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Inverting the coupling of the signed Gaussian free
field with a loop-soup*
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Abstract

Lupu introduced a coupling between a random walk loop-soup and a Gaussian free
field, where the sign of the field is constant on each cluster of loops. This coupling
is a signed version of isomorphism theorems relating the square of the GFF to the
occupation field of Markovian trajectories. His construction starts with a loop-soup,
and by adding additional randomness samples a GFF out of it. In this article we
provide the inverse construction: starting from a signed free field and using a self-
interacting random walk related to this field, we construct a random walk loop-soup.
Our construction relies on the previous work by Sabot and Tarrès, which inverts the
coupling from the square of the GFF rather than the signed GFF itself.
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1 Introduction

The so called “isomorphism theorems” relate the square of a Gaussian free field
(GFF) on an electrical network to occupation times of symmetric Markov jump processes
[19, 24]. These date back to the work of Dynkin (Dynkin’s isomorphism) [6, 5, 7], and
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previously to Symanzik’s identities in Euclidean Quantum Field Theory [22] and Brydges-
Fröhlich-Spencer random walk representation of spin systems [2]. Here we focus on
the generalized second Ray-Knight theorem [9] and on Le Jan’s isomorphism [13]. The
generalized second Ray-Knight theorem couples the squares of two GFFs with different,
ordered, boundary conditions by adding the occupation times of independent Markovian
excursions from boundary to boundary to the square with lower boundary conditions in
order to obtain the square with higher boundary conditions. Le Jan’s isomorphism states
that the whole square of a GFF can be obtained as the occupation field of a Poisson Point
Process of Markovian loops, known as loop-soup. Le Jan’s isomorphism in particular
implies the generalized second Ray-Knight theorem.

In [15] Lupu obtained “signed” or “polarized” versions of isomorphism theorems,
where one relates to the Markovian trajectories not only the square, but also the sign
of the GFF. In particular the sign of the GFF is constant on each Markovian trajectory.
The construction goes through the introduction of the metric graph GFF. One first
replaces each discrete edge of the electrical network by a continuous line, so as to
obtain a continuous topological object, a one-dimensional simplicial complex known as
metric graph or cable system, and then one interpolates the values of the GFF on the
vertices by independent Brownian bridges inside the edges. This way one obtains a
continuous Gaussian field. Its square can still be obtained as in Le Jan’s isomorphism
as an occupation field of a loop-soup of loops of the natural continuous diffusion on the
metric graph. However, in this construction the sign components of the GFF are exactly
the clusters of metric graph loops and the sign is chosen independently uniformly on
each of them.

Lupu’s isomorphism has also a purely discrete description. One enlarges the clusters
of the discrete loop-soup by opening the edges not visited by loops with certain probabil-
ity, and then on each enlarged cluster one chooses a sign independently uniformly.

The above couplings have also a counterpart in the Ising “world”. Indeed, conditional
on the absolute value of the GFF, its sign is distributed like Ising spins with coupling
constants given by the absolute value. Then, the enlarged clusters in Lupu’s isomorphism
(discrete description), conditional on the absolute value of the GFF on the vertices, are
exactly Fortuin-Kasteleyn random clusters [11], with cluster weight q = 2 and edge
weights depending on the absolute value [18]. FK random clusters with q = 2 are
coupled to the Ising spins through the Edwards-Sokal coupling [8], where one simply
chooses the spin independently uniformly on each clusters. The discrete loop-soup in
Le Jan’s isomorphism is related to the random current expansion of the Ising model
[18, 4, 12]. Finally [18] connected the dots and showed that there is a natural coupling
between Ising random currents and FK-Ising random clusters, which is actually Lupu’s
isomorphism conditioned on the absolute value of the GFF. In Figure 1 we summarize all
above models and the couplings and relations between them.

In this paper we deal with the inversion of Lupu’s isomorphism, that is to say with
retrieving the conditional law of the discrete loop-soup given a discrete Gaussian free
field (both its absolute value and its sign). This extends the work of Sabot and Tarrès
who in [21] gave the inversion of isomorphisms only in the case when the absolute value
of the GFF was given, or equivalently its square, but not its sign. To fix the ideas, let us
introduce some notations.

Let G = (V,E) be a connected undirected graph, with V at most countable and each
vertex x ∈ V of finite degree. We do not allow self-loops. Also in general we do not
consider multiple edges, unless specified otherwise. Given e ∈ E an edge, we will denote
e+ and e− its end-vertices, even though e is non-oriented and one can interchange e+

and e−. Each edge e ∈ E is endowed with a conductance We = We−,e+ = We+,e− > 0.
There may be a killing measure κ = (κx)x∈V on vertices.
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We consider (Xt)t≥0 the Markov jump processes on V which being in x ∈ V , jumps
along an adjacent edge e with rate We. Moreover if κx 6= 0, the process is killed at x with
rate κx (the process is not defined after that time). ζ will denote the time up to which Xt

is defined. If ζ < +∞, then either the process has been killed by the killing measure κ
(and κ 6≡ 0) or it has gone off to infinity in finite time (and V infinite). We will assume
that the process X is transient, which means, if V is finite, that κ 6≡ 0. Px will denote
the law of X started from x. Let (G(x, y))x,y∈V be the Green function of (Xt)0≤t<ζ :

G(x, y) = G(y, x) = Ex

[∫ ζ

0

1{Xt=y}dt

]
.

Let E be the Dirichlet form defined on functions f on V with finite support:

E(f, f) =
∑
x∈V

κxf(x)2 +
∑
e∈E

We(f(e+)− f(e−))2. (1.1)

Pϕ will be the law of (ϕx)x∈V the centred Gaussian free field (GFF) on V with covariance
Eϕ[ϕxϕy] = G(x, y). In case V is finite, the density of Pϕ is

1

(2π)
|V |
2

√
det G

exp

(
−1

2
E(f, f)

) ∏
x∈V

dfx.

ϕ under Pϕ satisfies the spatial Markov property. If U is a subset of V and

∂U = {x ∈ U |∃y ∈ V \ U, x and y joined by an edge e ∈ E},

then (ϕx)x∈V \U conditional on (ϕy)y∈U has same law as conditional on (ϕy)y∈∂U .

Given x0 ∈ V and a ∈ R, P {x0},a
ϕ will denote the law of the GFF ϕ conditioned to equal

a in x0. Note that if the killing measure κ is supported in x0, the law P
{x0},a
ϕ does not

depend on κ and in this case one can as well take κ = 0.
We will denote by (`x(t))x∈V,t∈[0,ζ] the family of local times of X:

`x(t) =

∫ t

0

1{Xs=x}ds.

For all x ∈ V , u > 0, let
τxu = inf{t ≥ 0; `x(t) > u}.

Recall the generalized second Ray-Knight theorem on discrete graphs by Eisenbaum,
Kaspi, Marcus, Rosen and Shi [9] (see also [19, 24]).

Theorem 1 (Generalized second Ray-Knight theorem). For any u > 0 and x0 ∈ V ,(
`x(τx0

u ) +
1

2
ϕ2
x

)
x∈V

under Px0
(·|τx0

u < ζ)⊗ P {x0},0
ϕ

has the same law as (
1

2
ϕ2
x

)
x∈V

under P {x0},
√

2u
ϕ .

Sabot and Tarrès showed in [21] that the so-called “magnetized” reverse Vertex-
Reinforced Jump Process (VRJP) provides an inversion of the generalized second Ray-
Knight theorem, in the sense that it enables to retrieve the law of (`x(τx0

u ), ϕ2
x)x∈V

conditional on
(
`x(τx0

u ) + 1
2ϕ

2
x

)
x∈V . The jump rates of that latter process are a product

of a first factor accountable for a self-repulsion (reverse VRJP) and a second one which
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can be interpreted as a ratio of two-point functions of the Ising model associated to
time-evolving coupling constants (magnetization). The process introduced in [21] also
inverts the Le Jan’s isomorphism [13] given the square of a GFF.

However in [21] the link with the Ising model is only implicit, and a natural question
is whether Ray-Knight inversion can be described in a simpler form if we enlarge the
state space of the dynamics, and in particular include the “hidden” spin variables.

The answer is positive, and goes through a “signed” extension of the Ray-Knight
isomorphism following Lupu’s approach [15], which couples the sign of the GFF to the
Markovian path. The Ray-Knight inversion will turn out to take a rather simple form
in Theorem 9 of the present paper, where it will be defined not only through the spin
variables but also random currents associated to the field though an extra Poisson Point
Process. Further, in Theorem 11 we will describe how the process we construct inverts
Lupu’s “signed” isomorphism between a loop-soup and a discrete GFF.

The paper is organized as follows.

In Section 2 we recall some background on loop-soup isomorphisms and on related
couplings and state and prove a signed version of the generalized second Ray-Knight
theorem. We begin in Section 2.1 by a statement of Le Jan’s isomorphism which
couples the square of the Gaussian Free Field to the loop-soups, and recall how the
generalized second Ray-Knight theorem can be seen as its corollary: for more details see
[14]. In Section 2.2 we state Lupu’s isomorphism which extends Le Jan’s isomorphism
and couples the sign of the GFF to the loop-soups, using a metric graph extension
of both the GFF and the Markov process. Lupu’s isomorphism yields an interesting
realization of the Edwards-Sokal FK-Ising - spin Ising coupling, and provides as well a
“Current+Bernoulli=FK” coupling lemma [18], which occur in the relationship between
the discrete and metric graph versions. We briefly recall these couplings in Sections
2.3 and 2.4, as they are implicit in this paper. In Section 2.5 we state and prove the
generalized second Ray-Knight “version” of Lupu’s isomorphism, which we aim to invert.
In Section 2.6 we present a diagram which summarizes the models and the couplings.

Section 3 is devoted to the statements of inversions of these isomorphisms. We state
in Section 3.1 a signed version of the inversion of the generalized second Ray-Knight
theorem through an extra Poisson Point Process, namely Theorem 9. In Section 3.2
we provide a discrete-time description of the process, whereas in Section 3.3 we yield
an alternative version of that process through jump rates, which can be seen as an
annealed version of the first one. The annealed process of Section 3.3 is a reverse
VRJP (self-repelling) which evolves on a subgraph of G which itself shrinks over time.
These subgraphs can be interpreted as FK-Ising random clusters associated to time-
evolving, decreasing, edge weights. In Section 3.4 we deduce a signed inversion of
Lupu’s isomorphism for loop-soups.

Finally Section 4 is devoted to the proof of Theorem 9: Section 4.1 deals with the
case of a finite graph without killing measure, and Section 4.2 deduces the proof in the
general case.

2 Le Jan’s and Lupu’s isomorphisms

2.1 Loop-soups and Le Jan’s isomorphism

The loop measure associated to the Markov jump process (Xt)0≤t<ζ is defined as
follows. Let Ptx,y be the bridge probability measure from x to y in time t (conditional on
t < ζ). Let pt(x, y) be the transition probabilities of (Xt)0≤t<ζ .

