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Abstract

A random walk in a sparse random environment is a model introduced by Matzavi-
nos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a
simple symmetric random walk and a classical random walk in a random environment.
A random walk (Xn)n∈N∪{0} in a sparse random environment (Sk, λk)k∈Z is a nearest
neighbor random walk on Z that jumps to the left or to the right with probability 1/2

from every point of Z \ {. . . , S−1, S0 = 0, S1, . . .} and jumps to the right (left) with
the random probability λk+1 (1 − λk+1) from the point Sk, k ∈ Z. Assuming that
(Sk − Sk−1, λk)k∈Z are independent copies of a random vector (ξ, λ) ∈ N× (0, 1) and
the mean Eξ is finite (moderate sparsity) we obtain stable limit laws for Xn, properly
normalized and centered, as n→∞. While the case ξ ≤M a.s. for some deterministic
M > 0 (weak sparsity) was analyzed by Matzavinos et al., the case Eξ =∞ (strong
sparsity) will be analyzed in a forthcoming paper.
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1 Introduction

Simple random walks on Z (the set of integers) arise in various areas of classical and
modern stochastics. However, their intrinsic homogeneity reduces in some situations
applicability of the simple random walks. Solomon [36] eliminated this drawback by
introducing a random environment which made a modified random walk space inhomoge-
neous. In the present article we investigate an intermediate model, called random walk
in a sparse random environment (RWSRE), in which homogeneity of an environment is
only perturbed on a sparse subset of Z. Since RWSRE is a particular case of a random
walk in a random environment (RWRE) we proceed by recalling the definition of the
latter.

Set Ω = (0, 1)Z and X = ZN. Let F be the Borel σ-algebra of subsets of Ω, P a
probability measure on (Ω,F) and G the σ-algebra generated by the cylinder sets in
X . A random environment is a random element ω = (ωn)n∈Z of the measurable space
(Ω,F) distributed according to P . A quenched (fixed) environment ω provides us with a
probability measure Pω on X whose transition kernel is given by

Pω{Xn+1 = j|Xn = i} =


ωi, if j = i+ 1,

1− ωi, if j = i− 1,

0, otherwise.

With the initial condition X0 := 0 the sequence X = (Xn)n∈N0
is a Markov chain on

Z (under Pω) which is called random walk in the random environment ω. Here and
hereafter, N0 := N ∪ {0}. It is natural to investigate RWRE from two viewpoints which
are different in many aspects: under the quenched measure Pω for almost all (with
respect to P ) ω, that is, for a typical ω or under an annealed measure. Formally, the
annealed measure P on (Ω×X ,F ⊗ G) is defined as a semi-direct product P = P n Pω
via the formula

P{F ×G} =

∫
F

Pω{G}P (dω), F ∈ F , G ∈ G.
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Note that in general X is no longer a Markov chain under P. Usually one assumes
that an environment ω forms a stationary and ergodic sequence or even a sequence of
iid (independent and identically distributed) random variables. In this setting RWRE
has attracted a fair amount of attention among probabilistic community resulting in
quenched and annealed limit theorems [3, 11, 12, 25, 26, 35, 37] and large deviations [5,
7, 9, 15, 19, 33, 34, 38, 39]. This list of references is far from being complete.

We aim at establishing annealed limit theorems for X (that is, under P) in a so called
sparse random environment which corresponds to a particular choice of P which is
specified as follows. Let ((ξk, λk))k∈Z be a sequence of independent copies of a random
vector (ξ, λ) which satisfies λ ∈ (0, 1) and ξ ∈ N a.s. For n ∈ Z, set

Sn =


∑n
k=1 ξk, if n > 0,

0, if n = 0,

−
∑0
k=n+1 ξk, if n < 0.

The sparse random environment ω = (ωn)n∈Z is defined by

ωn =

{
λk+1, if n = Sk for some k ∈ Z,
1
2 , otherwise.

(1.1)

The model (with λk in (1.1) replacing λk+1) was introduced by Matzavinos, Roitershtein
and Seol [30]. These authors obtained various results including a recurrence/transience
criterion, a strong law of large numbers and limit theorems. However, many results
in [30] were proved under quite restrictive conditions including boundedness of ξ, a
strong ellipticity condition for the distribution of λ and independence of ξ and λ. In this
setting some essential properties of X remain hidden. Our main purpose is to relax the
aforementioned assumptions substantially, thereby establishing limit theorems in full
generality, and to find out how distributional properties of the vector (ξ, λ) affect the
asymptotic behavior of X. It turns out that the asymptotics of X is regulated by the
tail behaviors of ξ and ρ := (1− λ)/λ which determine sparsity of the environment and
the local drift of the environment, respectively. In this paper we investigate the case
where Eξ <∞. We call the corresponding environment ‘moderately sparse’, whereas in
the opposite case where Eξ =∞ we say that the environment is ‘strongly sparse’. The
analysis of X in a strongly sparse environment requires completely different techniques
and will be carried out in a companion paper [6].

The present article is organized as follows. In Section 2 we formulate our limit
theorems for X and the first passage times of X. In Section 3.1 we describe our
approach and define a branching process Z in a random environment which is used to
analyze the random walk X. In Section 3.2 we introduce necessary notation related
to the process Z. In Section 4 we explain a heuristic behind our proof and present a
number of important estimates and decompositions used throughout the paper. Among
other things, we demonstrate in this section how to reduce the initial problem to the
asymptotic analysis of sums of certain iid random variables. The tail behavior of these
variables is discussed in Section 5. Section 6 is devoted to the analysis of a particular
critical Galton–Watson process with immigration which naturally arises in the context
of random walks in the sparse random environment. The proofs of the main results
are given in Sections 7.1, 7.2 and 7.3. The proofs of auxiliary lemmas can be found in
Section 7.4 and the Appendix.
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2 Main results

We focus on the case when X is P-a.s. transient to +∞ and the environment is
moderately sparse, that is, Eξ <∞. Recall the notation

ρ =
1− λ
λ

.

According to Theorem 3.1 in [30], X is P-a.s. transient to +∞ if

E log ρ ∈ [−∞, 0) and E log ξ <∞. (2.1)

The first inequality excludes the degenerate case ρ = 1 a.s. in which X becomes a
simple random walk. The second inequality is always true for the moderately sparse
environment. We note right away that our standing assumptions E log ρ ∈ [−∞, 0) and
Eξ <∞ hold under the conditions of our main results, Theorems 2.2 and 2.6.

The sequence (Tn)n∈Z of the first passage times defined by

Tn = inf{k ≥ 0 : Xk = n}, n ∈ Z

is of crucial importance for our arguments. Of course, the observation that the asymp-
totics of X can be derived from that of (Tn) is not new and has been exploited in many
earlier papers in the area of random walks in random environments. Assuming only
transience to the right it is shown on p. 12 in [30] that

lim
n→∞

TSn
n

= ETS1 P− a.s.

This in combination with Lemma 4.4 in [30] leads to the conclusion that

lim
n→∞

Xn

n
= Eξ/ETS1

=: v and lim
n→∞

Tn
n

=
1

v
P− a.s. (2.2)

whenever the environment is moderately sparse. Furthermore, under the additional
assumption that ξ and λ are independent, Theorem 3.3 in [30] states that

v =
(1− Eρ)Eξ

(1− Eρ)Eξ2 + 2Eρ(Eξ)2
(2.3)

provided that Eρ < 1 and Eξ2 <∞, and v = 0, otherwise.
In Proposition 2.1 we give an explicit formula for v when ξ and λ are allowed to be

dependent.

Proposition 2.1. Assume that E log ρ ∈ [−∞, 0) and Eξ <∞. Then

v =
(1− Eρ)Eξ

(1− Eρ)Eξ2 + 2EξEρξ
,

1

v
=

1

Eξ

(
Eξ2 +

2EξEρξ

1− Eρ

)
(2.4)

provided that Eρ < 1, Eρξ <∞ and Eξ2 <∞, and v = 0 (1/v =∞), otherwise.

Turning to weak convergence results we first formulate our assumptions on the
distribution of ρ. Two different sets of conditions will be used:

(P1) for some α ∈ (0, 2]

Eρα = 1, Eρα log+ ρ <∞ and the distribution of log ρ is nonarithmetic,

where log+ x := max(0, log x);

(P2) there exists an open interval I ⊂ (0,∞) such that Eρx < 1 for all x ∈ I.
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Assuming that (P1) holds for some α > 0 we further distinguish two cases pertaining to
the distribution of ξ:

(Ξ1) Eξ2α∨1 <∞, where x ∨ y := max(x, y);

(Ξ2) there exists a slowly varying function ` such that

P{ξ > t} ∼ t−β`(t), t→∞ (2.5)

for some β ∈ (1, 2α], and Eξ2α =∞ if β = 2α.

Finally, if (P2) holds for some open interval I we assume that either (Ξ1) holds for some
α ∈ I or the regular variation assumption in (Ξ2) holds for some β satisfying β/2 ∈ I.

We summarize our results in Table 1 with an emphasis on which component of the
environment dominates1.

Table 1: Influence of the environment and limit theorems for Tn.
(Ξ1) (Ξ2)

(P1)

In case β < 2α apply (P2) with α = β/2

In case β = 2α and limt→∞ `(t) = 0 apply
Thm. 2.2 (A2) (ρ dominates)

Apply Thm. 2.2 (A1) (ρ
dominates)

In case β = 2α and limt→∞ `(t) = C` ∈ (0,∞)

apply Thm. 2.2 (A3) (contributions of ρ and
ξ are comparable)
In case β = 2α and limt→∞ `(t) = +∞ apply
Thm. 2.6 (B1) (ξ dominates)
In case β > 2α apply (P1) and (Ξ1) (because
(Ξ2) with β > 2α imply (Ξ1))

(P2) In case 2 ∈ I apply Prop.
2.9 (contributions of ρ

and ξ are comparable)

In case β ∈ (1, 4) and β/2 ∈ I apply Thm.
2.6 (B2) (ξ dominates)

In what follows, for α ∈ (0, 2), we denote by Sα a random variable with an α-stable
distribution defined by

− logE exp(−uSα) = Γ(1− α)uα, u ≥ 0,

where Γ(·) is the gamma function, if α ∈ (0, 1);

logE exp(iuS1) = −(π/2)|u| − iu log |u|, u ∈ R;

logE exp(iuSα) = |u|αΓ(2− α)

α− 1
(cos(πα/2)− i sin(πα/2)signu), u ∈ R,

if α ∈ (1, 2). Note that Sα is a positive random variable when α ∈ (0, 1) and it has a

spectrally positive α-stable distribution when α ∈ [1, 2). Throughout the paper
d−→ and

P−→ will mean convergence in probability and convergence in distribution, respectively.
In Theorem 2.2 and Corollary 2.4 we treat the case (P1).

Theorem 2.2. Assume that one of the following sets of assumptions is satisfied:

(A1) (P1) holds for some α ∈ (0, 2], (Ξ1) holds and E(ρξ)α <∞;

1In some cases we also need additional technical assumptions concerning the joint distribution of ρ and ξ,
for instance, E(ρξ)α <∞. These will be stated explicitly in the corresponding theorems.
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(A2) (P1) holds for some α ∈ (1/2, 2] and (Ξ2) holds with β = 2α and limt→∞ `(t) = 0,
and E(ρξ)α <∞;

(A3) (P1) holds for some α ∈ (1/2, 2), (Ξ2) holds with β = 2α and limt→∞ `(t) = C` ∈
(0,∞), Eρα+ε <∞ and Eραξα+ε <∞ for some ε > 0.

Then there exist absolute constants Aα, Bα and C1 such that the following limit relations
hold as n→∞.

• If α ∈ (0, 1), then Tn
Bαn1/α

d−→ Sα.

• If α = 1, then Tn−A1a(n)
B1n

d−→ C1 + S1, where a(n) ∼ n log n.

• If α ∈ (1, 2), then Tn−Aαn
Bαn1/α

d−→ Sα.

• If α = 2, then Tn−A2n
B2(n logn)1/2

d−→ N (0, 1), where N (0, 1) is a standard normal random
variable.

Remark 2.3. See (7.11), (7.12) and (7.14) for explicit forms of the constants Aα, Bα and
C1. In Theorem 2.2 we do not specify the constants by two reasons. First, these involve
characteristics of random variables that have not been introduced so far. Second, some
of these constants are essentially implicit in the sense that these cannot be calculated.

From Theorem 2.2 we deduce the following corollary.

Corollary 2.4. Under the assumptions and notation of Theorem 2.2 the following limit
relations hold as k →∞.

• If α ∈ (0, 1), then Xk
B−αα kα

d−→ S−αα .

• If α = 1, then
Xk−A−1

1 â(k)

A−2
1 B1k(log k)−2

d−→ − C1 − S1, where â(k) ∼ k(log k)−1.

• If α ∈ (1, 2), then Xk−A−1
α k

A
−(1+1/α)
α Bαk1/α

d−→ − Sα.

• If α = 2, then
Xk−A−1

2 k

A
−3/2
2 B2(k log k)1/2

d−→ N (0, 1).

Remark 2.5. When α ∈ (0, 1) the distribution of S−αα is called the Mittag-Leffler distri-
bution with parameter α. The term stems from the facts that

E exp(uΓ(1− α)S−αα ) =
∑
n≥0

un

Γ(1 + nα)
, u ∈ R

and that the right-hand side defines the Mittag-Leffler function with parameter α.

Our next theorem treats weak convergence of Tn in cases where ξ plays a dominant
role.

Theorem 2.6. Assume that one of the following sets of assumptions is satisfied:

(B1) (P1) holds for some α ∈ (1/2, 2], (Ξ2) holds with β = 2α and limt→∞ `(t) = +∞,
and E(ρξ)α <∞;

(B2) (P2) holds and (Ξ2) holds with β ∈ (1, 4) such that β/2 ∈ I and E(ρξ)β/2+ε <∞ for
some ε > 0.

In the case (B2) put α := β/2. Then there exist the functions cα(t) for α ∈ (1/2, 2),
q1(t) and r2(t) regularly varying at ∞ of indices 1/α, 1 and 1/2, respectively, and the
absolute constants A∗α and B∗α for α ∈ (1/2, 2] such that the following limit relations hold
as n→∞.

• If α ∈ (1/2, 1), then Tn
B∗αcα(n)

d−→ Sα.
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• If α = 1, then Tn−n−q1(A∗1n)
B∗1 c1(n)

d−→ S1.

• If α ∈ (1, 2), then Tn−A∗αn
B∗αcα(n)

d−→ Sα.

• If α = 2, then Tn−A∗2n
B∗2 r2(n)

d−→ N (0, 1).

Remark 2.7. This is a counterpart of Remark 2.3. Explicit forms of the normalizing
and centering sequences in Theorem 2.6 and Corollary 2.8 given below can be found in
(7.16), (7.17), (7.18) and (7.19), and (7.20), (7.21), (7.22) and (7.23), respectively.

Before formulating the corresponding limit theorems for Xk we need to introduce
more notation. For α ∈ (1/2, 1), denote by c←α (t) any positive function satisfying
cα(c←α (t)) ∼ c←α (cα(t)) ∼ t as t→∞. Since cα(t) is regularly varying at∞ such c←α (t) do
exist by Theorem 1.5.12 in [2].

Corollary 2.8. Under the assumptions and notation of Theorem 2.6 the following limit
relations hold as k →∞.

