the same way, r̃n+1
a.s.−→

n→+∞
0. Consequently claim (a) follows from Proposi-

tion 3.1(a) and Theorem 3.10.
We have to check the assumption on the remainder term to apply results on traps for

SA (see Theorem A.3 in the Appendix). We have that

max
1≤i≤d

∣∣∣∣ ain
w(an)

− bin
w(bn)

∣∣∣∣ <∼
(d+ 1)d(α−1)+

(n+ w(Y0))α
max

1≤i≤d
|ain − bin| = o(n−α) (6.3)

where an <∼ bn stands for lim supn(an/bn) ≤ 1. Since α > 1, H is co-stochastic and the
generating matrices satisfy assumption (A3), we have∑

n≥0

‖r̂n+1‖2 < +∞.

(a) This claim follows from Proposition 3.1(b)&(c) and Theorem 3.10, namely h has a
unique zero y∗ ∈ I∗ or ODEh has two attracting equilibrium points in I∗.
(b) As formerly mentioned, the function f is strictly convex when f(y) = yα, α > 1, so
that Proposition 3.4.

To establish a CLT for the sequence (Ỹn)n≥0 we need that the remainder term (r̂n)n≥1

satisfies (A.7). Then we will assume that the addition rule matrices (Dn)n≥1 satisfy (A1)-
(ii) to ensure that (Ỹn)n≥0 lies in the simplex (which implies that the rate in (6.3) is no
more a.s.) and we assume also that α > 1/2.

Theorem 6.2 (Weak rate). Let d = 2. Assume that the index of regular variation α > 1/2,
that the addition rule matrices (Dn)n≥1 satisfy (A1)-(ii), (A3), (A4) We have

Sp (Jh(y∗)) = {1, 1− ρ∗} ,

where

ρ∗ =
α(y∗1)α−1(p1 − y∗1) + α(1− y∗1)α−1(y∗1 − 1 + p2)

(y∗1)α + f(1− y∗1)α
.
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(a) If p1 + p2 − 1 ≤ 0, vn = 1, n ≥ 1, and (A5)v holds, then

√
n
(
Ỹn − y∗

) Lstably−→
n→+∞

N (0,Σ) with Σ =

∫ +∞

0

eu(Jh(y∗)− I2 )Γeu(Jh(y∗)− I2 )tdu

and Γ =
(y∗1)αC1

y∗ + (1− y∗1)αCy∗r

w((y∗)α)
− y∗(y∗)t = a.s.- lim

n→+∞
E
[
∆Mn∆M t

n | Fn−1

]
. (6.4)

(b) If p1 +p2−1 > 0, we have three possible rate of convergence depending on the second
eigenvalue:

(i) If 0 < ρ∗ < 1
2 and vn = 1, n ≥ 1, and (A5)v holds, then

√
n
(
Ỹn − y∗

) Lstably−→
n→+∞

N (0,Σ) .

(ii) If ρ∗ = 1
2 and vn = log n, n ≥ 1, and (A5)v holds, then√

n

log n

(
Ỹn − y∗

)
L−→

n→+∞
N (0,Σ) where Σ = lim

n

1

n

∫ n

0

eu(Jh(y∗)− I2 )Γeu(Jh(y∗)− I2 )tdu.

(iii) If 1
2 < ρ∗ < 1 and vn = n1−2ρ∗+η, η > 0 and (A5)v holds, then n1−ρ∗

(
Ỹn − y∗

)
a.s.

converges as n→ +∞ towards a positive finite random variable Υ.

This result follows from Theorem A.5 and Theorem 4.2.

6.2 An application to finance: adaptive asset allocation

Such urn based recursive procedures can be applied to adaptive portfolio allocation
by an asset manager or a trader, or to optimal split across liquidity pools. Indeed the first
setting has already been done in [31] and successfully implemented with multi-armed
bandit procedure. We develop in this section the adaptive portfolio allocation, but the
optimal split across liquidity pools can be implemented in the same way, by considering
that the different colors represent the different liquidity pools, and the trader want to
optimally split a large volume of a single asset among the different possible destinations.

