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Local large deviations and the strong renewal theorem

Francesco Caravenna* Ron Doney†

Abstract

We establish two different, but related results for random walks in the domain of
attraction of a stable law of index α. The first result is a local large deviation upper
bound, valid for α ∈ (0, 1) ∪ (1, 2), which improves on the classical Gnedenko and
Stone local limit theorems. The second result, valid for α ∈ (0, 1), is the derivation of
necessary and sufficient conditions for the random walk to satisfy the strong renewal
theorem (SRT). This solves a long-standing problem, which dates back to the 1962
paper of Garsia and Lamperti [GL62] for renewal processes (i.e. random walks with
non-negative increments), and to the 1968 paper of Williamson [Wil68] for general
random walks.
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1 Introduction and results

This paper contains new results about asymptotically stable random walks. We first
present a local large deviation estimate which improves the error term in the classical
local limit theorems, without making any further assumptions (see Theorem 1.1). Then
we exploit this bound to solve a long-standing problem, namely we establish necessary
and sufficient conditions for the validity of the strong renewal theorem (SRT), both for
renewal processes (Theorem 1.4) and for general random walks (Theorem 1.12). The
corresponding result for Lévy processes is also presented (see Theorem 1.18).

This paper supersedes the individual preprints [Car15] and [Don15].

Notation. We set N = {1, 2, 3, . . .} and N0 = N ∪ {0}. We denote by RV (γ) the class of
regularly varying functions with index γ, namely f ∈ RV (γ) if and only if f(x) = xγ`(x)

for some slowly varying function ` ∈ RV (0), see [BGT89]. Given f, g : [0,∞)→ (0,∞) we
write f ∼ g to mean lims→∞ f(s)/g(s) = 1, and f � g to mean lims→∞ f(s)/g(s) = 0.
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The strong renewal theorem

1.1 Local large deviations

Let (Xi)i∈N be i.i.d. real-valued random variables, with law F . Let S0 := 0, Sn :=

X1 + . . .+Xn be the associated random walk and

Mn := max{X1, X2, . . . , Xn} . (1.1)

We assume that the law F is in the domain of attraction of a strictly stable law with
index α ∈ (0, 1) ∪ (1, 2), that is, with F (x) := F ((x,∞)) and F (x) := F ((−∞, x]),

F (x) ∼
x→∞

p

A(x)
and F (−x) ∼

x→∞

q

A(x)
for some A ∈ RV (α) . (1.2)

More explicitly, if we write A(x) = xα/L(x), with L(·) slowly varying,

P(X > x) ∼
x→∞

p
L(x)

xα
and P(X ≤ −x) ∼

x→∞
q
L(x)

xα
.

We assume that p > 0 and q ≥ 0 (when q = 0, the second relation in (1.2) should be
understood as F (−x) = o(1/A(x))). For α > 1, we further assume that E[X] = 0.

Without loss of generality, we may assume that A ∈ RV (α) is continuous and strictly
increasing. If we introduce the norming sequence an ∈ RV (1/α) defined by

an := A−1(n) , n ∈ N , (1.3)

then Sn/an converges in law to a random variable Y with a stable law of index α and
positivity parameter % = P(Y > 0) = 1

2 + 1
πα arctan(p−qp+q tan πα

2 ) > 0 (because p > 0).
Our first main result is a local large deviation estimate for Sn, constrained on Mn.

Theorem 1.1 (Local Large Deviations). Let F satisfy (1.2) with α ∈ (0, 1) ∪ (1, 2) and
p > 0, and E[X] = 0 if α > 1. Fix a bounded measurable J ⊆ R. Given γ ∈ (0,∞), there
is C0 = C0(γ, J) <∞ such that, for all n ∈ N and x ≥ 0, the following relation holds:

P(Sn ∈ x+ J, Mn ≤ γx) ≤ C0
1

an

(
n

A(x)

)d1/γe
, (1.4)

where dxe := min{n ∈ N : n ≥ x} is the upper integer part of x. More explicitly:

∀k ∈ N, ∀γ ∈ [ 1
k ,

1
k−1 ) : P(Sn ∈ x+ J, Mn ≤ γx) ≤ C0

1

an

(
n

A(x)

)k
. (1.5)

Moreover, for some C ′0 = C ′0(J) <∞,

P(Sn ∈ x+ J) ≤ C ′0
1

an

n

A(x)
. (1.6)

The non-local version of (1.4), where Sn ∈ x+ J is replaced by Sn ≥ x, is known as a
Fuk-Nagaev inequality [Nag79]. This is the starting point of our proof of Theorem 1.1,
see Section 3. We prove (1.4) through direct path estimates, combined with local limit
theorems. Relation (1.6) is obtained as a simple corollary of (1.4) with γ = 1.

A heuristic explanation of (1.6) goes as follows: for large x, if Sn ∈ x+ J , it is likely
that a single step Xi takes a value y comparable to x. Since P(Xi > cx) ≈ 1/A(x) by
(1.2), and since there are n available steps, we get the factor n/A(x) in (1.6). The extra
factor 1/an comes from Gnedenko and Stone local limit theorems.

A similar argument sheds light on (1.4)-(1.5). Under the constraint Mn ≤ γx, with
γ ∈ [ 1

k ,
1

k−1 ), the most likely way to have Sn ∈ x+ J is that exactly k steps Xi1 , . . . , Xik

take values comparable to x/k, and this yields the factor (n/A(x))k in (1.5).
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The strong renewal theorem

Remark 1.2. The classical Gnedenko and Stone local limit theorems only give the weak
bound P(Sn ∈ x+ J) = o( 1

an
) as x/an →∞. The inequality (1.6) improves quantitatively

on this bound, with no further assumptions besides (1.2).

The Cauchy case α = 1 is left out from our analysis, because of the extra care needed
to handle the centering issues. However, an analogue of Theorem 1.1 holds also in this
case, as shown by Q. Berger in the recent paper [Ber17].

Finally, it is worth stressing that the estimate (1.6) is essentially optimal, under the
mere assumption (1.2). However, if one makes extra local requirements on the step
distribution, such as e.g. (1.15) below, one can correspondingly sharpen (1.6) along the
same line of proof, see [Ber17, Theorem 2.4] (which is valid for any α ∈ (0, 2)).

1.2 The strong renewal theorem

Henceforth we assume that α ∈ (0, 1). We say that F is arithmetic if it is supported
by hZ for some h > 0, in which case the maximal value of h > 0 with this property is
called the arithmetic span of F . It is convenient to set

I = (−h, 0] where h :=

{
arithmetic span of F (if F is arithmetic)

any fixed number > 0 (if F is non-arithmetic) .
(1.7)

The renewal measure U(·) associated to F is the measure on R defined by

U(dx) :=
∑
n≥0

F ∗n(dx) =
∑
n≥0

P(Sn ∈ dx) . (1.8)

It is well known (see [BGT89, Eq. (8.6.1)-(8.6.3)] and [Chi15, Appendix]) that (1.2)
implies

U([0, x]) ∼
x→∞

C

α
A(x) , with C = C(α, %) = αE[Y −α 1{Y >0}] (1.9)

(recall that Y denotes a random variable with the limiting stable law). In the special
case when p = 1 and q = 0 in (1.2) (so that % = 1) one has C = 1

π sin(πα).
It is natural to wonder whether the local version of (1.9) holds, namely

U(x+ I) = U((x− h, x]) ∼
x→∞

Ch
A(x)

x
. (SRT)

For a more usual formulation, we can write A(x) = xα/L(x) with L(·) slowly varying:

U(x+ I) = U((x− h, x]) ∼
x→∞

Ch
1

L(x)x1−α . (SRT)

This relation, called strong renewal theorem (SRT), is known to follow from (1.2) when
α > 1

2 , see [GL62, Wil68, Eri70, Eri71]. However, when α ≤ 1
2 there are examples of F

satisfying (1.2) but not (SRT). The reason is that small values of n in (1.8) can give an
anomalous contribution to the renewal measure (see Subsection 4.1 for more details).

In order for the SRT to hold, when α ≤ 1
2 , extra assumptions are needed. Sufficient

conditions have been derived along the years [Wil68, Don97, VT13, Chi15, Chi13], but
none of these is necessary. In this paper we settle this problem, determining necessary
and sufficient conditions for the SRT : see Theorem 1.4 for renewal processes and
Theorem 1.12 for random walks. We also obtain very explicit and sharp sufficient
conditions, which refine those in the literature, see Propositions 1.7 and 1.17.

Besides its intrinsic interest, the SRT for heavy tailed renewal processes has played
and is still playing a key role in a variety of contexts. Our results are already referred to
in several papers, from classical renewal theory [Chi18, Kev17, Kol17] to random walks
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and large deviations [Ber17, Ber19, DSW18, DW18, Uch18], from dynamical systems
[DN17, DN18, MT17] to interacting particle systems [FMMV19]. The SRT has also
played a key role in applications, e.g. in pinning and related models of statistical
mechanics, see [Gia07, Hol09, Gia11]. We also point out that, as a future direction of
research, our results are likely to lead to an ultimate version of the key renewal theorem,
in the context of random walks with infinite mean (see [Eri70, AA87] for partial versions).

Let us proceed with our results. For k ≥ 0 and x ∈ R we set

bk(x) :=
A(|x|)k

|x| ∨ 1
. (1.10)

Note that b1(x) = A(x)/x = (L(x)x1−α)−1 for x ≥ 1 is precisely the rate in the right hand
side of (SRT). In the sequel, we will often need to require that some quantity J(δ;x) is
much smaller than b1(x), when x→∞ followed by δ → 0. This leads to the following

Definition 1.3. Throughout the paper we write “J(δ;x) is a.n.” to mean that a function
J(δ;x) is asymptotically negligible with respect to b1, in the following precise sense:

lim
δ→0

lim sup
x→+∞

J(δ;x)

b1(x)
= lim
δ→0

lim sup
x→+∞

J(δ;x)

A(x)/x
= 0 . (1.11)

We are ready to state our necessary and sufficient conditions for the SRT. We start
with the case of renewal processes, which is simpler.

1.3 The renewal process case

Assume that F is a law on [0,∞) such that

F (x) ∼
x→∞

1

A(x)
for some A ∈ RV (α) , (1.12)

which is a special case of (1.2) with p = 1, q = 0. For δ > 0 and x ≥ 0 we set

I+
1 (δ;x) :=

∫
1≤z≤δx

F (x− dz) b2(z) =

∫
1≤z≤δx

F (x− dz)
A(z)2

z
. (1.13)

The following is our main result for renewal processes.

Theorem 1.4 (SRT for Renewal Processes). Let F be a probability on [0,∞) satisfying
(1.12) with α ∈ (0, 1). Define I = (−h, 0] with h > 0 as in (1.7).

• If α > 1
2 , the SRT holds with no extra assumption on F .

• If α ≤ 1
2 , the SRT holds if and only if I+

1 (δ;x) is a.n. (see Definition 1.3).

Let us spell out the condition “I+
1 (δ;x) is a.n.” explicitly in terms of F , by (1.11)-

(1.13):

“I+
1 (δ;x) is a.n.” ⇐⇒ lim

δ→0
lim sup
x→∞

xF (x)

∫
1≤z≤δx

F (x− dz)
1

z F (z)2
= 0 .

This can be checked in concrete examples, if one has enough control on F (·). We will
soon deduce more explicit sufficient conditions, see Proposition 1.7, which are almost
optimal.

Interestingly, in the “boundary” case α = 1
2 , we can characterize the class of A(·)’s

for which the SRT holds with no extra assumption on F besides (1.12) (like for α > 1
2 ).
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Theorem 1.5 (SRT for Renewal Processes with α = 1
2 ). Let F be a probability on [0,∞)

satisfying (1.12) with α = 1
2 (so that A(x)/

√
x is a slowly varying function). If

sup
1≤s≤x

A(s)√
s

=
x→∞

O

(
A(x)√
x

)
, (1.14)

then the SRT holds with no extra assumption on F . (This includes the case A(x) ∼ c
√
x.)

If condition (1.14) fails, there are examples of F for which the SRT fails.

The proof of Theorem 1.4 is based on direct probabilistic arguments and is remarkably
compact (' 6 pages). We start in Section 4 recalling a reformulation of the SRT, which
can be paraphrased as follows: the contribution of “small n” to the renewal measure
(1.8) is asymptotically negligible (see Subsection 4.1). In Section 4 we also derive two
key bounds on the contribution of “big jumps”, see Lemmas 4.2 and 4.3. We complete
the proof of Theorem 1.4 in Subsection 5.1 (necessity) and in Section 6 (sufficiency).

1.4 Sufficient conditions for renewal processes

For a probability F on [0,∞) which satisfies (1.12), a sufficient condition for the SRT
is that for some x0, C <∞ one has

F (x+ I) ≤ C

xA(x)
∀x ≥ x0 , (1.15)

as proved by Doney [Don97] in the arithmetic case (extending previous results of
Williamson [Wil68]), and by Vatutin and Topchii [VT13] in the non-arithmetic case.

Interestingly, if one only looks at the growth of the “local” probabilities F (x+ I), no
sharper condition than (1.15) can ensure that the SRT holds, as the following result
shows.

Proposition 1.6. Fix A ∈ RV (α) with α ∈ (0, 1
2 ), and let ζ : (0,∞) → (0,∞) be an

arbitrary non-decreasing function with limx→∞ ζ(x) =∞. Then there exists a probability
F on [0,∞) which satisfies (1.12), such that F (x+ I) = O( ζ(x)

xA(x) ), for which the SRT fails.

Intuitively, when condition (1.15) is not satisfied, in order for the SRT to hold, the
points x for which F (x+ I)� 1

xA(x) must not be “too cluttered”. We can make this loose

statement precise by looking at the probabilities F ((x − y, x]) = F (x) − F (x − y). The
following result provides very explicit conditions on F (·) for the SRT.

Proposition 1.7. Let F be a probability on [0,∞) satisfying (1.12) with α ∈ (0, 1
2 ].

• A sufficient condition for the SRT is that for some γ > 1− 2α and x0, C < ∞ one
has

F ((x− y, x]) ≤ C

A(x)

(y
x

)γ
∀x ≥ x0 , ∀y ∈

[
1, 1

2x
]
. (1.16)

• A necessary condition for the SRT is that for every γ < 1− 2α there are x0, C <∞
such that (1.16) holds.

Remark 1.8. The sufficient condition (1.16) is a generalization of (1.15). Indeed, (1.15)
yields F ((x− y, x]) ≤

∑dy/he
j=0 F (x−hj+ I) ≤ ( yh + 2) C′

xA(x) for some C ′, hence when y ≥ 1

condition (1.16) holds with γ = 1 and C = ( 1
h + 2)C ′ (recall that h > 0 is fixed, see (1.7)).

Remark 1.9. Other sufficient conditions for the SRT, which generalize and sharpen
(1.15), were given by Chi in [Chi15, Chi13]. These can be deduced from Theorem 1.4.

Remark 1.10. Conditions similar to (1.16), in a different context, appear in [CSZ16].

We point out that if F satisfies (1.12), then (1.16) holds with γ = 0. However, with
no extra assumption, one cannot hope to improve this estimate, as Lemma 10.2 below
shows.
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To see how condition (1.16) appears, let us introduce the following variant of (1.13):

Ĩ+
1 (δ;x) :=

∫ δx

1

F ((x− z, x])

z
b2(z) dz =

∫ δx

1

F ((x− z, x])

z

A(z)2

z
dz . (1.17)

Our next result shows that one can look at Ĩ+
1 (δ;x) instead of I+

1 (δ;x).

Proposition 1.11. Let F be a probability on [0,∞) satisfying (1.12) with α ∈ (0, 1
2 ].

• If Ĩ+
1 (δ;x) is a.n., then also I+

1 (δ;x) is a.n., hence the SRT holds.

• When α < 1
2 , the converse is also true: Ĩ+

1 (δ;x) is a.n. if and only if I+
1 (δ;x) is a.n..

1.5 The general random walk case

We now turn to the general random walk case, which is more challenging. We
assume that F is a probability on R which satisfies (1.2) with α ∈ (0, 1), p > 0 and q ≥ 0.
Note that the associated random walk is transient, because an ∈ RV (1/α) and then∑
n∈N P(Sn ∈ (0, 1]) ≤

∑
n∈N

C
an

<∞ (see (2.7) below).
Let us generalize (1.13) as follows: for δ > 0 and x ≥ 0 we set:

I1(δ;x) :=

∫
|y|≤δx

F (x+ dy) b2(y) . (1.18)

For k ∈ N with k ≥ 2, we introduce a further parameter η ∈ (0, 1) and we set

Ik(δ, η;x) :=

∫
|y1|≤δx

F (x+ dy1)

∫
· · ·
∫

|yj |≤η|yj−1| for 2≤j≤k

Py1
(dy2, . . . ,dyk) bk+1(yk) ,

where Py1(dy2, . . . ,dyk) := F (−y1 + dy2)F (−y2 + dy3) · · ·F (−yk−1 + dyk) .

(1.19)

Note that Py1
(dy2, . . . ,dyk) is the law of (S2, . . . , Sk) conditionally on S1 = y1, hence

Ik(δ, η;x) = E
[
bk+1(Sk)1|Sj |≤η|Sj−1| for 2≤j≤k} 1|S1|≤δx}

∣∣S0 = −x
]
. (1.20)

The same formula holds also for k = 1 (where the first indicator function equals 1).
Let us define

κα :=

⌊
1

α

⌋
− 1 =



0 if α ∈ ( 1
2 , 1)

1 if α ∈ ( 1
3 ,

1
2 ]

2 if α ∈ ( 1
4 ,

1
3 ]

...

m if α ∈ ( 1
m+2 ,

1
m+1 ]

, (1.21)

We are going to see that, when 1/α 6∈ N, necessary and sufficient conditions for the SRT
involve the a.n. of Ik(δ, η;x) for k = κα. The case 1/α ∈ N is slightly more involved. We
need to introduce a suitable modification of (1.10), namely

b̃k(z, x) := b̃k(|z|, |x|) :=

∫ |z|
|x|

bk(t)

t ∨ 1
dt , (1.22)

where the integral vanishes if |x| > |z|. We then define Ĩ1(δ;x) and Ĩk(δ, η;x) in analogy
with (1.18) and (1.19), replacing b2(y) by b̃2(δx, y) and bk+1(yk) by b̃k+1(yk−1, yk):

Ĩ1(δ;x) :=

∫
|y|≤δx

F (x+ dy) b̃2(δx, y) , (1.23)
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and for k ≥ 2:

Ĩk(δ, η;x) :=

∫
|y1|≤δx

F (x+ dy1)

∫
· · ·
∫

|yj |≤η|yj−1| for 2≤j≤k

Py1
(dy2, . . . ,dyk) b̃k+1(yk−1, yk) . (1.24)

Note that, by Fubini’s theorem, we can equivalently rewrite (1.23) as follows:

Ĩ1(δ;x) =

∫ δx

0

F ((x− t, x+ t])

t ∨ 1
b2(t) dt , (1.25)

which is a natural random walk generalization of (1.17).
We can now state our main result for random walks.

Theorem 1.12 (SRT for Random Walks). Let F be a probability on R satisfying (1.12)
with α ∈ (0, 1) and with p, q > 0. Define I = (−h, 0] with h > 0 as in (1.7).

• If α > 1
2 , the SRT holds with no extra assumption on F .

• If α ≤ 1
2 and 1

α 6∈ N, we distinguish two cases:

– if α ∈ ( 1
3 ,

1
2 ), i.e. κα = 1, the SRT holds if and only if I1(δ;x) is a.n..

– if α ∈ ( 1
k+2 ,

1
k+1 ) for some k = κα ≥ 2, the SRT holds if and only if Iκα(δ, η;x)

is a.n., for every fixed η ∈ (0, 1).

• If α ≤ 1
2 and 1

α ∈ N, the same statement holds if we replace Ik by Ĩk, namely:

– if α = 1
2 , i.e. κα = 1, the SRT holds if and only if Ĩ1(δ;x) is a.n..

– if α = 1
k+1 , for some k = κα ≥ 2, the SRT holds if and only if Ĩκα(δ, η;x) is a.n.,

for every fixed η ∈ (0, 1).