• If α ∈ (1/2, 1), then Xk
(B∗α)

−αc←α (k)

d−→ S−αα .

• If α = 1, then Xk−s(k)
t(k)

d−→ −S1 for appropriate sequences s(k) and t(k) which are
specified in formula (7.21).

• If α ∈ (1, 2), then Xk−(A∗α)
−1k

(A∗α)
−(1+1/α)B∗αcα(k)

d−→ − Sα.

• If α = 2, then Xk−(A∗2)
−1k

(A∗2)
−3/2B∗2 r2(k)

d−→ N (0, 1).

The last result of this section is given for completeness only. It can be derived from a
general central limit theorem (Theorem 2.2.1 in [40]) for random walk in a stationary and
ergodic random environment. Since the sparse random environment is not stationary in
general, to apply this theorem one has to pass to a stationary and ergodic environment.
In Theorem 2.1 in [30] it is shown that such a passage is possible whenever Eξ <∞.

Proposition 2.9. Assume that (P2) and (Ξ1) hold for some α ≥ 2. Then there exists
σ0 ∈ (0,∞) such that, as n→∞,

Tn − v−1n
σ0n1/2

d−→ N (0, 1)

and
Xn − vn
σ0v3/2n1/2

d−→ N (0, 1),

where v is given in (2.4).

3 Branching processes in random environment with immigration

The connection between a random walk and a branching process with immigration
dates back to Harris [22]. In the context of a random walk in a random environment this
connection was successfully used by Kozlov [29] and Kesten, Kozlov and Spitzer [26].
In particular, these authors have shown that the asymptotic behavior of RWRE can be
obtained from that of the total progeny of the aforementioned branching process. Since
we are going to exploit the same idea we first recall a construction of the latter process.
Most of the material in Section 3.1 can be found in [26].

3.1 Branching process with immigration

Throughout the paper the fact that Xn →∞ P-a.s. plays a crucial role. Let U (n)
i be

the number of steps of the process X from i to i− 1 during the time interval [0, Tn), that
is,

U
(n)
i = #

{
k < Tn : Xk = i,Xk+1 = i− 1

}
, i ≤ n.
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Since XTn = n and X0 = 0 we have, for n ∈ N,

Tn = # of steps during [0, Tn)

= # of steps to the right during [0, Tn) + # of steps to the left during [0, Tn)

= n+ 2 ·# of steps to the left during [0, Tn)

= n+ 2

n∑
i=−∞

U
(n)
i .

Recalling that the random walk X is transient to the right we infer∑
i<0

U
(n)
i ≤ total time spent by X in (−∞, 0) <∞ a.s. (3.1)

In particular, for any γ > 0,

n−γ
∑
i<0

U
(n)
i

P−→ 0, n→∞.

Thus, the asymptotics of Tn as n→∞ is regulated by that of n+ 2
∑n
i=0 U

(n)
i .

In what follows, we write Geom(p) for a geometric distribution with success probabil-
ity p, that is,

Geom(p){`} = p(1− p)`, ` ∈ N0.

Claim. Let ω and n be fixed. Then, for 0 ≤ j ≤ n, U (n)
n−j is equal to the size of the jth

generation (excluding the immigrant) of an inhomogeneous branching process with one
immigrant in each generation. Under Pω, the offspring distribution of the immigrant
and the other particles in the (j − 1)st generation is Geom(ωn−j).

Proof of the claim. First note that U (n)
n = 0 because X cannot reach n before time

Tn. Further, U (n)
n−1 = V

(n−1)
0 , where V (n−1)

0 is the number of excursions to the left of n− 1

made by X before time Tn. Transitivity of X entails that the Pω-distribution of V (n−1)
0 is

Geom(ωn−1). Finally, for 2 ≤ j ≤ n− 1, we have

U
(n)
n−j =

U
(n)
n−j+1∑
k=1

V
(n−j)
k + V

(n−j)
0 a.s.,

where V (n−j)
0 denotes the number of excursions to the left from n − j before the first

excursion to the left from n− j + 1 (that is, before the time Tn−j+1) and V (n−j)
k denotes

the number of excursions to the left from n − j during the kth excursion to the left
from n − j + 1. Under Pω, the random variables (V

(n−j)
k )k≥0 are iid with distribution

Geom(ωn−j) and also independent of U (n)
n−j+1. The proof of the claim is complete.

Reversing the order of indices leads to a branching process Z = (Zk)k≥0 in a random
environment (BPRE) with one immigrant entering the system in each generation. From
the very beginning we stress that immigrants in our model are ‘artificial’, that is, even
though they reproduce, they do not belong to any generation and, as such, they are not
counted. The evolution of Z can be described as follows. An immigrant enters the 0th
generation which is originally empty, that is, Z0 = 0. She gives birth to a random number
of offspring with Pω-distribution Geom(ω1) which form the first generation. For n ∈ N,
an immigrant enters the nth generation. She and the particles of the nth generation,
independently of each other and the particles in the previous generations, give birth to
random numbers of offspring with Pω distribution Geom(ωn+1). The number of these
newborn particles which form the (n+ 1)st generation is given by

Zn+1 =

Zn∑
k=0

G
(n)
k , n ∈ N0,
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where G(n)
0 is the number of offspring of the (n + 1)st immigrant and, for k ∈ N, G(n)

k

is the number of offspring of the kth particle in the nth generation (we set G(n)
k = 0

if the kth particle in the nth generation does not exist). Observe that, under Pω, for
each n ∈ N0, the random variables (G

(n)
k )k≥0 are iid with distribution Geom(ωn) and also

independent of Zn.

Note that when the random environment is sparse (see (1.1)) and fixed, for the most
time, the branching process Z behaves like a critical Galton–Watson process with one
immigrant and Geom(1/2) offspring distribution. Only the particles of generation Si − 1

for i ∈ N as well as the immigrants arriving in this generation reproduce according to
Geom(λi) distribution. Averaging over ω and taking into account the structure of the
environment we obtain

Sn∑
j=0

U
(Sn)
j

d
=

Sn∑
k=1

Zk and Sn +

Sn∑
j=0

U
(Sn)
j

d
= Sn +

Sn∑
k=1

Zk, n ∈ N (3.2)

under the annealed probability P. This leads to the most important conclusion of the
present section

TSn
d
= Sn + 2

Sn∑
k=1

Zk +OP(1), n ∈ N, (3.3)

where OP(1) is a term which is bounded in probability. Distributional equality (3.3) will
prove useful on many occasions.

3.2 Notation

Before we explain the strategy of our proof some more notation have to be introduced.
Denote by Z(k, n) the number of progeny residing in the nth generation of the kth
immigrant. In particular, Z(k, k) is the number of offspring of this immigrant. Then

Zn =

n∑
k=1

Z(k, n).

For n ∈ N and 1 ≤ i ≤ n, let Y (i, n) denote the number of progeny in the generations
i, i+ 1, . . . , n of the ith immigrant, that is,

Y (i, n) =

n∑
k=i

Z(i, k).

Similarly, for i ∈ N, we denote by Yi the total progeny of the ith immigrant, that is,

Yi = Y (i,∞) =
∑
k≥i

Z(i, k).

We also define Wn to be the total population size in the first n generations, that is,

Wn =

n∑
j=1

Zj , n ∈ N.

Motivated by the structure of the environment we shall often divide the population into
blocks which include generations 1, . . . , S1; S1 + 1, . . . , S2 and so on. As a preparation,
we write

Zn = ZSn , n ∈ N
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for the number of particles in the generation Sn,

Wn = WSn −WSn−1
=

Sn∑
j=Sn−1+1

Zj , n ∈ N

for the total population in the generations Sn−1 + 1, . . . , Sn and

Yn =

Sn∑
j=Sn−1+1

Yj , n ∈ N

for the total progeny of immigrants arriving in the generations Sn−1, . . . , Sn − 1.

3.3 Analysis of the environment

The asymptotic behavior of the branching process Z depends heavily upon the
environment. At the end of this section we specify qualitatively two aspects of this
dependence. A random difference equation which arises naturally in the course of our
discussion, as well as in [26] and many other papers on RWRE, plays an important role
in the subsequent arguments.

We proceed by recalling the definitions of random difference equations and perpe-
tuities. Let (An, Bn)n∈N be a sequence of independent copies of an R2-valued random
vector (A,B). Further, let R0 be a random variable which is independent of (An, Bn)n∈N.
The sequence (Rk)k∈N0

, recursively defined by the random difference equation

Rk := Bk +AkRk−1, k ∈ N,

forms a Markov chain which is very well known and well understood. Assuming that
R0 = 0 and reversing the indices in an equivalent representation Rk = A1 · . . . ·Ak−1B1 +

A2·. . .·Ak−1B2+. . .+Bk leads to the random variableR∗k := B1+A1B2+. . .+A1·. . .·Ak−1Bk
satisfying R∗k

d
= Rk for all k ∈ N. Whenever

the series
∑
j≥1

Bj

j−1∏
l=1

Al converges a.s. (3.4)

its infinite version R∗∞ :=
∑
j≥1Bj

∏j−1
l=1 Al is called perpetuity because of a possible

actuarial application. The study of the random difference equations and perpetuities has
a long history going back to Kesten [24] and Grincevičius [17]. We refer the reader to
the recent monographs [4, 23] containing a comprehensive bibliography on the subject.

It is well-known that conditions E log |A| ∈ [−∞, 0) and E log+ |B| <∞ are sufficient

for (3.4) and the distributional convergence Rk
d−→ R∗∞ as k → ∞. There are numer-

ous results in the literature concerning the tail behavior of R∗∞. The first assertion of
this flavor is the celebrated theorem by Kesten [24] (see also Goldie [16] and Grince-
vičius [18]), to be referred to as the Kesten-Grincevičius-Goldie theorem. It states that
the distribution of R∗∞ has a heavy right tail under the assumptions A > 0 a.s., EAs = 1

for some s > 0 and some additional conditions, see formula (7.39) below for more details
in the particular case (A,B) = (ρ, ξ). The tail behavior of R∗∞ is also well understood
in some other cases, in particular, when P{|B| > x} is regularly varying at∞ (see, for
instance, [18], [20] and [8]).

Now we switch attention from the general random difference equations to a particular
one which features in the analysis of BPRE Z. Using the branching property one easily
obtains the following recurrence

R̄0 := EωZ0 = 0, R̄k := EωZk = EωZSk = ρkξk + ρkEωZSk−1
= ρkξk + ρkR̄k−1, k ∈ N.

EJP 24 (2019), paper 69.
Page 10/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP330
http://www.imstat.org/ejp/


Random walks in a moderately sparse random environment

This shows, among others, that the Markov chain (R̄k)k∈N0
is an instance of the random

difference equation which corresponds to (A,B) = (ρ, ρξ). Asymptotic distributional
properties of a particular perpetuity which corresponds to (A,B) = (ρ, ξ) are essentially
used in the proof of Lemma 7.2.

4 Proof strategy

A weak convergence result for Tn, properly normalized and centered, will be derived
from the corresponding result for TSn , again properly normalized and centered. In view
of (3.3), the latter may in principle be affected by the asymptotic behavior of Sn, WSn or
both. Fortunately, the contribution of Sn is degenerate in the limit, for it is only regulated
by the law of large numbers, fluctuations of Sn around its mean do not come into play.
Summarizing, analysis of the asymptotics of WSn is our dominating task.

While dealing with WSn our main arguments follow the strategy invented by Kesten
et al. [26]. Namely, for large n we decompose WSn as a sum of random variables which
are iid under the annealed probability P. For this purpose we define extinction times

τ0 := 0, τk := min{j > τk−1 : Zj = 0}, k ∈ N. (4.1)

Let us emphasize that the extinctions of Z are ignored in the generations other than S1,
S2, . . . Set

W̄τn := WSτn
−WSτn−1

, n ∈ N

and note that (W̄τn , τn − τn−1)n∈N are iid random vectors. We have

τ∗n∑
k=1

W̄τk ≤
Sn∑
k=1

Zk ≤
τ∗n+1∑
k=1

W̄τk , (4.2)

where τ∗n is the number of extinctions of Z in the generations S0, . . . , Sn, that is,

τ∗n := max{k ≥ 0 : τk ≤ n}, n ∈ N.

It turns out that the extinctions occur relatively often as the following lemma confirms.

Lemma 4.1. Assume that E log ρ ∈ [−∞, 0) and E log ξ <∞. Then Eτ1 <∞. If addition-
ally Eρε <∞ and Eξε <∞ for some ε > 0, then E exp(γτ1) <∞ for some γ > 0.

The proof of Lemma 4.1 is given in the Appendix.
Under the assumptions of our main results µ := Eτ1 <∞ by Lemma 4.1. The strong

law of large numbers for renewal processes makes it plausible that, for large n, the

behavior of WSn is comparable with the behavior of the sum
∑bµ−1nc
k=1 W̄τk . The latter,

properly centered and normalized, converges in distribution if and only if the distribution
of W̄τ1 belongs to the domain of attraction of a stable law. To check the latter, for i ∈ N,
we divide particles residing in the generations Si−1 + 1, . . . , Si into groups:

• P1,i – the progeny residing in the generations Si−1 + 1, . . . , Si− 1 of the immigrants
arriving in the generations Si−1, . . . , Si − 2, the number of these being

W0
i :=

Si−1∑
j=Si−1+1

Si−1∑
k=j

Z(j, k);

• P2,i – the progeny residing in the generations Si−1 + 1, . . . , Si− 1 of the immigrants
arriving in the generations 0, 1, . . . , Si−1 − 1, the number of these being

W
↓
i :=

Si−1∑
j=1

Si−1∑
k=Si−1+1

Z(j, k);
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S0

P1,1

P1,2

P1,3

S1

S2

S3

P2,3

P2,2

Figure 1: The generations 0 through S3 of the BPRE Z and the partition of the corre-
sponding population into parts Pi,j , i, j = 1, 2, 3. The bold horizontal lines represent
particles in the generations S1, S2 and S3, that is, those comprising the groups P3,i,
i = 1, 2, 3. By definition, P2,1 = �.

• P3,i – particles of the generation Si, the number of these being Zi.

The aforementioned partition of the population which is depicted on Figure 1 induces
the following decompositions

Wi = W0
i +W↓i +Zi, i ∈ N a.s.

and

W̄τ1 =

τ1∑
i=1

W0
i +

τ1∑
i=1

W
↓
i +

τ1∑
i=1

Zi a.s.

which are of primary importance for what follows.
Depending on the assumptions (P1), (P2), (Ξ1) or (Ξ2) the random variables

∑τ1
i=1W

0
i ,∑τ1

i=1W
↓
i and

∑τ1
i=1Zi may exhibit different tail behaviors. Often, one of the random

variables dominates the others thereby determining the tail behavior of the whole sum
W̄τ1 .

5 Tail behavior of W̄τ1

In this section we do not assume that Eξ <∞.
We first analyze the tail behavior of

∑τ1
i=1W

0
i . Note that by construction (W0

i )i∈N are
iid and the random variable τ1 does not depend on the future of the sequence (W0

i )i∈N in
the sense of the definition given by Denisov, Foss, Korshunov on p. 987 in [10]. The latter
means that, for each n ∈ N, the collections of random variables ((W0

k)k≤n,1{τ1≤n}) and
(W0

k)k>n are independent. This observation in combination with Corollary 3 in [10] and
Theorem 1 in [28] yields the following lemma which will be used many times throughout
the paper.