Imagine an asset manager who deals with a portfolio of d tradable assets. To optimize
the yield of her portfolio, she can modify the proportions invested in each asset. She
starts with the initial allocation vector Y0. At stage n, she chooses a tradable asset
according to the distribution (1.5) or (1.7) of Xn, then evaluates its performance over
one time step and modifies the portfolio composition accordingly (most likely virtually)
and proceeds. Thus the normalized urn composition Ỹn represents the allocation vector
among the assets and the addition rule matrices Dn model the successive reallocations
depending on the past performances of the different assets. The evaluation of the
asset performances can be carried out recursively with an estimator like with multi-arm
clinical trials (see [4, 32]). In practice, it can be used to design the addition rule matrices
Dn. For example, we may consider (T in)n≥1, i ∈ {1, . . . , d}, a success indicator, namely d
independent sequences of i.i.d. {0, 1}-valued Bernoulli trials with respective parameter
pi (with convention T in = 1 if the return of the ith asset in the nth reallocation is positive
and T in = 0 otherwise).

Let N i
n :=

∑n
k=1X

i
k be the number of times the ith asset is selected among the first n

stages with N i
0 = 0, i ∈ {1, . . . , d}, and let Sn be the d dimensional vector defined by

Sin = Sin−1 + T inX
i
n, n ≥ 1, Si0 = 1, i ∈ {1, . . . , d},

denoting the number of successes of the ith asset among these N i
n reallocations. Define

Πn an estimator of the vector of success probabilities, namely Πi
n =

Sin
Nin

, i ∈ {1, . . . , d}.
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We can prove that Πn
a.s.−→

n→+∞
p := (p1, . . . , pd)

t (see [4, 32]). Then we build the following

addition rule matrices

Dn+1 =



T 1
n+1

Π1
n(1−T 2

n+1)∑
j 6=2 Πjn

· · · Π1
n(1−Tdn+1)∑
j 6=d Πjn

Π2
n(1−T 1

n+1)∑
j 6=1 Πjn

T 2
n+1 · · · Π2

n(1−Tdn+1)∑
j 6=d Πjn

...
...

. . .
...

Πdn(1−T 1
n+1)∑d

j 6=1 Πjn

Πdn(1−T 2
n+1)∑d

j 6=2 Πjn
· · · T dn+1


, (6.5)

i.e. at stage n + 1, if the return of the jth asset is positive, then one ball of type j is

added in the urn. Otherwise, Πin∑
k 6=j Πkn

(virtual) balls of type i, i 6= j, are added. This

addition rule matrix clearly satisfies (A1)-(i) and (A2). Then, one easily checks that the
generating matrices Hn = E [Dn+1 | Fn] satisfy (A1)-(ii) and, as soon as Y0 ∈ Rd+ \ {0},
Hn

a.s.−→ H (see [4, 32]), where

Hn+1 =



p1
Π1
n(1−p2)∑
j 6=2 Πjn

· · · Π1
n(1−pd)∑
j 6=d Πjn

Π2
n(1−p1)∑
j 6=1 Πjn

p2 · · · Π2
n(1−pd)∑
j 6=d Πjn

...
...

. . .
...

Πdn(1−p1)∑
j 6=1 Πjn

Πdn(1−p2)∑
j 6=2 Πjn

· · · pd


, H=



p1
p1(1−p2)∑

j 6=2 pj
· · · p1(1−pd)∑

j 6=d pj

p2(1−p1)∑
j 6=1 pj

p2 · · · p2(1−pd)∑
j 6=d pj

...
...

. . .
...

pd(1−p1)∑
j 6=1 pj

pd(1−p2)∑
j 6=2 pj

· · · pd


.

Let us remark that H is R-diagonalizable since it is symmetric with respect to its
invariant measure (see [33]). Therefore, the number of each asset in the portfolio Yn
follows the dynamics (1.3) and the distribution of the portfolio in each asset follows the
dynamics (2.11) or (6.1) depending on the drawing rule.