We stress that the conditions that Ik and Ĩk are a.n. can be spelled out in terms
of F . Indeed, in the definitions (1.18)-(1.24) of Ik and Ĩk, we can replace bk(y) by the
equivalent expression 1/{(|y| ∨ 1)F (y)k}, which depends only on F . Moreover, the
condition that a quantity J(δ;x) is a.n. can be rephrased using only F (see (1.11), (1.2)):

“J(δ;x) is a.n.” ⇐⇒ lim
δ→0

lim sup
x→∞

xF (x) J(δ;x) = 0 .

In Appendix A we show some relations between the quantities Ik and Ĩk. These lead
to the following clarifying remarks.

Remark 1.13. The condition “Ĩκα is a.n.” is stronger than “Iκα is a.n.”, but for 1
α 6∈ N

they are equivalent (see Lemma A.3). As a consequence, we can rephrase Theorem 1.12
in a more compact way as follows:

The SRT holds:


with no extra assumption for α > 1

2

iff Ĩ1(δ;x) is a.n. for 1
3 < α ≤ 1

2

iff Ĩκα(δ, η;x) is a.n. for every η ∈ (0, 1) for α ≤ 1
3

(1.26)

When α ≤ 1
3 , our proof actually shows that if Ĩκα(δ, η;x) is a.n. for some η > 1− α

1−α ,
then (the SRT holds and consequently) it is a.n. for every η ∈ (0, 1). It is not clear
whether the a.n. of Ĩκα(δ, η;x) for some η ≤ 1− α

1−α also implies its a.n. for any η ∈ (0, 1).

Remark 1.14. If 1
α 6∈ N, the condition “Iκα(δ, η;x) is a.n.” is equivalent to the seemingly

stronger one “Ik(δ, η;x) is a.n. for all k ∈ N” (see Lemma A.2). Similarly, the condition
“Ĩκα(δ, η;x) is a.n.” is equivalent to “Ĩk(δ, η;x) is a.n. for all k ∈ N” (see Lemma A.1).
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Remark 1.15. In Theorem 1.12 we require q > 0 (that is the positivity index % is strictly
less than one), but a large part of it actually extends to q = 0. More precisely, when
q = 0, our proof shows that if α > 1

2 the SRT holds with no extra assumption on F , while

if α ≤ 1
2 the a.n. of Iκα (if 1

α 6∈ N) or Ĩκα (if 1
α ∈ N) are sufficient conditions for the SRT.

However, when q = 0, we do not expect the a.n. of Iκα or Ĩκα to be necessary, in general.

1.6 Sufficient conditions for random walks

Necessary and sufficient conditions for the SRT in the random walk case involve the
a.n. of Ĩk for a suitable k = κα ∈ N. Unlike the renewal process case, this cannot be
reduced to the a.n. of just Ĩ1.

Proposition 1.16. For any α ∈ (0, 1
3 ), there is a probability F on R which satisfies

(1.12), such that Ĩ1(δ;x) is a.n. but Ĩ2(δ, η;x) is not a.n., for any η ∈ (0, 1) (hence the SRT
fails).

Let us now give simpler sufficient conditions which ensure the a.n. of Ĩk. Note that
the condition that Ĩ1(δ;x) is a.n. only involves the right tail of F (see Definition 1.3). To
express conditions on the left tail of F , we define

Ĩ∗1 (δ;x) :=

∫ δx

0

F ((−x− t,−x+ t])

t ∨ 1
b2(t) dt , (1.27)

which is nothing but Ĩ1(δ;x) in (1.25) applied to the reflected probability F ∗(A) :=

F (−A).

Proposition 1.17. Let F be a probability on R satisfying (1.12) with α ∈ (0, 1
2 ] and p > 0,

q ≥ 0. If both Ĩ1(δ;x) and Ĩ∗1 (δ;x) are a.n., then the SRT holds.
In particular, a sufficient condition for the SRT is that there exists γ > 1− 2α such

that relation (1.16) holds both for F and for F ∗ (i.e., both as x→ +∞ and as x→ −∞).
In particular, the SRT holds when the classical condition (1.15) holds both for F

and F ∗.

1.7 Lévy processes

Let X = (Xt)t≥0 be a Lévy process with Lévy measure Π, Brownian coefficient σ2 and
linear term µ in its Lévy-Khintchine representation, that is

log E[eiϑX1 ] = iµϑ− σ2

2
ϑ2 +

∫
R\{0}

(eiϑx − 1− iϑx1{|x|≤1}) Π(dx) . (1.28)

Whenever X is transient, we can define its potential or renewal measure by

G(dx) :=

∫ ∞
0

P(Xt ∈ dx) dt .

We assume thatX is asymptotically stable: more precisely, there is a norming function
a(t) such that Xt/a(t) converges in law as t→∞ to a random variable Y with a stable
law of index α ∈ (0, 1) and positivity parameter % > 0. In this case

A(x) :=
1

Π(x)
=

1

Π((x,∞))
∈ RV (α) as x→ +∞ ,

and we can take a(·) = A−1(·). Under these assumptions, the renewal theorem (1.9)
holds, just replacing U([0, x]) by G([0, x]). It is natural to wonder whether the corre-
sponding local version (SRT) holds as well, in which case we say that X satisfies the
SRT.
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Our next result shows that this question can be reduced to the validity of the SRT for
a random walk whose step distribution F only depends on the Lévy measure Π, namely:

F (dx) :=


Π(dx)

Π(R \ (−1, 1))
for |x| ≥ 1

0 for |x| < 1

. (1.29)

Theorem 1.18 (SRT for Lévy Processes). Let X be any Lévy process that is in the domain
of attraction of a stable law of index α ∈ (0, 1) and positivity parameter % > 0 as t→∞.
Suppose also that its Lévy measure is non-arithmetic. Then X satisfies the SRT, i.e.

lim
x→∞

xΠ(x)G((x− h, x]) = hα E[Y −α 1{Y >0}] , ∀h > 0 , (1.30)

if and only if the random walk with step distribution F defined in (1.29) satisfies the SRT.

As a consequence, the necessary and sufficient conditions for the SRT in Theorems 1.4
and 1.12 can be applied to the Lévy process X. We recall that these conditions can be
spelled out in terms of the probability F alone (see the comments after Theorems 1.4
and 1.12). Then, for a Lévy process X, we have necessary and sufficient conditions for
the SRT that can be spelled out explicitly in terms of the Lévy measure Π, through F

defined in (1.29).
The proof of Theorem 1.18, given in Section 9, is obtained comparing the Lévy

process X with a compound Poisson process with step distribution F .

Remark 1.19. It is known, see [Ber96, Proof of Theorem 21 on page 38], that the
potential measure G(dx) of any Lévy process X coincides for x 6= 0 with the renewal
measure of a random walk (Sn)n≥0 with step distribution P(S1 ∈ dx) :=

∫∞
0
e−t P(Xt ∈

dx) dt. It is also easy to see that X is in the domain of attraction of a stable law of index
α ∈ (0, 1) and positivity parameter % > 0, with norming function a(t), if and only if the
random walk S is in the domain of attraction of a the same stable law with norming
function a(n).

So, if we write down necessary and sufficient conditions for S to verify the SRT,
these will be necessary and sufficient conditions for X to verify the SRT. However this
approach is unsatisfactory, because one would like conditions expressed in terms of
the characteristics of X, i.e. the quantities Π, σ2, µ appearing in the Lévy-Khintchine
representation (1.28), and the technical problem of expressing our necessary and suffi-
cient conditions for S to satisfy the SRT in terms of these characteristics seems quite
challenging.

1.8 Structure of the paper

The paper is organized as follows.

• In Section 2 we recall some standard results.
• In Section 3 we prove Theorem 1.1.
• Sections 4–8 are devoted to the proofs of Theorems 1.4 and 1.12.

– In Section 4 we reformulate the SRT and we give two key bounds.

– In Section 5 we prove the necessity part for both Theorems 1.4 and 1.12.

– In Section 6 we prove the sufficiency part of Theorem 1.4.

– The sufficiency part of Theorem 1.12 is proved in Section 7 for the case α > 1
3 .

The case α ≤ 1
3 is treated in Section 8 and is much more technical.

• In Section 9 we prove “soft” results, such as Theorem 1.5, Propositions 1.7, 1.11,
1.17, and Theorem 1.18, which are corollaries of our main results.

• In Section 10 we prove Propositions 1.6 and 1.16, which provide counter-examples.
• In Appendix A we prove some technical results.
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2 Setup

2.1 Notation

We recall that f(s) . g(s) or f . g means f(s) = O(g(s)), i.e. for a suitable constant
C < ∞ one has f(s) ≤ C g(s) for all s in the range under consideration. The constant
C may depend on the probability F (in particular, on α) and on h. When some extra
parameter ε enters the constant C = Cε, we write f(s) .ε g(s). If both f . g and g . f ,
we write f ≈ g. We recall that f(s) ∼ g(s) means lims→∞ f(s)/g(s) = 1.

2.2 Regular variation

Without loss of generality [BGT89, §1.3.2], we can assume that A : [0,∞)→ (0,∞) is
differentiable, strictly increasing and such that

A′(s) ∼ αA(s)

s
, as s→∞ . (2.1)

We fix A(0) := 1
2 and A(1) := 1, so that both A and A−1 map [1,∞) onto itself. We also

write au = A−1(u) for all u ∈ [ 1
2 ,∞), in agreement with (1.3).

We observe that, by Potter’s bounds, for every ε > 0 one has

%α+ε .ε
A(%s)

A(s)
.ε %

α−ε , ∀% ∈ (0, 1], s ∈ [1,∞) such that %s ≥ 1 . (2.2)

More precisely, part (i) of [BGT89, Theorem 1.5.6] shows that relation (2.2) holds for
%s ≥ x̄ε, for a suitable x̄ε <∞; the extension to 1 ≤ %s ≤ x̄ε follows as in part (ii) of the
same theorem, because A(y) is bounded away from zero and infinity for y ∈ [1, x̄ε].

We also recall Karamata’s Theorem [BGT89, Propositions 1.5.8 and 1.5.10]:

if f ∈ RV (ζ) with ζ > −1 :

∫
s≤t

f(s) ds ∼
t→∞

∑
n≤t

f(n) ∼
t→∞

1

ζ + 1
t f(t) , (2.3)

if f ∈ RV (ζ) with ζ < −1 :

∫
s>t

f(s) ds ∼
t→∞

∑
n>t

f(n) ∼
t→∞

−1

ζ + 1
t f(t) . (2.4)

2.3 Local limit theorems

We call a probability F on R lattice if it is supported by vZ+ a for some v > 0 and
0 ≤ a < v, and the maximal value of v > 0 with this property is called the lattice span of
F . If F is arithmetic (i.e. supported by hZ), then it is also lattice, but the spans might
differ (for instance, F ({−1}) = F ({+1}) = 1

2 has arithmetic span h = 1 and lattice span
v = 2). A lattice distribution is not necessarily arithmetic.1

Recall that, under (1.2), Sn/an converges in distribution as n→∞ toward a stable
law, whose density we denote by ϕ (the norming sequence an is defined in (1.3)). If we
set

J = (−v, 0] with v =

{
lattice span of F (if F is lattice)

any fixed number > 0 (if F is non-lattice)
, (2.5)

Gnedenko’s and Stone’s local limit theorems [BGT89, Theorems 8.4.1 and 8.4.2] yield

lim
n→∞

sup
x∈R

∣∣∣∣an P(Sn ∈ x+ J)− v ϕ
(
x

an

)∣∣∣∣ = 0 . (2.6)

1If F is lattice, say supported by vZ+ a where v is the lattice span and a ∈ [0, v), then F is arithmetic if
and only if a/v ∈ Q, in which case its arithmetic span equals h = v/m for some m ∈ N.
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Since supz∈R ϕ(z) <∞, we obtain the useful estimate

sup
x∈R

P(Sn ∈ (x− w, x]) .w
1

an
, (2.7)

which, plainly, holds for any fixed w > 0 (not necessarily the lattice span of F ).

3 Proof of Theorem 1.1

We prove (1.4), equivalently (1.5), by steps. Without loss of generality, we assume
that J ⊆ [0,∞) (it suffices to redefine x 7→ x′ := x+ min J and J 7→ J ′ := J −min J).

Step 1

Our starting point is an integrated version of (1.4):

∀γ ∈ (0,∞) : P(Sn ≥ x, Mn ≤ γx) .γ

(
n

A(x)

)1/γ

. (3.1)

This is a Fuk-Nagaev inequality, which follows from [Nag79, Theorems 1.1 and 1.2] (see
[Ber17, Theorem 5.1] for a more transparent statement). Let us be more precise.

• Case α ∈ (0, 1). We apply equation (1.1) from [Nag79, Theorem 1.1] (neglecting
the first term in the right hand side, which is the contribution of Mn > y): for every
y ∈ (0, x] and t ∈ (0, 1], if we define A(t; 0, y) := n

∫ y
0
ut F (du), we have

P(Sn ≥ x, Mn ≤ y) ≤ P1 =

(
e

1 + xyt−1

A(t;0,y)

) x
y

≤
(
e
A(t; 0, y)

xyt−1

) x
y

.

We fix t ∈ (α, 1], so that A(t; 0, y) ≤ n
∫ y

0
tzt−1 F (z) dz . nyt/A(y), thanks to (1.2)

and (2.3). Taking y = γx, since A(y) &γ A(x), we obtain (3.1).

• Case α ∈ (1, 2). We apply equation (1.3) from [Nag79, Theorem 1.2]: for y ∈ (0, x]

and t ∈ [1, 2], setting A(t;−y, y) := n
∫ y
−y |u|

t F (du) and µ(−y, y) := n
∫ y
−y uF (du),

P(Sn ≥ x, Mn ≤ y) ≤ P3 =
e
x
y(

1 + xyt−1

A(t;−y,y)

) x−µ(−y,y)
y +

A(t,−y−y)

yt

.

We drop the term A(t,−y − y)/yt ≥ 0 from the exponent and get an upper bound.
Next we fix t ∈ (α, 2], so that A(t;−y, y) . nyt/A(y) as before, hence

P(Sn ≥ x, Mn ≤ y) ≤ e
x
y(

1 + x
y
A(y)
n

) x−µ(−y,y)
y

≤
(

en

A(y)

) x
y
(

1 +
x

y

A(y)

n

)µ(−y,y)
y

.

If we fix y = γx, the first term in the right hand side matches with (3.1). It
remains to show that the second term is bounded. Since we assume that F has
zero mean, we can write |µ(−y, y)| = | − n

∫
|u|≥y uF (du)| . ny/A(y), by (1.2) and

(2.4), therefore for y = γx the second term is . (1 + A(y)
γn )n/A(y) ≤ exp( 1

γ ). This
proves (3.1).
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Step 2

Next we deduce from (3.1) the following relation

P(Sn ∈ x+ J, Mn ≤ 1
2γx) .

1

an

(
n

A(x)

)1/γ

, (3.2)

which is rougher than (1.4), due to the factor 1
2 and to the exponent 1/γ instead of b1/γc.

Define X̂i := Xn+1−i, for 1 ≤ i ≤ n, and let (Ŝk := X̂1 + . . .+ X̂k = Sn − Sn−k)1≤k≤n
be the corresponding random walk, which has the same law as (Sk)1≤k≤n. Then

P(Sn ∈ x+ J, Sbn/2c <
x
2 , Mn ≤ 1

2γx) = P(Ŝn ∈ x+ J, Ŝbn/2c <
x
2 , M̂n ≤ 1

2γx)

= P(Sn ∈ x+ J, Sn − Sdn/2e < x
2 , Mn ≤ 1

2γx)

≤ P(Sn ∈ x+ J, Sdn/2e >
x
2 , Mn ≤ 1

2γx) ,

where the second equality holds because Ŝn = Sn and M̂n = Mn, while for the inequality
note that Sn ≥ x (by J ⊆ [0,∞)). To lighten notation, henceforth we assume that n is
even (the odd case is analogous). It follows from the previous inequality that

P(Sn ∈ x+ J, Mn ≤ 1
2γx) ≤ 2 P(Sn ∈ x+ J, Sn/2 ≥ x

2 , Mn ≤ 1
2γx)

≤ 2

∫
z≥ x2

P(Sn/2 ∈ dz, Mn/2 ≤ 1
2γx) P(Sn/2 ∈ x− z + J)

.
1

an/2
P(Sn/2 ≥ 1

2x, Mn/2 ≤ 1
2γx) .

1

an

(
n

A(x)

)1/γ

,

where we have used (2.7) and (3.1).

Step 3

Next we prove relation (1.6), i.e. we show that

P(Sn ∈ x+ J) .
1

an

n

A(x)
. (3.3)

This is easy: if we fix ε = 1
2 , by (2.7) we can write

P(Sn ∈ x+ J,Mn > εx) ≤ nP(Sn ∈ x+ J, X1 > εx)

= n

∫
y>ε x

F (dy) P(Sn−1 ∈ x− y + J) .
n

an−1
F (ε x) .ε

1

an

n

A(x)
.

(3.4)

Applying (3.2) with γ = 1, we see that (3.3) holds.

Step 4

Finally we prove (1.5). The case k = 1, that is γ ∈ [1,∞), follows by (3.3). Inductively,
we fix k ∈ N and we prove that (1.5) holds for γ ∈ [ 1

k+1 ,
1
k ), assuming that it holds for

γ ∈ [ 1
k ,

1
k−1 ). Let us fix ε := 1

2(k+1) . By (3.2) (where we choose γ = 2ε) we get

P(Sn ∈ x+ J, Mn ≤ εx) .
1

an

(
n

A(x)

)1/(2ε)

=
1

an

(
n

A(x)

)k+1

.

It remains to consider

P(Sn ∈ x+ J, εx < Mn ≤ γx) ≤ nP(Sn ∈ x+ J, X1 > εx ,Mn ≤ γx)

≤ n
∫
y∈(ε x,γx]

F (dy) P(Sn−1 ∈ x− y + J, Mn−1 ≤ γx)

≤ nF (εx) sup
z≥(1−γ)x

P(Sn−1 ∈ z + J, Mn−1 ≤ γx) .
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Observe that, for z ≥ (1− γ)x, we can bound

P(Sn−1 ∈ z + J, Mn−1 ≤ γx) ≤ P(Sn−1 ∈ z + J, Mn−1 ≤ γ′z) , with γ′ :=
γ

1− γ
.

The key observation is that γ′ ∈ [ 1
k ,

1
k−1 ), since γ ∈ [ 1

k+1 ,
1
k ). By our inductive assumption,

relation (1.5) holds for γ′, so P(Sn−1 ∈ z + J, Mn−1 ≤ γ′z) .γ 1
an

( n
A(z) )k and we get

P(Sn ∈ x+ J, εx < Mn ≤ γx) .γ nF (εx)
1

an

(
n

A(x)

)k
.ε

1

an

(
n

A(x)

)k+1

,

which completes the proof.

4 Strategy and key bounds for Theorems 1.4 and 1.12

4.1 Reformulation of the SRT

It turns out that proving the SRT amounts to showing that small values of n give a
negligible contribution to the renewal measure. More precisely, if F is a probability on
R satisfying (1.2), it is known that (SRT) holds if and only if

T (δ;x) :=
∑

1≤n≤A(δx)

P(Sn ∈ x+ I) is a.n. , (4.1)

see [Chi15, Appendix] or Remark 4.1 below.
Applying Theorem 1.1, it is easy to show that (4.1) always holds for α > 1

2 . Since
n/an is regularly varying with index 1− 1/α > −1, by (1.6) and (2.3)∑

1≤n≤A(δx)

P(Sn ∈ x+ I) .
1

A(x)

∑
1≤n≤A(δx)

n

an
.

1

A(x)

A(δx)2

δx
∼

x→∞
δ2α−1A(x)

x
,

from which (4.1) follows, since 2α− 1 > 0. We have just proved Theorems 1.4 and 1.12
for α > 1

2 . In the next sections, we will focus on the case α ≤ 1
2 .

Remark 4.1. It is easy to see how (4.1) arises. For fixed δ > 0, by (1.8) we can write

U(x+ I) ≥
∑

A(δx)<n≤A( 1
δ x)

P(Sn ∈ x+ I) . (4.2)

Since P(Sn ∈ x+ I) ∼ h
an
ϕ( x

an
) by (2.6) (where we take h = v for simplicity), a Riemann

sum approximation yields (see [Chi15, Lemma 3.4])∑
A(δx)<n≤A( 1

δ x)

P(Sn ∈ x+ I) ∼ h A(x)

x
C(δ) , with C(δ) = α

∫ 1
δ

δ

zα−2ϕ( 1
z ) dz .