Let µloop be the measure on time-parametrized nearest-neighbor based loops (i.e.
loops with a starting site)

EJP 24 (2019), paper 70.
Page 4/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP326
http://www.imstat.org/ejp/


Inverting the coupling of the signed Gaussian free field with a loop-soup

µloop =
∑
x∈V

∫
t>0

Ptx,xpt(x, x)
dt

t
.

The loops will be considered here up to a rotation of parametrisation (with the corre-
sponding pushforward measure induced by µloop), that is to say a loop (γ(t))0≤t≤tγ will
be the same as (γ(T + t))0≤t≤tγ−T ◦ (γ(T + t− tγ))tγ−T≤t≤tγ for all T ∈ (0, tγ), where ◦
denotes the concatenation of paths. A loop-soup of intensity α > 0, denoted Lα, is a
Poisson random measure of intensity αµloop. We see it as a random collection of loops in
G. Observe that a.s. above each vertex x ∈ V , Lα contains infinitely many trivial “loops”
reduced to the vertex x. There are also with positive probability non-trivial loop that
visit several vertices.

Let L.(Lα) be the occupation field of Lα on V i.e., for all x ∈ V ,

Lx(Lα) =
∑

(γ(t))0≤t≤tγ∈Lα

∫ tγ

0

1{γ(t)=x}dt.

In [13] Le Jan shows that for transient Markov jump processes, Lx(Lα) < +∞ for all
x ∈ V a.s. For α = 1/2 he identifies the law of L.(Lα):

Theorem 2 (Le Jan’s isomorphism). L.(L1/2) =
(
Lx(L1/2)

)
x∈V has the same law as

1

2
ϕ2 =

(
1

2
ϕ2
x

)
x∈V

under Pϕ.

Let us briefly recall how Le Jan’s isomorphism enables one to retrieve the generalized
second Ray-Knight theorem stated in Section 1: for more details, see for instance [14].
We assume that κ is supported by x0: the general case can be dealt with by an argument
similar to the proof of Proposition 4.6. Let D = V \ {x0}, and note that the isomorphism
in particular implies that L.(L1/2) conditional on Lx0(L1/2) = u has the same law as ϕ2/2

conditional on ϕ2
x0
/2 = u.

On the one hand, given the classical energy decomposition, we have ϕ = ϕD +

ϕx0
, with ϕD the GFF associated to the restriction of E to D, where ϕD and ϕx0

are
independent. Now ϕ2/2 conditional on ϕ2

x0
/2 = u has the law of (ϕD + η

√
2u)2/2, where

η is the sign of ϕx0
, which is independent of ϕD. But ϕD is symmetric, so that the latter

also has the law of (ϕD +
√

2u)2/2.
On the other hand, the loop-soup L1/2 can be decomposed into the two independent

loop-soups LD1/2 contained in D and L(x0)
1/2 hitting x0. Now L.(LD1/2) has the law of (ϕD)2/2

and L.(L(x0)
1/2 ) conditional on Lx0

(L(x0)
1/2 ) = u has the law of the occupation field of the

Markov chain `(τx0
u ) under Px0(·|τx0

u < ζ), which enables us to conclude.

2.2 Lupu’s isomorphism

As in [15], we consider the metric graph G̃ (also known as cable system) associated
to G. As a topological space, it is obtained by replacing each discrete edge e by a
continuous compact line interval Ie. If two edges e and e′ share a common extremity, the
corresponding endpoints of Ie and Ie′ are identified. So G̃ is a one-dimensional simplicial
complex, with 0-cells corresponding to vertices in V , and 1-cells to edges in E. V is
naturally identified to a subset of G̃. We further endow G̃ with a metric by setting the
length of each Ie to be equal to 1

2W
−1
e . We also consider the Radon measure m̃ on G̃,

such that its restriction to each Ie is a one-dimensional Lebesgue measure of total mass
1
2W

−1
e (i.e. the length measure).

One can define a standard Brownian motion BG̃t on G̃ as follows. Inside each Ie, B
G̃
t

behaves as a standard one-dimensional Brownian motion. Upon reaching a vertex, BG̃t
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performs immediately independent Brownian excursions inside each adjacent edge, with
equal rate for each direction, and that until eventually traversing one of the edge and
reaching a neighbor vertex on the other side. See Section 2 of [15] for more details.

Alternatively, BG̃t can be defined as the symmetric Markov process associated to the
Dirichlet form

Ẽ(f, f) =
1

2

∫
x∈G̃

f ′(x)2dm̃(x),

where f : G̃ → R is continuous and C1 inside each of the Ie. For more on Dirichlet forms
and associated Markov processes, see [10]. BG̃t admits a family of Brownian local times
˜̀
x(t), continuous in (x, t), such that for every bounded measurable function f : G̃ → R

and every t ≥ 0, ∫ t

0

f(BG̃s )ds =

∫
x∈G̃

f(x)˜̀
x(t)dm̃(x).

Let be ζ̃ the first time when either BG̃t explodes to infinity (if possible), or∑
x∈V

κx ˜̀
x(t)

hits an independent exponential r.v. of mean 1 (if κ 6≡ 0). If neither of these happens,
ζ̃ = +∞.

One can deterministically recover the Markov jump process (Xt)0≤t<ζ out of (BG̃t )0≤t<ζ̃
Let be

AV (t) =
∑
x∈V

˜̀
x(t), A−1

V (t) = inf{s ≥ 0|AV (s) > t}.

Then, if BG̃0 ∈ V , BG̃
A−1
V (t)

is a Markov jump process Xt on V with jump rates (We)e∈E .

Moreover, AV (ζ̃) = ζ and `x(t) = ˜̀
x(A−1

V (t)) for x ∈ V .
In [15] Lupu introduces a measure µ̃loop on time-parametrized continuous loops on G̃,

associated to the Brownian motion (BG̃t )0≤t<ζ̃ . L̃α will denote the Poisson Point Process of
loops of intensity αµ̃loop. The discrete-space loops Lα can be deterministically obtained
from L̃α by taking the print of the latter on V , using the time-change A−1

V . Note that L̃α
contains loops that do not visit V and are entirely contained in one of the Ie. These do
not contribute to Lα. L̃α has an occupation field (Lx(L̃α))x∈G̃ , which is a sum over loops

in L̃α of Brownian local times in x of the loops. Moreover,

Lx(L̃α) = Lx(Lα), ∀x ∈ V.

Similarly, the GFF ϕ on G with law Pϕ can be extended to a GFF ϕ̃ on G̃ as follows.
Given e ∈ E, one considers inside Ie a conditionally independent Brownian bridge,
actually a bridge of a

√
2× standard Brownian motion, of length 1

2W
−1
e , with end-values

ϕe− and ϕe+ . This provides a continuous Gaussian field on the metric graph which still
satisfies the spatial Markov property.

Lupu introduced in [15] an isomorphism linking the GFF ϕ̃ and the loop-soup L̃1/2

on the metric graph G̃. This one uses the clusters of L̃1/2. First of all, cluster is an

equivalence class of loops in L̃1/2, where two loops γ̃ and γ̃′ belong to the same cluster

if there is a finite chain γ̃0, . . . , γ̃k of loops in L̃1/2 such that γ̃0 = γ, γ̃k = γ′, and for
i ∈ {1, . . . , k} the loops γ̃i−1 and γ̃i (their ranges) have a non-empty intersection. By
extension, a cluster will also be a (connected) subset of G̃ obtained as a union over a
cluster of loops of ranges of the loops. Note that if L1/2 is obtained as a print of L̃1/2

on V , each cluster of L1/2 is contained in a cluster of L̃1/2, but in general a cluster L̃1/2

may correspond to several different clusters of L1/2 merged together. This is because
there are more connections at the level of the metric graph.
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Theorem 3 (Lupu’s isomorphism). There is a coupling between the Poisson ensemble
of loops L̃1/2 and (ϕ̃y)y∈G̃ defined above, such that the two following constraints hold:

• For all y ∈ G̃, Ly(L̃1/2) = 1
2 ϕ̃

2
y;

• the zero set of ϕ̃, {x ∈ G̃|ϕ̃x = 0}, is the set of points in G̃ not visited by any loop of
L̃1/2;

• the clusters of loops of L̃1/2 are exactly the sign clusters of (ϕ̃y)y∈G̃ .

Conditional on (|ϕ̃y|)y∈G̃ , the sign of ϕ̃ on each of its connected components is distributed
independently and uniformly in {−1,+1}.

Lupu’s isomorphism and the idea of using metric graphs were applied in [16] to
show that on the discrete half-plane Z×N, the scaling limits of outermost boundaries of
clusters of loops in loop-soups are the Conformal Loop Ensembles CLE.

Let O(ϕ̃) (resp. O(L̃1/2)) be the set of edges e ∈ E such that ϕ̃ (resp. L̃1/2) does not
touch 0 on Ie, in other words such that all the edge-interval Ie remains in the same sign
cluster of ϕ̃ (resp. loop cluster of L̃1/2). O(ϕ̃) and O(L̃1/2) have same law. Let O(L1/2)

be the set of edges e ∈ E that are crossed (i.e. endpoints visited consecutively) by loops
in L1/2 (obtained as the print on V of L̃1/2).

In order to translate Lupu’s isomorphism back onto the initial graph G, one needs to
describe on one hand the distribution of O(ϕ̃) conditional on the values of (ϕx)x∈V , and
on the other hand the distribution of O(L̃1/2) conditional on L1/2 and the cluster of loops
O(L1/2) on the discrete graph G. These two distributions are described respectively in
Sections 2.3 and 2.4, and provide realisations of the Edwards-Sokal FK-Ising - spin Ising
coupling and of the “Current+Bernoulli=FK” coupling lemma [18].

2.3 The FK-Ising distribution of O(ϕ̃) conditional on |ϕ|
Lemma 2.1. Conditional on (ϕx)x∈V , (1{e∈O(ϕ̃)})e∈E is a family of independent random
variables and

P (e 6∈ O(ϕ̃)|ϕ) =

{
1 if ϕe−ϕe+ < 0,

exp
(
−2Weϕe−ϕe+

)
if ϕe−ϕe+ > 0.

Proof. Conditional on (ϕx)x∈V , the metric graph GFF (ϕ̃y)y∈G̃ is constructed by adding
independent Brownian bridges on each edge, so that (1{e∈O(ϕ̃)})e∈E are conditionally
independent random variables, and it follows from the reflection principle for one-
dimensional Brownian motion that, if ϕe−ϕe+ > 0, then

P
(
e 6∈ O(ϕ̃)|ϕ,ϕe−ϕe+ > 0

)
=

exp
(
− 1

2We(ϕe− + ϕe+)2
)

exp
(
− 1

2We(ϕe− − ϕe+)2
) = exp

(
−2Weϕe−ϕe+

)
.

Let us now recall how the conditional probability in Lemma 2.1 yields a realization of
the FK-Ising coupling.

Assume V is finite. Let (Je)e∈E be a family of positive weights. A (spin) Ising
model on V with interaction constants (Je)e∈E is a probability on configuration of spins
(σx)x∈V ∈ {+1,−1}V such that

P
Isg
J ((σx)x∈V ) =

1

ZIsg
J

exp

(∑
e∈E

Jeσe−σe+

)
.