Here the components of the limiting generating matrix H can be interpreted as
constraints on the composition of the portfolio. Indeed, in presence of two assets (or
colors), we prove that the first component of the allocation vector y∗1 lies in I∗ (see
Proposition 3.1), therefore the portfolio will contain at least a proportion p1 ∨ (1− p2)

and no more than p1 ∧ (1− p2) of the first asset. Such rules may be prescribed by the
regulation, the bank policy or the bank customer, and our approach is a natural way to
have them satisfied (at least asymptotically).

The idea of reinforcing the drawing rule (instead of considering the uniform drawing)
like in (1.5) or (1.7) can be interpreted as a way to take into account the risk aversion of
the trader or the customer. Indeed, if f is concave the equilibrium point will be in the
middle of the simplex (see Theorem 3.4 and Theorem 3.8), so the trader prefers to have
diversification in her/his portfolio. On the contrary, if f is convex, the equilibrium points
will lie on the boundary of the set of constraints induced by the limiting generating
matrix H, so she/he prefers to take advantage of the most money-making asset (like in a
“winner take all” or a “0-1” strategy).

Numerical experiments. We present some numerical experiments for the drawing rule
defined by (1.5), firstly with a concave function f : y 7→ √y and secondly with a convex
function f : y 7→ y4. Therefore we have a unique equilibrium point in the first setting
and two attracting targets in the second framework. We consider an asset manager who
deal with a portfolio of 2 tradable assets. We model the addition rule matrices like in
the multi-arm clinical trials, namely Dn is defined by (6.5). We use the same success
probabilities, namely p1 = 0.7 and p2 = 0.75, and the initial urn composition is chosen
randomly in the simplex S2.
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� Convergence of the portfolio allocation with concave drawing rule.

Figure 4: Convergence of Ỹn toward y∗ for f(y) =
√
y with p1 = 0.7 and p2 = 0.75.

We have that y∗1 ∈ (0.25, 0.7) and y∗1 and y∗2 are close to 1
2 , so the portfolio is

diversified because in this case the investor is risk adverse.

� Convergence of the portfolio allocation with convex drawing rule.

Figure 5: Convergence of Ỹn toward y∗ for f(y) = y4 with p1 = 0.7 and p2 = 0.75. We
have two possible equilibrium points: 1 − p2 < u∗1 < 1/2 (in red) and 1/2 < u∗2 < p1 (in
blue).

In the convex framework, we have two possible strategies and they are close to the
boundaries defined by regulation. Moreover the distribution of the portfolio between the
two assets is more asymmetric, because the trader chooses to invest two times more in
one asset than in the other.

The probability that our algorithm converges toward u∗1 (resp. u∗2) depends on
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the initial value Ỹ0. Approximations by Monte-Carlo simulations of these probabilities
are presented in the following figure to illustrate this dependency on the initial urn
composition.

Figure 6: Estimation by MC of the probabilities for the algorithm to converge toward u∗1
(red) and u∗2 (blue) depending on Ỹ0 for f(y) = y4 with p1 = 0.7 and p2 = 0.75.
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Appendix

A Basic tools from Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space
(Ω,A, (Fn)n≥0,P) having values in a convex set C ⊂ Rd,

∀n ≥ 0, θn+1 = θn − γn+1h(θn) + γn+1 (∆Mn+1 + rn+1) , (A.1)

where (γn)n≥1 is a (0, γ̄]-valued step sequence for some γ̄ > 0, h : C → Rd is a continuous
function with linear growth (the mean field of the algorithm) such that

(Id − γh)(C) ⊂ C for every γ∈ (0, γ̄], (A.2)

and θ0 is an F0-measurable finite random vector and, for every n ≥ 1, ∆Mn is an
(Fn)n-martingale increment and rn is an (Fn)n-adapted remainder term.

Note that the assumptions of the theorems recalled below are possibly not minimal,
but adapted to the problems we want to solve.

� A.s. Convergence. Let us introduce a few additional notions on differential systems.
We consider the differential system ODEh ≡ ẋ = −h(x) associated to the (continu-
ous) mean field h : C → Rd. We assume that this system has a C-valued flow (4)
Φ(t, ξ)t∈R+,ξ∈C : For every ξ∈ C, (Φ(t, ξ))t≥0 is the unique solution to ODEh defined on
the whole positive real line. This flow exists as soon as h is locally Lipschitz with linear
growth.