Since limδ→0 C(δ) = C, proving (SRT) amounts to controlling the ranges excluded from
(4.2), i.e. {n ≤ A(δx)} and {n > A( 1

δx)}. The latter gives a negligible contribution by
P(Sn ∈ x+ I) ≤ C/an (recall (2.7)), while the former is controlled precisely by (4.1).

4.2 Key bounds

The next two lemmas estimate the contribution of the maximum Mn, see (1.1), to the
probability P(Sn ∈ x+ I). Recall that κα is defined in (1.21).

We first consider the case when there is a “big jump”, i.e. Mn > γx for some γ > 0.

Lemma 4.2 (Big jumps). Let F satisfy (1.2) for some A ∈ RV (α), with α ∈ (0, 1). There
is η = ηα > 0 such that for all δ ∈ (0, 1], γ ∈ (0, 1) and x ∈ [0,∞) the following holds:

∀` ≥ κα :
∑

1≤n≤A(δx)

n`
{

sup
z∈R

P (Sn ∈ z + I, Mn > γx)

}
.γ,` δ

η b`+1(x) . (4.3)
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Proof. For δx < 1 the left hand side of (4.3) vanishes, because A(δx) < A(1) = 1. Then
we can assume that δx ≥ 1, hence x ≥ 1. Recalling (2.7), we can write

P
(
Sn ∈ z + I, Mn > γx

)
≤ nP (Sn ∈ z + I, X1 > γx)

= n

∫
w>γx

P (X ∈ dw) P(Sn−1 ∈ z − w + I)

≤ nP (X > γx)

{
sup
y∈R

P(Sn−1 ∈ y + I)

}
.

n

A(γx)

1

an
.γ

n

A(x)

1

an
,

(4.4)

therefore

∑
1≤n≤A(δx)

n`
{

sup
z∈R

P (Sn ∈ z + I, Mn > γx)

}
.γ

1

A(x)

∑
1≤n≤A(δx)

n`+1

an

.`
1

A(x)

A(δx)`+2

δx
,

(4.5)

by (2.3), because n`+1/an is regularly varying with index (` + 1) − 1
α ≥ (κα + 1) − 1

α =⌊
1
α

⌋
− 1

α > −1. Let us introduce a parameter b = bα ∈ (0, 1), depending only on α, that
will be fixed in a moment. Since we assume that δx ≥ 1, we can apply the upper bound
in (2.2) with ε = (1− b)α and % = δ, that is A(δx) . δbαA(x), which shows that (4.5) is

. δbα(`+2)−1 A(x)`+1

x
. δbα(κα+2)−1 A(x)`+1

x
,

because δ ≤ 1 and ` ≥ κα by assumption. Since α(κα + 2) > 1 (because κα + 2 =

b 1
αc+ 1 > 1

α ), we can choose b = bα < 1 so that the exponent of δ is strictly positive (e.g.
bα = {α(κα + 2)}−1/2). This completes the proof.

We next consider the case of “no big jump”, i.e. Mn < γx. The proof exploits in an
essential way the large deviation estimate provided by Theorem 1.1.

Lemma 4.3 (No big jump). Let F satisfy (1.2) with α ∈ (0, 1). For any γ ∈ (0, α
1−α ) there

is ϑ = ϑα,γ > 0 such that for all δ ∈ (0, 1] and x ∈ [0,∞) the following holds:

∀` ≥ 0 :
∑

1≤n≤A(δx)

n` P (Sn ∈ x+ I, Mn ≤ γx) .γ,` δ
ϑ b`+1(x) . (4.6)

Proof. As in the proof of Lemma 4.2, we can assume that x ≥ 1 and δx ≥ 1 (since
otherwise the left hand side of (4.6) vanishes). By (1.4)

∑
1≤n≤A(δx)

n` P (Sn ∈ x+ I, Mn ≤ γx) .
1

A(x)
1
γ

∑
1≤n≤A(δx)

n`+
1
γ

an
.

1

A(x)
1
γ

A(δx)`+
1
γ+1

δx
,

where we applied (2.3), because the sequence n`+
1
γ /an is regularly varying with index

`+ 1
γ −

1
α >

1−α
α −

1
α = −1. By the upper bound in (2.2), since ` ≥ 0 and δ ≤ 1 we get

A(δx)`+
1
γ+1 .ε δ

(α−ε)(`+ 1
γ+1)A(x)`+

1
γ+1 . δ(α−ε)( 1

γ+1)A(x)`+
1
γ+1 .

Since γ < α
1−α , we can choose ε = εα,γ > 0 small enough so that (α− ε)( 1

γ + 1) > 1.
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5 Proof of Theorems 1.4 and 1.12: necessity

In this section we assume (4.1), which is equivalent to the strong renewal theorem
(SRT), and we deduce the necessary conditions in Theorems 1.4 and 1.12. We can
actually assume (4.1) with I = (−h, 0] replaced by any fixed bounded interval J . Indeed,

if J = (−v, 0] (for simplicity), we can bound P(Sn ∈ x+ J) ≤
∑bv/hc
`=0 P(Sn ∈ x` + I), with

x` := x− `h.
Note that, since we assume (4.1), the following holds:

for any fixed k ∈ N: P(Sk ∈ x+ J) =
x→∞

o(b1(x)) . (5.1)

5.1 Necessity for Theorem 1.4

Let us fix a probability F on [0,∞) satisfying (1.12) with α ∈ (0, 1). We assume (4.1)
and we deduce that I+

1 (δ;x) is a.n. (recall (1.13)).
We need some preparation. Let us define the compact interval

K := [ 1
2 , 1] . (5.2)

By (2.6), since infz∈K ϕ(z) > 0, there are n1 ∈ N and c1, c2 ∈ (0,∞) such that

∀n ≥ n1 : inf
z∈R: z/an∈K

P(Sn ∈ z + J) ≥ c1
an

, (5.3)

∀n ∈ N : sup
z∈R

P(Sn ∈ z + J) ≤ c2
an

. (5.4)

Then, since F ((−∞,−x] ∪ [x,∞)) . 1/A(x), we can fix C ∈ (0,∞) such that

∀n ∈ N : F ((−∞,−Can] ∪ [Can,∞)) ≤ c1
2c2

1

n
. (5.5)

(Of course, we could just take F ([Can,∞)), since F ((−∞, 0)) = 0, but this estimate will
be useful later for random walks.) We also claim that

∀n ≥ n1 : inf
z∈R: z/an∈K

P (Sn ∈ z + J, max{|X1|, . . . , |Xn|} < Can) ≥ c1
2

1

an
. (5.6)

This follows because P(Sn ∈ z + J) ≥ c1/an, by (5.3), and applying (5.4), (5.5) we get

P(Sn ∈ z + J , ∃1 ≤ j ≤ n with |Xj | ≥ Can)

≤ n
∫

|y|≥Can

F (dy) P(Sn−1 ∈ z − y + J) ≤ nF ((−∞,−Can] ∪ [Can,∞)) c2
an

≤ c1
2 an

.

We can now start the proof. The events Bi := {Xi ≥ Can, maxj∈{1,...,n+1}\{i}Xj <

Can} are disjoint for i = 1, . . . , n, hence for n ≥ n1 we can write

P(Sn+1 ∈ x+ J)

≥ (n+ 1) P (Sn+1 ∈ x+ J, max{X1, . . . , Xn} < Can, Xn+1 ≥ Can)

≥ n
∫
{z≤x−Can}

P (Xn+1 ∈ x− dz) P (Sn ∈ z + J, max{X1, . . . , Xn} < Can)

≥
∫
{z≤x−Can}

F (x− dz)
c1
2

n

an
1{z/an∈K} ,

(5.7)

where the last inequality holds by (5.6). We are going to choose n ≤ A(δx), in particular
x− Can ≥ x− Cδx ≥ δ

2x for δ > 0 small enough. Restricting the integral, we get

∑
n1≤n≤A(δx)

P(Sn+1 ∈ x+ J) &
∫
{z≤ δ2x}

F (x− dz)

( ∑
n1≤n≤A(δx)

n

an
1{z/an∈K}

)
.
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Note that z/an ∈ K means 1
2an ≤ z ≤ an, that is A(z) ≤ n ≤ A(2z), so in the range of

integration we have A(2z) ≤ A(δx). If we further restrict the integration on z ≥ an1
, we

also have A(z) ≥ n1. This leads to the following lower bound:∑
n1≤n≤A(δx)

n

an
1{z/an∈K} ≥

∑
A(z)≤n≤A(2z)

n

an
≥ A(z)

2z

(
A(2z)−A(z)− 1

)
&
A(z)2

z
= b2(z) ,

where the last inequality holds for z ≥ an1
large (just take n1 large enough). Then∑

n1≤n≤A(δx)

P(Sn+1 ∈ x+ J) &
∫
{an1≤z≤

δ
2x}

F (x− dz) b2(z)

≥ I+
1 ( δ2 ;x)− Ĉ F ([x− an1

, x− 1]) ,

where Ĉ := sup|z|≤an1
b2(z) <∞. The left hand side is a.n. by (4.1), hence the right hand

side is a.n. too. Since F ([x− an1
, x]) is a.n. by (5.1), it follows that I+

1 (δ;x) is a.n..

5.2 Necessity for Theorem 1.12

Let F be a probability on R satisfying (1.2) with α ∈ (0, 1) and p, q > 0. We assume
(4.1), which is equivalent to the (SRT), and we deduce that Ĩ1(δ;x) is a.n. and, for any
k ≥ 2, that Ĩk(δ, η;x) is also a.n., for every fixed η ∈ (0, 1). This completes the proof of
the necessity part in Theorem 1.12 (see Remarks 1.13-1.14).

Remark 5.1. For |x| ≥ 1 and |z| ≥ |x| we can rewrite (1.22) as

b̃k(z, x) =

∫ |z|
|x|

bk(t)

t
dt =

∫ A(|z|)

A(|x|)

bk(A−1(s))

A−1(s)

1

A′(A−1(s))
ds ≈

∫ A(|z|)

A(|x|)

sk−1

A−1(s)
ds ,

by (2.1) and (1.10) (we recall that ≈ means both . and &). Recalling also (1.3), we
obtain

b̃k(z, x) ≈
∑

A(|x|)≤n≤A(|z|)

nk−1

an
. (5.8)

Since we assume that p, q > 0 in (1.2), the density ϕ(·) of the limiting Lévy process is
strictly positive on the whole real line. In particular, instead of (5.2), we can define

K := [−1, 1] , (5.9)

and relations (5.3), (5.4), (5.5), (5.6) still hold, where n1 ∈ N is fixed (it depends on F ).
Let us show that Ĩ1(δ;x) is a.n.. This is similar to the case of renewal processes in

Subsection 5.1. In fact, relation (5.7) with Xi replaced by |Xi| and z replaced by −y
gives

P(Sn+1 ∈ x+ J) &
∫
|x+y|≥Can

F (x+ dy)
n

an
1{|y|≤an} , (5.10)

because K = [−1, 1]. Note that for n ≤ A(δx) we have an ≤ δx ≤ x−Can for δ > 0 small,
hence we can ignore the restriction |x+ y| ≥ Can. Next we write, by (5.8),

A(δx)∑
n=n1

n

an
1{|y|≤an} = 1{|y|≤δx}

A(δx)∑
n=A(y)∨n1

n

an
& 1{|y|≤δx} b̃2(δx, |y| ∨ an1

) .

For |y| < an1 , b̃2(δx, |y| ∨ an1) = b̃2(δx, an1) differs from b̃2(δx, |y|) at most by the constant
C :=

∑
n≤n1

n
an

, so b̃2(δx, |y| ∨ an1
) ≥ b̃2(δx, |y|)− C 1{|y|≤K}, with K := an1

. This yields∑
1≤n≤A(δx)

P(Sn+1 ∈ x+ J) & Ĩ1(δ;x)− C F ([x−K,x+K]) .
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Since we assume that (4.1) holds, and we have F ([x−K,x+K]) = o(b1(x)) as x→∞,
as we already observed in (5.1), it follows that Ĩ1(δ;x) is a.n..

Next we fix k ≥ 2 and η ∈ (0, 1) and we generalize the previous arguments in order to
show that Ĩk(δ, η;x) is a.n., see (1.24). Inductively, we assume that we already know that
Ĩ1(δ;x), Ĩ2(δ, η;x), . . . , Ĩk−1(δ, η;x) are a.n.. Suppose that z1, · · · zk ∈ R satisfy

min
1≤j≤k

|zj | ≥ Can , |(z1 + . . .+ zk)− x| ≤ an ,

and set yk := x− (z1 + . . .+ zk). Then, for n ≥ n1, we can write

P (∃1 ≤ j1 < j2 < · · · < jk ≤ n with Xj1 ∈ dz1 , . . . , Xjk ∈ dzk , and Sn+k ∈ x+ I)

≥
(
n+ k

k

)
P(Xr ∈ dzr ∀1 ≤ r ≤ k , Xj /∈ {dz1, · · · dzk} ∀k < j ≤ n+ k , Sn+k ∈ x+ I)

& nk P(Xr ∈ dzr , ∀1 ≤ r ≤ k) P(|Xj | ≤ Can , ∀1 ≤ j ≤ n , Sn ∈ yk + I)

&
nk

an
P(Xr ∈ dzr , ∀1 ≤ r ≤ k) ,

having used (5.6) in the last inequality. It follows that for n ≥ n1 we have the bound

P(Sn+k ∈ x+ I) &
nk

an
P

(
min

1≤r≤k
|Xr| ≥ Can , |(X1 + . . .+Xk)− x| ≤ an

)
=
nk

an
P−x

(
min

1≤r≤k
|Sr − Sr−1| ≥ Can , |Sk| ≤ an

)
,

where P−x denotes the law of the random walk Sr := −x+ (X1 + . . .+Xr), r ≥ 1, which
starts from S0 := −x.

If we fix η ∈ (0, 1), and define η := 1− η, we can write{
min

1≤r≤k
|Sr − Sr−1| ≥ Can

}
⊇
{
|Sr − Sr−1| ≥ η|Sr−1| and |Sr−1| ≥ C

η an ,∀1 ≤ r ≤ k
}
.

For r = 1, |Sr−1| ≥ C
η an reduces to x ≥ C

η an, which holds automatically, since we take
n ≤ A(δx) with δ > 0 small, while |Sr − Sr−1| ≥ η|Sr−1| becomes |S1 + x| ≥ ηx, which
is implied by |S1| ≤ C

η δx, for δ > 0 small. For r ≥ 2, |Sr − Sr−1| ≥ η|Sr−1| is implied by
|Sr| ≤ η|Sr−1|, since η = 1− η. Thus{

min
1≤r≤k

|Sr − Sr−1| ≥ Can
}

⊇
{
|S1| ≤ C

η δx , |Sr| ≤ η|Sr−1| , ∀2 ≤ r ≤ k , |Sk−1| ≥ C
η an

}
,

where the last term is justified because |Sk−1| = min2≤r≤k−1 |Sr−1| on the event. Thus

P(Sn+k ∈ x+ I) & E−x

[
1{|S1|≤Cη δx, |Sr|≤η|Sr−1| , ∀2≤r≤k}

(
nk

an
1{A(|Sk|)≤n≤A( ηC |Sk−1|)}

)]
.

Let us now sum over n1 ≤ n ≤ A(δx). Note that A( ηC |Sk−1|) ≤ A( ηC |S1|) ≤ A(δx),
hence∑

n1≤n≤A(δx)

P(Sn+k ∈ x+ I)

& E−x

[
1{|S1|≤Cη δx, |Sr|≤η|Sr−1| , ∀2≤r≤k} b̃k+1

(
η
C |Sk−1|, |Sk| ∨ an1

)]
,

(5.11)
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where we recall that b̃k+1 is given by (5.8). The right hand side can be rewritten as∫
|y1|≤δ′x

|yr|≤η|yr−1| for all 2≤r≤k

F (x+ dy1)Py1
(dy2, . . . ,dyk) b̃k+1

(
ε|yk−1|, |yk| ∨ c

)
,

where δ′ = C
η δ , ε = η

C , c = an1
.

(5.12)

This is like Ĩk(δ′, η;x), see (1.24), except that b̃k+1(yk−1, yk) = b̃k+1(|yk−1|, |yk|) in (1.24)
is replaced by b̃k+1(ε|yk−1|, |yk| ∨ c

)
. We now show that this is immaterial. More precisely,

by (4.1) and (5.11), we know that (5.12) is a.n.. We now deduce that Ĩk(δ, η;x) is a.n..

Since b̃k+1(|yk−1|, |yk|) differs from b̃k+1(|yk−1|, |yk| ∨ c) at most by C :=
∑A(c)
n=1

nk+1

an
,

see (5.8), we can bound b̃k+1(|yk−1|, |yk|) ≤ b̃k+1(|yk−1|, |yk| ∨ c) + C 1{|yk|≤c}. Plugging
this into (1.24), we see that the contribution of 1{|yk|≤c} is a.n., because it is at most∫

R

F (x+ dy1)

∫
Rk−1

Py1
(dy2, . . . ,dyk)1{|yk|≤c} = P(Sk ∈ [x− c, x+ c]) =

x→∞
o(b1(x)) ,

by (5.1). Then in (1.24) we can safely replace b̃k+1(yk−1, yk) by b̃k+1(|yk−1|, |yk| ∨ c).
Finally, we write b̃k+1

(
|yk−1|, |yk| ∨ c

)
= b̃k+1

(
|yk−1|, ε|yk−1|

)
+ b̃k+1

(
ε|yk−1|, |yk| ∨ c

)
.

Note that the contribution of the second term to Ĩk(δ, η;x) in (1.24) is a.n., because we
already know that (5.12) is a.n.. For the first term, observe that by (5.8)

b̃k+1

(
|yk−1|, ε|yk−1|

)
.

A(|yk−1|)∑
n=A(ε|yk−1|)

nk

an
≤ A(|yk−1|)k+1

ε|yk−1|
.ε bk+1(yk−1) ,

hence∫
|yk|≤η|yk−1|

F (−yk−1 + dyk) b̃k+1(|yk−1|, ε|yk−1|) .ε bk+1(yk−1)F (−(1− η)|yk−1|) .η bk(yk−1) ,

so the contribution to Ĩk(δ, η;x) in (1.24) is .ε,η Ik−1(δ, η;x). We know that Ĩk−1 is a.n.,
by our inductive assumption, and this implies that Ik−1 is a.n. too, by the inequalities
(A.3) and (A.5) in the Appendix (see (A.7)-(A.8) for their proof). We are done.

6 Proof of Theorem 1.4: sufficiency

In this section we prove the sufficiency part of Theorem 1.4: we assume that I+
1 (δ;x)

is a.n. and we deduce (4.1), which is equivalent to the SRT. Let us set

T`(δ;x) :=
∑

1≤n≤A(δx)

n` P(Sn ∈ x+ I) . (6.1)

We actually prove the following result.

Theorem 6.1. Let F be a probability on [0,∞) satisfying (1.12) with α ∈ (0, 1). Assume
that I+

1 (δ;x) is a.n.. Then for every ` ∈ N0:

lim
δ→0

lim sup
x→∞

T`(δ;x)

b`+1(x)
= 0 . (6.2)

In particular, setting ` = 0, relation (4.1) holds.

The proof exploits the general bounds provided by Lemmas 4.2 and 4.3, together
with the next Lemma, which is specialized to renewal processes.
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Lemma 6.2. If F is a probability on [0,∞) which satisfies (1.12) with α ∈ (0, 1), there
are C, c ∈ (0,∞) such that for all n ∈ N0 and z ∈ [0,∞)

P(Sn ∈ z + I) ≤ C

an
e−c

n
A(z) . (6.3)

Proof. Assume that n is even (the odd case is analogous). By (2.7), we get

P (Sn ∈ z + I) =

∫
y∈[0,z]

P(Sn
2
∈ dy) P(Sn

2
∈ z − y + I) .