Lemma 5.1. Assume that P{W0
1 > x} is regularly varying at infinity and τ1 has a finite

exponential moment. Then

P

{ τ1∑
i=1

W0
i > x

}
∼ (Eτ1)P{W0

1 > x}, x→∞. (5.1)
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Proof. If EW0
1 < ∞, the claim follows from Corollary 3 in [10]. If EW0

1 = ∞ we use
Theorem 1 in [28] to conclude that, as t→∞,

∫ t

0

P

{
τ1∑
i=1

W0
i > x

}
dx = E

[(
τ1∑
i=1

W0
i

)
∧ t

]

∼ (Eτ1)E
[
W0

1 ∧ t
]

= (Eτ1)

∫ t

0

P{W0
1 > x}dx.

By the monotone density theorem, see Theorem 1.7.2 in [2], the last formula entails
(5.1).

Lemma 5.2. Assume that (2.5) holds with some β > 0. Then

P{W0
1 > x} ∼ Eϑβ/2x−β/2`(x1/2), x→∞,

where ϑ is a random variable with Laplace transform

Ee−sϑ = 1/ cosh(s1/2), s ≥ 0. (5.2)

The proof of Lemma 5.2 is given in Section 6. In the next two lemmas we provide
moment estimates for the two other summands

∑τ1
i=1W

↓
i and

∑τ1
i=1Zi.

Lemma 5.3. Assume that E log ρ ∈ [−∞, 0) and that, for some κ ≤ 2, E(ρξ)κ and Eξκ are
finite. Then EZκ1 <∞ and there exists a positive constant C such that, for all n ∈ N,

EZκn ≤


C if Eρκ < 1,

Cn if Eρκ = 1,

Cγn if Eρκ > 1

(5.3)

If additionally Eξ2κ <∞, then
EWκ

1 <∞. (5.4)

Remark 5.4. Since ξ ≥ 1 a.s., the assumption E(ρξ)κ < ∞ entails Eρκ < ∞. This
explains the absence of the latter condition in Lemma 5.3.

Lemma 5.5. Assume that, for some κ ≤ 2, Eρκ < 1, E(ρξ)κ and Eξκ are finite. Then, for
all κ0 ∈ (0, κ),

E

(
τ1∑
i=1

Zi

)κ0

<∞. (5.5)

If additionally Eξ3κ/2 <∞, then

E

(
τ1∑
i=1

W
↓
i

)κ0

<∞. (5.6)

Lemma 5.6 states that under the assumption (P1) the distribution of
∑τ1
k=1

(
Zk+W↓k

)
has a power tail.

Lemma 5.6. Assume that (P1) holds for some α ∈ (0, 2], Eξ3α/2 < ∞ and E(ρξ)α < ∞.
Then

P

{ τ1∑
k=1

(
Zk +W↓k

)
> x

}
∼ C2(α)x−α, x→∞

for a positive constant C2(α).

Lemma 5.7 points out the tail behavior of W̄τ1 in the situation where the slowly
varying factor in (Ξ2) is a constant.
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Lemma 5.7. Assume that (P1) holds for some α ∈ (0, 2), (Ξ2) holds with β = 2α and `

such that limt→∞ `(t) = C` > 0, Eρα+ε <∞ and Eραξα+ε <∞ for some ε > 0. Then

P{W̄τ1 > x} ∼ ((Eτ1)(Eϑα)C` + C2(α))x−α, x→∞,

where C2(α) is the same constant as in Lemma 5.6.

The proofs of Lemmas 5.3 through 5.7 are postponed until Section 7.4.
For the ease of reference the tail behavior of W̄τ1 is summarized in the following

proposition.

Proposition 5.8. The following asymptotic relations hold.

(C1) If (P1) holds for some α ∈ (0, 2], either Eξ2α < ∞ or (Ξ2) holds with β = 2α,
limt→∞ `(t) = 0, and E(ρξ)α <∞, then

P{W̄τ1 > x} ∼ C2(α)x−α, x→∞,

where C2(α) is the same constant as in Lemma 5.6.

(C2) If (P1) holds for some α ∈ (0, 2), (Ξ2) holds with β = 2α and limt→∞ `(t) = C` ∈
(0,∞), Eρα+ε <∞ and Eραξα+ε <∞ for some ε > 0, then

P{W̄τ1 > x} ∼ ((Eτ1)(Eϑα)C` + C2(α))x−α, x→∞.

(C3) If (P1) holds for some α ∈ (0, 2], (Ξ2) holds with β = 2α and limt→∞ `(t) =∞, and
E(ρξ)α <∞, then

P{W̄τ1 > x} ∼ (Eτ1)(Eϑα)x−α`(x1/2), x→∞.

(C4) If (P2) holds, (Ξ2) holds for some β ∈ (0, 4) such that β/2 ∈ I and E(ρξ)β/2+ε <∞
for some ε > 0, then

P{W̄τ1 > x} ∼ (Eτ1)(Eϑβ/2)x−β/2`(x1/2), x→∞.

Proof. Under the assumptions (Ci), i = 1, 2, 3, 4, τ1 has some finite exponential moment
by Lemma 4.1. This fact combined with Lemma 5.1 ensures (5.1) whenever the right tail
of W0

1 is regularly varying.
Proof of (C1). Each of Eξ2α <∞ and (Ξ2) with β = 2α implies Eξ3α/2 <∞. Therefore,
in view of Lemma 5.6 it is enough to show that

P

{ τ1∑
i=1

W0
i > x

}
= o(x−α), x→∞. (5.7)

If (Ξ2) holds with β = 2α, then according to Lemma 5.2

P{W0
1 > x} ∼ Eϑαx−α`(x1/2), x→∞.

This in combination with limt→∞ `(t) = 0 which holds by assumption and (5.1) proves
(5.7).

Assuming that Eξ2α <∞ we intend to show that

E
[ τ1∑
i=1

W0
i

]α
<∞ (5.8)

which, of course, entails (5.7). The proof of (5.8) utilizes two technical lemmas whose
formulations and proofs are postponed until later. Since τ1 does not depend on the future
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of the sequence (W0
i )i∈N, by Lemma A.1 it is enough to show that E[W0

1]α <∞. At the
beginning of Section 6 we show that W0

1 has the same distribution as the total progeny
of a critical Galton–Watson process with unit immigration and Geom(1/2) offspring
distribution stopped at random time ξ1 − 1. The conclusion E[W0

1]α < ∞ then follows
from Lemma 6.3.
Proof of (C2). This is just Lemma 5.7.
Proof of (C3). This follows from Lemma 5.2 in conjunction with (5.1) and Lemma 5.6
because (Ξ2) with β = 2α entails Eξ3α/2 <∞.
Proof of (C4). Since the interval I is open, there exists ε1 > 0 such that β/2+ε1 ∈ (0, 2],
Eρβ/2+ε1 < 1, Eξ3β/4+3ε1/2 <∞ and E(ρξ)β/2+ε1 <∞. In view of this Lemma 5.5 applies

with κ = β/2 + ε1 and κ0 = β/2 + ε1/2 which gives E
(∑τ1

i=1Zi
)β/2+ε1/2

< ∞ and

E
(∑τ1

i=1W
↓
i

)β/2+ε1/2
<∞. An appeal to Lemma 5.2 in combination with (5.1) does the

rest.

6 Critical Galton–Watson process with immigration

As has already been mentioned in Section 3, (Zn)0≤n≤ξ1−1
d
= (Zcrit

n )0≤n≤ξ1−1, where
ξ1 is assumed independent of (Zcrit

n )n∈N0
a critical Galton–Watson process with unit

immigration and Geom(1/2) offspring distribution. In this section we collect some known
properties of (Zcrit

n )n∈N0 and prove several auxiliary results which to our knowledge are
not available in the literature. The evolution of (Zcrit

n )n∈N0 is the same as that of the
BRPE Z with ωn ≡ 1/2 for all n ∈ N, see Section 3.1.

For n ∈ N, let W crit
n :=

∑n
k=1 Z

crit
k denote the total progeny in the first n generations.

Further, for n ∈ N and 1 ≤ k ≤ n, write Zcrit(k, n) for the number of the nth generation
progeny of the kth immigrant and Y crit(k, n) for the number of progeny of the kth
immigrant which reside in generations k through n, that is,

Y crit(k, n) =

n∑
j=k

Zcrit(k, j).

Here is the main result of this section of which Lemma 5.2 is an immediate conse-
quence because W0

1
d
= W crit

ξ1−1, where ξ1 is assumed independent of (W crit
k )k∈N.

Proposition 6.1. Let ς be an integer-valued random variable independent of (W crit
n )n∈N0

and such that

P{ς > x} ∼ x−2α`(x), x→∞

for some α > 0 and some ` slowly varying at∞. Then

P{W crit
ς > x} ∼ EϑαP{ς > x1/2} ∼ Eϑαx−α`(x1/2), x→∞,

where ϑ is a random variable with Laplace transform (5.2).

Remark 6.2. For fixed n ∈ N, EW crit
n = n(n+1)

2 and the distribution of W crit
n inherits an

exponential tail from Geom(1/2) offspring distribution. Thus, for ς which has distribution
with a heavy tail and is independent of (W crit

n )n∈N it is natural to expect that

W crit
ς ≈ const · ς2.

Proposition 6.1 makes this intuition precise.

Lemma 6.3 given next is used in the proof of Proposition 5.8, part (C1).

Lemma 6.3. Let ς be an integer-valued random variable independent of (W crit
n )n∈N0

and
such that Eς2α <∞ for some α > 0. Then E[W crit

ς ]α <∞.
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To prove Proposition 6.1 and Lemma 6.3 we need some auxiliary lemmas. The first
one is due to Pakes [32, Theorem 5].

Lemma 6.4. We have
n−2W crit

n
d−→ ϑ, n→∞, (6.1)

where ϑ is a random variable with Laplace transform (5.2).

In the cited article Pakes investigates Galton–Watson processes with general, not
necessarily unit, immigration. One of the standing assumptions of that paper is that
the probability of having no immigrants is positive. However, a perusal of the proof of
Theorem 5 in [32] reveals that the result still holds without this assumption.

With some additional effort one can prove the convergence of all moments in (6.1).

Lemma 6.5. For each s > 0,

lim
n→∞

E(n−2W crit
n )s = Eϑs. (6.2)

Proof. Suppose for the moment that we have verified that

sup
n≥n0

E exp(βn−2W crit
n ) <∞ (6.3)

for some β > 0 and some n0 ∈ N. Then in view of

sup
n≥n0

E(n−2W crit
n )s ≤ C(s) sup

n≥n0

E exp(βn−2W crit
n ) <∞

for all s > 0 and some constant C(s), the Vallée–Poussin criterion for uniform integrability
(see e.g. Theorem T22 in [31]) in combination with (6.1) ensures (6.2).

Left with the proof of (6.3) observe that, for fixed k ∈ N, the process initiated by
the kth immigrant (Zcrit(k, n))n≥k is a Galton–Watson process with Geom(1/2) offspring
distribution. Moreover, the processes started by different immigrants are iid. Therefore,
writing

W crit
n =

n∑
k=1

Zcrit
k =

n∑
k=1

k∑
j=1

Zcrit(j, k)

=

n∑
j=1

( n∑
k=j

Zcrit(j, k)

)
=

n∑
j=1

Y crit(j, n) a.s.

we obtain a representation of W crit
n as the sum of independent random variables. This

formula entails

E exp
(
xW crit

n

)
=

n∏
j=1

aj(x), x ≥ 0 (6.4)

(the case that both sides of (6.4) are infinite for some x > 0 is not excluded), where

aj(x) := E exp
(
xY crit(n− j + 1, n)

)
= E exp

(
xY crit(1, j)

)
, 1 ≤ j ≤ n, x ≥ 0.

We have a0(x) = 1 for all x ≥ 0 and

a1(x) = E exp
(
xZcrit(1, 1)

)
=
∑
k≥0

ekx2−k−1 = (2− ex)−1

for x ∈ [0, log 2). Using a decomposition

Y crit(1, j) =

Zcrit(1,1)∑
m=1

Y crit
m (1, j − 1) + Zcrit(1, 1), j ≥ 2 a.s., (6.5)
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where (Y crit
m (1, j − 1))m∈N are independent copies of Y crit(1, j − 1) which are also inde-

pendent of Zcrit(1, 1) we infer

aj(x) =
1

2− exaj−1(x)
, j ∈ N.

In particular, for every fixed j ∈ N0, aj(x) <∞ for all x from some right vicinity of the
origin.

Set bj(x) = exaj(x) for j ∈ N0 and x ≥ 0, so that

bj(x) =
ex

2− bj−1(x)
.

By technical reasons, it is more convenient to work with bj rather than aj . We intend to
show that, for every γ ∈ (0, 1/4), there exists K = K(γ) > 1 and x0(γ) > 0 such that

bj(x) ≤ 1 +Kx(j + 1). (6.6)

for j ∈ N0 and x > 0 satisfying j(1 + j)x ≤ γ and x < x0(γ).
Given γ ∈ (0, 1/4) pick K > 1 such that K −K2γ > 1. This is possible because the

largest root of the quadratic equation γx2 − x+ 1 = 0 is larger than one. There exists
x0(γ) > 0 such that

ex ≤ 1 + (K −K2γ)x, x ∈ (0, x0(γ)).

Moreover, since we assume j(1 + j)x ≤ γ we have

ex ≤ 1 +Kx−K2x2j(j + 1) = (1−Kxj)(1 +Kx(j + 1)).

Now (6.6) follows by the mathematical induction. While for j = 0 we obtain

b0(x) = ex ≤ 1 + (K −K2γ)x ≤ 1 +Kx, x ∈ (0, x0(γ)),

an induction step works as follows

bj(x) =
ex

2− bj−1(x)
≤ ex

1−Kjx
≤ 1 +Kx(j + 1)

for x ∈ (0, x0(γ)) and j(j + 1)x ≤ γ. The proof of (6.6) is complete.
Armed with (6.6) we can deduce (6.3). Given β ∈ (0, 1/4) take γ ∈ (β, 1/4) and pick

n0 ∈ N such that β/n2 < x0(γ) and (n+ 1)β ≤ nγ for n ≥ n0. Such a choice ensures that
j(j + 1)βn−2 ≤ γ for integer 0 ≤ j ≤ n whenever n ≥ n0. Using (6.4) and then (6.6) we
arrive at

E exp(βn−2W crit
n ) =

n∏
j=0

aj
(
βn−2

)
≤

n∏
j=0

bj
(
βn−2

)
≤

n∏
j=0

(1 +Kβn−2(j + 1)), n ≥ n0

for β ∈ (0, 1/4). It remains to note that

sup
n≥n0

n∏
j=0

(1 +Kβn−2(j + 1)) ≤ exp(3Kβ) <∞,

thereby finishing the proof of (6.3).

We are now ready to prove Proposition 6.1 and Lemma 6.3.
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Proof of Proposition 6.1. By virtue of (6.1) we infer W crit
n →∞ in probability and then

W crit
n →∞ a.s. by monotonicity. Therefore,

υx := inf{k ∈ N : W crit
k > x} ∈ [1,∞) a.s for x > 1.