An FK-Ising random cluster model [11] with edge weights (1 − e−2Je)e∈E is a random
configuration of open (value 1) and closed edges (value 0) such that

P
FK−Isg
J ((ωe)e∈E) =

1

ZFK−Isg
J

2#clusters
∏
e∈E

(1− e−2Je)ωe(e−2Je)1−ωe ,
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where “#clusters” denotes the number of clusters created by open edges.

The Edwards-Sokal [8] coupling between FK-Ising and spin Ising reads as follows:

Theorem 4 (Edwards-Sokal coupling). Given an FK-Ising model, sample on each
cluster an independent uniformly distributed spin. The spins are then distributed
according to the Ising model. Conversely, given a spin configuration σ̂ following the Ising
distribution, consider each edge e, such that σ̂e− σ̂e+ < 0, closed, and each edge e, such
that σ̂e− σ̂e+ > 0 open with probability 1 − e−2Je . Then the open edges are distributed
according to the FK-Ising model. The two couplings between FK-Ising and spin Ising are
the same.

Consider the GFF ϕ on G distributed according to Pϕ. Let Je(|ϕ|) be the random
interaction constants

Je(|ϕ|) = We|ϕe−ϕe+ |.

Conditional on |ϕ|, (sign(ϕx))x∈V follows an Ising distribution with interaction con-
stants (Je(|ϕ|))e∈E: indeed, the Dirichlet form (1.1) can be written as

E(ϕ,ϕ) =
∑
x∈V

κxϕ
2
x +

∑
x∈V

Wxϕ
2
x − 2

∑
e∈E

Je(|ϕ|) sign(ϕe+) sign(ϕe−), (2.1)

where

Wx =
∑
y∈V
y∼x

Wx,y,

y ∼ x meaning that x and y are joined by an edge. Similarly, when ϕ distributed

according to P {x0},
√

2u
ϕ has boundary condition

√
2u ≥ 0 on x0, then (sign(ϕx))x∈V has an

Ising distribution with interaction (Je(|ϕ|))e∈E and conditioned on σx0
= +1.

Now, conditional on ϕ, O(ϕ̃) has FK-Ising distribution with weights (1− e−2Je(|ϕ|))e∈E .
Indeed, the probability for e ∈ O(ϕ̃) conditional on ϕ is 1− e−2Je(|ϕ|), by Lemma 2.1, as
in Theorem 4.

Note that, given that O(ϕ̃) has FK-Ising distribution, the fact that the sign on its
connected components is distributed independently and uniformly in {−1, 1} can be seen
either as a consequence of Theorem 4, or from Theorem 3.

Given ϕ = (ϕx)x∈V on the discrete graph G, we introduce in Definition 2.1 the random
set of edges which has the distribution of O(ϕ̃) conditional on ϕ = (ϕx)x∈V .

Definition 2.1. We let O(ϕ) be a random set of edges which has the distribution of O(ϕ̃)

conditional on ϕ = (ϕx)x∈V given by Lemma 2.1.

2.4 Distribution of O(L̃1/2) conditional on L1/2

The distribution of O(L̃1/2) conditional on L1/2 can be retrieved by Corollary 3.6 in
[15], which reads as follows.

Lemma 2.2 (Corollary 3.6 in [15]). Conditional on L1/2, the events e 6∈ O(L̃1/2), for
e ∈ E \ O(L1/2), are independent and have probability

exp
(
−2We

√
Le+(L1/2)Le−(L1/2)

)
. (2.2)

This result gives rise, together with Theorem 3, to the following discrete version of
Lupu’s isomorphism, which is stated without any recourse to the metric graph induced
by G.
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Inverting the coupling of the signed Gaussian free field with a loop-soup

Definition 2.2. Let (ωe)e∈E ∈ {0, 1}E be a percolation defined as follows: conditional
on L1/2, the random variables (ωe)e∈E are independent, and ωe equals 0 with conditional
probability given by (2.2).

Let O+(L1/2) be the set of edges:

O+(L1/2) = O(L1/2) ∪ {e ∈ E|ωe = 1}.

Theorem 5 (Discrete version of Lupu’s isomorphism, Theorem 1 bis in [15]). Given
a loop-soup L1/2, let O+(L1/2) be as in Definition 2.2. Let (σx)x∈V ∈ {−1,+1}V be
random spins taking constant values on clusters induced by O+(L1/2) (σe− = σe+ if
e ∈ O+(L1/2)) and such that the values on each cluster, conditional on L1/2 and O+(L1/2),
are independent and uniformly distributed. Then(

σx

√
2Lx(L1/2)

)
x∈V

is a Gaussian free field distributed according to Pϕ.

Theorem 5 induces the following coupling between FK-Ising and random currents.
If V is finite, a random current model [1, 4] on G with weights (Je)e∈E is a random

assignment to each edge e of a non-negative integer n̂e such that for all x ∈ V ,∑
e∈E

e adjacent to x

n̂e

is even, which is called the parity condition. The probability of a configuration (ne)e∈E
satisfying the parity condition is

PRC
J (∀e ∈ E, n̂e = ne) =

1

ZRC
J

∏
e∈E

(Je)
ne

ne!
,

where actually ZRC
J = ZIsg

J . Let

O(n̂) = {e ∈ E|n̂e > 0}.

The open edges in O(n̂) induce clusters on the graph G.
Given a loop-soup Lα, we denote by Ne(Lα) the number of times the loops in Lα cross

the nonoriented edge e ∈ E. The transience of the Markov jump process X implies that
Ne(Lα) is a.s. finite for all e ∈ E. If α = 1/2, we have the following identity (see for
instance [25, 12]):

Theorem 6 (Loop-soup and random current). Assume V is finite and consider the
loop-soup L1/2. Conditional on the occupation field (Lx(L1/2))x∈V , (Ne(L1/2))e∈E is
distributed as a random current with weights

(
2We

√
Le−(L1/2)Le+(L1/2)

)
e∈E . If ϕ is the

GFF on G given by Le Jan’s or Lupu’s isomorphism, then these weights are (Je(|ϕ|))e∈E .

Conditional on the occupation field (Lx(L1/2))x∈V , O(L1/2) are the edges occupied
by a random current and O+(L1/2) the edges occupied by FK-Ising. Lemma 2.1 and
Theorem 5 imply the following coupling, as noted by Lupu and Werner in [18].

Theorem 7 (Random current and FK-Ising coupling). Assume V is finite. Let n̂ be a
random current on G with weights (Je)e∈E . Let (ωe)e∈E ∈ {0, 1}E be an independent per-
colation, each edge being opened (value 1) independently with probability 1− e−Je . Then

O(n̂) ∪ {e ∈ E|ωe = 1}

is distributed like the open edges in an FK-Ising with weights (1− e−2Je)e∈E .

2.5 Generalized second Ray-Knight “version” of Lupu’s isomorphism

We are now in a position to state the coupled version of the second Ray-Knight
theorem.
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Inverting the coupling of the signed Gaussian free field with a loop-soup

Theorem 8. Let x0 ∈ V . Let be (ϕ
(0)
x )x∈V with distribution P

{x0},0
ϕ , and define O(ϕ(0))

as in Definition 2.1. Let X be an independent Markov jump process started from x0.
Fix u > 0. If τx0

u < ζ, we let Ou be the random subset of E which contains O(ϕ(0)),
the edges used by the path (Xt)0≤t≤τx0

u
, and additional edges e opened conditionally

independently with probability

1− eWe|ϕ(0)
e−
ϕ(0)
e+
|−We

√
(ϕ

(0)2
e− +2`e− (τ

x0
u ))(ϕ

(0)2
e+

+2`e+ (τ
x0
u ))

.

We let σ ∈ {−1,+1}V be random spins sampled uniformly independently on each cluster
induced by Ou, pinned at x0, i.e. σx0

= 1, and define

ϕ(u)
x := σx

√
ϕ

(0)2
x + 2`x(τx0

u ).

Then, conditional on τx0
u < ζ, ϕ(u) has distribution P {x0},

√
2u

ϕ , and Ou has distribution
O(ϕ(u)) conditional on ϕ(u).

Remark 2.3. One consequence of that coupling is that the path (Xs)s≤τx0
u

stays in the

positive connected component of x0 for ϕ(u). This yields a coupling between the range of

the Markov chain and the sign component of x0 inside a GFF P
{x0},

√
2u

ϕ .

Proof of Theorem 8. The proof is based on [15]. Let D = V \ {x0}, and let L̃1/2 be the

loop-soup of intensity 1/2 on the metric graph G̃, which we decompose into L̃(x0)
1/2 (resp.

L̃D1/2) the loop-soup hitting (resp. not hitting) x0, which are independent. We let L1/2 and

L(x0)
1/2 (resp. LD1/2) be the prints of these loop-soups on V (resp. on D = V \ {x0}). We

condition on Lx0
(L1/2) = u.

Theorem 3 implies (recall also Definition 2.1) that we can couple L̃D1/2 with ϕ(0) so

that Lx(LD1/2) = ϕ
(0)2
x /2 for all x ∈ V , and O(L̃1/2) = O(ϕ(0)).

Define ϕ(u) = (ϕ
(u)
x )x∈V from L̃1/2 by, for all x ∈ V ,

|ϕ(u)
x | =

√
2Lx(L1/2)

and ϕ(u)
x = σx|ϕ(u)

x |, where σ ∈ {−1,+1}V are random spins sampled uniformly indepen-
dently on each cluster induced by O(L̃1/2), pinned at x0, i.e. σx0

= 1. Then, by Theorem

3, ϕ(u) has distribution P {x0},
√

2u
ϕ .

For all x ∈ V , we have

Lx(L̃1/2) =
1

2
ϕ(0)2
x + Lx(L(x0)

1/2 ).

On the other hand, conditional on L.(L1/2),

P(e 6∈ O(L̃1/2) | e 6∈ O(L̃D1/2) ∪ O(L1/2)) =
P(e 6∈ O(L̃1/2))

P(e 6∈ O(L̃D1/2) ∪ O(L1/2))

=
P(e 6∈ O(L̃1/2) | e 6∈ O(L1/2))

P(e 6∈ O(L̃D1/2) | e 6∈ O(L1/2))
=
P(e 6∈ O(L̃1/2) | e 6∈ O(L1/2))

P(e 6∈ O(L̃D1/2) | e 6∈ O(LD1/2))

= exp
(
−We

√
Le−(L1/2)Le+(L1/2) +We

√
Le−(LD1/2)Le+(LD1/2)

)
,

where we use in the third equality that the event e 6∈ O(L̃D1/2) is measurable with respect

to the σ-field generated by L̃D1/2, which is independent of L̃(x0)
1/2 , and where we use Lemma

2.2 in the fourth equality, for L̃1/2 and for L̃D1/2.