1

an
2

P(Sn
2
≤ z)

.
1

an
P

(
max

1≤i≤n2
Xi ≤ z

)
=

(1− P(X > z))
n
2

an
≤ e−

n
2 P(X>z)

an
≤ e−c

n
A(z)

an
,

provided c > 0 is chosen such that P(X > z) ≥ 2c/A(z) for all z ≥ 0. This is possible by
(1.12) and because z 7→ A(z) is increasing and continuous, with A(0) > 0 (see §2.2).

Remark 6.3. Since A(·) is increasing, it follows by (6.3) that for any x̄ > 0 and ` ∈ N

sup
z∈[0,x̄]

{∑
n∈N

n` P(Sn ∈ z + I)

}
. Cx̄,` , with Cx̄,` :=

∑
n∈N

n`

an
e−c

n
A(x̄) < ∞ . (6.4)

Before proving Theorem 6.1, we state some easy consequences of “I+
1 (δ;x) is a.n.”.

• First we show that, for any bounded interval J ⊆ R,

I+
1 (δ;x) is a.n. =⇒ F (x+ J) =

x→∞
o
(
b1(x)

)
. (6.5)

It is convenient to write J = [−1 − b,−1 − a], for a, b ∈ R with a < b. Restricting
(1.13) to z ∈ −a−J = [1, 1+(b−a)] we get I+

1 (δ;x) ≥ F (x+a+J)·infz∈−a−J b2(z) &J
F (x+ a+ J), so if I+

1 (δ;x) is a.n. then F (x+ a+ J) = o(b1(x)), hence (6.5) follows.

• Next we improve (6.5) as follows:

I+
1 (δ;x) is a.n. =⇒ for every fixed ` ∈ N : P(S` ∈ x+ J) =

x→∞
o
(
b1(x)

)
.

(6.6)
To see this, we write J = [a, b] and we note that on the event {S` ∈ x+ J} we must
have M` ≥ (x− a)/`, hence S` −M` ≤ x+ b− x−a

` ≤ x− (x` − 2b). Then

P(S` ∈ x+ J) ≤ `
∫
z> x

`−2b

P(S`−1 ∈ x− dz) P(X1 ∈ z + J) ≤ ` sup
z> x

`−2b
F (z + J) ,

(6.7)

and, by (6.5), as x→∞ the right hand side is o(b1(x` − 2b)) = o(b1(x)), for fixed `.

• Finally, we observe that for any fixed γ > 0

I+
1 (δ;x) is a.n. =⇒ for every fixed γ ∈ (0, 1) : I+

1 (1− γ;x) =
x→∞

O
(
b1(x)

)
.

(6.8)
First we fix δ̄ > 0 small enough so that I+

1

(
δ̄;x
)

= O(b1(x)) (recall Definition 1.3).
Then we consider the contribution to I+

1 (1− γ, x) from z ≥ δ̄, see (1.13), which is∫
δ̄x≤z≤(1−γ)x

F (x− dz)
A(z)2

z
≤ A(x)2

δ̄ x
F (γx) .γ,δ̄

A(x)

x
= b1(x) .
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Proof of Theorem 6.1. We fix, once and for all, γ ∈ (0, α
1−α ), and we decompose

T`(δ;x) =
∑

1≤n≤A(δx)

n` P(Sn ∈ x+ I, Mn > γx)

+
∑

1≤n≤A(δx)

n` P(Sn ∈ x+ I, Mn ≤ γx) .

Then it follows by Lemma 4.2 and Lemma 4.3 that (6.2) holds for every ` ≥ κα.
It remains to prove that (6.2) holds for ` < κα. We proceed by backward induction:

we fix ` ∈ {0, 1, . . . , κα − 1} and, assuming that

lim
δ→0

lim sup
x→∞

T`+1(δ;x)

b`+2(x)
= 0 , (6.9)

we deduce (6.2). We need to estimate T`(δ;x) and we split it in some pieces.
We start by writing

P (Sn ∈ x+ I) = P (Sn ∈ x+ I, Mn ≤ γx) + P (Sn ∈ x+ I, Mn > γx) ,

and note that the contribution of the first term in the right hand side is negligible for
(6.2), by Lemma 4.3. Next we bound

P (Sn ∈ x+ I, Mn > γx) ≤ nP (Sn ∈ x+ I, X1 > γx)

= n

∫
0≤z<(1−γ)x

F (x− dz) P (Sn−1 ∈ z + I) .
(6.10)

Looking back at (6.1), we may restrict the sum to n ≥ 2, because the contribution of the
term n = 1 is negligible for (6.2), since F (x + I) = o(b1(x)) = o(b`+1(x)) by (6.5). As a
consequence, it remains to prove that (6.2) holds with T`(δ;x) replaced by

T̃`(δ;x) :=
∑

2≤n≤A(δx)

n`+1

∫
0≤z<(1−γ)x

F (x− dz) P (Sn−1 ∈ z + I) .

We can bound n`+1 . (n− 1)`+1, since n ≥ 2, and rename n− 1 as n, to get

T̃`(δ;x) ≤
∫

1≤z<(1−γ)x

F (x−dz)

{ ∑
1≤n≤A(δx)−1

n`+1 P (Sn ∈ z + I)

}
+ o(b`+1(x)) , (6.11)

where we have restricted the integral to z ≥ 1, because the contribution of z ∈ [0, 1) can
be estimated as o(b1(x)) = o(b`+1(x)), thanks to (6.4) and (6.5).

Let us fix ε ∈ (0, 1) and consider the contribution to the sum in (6.11) given by
n > A(εz). Applying Lemma 6.2, since an ≥ εz &ε z, we get∑

A(εz)<n≤A(δx)

n`+1 P (Sn ∈ z + I) .
∑

A(εz)<n≤A(δx)

n`+1

an
e−c

n
A(z)

.ε
A(z)`+2

z
1{z< δ

εx}

{
1

A(z)

∑
n∈N

(
n

A(z)

)`+1

e−c
n

A(z)

}
.

(6.12)

The bracket is a Riemann sum which converges to
∫∞

0
t`+1 e−ct dt <∞ as z →∞, hence

it is uniformly bounded for z ∈ [0,∞). The contribution of n > A(εz) to (6.11) is then

.ε

∫
1≤z< δ

εx

F (x− dz)
A(z)`+2

z
≤ A( δεx)` I+

1 ( δε ;x) .ε A(x)` I+
1 ( δε ;x) .
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This is negligible for (6.2), for any fixed ε > 0, by the assumption that I+
1 is a.n..

Finally, the contribution of n ≤ A(εz) to the integral in (6.11) is, by (6.1),∫
1≤z<(1−γ)x

F (x− dz)T`+1(ε; z) . (6.13)

By the inductive assumption (6.9), for every η > 0 we can choose ε > 0 and x̄ε <∞ so
that T`+1(ε; z) ≤ η b`+2(z) for z ≥ x̄ε. Then the integral in (6.13) restricted to z ≥ x̄ε is

≤ η
∫
x̄ε≤z<(1−γ)x

F (x− dz) b`+2(z) ≤ η A(x)` I+
1 (1− γ, x) . η A(x)` b1(x) = η b`+1(x) ,

where we have applied (6.8). If we let x→∞ and then η → 0, this is negligible for (6.2).
Finally, by (6.4) and (6.5), the integral in (6.13) restricted to z ≤ x̄ε is, as x→∞

≤ Cx̄ε,`+1 F ((x− x̄ε, x− 1]) = o(b1(x)) = o(b`+1(x)) .

This completes the proof.

7 Proof of Theorem 1.12: sufficiency in case α ∈ (1
3
, 1
2
]

Let F be a probability on R that satisfies (1.2) with p, q ≥ 0 and α ∈ ( 1
3 ,

1
2 ], i.e. κα = 1.

We assume that Ĩ1(δ;x) is a.n. (hence also I1(δ;x) is a.n., recall Remark 1.13), and we
deduce (4.1), which is equivalent to the SRT. This proves the sufficiency in Theorem 1.12.

Let us set
Z1 := Mn = max{X1, . . . , Xn} . (7.1)

We fix γ ∈ (0, α
1−α ) and define the events

E
(1)
1 := {Z1 ≤ γx} , E

(2)
1 := {|Z1 − x| ≤ an} ,

E
(3)
1 := {Z1 > γx, |Z1 − x| > an}

(7.2)

By Lemma 4.3 with ` = 0, we already know that (with no extra assumptions on F )∑
1≤n≤A(δx)

P(Sn ∈ x+ I, E
(1)
1 ) is always a.n. . (7.3)

Next we look at E(2)
1 . Note that by (2.7)

P(Sn ∈ x+ I, E
(2)
1 ) ≤

n∑
i=1

P(Sn ∈ x+ I, |Xi − x| ≤ an)

= n

∫
|y|≤an

F (x+ dy) P(Sn−1 ∈ I − y) .
n

an

∫
|y|≤an

F (x+ dy) .

(7.4)

Using the fact that n/an is regularly varying and recalling (5.8), we obtain∑
1≤n≤A(δx)

P(Sn ∈ x+ I, E
(2)
1 ) .

∫
|y|≤δx

F (x+ dy)
∑

A(|y|)≤n≤A(δx)

n

an

.
∫
|y|≤δx

F (x+ dy) b̃2(δx, y) = Ĩ1(δ;x) .

(7.5)

Recalling (1.23), we have shown that

Ĩ1(δ;x) is a.n. =⇒
∑

1≤n≤A(δx)

P(Sn ∈ x+ I, E
(2)
1 ) is a.n. . (7.6)
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(The reverse implication also holds, as shown in Section 5.)

We finally turn to E(3)
1 . Arguing as in (7.4) and setting γ := 1− γ, we have by (1.6)

P(Sn ∈ x+ I, E
(3)
1 ) . n

∫
|y|>an, y>−γx

F (x+ dy) P(Sn−1 ∈ I − y)

.
n2

an

∫
|y|>an, y>−γx

F (x+ dy)
1

A(y)
,

hence, recalling (1.10), we get

∑
1≤n≤A(δx)

P(Sn ∈ x+ I, E
(3)
1 ) .

∫
y>−γx

F (x+ dy)
1

A(y)

∑
1≤n≤A(δx∧|y|)

n2

an

.
∫
y>−γx

F (x+ dy)
1

A(y)
b3(δx ∧ |y|) ,

where the last inequality holds for α > 1
3 , thanks to (2.3), because n2/an is regularly

varying with index 2− 1/α > −1. For fixed δ0 > 0, the right hand side can be estimated
by ∫

|y|≤δ0x
F (x+ dy) b2(y) + b3(δx)

∫
y>−γx, |y|>δ0x

F (x+ dy)

A(y)

. I1(δ0;x) +
b3(δx)

A(δ0x)
F ((γx,∞)) . I1(δ0;x) +

b3(δx)

A(δ0x)A(x)
.

(7.7)

By the a.n. of I1, given ε > 0, we can fix δ0 > 0 small so that I1(δ0;x) ≤ ε b1(x) for large x.
Then we can fix δ > 0 small (depending on δ0) so that the second term in the right hand
side of (7.7) is also ≤ ε b1(x) for large x, because b3(δx) ∼ δ3α−1 b3(x) and α > 1

3 . Thus

∑
1≤n≤A(δx)

P(Sn ∈ x+ I, E
(3)
1 ) is a.n. if α >

1

3
and I1(δ;x) is a.n. . (7.8)

Relations (7.3), (7.6), (7.8) prove the sufficiency part in Theorem 6.1, when κα = 1.

8 Proof of Theorem 1.12: sufficiency in case α ≤ 1
3

Let F be a probability on R that satisfies (1.2) with p, q ≥ 0 and α ∈ (0, 1
3 ]. In this

section, we assume that Ĩκα(δ, η;x) is a.n. and we deduce (4.1), which is equivalent
to the SRT. By Remark 1.13, this proves the sufficiency part in Theorem 1.12, in case
κα ≥ 2.

We stress that our assumption that Ĩκα(δ, η;x) is a.n. ensures that Ĩr(δ, η;x) and
Ir(δ, η;x) are a.n. for every r ∈ N, by Remark 1.14 (see Lemmas A.1-A.2-A.3).

Throughout this section we fix γ ∈ (0, α
1−α ), we choose η = γ := 1− γ and we drop it

from notations. In particular, we write Ik(δ;x) instead of Ik(δ, η;x).

8.1 Preparation

We will prove that T (δ;x) :=
∑

1≤n≤A(δx) P(Sn ∈ x+I) is a.n. by direct path arguments,

see Subsection 8.2. This will lead us to consider explicit quantities Jk(δ;x), J̃k(δ;x) that
generalize Ik(δ;x), Ĩk(δ;x). For clarity, in this subsection we define such quantities and
show that they are a.n..

EJP 24 (2019), paper 72.
Page 22/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP319
http://www.imstat.org/ejp/


The strong renewal theorem

We recall that Ik(δ;x) is defined in (1.18), (1.19). Let us rewrite it as follows:

Ik(δ;x) :=

∫
|y1|≤δx

F (x+ dy1) gk(y1) , (8.1)

where we set gk(y1) :=


b2(y1) if k = 1∫

Ωk(y1)

Py1(dy2, . . . ,dyk) bk+1(yk) if k ≥ 2
, (8.2)

Ωk(y1) :=
{

(y2, . . . , yk) ∈ Rk−1 : |yj | ≤ γ|yj−1| for 2 ≤ j ≤ k
}
, (8.3)

and we recall that Py1
(dy2, . . . ,dyk) := F (−y1 + dy2)F (−y2 + dy3) · · ·F (−yk−1 + dyk).

We define Jk(δ;x) by extending the integral in (8.2) to a larger subset Θk(y1) ⊇ Ωk(y1).
We introduce the shortcut

ϑ(y) :=

{
(−∞, γy] if y ≥ 0

[γy,+∞) if y < 0
, (8.4)

and note the important fact that (since 0 < γ < 1)∫
ϑ(y)

F (−y + dz) = O

(
1

A(|y|)

)
as |y| → ∞ . (8.5)

Then, recalling that γ = 1− γ, we set for k ≥ 2 and y1 ∈ R

Θk(y1) :=
{

(y2, . . . , yk) ∈ Rk−1 : yj ∈ ϑ(yj−1) for 2 ≤ j ≤ k
}
. (8.6)

We then define

Jk(δ;x) :=

∫
|y|≤δx

F (x+ dy)hk(y) . (8.7)

where hk(y1) is nothing but gk(y1), see (8.2), with Ωk(y1) replaced by Θk(y1):

hk(y1) :=


b2(y1) if k = 1∫

Θk(y1)

Py1
(dy2, . . . ,dyk) bk+1(yk) if k ≥ 2

. (8.8)

It will be useful to consider a slight generalization of hk(y1): for any non-negative,
even function f : R→ [0,∞) we define

hk(y1, f) :=


b1(y1) f(y1) if k = 1∫

Θk(y1)

Py1(dy2, . . . ,dyk) bk(yk) f(yk) if k ≥ 2
, (8.9)

and note that hk(y1, A) = hk(y1).
The next proposition shows that Jk(δ;x) is a.n. and provides a useful auxiliary esti-

mate. Its proof is quite tedious and is deferred to Subsection 8.3.

Proposition 8.1. Fix ` ∈ N and α ∈ (0, 1
2 ). If ` ≥ 2, assume that Ij(δ;x) is a.n. for

j = 1, . . . , `− 1.

1. Fix any f ∈ RV (β) with 0 < β < 1− `α. Then for all 0 < δ0 < κ < 1∫
|y|>δ0x, y>−κx

F (x+ dy)h`(y, f) .δ0,κ,γ,`
f(x)

x ∨ 1
(∀x ≥ 0) . (8.10)
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2. Assume that I`(δ;x) is a.n. too and, moreover, α < 1
`+1 . Then

J`(δ;x) is a.n. (8.11)

We finally define J̃2(δ;x) := Ĩ2(δ;x) and, for k ≥ 3,

J̃k(δ;x) =

∫
|y1|≤δx

F (x+ dy1) h̃k(y1) , (8.12)

where we set (recall that b̃(x, z) is defined in (1.22), or equivalently (5.8)):

h̃k(y1) =

∫
Θk−1(y1)∩{|yk|≤γ|yk−1|}

Py(dy2, · · · ,dyk) b̃k+1(yk−1, yk) . (8.13)

The next result shows that J̃k(δ;x) is a.n.. Its proof is also deferred to Subsection 8.3.

Proposition 8.2. Fix ` ∈ N with ` ≥ 2 and 0 < α ≤ 1
`+1 . Assume that Ij(δ;x) and Ĩj(δ;x)

are a.n. for j = 1, . . . , `. Then also J̃`(δ;x) is a.n..

8.2 Proof of sufficiency for Theorem 1.12

Throughout the proof we fix α ∈ (0, 1
3 ] and k = κα = b1/αc − 1, see (1.21). We stress

that k ≥ 2 and 1
k+2 < α ≤ 1

k+1 . Our goal is to prove (4.1).
We generalize (7.1), defining two sequences Z1, Z2, . . . Zk and Y1, Y2, . . . , Yk as follows:

Z1 := max{X1, . . . , Xn} , Y1 := Z1 − x ,

and for r ∈ {2, . . . , k}

Zr :=

{
max

{
{Xj , 1 ≤ j ≤ n} \ {Zj , 1 ≤ j ≤ r − 1}

}
if Yr−1 ≤ 0,

min
{
{Xj , 1 ≤ j ≤ n} \ {Zj , 1 ≤ j ≤ r − 1}

}
if Yr−1 > 0.

(8.14)

Yr :=

r∑
i=1

Zi − x (8.15)

Intuitively, Zr is the largest available step towards x from Z1 + . . .+ Zr−1.
In fact, we may assume that the following holds:

Zr > 0 if Yr−1 ≤ 0 , while Zr < 0 if Yr−1 > 0 , (8.16)

because, as we now show, the event that (8.16) fails to be true is negligible. This event
occurs if, for some r ≤ k, either Yr−1 ≤ 0 and {Xj , 1 ≤ j ≤ n}\{Zj , 1 ≤ j ≤ r−1} contains
no positive terms or Yr−1 > 0 and this set contains no negative terms. Call En,r such
event and recall that I = (−h, 0]. We first observe that P(En,r, Sn ∈ x+ I, Yr−1 /∈ I) = 0

for all n ≥ r (if Yr−1 > 0 then Sn − x ≥ Yr−1 > 0 on the event En,r, and similarly if
Yr−1 ≤ −h then Sn − x ≤ Yr−1 ≤ −h). Next we observe that

P(En,r, Yr−1 ∈ I) ≤
(

n

r − 1

)
P(Sr−1 ∈ x+ I, Xr, Xr+1, . . . , Xn ≤ 0)

≤ nr−1 cn−(r−1) P(Sr−1 ∈ x+ I) ,

with c = P(X1 ≤ 0) < 1. If we set Kr :=
∑∞
n=r n

r−1 cn−(r−1) <∞, we can write, by (6.6),

∞∑
n=r

P(En,r, Sn ∈ x+ I) ≤
∞∑
n=r

P(En,r, Yr−1 ∈ I) ≤ Kr P(Sr−1 ∈ x+ I) =
x→∞

o
(
b1(x)

)
,
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so the contribution of En,r to (4.1) is negligible. Henceforth we will assume that (8.16)
holds.

We cover the probability space Ω ⊆ E(1)
1 ∪E(2)

1 ∪E(3)
1 , where we recall from (7.2) that

E
(1)
1 := {Z1 ≤ γx} , E

(2)
1 := {|Y1| ≤ an} , E

(3)
1 = {Z1 > γx, |Y1| > an} .

The argument to show that
∑

1≤n≤A(δx) P(Sn ∈ x + I, E
(1)
1 ∪ E(2)

1 ) is a.n. presented in

Section 7 is still valid, see (7.3) and (7.6), so it remains to focus on E(3)
1 .

We introduce the constants Cr = (γ)r−1 and then the events E(1)
r , E

(2)
r , E

(3)
r for r ≥ 2

by

E(1)
r = E

(3)
r−1 ∩ {|Zr| ≤ γ|Yr−1|} , E(2)

r = E
(3)
r−1 ∩ {|Yr| ≤ Cran} , (8.17)

E(3)
r = E

(3)
r−1 ∩ {|Zr| > γ|Yr−1|, |Yr| > Cran} .