For x > 1 we have
P{W crit

ς > x} = P{ς ≥ υx} = Eh(υx),

where h(y) := P{ς ≥ y}. Under the introduced notation, we have to prove that

lim
x→∞

Eh(υx)

h(x1/2)
= Eϑα. (6.7)

By a standard inversion technique à la Feller (see Theorem 7 in [13]) (6.1) entails

υx
x1/2

d−→ ϑ−1/2, x→∞. (6.8)

We claim that the latter implies further that

h(υx)

h(x1/2)

d−→ ϑα, x→∞. (6.9)

The simplest way to see it is to pass in (6.8) to versions which converge a.s., that is,

lim
x→∞

x−1/2υ∗x = (ϑ∗)−1/2 a.s.

and then exploit the fact that

lim
x→∞

h(y(x)x1/2)

h(x1/2)
= y−2α whenever lim

x→∞
y(x) = y ∈ (0,∞)

(see Theorem 1.5.2 in [2]). This gives

lim
x→∞

h((x−1/2υ∗x)x1/2)

h(x1/2)
= (ϑ∗)α a.s.

because ϑ∗ > 0 a.s.
With (6.9) at hand, relation (6.7) follows if we can show that

(
h(υx)/h(x1/2)

)
x≥x0

is
uniformly integrable for some x0 > 0. By Potter’s bound for regularly varying functions
(Theorem 1.5.6 (iii) in [2]), given A > 1 and δ > 0 there exists n1 ∈ N such that

h(υx)1{υx>n1}

h(x1/2)
≤ Amax((x−1/2υx)−2α−δ, (x−1/2υx)−2α+δ) a.s.

whenever x ≥ n21. Further, by monotonicity of h,

h(υx)1{υx≤n1}

h(x1/2)
≤ h(1)

h(x1/2)
1{υx≤n1} a.s.

Thus, for uniform integrability of
(
h(υx)/h(x1/2)

)
x≥x0

it suffices to check two things:
first,

sup
x≥4

xβ/2Eυ−βx <∞ (6.10)

for some β > 2α and second

sup
x≥x0

(
h(1)

h(x1/2)

)γ
P{υx ≤ n1} <∞ (6.11)
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for some γ > 1.
From the proof of Lemma 6.5 we know that E exp(sW crit

n1
) <∞ for some s > 0, whence

P{υx ≤ n1} = P{W crit
n1

> x} = O(e−sx), x→∞

which proves (6.11).
Now we intend to show that (6.10) holds for all β > 0. We have for x ≥ 4

Eυ−βx =

∫ 1

0

P{υ−βx > y}dy = β

∫ ∞
1

P{υx ≤ z}z−β−1dz ≤ β
∑
k≥2

P{υx ≤ k}(k − 1)−β−1

= β

[x1/2]∑
k=2

P{W crit
k > x}(k − 1)−β−1 + β

∑
k≥[x1/2]+1

P{W crit
k > x}(k − 1)−β−1

≤ β
[x1/2]∑
k=2

E(W crit
k )β

xβ(k − 1)β+1
+ β

∑
k≥[x1/2]+1

1

(k − 1)β+1

≤ const

xβ

[x1/2]∑
k=1

kβ−1 +O(x−β/2) = O(x−β/2),

where the last and penultimate inequalities follow from Lemma 6.5 and Markov’s in-
equality, respectively. The proof of Proposition 6.1 is complete.

Proof of Lemma 6.3. By Lemma 6.5, E[n−2W crit
n ]α ≤ C for all n ∈ N and some C > 0.

This entails
E[W crit

ς ]α =
∑
n≥1

E[n−2W crit
n ]αn2αP{ς = n} ≤ CEς2α <∞.

The proof of Lemma 6.3 is complete.

For later use, we note that, for n ∈ N,

EZcrit(1, n) = 1, VarZcrit(1, n) = 2n,

EY crit(1, n) = n, VarY crit(1, n) =
n(n+ 1)(2n+ 1)

3
.

(6.12)

The first three of these equalities follow by an elementary calculation. The fourth one
can be derived with the help of (6.5) and the mathematical induction.

7 Proofs

7.1 Proof of Proposition 2.1

Recalling that v = Eξ/ETS1 it suffices to show that

ETS1 =

{
Eξ2 + 2EξEρξ

1−Eρ , if Eρ < 1, Eρξ <∞,Eξ2 <∞;

∞, otherwise.

Using (3.3) yields

TSn
n

P−→ ETS1 , n→∞ ⇐⇒
∑Sn
j=1 Zj

n
=
WSn

n

P−→ 1

2
(ETS1 − Eξ) , n→∞.

Let us prove the latter convergence in probability. According to Lemma 4.1, we have
Eτ1 <∞ whenever E log ρ ∈ [−∞, 0) and E log+ ξ <∞. Recalling from (4.2) that

1

n

τ∗n∑
k=1

W̄τk ≤
WSn

n
≤ 1

n

τ∗n+1∑
k=1

W̄τk
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we conclude by the strong law of large numbers that

lim
n→∞

WSn

n
=

1

Eτ1
EW̄τ1 P− a.s.

Hence,

ETS1
= Eξ +

2

Eτ1
EW̄τ1 .

Left with identifying EW̄τ1 we recall that, for k ∈ N, Yk denotes the total progeny of
immigrants arriving in the generations Sk−1, . . . , Sk − 1, that is,

Yk =

Sk∑
j=Sk−1+1

Y (j,∞).

Since Y1, Y2, . . . are identically distributed and, for k ∈ N, Yk is independent of {τ1 ≥
k} = {ZS1

> 0, . . . , ZSk−1
> 0} we infer

EW̄τ1 = E

τ1∑
k=1

Yk =
∑
k≥1

EYk1{τ1≥k} =
∑
k≥1

EYkP{τ1 ≥ k} = EY1Eτ1

(if EY1 =∞, the formula just says that EW̄τ1 =∞). To calculate EY1 we note that

EωY (j,∞)1{j≤ξ1} =
(
ξ1 − j +

∑
k≥2

ξk

k−1∏
i=1

ρi

)
1{j≤ξ1} a.s.,

whence

EωY1 =
ξ1(ξ1 − 1)

2
+ ξ1ρ1

∑
k≥2

ξk

k−1∏
i=2

ρi a.s.,

where the a.s. convergence of the last series is secured by our assumptions E log ρ ∈
[−∞, 0) and Eξ <∞. Taking the expectation with respect to P yields

EY1 =

{
1
2Eξ(ξ − 1) + EξEρξ

1−Eρ , if Eρ < 1,Eρξ <∞,Eξ2 <∞;

∞, otherwise.

The proof of Proposition 2.1 is complete.

7.2 Proof of Theorem 2.2 and Corollary 2.4

The assumptions of Theorem 2.2 ensure that Eξ < ∞ and that µ := Eτ1 and s2 :=

Var τ1 are finite (for the latter use Lemma 4.1). It is also clear that the distribution of τ1
is nondegenerate, whence s2 > 0.

From Proposition 5.8 (parts (C1) and (C2)) we know that

P{W̄τ1 > x} ∼ Cx−α, x→∞,

where C = C2(α) in the cases (A1) and (A2) and C = (Eτ1)(Eϑα)C` + C2(α) in the case
(A3). Therefore, the distribution of W̄τ1 belongs to the domain of attraction of an α-stable
distribution. This means that∑n

k=1 W̄τk − a(n)

b(n)

d−→ Sα, n→∞ (7.1)

for some a(t) and b(t), where S2
d
= N (0, 1). To find a(t) and b(t) explicitly we use Theorem

3 on p. 580 and formula (8.15) on p. 315 in [14]:
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b(t) = (Ct)1/α and a(t) = 0 if α ∈ (0, 1);

b(t) = Ct and a(t) = t
∫ Ct
0
P{W̄τ1 > x}dx if α = 1;

b(t) = (Ct)1/α and a(t) = (EW̄τ1)t if α ∈ (1, 2);
b(t) = (Ct log t)1/2 and a(t) = (EW̄τ1)t if α = 2.

Our subsequent proof will be based on representation (3.3). In view of this we first
analyze the asymptotics of WSn .
Step 1. Limit theorems for WSn . We claim that

WSn − a(µ−1n)

b(µ−1n)

d−→ Sα, n→∞. (7.2)

In view of (4.2) relation (7.2) follows once we have checked that (7.1) entails∑τ∗n
k=1 W̄τk − a(µ−1n)

b(µ−1n)

d−→ Sα and

∑τ∗n+1
k=1 W̄τk − a(µ−1n)

b(µ−1n)

d−→ Sα, n→∞. (7.3)

According to the central limit theorem for renewal processes

τ∗n − µ−1n
sµ−3/2

√
n

d−→ N (0, 1), n→∞.

This implies that, for ε > 0 small enough, we can pick z = z(ε) so large that

P{τ∗n ≥ tn} ≥ 1− ε,

where tn := [µ−1n− sµ−3/2z
√
n]. Note that n = µtn +O

(
t
1/2
n

)
and that

lim
n→∞

a(tn)− a
(
tn +O

(
t
1/2
n

))
b
(
tn +O

(
t
1/2
n

)) = 0 and lim
n→∞

b
(
tn +O

(
t
1/2
n

))
b(tn)

= 1. (7.4)

These can be easily checked with the exception of the case α = 1 in which a proof of the
first relation is needed: for any r ∈ (1, 2],

a
(
tn +O

(
t
1/r
n

))
− a(tn)

b(tn)

=
tn
∫ Ctn+O(t1/rn )

Ctn
P{W̄τ1 > x}dx+O(t

1/r
n )

∫ Ctn+O(t1/rn )

0
P{W̄τ1 > x}dx

Ctn

≤
O
(
t
1/r
n

)
log tn

tn
= o(1), n→∞. (7.5)

Motivated by our later needs we have proved this in a slightly extended form with r

instead of 2.
To prove the first relation in (7.3) we write, for x ∈ R,

P

{∑τ∗n
k=1 W̄τk − a(µ−1n)

b(µ−1n)
≤ x

}
≤ ε+ P

{∑tn
k=1 W̄τk − a(µ−1n)

b(µ−1n)
≤ x

}

= ε+ P

{∑tn
k=1 W̄τk − a

(
tn +O

(
t
1/2
n

))
b
(
tn +O

(
t
1/2
n

)) ≤ x

}
.

Sending n→∞ in the last inequality and using (7.1) and (7.4) we obtain

lim sup
n→∞

P

{∑τ∗n
k=1 W̄τk − a(µ−1n)

b(µ−1n)
≤ x

}
≤ ε+ P{Sα ≤ x}.
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Letting now ε→ 0+ yields

lim sup
n→∞

P

{∑τ∗n
k=1 W̄τk − a(µ−1n)

b(µ−1n)
≤ x

}
≤ P{Sα ≤ x}.

A symmetric argument leads to

lim inf
n→∞

P

{∑τ∗n
k=1 W̄τk − a(µ−1n)

b(µ−1n)
≤ x

}
≥ P{Sα ≤ x}.

The second relation in (7.3) follows in a similar manner.
Step 2. Limit theorems for TSn.
Case α > 1. Since Eξ2 <∞ and

√
n = o(b(µ−1n)) we infer

Sn − (Eξ)n

b(µ−1n)

P−→ 0, n→∞

by the central limit theorem. Now

TSn − (Eξ + 2µ−1EW̄τ1)n

b(µ−1n)

d−→ 2Sα, n→∞ (7.6)

follows from (7.2) and (3.3) written in an equivalent form

TSn
d
= (Sn − (Eξ)n) + (Eξ)n+ 2WSn +OP(1), n→∞.

Case α = 1. Using the weak law of large numbers and (7.2) we arrive at

TSn − 2a(µ−1n)

Cµ−1n

d−→ µEξ

C
+ 2S1, n→∞. (7.7)

Case α < 1. Since n = o(b(µ−1n)) we conclude that Sn
b(µ−1n)

P−→ 0 as n→∞ by the weak
law of large numbers. This in combination with (7.2) and (3.3) proves

TSn
(Cµ−1n)1/α

d−→ 2Sα, n→∞. (7.8)

Step 3. Limit theorem for Tn. At this step we are going to deduce limit theorems
Tn from the corresponding results for TSn proved at the previous step. Set

ν(t) = inf{k ∈ N : Sk > t}, t ≥ 0,

so that (ν(t))t≥0 is the first passage time process associated with the random walk
(Sk)k∈N0 . The reason for introducing ν(t) is justified by

TSν(n)−1
≤ Tn ≤ TSν(n)

, n ∈ N. (7.9)

Case α ≥ 1. Fix any r ∈ (1, 2). Then Eξr <∞ and thereupon

ν(t)− (Eξ)−1t = o(t1/r), t→∞ a.s. (7.10)

by Theorem 4.4 on p. 89 in [21].
Subcase α = 1. Using (7.9) and (7.10) we obtain, for any x ∈ R and ε > 0,

P
{Tn − 2a((µEξ)−1n)

C(µEξ)−1n
> x

}
≤ P

{TSν(n)
− 2a((µEξ)−1n)

C(µEξ)−1n
> x

}
≤ P

{
ν(n) > (Eξ)−1n+ εn1/r

}
+ P

{TS
[(Eξ)−1n+εn1/r ]

− 2a([(µEξ)−1n+ εn1/r])

C(µEξ)−1n

+
2a([(µEξ)−1n+ εn1/r])− 2a((µEξ)−1n)

C(µEξ)−1n
> x

}
.
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Letting n→∞ yields, for x ∈ R,

lim sup
n→∞

P
{Tn − 2a((µEξ)−1n)

C(µEξ)−1n
> x

}
≤ P

{µEξ
C

+ 2S1 > x
}

having utilized (7.5), (7.7) and (7.10). Arguing similarly we get the converse inequality
for the lower limit, thereby proving that

Tn − 2a((µEξ)−1n)

C(µEξ)−1n

d−→ µEξ

C
+ 2S1, n→∞. (7.11)

Subcase α > 1. An analogous but simpler argument enables us to show that (7.6) entails

Tn − (1 + 2(µEξ)−1EW̄τ1)n

b((µEξ)−1n)

d−→ 2Sα, n→∞. (7.12)

Case α < 1. The proof given for the case α ≥ 1 does not work in the case (A1) when
α ≤ 1/2 because it is then not necessarily true that Eξr <∞ for some r > 1. In view of
this we use the weak law of large numbers

ν(t)

t

P−→ 1

µ
, t→∞ (7.13)

rather than the Marcinkiewicz-Zygmund strong law (7.10).

Another appeal to (7.9) gives, for any x ∈ R and ε > 0,

P

{
Tn

(C(µEξ)−1n)1/α
> x

}
≤ P

{
TSν(n)

(C(µEξ)−1n)1/α
> x

}
≤ P{ν(n) > ((Eξ)−1 + ε)n}+ P

{
TS[((Eξ)−1+ε)n]

(C(µEξ)−1n)1/α
> x

}
.

Sending n→∞ we obtain with the help of (7.8) and (7.13)

lim sup
n→∞

P

{
Tn

(C(µEξ)−1n)1/α
> x

}
≤ P{2Sα > x(1 + εEξ)−1/α}.

Letting ε→ 0+ and using continuity of the distribution of Sα yields

lim sup
n→∞

P

{
Tn

(C(µEξ)−1n)1/α
> x

}
≤ P{2Sα > x}.

The converse inequality for the lower limit can be derived analogously. Thus,

Tn
(C(µEξ)−1n)1/α

d−→ 2Sα, n→∞. (7.14)

The proof of Theorem 2.2 is complete.