We conclude the proof by observing that L(x0)
1/2 conditional on Lx0

(L(x0)
1/2 ) = u has the

law of the occupation field of the Markov chain `(τx0
u ) under Px0

(·|τx0
u < ζ).
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2.6 A diagram to summarize the models and the couplings and relations

Next diagram summarizes the preceding.

squared metric
GFF (ϕ̃2

x)x∈G̃

squared discrete
GFF (ϕ2

x)x∈V

metric graph
GFF (ϕ̃x)x∈G̃

discrete
GFF (ϕx)x∈V

Ising
spins (σ̂x)x∈V

sign
clusters

O(ϕ̃) = O(L̃1/2)

enlarged
clusters
O+(L1/2)

FK-Ising
random cluster

model

discrete loop
clusters O(L1/2)

random current
clusters O(n̂)

number of
edge crossings
(Ne(L1/2))e∈E

Ising
random

current (n̂e)e∈E

metric graph
loop-soup L̃1/2

discrete
loop-soup L1/2

i.i.d.
unif.
signs

clusters

Lem. 2.1

i.i.d.
unif.
signs

Lem. 2.2

Ne(L1/2)

> 0

Thm. 4

Thm. 7

n̂e > 0

restr.
to V

restr.
to V

equal

trace
on G

sign(ϕ)

cond.
on |ϕ|

cond.
on |ϕ|

Thm. 6

Thm. 6

Thm. 3 Thm. 5

Thm. 2

Figure 1: Couplings between discrete and metric graph GFFs, loop-soups, and their
relations to the spin Ising, the FK-Ising and the Ising random current. The first column
corresponds to metric graph GFF, the second to discrete GFF and the third to Ising.
Straightforward links are not labeled.
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3 Inversion of the signed isomorphism

In [21], Sabot and Tarrès give a new proof of the generalized second Ray-Knight
theorem together with a construction that inverts the coupling between the square of a
GFF conditional its value at a vertex x0 and the excursions of the jump process X from
and to x0. In this paper we are interested in inverting the coupling of Theorem 8 with
the signed GFF: more precisely, we want to describe the law of (Xt)0≤t≤τx0

u
conditional

on ϕ(u).

We present in Section 3.1 an inversion involving an extra Poisson process. We provide
in Section 3.2 a discrete-time description of the process and in Section 3.3 an alternative
description via jump rates. Section 3.4 is dedicated to a signed inversion of Le Jan’s
isomorphism for loop-soups.

3.1 A description via an extra Poisson point process

Let (ϕ̌x)x∈V be a real function on V such that ϕ̌x0 = +
√

2u for some u > 0. Set

Φ̌x = |ϕ̌x|, σx = sign(ϕ̌x).

We define a self-interacting process (X̌t, (ňe(t))e∈E) living on V × NE as follows. The
process X̌ starts at X̌(0) = x0. For t ≥ 0, we set

Φ̌x(t) =

√
(Φ̌x)2 − 2ˇ̀

x(t), ∀x ∈ V, Je(Φ̌(t)) = WeΦ̌e−(t)Φ̌e+(t), ∀e ∈ E.

where ˇ̀
x(t) =

∫ t
0
1{X̌s=x}ds is the local time of the process X̌ up to time t. Let (Ne(v))v≥0

be an independent Poisson Point Processes on R+ with intensity 1, for each edge e ∈ E.
We set

ňe(t) =

{
Ne(2Je(Φ̌(t))), if σe−σe+ = +1,

0, if σe−σe+ = −1.

Given (ne)e∈E ∈ NE non-negative integer weights on edges, we will denote

C(n) = {e ∈ E|ne > 0}.

We consider the edges in C(n) as “open”, and they naturally induce clusters. So C(ň(t)) ⊂
E denotes the configuration of edges such that ňe(t) > 0. As time increases, the
interaction parameters Je(Φ̌(t)) decreases for the edges neighboring X̌t, and at some
random times ňe(t) may drop by 1. The process (X̌t)t≥0 is defined as the process that
jumps only at the times when one of the ňe(t) drops by 1, as follows:

• if ňe(t) decreases by 1 at time t, but does not create a new cluster in C(ň(t)), then
X̌t crosses the edge e with probability 1/2 or does not move with probability 1/2;

• if ňe(t) decreases by 1 at time t, and does create a new cluster in C(ň(t)), then
X̌t moves/or stays with probability 1 on the unique extremity of e which is in the
cluster of the origin x0 in the new configuration.

We set

Ť := inf{t ≥ 0|∃x ∈ V, s. t. Φ̌x(t) = 0},

clearly, the process is well-defined up to time Ť .

Proposition 3.1. For all 0 ≤ t ≤ Ť , X̌t is in the connected component of x0 of the
configuration C(ň(t)). If V is finite, the process ends at x0, i.e. X̌Ť = x0.
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Theorem 9. Assume that V is finite. With the notation of Theorem 8, conditional on
ϕ(u) = ϕ̌, (Xt)t≤τx0

u
has the law of (X̌Ť−t)0≤t≤Ť .

Moreover, conditional on ϕ(u) = ϕ̌, (ϕ(0),O(ϕ(0))) has the law of (σ′Φ̌(Ť ), C(ň(Ť )))

where (σ′x)x∈V ∈ {−1,+1}V are random spins sampled uniformly independently on each
cluster induced by C(ň(Ť )), with the condition that σ′x0

= +1.

If V is infinite, then P {x0},
√

2u
ϕ -a.s., X̌t (with the initial condition ϕ̌ = ϕ(u)) ends at x0,

i.e. Ť < +∞ and X̌Ť = x0. All previous conclusions for the finite case still hold.

Remark 3.2. For the process above, one could also take (Φ̌x)x∈V deterministic and
(σx)x∈V random, distributed as an Ising model with interaction constants Je(Φ̌(0)). Then
the process (X̌t, Φ̌(t))0≤t≤Ť , averaged out by the law of (σx)x∈V and the evolution of
(ňe(t))e∈E , is exactly the same as the process introduced in [21], inverting the Ray-
Knight identity for the square of the GFF (without the sign). Indeed, both processes
(here and in [21]), when we average out by Φ̌(0) = Φ̌ random, distributed as |ϕ(u)|

under P {x0},
√

2u
ϕ , give us in law

(
Xτ

x0
u −t,

√
ϕ

(0)2
x + 2`x(τx0

u )− 2`x(t)
)
x∈V,0≤t≤τx0

u

under

Px0
(·|τx0

u < ζ) ⊗ P {x0},0
ϕ . To conclude we use the fact that the law of (X̌t, Φ̌(t))0≤t≤Ť is

continuous with respect to Φ̌(0).

3.2 Discrete time description of the process

We give a discrete time description of the process (X̌t, (ňe(t))e∈E) that appears in the
previous section. Let t0 = 0 and 0 < t1 < · · · < tj be the stopping times when one of the
stacks ňe(t) decreases by 1, where tj is the time when one of the stacks is completely
depleted. It is elementary to check the following:

Proposition 3.3. The discrete time process (X̌ti , (ňe(ti))e∈E)0≤i≤j is a stopped Markov
process. The transition from time i− 1 to i is the following:

• first chose e an edge adjacent to the vertex X̌ti−1
according to a probability propor-

tional to ňe(ti−1);

• decrease the stack ňe(ti−1) by 1;

• if decreasing ňe(ti−1) by 1 does not create a new cluster in C(ň(ti−1)), then X̌ti−1

crosses the edge e with probability 1/2 or does not move with probability 1/2;

• if decreasing ňe(ti−1) by 1 does create a new cluster in C(ň(ti−1)), then X̌ti−1

moves/or stays with probability 1 on the unique extremity of e which is in the
cluster of the origin x0 in the new configuration.

3.3 An alternative description via jump rates

We provide an alternative description of the process (X̌t, C(ň(t))) that appears in
Section 3.1. We will use this description in [17] by passing it to a fine mesh limit to
obtain a process inverting the Ray-Knight identity for a Brownian motion on R.

We will denote Č(t) = C(ň(t)), since below we will not have access to the knowledge
of ň(t), only to that of C(ň(t)).

Proposition 3.4. The process (X̌t, Č(t)) defined in Section 3.1 can be alternatively
described by its jump rates: conditional on its past at time t, if X̌t = x, y ∼ x and
{x, y} ∈ Č(t), then

(1) X̌ jumps to y without modification of Č(t) at rate

Wx,y
Φ̌y(t)

Φ̌x(t)
;
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(2) the edge {x, y} is closed in Č(t) at rate

2Wx,y
Φ̌y(t)

Φ̌x(t)

(
e2Wx,yΦ̌x(t)Φ̌y(t) − 1

)−1

and, conditional on that last event:

- if y is connected to x in the configuration Č(t) \ {x, y}, then X̌ instantaneously
jumps to y with probability 1/2 and stays at x with probability 1/2;

- otherwise X̌t moves/or stays with probability 1 on the unique extremity of {x, y}
which is in the cluster of the origin x0 in the new configuration.

Remark 3.5. It is clear from this description that the joint process (X̌t, Č(t), Φ̌(t)) is
Markov process, and well defined up to the time

Ť := inf{t ≥ 0|∃x ∈ V, s.t. Φ̌x(t) = 0}.

Remark 3.6. One can also retrieve the process in Section 3.1 from the representation
in Proposition 3.4 as follows. Consider the representation of Proposition 3.4 on the
graph where each edge e is replaced by a large number N of parallel edges with
conductance We/N . Consider now ň

(N)
x,y (t) the number of parallel edges that are open in

the configuration Č(N)(t) between x and y. Then, when N →∞, (ň(N)(t))t≥0, converges
in law to (ň(t))t≥0, defined in Section 3.1. We will not detail this, but roughly, this
corresponds to approximation of Poisson r.v. by binomial r.v.

Proof of Proposition 3.4. Here (F̌t)t≥0 will denote the natural filtration of

(X̌t∧Ť , Č(t ∧ Ť ))t≥0.

Assume X̌t = x, fix y ∼ x and let e = {x, y}. Recall that {x, y} ∈ Č(t) iff ňe(t) ≥ 1. Let
be

Jxe (t,∆t) = Wx,y

√
Φ̌x(t)2 − 2∆t Φ̌y(t),

which is the value of Je(Φ(t+ ∆t)) on the event

{Xt = x, n(t+ ∆t) = n(t), Wx,y

√
Φ̌x(t)2 − 2∆t Φ̌y(t) ≥ 0}.