Note that we can decompose (recall that k = κα is fixed)

E
(3)
1 ⊆

k⋃
r=1

E(1)
r ∪

k⋃
r=1

E(2)
r ∪ E

(3)
k .

We will show that
∑

1≤n≤A(δx) P(Sn ∈ x + I) is a.n. by estimating the contributions of

E
(1)
r and E(2)

r , for 2 ≤ r ≤ k, and finally the contribution of E(3)
k . Let us note that

α ≤ 1
k+1 <

1
r , for r = 2, . . . , k , (8.18)

which allows us to apply equation (8.11) from Proposition 8.1 for ` = r − 1 (but not for
` = r, unlike Proposition 8.2).

Remark 8.3. We can rewrite E(3)
` more explicitly as follows:

E
(3)
` = {Z1 > γx , |Zi| > γ|Yi−1| for 2 ≤ i ≤ `} ∩ {|Yi| > Cian , for 1 ≤ i ≤ `} .

Recalling the definition (8.6) of Θk(·), we claim that E(3)
` can also be rewritten as

E
(3)
` = {Y1 > −γx, (Y2, . . . , Y`) ∈ Θ`(Y1)} ∩ {|Yi| > Cian , for 1 ≤ i ≤ `} . (8.19)

To prove the claim, we show that |Zi| > γ|Yi−1| is equivalent to Yi ∈ ϑ(Yi−1), for 2 ≤ i ≤ k,
with ϑ(·) defined in (8.6). We recall that Zi = Yi − Yi−1, see (8.15). If Yi−1 > 0, then
Zi ≤ 0 by (8.16), hence |Zi| > γ|Yi−1| becomes Yi−1 − Yi > γYi−1, which is precisely
Yi ∈ (−∞,−γYi−1) = ϑ(Yi−1). Similar arguments apply if Yi−1 ≤ 0, in which case Zi ≥ 0.

8.2.1 Estimate of E(1)
r

We fix r ∈ {2, . . . , k}. By exchangeability,

P(Sn ∈ x+ I, E(1)
r ) ≤ nr−1 P

(
(Z1, . . . Zr−1) = (X1, . . . , Xr−1), Sn ∈ x+ I, E(1)

r

)
. (8.20)

Conditionally on (X1, . . . , Xr−1) = (z1, . . . , zr−1), we have Sn = (z1 + . . .+zr−1)+S′n−(r−1),
where we set S′k := X ′1 + . . .+X ′k with X ′i := X(r−1)+i. Motivated by (8.15), if we set

yi := (z1 + . . .+ zi)− x for i = 1, . . . , r − 1 ,

then we can write {Sn ∈ x+ I} = {S′n−(r−1) ∈ −yr−1 + I}. Assume first that yr−1 ≤ 0, so
Zr = M ′n−(r−1) := max{X ′i, 1 ≤ i ≤ n− (r−1)}. By (8.17) and (8.14), we need to evaluate

P
(
S′n−(r−1) ∈ −yr−1 + I, |M ′n−(r−1)| ≤ γ |yr−1|

)
. (8.21)
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Since this probability is increasing in γ, applying (1.4), we get the bound

.
1

an

(
n

A(|yr−1|)

)d
, for all d ≤ 1

γ
. (8.22)

In case yr−1 > 0, relation (8.21) holds with M ′k replaced by (M ′k)∗ := min1≤i≤kX
′
i.

Applying (1.4) to the reflected walk (S′)∗ = −S′, we see that the bound (8.22) still holds.

Then, by (8.20) and E
(1)
r = E

(3)
r−1 ∩ {|Zr| ≤ γ|Yr−1|}, using (8.19) for E(3)

r−1, we have the
key bound

P(Sn ∈ x+ I, E(1)
r ) .

∫
y1>−γx,

(y2,...,yr−1)∈Θr−1(y1),
ỹr−1≥an

F (x+ dy1)Py1(dy2, · · · ,dyr−1)
nr+d−1

anA(|yr−1|)d
,

(8.23)
where we set

ỹj := min{C−1
i |yi|, 1 ≤ i ≤ j} , for j ≥ 1 . (8.24)

(For r = 2 the integral in (8.23) is only over y1, so the restriction (y2, . . . , yr−1) ∈ Θr−1(y1)

and the term Py1(dy2, · · · ,dyr−1) should be ignored.)
Henceforth we fix d ∈ ( 1

α − r,
1
α − r + 1). Since γ < α

1−α by assumption, and r ≥ 2, we

have 1
γ >

1
α − 1 ≥ 1

α − r + 1 > d, hence the constraint d ≤ 1
γ is satisfied. The sequence

nr+d−1/an is regularly varying with exponent (d+ r − 1)− 1
α > −1, hence by (2.3)∑

1≤n≤A(w)

nr+d−1

an
.
A(w)r+d

w ∧ 1
= br+d(w) , ∀w ≥ 0 ,

where we recall that bk(·) was defined in (1.10). Since the integral in (8.23) is restricted
to n ≤ A(ỹr−1), we see that∑

1≤n≤A(δx)

P(Sn ∈ x+ I, E(1)
r )

.
∫

y1>−γx
(y2,...,yr−1)∈Θr−1(y1)

F (x+ dy1)Py1(dy2, · · · ,dyr−1)
br+d(ỹr−1 ∧ δx)

A(|yr−1|)d
.

(8.25)

We split the integral in two terms, corresponding to |y1| ≤ δ0x and |y1| > δ0x. Given ε > 0,
we first show that for δ0 > 0 small enough the first term is ≤ ε b1(x), for large x. We then
show that for δ > 0 small enough (depending on δ0) the second term is also ≤ ε b1(x), for

large x. Altogether, this proves that (8.25) is a.n. and completes the estimate of E(1)
r .

• First term. Since ỹr−1 ≤ |yr−1|/Cr−1, see (8.24), and since br+d(·) is asymptotically
increasing (because r + d > 1

α ), we have

br+d(ỹr−1 ∧ δx)

A(|yr−1|)d
.r

br+d(|yr−1|)
A(|yr−1|)d

= br(|yr−1|) ,

hence the contribution of |y1| ≤ δ0x to the integral in (8.25) is bounded by∫
|y1|≤δ0x

(y2,...,yr−1)∈Θr−1(y1)

F (x+ dy1)Py1
(dy2, · · · ,dyr−1) br(|yr−1|) =: Jr−1(δ0;x) ,

see (8.7) for the definition of Jk. By Proposition 8.1 with ` = r − 1 (recall (8.18)),
we can fix δ0 > 0 small enough so that for large x we have Jr−1(δ0, x) ≤ ε b1(x).
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• Second term. If we define f1(y) := 1/br+d−1(y), then by (8.9) we can write∫
(y2,...,yr−1)∈Θr−1(y1)

Py1
(dy2, · · · ,dyr−1)

1

A(|yr−1|)d
= hr−1(y1, f1) , ∀y1 ∈ R .

As a consequence, the contribution of |y1| > δ0x to the integral in (8.25) is at most

br+d(δx)

∫
|y1|>δ0x, y1>−γx

F (x+ dy1)hr−1(y1, f1) . (8.26)

Note that f1(·) ∈ RV (β) with β = 1 − (r + d − 1)α. Our choice of d implies that
1
α < r + d < 1

α + 1, hence 0 < β < α. Since α < 1
r , see (8.18), we also have

α < 1− (r − 1)α, which yields 0 < β < 1− (r − 1)α. By Proposition 8.1 with f = f1

and ` = r− 1, the expression in (8.26) is .δ0,γ,r br+d(δx) f1(x)
x . A(δx)

x . Then we can
fix δ > 0 small (depending on δ0) so that it is ≤ ε b1(x) for large x.

8.2.2 Estimate of E(2)
r

Always for r ∈ {2, . . . , k}, in analogy with (8.20), we have

P(Sn ∈ x+ I, E(2)
r ) ≤ nr P

(
(Z1, . . . Zr) = (X1, . . . , Xr), Sn ∈ x+ I, E(2)

r

)
≤ nr P

(
(Z1, . . . Zr) = (X1, . . . , Xr), E

(2)
r

)(
sup
z∈R

P(Sn−r ∈ z + I)

)
.
nr

an
P
(
(Z1, . . . Zr) = (X1, . . . , Xr), E

(2)
r

)
,

(8.27)

where we have applied (2.7). Since E(2)
r = E

(3)
r−1 ∩ {|Yr| ≤ Cran}, by (8.19) and (8.24) we

obtain

P(Sn ∈ x+ I, E(2)
r ) .

∫
y1>−γx, (y2,...,yr−1)∈Θr−1(y1),

ỹr−1≥an, |yr|<Cran

F (x+ dy1)Py1
(dy2, · · · ,dyr)

nr

an
.

(8.28)

Recalling (8.24) and (5.8), we can write

∑
1≤n≤A(δx)

P(Sn ∈ x+ I, E(2)
r ) .

∫
y1>−γx,

(y2,...,yr−1)∈Θr−1(y1)
|yr|≤γ|yr−1|

F (x+ dy1)Py1(dy2, · · · ,dyr)
A(δx∧ỹr−1)∑
n=A(C−1

r |yr|)

nr

an

=

∫
y1>−γx,

(y2,...,yr−1)∈Θr−1(y1)
|yr|≤γ|yr−1|

F (x+ dy1)Py1
(dy2, · · · ,dyr) b̃r+1(δx ∧ ỹr−1, C

−1
r |yr|) , (8.29)

where we made explicit the restriction |yr| ≤ γ|yr−1| in the domain of integration, because
for |yr| > γ|yr−1| the integrand vanishes (since ỹr−1 < C−1

r−1|yr−1| and Cr = γr−1).
We split the integral (8.29) in two terms, i.e. |y1| ≤ δ0x and |y1| > δ0x. First we show

that, given any ε > 0, the first term is ≤ ε b1(x) for δ0 > 0 small and x large. Then we
show that the second term is ≤ ε b1(x) for δ > 0 small (depending on δ0) and x large.

• First term. Recalling (8.24), (5.8) and the definition Ci = γi−1, we can bound

b̃r+1(δx ∧ ỹr−1, C
−1
r |yr|) ≤ b̃r+1(C−1

r−1|yr−1|, C−1
r−1γ

−1|yr|) . b̃r+1(|yr−1|, γ−1|yr|)

≤ b̃r+1(|yr−1|, |yr|) ,
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where the last inequality holds because γ−1 > 1. For |y1| ≤ δ0x, when we plug this
into (8.29) we obtain J̃r(δ0;x), see (8.12) and (8.13). By Proposition 8.2 with ` = r,
we can fix δ0 > 0 small enough so that J̃r(δ0;x) ≤ ε b1(x) for large x.

• Second term. Next we deal with |y1| > δ0x. Note that α(r + 1) ≤ α(k + 1) ≤ 1, see
(8.18). We fix any ψ ∈ (0, 1), so that α(r + 1− ψ) < 1. By (5.8) we can bound

b̃r+1(δx ∧ ỹr−1, C
−1
r |yr|) . A(δx)ψ

∑
n≥A(C−1

r |yr|)

nr−ψ

an
.r A(δx)ψ br+1−ψ(|yr|) ,

where the last inequality holds by (2.4) (note that nr−ψ/an is regularly varying with
index r − ψ − 1

α < −1). If we set f2(y) := A(y)1−ψ, the contribution of |y1| > δ0x is

. A(δx)ψ
∫
y1>−γx,|y1|>δ0x

F (x+ dy1)hr(y1, f2).

Note that f2(y) := A(y)1−ψ ∈ RV (β), with β = α(1 − ψ), hence 0 < β < 1 − rα by
our choice of ψ. We can apply point (1) in Proposition 8.1 with ` = r, to get

. A(δx)ψ
f2(x)

x ∨ 1
∼

x→∞
δαψ

A(x)

x ∨ 1
= δαψ b1(x) ,

which is a.n..

8.2.3 Estimate of E(3)
k

Finally, recalling (8.19), (8.24) and applying (1.6), we can write

P(Sn ∈ x+ I, E
(3)
k ) . nk P

(
(Z1, . . . Zk) = (X1, . . . , Xk), Sn ∈ x+ I, E

(3)
k

)
.

∫
y1>−γx,

(y2,...,yk)∈Θk(y1),
ỹk≥an

F (x+ dy1)Py1(dy2, · · · ,dyk)
nk+1

anA(yk)
.

Note that nk+1/an ∈ RV (ζ) with ζ = k + 1− 1
α > −1, by k = κα. Therefore, by (2.3),∑

1≤n≤A(δx)

P(Sn ∈ x+ I, E
(3)
k ) .

∫
y1>−γx,

(y2,...,yk)∈Θk(y1)

F (x+ dy1)Py1
(dy2, · · · ,dyk)

bk+2(δx ∧ ỹk)

A(yk)
.

(8.30)

We split the integral in two terms |y1| ≤ δ0x and |y1| > δ0x. We recall that 1
k+2 < α ≤ 1

k+1 .

• First term. We focus on |y1| ≤ δ0x and distinguish two cases. First we consider
|yk| ≤ γ|yk−1|. By (k + 1)− 1

α > −1 and ỹk .k min{|yk−1|, |yk|}, see (8.24), we get

bk+2(δx ∧ ỹk) .
A(δx∧ỹk)∑
n=1

nk+1

an
. A(yk)

A(|yk−1|)∑
n=1

nk

an
.γ A(yk)

A(|yk−1|)∑
n=A(|yk|)

nk

an

. A(yk) b̃k+1(yk−1, yk) ,

where the third inequality holds for |yk| ≤ γ|yk−1|, and for the last inequality we
recall (5.8). When we plug this bound into (8.30), with the integral restricted to
|y1| ≤ δ0x and |yk| ≤ γ|yk−1|, we obtain J̃r(δ0;x), see (8.12)-(8.13). By Proposi-
tion 8.2 with ` = r, we can fix δ0 > 0 small enough so that J̃r(δ0;x) ≤ ε b1(x).
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Next we consider |yk| > γ|yk−1|, hence we can bound A(yk) &γ A(yk−1). Since bk+2

is asymptotically increasing (it is regularly varying with index (k + 2)α − 1 > 0),
we can also bound bk+2(δx ∧ ỹk)/A(yk) . bk+2(yk−1)/A(yk−1) = bk+1(yk−1). When
we plug this into (8.30), the integrand does not depend on yk anymore, so we can
integrate over yk to get

∫
yk∈ϑ(yk−1)

F (−yk−1 + dyk) .γ 1/A(yk−1), which multiplied

by bk+1(yk−1) gives bk(yk−1). Then the contribution of |y1| ≤ δ0x and |yk| > γ|yk−1|
to (8.30) is bounded by Jk−1(δ0;x), see (8.7), which is a.n. by Proposition 8.1.

• Second term. To deal with {|y1| > δ0x}, we fix ν ∈ (0, 1) sufficiently close to 1, so
that (k + 1 + ν)α− 1 > 0 (we recall that α > 1

k+2 ), which ensures that bk+1+ν(·) is
asymptotically increasing. Then we can bound

bk+2(δx ∧ ỹk)

A(yk)
.
bk+1+ν(δx)A(yk)1−ν

A(yk)
=
bk+1+ν(δx)

A(yk)ν
= bk+1+ν(δx) bk(yk) f3(yk) ,

where we set f3(y) := 1/bk+ν(y). Note that α(k + ν) < 1 (by α ≤ 1
k+1 ), hence

f3 ∈ RV (β) with β = 1 − α(k + ν) satisfies 0 < β < 1 − αk, i.e. the assumption of
point (1) in Proposition 8.1 with ` = k. The contribution of {|y1| > δ0x} is then

. bk+1+ν(δx)

∫
y1>−γx,|y1|>δ0x

F (x+ dy1)hk(y1, f3) . bk+1+ν(δx)
f3(x)

x ∨ 1

=
bk+1+ν(δx)

A(x)k+ν
∼

x→∞
δ(k+1+ν)α−1 b1(x) ,

which is a.n. and completes the proof.

8.3 Technical proofs

In this subsection we are going to prove Propositions 8.1 and 8.2. We first need two
preliminary results, stated in the next Propositions 8.4 and 8.5.

First an elementary observation. Recall that gr(y) is defined in (8.2). We claim that

∀r ≥ 2 , ∀y ∈ R : gr(y) ≤ A(y)

∫
|z|≤γ|y|

F (−y + dz) gr−1(z) . (8.31)

The case r = 2 follows immediately from (8.2)-(8.3) and (1.10) (recall thatA is increasing).
Similarly, for r ≥ 3, we simply observe that |yr| ≤ |y| for (y2, . . . , yr) ∈ Ωr(y), hence

gr(y) =

∫
|y2|≤γ|y|

F (−y + dy2)

∫
Ωr−1(y2)

Py2
(dy3, · · · ,dyr) br+1(yr)

≤ A(|y|)
∫
|y2|≤γ|y|

F (−y + dy2)

∫
Ωr−1(y2)

Py2
(dy3, · · · ,dyr) br(yr)

= A(|y|)
∫
|y2|≤γ|y|

F (−y + dy2) gr−1(y2) .

(8.32)

We are ready for our first preliminary result. If Ir(δ;x) is a.n., then for δ > 0 small
we have Ir(δ;x) . b1(x) for all x ≥ 0 (recall Definition 1.3). We now show that the same
bound holds when the integral in (8.1) is enlarged to {y1 > −κx}, for any fixed κ < 1.

Proposition 8.4. Fix r ∈ N and α ∈ (0, 1
2 ). Assume that Ij(δ;x) is a.n. for j = 1, . . . , r.

Then for any 0 < κ < 1∫
y>−κx

F (x+ dy) gr(y) .κ,γ,r b1(x) ∀x ≥ 0 . (8.33)
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Proof. The case r = 1 is easy: since b2 ∈ RV (2α− 1) and 2α− 1 < 0, for any fixed δ0 > 0∫
|y|>δ0x, y>−κx

F (x+ dy) b2(y) ≤
(

sup
|y|>δ0x

b2(y)

)
F ((1− κ)x) .δ0,κ

b2(x)

A(x)
= b1(x) . (8.34)

On the other hand, the contribution to the integral of |y| ≤ δ0x gives I1(δ0;x) which is
. b1(x) for δ0 > 0 small enough, as we already observed, because I1(δ;x) is a.n..

Next we fix r ≥ 2. By induction, we can assume that (8.33) holds with r replaced by
1, 2, . . . , r − 1 and our goal is to prove it for r.

Assume first that y ≤ 0, say y = −t with t ≥ 0. By (8.31) and the inductive hypothesis
(8.33) for r − 1 (since t ≥ 0), we get

gr(−t) ≤ A(t)

∫
|z|≤γt

F (t+ dz) gr−1(z) .γ,r A(t) b1(t) = b2(t) = g1(t) .

When we plug this bound into (8.33) restricted to y ≤ 0, we get∫
0≤t<κx

F (x− dt) gr(−t) .γ,r
∫

0≤t<κx
F (x− dt) g1(t) .κ b1(x) ,

where the last inequality holds by the inductive hypothesis (8.33) for r = 1.
It remains to look at the contribution of y > 0 in (8.33). By (8.1), the contribution of

{0 < y ≤ δ1x} to (8.33) is bounded by Ir(δ1, x) which is a.n. by assumption, hence it is
. b1(x) provided δ1 > 0 is small enough. It remains to focus on {y > δ1x}.

We need a simple observation; let I = (a1, a2) where 0 ≤ a1 < a2 ≤ ∞ and, for
γ ∈ (0, 1), put I ′ = (γa1, (2− γ)a2). Then for all non-negative functions f, g : R→ [0,∞)∫

y∈xI
F (x+ dy) f(y)

∫
|z|≤γy

F (−y + dz) g(z)

=

∫
y∈xI

F (x+ dy) f(y)

∫
γy≤w≤(2−γ)y

F (−dw) g(y − w)

≤
∫
w∈xI′

F (−dw)

∫
(2−γ)−1w≤y≤γ−1w

F (x+ dy) f(y) g(y − w)

=

∫
w∈xI′

F (−dw)

∫
−γ1w≤v≤γ2w

F (x+ w + dv) f(w + v) g(v),

(8.35)

where γ1 = 1− (2− γ)−1 and γ2 = γ−1 − 1.
Applying (8.31) together with (8.35), the contribution of {y > δ1x} to (8.33) is∫ ∞

δ1x

F (x+ dy) gr(y) ≤
∫ ∞
δ1x

F (x+ dy)A(y)

∫ γy

−γy
F (−y + dz) gr−1(z)

=

∫ ∞
γδ1x

F (−dw)

∫ γ2w

−γ1w

F (x+ w + dv)A(v + w) gr−1(v)

.γ

∫ ∞
γδ1x

F (−dw)A(w)

∫ ∞
−γ1(x+w)

F (x+ w + dv) gr−1(v) .