Proof of Corollary 2.4. The forms of limit relations for Tn in our Theorem 2.2 and Theo-
rem on pp. 146–148 in [26] are the same, only the values of constants differ. In view of
this the limit relations for Xk in our setting are obtained by copying the corresponding
limit relations from the aforementioned theorem in [26].
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7.3 Proof of Theorem 2.6 and Corollary 2.8

The proof goes the same path as that of Theorem 2.2. However, appearance of
nontrivial slowly varying factors leads to minor technical complications. We shall only
give the weak convergence results explicitly (recall that in the formulation of Theorem
2.6 normalizing and centering functions were not specified). Also, we shall check several
claims wherever we feel it is necessary.

According to Proposition 5.8 (parts (C3) and (C4)),

P{W̄τ1 > x} ∼ Eτ1Eϑ
αx−α`(x1/2), x→∞,

where α = β/2 in case (B2). Therefore, limit relation (7.1) holds with some a(t) and b(t).
To identify them we need more notation. For α ∈ (1/2, 2), let cα(t) be any positive function
satisfying limt→∞ tP{W̄τ1 > cα(t)} = 1. Further, assuming that α = 2 let r2(t) be any
positive function satisfying limt→∞

∫
[0, r2(t)]

x2dP{W̄τ1 ≤ x}/(r2(t))2 = 1. By Lemma 6.1.3

in [23], cα(t) and r2(t) are regularly varying at ∞ of indices 1/α and 1/2, respectively.
For the latter, the fact is also needed that the function t 7→

∫
[0, r2(t)]

x2dP{W̄τ1 ≤ x} is

slowly varying at∞. Observe that the case α = 2 only arises under the assumptions (B1)

which then ensure that Eξ2 =∞. This in combination with the aforementioned lemma
yields

lim
t→∞

t−1/2r2(t) =∞. (7.15)

Using again Theorem 3 on p. 580 and formula (8.15) on p. 315 in [14] we obtain

b(t) = cα(t) and a(t) = 0 if α ∈ (1/2, 1);

b(t) = c1(t) and a(t) = t
∫ c1(t)
0

P{W̄τ1 > x}dx if α = 1;

b(t) = cα(t) and a(t) = (EW̄τ1)t if α ∈ (1, 2);

b(t) = r2(t) and a(t) = (EW̄τ1)t if α = 2.

Case α ∈ (1/2, 1). Repeating verbatim the proof of Theorem 2.2 for the case α ∈ (0, 1)

we obtain
Tn

(µEξ)−1/αcα(n)

d−→ 2Sα, n→∞. (7.16)

Case α = 1. We need an analogue of relation (7.5): for r ∈ (1, 2], as n→∞,

a
(
tn +O

(
t
1/r
n

))
− a(tn)

b(tn)

=
tn
∫ c1(tn+O(t1/rn ))

c1(tn)
P{W̄τ1 > x}dx+O(t

1/r
n )

∫ c1(tn+O(t1/rn ))

0
P{W̄τ1 > x}dx

c1(tn)

≤ tnP{W̄τ1 > c1(tn)}(c1(tn +O(t
1/r
n ))− c1(tn))

c1(tn)
+
O(t

1/r
n )

∫ c1(tn+O(t1/rn ))

0
P{W̄τ1 > x}dx

c1(tn)

= o(1).

The first summand tends to zero in view of two facts: limn→∞ tnP{W̄τ1 > c1(tn)} = 1

by the definition of c1(t) and limn→∞
(
c1
(
tn + O

(
t
1/r
n

))
− c1(tn)

)
/c1(tn) = 0 which is a

consequence of regular variation of c1(t). The second summand tends to zero because∫ c1(t)
0

P{W̄τ1 > x}dx is slowly varying at∞ as a superposition of the slowly varying and
regularly varying functions.

For Step 2 in the proof of Theorem 2.2 we need the following modified argument. In
view of (ξ2) the function P{ξ > t} is regularly varying at∞ of index −2 and Eξ2 can be
finite or infinite. Therefore, Sn satisfies the central limit theorem with normalization
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sequence which is regularly varying at∞ of index 1/2. Since c1(t) is regularly varying at
∞ of order 1 we infer

Sn − (Eξ)n

c1(n)

P−→ 0, n→∞

and thereupon
TSn − (Eξ)n− 2a(µ−1n)

µ−1c1(n)

d−→ 2S1, n→∞.

To pass from this limit relation to the final result

Tn − n− 2a((µEξ)−1n)

(µEξ)−1c1(n)

d−→ 2S1, n→∞, (7.17)

that is, to realize Step 3 in the proof Theorem 2.2, one can mimic the proof of Theorem
2.2.
Case α ∈ (1, 2]. While implementing Step 2 of the previous result in the case α = 2 one
uses the fact that according to (7.15) b(t) = r2(t) satisfies

√
n = o(r2(µ−1n)) as n→∞.

Since the other parts of the proof of Theorem 2.2 do not require essential changes we
arrive at

Tn − (1 + 2(µEξ)−1EW̄τ1)n

(µEξ)−1/αcα(n)

d−→ 2Sα, n→∞, (7.18)

when α ∈ (1, 2), and

Tn − (1 + 2(µEξ)−1EW̄τ1)n

(µEξ)−1/2r2(n)

d−→ 2N (0, 1), n→∞, (7.19)

when α = 2. The proof of Theorem 2.6 is complete.

Proof of Corollary 2.8. Since (Tn)n∈N0
is an ‘inverse’ sequence for (Xk)k∈N0

we can use
a standard inversion technique (see, for instance, the proof of Theorem 7 in [13]) to
pass from the distributional convergence of Tn, properly centered and normalized, as
n → ∞ to that of Xk, again properly centered and normalized, as k → ∞. Additional
complications arising in the case α = 1 can be handled with the help of arguments given
in Section 3 of [1].

Here are the limit relations for Xk, properly normalized and centered, as k → ∞
which correspond to (7.16), (7.17), (7.18) and (7.19):
if α ∈ (1/2, 1), then

P{W̄τ1 > k}Xk
d−→ µEξ(2Sα)−α; (7.20)

if α = 1, then
Xk − s(k)

t(k)

d−→ − S1, (7.21)

where, with m(t) :=
∫ t
0
P{W̄τ1 > x}dx for t > 0 and b := (µEξ)−1,

s(k) :=
k

1 + 2bm(c1(bk/(1 + 2bm(bk))))
, k ∈ N

and

t(k) :=
c1(k/m(k))

1 + 2bm(k)
, k ∈ N

(we do not write 2bm(k) instead of 1+2bm(k) because the case limt→∞m(t) = EW̄τ1 <∞
is not excluded);
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if α ∈ (1, 2), then

Xk − (1 + 2(µEξ)−1EW̄τ1)−1k

cα(k)

d−→ − 2(µEξ)−1/α(1 + 2(µEξ)−1EW̄τ1)−(1+1/α)Sα;

(7.22)
if α = 2, then

Xk − (1 + 2(µEξ)−1EW̄τ1)−1k

r2(k)

d−→ 2(µEξ)−1/2(1 + 2(µEξ)−1EW̄τ1)−3/2N (0, 1). (7.23)

The proof of Corollary 2.8 is complete.

7.4 Proof of auxiliary Lemmas 5.3, 5.5, 5.6 and 5.7

7.4.1 Proof of Lemma 5.3

Proof of Lemma 5.3. To prove (5.3) we first represent ZSn−1 as a sum of independent
random variables

ZSn−1 =

Zn−1∑
j=1

V
(n)
j + Ṽ (n), n ∈ N a.s., (7.24)

where V (n)
j is the number of progeny residing in the generation Sn − 1 of the jth particle

in the generation Sn−1 and Ṽ (n) is the number of progeny residing in the generation
Sn − 1 of the immigrants arriving in the generations Sn−1, . . . , Sn − 2. For later use, we
note that, under Pω,

V
(n)
j

d
= Zcrit(1, ξn − 1) and Ṽ (n) d

= Zcrit
ξn−1, n ∈ N, (7.25)

where ω is assumed independent of (Zcrit
k )k∈N0

a Galton–Watson process with unit
immigration and Geom(1/2) offspring distribution.

With the help of (7.24) we now write a standard decomposition for the number of
particles in the generation Sn over the particles comprising the generation Sn−1 and
their offspring

Zn =

Zn−1∑
j=1

V
(n)
j∑
i=1

U
(n)
i,j +

Ṽ (n)∑
i=1

Ũ
(n)
i + U

(n)
0 =:

Zn−1∑
j=1

V
(n)
j + Ṽ(n) + U

(n)
0 , n ∈ N a.s. (7.26)

Here, the notation U (n)
i,j , Ũ (n)

i , U (n)
0 is self-explained, but for clarity we provide explicit

definitions. The variable U
(n)
i,j is the number of offspring of the ith particle in the

generation Sn−1, i = 1, . . . , V
(n)
j . The variable Ũ

(n)
i is the number of particles in the

generation Sn which are the progeny of the immigrants arriving in the generations
Sn−1 through Sn − 2. Finally, U (n)

0 is the number of offspring of the immigrant arriving

in the generation Sn − 1. Observe that, under Pω, (U
(n)
i,j )i,j∈N, (Ũ

(n)
i )i∈N and U

(n)
0 are

independent with distribution Geom(λn). In what follows, for simplicity we omit the

superscripts (n): for instance, we write Vj for V(n)
j and similarly for the other variables.

The following formulas play an important role in the subsequent proof:

Eω[U0|Zn−1] = EωU0 = ρn, Eω[U2
0 |Zn−1| = EωU

2
0 = 2ρ2n + ρn

Eω
[
Vi
∣∣Zn−1] = EVi · ρn = ρn, Eω

[
Ṽ
∣∣Zn−1] = (ξn − 1)ρn. (7.27)

The two cases κ ∈ (0, 1] and κ ∈ (1, 2] should be treated separately.
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Case κ ≤ 1. By Jensen’s inequality and subadditivity of the function s 7→ sκ on [0,∞)

Eω[Zκn|Zn−1] ≤ (Eω[Zn|Zn−1])
κ

=

Eω[Zn−1∑
j=1

Vj + Ṽ + U0

∣∣∣Zn−1]
κ

≤
(
Zn−1ρn + (ξn − 1)ρn + ρn

)κ
≤ Zκn−1ρκn + ξκnρ

κ
n.

Taking the expectations we obtain

EZκn ≤ γEZκn−1 + E(ρξ)κ

which entails (5.3).
Case κ ∈ (1, 2]. An application of conditional Jensen’s inequality yields

EωZ
κ
n = Eω

[
Eω
[
Zκn
∣∣Zn−1]] ≤ Eω[(Eω[Z2

n

∣∣Zn−1])κ/2]. (7.28)

To estimate the conditional second moment we represent it as follows

Eω
[
Z2
n

∣∣Zn−1] = Eω

[(Zn−1∑
j=1

Vj + Ṽ + U0

)2∣∣∣∣Zn−1]

=
∑

1≤i 6=j≤Zn−1

Eω
[
Vi
∣∣Zn−1]Eω[Vj∣∣Zn−1]+

Zn−1∑
j=1

Eω
[
V2
j

∣∣Zn−1]
+ 2Eω[Ṽ + U0|Zn−1]Eω

[Zn−1∑
j=1

Vj

∣∣∣∣Zn−1]+ Eω
[
Ṽ2
∣∣Zn−1]

+ Eω
[
U2
0

∣∣Zn−1]+ 2Eω
[
Ṽ
∣∣Zn−1]Eω[U0

∣∣Zn−1].
Appealing now to (7.27) we conclude that

Eω
[
Z2
n

∣∣Zn−1] ≤ Z2
n−1ρ

2
n +Zn−1EωV

2
1 + 2Zn−1ξnρ

2
n + EωṼ

2 + 2ρ2n + ρn + 2ξnρ
2
n. (7.29)

Plugging the last inequality into (7.28) and using subadditivity once again we obtain

EZκn ≤ γEZκn−1 +

(
EZ

κ/2
n−1 · E

[(
EωV

2
1

)κ/2]
+ 2EZ

κ/2
n−1 · Eξκ/2ρκ

+ E
[(
EωṼ

2
)κ/2]

+ 2γ + Eρκ/2 + 2Eξκ/2ρκ
)
. (7.30)

Next, we check that

E
[(
EωV

2
1

)κ/2]
<∞ and E

[(
EωṼ

2
)κ/2]

<∞. (7.31)

With the help of
EωVi = 1 and VarωVi = 2(ξn − 1)

which is a consequence of (7.25) and (6.12) we infer

E
[(
EωV

2
1

)κ/2]
= E

[(
Eω

( V1∑
j=1

U1,j

)2)κ/2]
= E

[(
Eω

[ ∑
1≤j 6=l≤V1

U1,jU1,l +

V1∑
j=1

U2
1,j

])κ/2]

≤ E
(
ρ2nEωV

2
1 + (2ρ2n + ρn)EωV1

)κ/2
≤ 2κ/2Eξκ/2ρκ + γ + Eρκ/2 <∞.
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A similar argument in combination with EωṼ = ξn − 1 leads to the conclusion

E
[(
EωṼ

2
)κ/2]

= E
(
ρ2nEωṼ

2+(ρ2n+ρn)EωṼ
)κ/2

≤ E
[(
ρ2nEωṼ

2
)κ/2]

+Eξκ/2ρk+E(ρξ)κ/2.

Left with the proof of finiteness of the first term on the right-hand side we represent Ṽ
as a sum of independent random variables

Ṽ = Ṽ (n) =

ξn−1∑
i=1

Ṽ
(n)
i , n ∈ N a.s.,

where, for 1 ≤ i ≤ ξn− 1, Ṽ (n)
i is the number of progeny residing in the generation Sn− 1

of the immigrant arriving in the generation Sn − i. Under Pω, Ṽ (n)
i

d
= Zcrit(i, ξn − 1),

where ω is assumed independent of (Zcrit(i, k))k≥i. With this at hand, an appeal to (6.12)
yields

EωṼ
2
i = Eω[Zcrit(i, ξn − 1)]2 = Eω[Zcrit(1, ξn − i)]2 = 2(ξn − i) + 1 ≤ 2ξn

and EωṼi = 1. Here and hereafter, to ease the notation we write Ṽi for Ṽ (n)
i . Finally,

E
[(
ρ2nEωṼ

2
)κ/2]

= Eρκn

(
Eω

( ξn−1∑
i=1

Ṽi

)2)κ/2

= Eρκn

( ξn−1∑
i=1

EωṼ
2
i +

∑
1≤i 6=j<ξn

EωṼiEωṼj

)κ/2
≤ (5/2)κ/2E(ρξ)κ <∞

which finishes the proof of (7.31).
Turning to the asymptotic behavior of EZκ/2n−1 which appears on the right-hand side

of (7.30) we consider yet another two cases.
Case γ ≤ 1 in which Eρκ/2 < 1. To see it, observe that when γ = 1 the inequality Eρκ/2 <
γ1/2 is strict because the assumption E log ρ ∈ [−∞, 0) implies that the distribution of ρ
is nondegenerate at 1. By the already proved inequality (5.3) for powers ≤ 1

sup
n
EZκ/2n <∞

which in combination with (7.31) shows that the expression in the parentheses in (7.30)
is bounded. This ensures (5.3).
Case γ > 1. By the already proved inequality (5.3) for powers ≤ 1

EZκ/2n ≤ Can, n ∈ N,

where an = 1 or = n or = [Eρκ/2]n depending on whether Eρκ/2 < 1 or Eρκ/2 = 1 or
Eρκ/2 > 1. Since in any event an ≤ γn/2 for n ∈ N, (7.30) entails

EZκn ≤ γEZκn−1 + C1γ
n/2, n ∈ N

for some C1 > 0. Iterating this yields EZκn ≤ C2γ
n for some C2 > 1 and all n ∈ N, thereby

finishing the proof of (5.3) in the case γ > 1 and in general.
To prove (5.4) we use a decomposition W1 = Wξ1−1 + Z1 a.s. Inequality (5.3) tells

that we are left with checking that

EWκ
ξ1−1 <∞.