Let us first prove (1):

P
(
On [t, t+ ∆t] X̌ first jumps from x to y without modifying Č|X̌t = x, e ∈ Č(t), F̌t

)
=

1

2
P
(
∃s ∈ [t, t+ ∆t], ň(t)− ň(s) = δe, ňe(s) ≥ 1 | X̌t = x, ňe(t) ≥ 1, F̌t

)
+ o(∆t)

=
1

2
P
(
Ne(2Je(Φ̌(t)) ≥ 2, Ne(2Je(Φ̌(t))−Ne(2Jxe (t,∆t)) ≥ 1 | X̌t = x, ňe(t) ≥ 1, F̌t

)
+ o(∆t)

=
1

2
P
(
Ne(2J

x
e (t,∆t)) ≥ 1, Ne(2Je(Φ̌(t))−Ne(2Jxe (t,∆t)) ≥ 1 | X̌t = x, ňe(t) ≥ 1, F̌t

)
+ o(∆t)

=
1

2

1− e−2Jxe (t,∆t)

1− e−2Je(Φ̌(t))
(1− e−2(Je(Φ̌(t))−Jxe (t,∆t))) + o(∆t)

= Je(Φ̌(t))− Jxe (t,∆t) + o(∆t) = Wxy
Φ̌y(t)

Φ̌x(t)
∆t+ o(∆t).
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Similarly, (2) follows from the following computation:

P
(
On [t, t+ ∆t] first the edge e is closed in Č | X̌t = x, e ∈ Č(t), F̌t

)
= P

(
Ne(2J

x
e (t,∆t)) = 0, Ne(2Je(Φ̌(t)) = 1 | X̌t = x, ňe(t) ≥ 1, F̌t

)
+ o(∆t)

=
e−2Jxe (t,∆t)2(Je(Φ̌(t))− Jxe (t,∆t))e−2(Je(Φ̌(t))−Jxe (t,∆t))

1− e−2Je(Φ̌(t))
+ o(∆t)

=
2(Je(Φ̌(t))− Jxe (t,∆t))

e2Je(Φ̌(t)) − 1
+ o(∆t)

= 2Wx,y
Φ̌y(t)

Φ̌x(t)

(
e2Wx,yΦ̌x(t)Φ̌y(t) − 1

)−1

+ o(∆t).

We easily deduce from the Proposition 3.4 and Theorem 12 the following alternative
inversion of the coupling in Theorem 8.

Theorem 10. With the notation of Theorem 8, conditional on (ϕ(u),Ou), (Xt)t≤τx0
u

has

the law of self-interacting process (X̌Ť−t)0≤t≤Ť defined by jump rates of Proposition 3.4
starting with

Φ̌x =

√
(ϕ

(0)
x )2 + 2`x(τx0

u ) and Č(0) = Ou.

Moreover (ϕ(0),O(ϕ(0))) has the same law as (σ′Φ̌(Ť ), Č(Ť )) where (σ′x)x∈V is a configu-
ration of signs obtained by picking a sign at random independently on each connected
component of Č(Ť ), with the condition that the component of x0 has a + sign.

3.4 Inversion of Lupu’s isomorphism for loop-soup

Let us first recall how the loops in Lα are connected to the excursions of the jump
process X. We refer to [13] for details. G is the Green’s function. Lx0

(Lα) follows a
Γ(α,G(x0, x0)) distribution, that is to say Lx0

(Lα)/G(x0, x0) follows a Gamma distribution
Γ(α, 1) with density

1{r>0}
1

Γ(α)
rα−1e−rdr.

As a process in α, where one drops independent loops as the intensity parameter
α increases, (Lx0

(Lα)/G(x0, x0))α≥0 is a pure jump Gamma subordinator with Lévy
measure

dΛ(r) = 1{r>0}
1

Γ(α)

e−r

r
dr.

Given such a Gamma subordinator (R(α))α≥0 with R(0) = 0, then for all α > 0, the
marginal R(α) follows a Γ(α, 1) distribution. Moreover, the normalized family of jump
sizes (

R(a)−R(a−)

R(α)

)
0≤a≤α,R(a)6=R(a−)

is independent of R(α) and has the law of a Poisson-Dirichlet partition PD(0, α) of [0, 1].
The above may be taken as a definition of PD(0, α). It is a random infinite countable
family of positive reals summing to 1. For more on Poisson-Dirichlet partitions, we refer
to [20].

Proposition 3.7 (From excursions to loops). Let α > 0 and x0 ∈ V . Lx0(Lα) is dis-
tributed according to a Gamma Γ(α,G(x0, x0)) law, where G is the Green’s function.
Let u > 0, and consider the path (Xt)0≤t≤τx0

u
conditional on τx0

u < ζ. Let (Yj)j≥1 be
an independent Poisson-Dirichlet partition PD(0, α) of [0, 1] (so that

∑
j≥1 Yj = 1). Let

S0 = 0 and

Sj =

j∑
i=1

Yi.
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Inverting the coupling of the signed Gaussian free field with a loop-soup

Let τj = τx0

uSj
. Consider the family of paths(

(Xτj−1+t)0≤t≤τj−τj−1

)
j≥1

.

It is a countable family of loops rooted in x0. It has the same law as the family of all the
loops in Lα that visit x0, conditional on Lx0

(Lα) = u.

Next we describe how to invert the discrete version for Lupu’s isomorphism Theorem
5 for the loop-soup in the same way as in Theorem 9. The idea is to define an arbitrary
order on the vertices, (xi)1≤i≤|V |. Then, starting from a signed GFF, run the inverting
process introduced previously starting from x1, up to exhausting the field in x1. This
would produce a path from x1 to x1, which is conditionally distributed like all the loops
in L1/2 that visit x1, glued together. By partitioning this path according to the procedure
described in Proposition 3.7, one recovers all the loops visiting x1. Then one continues
with the remaining field, which is 0 in x1 and has smaller FK-Ising clusters than the
initial one, and runs the inverting process starting from x2, in order to get all the loops
that visit x2 but not x1. Then one iterates. At each step, one gets all the loops that visit
xi, but none of x1, . . . , xi−1. In what follows we describe this more formally.

Let (ϕ̌x)x∈V be a real function on V . Set

Φ̌x = |ϕ̌x|, σx = sign(ϕ̌x).

Let (xi)1≤i≤|V | be an enumeration of V (which may be infinite). We define by induction
on i the self interacting processes ((X̌i,t)1≤i≤|V |, (ňe(t))e∈E). Ťi will denote the end-time
for X̌i,t, and Ť+

i =
∑

1≤j≤i Ťj . By definition, Ť+
0 = 0. Lx(t) will denote

Lx(t) :=
∑

1≤i≤|V |

ˇ̀
x(i, 0 ∨ (t− Ť+

i )),

where ˇ̀
x(i, t) are the occupation times for X̌i,t. For t ≥ 0, we set

Φ̌x(t) =

√
(Φ̌x)2 − 2Lx(t), ∀x ∈ V, Je(Φ̌(t)) = WeΦ̌e−(t)Φ̌e+(t), ∀e ∈ E.

The end-times Ťi are defined by induction as

Ťi = inf{t ≥ 0|Φ̌X̌i,t(t+ Ť+
i−1) = 0}.

Let (Ne(v))v≥0 be independent Poisson Point Processes on R+ with intensity 1, for each
edge e ∈ E. We set

ňe(t) =

{
Ne(2Je(Φ̌(t))), if σe−σe+ = +1,

0, if σe−σe+ = −1.

We also denote by C(ň(t)) ⊂ E the configuration of edges such that ňe(t) > 0. X̌i,t starts
at xi. For t ∈ [Ť+

i−1, Ť
+
i ],

• if ňe(t) decreases by 1 at time t, but does not create a new cluster in C(ň(t)), then
X̌i,t−Ť+

i−1
crosses the edge e with probability 1/2 or does not move with probability

1/2;

• if ňe(t) decreases by 1 at time t, and does create a new cluster in C(ň(t)), then
X̌i,t−Ť+

i−1
moves/or stays with probability 1 on the unique extremity of e which is in

the cluster of the origin xi in the new configuration.

By induction, using Theorem 9, we deduce the following.

EJP 24 (2019), paper 70.
Page 16/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP326
http://www.imstat.org/ejp/
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Theorem 11. Let ϕ be a GFF on G with the law Pϕ. If one sets ϕ̌ = ϕ in the preceding
construction, then for all i ∈ {1, . . . , |V |}, Ťi < +∞, X̌i,Ťi

= xi and the path (X̌i,t)t≤Ťi
has the same law as a concatenation in xi of all the loops in a loop-soup L1/2 that visit
xi, but none of the x1, . . . , xi−1. To retrieve the loops out of each path (X̌i,t)t≤Ťi , one
has to partition it according to a Poisson-Dirichlet partition as in Proposition 3.7. The
coupling between the GFF ϕ and the loop-soup obtained from ((X̌i,t)1≤i≤|V |, (ňe(t))e∈E)

is the same as in Theorem 5.

Remark 3.8. One could consider the discrete time version of the procedure described
in Theorem 11, and look only at the total number of times n̂e an edge e is visited by the
trajectories constructed, without distinguishing the directions. Than (n̂e)e∈E is a current,
and its conditional distribution given Č(0) is the same as the conditional distribution of a
random current given an FK-Ising cluster when both are coupled as in Theorem 7.

Corollary 3.9. Let ϕ be a GFF on G with the law Pϕ. Let (ne(ϕ))e∈E be a family of r.v.,
distributed conditional on φ as independent Poisson r.v., each one with mean Weϕe−ϕe+
if ϕe−ϕe+ > 0, 0 otherwise. One can couple ϕ, (ne(ϕ))e∈E and a loop-soup L1/2 such that
the coupling between L1/2 and ϕ is that of Theorem 5, and moreover, a.s. for every e ∈ E,
Ne(L1/2) ∈ {ne(ϕ)− 1, ne(ϕ), ne(ϕ) + 1}.

Proof. We use the construction of Theorem 11. Conditional on ϕ, we have indepen-
dent Poisson stacks with mean 1{ϕe−ϕe+>0}2Weϕe−ϕe+ and each time we unpile a

stack, we chose with probability 1/2 to jump (which gives a Poisson r.v. with mean
1{ϕe−ϕe+>0}Weϕe−ϕe+), except possibly when the stack is reduced to 1, when our choice
might be constrained (which gives ±1).

4 Proof of theorem 9

4.1 Case of finite graph without killing measure

Here we will assume that V is finite and that the killing measure κ ≡ 0.
In order to prove Theorem 9, we first enlarge the state space of the process (Xt)t≥0.

We define a process (Xt, (ne(t)))t≥0 living on the space V ×NE as follows. Let ϕ(0) ∼
P
{x0},0
ϕ be a GFF pinned at x0. Let σx = sign(ϕ

(0)
x ) be the signs of the GFF with the

convention that σx0
= +1. The process (Xt)t≥0 is as usual the Markov Jump process

starting at x0 with jump rates (We)e∈E . We set

Φx = |ϕ(0)
x |, Φx(t) =

√
Φ2
x + 2`x(t), ∀x ∈ V, Je(Φ(t)) = WeΦe−(t)Φe+(t), ∀e ∈ E. (4.1)

The initial values (ne(0)) are choosen independently on each edge with distribution

ne(0) ∼

{
0 if σe−σe+ = −1,

P(2Je(Φ)) if σe−σe+ = +1,
(4.2)

where P(2Je(Φ)) is a Poisson random variable with parameter 2Je(Φ). Let ((Ne(v))v≥0)e∈E
be independent Poisson point processes on R+ with intensity 1. We define the process
(ne(t)) by

ne(t) = ne(0) +Ne(Je(Φ(t)))−Ne(Je(Φ)) +Ke(t),

where Ke(t) is the number of crossings of the edge e by the Markov jump process X
before time t.