Let K be a compact connected, flow invariant subset of C, i.e. such that Φ(t,K) ⊂ K
for every t∈ R+.

A non-empty subset A ⊂ K is an internal attractor of K for ODEh if

(i) A  K,

(ii) ∃ ε0 > 0 such that sup
x∈K,dist(x,A)≤ε0

dist
(
Φ(t, x), A

)
→ 0 as t→ +∞.

4this is satisfied under the above stability condition (A.2).
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A compact connected flow invariant set K is a minimal attractor for ODEh if it
contains no internal attractor. This terminology coming from dynamical systems may be
misleading: Thus any equilibrium point of ODEh (zero of h) is a minimal attractor by
this definition, regardless of its stability (see Claim (b) in Theorem A.2 below, see also
Definition 2.9).

Remark A.1. When the flow does not exist, the above definition should be understood
as follows: One replaces the flow Φ(x, ·) by the family of all solutions of ODEh starting
from x at time 0 (whose existence follow from Peano’s Theorem). For more details on
this natural extension, we refer to [20] (see Appendix “the ODE method without flow”).
Up to this extension, the theorem below remains true even when uniqueness of solutions
of ODEh fails.

Theorem A.2. (A.s. convergence with ODE method, see e.g. [9, 18, 28, 19, 6]). Assume
that h : C → Rd satisfies (A.2) and that ODEh has a C-valued flow (e.g. because h is a
locally Lipschitz function with linear growth). Assume furthermore that

rn
a.s.−→

n→+∞
0 and sup

n≥0
E
[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.,

and that (γn)n≥1 is a positive sequence satisfying (γn∈ (0, γ̄], n ≥ 1) and∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

On the event A∞ =
{
ω : (h(θn(ω)))n≥0 is bounded

}
, P(dω)-a.s., the set Θ∞(ω) of the

limiting values of (θn(ω)n≥0) as n→ +∞ is a compact connected flow invariant minimal
attractor for ODEh (see Proposition 5.3 in Section 5.1 in [6]).

Furthermore:

(a) Equilibrium point(s) as limiting value(s). If dist
(
Φ(θ0, t), {h = 0}

)
→ 0 as t→ +∞, for

every θ0∈ Rd, then Θ∞(ω) ∩ {h = 0} 6= ∅.

(b) Single stable equilibrium point. If {h = 0} = {θ∗} and Φ(θ0, t)→ θ∗ as t→ +∞ locally
uniformly in θ0, then Θ∞(ω) = {θ∗} i.e. θn

a.s.−→ θ∗ as n→ +∞.

(c) 1-dimensional setting. If d = 1 and {h = 0} is locally finite, then Θ∞(ω) = {θ∞} ⊂
{h = 0} i.e. θn

a.s.−→ θ∞∈ {h = 0}.
A stochastic algorithm may a.s. converge under the existence of multiple equilibrium

points, typically stochastic gradient or pseudo-descents, but we do not need such results
to solve the urn problems under consideration in this paper. We refer to [18, 28, 19, 6],
among others. Note also that examples of situation (a) where the algorithm a.s. does not
converge are developed in [19], [20] or [6] (necessarily with d ≥ 2 owing to Claim (c)).

� Traps (Unstable equilibrium point). This second theorem deals with “traps” i.e.
repulsive zeros of the mean function h. It shows that, provided such a trap is noisy
enough, such a trap cannot be a limiting point of the algorithm.

Theorem A.3. (A.s. non-convergence toward a noisy trap, see e.g. [12, 17]). Assume
that z∗ ∈ Rd is a trap for the stochastic algorithm (A.1), i.e.