Since, under Pω, Wξ1−1
d
= W crit

ξ1−1, where ω is assumed independent of (W crit
n )n∈N0

, an
application of Lemma 6.5 yields

E[Wκ
ξ1−1] =

∑
j≥0

E
[
1{ξ1=j+1}(W

crit
j )κ

]
≤ C

∑
j≥0

P{ξ = j + 1}j2κ = CE(ξ − 1)2κ <∞

for a positive constant C. The proof of Lemma 5.3 is complete.
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7.4.2 Proof of Lemma 5.5

Proof of Lemma 5.5. We start by proving (5.5). Pick κ0 ∈ (0, κ), put p = κ/κ0 and choose
q such that 1/p+ 1/q = 1. Recall that Eρκ < 1. Hence, according to Lemma 5.3,

EZκn ≤ C, n ∈ N (7.32)

for a positive constant C, whence

E

( n∑
i=1

Zi

)κ
≤ C max(nκ, n), n ∈ N

by subadditivity (convexity) of x 7→ xκ when κ ∈ (0, 1] (κ ∈ (1, 2]). By Lemma 4.1,
P{τ1 = n} ≤ C1e

−C2n for all n ∈ N and positive constants C1 and C2. With these at hand,
an application of Hölder’s inequality yields

E

[( τ1∑
i=1

Zi

)κ0
]

=
∑
n≥1

E

[( τ1∑
i=1

Zi

)κ0

1{τ1=n}

]

≤
∑
n≥1

(
E

( n∑
i=1

Zi

)κ)1/p

· P{τ1 = n}1/q ≤ C1/pC1

∑
n≥1

max(nκ/p, n1/p)e−C2n/q <∞.

The proof of (5.5) is complete.

Turning to the proof of (5.6) we shall only show that

E
(
W↓n

)κ ≤ C, n ≥ 2 (7.33)

for a positive constant C. Formula (5.6) then follows with the help of the same argument
(involving Hölder’s inequality) that we used while proving (5.5).

For i ≥ 2 and 1 ≤ j ≤ Zi−1 = ZSi−1
, denote by U (i)

j the number of progeny in the
generations Si−1 + 1, . . . , Si − 1 of the jth particle in the generation Si−1, so that

W
↓
i =

Zi−1∑
j=1

U
(i)
j , i ≥ 2.

Under Pω, U (i)
j

d
= Y crit(1, ξi − 1) for i ≥ 2, where we set Y crit(1, 0) = 0 and ω is assumed

independent of (Y crit(1, k))k∈N. In particular, according to (6.12)

EωU
(i)
j = ξi − 1 and Eω

[
U

(i)
j

]2 ≤ 3ξ3i . (7.34)

We shall treat the cases κ ∈ (0, 1] and κ ∈ (1, 2] separately.

Case κ ∈ (0, 1]. Under Pω, for 1 ≤ j ≤ Zi−1, U
(i)
j is independent of Zi−1. This in

combination with (7.34) proves that

Eω[W↓i |Zi−1] = Zi−1(ξi − 1), i ≥ 2.

Therefore, we obtain

E
(
W
↓
i

)κ ≤ E[[Eω(W↓i |Zi−1)]κ
]
≤ EξκEZκi−1 ≤ C, i ≥ 2

having utilized Jensen’s inequality, (7.32) and the fact that ξi and Zi−1 are independent.
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Case κ ∈ (1, 2]. Another application of Jensen’s inequality in combination with (7.34),
(7.32) and subadditivity of x 7→ xκ/2 on [0,∞) yields, for i ≥ 2,

E
(
W
↓
i

)κ
= E

[
Eω

[(Zi−1∑
j=1

U
(i)
j

)κ∣∣∣Zi−1]] ≤ E(Eω[(Zi−1∑
j=1

U
(i)
j

)2∣∣∣Zi−1])κ/2

= E

[( ∑
1≤l 6=j≤Zi−1

EωU
(i)
l EωU

(i)
j +

Zi−1∑
j=1

Eω
[
U

(i)
j

]2)κ/2]
≤ EZκi−1Eξκ + 3EZ

κ/2
i−1Eξ

3κ/2 ≤ C

for a positive constant C. The proof of (7.33) is complete.

7.4.3 Proof of Lemma 5.6

We follow the method invented by Kesten et al. [26]. While some parts of the proofs given
in [26] can be directly transferred to our setting, the others require an additional work.
We do not present all the details of the proof focussing instead on the main differences.

We begin with a brief overview of the arguments leading to the claim of Lemma 5.6.
Given a large positive constant A, put

σ = σ(A) := min{i ∈ N : Zj > A for some j ≤ Si}.

Thus, we observe the process (Zn)n∈N0
up to the first time j when it exceeds the level A

and then put σ = i for the smallest index i satisfying Si ≥ j. The following decomposition
holds

τ1∑
k=1

(
Zk +W↓k

)
=

τ1∑
k=1

(
Zk +W↓k

)
1{σ≥τ1}+

( σ−1∑
k=1

(
Zk +W↓k

)
+ Sσ +

τ1∑
i=σ+1

Y
↓
i

)
1{σ<τ1} a.s.,

where Sσ is the number of particles in the generation Sσ plus their total progeny, and,
for i ∈ N, Y↓i is the total progeny in the generations Si + 1, Si + 2, . . . of the immigrants
arriving in the generations Si−1, . . . , Si − 1.

We intend to prove that the first, second and fourth summands on the right-hand side
of this decomposition are negligible in a sense to be made precise, so that

τ1∑
k=1

(
Zk +W↓k

)
≈ Sσ1{σ<τ1}.

In view of the definition of Sσ and the fact that Zσ = ZSσ ≈ A for A as above one can
expect that Sσ1{σ<τ1} ≈ ZσEω[Y (Sσ,∞)]1{σ<τ1}. We shall demonstrate that the variable
Eω[Y (Sσ,∞)] is related to a random difference equation whose tail behavior determines
that of Sσ.

To realize the programme just outlined we need two auxiliary results.

Lemma 7.1. Assume that the assumptions of Lemma 5.6 hold. Then, for any A > 0, as
x→∞,

P

{ τ1∑
k=1

(
Zk +W↓k

)
> x, σ ≥ τ1

}
+ P

{ σ−1∑
k=1

(
Zk +W↓k

)
> x, σ < τ1

}
= o(x−α). (7.35)

Proof. We only give a proof for the first summand in (7.35). The second summand can
be treated along similar lines.
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The random variable τ1 has a finite exponential moment by Lemma 4.1. Furthermore,
τ1 does not depend on the future of the sequence (ξi)i∈N. Therefore, the assumption
Eξ3α/2 <∞ ensures that

E[Sτ1 ]3α/2 <∞ (7.36)

by Lemma A.1.
Write, for x > 0,

P

{ τ1∑
k=1

(
Zk +W↓k

)
> x, σ ≥ τ1

}
≤ P

{ τ1−1∑
k=1

(
Zk +W↓k

)
> x/2, σ ≥ τ1

}
+ P

{
W↓τ1 > x/2, σ = τ1

}
≤ P{ASτ1 > x/2}+ P

{
Zτ1−1 ≤ A, W↓τ1 > x/2

}
and observe that, in view of (7.36), the first summand on the right-hand side is o(x−3α/2)

as x→∞. To estimate the second term we use a decomposition

W↓τ1 =

Zτ1−1∑
i=1

Vi a.s.,

where, for 1 ≤ i ≤ Zτ1−1, Vi is the number of progeny in the generations Sτ1−1 +

1, . . . , Sτ1 − 1 of the ith particle in the generation Sτ1−1. We claim that

EV α1 <∞. (7.37)

For the proof, note that V1
d
= Y crit(1, ξτ1 − 1), where ξτ1 is assumed independent of

(Y crit(1, n))n∈N. Consequently, we obtain with the help of Jensen’s inequality and the
inequality E[Y crit(1, n)]2 ≤ 3n3 for n ∈ N which is a consequence of (6.12)

EV α1 = E[Y crit(1, ξτ1 − 1)]α =
∑
k≥0

E[Y crit(1, k)]αP{ξτ1 − 1 = k}

≤
∑
k≥0

(
E[Y crit(1, k)]2

)α/2
P{ξτ1 − 1 = k} ≤ 3

∑
k≥0

k3α/2P{ξτ1 − 1 = k}

= 3E[ξτ1 − 1]3α/2 ≤ 3E[Sτ1 ]3α/2 <∞,

where the last inequality is secured by (7.36).
With (7.37) at hand, we immediately conclude that

P
{
Zτ1−1 ≤ A, W↓τ1 > x/2

}
≤ P

{ [A]∑
i=1

Vi > x/2
}

= o(x−α), x→∞

because V1, V2, . . . are identically distributed. The proof of Lemma 7.1 is complete.

Before formulating another auxiliary result we recall from Section 3.2 the notation
Y1 =

∑
i≥1 Z(1, i), where Z(1, i) is the number of progeny residing in the ith generation

of the first immigrant, so that Y1 is the total progeny of the first immigrant.

Lemma 7.2. Suppose that the assumptions of Lemma 5.6 hold. Let (Y ∗j )j∈N be a
sequence of Pω-independent copies of Y1. Then there exists a constant C > 0 such that

P

{ N∑
j=1

Y ∗j > x

}
≤ CNαx−α, N ∈ N.
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Proof. For k ∈ N, put

R̃k = ξk + ρkξk+1 + ρkρk+1ξk+2 + . . . . (7.38)

Recall from Section 3.3 that the so defined random variable is called perpetuity. The
Kesten-Grincevičius-Goldie theorem says that if (P1) holds and Eξα <∞, then, for all
k ∈ N,

P{R̃k > x} ∼ Cx−α, x→∞ (7.39)

for some positive constant C which does not depend on k.
Put Z(1, 0) := 1. For i ∈ N0, denote by Z1(1, i), Z2(1, i), . . . Pω-independent copies of

Z(1, i). Recall that Sk = Sk−1 + ξk and write

Y ∗j =
∑
i≥1

Zj(1, i) =
∑
k≥1

Sk−1∑
i=Sk−1

Zj(1, i)

=
∑
k≥1

( Sk−1∑
i=Sk−1

(
Zj(1, i)− Zj(1, Sk−1) + ξkZj(1, Sk−1)

)
.

Our proof will be based on the following decomposition which holds a.s.

N∑
j=1

Y ∗j =

N∑
j=1

∑
k≥1

ξkZj(1, Sk−1) +

N∑
j=1

∑
k≥1

Sk−1∑
i=Sk−1

(
Zj(1, i)− Zj(1, Sk−1)

)
=: U1 +U2.

Formula (7.38) implies that, for k ∈ N, ξk = R̃k − ρkR̃k+1, whence

U1 =

N∑
j=1

∑
k≥1

ξkZj(1, Sk−1) =

N∑
j=1

∑
k≥1

Zj(1, Sk−1)(R̃k − ρkR̃k+1)

=
∑
k≥1

( N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

))
R̃k+1 +NR̃1.

Since ∑
k≥1

2−1k−2 = π2/12 < 1, (7.40)

and R̃k+1 and (Zj(1, Sk), Zj(1, Sk−1), ρk) are independent for each j ∈ N we obtain with
the help of (7.39), for x > 0,

P
{
U1 > x

}
≤
∑
k≥1

P

{∣∣∣∣ N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

)∣∣∣∣R̃k+1 > x/(4k2)

}
+ P

{
NR̃1 > x/2

}
≤
∑
k≥1

∫
[0,∞)

P

{∣∣∣∣ N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

)∣∣∣∣ ∈ ds

}
P
{
R̃k+1 > x/(4sk2)

}
+ P

{
NR̃1 > x/2

}
≤ const · x−α

(∑
k≥1

k2αE

∣∣∣∣ N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

)∣∣∣∣α +Nα

)
.

Here and hereafter, const denote constants which may be different on different appear-
ances. To estimate the last term observe that the equality

EωZ(1, Si) = ρ1 · · · ρi, i ∈ N (7.41)
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implies that, under Pω,
∑N
j=1

(
Zj(1, Sk)−ρkZj(1, Sk−1)

)
is the sum of iid centered random

variables. In particular, conditioning on the environment,

Eω

( N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

))2

= NEω
(
Z1(1, Sk)− ρkZ1(1, Sk−1)

)
.

With this at hand an application of conditional Jensen’s inequality yields, for k ∈ N,

E

∣∣∣∣ N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

)∣∣∣∣α ≤ E[Eω( N∑
j=1

(
Zj(1, Sk)− ρkZj(1, Sk−1)

))2]α/2

= Nα/2 · E
(
Eω
(
Z(1, Sk)− ρkZ(1, Sk−1)

)2)α/2
.

For k ∈ N and 1 ≤ i ≤ Z(1, Sk−1), take the ith particle among the progeny in the

generation Sk−1 of the first immigrant and denote by V
(k)
i the number of progeny

residing in the generation Sk of the chosen particle. Then

Z(1, Sk) =

Z(1,Sk−1)∑
i=1

V
(k)
i , k ∈ N a.s.,

and, under Pω, V (k)
1 , V (k)

2 , . . . are independent copies of Z(Sk−1, Sk) which are also
independent of Z(1, Sk−1). Hence,

Eω

[(
Z(1, Sk)− ρkZ(1, Sk−1)

)2∣∣Z(1, Sk−1)
]

= Z(1, Sk−1)Varω(V
(k)
1 ), k ∈ N.

Observe that, under Pω,

V
(k)
1

d
=

Zcrit(Sk−1,Sk−1)∑
m=1

U (k)
m , k ∈ N,

where U (k)
1 , U (k)

2 , . . . are Pω-independent random variables with Geom(λk) distribution,

and ω is assumed independent of (Zcrit(i, j))j≥i≥1. This in combination with Zcrit(i, j)
d
=

Zcrit(1, j − i+ 1) for fixed j ≥ i ≥ 1 and (6.12) gives, for k ∈ N,

Varω(V
(k)
1 ) = EωZ

crit(Sk−1, Sk − 1)Varω(U
(k)
1 ) + (EωU

(k)
1 )2VarωZ

crit(Sk−1, Sk − 1)

= (ρk + ρ2k) + 2ρ2k(ξk − 1).

Equality (7.41) together with the last formula and subadditivity of x 7→ xα/2 on [0,∞)

enables us to conclude that

P
{
U1 > x}

≤ const

xα

(∑
k≥1

k2αNα/2E
[(
EωZ(1, Sk−1)

)α/2(
ρ
α/2
k + ραk + ραk2α(ξk − 1)α/2

)]
+Nα

)

≤ const

xα

(∑
k≥1

k2αNα/2(Eρα/2)k−1 +Nα

)
= const ·Nαx−α.