Remark 4.1. Note that compared to the process defined in Section 3.1, the speed of
the Poisson process is related to Je(Φ(t)) and not 2Je(Φ(t)).
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We recall that with our notations,

C(n(t)) = {e ∈ E|ne(t) > 0}.

Recall also that τx0
u = inf{t ≥ 0|`x0(t) = u} for u > 0. . We define ϕ(u) by

ϕ(u)
x = σxΦ(τx0

u ), ∀x ∈ V,

where (σx)x∈V ∈ {−1,+1}V are random spins sampled uniformly independently on each
cluster induced by C(n(τx0

u )) with the condition that σx0
= +1.

Lemma 4.2. The random family (ϕ(0), C(n(0)), ϕ(u), C(n(τx0
u ))) thus defined has the same

distribution as (ϕ(0),O(ϕ(0)), ϕ(u),Ou) defined in Theorem 8.

Proof. It is clear from construction, that C(n(0)) has the same law asO(ϕ(0)) (cf Definition
2.1), the FK-Ising configuration coupled with the signs of ϕ(0) as in Theorem 4. Indeed,
for each edge e ∈ E such that ϕ(0)

e−ϕ
(0)
e+ > 0, the probability that ne(0) > 0 is 1− e−2Je(Φ).

Moreover, conditional on C(n(0)) = O(ϕ(0)), C(n(τx0
u )) has the same law as Ou defined in

Theorem 8. Indeed, C(n(τx0
u )) is the union of the set C(n(0)), the set of edges crossed by

the process (Xu)u≤τx0
u

, and the additional edges such that Ne(Je(τx0
u ))−Ne(Je(Φ)) > 0.

Clearly Ne(Je(τx0
u ))−N(Je(Φ)) > 0 independently with probability 1− e−(Je(Φ(τx0

u ))−Je(Φ))

which coincides with the probability given in Theorem 8.

We will prove the following theorem that, together with Lemma 4.2, contains the
statements of both Theorem 8 and 9.

Theorem 12. The random field ϕ(u) is a GFF distributed according to P {x0},
√

2u
ϕ . More-

over, conditional on ϕ(u) = ϕ̌, the process

(Xt, (ne(t))e∈E)t≤τx0
u

has the law of the process (X̌Ť−t, (ňe(Ť − t))e∈E)t≤Ť described in Section 3.1.

Proof. Before proceeding to the proof of the theorem, we will briefly outline our method.
We have a Markov process (Xt,Φ(t), n(t)), and would like to find another Markov process
(X̌t, Φ̌(t), ň(t)) such that the latter has the law of (Xτ

x0
u −t,Φ(τx0

u − t), n(τx0
u − t)) in the

particular case when the entrance (initial) distribution of (X0,Φ(0), n(0)) is given by
(x0, |ϕ(0)|, n(0)), n(0) given by (4.2). To this end, we will first introduce an intermediate
Markov process (X̄t, Φ̄(t), n̄(t)) which will correspond to (Xτ

x0
u −t,Φ(τx0

u − t), n(τx0
u − t))

in case when the entrance distribution of (X0,Φ(0), n(0)) is not the one we are interested
in, but given by X0 = x0 and (Φ(0), n(0)) following the product measure (with infinite
total mass) ∑

n∈NE

∫
dΦF (Φ, n).

We do that because (X̄t, Φ̄(t), n̄(t)) is simpler, and in particular X̄t is a Markov jump
process with jump rates (We)e∈E (just as Xt) which does not interact with (Φ̄(t), n̄(t)). In
this way (X̄t, Φ̄(t), n̄(t)) and (X̌t, Φ̌(t), ň(t)) correspond to (Xτ

x0
u −t,Φ(τx0

u −t), n(τx0
u −t)) for

two different entrance distributions of (X0,Φ(0), n(0)), and we show that (X̌t, Φ̌(t), ň(t))

is absolutely continuous with respect to (X̄t, Φ̄(t), n̄(t)) and identify the corresponding
Radon-Nikodym derivative M̄t∧T̄ /M̄0. Out of this we further identify (X̌t, Φ̌(t), ň(t))

as a Doob’s h-transform (see [3], Chapter 11) of (X̄t, Φ̄(t), n̄(t)). Then we obtain the
infinitesimal generator of (X̌t, Φ̌(t), ň(t)) as a conjugate of the infinitesimal generator of
(X̄t, Φ̄(t), n̄(t)).
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Our proof is cut in four steps. In step 1 we simply give an explicit formula for the
law of (|ϕ(0)|, n(0)), n(0) given by (4.2). In step 2 we introduce (X̄t, Φ̄(t), n̄(t)) and prove
the time reversal for the product entrance distribution of (X0,Φ(0), n(0)). In step 3 we
identify the Radon-Nikodym derivative of (X̌t, Φ̌(t), ň(t)) with respect to (X̄t, Φ̄(t), n̄(t)).
In step 4 we describe (X̄t, Φ̄(t), n̄(t)) as a Doob’s h-transform of (X̄t, Φ̄(t), n̄(t)) and give
its the infinitesimal generator, which is that of the process introduced in Section 3.1.

Step 1: We start by a simple lemma.

Lemma 4.3. The distribution of (Φ := |ϕ(0)|, n(0)) is given by the following formula for
any bounded measurable test function h:

E (h(Φ, n(0))) =∑
n∈NE

∫
R
V \{x0}
+

dΦh(Φ, n)e−
1
2

∑
x∈V WxΦ2

x−
∑
e∈E Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)
2#c.C(n)−1.

where the integral is on the set {(Φx)x∈V ∈ RV+|∀x 6= x0, Φx > 0, Φx0 = 0}, and

dΦ =

∏
x∈V \{x0} dΦx
√

2π
|V |−1

,

and #c.C(n) is the number of clusters induced by the edges such that ne > 0.

Proof. Indeed, by construction, summing on possible signs of ϕ(0), we have

E (h(Φ, n(0))) =∑
σ∈{±1}V
σx0

=+1

∑
n∈NE
n�σ

∫
R
V \{x0}
+

dΦh(Φ, n)e−
1
2E(σΦ,σΦ)

( ∏
e∈E

σe−σe+=+1

e−2Je(Φ)(2Je(Φ))ne

ne!

)
, (4.3)

where n � σ means that ne vanishes on the edges such that σe−σe+ = −1. Since we
have, similarly to (2.1),

1

2
E(σΦ, σΦ) =

1

2

∑
x∈V

WxΦ2
x −

∑
e∈E

Je(Φ)σe−σe+

=
1

2

∑
x∈V

WxΦ2
x +

∑
e∈E

Je(Φ)−
∑
e∈E

σe−σe+=+1

2Je(Φ),

we deduce that the integrand in (4.3) is equal to

h(Φ, n)e−
1
2E(σΦ,σΦ)

( ∏
e∈E

σe−σe+=+1

e−2Je(Φ)(2Je(Φ))ne

ne!

)

= h(Φ, n)e−
1
2E(σΦ,σΦ)e

−
∑
e∈E, σe−σe+=+1 2Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)

= h(Φ, n)e−
1
2

∑
x∈V WxΦ2

x−
∑
e∈E Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)
,
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where we used in the first equality that ne = 0 on the edges such that σe−σe+ = −1.
Thus,

E (h(Φ, n(0))) =∑
σ∈{±1}V
σx0=+1

∑
n∈NE
n�σ

∫
R
V \{x0}
+

dΦh(Φ, n)e−
1
2

∑
x∈V WxΦ2

x−
∑
e∈E Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)
.

Reversing the sum on σ and n and summing on the number of possible signs which are
constant on clusters induced by the configuration of edges {e ∈ E|ne > 0}, we deduce
Lemma 4.3.

Step 2: We denote by Zt = (Xt,Φ(t), n(t)) the process defined previously and by Ex0,Φ,n0

its law with initial condition (x0,Φ, n).
We now introduce a process Z̄t, which is a “time reversal” of the process Zt. This

process will be related to the process defined in Section 3.1 in Step 4, Lemma 4.5.
For (n̄e)e∈E ∈ NE and (Φ̄x)x∈V such that

Φ̄x0 = u, ∀x 6= x0, Φ̄x > 0,

we define the process Z̄t = (X̄t, Φ̄(t), n̄(t)) with values in V ×RV+ × ZE as follows. The

process X̄t is a Markov jump process with jump rates (We)e∈E (so that X̄
law
= X), and

Φ̄(t), n̄(t) are defined by

Φ̄x(t) =
√

Φ̄2
x − 2¯̀

x(t), ∀x ∈ V, (4.4)

where ¯̀
x(t) is the local time of the process X̌ up to time t,

n̄e(t) = n̄e −
(
Ne(Je(Φ̄))−Ne(Je(Φ̄(t)))

)
− K̄e(t), (4.5)

where ((Ne(v))v≥0)e∈E are independent Poisson point process on R+ with intensity 1 for
each edge e, and K̄e(t) is the number of crossings of the edge e by the process X̄ before
time t. We set

Z̄t = (X̄t, (Φ̄x(t)), (n̄e(t))). (4.6)

This process is well-defined up to time

T̄ = inf
{
t ≥ 0|∃x ∈ V Φ̄x(t) = 0

}
.

We denote by Ēx0,Φ̄,n̄ its law. Clearly Z̄t = (X̄t, Φ̄(t), n̄e(t)) is a Markov process, we will
later on make explicit its generator.

We have the following change of variable lemma.

Lemma 4.4. For all bounded measurable test functions F,G,H

∑
n∈NE

∫
dΦF (Φ, n)Ex0,Φ,n

(
G((Zτx0

u −t)0≤t≤τx0
u

)H(Φ(τx0
u ), n(τx0

u ))
)

=

∑
n̄∈NE

∫
dΦ̄H(Φ̄, n̄)Ēx0,Φ̄,n̄

(
1{X̄T̄=x0, ∀e∈E, n̄e(T̄ )≥0}

G((Z̄t)t≤T̄ )F (Φ̄(T̄ ), n̄(T̄ ))
∏

x∈V \{x0}

Φ̄x
Φ̄x(T̄ )

)
,
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where the integral on the l.h.s. is on the set {(Φx)x∈V ∈ RV+|Φx0
= 0} with

dΦ =

∏
x∈V \{x0} dΦx
√

2π
|V |−1

and the integral on the r.h.s. is on the set {(Φ̄x)x∈V ∈ RV+|Φ̄x0 = u} with

dΦ̄ =

∏
x∈V \{x0} dΦ̄x
√

2π
|V |−1

.

Proof. We start from the left-hand side, i.e. the process (Xt, ne(t))0≤t≤τx0
u

. We define

X̄t = Xτ
x0
u −t, n̄e(t) = ne(τ

x0
u − t),

and
Φ̄x = Φx(τx0

u ), Φ̄x(t) = Φx(τx0
u − t),

The law of the processes such defined will later be identified with the law of the processes
(X̄t, Φ̄(t), n̄(t)) defined at the beginning of step 2, see (4.4) and (4.5). We also set

K̄e(t) = Ke(τ
x0
u )−Ke(t),

which is also the number of crossings of the edge e by the process X̄, between time 0
and t. With these notations we clearly have

Φ̄x(t) =
√

Φ̄2
x − 2¯̀

x(t),

where ¯̀
x(t) =

∫ t
0
1{X̄s=x}ds is the local time of X̄ at time t, and

n̄e(t) = n̄e(0) + (Ne(Je(Φ̄(t)))−Ne(Je(Φ̄(0))))− K̄e(t).