Applying (8.33) for r − 1, and the fact that b2(·) is asymptotically decreasing, we obtain∫ ∞
δ1x

F (x+ dy) gr(y) .
∫ ∞
γδ1x

F (−dw)A(w) b1(x+ w) ≤
∫ ∞
γδ1x

F (−dw) b2(x+ w)

. b2(x)

∫ ∞
γδ1x

F (−dw) .δ1,γ b1(x) .
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We now introduce a generalization gk(y, f) of gk(y) (in the same way as hk(y, f)

generalizes hk(y), see (8.8)-(8.9)). For any non-negative, even function f : R → [0,∞)

we denote by gk(y1, f) what we get by replacing bk+1(yk) by bk(yk)f(yk) in (8.2), that is

gk(y1, f) :=


b1(y1) f(y1) if k = 1∫

Ωk(y1)

Py1
(dy2, . . . ,dyk) bk(yk) f(yk) if k ≥ 2

. (8.36)

In particular, gk(y) is gk(y,A).
We are going to assume that f(| · |) ∈ RV (β) for some β > 0, so f is asymptotically

increasing and f(w) . f(y) for |w| ≤ |y|. Then, in analogy with (8.31), we claim that

∀r ≥ 2 , ∀y ∈ R : gr(y, f) ≤ f(y)

∫
|z|≤γ|y|

F (−y + dz) gr−1(z) . (8.37)

The case r = 2 follows immediately by (8.36), while for r ≥ 3 we can argue as in (8.32),
replacing br+1(yr) by br(yr, f) and bounding f(yr) . f(y), since |yr| ≤ |y| on Ωr(y).

We now state our second preliminary result, which is in the same spirit as Proposi-
tion 8.4.

Proposition 8.5. Fix r ∈ N and α ∈ (0, 1
2 ). If r ≥ 2, assume that Ij(δ;x) is a.n. for

j = 1, . . . , r − 1. Fix any f ∈ RV (β) with 0 < β < 1− α. Then for all 0 < δ0 < κ < 1∫
|y|>δ0x, y>−κx

F (x+ dy) gr(y, f) .δ0,κ,γ,r
f(x)

x ∨ 1
∀x ≥ 0 . (8.38)

Proof. Since g1(·, f) = b1(·)f(·) ∈ RV (α+ β − 1) is asymptotically decreasing, we have∫
|y|>δ0x, y>−κx

F (x+ dy) g1(y, f) .δ0 b1(x)f(x)

∫
y>−κx

F (x+ dy)

.κ
b1(x)f(x)

A(x)
=
f(x)

x ∨ 1
,

which proves (8.38) if r = 1. Henceforth we assume that r ≥ 2 and proceed by induction.
Note that we can apply Proposition 8.4 with r replaced by r − 1 (since here we assume
that Ij(δ;x) is a.n. for j = 1, . . . , r − 1).

Assume first that y ≤ 0, say y = −t with t ≥ 0. Then by (8.37) we can bound

gr(−t, f) ≤ f(t)

∫
|z|≤γt

F (t+ dz) gr−1(z) .γ f(t) b1(t) , (8.39)

where for the last inequality we apply Proposition 8.4 for r−1 (since t ≥ 0). Since f(·)b1(·)
is asymptotically decreasing, the contribution of y ≤ 0 to (8.38) is then estimated by∫

δ0x<t<κx

F (x− dt) gr(−t, f) .δ0 f(x) b1(x)

∫
δ0x<t<κx

F (x− dt) .κ
f(x) b1(x)

A(x)
=
f(x)

x ∨ 1
.

It remains to control the contribution to (8.38) of y > 0. By (8.37) and (8.35)∫ ∞
δ0x

F (x+ dy) gr(y, f) ≤
∫ ∞
δ0x

F (x+ dy) f(y)

∫ γy

−γy
F (−y + dz) gr−1(z)

.
∫ ∞
γδ0x

F (−dw)

∫ γ2w

−γ1w

F (x+ w + dv) f(w + v) gr−1(v)

.γ

∫ ∞
γδ0x

F (−dw) f(w)

∫ ∞
−γ1(x+w)

F (x+ w + dv) gr−1(v) .

(8.40)
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Applying again Proposition 8.4 for r − 1 we get, since f(·)b1(·) is asymptotically decreas-
ing, ∫ ∞

δ0x

F (x+ dy) g`(y, f) .κ,γ,r

∫ ∞
γδ0x

F (−dw) f(x+ w) b1(x+ w)

. f(x) b1(x)

∫ ∞
γδ0x

F (−dw) .γ,δ0
f(x)

x ∨ 1
.

We are finally ready to prove Propositions 8.1 and 8.2.

Proof of Proposition 8.1. We write r in place of `. We assume that Ij(δ;x) is a.n. for
j = 1, . . . , r − 1 (if r ≥ 2). Moreover, for point (2) we also assume that Ir(δ;x) is a.n..

Recall the definitions of hk(y, f), gk(y, f), see (8.9), (8.36). We claim that

∀ even f ∈ RV (β) with 0 < β < 1− rα : hr(y, f) .γ,r

r∑
j=1

gj(y, f) . (8.41)

Then relation (8.10) follows immediately by Proposition 8.5. This proves point (1).
For point (2), we note that for α < 1

r+1 we can plug f = A in (8.41), because β = α

satisfies β < 1 − rα. This gives hr(y) .γ
∑r
j=1 gj(y), which plugged into (8.7) shows

that Jr(δ;x) .γ
∑r
j=1 Ir(δ;x). Since in point (2) we assume that Ij(δ;x) for j = 1, . . . , r

(including j = r), relation (8.11) follows and completes the proof.
It remains to prove (8.41). This holds for r = 1, since h1(y, f) = g1(y, f). Henceforth

we fix r ≥ 2 and we proceed by induction.
Let us first show that

∀r′ = 1, . . . , r − 1 , ∀ even f ′ ∈ RV (β′) with 0 < β′ < 1− r′α ,

∀y < 0 :

∫
z≥−γ|y|

F (−y + dz)hr′(z, f
′) .γ

r′+1∑
i=1

gi(y,
f ′

A ) ,
(8.42)

where we stress that y < 0. By the inductive assumption, we can apply (8.41) with r

replaced by r′ (since r′ ≤ r − 1) and f replaced by f ′, hence

∫
z≥−γ|y|

F (−y + dz)hr′(z, f
′) .γ

r′∑
j=1

∫
z≥−γ|y|

F (−y + dz) gj(z, f
′) .

We now split the domain of integration in the two subsets [−γ|y|, γ|y|] and (γ|y|,∞). The

first subset gives
∫
|z|≤γ|y| F (−y + dz) gj(z, f

′) = gj+1(y, f
′

A ), by (8.36). For the second
subset we can apply Proposition 8.5 (since −y ≥ 0), getting∫

z>γ|y|
F (−y + dz) gj(z, f

′) .γ
f ′(|y|)
|y| ∨ 1

= b1(y)
f ′(y)

A(y)
= g1(y, f

′

A ) ,

where we recall that A(·) and f ′(·) are even functions. This completes the proof of (8.42).
We are ready to prove (8.41). Let us first consider the case y < 0. By (8.9) we can

write

hr(y, f) =

∫
y2≥−γ|y|

F (−y + dy2)hr−1(y2, Af) .

We can now apply (8.42) with r′ := r − 1 and f ′ := Af (because f ′ ∈ RV (β′) with
β′ = α+ β which satisfies 0 < β′ < 1− r′α). This proves (8.41) when y < 0.

Next we consider the case y ≥ 0. If we restrict the domain of integration Θr(y) in (8.9)
to y2 ≥ 0, y3 ≥ 0, . . . , yr ≥ 0, then the domain becomes {0 ≤ yj ≤ γyj−1 for 2 ≤ j ≤ r}
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which is included in Ωr(y), see (8.3). The corresponding contribution to hr(y, f) is
then bounded from above by gr(y, f), see (8.36). This proves (8.41) when y2 ≥ 0, y3 ≥
0, . . . , yr ≥ 0.

It remains to estimate hr(y, f) for y ≥ 0, when some of the coordinates y2, y3, . . . , yr
in the integral in (8.9) are negative. Let us define H := min{j ∈ {2, . . . , r} : yj < 0}.

In the extreme case H = r, the corresponding contribution to hr(y, f) is, for r ≥ 3,∫ γy

y2=0

· · ·
∫ γyr−2

yr−1=0

∫ 0

yr=−γyr−1

Py(dy2, · · · ,dyr) br(yr)f(yr)

+

∫ γy

y2=0

· · ·
∫ γyr−2

yr−1=0

∫ −γyr−1

yr=−∞
Py(dy2, · · · ,dyr) br(yr)f(yr) .

(8.43)

If r = 2, one should ignore the first integrals, that is we have∫ 0

y2=−γy
F (−y + dy2) b2(y2) f(y) +

∫ γy

y2=−∞
F (−y + dy2) b2(y2) f(y) . (8.44)

The first integral in (8.43)-(8.44) is bounded by gr(y, f), because the domain of inte-
gration for (y2, . . . , yr) is included in Ωr(y) (recall (8.36) and (8.3)). For the second
integral, we note that br(·)f(·) ∈ RV (rα − 1 + β) is asymptotically decreasing, since
rα − 1 + β < 0 by assumption, hence we can bound br(yr)f(yr) . br(yr−1)f(yr−1).
Since Py(dy2, · · · ,dyr) = Py(dy2, · · · ,dyr−1)F (−yr−1 + dyr), when we integrate over
yr ∈ (−∞,−γyr−1] we get a factor .γ 1/A(yr−1). Overall, for r ≥ 3 we can bound (8.43)
by

≤ gr(y, f) +

∫ γy

y2=0

· · ·
∫ γyr−2

yr−1=0

Py(dy2, · · · ,dyr−1)
1

A(yr−1)
br(yr−1)f(yr−1)

≤ gr(y, f) + gr−1(y, f) ,

and the same bound holds also for r = 2. This proves (8.41) when H = r.
Finally, if H = j ∈ {2, . . . , r − 1}, the contribution to hr(y, f) is (recall again (8.9))∫ γy

y2=0

· · ·
∫ γyj−2

yj−1=0

∫ 0

yj=−∞
Py(dy2, · · · ,dyj)

∫
yj+1>−γ|yj |

F (−yj + dyj+1)hr−j(yj+1, A
jf)

.γ

r−j+1∑
i=1

∫ γy

y2=0

· · ·
∫ γyj−2

yj−1=0

∫ 0

yj=−∞
Py(dy2, · · · ,dyj) gi(yj , Aj−1f) , (8.45)

where we have applied (8.42) with r′ = r − j and f ′ = Ajf (note that f ′ ∈ RV (β′) with
β′ = jα + β, which satisfies 0 < β′ < 1 − r′α). We split the integral over yj in the two
subsets [−γyj−1, 0] and (−∞,−γyj−1].

• On the first subset, we can enlarge the domain of integration to (y2, . . . , yj) ∈ Ωj(y),
see (8.3), hence the corresponding contribution to (8.45) is

r−j+1∑
i=1

∫
(y2,...,yj)∈Ωj(y)

Py(dy2, · · · ,dyj) gi(yj , Aj−1f)

=

r−j+1∑
i=1

∫
(y2,...,yj+i−1)∈Ωj+i−1(y)

Py(dy2, · · · ,dyj+i−1) bj+i−1(yj+i−1) f(yj+i−1)

=

r−j+1∑
i=1

gj+i−1(y, f) ,

by (8.36). This proves (8.42) for the first subset.
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• On the second subset, we first consider a fixed i ≥ 2: renaming yj = −z, we can
write∫ −γyj−1

yj=−∞
F (−yj−1 + dyj) gi(yj , A

j−1f) (8.46)

=

∫ ∞
z=γyj−1

F (−yj−1 − dz)

∫
Ωi(z)

P−z(dyj+1, · · · dyj+i)bi(yj+i, Aj−1f)

=

∫ ∞
z=γyj−1

F (−yj−1 − dz)

∫
|yj+1|≤γz

F (z + dyj+1)∫
Ωi−1(yj+1)

Pyj+1,
(dyj+2, · · · dyj+i)bi+j−1(yj+i)f(yj+i) . (8.47)

We next write bi+j−1(·)f(·) = {Aj−1(·)f(·)}bi(·) and then bound Aj−1(yj+i)f(yj+i) .
Aj−1(z)f(z), because Aj−1(·)f(·) is asymptotically increasing, to get

.γ

∫ ∞
z=γyj−1

F (−yj−1 − dz)A(z)j−1f(z)

∫
|yj+1|≤γz

F (z + dyj+1) gi−1(yj+1)

.γ

∫ ∞
z=γyj−1

F (−yj−1 − dz)A(z)j−1 f(z) b1(z) .γ bj−1(yj−1)f(yj−1) ,

where we used (8.33) and the fact that b1(z)f(z)Aj−1(z) is regularly varying with
index jα+ β − 1 < 0 and so is asymptotically decreasing. This shows that∫ −γyj−1

yj=−∞
F (−yj−1 + dyj) gi(yj , A

j−1f) .γ bj−1(yj−1)f(yj−1) ,

and the same bound holds also for i = 1 (since g1(z,Aj−1f) = b1(z)f(z)Aj−1(z), we
can directly apply (8.47)). Thus the contribution of yj ≤ −γyj−1 to (8.45) is

.γ

r−j+1∑
i=1

∫ γy

y2=0

· · ·
∫ γyj−2

yj−1=0

Py(dy2, · · · ,dyj−1) bj−1(yj−1)f(yj−1)

≤
r−j+1∑
i=1

∫
Ωj−1(y)

Py(dy2, · · · ,dyj−1) bj−1(yj−1)f(yj−1) = (r − j + 1)gj−1(y).

This completes the proof of (8.42).

Proof of Proposition 8.2. We write r in place of `. We assume that Ĩj(δ;x) and Ij(δ;x)

are a.n. for j = 1, . . . , r, with r ≥ 2 and α ≤ 1
r+1 , and we need to show that J̃r(δ;x) is a.n..

We first give a basic estimate: from (5.8), (2.4) and (1.10), for any λ ∈ (0, r) we have

b̃r+1(y, z) ≤ A(y)λ b̃r+1−λ(y, z) ≤ A(y)λ
∞∑

m=A(z)

m(r−λ)

am
. A(y)λ br+1−λ(z). (8.48)

Let us prove that J̃r(δ;x) is a.n.. For α < 1
r+1 we can simply apply Proposition 8.1

with ` = r, because J̃r(δ;x) . Jr(δ;x). Indeed, by (5.8),

b̃r+1(yr−1, yr) .
∑

n≥A(|yr|)

nr

an
.
A(|yr|)r+1

|yr| ∨ 1
= br+1(yr) ,

because nr/an is regularly varying with index r − 1/α < −1.
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Henceforth we fix α = 1
r+1 . For r = 2 there is nothing to prove, since J̃2(δ;x) =

Ĩ2(δ;x).
We now fix r ≥ 3. If we consider the contribution to the integrals in (8.12)-(8.13) of

y1 ≥ 0, y2 ≥ 0, . . . , yr−1 ≥ 0, the domain of integration, see (8.6), reduces to

{0 ≤ y1 ≤ δx} ∩ {0 ≤ yi ≤ γyi−1 for 2 ≤ i ≤ r − 1} ∩ {|yr| ≤ γyr−1} .

This contribution is bounded by Ĩr(δ;x), see (1.24), which is a.n. by assumption.
Next we consider the contribution to (8.12)-(8.13) coming from y1, . . . , yr−1 such that

yi < 0 for some 1 ≤ i ≤ r − 1. Let us define H̃ = max{j ∈ {1, . . . , r − 1} : yj < 0}. If
H̃ = r − 1, the bound (8.48) with λ = r − 1 and the fact that yr−1 < 0 show that∫

|yr|≤γ|yr−1|
F (−yr−1 + dyr) b̃r+1(yr−1,yr)

. A(yr−1)r−1

∫
|yr|≤γ|yr−1|

F (−yr−1 + dyr) b2(yr) . A(yr−1)r−1b1(yr−1) = br(yr−1),

where the second inequality comes from Proposition 8.4. Plugging this bound into
(8.13), we see that the contribution to h̃r(y) is at most hr−1(y) (recall (8.8)), hence the
contribution to J̃r(δ;x) is at most Jr−1(δ;x) (recall (8.7)), which is a.n. by Proposition 8.1
with ` = r − 1.

We finally consider the contribution of H̃ = r− j with j ≥ 2. This means that yr−j < 0,
while yr−j+1 ≥ 0, . . . , yr−1 ≥ 0, and the range of integration in (8.13) is a subset of

Θr−j(y1) ∩ {yr−j < 0} ∩ {yr−j+1 ≥ 0} ∩ {|yr−j+1+`| ≤ γ|yr−j+`|, ` = 1, · · · j − 1}.

We split this into the two subsets {0 ≤ yr−j+1 ≤ γ|yr−j |} and {yr−j+1 > γ|yr−j |}.
On the first subset {0 ≤ yr−j+1 ≤ γ|yr−j |}, we bound b̃r+1(yr−1, yr) . A(yr−1)r−j ×

bj+1(yr), by (8.48) with λ = r − j, and then A(yr−1) . A(yr−j). Recalling the definition
(8.2) of gj(·), we see that this part of the integral with respect to yr−j+1, · · · , yr is

. A(yr−j)
r−j

∫
0≤yr−j+1≤γ|yr−j |

F (|yr−j |+ dyr−j+1) gj(yr−j+1)

≤ A(yr−j)
r−j

∫
z≥−γ|yr−j |

F (|yr−j |+ dz) gj(z)

. A(yr−j)
r−j b1(yr−j) = br−j+1(yr−j) ,

where the last inequality follows by Proposition 8.4. The contribution to (8.13) is

.
∫

Θr−j(y1)∩{yr−j<0}
Py(dy2, . . . ,dyr−j) br−j+1(yr−j) ≤ hr−j(y1) , (8.49)

hence the contribution to J̃r(δ;x) is . Jr−j(δ;x), which is a.n. by Proposition 8.1.
On the second subset {yr−j+1 > γ|yr−j |}, we bound b̃r+1(yr−1, yr) . A(yr−1)r−j+1×

bj(yr), by (8.48) with λ = r − j + 1, and then A(yr−1) . A(yr−j+1), getting

.
∫

yr−j+1>γ|yr−j |

F (|yr−j |+ dyr−j+1)A(yr−j+1)r−j+1

∫
|yr−j+2|≤γyr−j+1

F (−yr−j+1 + dyr−j+2) gj−1(yr−j+2)

=

∫
y>γ|yr−j |

F (|yr−j |+ dy)A(y)r−j+1

∫
|z|≤γy

F (−y + dz) gj−1(z) ,
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where we have set y = yr−j+1 and z = yr−j+2 for short. Applying (8.35), where we recall
that γ1 = 1− (2− γ)−1 and γ2 = γ−1 − 1, we get

.
∫

w≥γγ|yr−j |

F (−dw)

∫
−γ1w≤v≤γ2w

F (|yr−j |+ w + dv)A(w + v)r−j+1 gj−1(v)

.γ

∫
w≥γγ|yr−j |

F (−dw)A(w)r−j+1

∫
v≥−γ1(|yr−j |+w)

F (|yr−j |+ w + dv) gj−1(v)

.γ

∫
w≥γγ|yr−j |

F (−dw)A(w)r−j+1 b1(|yr−j |+ w) ,

by Proposition 8.4 with r = j − 1. Finally, this is easily bounded by∫
w≥γγ|yr−j |

F (−dw) br−j+2(|yr−j |+ w) . F (−γγ|yr−j |) br−j+2(|yr−j |) . br−j+1(|yr−j |) ,

because br−j+2(·) ∈ RV (α(r − j + 2)− 1) is asymptotically decreasing, since j ≥ 2 and
α = 1

r+1 . Arguing as in (8.49), we see that the contribution to J̃r(δ;x) is . Jr−j+1(δ;x),
which is a.n. by Proposition 8.1. This completes the proof.