To obtain the last inequality we have utilized E(ραξα/2) < ∞ which is secured by the
assumption E(ρξ)α <∞ and the inequality Eρα/2 < 1 which is a consequence of (P1).
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To estimate U2 we proceed similarly but use additionally Markov’s inequality

P{U2 > x} = P

{ N∑
j=1

∑
k≥1

( Sk−1∑
i=Sk−1

(Zj(1, i)− Zj(1, Sk−1))

)
> x

}

=
∑
k≥1

P

{∣∣∣∣ N∑
j=1

( Sk−1∑
i=Sk−1

(Zj(1, i)− Zj(1, Sk−1))

)∣∣∣∣ > x/(2k2)

}

≤ const · x−α
∑
k≥1

k2αE

∣∣∣∣ N∑
j=1

( Sk−1∑
i=Sk−1

(Zj(1, i)− Zj(1, Sk−1))

)∣∣∣∣α

≤ const · x−α
∑
k≥1

k2αE

(
Eω

( N∑
j=1

Sk−1∑
i=Sk−1

(Zj(1, i)− Zj(1, Sk−1))

)2)α/2
, x > 0.

For k ∈ N and 1 ≤ r ≤ Z(1, Sk−1), take the rth particle among the progeny in the

generation Sk−1 of the first immigrant and denote by W
(k)
r the number of progeny

residing in the generations Sk−1, . . . , Sk − 1 of the chosen particle. Then

Sk−1∑
i=Sk−1

(Z(1, i)− Z(1, Sk−1)) =

Z(1,Sk−1)∑
r=1

(W (k)
r − (ξk − 1)), k ∈ N a.s.

Furthermore, under Pω, W (k)
1 , W (k)

2 , . . . are independent random variables which are in-
dependent of Z(1, Sk−1) and have the same distribution as Y crit(1, ξk− 1). Here, as usual,

ω is assumed independent of (Y crit(1, n))n∈N. Invoking (6.12) we infer Varω (W
(k)
r ) ≤ 2ξ3k

and further

P{U2 > x} ≤ const · x−α
∑
k≥1

k2αNα/2E
[(
EωZ(1, Sk−1)Varω(W

(k)
1 )

)α/2]
≤ const · x−α

∑
k≥1

k2αNα/2(Eρα/2)kEξ3α/2 ≤ const ·Nα/2x−α, x > 0.

The proof of Lemma 7.2 is complete.

Proof of Lemma 5.6. Lemma 7.1 implies that the contribution of particles residing in the
generations 1, 2, . . . , Sσ − 1 is negligible in the sense that

P

{ τ1∑
k=1

(
Zk +W↓k

)
> x

}
= P

{
Sσ +

τ1∑
i=σ+1

Y
↓
i > x, σ < τ1

}
+ o(x−α), x→∞. (7.42)

Next we prove that

lim
A→∞

lim sup
x→∞

xαP

{ τ1∑
i=σ(A)+1

Y
↓
i > x, σ(A) < τ1

}
= 0. (7.43)

This means that the contribution of the total progeny of immigrants arriving in the
generations Sσ(A), Sσ(A) + 1, . . . is negligible whenever A is sufficiently large.

The random variables Y↓1, Y↓2 , . . . are identically distributed and, for each i ∈ N, the
random variables 1{σ<i≤τ1} = 1{σ<i} · (1− 1{τ1<i}) and Y↓i are independent. Therefore,

P

{ τ1∑
i=σ(A)+1

Y
↓
i > x, σ(A) < τ1

}
≤

∑
i≥1

P
{
1{σ(A)<i≤τ1}Y

↓
i > x/(2i2)

}
=

∑
i≥1

P{σ(A) < i ≤ τ1}P
{
Y
↓
1 > x/(2i2)

}
(7.44)
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having utilized (7.40). Further, observe that Y↓1 is the sum of Z1 Pω-independent copies
of Y1 = Y (1,∞) which are also P-independent of Z1. Hence, using Lemma 7.2 yields

P{Y↓1 > x} ≤ CEZα1x−α, x > 0

for some positive constant C. The assumptions Eξ3α/2 <∞ and E(ρξ)α <∞ guarantee
EZα1 <∞ by Lemma 5.3. Continuing (7.44) we obtain

P

{ τ1∑
i=σ(A)+1

Y
↓
i > x, σ(A) < τ1

}
≤ CEZα1x−α

∑
i≥1

i2αP{σ(A) < i ≤ τ1}

≤ C1EZ
α
1x
−αEτ2α+1

1 1{σ(A)<τ1}

for a positive constant C1, and (7.43) follows on letting A → ∞ and recalling that
Eτ2α+1

1 <∞ by Lemma 4.1.
Summarizing it remains to show that P{Sσ(A) > x, σ(A) < τ1} ∼ C2(α)x−α, x → ∞,

where C2(α) does not depend on A. This can be accomplished by comparing Sσ(A) on

the event {σ(A) < τ1} with Zσ(A)R̃σ(A)+1 along the lines of Lemmas 4 and 6 in [26]. We
omit the details.

7.4.4 Proof of Lemma 5.7

Proof of Lemma 5.7. Recall that

W̄τ1 = WSτ1
=

τ1∑
k=1

W0
k +

τ1∑
k=1

(Zk +W↓k) a.s.

According to Lemma 5.6,

P

{ τ1∑
k=1

(
Zk +W↓k

)
> x

}
∼ C2(α)x−α, x→∞.

By the same reasoning as in the proof of Proposition 5.8 (part (C1)), Lemma 5.2 in
combination with Lemma 4.1 and Lemma 5.1 entails

P

{ τ1∑
k=1

W0
k > x

}
∼ (Eτ1)(Eϑα)C`x

−α, x→∞.

Thus to prove the lemma it suffices to check that

P

{ τ1∑
k=1

W0
k > x,

τ1∑
k=1

(
Zk +W↓k

)
> x

}
= o(x−α), x→∞, (7.45)

see, for example, Lemma B.6.1 in [4].
For the proof of (7.45) we need a number of auxiliary limit relations. First, according

to Lemma 4.1 there exists a constant C1 > 0 such that

P{τ1 > C1 log x} = o(x−α), x→∞. (7.46)

Further, we claim that for any δ ∈ (0, 1) and large enough x the following inequalities
hold uniformly in k ∈ N

P
{
W0

k > x/(C1 log x), ξ2k ≤ x1−δ
}
≤ const · x−(α+ε1); (7.47)
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P

{
ξ2k > x1−δ,

(k−1)∧τ1∑
j=1

(
Zj +W↓j

)
> x/2

}
≤ const · x−(α+ε1); (7.48)

P
{
ξ2k > x1−δ, Zk−1 > x2δ

}
≤ const · x−(α+ε1), (7.49)

where u ∧ v := min(u, v) and ε1 := (α(1− δ)) ∧ (αδ/2) > 0.
Proof of (7.47). Fix any s > 0 that satisfies δs > α + ε1. Recall that, under Pω,

W0
k

d
= W crit

ξk−1, where ω is assumed independent of (W crit
n )n∈N0

. This in combination with
Markov’s inequality yields

P
{
W0

k > x/(C1 log x), ξ2k ≤ x1−δ
}

= P
{
W crit
ξk−1 > x/(C1 log x), ξ2k ≤ x1−δ

}
≤ P

{
W crit

[x(1−δ)/2] > x/(C1 log x)
}
≤
E(W crit

[x(1−δ)/2]
)s

[x(1−δ)/2]2s
(C1 log x)s

xδs
≤ const · x−(α+ε1)

having utilized boundedness of E(n−2W crit
n )s for n ∈ N, see Lemma 6.5.

Proof of (7.48). For fixed k ∈ N, ξk is independent of
∑(k−1)∧τ1
j=1

(
Zj +W↓j

)
. Using this,

Lemma 5.6 and the assumptions of Lemma 5.7 we conclude that

P

{
ξ2k > x1−δ,

(k−1)∧τ1∑
j=1

(
Zj +W↓j

)
> x/2

}
≤ P{ξ2 > x1−δ}P

{ τ1∑
j=1

(
Zj +W↓j

)
> x/2

}
∼ 2αC`C2(α)x−αx−α(1−δ) ≤ const · x−(α+ε1).

Proof of (7.49). Observing that, for every fixed k ∈ N, ξk is independent of Zk−1 and
invoking Lemma 5.3 with κ = 3α/4 we obtain with the help of Markov’s inequality

P
{
ξ2k > x1−δ, Zk−1 > x2δ

}
= P

{
ξ2k > x1−δ

}
P
{
Zk−1 > x2δ

}
≤ const · CC`x−α(1−δ)x−(3/2)αδ ≤ const · x−(α+ε1).

Combining (7.46), (7.47), (7.48) and (7.49) yields, for any δ ∈ (0, 1),

P

{ τ1∑
k=1

W0
k > x,

τ1∑
j=1

(
Zj +W↓j

)
> x

}
(7.46)
≤ P

{ τ1∑
k=1

W0
k > x,

τ1∑
j=1

(
Zj +W↓j

)
> x, τ1 ≤ C1 log x

}
+ o(x−α)

≤
∑

k≤C1 log x

P

{
W0

k >
x

C1 log x
,

τ1∑
j=1

(
Zj +W↓j

)
> x, τ1 ≤ C1 log x

}
+ o(x−α)

(7.47)
≤

∑
k≤C1 log x

P

{
ξ2k > x1−δ,

τ1∑
j=1

(
Zj +W↓j

)
> x, τ1 ≤ C1 log x

}
+ o(x−α)

(7.48)
≤

∑
k≤C1 log x

P

{
ξ2k > x1−δ,

τ1∑
j=k

(
Zj +W↓j

)
> x/2, k ≤ τ1, τ1 ≤ C1 log x

}
+ o(x−α)

(7.49)
≤

∑
k≤C1 log x

P

{
ξ2k > x1−δ,

τ1∑
j=k

(
Zj +W↓j

)
> x/2, k ≤ τ1, Zk−1 ≤ x2δ

}
+ o(x−α).

Now (7.45) follows if we can show that for some δ ∈ (0, 1) the following inequality holds
uniformly in k

P
{
ξ2k > x1−δ, Zk +W↓k > x/4, Zk−1 ≤ x2δ

}
≤ const · x−(α+ε2) (7.50)
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for large enough x and some ε2 > 0 to be specified below, and that

∑
k≤C1 log x

P

{
ξ2k > x1−δ,

τ1∑
j=k+1

(
Zj +W↓j

)
> x/4

}
= o(x−α), x→∞. (7.51)

Proof of (7.50). Observe that

Zk +W↓k =

Zk−1∑
i=1

V
(k)
i a.s.,

where, for k ∈ N and 1 ≤ i ≤ Zk−1, V (k)
i denotes the number of progeny residing in the

generations Sk−1 + 1 through Sk of the ith particle in the generation Sk−1. Clearly, for

fixed k ∈ N, V (k)
1 , . . . , V

(k)
Zk−1

are independent of Zk−1 and have the same distribution as

Y crit(1, ξk − 1) +

Zcrit(1,ξk−1)∑
j=1

U
(k)
j ,

where (Y crit(1, n))n∈N and (Zcrit(1, n))n∈N are assumed independent of (ξk, ρk), the vari-

ables U (k)
1 , U

(k)
2 , . . . have Geom(λk) distribution and, given (ξk, ρk), they are independent

of Zcrit(1, ξk − 1). In particular, E
(
V

(k)
1 |(ξk, ρk)

)
= ξk − 1 + ρk in view of (6.12). With this

at hand we obtain

P
{
ξ2k > x1−δ,Zk +W↓k > x/4,Zk−1 ≤ x2δ

}
= E1{Zk−1≤x2δ}P

{
ξ2k > x1−δ,

Zk−1∑
i=1

V
(k)
i > x/4

∣∣∣∣Zk−1}
≤ EZk−11{Zk−1≤x2δ}P

{
ξ2k > x1−δ, V

(k)
1 > x/(4Zk−1)

∣∣∣∣Zk−1}
≤ x2δP

{
ξ2k > x1−δ, V

(k)
1 > x1−2δ/4

}
≤ const · x2δE

[
1{ξ2k>x1−δ}E

[
(V

(k)
1 )r

xr(1−2δ)

∣∣∣∣(ξk, ρk)

]]
≤ const · x2δ−r(1−2δ)E

[
1{ξ2k>x1−δ}

(
E[V

(k)
1 |(ξk, ρk)]

)r]
≤ const · x2δ−r(1−2δ)E

[
1{ξ2k>x1−δ}(ξk + ρk)r

]
for k ∈ N, large enough x and any r ∈ (0, 1], having utilized conditional Jensen’s
inequality for the penultimate step. By assumption Eργ < ∞ and Eξγ < ∞ for some
γ ∈ (α, 2α). Taking r ∈ (0, γ) and applying Hölder’s inequality with parameters γ/(γ − r)
and γ/r we arrive at

P
{
ξ2k > x1−δ,Zk +W↓k > x/4,Zk−1 < x2δ

}
≤ const ·

(
Eξγk + Eργk

)r/γ
x2δ−r(1−2δ)−(1−δ)α(1−r/γ).

Pick any ρ ∈ (0, (1−α/γ)/(2+α)) and then any r ∈ (0, γ∧((1−α/γ−ρ(2+α))/(ρ(2−α/γ)))).
Setting now δ = ρr (so that δ ∈ (0, 1)) we obtain (7.50) with ε2 := −α− 2δ + r(1− 2δ) +

(1− δ)α(1− r/γ). Throughout the rest of the proof δ always denotes the number chosen
above.
Proof of (7.51). For k ∈ N and 1 ≤ i ≤ Zk, denote by Y (k)

i the total progeny of the
ith particle in the generation Sk. Further, for k ∈ N and j ≥ k + 2, denote by W↓j (k)
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the number of progeny in the generations Sj−1, Sj−1 + 1, . . . , Sj − 1 of the immigrants
arriving in the generations Sk, Sk + 1, . . . , Sj−1 − 1. Then

τ1∑
j=k+1

(
Zj +W↓j

)
=

Zk∑
i=1

Y
(k)
i +

τ1∑
j=k+2

W
↓
j (k) a.s.

and thereupon, for x > 0,

P

{
ξ2k > x1−δ,

τ1∑
j=k+1

(
Zj +W↓j

)
> x/4

}
≤ P

{
ξ2k > x1−δ,

Zk∑
i=1

Y
(k)
i > x/8

}

+ P

{
ξ2k > x1−δ,

τ1∑
j=k+2

W
↓
j (k) > x/8

}
=: I1(x) + I2(x).

Since, for fixed k ∈ N,
∑τ1
i=k+2W

↓
i (k) is independent of ξk we obtain with the help of a

crude estimate
τ1∑

i=k+2

W
↓
i (k) ≤

τ1∑
i=1

(
Zi +W↓i

)
, k ∈ N a.s.

and Lemma 5.6

I2(x) ≤ P
{
ξ2k > x1−δ

}
P

{ τ1∑
i=1

(
Zi +W↓i

)
> x/8

}
≤ const · x−α(1−δ)x−α

for large enough x. Of course, this entails
∑
k≤C1 log x I2(x) = o(x−α) as x→∞.