By time reversal, the law of (X̄t)0≤s≤τ̄x0
u

is the same as the law of the Markov Jump
process (Xt)0≤t≤τx0

u
, where τ̄x0

u = inf{t ≥ 0|¯̀x0
(t) = u}. Hence, we see that up to the

time
T̄ = inf{t ≥ 0|∃x Φ̄x(t) = 0},

the process (X̄t, (Φ̄x(t))x∈V , (n̄e(t))e∈E)t≤T̄ has the same law as the process defined at
the beginning of step 2.

Then, following [21], we make the following change of variables conditional on the
processes (Xt, (ne(t))e∈E):

(0,+∞)V ×NE → (0,+∞)V ×NE

((Φx)x∈V , (ne)e∈E) 7→ ((Φ̄x)x∈V , (n̄e)e∈E),

which is bijective onto the set

{(Φ̄x)x∈V ∈ RV+|Φ̄x0 =
√

2u, ∀x 6= x0, Φ̌x >
√

2`x(τx0
u )}

× {(n̄e)e∈E ∈ NE |∀e ∈ E, n̄e ≥ Ke(τ
x0
u ) + (Ne(Je(Φ̄(τx0

u )))−Ne(Je(Φ)))}.

Note that we always have Φ̄x0 =
√

2u. The last conditions on Φ̄ and n̄e are equivalent to
the conditions X̄T̄ = x0 and n̄e(T̄ ) ≥ 0. The Jacobian of the change of variable is given by

∏
x∈V \{x0}

dΦx =

 ∏
x∈V \{x0}

Φ̄x
Φx

 ∏
x∈V \{x0}

dΦ̄x,

since

dΦ̄x = d
√

Φ2
x + 2`x(τx0

u ) =
Φx√

Φ2
x + 2`x(τx0

u )
dΦx =

Φx
Φ̄x

dΦx.
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Inverting the coupling of the signed Gaussian free field with a loop-soup

Step 3: With the notations of Theorem 12, we consider the following expectation for g
and h bounded measurable test functions:

E
(
g
((
Xτ

x0
u −t, ne(τ

x0
u − t)

)
0≤t≤τx0

u

)
h(ϕ(u))

)
. (4.7)

By definition, we have
ϕ(u) = σΦ(τx0

u ),

where (σx)x∈V ∈ {−1,+1}V are random signs sampled uniformly independently on
clusters induced by {e ∈ E|ne(τx0

u ) > 0} and conditioned on σx0
= +1. Hence, we define

for (Φx)x∈V ∈ RV+ and (ne)e∈E ∈ NE ,

H(Φ, n) = 2−#c.C(n)+1
∑

σ∈{±1}V
σx0=+1, σ�n

h(σΦ), (4.8)

where σ � n means that the signs σx are constant on clusters of C(n). Hence, setting

F (Φ, n) = e−
1
2

∑
x∈V WxΦ2

x−
∑
e∈E Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)
2#c.C(n)−1,

G
(
(Zτx0

u −t)t≤τ
x0
u

)
= g

((
Xτ

x0
u −t, ne(τ

x0
u − t)

)
t≤τx0

u

)
,

using Lemma 4.3 in the first equality and Lemma 4.4 in the second equality, we deduce
that (4.7) is equal to

E
(
G
(
(Zτx0

u −t)0≤t≤τx0
u

)
H(Φ(τx0

u ), n(τx0
u )))

)
=∑

n∈NE

∫
dΦF (Φ, n)Ex0,Φ,n

(
G
(
(Zτx0

u −t)t≤τ
x0
u

)
H (Φ(τx0

u ), n(τx0
u )))

)
dΦ =

∑
n̄∈NE

∫
dΦ̄H

(
Φ̄, n̄

)
Ēx0,Φ̄,n̄

(
1{X̄T̄=x0, ∀e∈E n̄e(T̄ )≥0}

F
(
Φ̄(T̄ ), n̄(T̄ )

)
G
(
(Z̄t)t≤T̄

) ∏
x∈V \{x0}

Φ̄x
Φ̄x(T̄ )

)
, (4.9)

with notations of Lemma 4.4.
Let F̄t = σ((X̄s)s≤t) be the filtration generated by X̄. We define the F̄ -adapted

process M̄t, defined up to time T̄ by

M̄t =
F (Φ̄(t), n̄(t))∏
x∈V \{X̄t} Φ̄x(t)

1{X̄t∈C(x0,n̄)}1{n̄e(t)≥0, ∀e∈E} = e−
1
2

∑
x∈V WxΦ̄x(t)2−

∑
e∈E Je(Φ̄(t))×

×
( ∏
e∈E

(2Je(Φ̄(t)))n̄e(t)

n̄e(t)!

) 2#c.C(n̄(t))−1∏
x∈V \{X̄t} Φ̄x(t)

1{X̄t∈C(x0,n̄(t))}1{n̄e(t)≥0, ∀e∈E}, (4.10)

where C(x0, n̄(t)) denotes the cluster of the origin x0 induced by the configuration C(n̄(t)).
Note that at time t = T̄ , we also have

M̄T̄ =
F (Φ̄(T̄ ), n̄(T̄ ))∏
x∈V \{x0} Φ̄x(T̄ )

1{X̄T̄=x0}1{n̄e(t)≥0, ∀e∈E} (4.11)

since M̄T̄ vanishes on the event where {X̄T̄ = x}, with x 6= x0. Indeed, if X̄T̄ = x 6= x0,
then Φ̄x(T̄ ) = 0 and Je(Φ̄(T̄ )) = 0 for e ∈ E such that e adjacent to x. It means that M̄T̄

is equal to 0 if n̄e(T̄ ) > 0 for some edge e neighboring x. Thus, M̄T̄ is null unless {x} is a
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Inverting the coupling of the signed Gaussian free field with a loop-soup

cluster in C(n̄(T̄ )). Hence, M̄T̄ = 0 if x 6= x0 since M̄T̄ contains the indicator of the event
that X̄T̄ and x0 are in the same cluster.

Hence, using identities (4.9) and (4.11) we deduce that (4.7) is equal to

(4.7) =
∑
n̄∈NE

∫
dΦ̄H

(
Φ̄, n̄

)
F
(
Φ̄, n̄

)
Ēx0,Φ̄,n̄

(
M̄T̄

M̄0
G
(
(Z̄t)t≤T̄

))
. (4.12)

Step 4: We denote by Žt = (X̌t, Φ̌t, ň(t)) the process defined in Section 3.1, which is
well defined up to stopping time Ť , and ŽTt = Žt∧Ť . We denote by Ěx0,Φ̌,ň

the law of

the process Ž conditional on the initial value ň(0), i.e. conditional on (Ne(2J(Φ̌)))e∈E =

(ňe)e∈E . The last step of the proof goes through the following lemma.

Lemma 4.5. i) Under Ěx0,Φ̌,ň
, X̌ ends at X̌Ť = x0 a.s. and ňe(Ť ) ≥ 0 for all e ∈ E.

ii) Let P̄≤t
x0,Φ̄,n̄

and P̌≤t
x0,Φ̌,ň

be the law of the process (Z̄Ts )s≤t and (ŽTs )s≤t respectively,
then

dP̌≤t
x0,Φ̄,n̄

dP̄≤t
x0,Φ̄,ň

=
M̄t∧T̄
M̄0

.

Using this lemma we obtain that in the right-hand side of (4.12)

Ēx0,Φ̄,n̄

(
M̄T̄

M̄0
G
(
(Z̄t)t≤T̄

))
= Ěx0,Φ̄,n̄

(
G
(
(Žt)t≤Ť

))
.

Hence, we deduce, using formula (4.8) and proceeding as in Lemma 4.3, that (4.7) is
equal to∫
RV \{x0}

dϕ̄e−
1
2E(ϕ̄,ϕ̄)h(ϕ̄)

∑
n̄�ϕ̄

( ∏
e∈E

ϕ̄e− ϕ̄e+≥0

e−2Je(|ϕ̄|)(2Je(|ϕ̄|))n̄e
n̄e!

)
Ēx0,|ϕ̄|,n̄

(
M̄T̄

M̄0
G
(
(Z̄t)t≤T̄

))
,

where the last integral is on the set {(ϕ̄x)x∈V ∈ RV |ϕx0
= u},

dϕ̄ =

∏
x∈V \{x0} dϕ̄x
√

2π
|V |−1

,

and where n̄� ϕ̄ means that n̄e = 0 if ϕ̄e− ϕ̄e+ ≤ 0. Finally, we conclude that

E
[
g
((
Xτ

x0
u −t, ne(τ

x0
u − t)

)
0≤t≤τx0

u

)
h(ϕ(u))

]
= E

[
g
((
X̌t, ňe(t)

)
0≤t≤Ť

)
h(ϕ̌)

]
,

where in the right-hand side ϕ̌ ∼ P {x0},
√

2u
ϕ is a GFF and (X̌t, ň(t)) is the process defined

in Section 3.1 from the GFF ϕ̌. This exactly means that ϕ(u) ∼ P {x0},
√

2u
ϕ and that

Law
((
Xτ

x0
u −t, ne(τ

x0
u − t)

)
0≤t≤τx0

u

∣∣∣ ϕ(u) = ϕ̌
)

= Law
((
X̌t, ň(t)

)
t≤Ť

)
.

This concludes the proof of Theorem 12.

Proof of Lemma 4.5. The generator of the process Z̄t defined in (4.6) is given, for any
bounded and C1 for the second component test function f , by

(L̄f)(x, Φ̄, n̄) = − 1

Φ̄x

( ∂

∂Φ̄x
f
)

(x, Φ̄, n̄)

+
∑
y∈V
y∼x

(
Wx,y

(
f(y, Φ̄, n̄− δ{x,y})− f(x, Φ̄, n)

)
+Wx,y

Φ̄y
Φ̄x

(
f(x, Φ̄, n− δ{x,y})− f(x, Φ̄, n)

))
.