9 Soft results

In this section we prove Theorem 1.5, Propositions 1.7, 1.11, 1.17 and Theorem 1.18,
which are corollaries of our main results.

9.1 Proof of Theorem 1.5

Assume that condition (1.14) holds. By (1.10) we can write

sup
1≤z≤x

b2(z) = sup
1≤z≤x

A(z)2

z
.
A(x)2

x
.

For 0 ≤ z ≤ 1 we can also write b2(z) ≤ A(1)2 = b2(1) . A(x)2

x hence by (1.13)

I+
1 (δ;x) .

A(x)2

x
F ([x− δx, x]) ∼

x→∞

A(x)2

x

(
1

A((1− δ)x)
− 1

A(x)

)
∼

x→∞

A(x)

x

(
1

(1− δ)α
− 1

)
=
δ→0

A(x)

x
O(δ) .

This shows that I+
1 (δ;x) is a.n., hence the SRT holds by Theorem 1.4.

Next we prove the second part of Theorem 1.5: we assume that condition (1.14) is
not satisfied, and we build a probability F for which the SRT fails. Since A ∈ RV ( 1

2 ), we
can write A(x) = `(x)

√
x where ` is slowly varying. By assumption, see (1.14), there is a

subsequence xn →∞ such that sup1≤s≤xn `(s)� `(xn), hence we can find 1 ≤ sn ≤ xn
for which `(sn) � `(xn). We have necessarily sn = o(xn), because `(s)/`(xn) → 1

uniformly for s ∈ [εxn, xn], for any fixed ε > 0, by the uniform convergence theorem of
slowly varying functions [BGT89, Theorem 1.2.1]. Summarizing:

xn →∞ , sn = o(xn) , εn :=
`(xn)

`(sn)
→ 0 . (9.1)

By Lemma 10.2 below, there is a probability F on (0,∞), which satisfies (1.12), such
that

F ({xn}) ≥
εn

A(xn)
for infinitely many n ∈ N . (9.2)
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Since A(x) = `(x)
√
x, recalling (1.13), for infinitely many n ∈ N we can write

I+
1 (δ;xn + sn) ≥ A(sn)2

sn
F ({xn}) ≥ `(sn)2 εn

A(xn)
=
`(sn)
√
xn

=
1

εn

A(xn)

xn
� A(xn + sn)

xn + sn
,

where the last inequality holds because εn → 0 and xn + sn ∼ xn, see (9.1). This shows
that I+

1 (δ;x) is not a.n., hence the SRT fails, by Theorem 1.4.

9.2 Proof of Proposition 1.7

We claim that (1.16) is equivalent to the following relation:

F ((x− y, x]) =
x→∞

O

(
1

A(x)

(y
x

)γ)
for any y = yx ≥ 1 with y = o(x) . (9.3)

It is clear that (1.16) implies (9.3). On the other hand, if (1.16) fails, there are sequences
xn →∞, Cn →∞ and yn ∈ [1, 1

2xn] such that

F ((xn − yn, xn]) > Cn
1

A(xn)

( yn
xn

)γ
. (9.4)

By extracting subsequences, we may assume that yn
xn
→ % ∈ [0, 1

2 ]. If % = 0, then
yn = o(xn) and (9.4) contradicts (9.3). If % > 0, then (9.4) contradicts (1.12), because it
yields

F ( 1
2xn) ≥ F ((xn − yn, xn]) > Cn

1

A(xn)

(
%γ + o(1)

)
� 1

A( 1
2xn)

.

We first prove that relation (9.3) for every γ < 1 − 2α is a necessary condition for
the SRT. We can assume that α < 1

2 , because for α = 1
2 we have γ < 0 and (9.3)

follows by (1.12). If we restrict the integral (1.13) to z ∈ [0, y), where y = yx = o(x),
for large x we can bound I+

1 (δ;x) & b2(y)F ((x − y, x]) because b2(z) ∈ RV (2α − 1) is
asymptotically decreasing. If the SRT holds, I+

1 (δ;x) is a.n. by Theorem 1.4, hence
b2(y)F ((x− y, x]) = o(b1(x)), i.e.

F ((x− y, x]) =
x→∞

o

(
1

A(x)

b2(x)

b2(y)

)
, for any y = yx ≥ 1 with yx = o(x) .

Since b2 ∈ RV (2α− 1), it follows by Potter’s bounds (2.2) that, for any given γ < 1− 2α,
we have b2(x)

b2(y) .γ ( yx )γ , hence (9.3) holds as claimed (even with o(·) instead of O(·)).
We now turn to the sufficiency part. Let F be a probability on [0,∞) which satisfies

(1.12), with α ∈ (0, 1
2 ], such that relation (1.16) holds for some γ > 1− 2α and x0, C <∞.

We prove that the SRT holds by showing that Ĩ+
1 (δ;x) defined in (1.17) is a.n., by

Proposition 1.11. Applying (1.16) and recalling (1.17), for fixed δ ∈ (0, 1
2 ) and large x we

get

Ĩ+
1 (δ;x) ≤ C

A(x)xγ

∫ δx

1

A(z)2

z2−γ dz ∼
x→∞

C ′

A(x)xγ
A(δx)2

(δx)1−γ ∼
x→∞

C ′ δ2α−1+γ A(x)

x
,

where C ′ := C/(2α− 1− γ) and the first asymptotic equivalence holds by (2.3), because
z 7→ A(z)2/z2−γ is regularly varying with index 2α− (2− γ) > −1 (since γ > 1− 2α). This
shows that Ĩ+

1 (δ;x) is a.n. and completes the proof of Proposition 1.7.

9.3 Proof of Proposition 1.11

By (1.17) we can write

Ĩ+
1 (δ;x) =

∫ δx

1

(∫
R

1{y∈[0,z)} F (x− dy)

)
b2(z)

z
dz

=

∫
y∈[0,δx)

F (x− dy)

(∫ δx

1∨y

b2(z)

z
dz

)
.

(9.5)
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We recall that bk is defined in (1.10). Assume that α < 1
2 . Then the function z 7→ b2(z)/z

is regularly varying with index 2α− 2 < −1, hence by (2.4), for y ≥ 0 we can write∫ δx

1∨y

b2(z)

z
dz ≤

∫ ∞
1∨y

b2(z)

z
dz . b2(1 ∨ y) . b2(y) ,

because for 0 ≤ y < 1 we have b2(y) ≥ A(0)2 > 0, see §2.2. Recalling (1.13), we have
shown that Ĩ+

1 (δ;x) . I+
1 (δ;x) when α < 1

2 . Then, if I+
1 (δ;x) is a.n., also Ĩ+

1 (δ;x) is a.n..
We now work for α ≤ 1

2 . Let us restrict the outer integral in (9.5) to y ∈ [0, δ2x), and
the inner integral to z ∈ [1 ∨ y, 2 ∨ 2y). For y ≥ 1 we have∫ 2∨2y

1∨y

b2(z)

z
dz =

∫ 2y

y

b2(z)

z
dz ≥ b2(y)

2y
(2y − y) =

1

2
b2(y) ,

while for 0 ≤ y < 1 we can write
∫ 2∨2y

1∨y
b2(z)
z dz =

∫ 2

1
b2(z)
z dz = C & b2(y). Overall, it

follows from (9.5) that Ĩ+
1 (δ;x) & I+

1 ( δ2 ;x). This completes the proof.

9.4 Proof of Proposition 1.17

Assume that both Ĩ1(δ;x) and Ĩ∗1 (δ;x) are a.n., see (1.25) and (1.27). We first show
that, for any η ∈ (0, 1),

∀z ∈ R, ∀` ∈ N :

∫
|y|≤η|z|

F (−z + dy) b̃`+1(z, y) .η b`(z) . (9.6)

Since b̃`+1(z, y) ≤ A(z)`−1b̃2(z, y) and b`(z) = A(z)`−1b1(z), see (1.22) and (1.10), it is
enough to prove (9.6) for ` = 1. Let us fix 0 < δ0 < η. For |y| > δ0|z| we can bound
b̃2(z, y) . b̃2(z, δ0z) .δ0 b2(z) and

∫
δ0|z|<|y|≤η|z| F (−z + dy) .δ0,η 1/A(z). It remains to

prove (9.6) for ` = 1 and with η replaced by an arbitrary δ0 > 0. The left hand side
of (9.6) equals Ĩ1(η; z) for z ≥ 0 and Ĩ∗1 (η;−z) for z ≤ 0 (recall (1.23)), which are a.n.
by assumption, hence we can fix η = δ0 > 0 small enough so that the inequality (9.6)
holds for |z| > x0, for a suitable x0 ∈ (0,∞). Finally, for |z| ≤ x0 both sides of (9.6) are
uniformly bounded away from 0 and∞, hence the inequality (9.6) still holds.

Observe that, for |z| ≤ η|w|, we can bound b`(z) .η b̃`( 1
η z, z) ≤ b̃`(w, z), so (9.6) yields

∀z, w ∈ R with |z| ≤ η|w|, ∀` ∈ N :

∫
|y|≤η|z|

F (−z + dy) b̃`+1(z, y) .η b̃`(w, z) . (9.7)

If we plug this inequality into (1.24), we see that Ĩ2(δ, η;x) .η Ĩ1(δ;x) and, similarly,
Ĩk(δ, η;x) .η Ĩk−1(δ, η;x) for any k ≥ 3. Since Ĩ1(δ;x) is a.n. by assumption, it follows
that Ĩk(δ, η;x) is a.n. for any k ≥ 2, hence the SRT holds by Theorem 1.12.

Finally, if relation (1.16) holds both for F and for F ∗, the same arguments as in the
proof of Proposition 1.7, see §9.2, show that both Ĩ1(δ;x) and Ĩ∗1 (δ;x) are a.n..

9.5 Proof of Theorem 1.18

Since Stone’s local limit theorem applies equally to Lévy processes, see [BD97,
Proposition 2], an argument similar to the random walk case (see Subsection 4.1) shows
that the SRT (1.30) holds if and only if T̂ (δ;x) is a.n., where

T̂ (δ;x) :=

∫ δA(x)

0

P(Xt ∈ (x− h, x]) dt . (9.8)

Let Js := Xs −Xs− be the jump of X at time s > 0. If we write

Xt = X
(1)
t +X

(2)
t , where X

(1)
t :=

∑
s≤t

Js 1{|Js|≥1} ,
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then X(1) and X(2) are independent Lévy processes.

• The process X(1) is compound Poisson: we can write X
(1)
t = SNλt , where N =

(Nt)t≥0 is a standard Poisson process, S = (Sn)n∈N0
is a random walk with step

distribution P(S1 ∈ dx) = F (dx) given in (1.29), and λ = Π(R \ (−1, 1)) ∈ (0,∞).

• The process X(2)
t can be written as X(2)

t = σBt+µt+Mt, where M is the martingale
formed from the compensated sum of jumps with modulus less than 1.

To complete the proof, we show that the SRT holds for the random walk S if and only if it
holds for X(1) (step 1) if and only if it holds for X (step 2).

Step 1. Since X(1)
t = SNλt , we have

P(X
(1)
t ∈ (x− h, x]) =

∑
n∈N0

e−λt
(λt)n

n!
P(Sn ∈ (x− h, x]) .

Note that
∫ z

0
e−λt (λt)n

n! dt = 1
λP(Zn,λ ≤ z), where Zn,λ denotes a random variable with a

Gamma(n, λ) distribution. Then the quantity T̂ (δ;x) = T̂X(1)(δ;x) for X(1) equals

T̂X(1)(δ;x) =
1

λ

∑
n∈N0

P(Zn,λ ≤ δA(x)) P(Sn ∈ (x− h, x]) . (9.9)

For n ≤ λδA(x) we have P(Zn,λ ≤ δA(x)) ≥ P(Zn,λ ≤ n
λ ) → 1

2 as n → ∞, by the
central limit theorem (recall that Zn,λ ∼ 1

λ (Y1 + . . . + Yn), where Yi are i.i.d. Exp(1)

random variables). Denoting by TS(δ;x) the quantity in (4.1) for the random walk S, and
restricting the sum in (9.9) to n ≤ λδA(x), we get

T̂X(1)(δ;x) & TS(λδ;x) .

To prove a reverse inequality, we observe that for all z ≤ 1
2
n
λ we can write, for ε > 0,

P(Zn,λ ≤ z) ≤ eελz E[e−ελZn,λ ] =
eελz

(1 + ε)n
≤
(
e

1
2 ε

1 + ε

)n
≤ e−cn ,

where the last inequality holds with c = cε > 0, provided we fix ε > 0 small. Then,
splitting the sum in (9.9) according to n ≤ 2λδA(x) and n > 2λδA(x), we get

T̂X(1)(δ;x) ≤ 1

λ

∑
n≤2λδA(x)

P(Sn ∈ (x− h, x]) +
∑

n>2λδA(x)

e−cn . TS(2λδ;x) + e−2cλδA(x) .

These inequalities show that T̂X(1)(δ;x) is a.n. if and only if TS(δ;x) is a.n., that is, the
SRT holds for X(1) if and only if it holds for S.

Step 2. Assume that X = X(1) + X(2) and the SRT holds for X(1), that is T̂X(1)(δ;x) is
a.n.. Then, given ε > 0, there are δ0, x0 such that, for all 0 < δ < δ0,

∀y > x0 : T̂X(1)(δ; y) =

∫ δA(y)

0

P(X
(1)
t ∈ (y − h, y]) dt ≤ ε A(y)

y
. (9.10)

Let us now write∫ δA(x)

0

P(Xt ∈ (x− h, x], X
(2)
t ≤ x/2) dt

=

∫ x/2

−∞
P(X

(2)
t ∈ dz)

∫ δA(x)

0

P(X
(1)
t ∈ (x− z − h, x− z]) dt .
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For z ≤ x/2 we can write A(x) ≤ cA(x/2), for any c > 2α and for large x. Then the inner
integral is bounded by T̂X(1)(cδ;x− z) ≤ εA(x−z)

x−z . εA(x)
x , by (9.10). This shows that∫ δA(x)

0

P(Xt ∈ (x− h, x], X
(2)
t ≤ x/2) dt . ε

A(x)

x
. (9.11)

Note thatX(2) has finite exponential moments, because its Lévy measure Π( · ∩(−1, 1))

is compactly supported, hence E[e|X
(2)
t |] ≤ E[eX

(2)
t ] + E[e−X

(2)
t ] ≤ ect for a suitable

c ∈ (0,∞). This yields the exponential bound P(|X(2)
t | > a) ≤ e−a ect, for all a ≥ 0, hence∫ δA(x)

0

P(Xt ∈ (x− h, x], X
(2)
t > x/2) dt

≤
∫ δA(x)

0

P(X
(2)
t > x/2) dt . e−x/2 ecδA(x) =

x→∞
o

(
A(x)

x

)
.

Together with (9.11), this shows that T̂X(δ;x) is a.n., that is the SRT holds for X.
If the SRT holds for X, to show that it holds for X(1) we can repeat the previous

arguments switching X and X(1) (no special feature of X(1) was used in this step).

10 Counterexamples

In this section we prove Propositions 1.6 and 1.16. We first develop some useful tools.

10.1 Preliminary tools

Let us describe a practical way to build counter-examples.

Remark 10.1. Let us fix A ∈ RV (α). Let F1 be a probability on (0,∞) which satisfies

F1(x) ∼
x→∞

2

A(x)
, F1((x− h, x]) =

x→∞
O

(
1

xA(x)

)
, ∀h > 0 . (10.1)

(For instance, fix n0 ∈ N such that c1 :=
∑
n>n0

2α
nA(n) < 1 and define F1({n0}) := 1− c1,

F1({n}) := 2α
nA(n) for n ∈ N with n > n0.) Let F2 be a probability on (0,∞) such that

F2(x) =
x→∞

o

(
1

A(x)

)
. (10.2)

If we define F := 1
2 (F1 + F2), we obtain a new probability on (0,∞) which satisfies

F (x) ∼
x→∞

1

A(x)
, F (x+ I) ≥ 1

2
F2(x+ I) . (10.3)

Next we state a useful result. To provide motivation, note that if F satisfies (1.12),
then necessarily F (x + I) = o( 1

A(x) ) as x → ∞ (because F (x − h) ∼ F (x) ∼ 1
A(x) ).

Interestingly, this bound can be approached as close as one wishes, in the following
sense.

Lemma 10.2. Fix two arbitrary positive sequences xn → ∞ and εn → 0. For any
A ∈ RV (α), with α ∈ (0, 1), there is a probability F on (0,∞) satisfying (1.12) such that

F ({xn}) ≥
εn

A(xn)
for infinitely many n ∈ N . (10.4)

Proof. Let us fix A ∈ RV (α). By Remark 10.1, it is enough to build a probability F2 on
(0,∞), supported on the sequence {xn}n∈N, which satisfies (10.2) and

F2({xn}) ≥ 2
εn

A(xn)
for infinitely many n ∈ N . (10.5)
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Then, if we define F := 1
2 (F1 + F2), the proof is completed (recall (10.3)).

By assumption xn → ∞ and εn → 0, hence we can fix a subsequence (nk)k∈N such
that

εnk+1

A(xnk+1
)
≤ 1

2

εnk
A(xnk)

, ∀k ∈ N . (10.6)

This ensures that
∑
k∈N

εnk
A(xnk ) < ∞ (the series converges geometrically) and we fix

k0 ∈ N so that
∑
k≥k0

εnk
A(xnk ) ≤

1
2 . We now define F2, supported on the set {xnk : k ≥ k0},

by

F2({xnk}) := c2
εnk

A(xnk)
for k ≥ k0 , where c2 :=

( ∑
k≥k0

εnk
A(xnk)

)−1

≥ 2 .

In this way, (10.5) is satisfied. It remains to check that (10.2) holds. Given x ∈ (0,∞), if
we set k̄ := min{k ≥ k0 : xnk > x}, we can write

F2((x,∞)) =
∑
k≥k̄

c2
εnk

A(xnk)
≤ c2

εnk̄
A(xnk̄)

∑
k≥k̄

1

2k−k̄(x)
≤ 2 c2

εnk̄
A(x)

,

where we used (10.6), and the last inequality holds because xnk̄ > x, by definition of k̄.
Since εn → 0 by assumption, and k̄ →∞ as x→∞, the proof is completed.

10.2 Proof of Proposition 1.6

Let us fix A ∈ RV (α) with α ∈ (0, 1
2 ). By Remark 10.1, it is enough to build a

probability F2 on (0,∞) which satisfies (10.2) and moreover

F2(x+ I) = O

(
ζ(x)

xA(x)

)
, I+

1 (δ;x;F2) is not a.n. , (10.7)

where I+
1 (δ;x;F2) denotes the quantity I+

1 (δ;x) in (1.13) with F replaced by F2. Once
this is done, we can set F := 1

2 (F1 + F2) and the proof is completed (recall (10.3)).
By assumption ζ(·) is non-decreasing with limx→∞ ζ(x) =∞. Let us define xn := 2n,

and fix n0 ∈ N large enough so that ζ(xn0−1) ≥ 1. Let us define

zn :=
1

2

xn
ζ(xn−1)1+ϑ

, where ϑ > 0 will be fixed later . (10.8)

Note that zn ≤ 1
2xn for n ≥ n0 (because ζ(xn−1) ≥ 1), hence the intervals (xn − zn, xn]

are disjoint. We may also assume that zn ≥ 1, possibly enlarging n0 (if we decrease ζ(·)
we get a stronger statement, so we can replace ζ(x) by min{ζ(x), log x}, so that zn →∞).

We define a probability F2 supported on the set
⋃
n≥n0

(xn − zn, xn], with a constant
density on each interval, as follows:

F2(xn − ds) := c
ζ(xn−1)

xnA(xn)
1[0,zn](s) ds , ∀n ≥ n0 , (10.9)

for a suitable c ∈ (0,∞). We are going to show that F2 is a finite measure, so we can fix
the constant c to make it a probability. Note that

F2((xn − zn, xn]) = c
ζ(xn−1)

xnA(xn)
zn =

c

2A(xn) ζ(xn−1)ϑ
.