(i) h(z∗) = 0,
(ii) there exists a neighborhood V (z∗) of z∗ in which h is differentiable with a Lipschitz
differential,
(iii) the eigenvalue of M = Jh(z∗) with the lowest real part, denoted by λmin, satisfies
<e(λmin) < 0.
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Assume furthermore that a.s. on Γ(z∗) = {θn −→
n→+∞

z∗},

∑
n≥1

‖rn‖2 < +∞ a.s. and ∃ δ > 0 such that lim sup
n
E
[
‖∆Mn+1‖2+δ | Fn

]
< +∞ a.s.

(A.3)
Let K± = Ker(P±M) where P− (resp. P+) is a polynomial with zeros having negative
(resp. positive) real parts and P−P+ = P , minimal polynomial ofM so thatRd = K+⊕K−.
Denoting by ∆Mrep

n+1 the projection of ∆Mn+1 on K− alongside K+, assume that, a.s. on
Γ(z∗),

lim inf
n

E
[∥∥∆Mrep

n+1

∥∥2
∣∣∣Fn] > 0. (A.4)

Moreover, assume the positive sequence (γn)n≥1 satisfies∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

Then, P
(
Γ(z∗)

)
= 0.

Remark A.4. If (A.3) holds with δ = 0, then the conclusion is still true if (A.4) is replaced
by the slightly more stringent condition lim inf

n
E
[∥∥∆Mrep

n+1

∥∥∣∣Fn] > 0 a.s.

� Rate(s) of convergence. We will say that h is ε-differentiable (ε > 0) at θ∗ if

h(θ) = h(θ∗) + Jh(θ∗)(θ − θ∗) + o(‖θ − θ∗‖1+ε
) as θ → θ∗.

Theorem A.5. (Rate of convergence see [18] Theorem 3.III.14 p.131 (for the CLT

see also e.g. [9, 28])). Let θ∗ be an equilibrium point of {h = 0} and {θn → θ∗} the
convergence event associated to θ∗ (supposed to have a positive probability). Set the
gain parameter sequence (γn)n≥1 as follows

∀n ≥ 1, γn =
1

n
. (A.5)

Assume that the function h is differentiable at θ∗ and all the eigenvalues of Jh(θ∗) have
positive real parts. Assume that, for a real number δ > 0,

sup
n≥0

E
[
‖∆Mn+1‖2+δ | Fn

]
< +∞ a.s., E

[
∆Mn+1∆M t

n+1 | Fn
] a.s.−→
n→+∞

Γ∗ on {θn → θ∗},

(A.6)
where Γ∗ ∈ S+(d,R) (deterministic symmetric positive matrix) and for an ε > 0 and a
positive sequence (vn)n≥1 (specified below),

n vnE
[
‖rn+1‖2 1{‖θn−θ∗‖≤ε}

]
−→

n→+∞
0. (A.7)

Let λmin denote the eigenvalue of Jh(θ∗) with the lowest real part and set Λ :=

<e(λmin).

(a) If Λ > 1
2 and vn = 1, n ≥ 1, then, the weak convergence rate is ruled on the

convergence event {θn
a.s.−→ θ∗} by the following Central Limit Theorem

√
n (θn − θ∗)

Lstably−→
n→+∞

N (0,Σ∗) with Σ∗ :=

∫ +∞

0

e
−u
(
Jh(θ∗)t− Id2

)
Γ∗e
−u
(
Jh(θ∗)− Id2

)
du.

(b) If Λ = 1
2 , vn = log n, n ≥ 1, and h is ε-differentiable at θ∗, then
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√
n

log n
(θn − θ∗)

Lstably−→
n→+∞

N (0,Σ∗) on {θn → θ∗},

where Σ∗ = lim
n

1

n

∫ n

0

e
−u
(
Jh(θ∗)t− Id2

)
Γe
−u
(
Jh(θ∗)− Id2

)
du.

(c) If Λ∈
(
0, 1

2

)
, vn = n2Λ−1+η, n ≥ 1, for some η > 0, and h is ε-differentiable at θ∗, for

some ε > 0, then nΛ (θn − θ∗) is a.s. bounded on {θn → θ∗} as n→ +∞.
If, moreover, Λ = λmin (λmin is real), then nΛ (θn − θ∗) a.s. converges as n → +∞

toward a finite random variable.
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