(4.13)
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Inverting the coupling of the signed Gaussian free field with a loop-soup

where n− δ{x,y} is the value obtained by removing 1 from n at edge {x, y}. Indeed, since

Φ̄x(t) =
√

Φ̄x(0)2 − 2¯̀
x(t), we have

d

dt
Φ̄x(t) = −1{X̄t=x}

1

Φ̄x(t)
, (4.14)

which explains the first term in the expression. The second term is obvious from
the definition of Z̄t, and corresponding to the term induced by jumps of the Markov
process X̄t. The last term corresponds to the decrease of n̄ due to the increase in the
process Ne(Je(Φ̄))−Ne(Je(Φ̄(t))). Indeed, on the interval [t, t+ dt], the probability that
Ne(Je(Φ̄(t)))−Ne(Je(Φ̄(t+ dt))) is equal to 1 is of order

− d

dt
Ne(Je(Φ̄(t)))dt = 1{X̄t endpoint of e}

WeΦ̄e−(t)Φ̄e+(t)

ΦX̄t(t)
2

dt,

using identity (4.14).
Let Ľ be the generator of the Markov jump process Žt = (X̌t, (Φ̌x(t)), (ňe(t))). We

have that the generator is equal, for any smooth test function f , to

(Ľf)(x,Φ, n) = − 1

Φx
(
∂

∂Φx
f)(x,Φ, n) (4.15)

+
1

2

∑
y∈V
y∼x

nx,y
Φ2
x

1A1(x,y)

(
f(y, Φ̄, n− δ{x,y}) + f(x, Φ̄, n− δ{x,y})− 2f(x, Φ̄, n)

)
+
∑
y∈V
y∼x

nx,y
Φ2
x

1A2(x,y)

(
f(y, Φ̄, n− δ{x,y})− f(x, Φ̄, n))

)
+
∑
y∈V
y∼x

nx,y
Φ2
x

1A3(x,y)

(
f(x, Φ̄, n− δ{x,y})− f(x, Φ̄, n)

)
,

where Ai(x, y) correspond to the following disjoint events:

• A1(x, y) if the numbers of connected clusters induced by n− δ{x,y} is the same as
that of ň;

• A2(x, y) if a new cluster is created in n− δ{x,y} compared with ň and if y is in the
connected component of x0 in the cluster induced by n− δ{x,y};

• A3(x, y) if a new cluster is created in n− δ{x,y} compared with n and if x is in the
connected component of x0 in the cluster induced by n− δ{x,y}.

Indeed, conditional on the value of ňe(t) = Ne(2Je(Φ̌(t))) at time t, the point process
Ne on the interval [0, 2Je(Φ̌(t))] has the law of ne(t) independent points with uniform
distribution on [0, 2Je(Φ̌(t))]. Hence, the probability that a point lies in the interval
[2Je(Φ̌(t+ dt)), 2Je(Φ̌(t))] is of order

−ňe(t)
1

Je(Φ̌(t))

d

dt
Je(Φ̌(t))dt = 1{Xt endpoint of e} ňe(t)

1

Φ̌Xt(t)
2
dt.

We define the function

Θ(x, (Φx), (ne)) =

e−
1
2

∑
x∈V WxΦ2

x−
∑
e∈E Je(Φ)

(∏
e∈E

(2Je(Φ))ne

ne!

)
2#c.C(n)−1∏
y∈V \{x}Φy

1{x∈C(x0,n), and ∀e∈E, ne≥0},

EJP 24 (2019), paper 70.
Page 24/28

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP326
http://www.imstat.org/ejp/


Inverting the coupling of the signed Gaussian free field with a loop-soup

so that
M̄t∧T̄ = Θ(Z̄t∧T̄ ).

To prove the lemma it is sufficient to prove ([3], Chapter 11) that for any bounded smooth
test function f ,

1

Θ
L̄ (Θf) = Ľ (f) . (4.16)

Let us first consider the first term in (4.13). Direct computation gives(
1

Θ

1

Φx

(
∂

∂Φx
Θ

))
(x,Φ, n) = −Wx +

∑
y∈V
y∼x

(
−Wx,y

Φy
Φx

+ nx,y
1

Φ2
x

)
.

For the second part, remark that the indicators 1{x∈C(x0,n)} and 1{ne≥0, ∀e∈E} imply that
Θ(y,Φ, n − δ{x,y}) vanishes if nx,y = 0 or if y 6∈ C(x0, n − δ{x,y}). By inspection of the
expression of Θ, we obtain for x ∼ y,

Θ(y,Φ, n− δ{x,y}) =

(
1{nx,y>0}(1A1

+ 21A2
)

nx,y
2Jx,y(Φ)

Φy
Φx

)
Θ(x,Φ, n)

=

(
(1A1

+ 21A2
)
nx,y

2Wx,y

1

Φ2
x

)
Θ(x,Φ, n).

Similarly, for x ∼ y,

Θ(x,Φ, n− δ{x,y}) =

(
1{nx,y>0}(1A1

+ 21A3
)
nx,y
2Jx,y

)
Θ(x,Φ, n)

=

(
(1A1

+ 21A3
)

nx,y
2Wx,yΦxΦy

)
Θ(x,Φ, n).

Combining these three identities with the expression (4.13) we deduce

1

Θ
L̄ (Θf) (x,Φ, n) = − 1

Φx

∂

∂Φx
f(x,Φ, n)−

∑
y∈V
y∼x

(
nx,y

1

Φ2
x

)
f(x,Φ, n)

+
∑
y∈V
y∼x

(1A1
+ 21A2

)nx,y
1

2Φ2
x

f(y, n− δ{x,y},Φ)

+
∑
y∈V
y∼x

(1A1 + 21A3)
1

2Φ2
x

f(x, n− δ{x,y},Φ).

It exactly coincides with the expression (4.15) for Ľ since 1 = 1A1
+ 1A2

+ 1A3
.

4.2 General case

Proposition 4.6. The conclusion of Theorem 9 still holds if the graph G = (V,E) is finite
and the killing measure is non-zero (κ 6≡ 0).

Proof. Let h be the function on V defined as

h(x) = Px(X hits x0 before ζ).

By definition h(x0) = 1. Moreover, for all x ∈ V \ {x0},

−κxh(x) +
∑
y∈V
y∼x

Wx,y(h(y)− h(x)) = 0.
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Define the conductances Wh
e := Weh(e−)h(e+), and the corresponding jump process Xh,

and the GFF ϕ(0)
h and ϕ(u)

h with conditions 0 respectively
√

2u at x0. The Theorem 9 holds
for the graph G with conductances (Wh

e )e∈E and with zero killing measure. Denote

`hx(t) =

∫ t

0

1{Xhs =x}ds, τx,hu = inf{t ≥ 0|`hx0
(t) ≥

√
2u}.

The process (Xh
t )
t≤τx0,h

u
has the same law as the process (Xθh(t))t≤(θh)−1(τ

x0
u ), conditional

on τx0
u < ζ, after the change of time

dθh(t) = h(Xθh(t))
2dt.

This means in particular that for the occupation times,

`hx(t) = h(Xθh(t))
−2`x(θh(t)). (4.17)

Moreover, we have the equalities in law

ϕ
(0)
h

law
= h−1ϕ(0), ϕ

(u)
h

law
= h−1ϕ(u).

Indeed, at the level of energy functions, we have:

E(hf, hf) =
∑
x∈V

κxh(x)2f(x)2 +
∑
e∈E

We(h(e+)f(e+)− h(e−)f(e−))2

=
∑
x∈V

[κxh(x)2f(x)2 +
∑
y∈V
y∼x

Wx,yh(y)f(y)(h(y)f(y)− h(x)f(x))]

=
∑
x∈V

[κxh(x)2f(x)2 −
∑
y∼x

Wx,y(h(y)− h(x))h(x)f(x)2]

−
∑
x∈V
y∼x

Wx,yh(x)h(y)(f(y)− f(x))f(x)

= [κx0 −
∑
y∈V
y∼x0

Wx0,y(h(y)− 1)]f(x0)2 +
∑
e∈E

Wh
e (h(e+)f(e+)− h(e−)f(e−))2

= Cst(f(x0)) + Eh(f, f),

where Cst(f(x0)) means that this term does not depend of f once the value of the
function at x0 fixed.

Let X̌h
t be the inverse process for the conductances (Wh

e )e∈E and the initial condition

for the field ϕ(u)
h , given by Theorem 9. By applying the inverse of the time change (4.17)

to the process X̌h
t , we obtain an inverse process for the conductances We and the field

ϕ(u).

Proposition 4.7. Assume that the graph G = (V,E) is infinite. The killing measure κ
may be non-zero. Then the conclusion of Theorem 9 holds.

Proof. Consider an increasing sequence of connected sub-graphs Gi = (Vi, Ei) of G which
converges to the whole graph. We assume that V0 contains x0. Let G∗i = (V ∗i , E

∗
i ) be

the graph obtained by adding to Gi an abstract vertex x∗, and for every vertex x ∈ Vi
connected by an edge in Ei to a y ∈ V \ Vi, adding an edge {x, x∗} with a conductance

Wx,x∗ =
∑

y∈V \Vi
y∼x

Wx,y.
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(Xi,t)t≥0 will denote the Markov jump process on G∗i , started from x0. Let ζi be the first

hitting time of x∗ or the first killing time by the measure κ1Vi . Let ϕ(0)
i , ϕ(u)

i will denote
the GFFs on G∗i with condition 0 respectively

√
2u at x0, with condition 0 at x∗, and taking

in account the possible killing measure κ1Vi . The limits in law of ϕ(0)
i respectively ϕ(u)

i

are ϕ(0) respectively ϕ(u).
We consider the process (X̌i,t, (ňi,e(t))e∈E∗i )0≤t≤Ťi be the inverse process on G∗i , with

initial field ϕ(u)
i . (Xi,t)t≤τx0

i,u
, conditional on τx0

i,u, has the same law as (X̌i,Ťi−t)t≤Ťi . Taking

the limit in law as i tends to infinity, we conclude that (Xt)t≤τx0
u

, conditional on τx0
u < +∞,

has the same law as (X̌Ť−t)t≤Ť on the infinite graph G. The same for the clusters. In
particular,

P(Ť ≤ t, X̌[0,Ť ] stays in Vj) ≥ lim
i→+∞

P(Ťi ≤ t, X̌i,[0,Ťi]
stays in Vj)

= lim
i→+∞

P(τx0
i,u≤ t,Xi,[0,τ

x0
i,u] stays in Vj |τx0

i,u<ζi) =P(τx0
u ≤ t,X[0,τ

x0
u ] stays in Vj |τx0

u <ζ),

where in the first two probabilities we also average by the values of the free fields. Hence

P(Ť = +∞ or X̌Ť 6= x0) = 1− lim
t→+∞
j→+∞

P(τx0
u ≤ t,X[0,τ

x0
u ] stays in Vj |τx0

u < ζ) = 0.

Remark 4.8. Consider G = (V,E) an infinite transient electrical network (with κ ≡
0). Proposition 4.7 tells that if the inversions algorithm of Section 3 is applied to
a Gaussian free field ϕ(u) with condition

√
2u at x0, and implicitly 0 at infinity, the

algorithm terminates a.s., that is to say the inverting process X̌ does not escape to
infinity. However, one could consider a Gaussian free field with positive condition a > 0

at infinity, ϕ(u,a). Such a GFF is related by isomorphism not only to a loop-soup L1/2 but
also to a Sznitman’s random interlacement, which is a Poisson point process of paths
from and to infinity, infinite in both directions of time [23, 24, 15]. If applied to ϕ(u,a),
the algorithm would create a path which has a positive probability to escape to infinity,
which would correspond to the event of having an interlacement visiting x0.
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