Since A(xn) = A(2xn−1) ∼ 2αA(xn−1) as n → ∞, we may assume that A(xn) ≥
2α/2A(xn−1) for all n ≥ n0 + 1 (possibly enlarging n0). Since ζ(xn−1)ϑ ≥ ζ(xn−2)ϑ,
we obtain

F2((xn − zn, xn]) ≤ 2−α/2F2((xn−1 − zn−1, xn−1]) , ∀n ≥ n0 + 1 .
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It follows that, for every n ≥ n0,∑
m≥n

F2((xm − zm, xm]) ≤ F2((xn − zn, xn])
∑
m≥n

(2−α/2)m−n = C F2((xn − zn, xn]) ,

where C := (1− 2−α/2)−1 <∞. This shows that F2 is indeed a finite measure.
For all large x ∈ (0,∞), we have xn−1 < x ≤ xn for a unique n ≥ n0, hence

F2(x) ≤
∑
m≥n

F2((xm − zm, xm]) ≤ C F2((xn − zn, xn]) =
cC

2A(xn) ζ(xn−1)ϑ
=

x→∞
o

(
1

A(x)

)
,

so that (10.2) holds. Similarly, for xn−1 < x ≤ xn we can write, by (10.9),

F2(x+ I) = F2((x− h, x]) ≤ c h ζ(xn−1)

xnA(xn)
≤ c h ζ(x)

xA(x)
,

because both ζ(·) and A(·) are non-decreasing, hence the first relation in (10.7) holds.
Finally, for fixed δ ∈ (0, 1

2 ), since zn ≤ δxn for n large enough, we have by (2.3)

I+
1 (δ;xn;F2) = c

ζ(xn−1)

xnA(xn)

∫
0≤z≤zn

A(z)2

z ∨ 1
dz ∼

n→∞
c
ζ(xn−1)

xnA(xn)
A(zn)2 .

Recalling (10.8), we can apply Potter’s bounds (2.2), since zn ≥ 1, to get, for any ε > 0,

I+
1 (δ;xn;F2) &ε

ζ(xn−1)

xnA(xn)

A(xn)2

ζ(xn−1)2(1+ϑ)(α+ε)
= ζ(xn−1)1−2(1+ϑ)(α+ε) A(xn)

xn
� A(xn)

xn
,

where the last inequality holds provided we choose ϑ > 0 and ε > 0 small enough,
depending only on α, so that 1− 2(1 + ϑ)(α+ ε) > 0 (we recall that α < 1

2 ). This shows
that I+

1 (δ;xn;F2) is not a.n. and completes the proof.

10.3 Proof of Proposition 1.16

We fix α ∈ (0, 1
3 ) and choose for simplicity A(x) := xα. We are going to build a

probability F on R which satisfies (1.2) with p = q = 1, such that Ĩ1(δ;x) is a.n. but
Ĩ2(δ, η;x) is not a.n., for any η ∈ (0, 1). It suffices to show that I1(δ;x) is a.n. but I2(δ, η;x)

is not a.n., thanks to (A.4) and (A.5).
In analogy with Remark 10.1, we fix a probability F1, this time on the whole real

line R, which satisfies (1.2) with p = q = 3 and such that F1((x − h, x]) = O( 1
|x|A(x) ) as

x → ±∞. Then we define two probabilities F2, F3 on (0,∞) which both satisfy (10.2),
and we set

F :=
1

3
(F1 + F2 + F ∗3 ) , (10.10)

where F ∗3 (A) := F3(−A) is the reflection of F3 (so that it is a probability on (−∞, 0)).
Clearly, (1.2) holds for F with p = q = 1. It remains to build F2 and F3.

We are going to define F2 so that

I1(δ;x;F2) is a.n. , (10.11)

(where I1(δ;x;F2) denotes the quantity in (1.18) with F replaced by F2). This implies
that I1(δ;x) = I1(δ;x;F ) is a.n., because I1(δ;x;F1) is clearly a.n., while F ∗3 is supported
on (−∞, 0) and gives no contribution.

We fix a parameter p ∈ (1, 1
3α ). We set En,k := [2n + 2k, 2n + 2k + 2k

2kp ) for n ∈ N with
n ≥ 2 and for 1 ≤ k ≤ n− 1. Note that En,k ⊆ [2n + 2k, 2n + 2k+1) are disjoint intervals,
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and moreover
⋃n−1
k=1 En,k ⊆ [2n, 2n+1). We define F2 with a density, which is constant in

each interval En,k (for n ≥ 2 and 1 ≤ k ≤ n− 1) and zero otherwise, given by

F2(2n + 2k + dw) :=
c

`(n) (2n)1−α
1

(2k)2α
1

[0, 2k

2kp )
(w) dw , (10.12)

where c ∈ (0,∞) is a suitable normalizing constant and we set for short

`(n) := log(1 + n) . (10.13)

Note that

F2(En,k) =
c

`(n) (2n)1−α
1

(2k)2α

2k

2kp
=

c

`(n) (2n)1−α
(2k)1−2α

2kp
, (10.14)

hence

F2([2n, 2n+1)) =

n−1∑
k=1

F2(En,k) ≤ c

`(n) (2n)1−α

n−1∑
k=1

(2k)1−2α .
c (2n)1−2α

`(n) (2n)1−α

=
c

`(n) (2n)α
=

n→∞
o

(
1

(2n)α

)
.

Note that F2([2n, 2n+1)) decreases exponentially fast in n, hence for x ∈ [2n, 2n+1) we
have F2(x) ≤ F2(2n) . F2([2n, 2n+1)) = o(1/A(x)), which shows that (10.2) is fulfilled. It
remains to check (10.11). We do this by showing that, for any δ < 1

4 ,

I1(δ;x;F2) =
x→∞

o
(
b1(x)

)
= o

(
1

x1−α

)
. (10.15)

This is elementary but slightly technical, and it is shown below.
Finally, we define F3, We introduce the disjoint intervals Gk := [2k, 2k + 2k

kp ) for k ≥ 2.
We let F3 have a density, constant on every Gk (for k ≥ 2) and zero otherwise, given by

F3(2k + dz) :=
c′

`(k)

kp

(2k)1+α
1

[0, 2
k

kp )
(z) dz , (10.16)

where c′ ∈ (0,∞) is a normalizing constant. Then

F3([2k, 2k+1)) = F3(Gk) =
c′

`(k)

kp

(2k)1+α

2k

kp
=

c′

`(k)

1

(2k)α
= o

(
1

(2k)α

)
.

Then for x ∈ [2k, 2k+1) we have F3(x) ≤ F3(2k) . F3([2k, 2k+1)) = o(1/A(x)) as x → ∞,
hence (10.2) holds. Given η ∈ (0, 1), fix k0 = k0(η) large enough so that 1

2kp < η for
k ≥ k0. Then, recalling (1.19) and (10.10), we can write

I2(δ,η; 2n;F ) ≥
∫

0≤y≤δ2n
F (2n + dy)

∫
|z|≤ηy

F (−y + dz) b3(z)

≥ 1

9

blog2(δ2n)c∑
k=k0

∫
0≤w≤ 2k

2kp

F2(2n + 2k + dw)

∫
0≤z≤ 2k

2kp

F3

(
2k + w + dz

)
(1 ∨ z)3α−1 .

Note that (1 ∨ z)3α−1 ≥ ( 2k

2kp )3α−1 (we recall that α < 1
3 ) and by (10.16)

∀0 ≤ w ≤ 2k

2kp : F3

(
2k + w + [0, 2k

2kp )
)

=
c′

`(k)

kp

(2k)1+α

2k

2kp
&

1

`(k)

1

(2k)α
.
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Since log2(δ2n) = n+ log2 δ, recalling (10.14), we can write for large n

I2(δ, η; 2n;F ) &
n/2∑
k=k0

F2(En,k)
1

`(k)

1

(2k)α

(
2k

2kp

)3α−1

&
1

`(n) (2n)1−α

n/2∑
k=k0

1

`(k) k3αp
.

Since we have fixed p < 1
3α , applying (2.3) and recalling (10.13) we finally obtain

I2(δ, η; 2n;F ) &
n1−3αp

`(n)2

1

(2n)1−α �
1

(2n)1−α = b1(2n) .

This shows that I2(δ, η;x;F ) is not a.n..

Proof of (10.15). We recall that F2 is supported on the intervals En,k := [2n + 2k, 2n +

2k + 2k

2kp ) with n ≥ 2 and 1 ≤ k ≤ n− 1. Let us set En :=
⋃n−1
k=1 En,k ⊆ [2n, 2n+1).

For large x ≥ 0, we define n ≥ 2 such that 2n ≤ x < 2n+1. For δ ∈ (0, 1
4 ) and large x,

the interval (x− δx, x+ δx) can intersect at most En and En+1 (because the rightmost

point in En−1 is 2n−1 + 2n−2 + 2n−2

2(n−2)p ∼
3
4 2n as n→∞). Consequently we can write

I1(δ;x;F2) =

∫
|y|≤δx

F2(x+ dy) b2(y) ≤
∫
z∈En∪En+1

F2(dz) b2(z − x) . (10.17)

For z ∈ En+1 we have z ∈ En+1,k for some 1 ≤ k ≤ n, in which case z ≥ 2n+1 + 2k.
Since x < 2n+1, we have |z − x| = z − x > 2k which yields b2(z − x) ≤ b2(2k) = (2k)2α−1.
Recalling (10.14), we see that the contribution of En+1 to (10.17) is at most

n∑
k=1

c

`(n) (2n+1)1−α
(2k)1−2α

2kp
(2k)2α−1 .

1

`(n) (2n+1)1−α

∞∑
k=1

1

kp
= o

(
1

(2n+1)1−α

)
,

since we chose p > 1. This is o
(

1
x1−α

)
, so it is negligible for (10.15).

Then we look at the contribution of En to (10.17). Assume first that 2n+2 ≤ x < 2n+1.
Then we can write 2n + 2k̃ ≤ x < 2n + 2k̃+1 for a unique k̃ ∈ {1, . . . , n − 1}. For z ∈ En
we have z ∈ En,k for some 1 ≤ k ≤ n− 1. We distinguish three cases.

• If k ≤ k̃ − 1 (in particular, k̃ ≥ 2), then

|z − x| = x− z & (2n + 2k̃)− (2n + 2k̃−1 + 2k̃−1

2(k̃−1)p
) & 2k̃ ,

hence b2(z − x) . b2(2k̃) = (2k̃)2α−1. By (10.14), the contribution to (10.17) is at
most

k̃−1∑
k=1

F2(En,k) (2k̃)2α−1 ≤ c

`(n) (2n)1−α (2k̃)2α−1
k̃−1∑
k=1

(2k)1−2α .
c

`(n) (2n)1−α ,

which is o
(

1
x1−α

)
, so it is negligible for (10.15).

• If k ≥ k̃ + 2, then |z − x| = z − x & (2n + 2k)− (2n + 2k̃+1) ≥ 2k − 2k−1 & 2k, hence
b2(z − x) . b2(2k) = (2k)2α−1 and we get

n−1∑
k=k̃+1

F2(En,k) (2k)2α−1 ≤ c

`(n) (2n)1−α

∞∑
k=k̃+1

1

2kp
.

c

`(n) (2n)1−α ,

because p > 1, hence this contribution is also negligible for (10.15).
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• If k ∈ {k̃, k̃ + 1}, then |z − x| ≤ 2k̃+2 − 2k̃ = 3 · 2k̃. By (10.12), since the density of
F2 is larger in En,k̃ than in En,k̃+1, we see the contribution to (10.17) is at most

c

`(n) (2n)1−α
1

(2k̃)2α

∫
|w|≤3·2k̃

(|w| ∨ 1)2α−1 dw .
1

`(n) (2n)1−α ,

which is negligible for (10.15).

Finally, the regime 2n ≤ x < 2n + 2 is treated similarly. For z ∈ En,k, we distinguish
the cases k ≥ 2 and k = 1. If we set k̃ := 0, the estimates in the two cases k ≥ k̃ + 2 and
k ∈ {k̃, k̃ + 1} treated above apply with no change.

A Some technical results

Let us fix a probability F on R which satisfies (1.12) with α ∈ (0, 1
2 ] and with p, q > 0.

The next Lemmas show some relations between the quantities Ik and Ĩk defined in (1.18),
(1.19) and in (1.23), (1.24), respectively. We recall that κα ∈ N is defined in (1.21).

Lemma A.1. Fix η ∈ (0, 1). If Ĩk(δ, η;x) is a.n. for k = κα, then it is a.n. for all k ∈ N.

Lemma A.2. Assume 1
α 6∈ N and fix η ∈ (0, 1). If Ik(δ, η;x) is a.n. for k = κα, then it is

a.n. for all k ∈ N.

Lemma A.3. With no restriction on α, if Ĩκα(δ, η;x) is a.n., then also Iκα(δ, η;x) is a.n..
The reverse implication holds if 1

α 6∈ N (but not necessarily if 1
α ∈ N).

Proof of Lemma A.2. Fix k ∈ N with k ≥ 2 and η ∈ (0, 1). We are going to prove the
following relations:

if k < 1
α − 1 : Ik−1(δ, η;x) .η Ik(δ, η;x) , (A.1)

if k > 1
α − 1 : Ik(δ, η;x) .η Ik−1(δ, η;x) . (A.2)

Since we assume that 1
α 6∈ N, we have 1

α − 2 < κα <
1
α − 1. If Iκα is a.n., it follows that

also Iκα−1, Iκα−2, . . . are a.n., by (A.1), while Iκα+1, Iκα+2, . . . are a.n., by (A.2).
It remains to prove (A.1)-(A.2). For k < 1

α − 1, the function bk+1(y), see (1.10), is
regularly varying with index (k + 1)α − 1 < 0, hence it is asymptotically decreasing:
bounding bk+1(yk) & bk+1(ηyk−1) for |yk| ≤ η|yk−1| gives∫

|yk|≤η|yk−1|
F (−yk−1 + dyk) bk+1(yk) & F (−(1− η)|yk−1|) bk+1(ηyk−1) &η bk(yk−1) ,

which plugged into (1.19) shows that Ik(δ, η;x) &η Ik−1(δ, η;x), proving (A.1).
To prove (A.2), note that for α > 1

k+1 the function bk+1(y) is asymptotically increasing:
by a similar argument, we get Ik(δ, η;x) .η Ik−1(δ, η;x), that is (A.2).

Proof of Lemma A.3. We are going to prove the following inequalities between I1 and Ĩ1:

I1( δ2 ;x) . Ĩ1(δ;x) , (A.3)

if α < 1
2 : Ĩ1(δ;x) . I1(δ;x) . (A.4)

For k ∈ N with k ≥ 2, we have the following relations between Ĩk and Ik, Ik−1:

max
{
Ik−1(δ, η;x), Ik(δ, η;x)

}
.η Ĩk(δ, η;x) , (A.5)

if k 6= 1
α − 1 : Ĩk(δ, η;x) .η max

{
Ik−1(δ, η;x), Ik(δ, η;x)

}
. (A.6)

Given these relations, if Ĩκα is a.n., then also Iκα is a.n.: it suffices to apply (A.3) and
(A.5) with k = κα. When 1

α 6∈ N, the reverse implication also holds, because we can apply
(A.4) if κα = 1 (note that α < 1

2 , since 1
α 6∈ N) or (A.6) if κα > 1.
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It remains to prove (A.3)-(A.6). By (5.8), for |yk| ≤ η|yk−1| with η ∈ (0, 1) we can write

b̃k+1(yk−1, yk) ≥
A(|yk|/η)∑
m=A(|yk|)

mk

am
&

A(|yk|)k

(|yk|/η) ∨ 1

(
A(|yk|/η)−A(|yk|)

)
&η bk+1(yk) , (A.7)

The same arguments show that, for |y| ≤ δ
2x, we have b̃2(δx, y) ≥ b̃2(2y, y) & b2(y).

Plugging these bounds into (1.23) and (1.24) proves (A.3) and also Ĩk(δ, η;x) &η Ik(δ, η;x),
which is half of (A.5). For the other half, note that for |yk| ≤ η|yk−1|, always by (5.8),

b̃k+1(yk−1, yk) &
A(|yk−1|)∑

m=A(η|yk−1|)

mk

am
&
A(η|yk−1|)k

|yk−1| ∨ 1

(
A(|yk−1|)−A(η|yk−1|)

)
&η bk+1(yk−1) ,

hence∫
|yk|≤η|yk−1|

F (−yk−1+dyk) b̃k+1(yk−1, yk) &η bk+1(yk−1)F (−(1−η)|yk−1|) &η bk(yk−1) . (A.8)

From (1.23) we get Ĩk(δ, η;x) &η Ik−1(δ, η;x), which completes the proof of (A.5).
Next we prove (A.4) and (A.6). We distinguish two cases.

• If k < 1
α − 1, the sequence mk/am is regularly varying with index k − 1

α < −1. By
(2.4), we can write

b̃k+1(yk−1, yk) ≤
∞∑

m=A(|yk|)

mk

am
.
A(|yk|)k+1

|yk| ∨ 1
= bk+1(yk) ,

which yields Ĩk(δ, η;x) .η Ik(δ, η;x). For k = 1, we have proved (A.4), since k < 1
α−1

means precisely α < 1
2 , while for k ≥ 2 we have proved half of (A.6).

• If k > 1
α − 1, with k ≥ 2, the sequence mk/am is regularly varying with index

k − 1
α > −1 and by (2.3) we get

b̃k+1(yk−1, yk) ≤
A(|yk−1|)∑
m=1

mk

am
.
A(|yk−1|)k+1

|yk−1| ∨ 1
= bk+1(yk−1) ,

and in analogy with (A.8) we get Ĩk(δ, η;x) .η Ik−1(δ, η;x). Relation (A.6) is proved.

The proof is completed.

Proof of Lemma A.1. Fix k ∈ N with k ≥ 2 and η ∈ (0, 1). In analogy with (A.1)-(A.2), we
are going to prove that

if k ≤ 1
α − 1 : Ĩk−1(δ, η;x) .η Ĩk(δ, η;x) , (A.9)

if k > 1
α − 1 : Ĩk( δ2 , η;x) .η Ĩk−1(δ, η;x) , (A.10)

where k = 1
α − 1 is included in (A.9) (unlike (A.1)). Since we assume that Ĩκα is a.n., and

since κα ≤ 1
α − 1, we can apply (A.9) iteratively to see that Ĩκα−1, Ĩκα−2, . . . are a.n..

Similarly, since κα + 1 > 1
α − 1, relation (A.10) shows that Ĩκα+1, Ĩκα+2, . . . are a.n..

It remains to prove (A.9)-(A.10). By (A.1) and (A.2) we have

max
{
Ik−1(δ, η;x), Ik(δ, η;x)

}
≈η

{
Ik(δ, η;x) if k < 1

α − 1

Ik−1(δ, η;x) if k > 1
α − 1

. (A.11)
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Let us fix k ≤ 1
α − 1 and assume first that k ≥ 3. By (A.6) and (A.11) (with k − 1 in place

of k; note that k − 1 < 1
α − 1), and then by (A.5), we have

Ĩk−1 .η max{Ik−2, Ik−1} ≈η Ik−1 ≤ max{Ik−1, Ik} .η Ĩk .

If k = 2, the assumption k ≤ 1
α − 1 means α ≤ 1

3 , hence we can apply (A.4) followed by

(A.5) to get Ĩ1 . I1 ≤ max{I1, I2} .η Ĩ2. This completes the proof of (A.9).
Fix now k > 1

α − 1 (note that k ≥ 2, since α ≤ 1
2 ). By (A.6) and (A.11), we can write

Ĩk( δ2 ) .η max{Ik−1( δ2 ), Ik( δ2 )} .η Ik−1( δ2 ) .

If k ≥ 3, we apply (A.5) with k − 1 in place of k, to get

Ik−1( δ2 ) ≤ max{Ik−2( δ2 ), Ik−1( δ2 )} .η Ĩk−1( δ2 ) ≤ Ĩk−1(δ) .

This yields Ĩk( δ2 ) .η Ĩk−1(δ), which is precisely (A.10). If k = 2, we apply (A.3) to see

that Ik−1( δ2 ) = I1( δ2 ) ≤ Ĩ1(δ). This completes the proof of (A.10).
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