To estimate I1(x) we note that, for fixed k ∈ N, under P{·|ω,Zk}, Y (k)
1 , . . . , Y

(k)
Zk

are
independent copies of Y (1,∞). Furthermore, these random variables are P-independent
of Zk and ξk. Invoking Lemma 7.2 and conditional Jensen’s inequality yields

P

{
ξ2k > x1−δ,

Zk∑
i=1

Y
(k)
i > x/8

}
= E

[
1{ξ2k>x1−δ}P

[ Zk∑
i=1

Y
(k)
i > x/8

∣∣∣ξk,Zk]]
≤ const · x−αE

[
1{ξ2k>x1−δ}Z

α
k

]
= const · x−αE

[
1{ξ2k>x1−δ}Eω [Zαk |Zk−1]

]
≤ const · x−αE

[
1{ξ2k>x1−δ}

(
Eω
[
Z2
k|Zk−1

])α/2]
.

Inequality (7.29) was obtained in the proof of Lemma 5.3 under the assumption κ ∈ (1, 2].
However, by the same reasoning it also holds for κ ∈ (0, 2]. Using (7.29) in combination
with the fact that ξ ≥ 1 a.s. and subadditivity of x 7→ xα/2 we infer(
Eω
[
Z2
k|Zk−1

])α/2 ≤ const·
(
Zαk−1(ρkξk)α+Z

α/2
k−1
(
(ρkξk)α+(ρkξk)α/2

)
+(ρkξk)α+(ρkξk)α/2

)
and thereupon

E
[
1{ξ2k>x1−δ}

(
Eω
[
Z2
k|Zk−1

])α/2] ≤ const ·
(
kE(ρξ)α1{ξ2>x1−δ} + E(ρξ)α/21{ξ2>x1−δ}

)
≤ const · x−ε(1−δ)/2

(
kEραξα+ε + Eρα/2ξα/2+ε

)
≤ const · kx−ε(1−δ)/2

by Lemma 5.3 and the assumption Eραξα+ε <∞ for some ε > 0. The latter entails∑
k≤C1 log x

I1(x) = o(x−α), x→∞.

The proof of Lemma 5.7 is complete.

EJP 24 (2019), paper 69.
Page 38/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP330
http://www.imstat.org/ejp/


Random walks in a moderately sparse random environment

A Appendix

Lemma A.1 is an important ingredient in the proof of Proposition 5.8, part (C1). In
its formulation we use the notion of a random variable which does not depend on the
future of a sequence of random variables. The corresponding definition can be found at
the beginning of Section 5.

Lemma A.1. Let (θi)i∈N be a sequence of iid nonnegative random variables and T a
nonnegative integer-valued random variable which does not depend on the future of the
sequence (θi)i∈N. Assume that Eθs1 < ∞ for some s > 0 and that EeλT < ∞ for some
λ > 0. Then E(

∑T
i=1 θi)

s <∞.

Proof. Set R0 := 0 and Ri := θ1 + . . .+ θi for i ∈ N. By assumption, for fixed i ∈ N, θi is
independent of (Ri−1,1{T≥i}).

The result is trivial when s ∈ (0, 1]. Indeed, we use subadditivity of x 7→ xs on [0,∞)

together with the aforementioned independence to conclude that

E
( T∑
i=1

θi

)s
≤
∑
i≥1

Eθsi1{T≥i} = Eθs1ET <∞.

Assume now that s > 1. Invoking the inequality

(x+ y)s ≤ xs + sy(x+ y)s−1, x, y ≥ 0

which is secured by the mean value theorem for differentiable functions we obtain

RsT∧i ≤ RsT∧(i−1) + sθiR
s−1
i 1{T≥i}, i ∈ N.

Iterating this yields

RsT∧n ≤ s
n∑
i=1

θiR
s−1
i 1{T≥i}, n ∈ N.

Therefore, it is enough to check that

A := E
∑
i≥1

θiR
s−1
i 1{T≥i} <∞.

Using once again the aforementioned independence together with the inequality

(x+ y)s−1 ≤ Cs(xs−1 + ys−1), x, y ≥ 0,

where Cs := max(2s−2, 1), we infer

A ≤ CsE
∑
i≥1

θi(R
s−1
i−1 + θs−1i )1{T≥i} = CsEθ1

∑
i≥1

ERs−1i−11{T≥i} + CsEθ
s
1ET.

Left with checking convergence of the series we appeal to Hölder’s inequality in con-
junction with convexity of x 7→ xs on [0,∞) to get

ERs−1i−11{T≥i} ≤ [ERsi−1](s−1)/s[P{T ≥ i}]1/s ≤ is−1[Eθs1](s−1)/s[P{T ≥ i}]1/s.

Since [P{T ≥ i}]1/s decreases at least exponentially in i, ERs−1i−11{T≥i} is the general
term of converging series. The proof of Lemma A.1 is complete.
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The remaining part of the Appendix is concerned with the proof of Lemma 4.1. In
essence the lemma follows from the arguments presented by Key [27] who considered a
model very similar to ours. For n ∈ N and 1 ≤ k ≤ n, set

Z(k, n) =

Sk∑
j=Sk−1+1

Z(j, Sn)

and observe that, under Pω, Z(1, n), . . . ,Z(n, n) are independent. The following repre-
sentation holds

Z(0) = 0, Zn =

n−1∑
k=1

Z(k, n) +Z(n, n), n ∈ N

which shows that (Zn)n∈N0
is a branching process in a random environment with the

random number Z(k, k) of immigrants in the kth generation. The basic observation for
what follows is that (Zn)n≥0 has the structure similar to that of the branching process
investigated by Key [27]. The main difference manifests in the term Z(n, n) which is
absent in Key’s model. It is curious that the branching process in [27] is similar to our
(Zn)n∈N0

in that the immigrants arriving in the generation n only affect the system by
their offspring residing in the generation n+ 1. In particular, neither Key’s process nor
our (Zn)n∈N0

counts immigrants, whereas (Zn)n∈N0
does.

Even though (Zn)n≥0 and Key’s process are slightly different it is natural to expect
that sufficient conditions ensuring finiteness of power and exponential moments of the
first extinction time should be similar. While demonstrating that this is indeed the case
we shall only point out principal changes with respect to Key’s arguments.

Denote by

p(n, k) = Pω{Z(1, n) = k |Z(1, n− 1) = 1}, n ≥ 2, k ∈ N0

and
a(n, k) = Pω{Z(n, n) = k}, n ∈ N, k ∈ N0

the quenched reproduction and immigration distribution in the generation n, respectively.
It can be checked that the mean of the quenched reproduction distribution is

M(n) =
∑
k≥0

kp(n, k) = Eω[Z(1, n)|Z(1, n− 1) = 1] = ρn, n ≥ 2

and that the quenched expected number of immigrants is

I(n) =
∑
k≥0

ka(n, k) = Eω[Z(n, n)] = ρnξn, n ∈ N.

Lemma A.2 is a counterpart of Theorem 3.3 in [27].

Lemma A.2. Assume that E log ρ ∈ [−∞, 0) and E log+ ξ <∞. Then, for k ∈ N0, π(k) =

limn→∞P{Zn = k} exists and defines a probability distribution on N. If additionally

P{p(2, 0) > 0, a(2, 0) > 0} > 0, (A.1)

then π(0) > 0.

Sketch of proof. As far as the first claim is concerned, the proofs of Lemmas 2.1, 2.2,
3.1, 3.2 in [27] only require inessential changes concerning the range of summation. The
second claim follows after a minor alteration, namely the term q(n, k) appearing in the
proof of Theorem 3.3 in [27] should be changed to

q(n, k) = Pω{Zn+1 = 0 |Zn = k} = p(n+ 1, 0)ka(n+ 1, 0), n ∈ N, k ∈ N0.

The sequence (q(1, k))k∈N0
must be positive which justifies condition (A.1). The corre-

sponding condition in [27] is slightly different.

EJP 24 (2019), paper 69.
Page 40/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP330
http://www.imstat.org/ejp/


Random walks in a moderately sparse random environment

We are ready to prove Lemma 4.1.

Proof of Lemma 4.1. The present proof is very similar to that of Theorem 4.2 in [27].
Put

v(n) := P{τ1 > n}, n ∈ N0

and
V (x) :=

∑
n≥1

v(n)xn, x ≥ 0

which may be finite or infinite. While finiteness of Eτ1 is equivalent to V (1) < ∞,
finiteness of some exponential moment of τ1 is equivalent to V (x) <∞ for some x > 1.

For n ∈ N, put

h(k, n) := P

{
Z(k, n) > 0,

n∑
j=k+1

Z(j, n) = 0

}
, 1 ≤ k ≤ n

(with the usual convention that h(n, n) = P{Z(n, n) > 0}) and note that h(k, n) =

h(1, n− k + 1) for 1 ≤ k ≤ n. Now we use a decomposition

v(n) =P{τ1 > n, Zn > 0} = P

{
τ1 > n,

n∑
k=1

Z(k, n) > 0

}

=

n−1∑
k=1

P

{
τ1 > n, Z(k, n) > 0,

n∑
j=k+1

Z(j, n) = 0

}
+ P{τ1 > n, Z(n, n) > 0}.

in combination with

P

{
τ1 > n, Z(k, n) > 0,

n∑
j=k+1

Z(j, n) = 0

}

= P

{
τ1 > k − 1, Z(k, n) > 0,

n∑
j=k+1

Z(j, n) = 0

}

= P{τ1 > k − 1}P
{
Z(k, n) > 0,

n∑
j=k+1

Z(j, n) = 0

}
= v(k − 1)h(k, n) = v(k − 1)h(1, n− k + 1)

which holds for 1 ≤ k ≤ n to obtain

v(n) =

n−1∑
k=0

v(k)h(1, n− k), n ∈ N.

This convolution equation is equivalent to

V (x) =
H(x)

1−H(x)
, x ≥ 0

(the possibility that both sides are infinite is not excluded), where

H(x) =
∑
j≥1

h(1, j)xj , x ≥ 0.

Now Eτ1 <∞ follows from

H(1) =
∑
j≥1

h(1, j) = lim
n→∞

P{Zn > 0} = 1− π(0)
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once we can show that π(0) > 0. To this end, we recall that (Zn)n∈N0
is governed by a

geometric distribution, whence

p(n, 0) ≥ λn1{ξn=1} + 2−11{ξn>1} ≥ λn ∧ 1/2, n ≥ 2

and

a(n, 0) =
∑
j≥1

λn
j − (j − 1)λn

1{ξn=j} ≥ λn
∑
j≥1

j−11{ξn=j}, n ∈ N.

These inequalities ensure (A.1) and thereupon π(0) > 0 by Lemma A.2.
To prove finiteness of some exponential moment pick δ ∈ (0, 1) such that

E(ρξ)δ <∞ and r := Eρδ < 1.

Existence of such a δ is justified by assumptions and the Cauchy-Schwarz inequality. In
view of

h(1, j) ≤ P{Z(1, j) ≥ 1} ≤ E(EωZ(1, j))δ = E(ρξ)δrj−1

we infer that the radius of convergence of H is greater than one. This in combination
with H(1) < 1 implies that H(x) < 1 and thereupon V (x) <∞ for some x > 1.
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[18] Grincevičius, A. K.: On a limit distribution for a random walk on lines. Litovsk. Mat. Sb.
15(4), (1975), 79–91. MR-0448571

[19] Greven, A. and den Hollander, F.: Large deviations for a random walk in random environment.
Ann. Probab. 22(3), (1994), 1381–1428. MR-1303649

[20] Grey, D. R.: Regular variation in the tail behaviour of solutions of random difference equations.
Ann. Appl. Probab. 4(1), (1994), 169–183. MR-1258178

[21] Gut, A.: Stopped random walks: limit theorems and applications. 2nd edition. Springer, 2009.
MR-2489436

[22] Harris, T. E.: First passage and recurrence distributions. Trans. Amer. Math. Soc. 73(3),
(1952), 471–486. MR-0052057

[23] Iksanov, A.: Renewal theory for perturbed random walks and similar processes. Birkhäuser,
2016. MR-3585464

[24] Kesten, H.: Random difference equations and renewal theory for products of random matrices.
Acta Math. 131, (1973), 207–248. MR-0440724

[25] Kesten, H.: The limit distribution of Sinaı̆’s random walk in random environment. Phys. A
138(1-2), (1986), 299–309. MR-865247

[26] Kesten, H., Kozlov, M. V. and Spitzer, F.: A limit law for random walk in a random environment.
Compositio Math. 30, (1975), 145–168. MR-0380998

[27] Key, E. S.: Limiting distributions and regeneration times for multitype branching processes
with immigration in a random environment. Ann. Probab. 15(1), (1987), 344–353. MR-877607

[28] Korshunov, D. A.: An analog of Wald’s identity for random walks with infinite mean. Siberian
Math. J. 50(4), (2009), 663–666. MR-2583621

[29] Kozlov, M. V.: Random walk in a one-dimensional random medium. Theory Probab. Appl.
18(2), (1974), 387–388. MR-0319274

[30] Matzavinos, A., Roitershtein, A. and Seol, Y.: Random walks in a sparse random environment.
Electron. J. Probab. 21, (2016), paper no. 72. MR-3592203

[31] Meyer, P.-A.: Probability and potentials. Blaisdell Publishing Co. Ginn and Co., Waltham,
Mass.-Toronto, Ont.-London, 1966. MR-0205288

[32] Pakes, A. G.: Further results on the critical Galton–Watson process with immigration. J.
Austral. Math. Soc. 13, (1972), 277–290. MR-0312585

[33] Pisztora, A. and Povel, T.: Large deviation principle for random walk in a quenched random
environment in the low speed regime. Ann. Probab. 27(3), (1999), 1389–1413. MR-1733154

[34] Pisztora, A., Povel, T. and Zeitouni, O.: Precise large deviation estimates for a one-dimensional
random walk in a random environment. Probab. Theory Related Fields 113(2), (1999), 191–
219. MR-1676839

[35] Sinăı, Ya. G.: The limit behavior of a one-dimensional random walk in a random environment.
Teor. Veroyatnost. i Primenen. 27(2), (1982), 247–258. MR-657919

[36] Solomon, F.: Random walks in a random environment. Ann. Probab. 3, (1975), 1–31. MR-
0362503

[37] Sznitman, A. and Zerner, M.: A law of large numbers for random walks in random environment.
Ann. Probab. 27(4), (1999), 1851–1869. MR-1742891

[38] Varadhan, S. R. S.: Large deviations for random walks in a random environment. Comm. Pure
Appl. Math. 56(8), (2003), 1222–1245. MR-1989232

EJP 24 (2019), paper 69.
Page 43/44

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1628294
http://www.ams.org/mathscinet-getitem?mr=1628294
http://www.ams.org/mathscinet-getitem?mr=1097468
http://www.ams.org/mathscinet-getitem?mr=0345178
http://www.ams.org/mathscinet-getitem?mr=0448571
http://www.ams.org/mathscinet-getitem?mr=1303649
http://www.ams.org/mathscinet-getitem?mr=1258178
http://www.ams.org/mathscinet-getitem?mr=2489436
http://www.ams.org/mathscinet-getitem?mr=0052057
http://www.ams.org/mathscinet-getitem?mr=3585464
http://www.ams.org/mathscinet-getitem?mr=0440724
http://www.ams.org/mathscinet-getitem?mr=865247
http://www.ams.org/mathscinet-getitem?mr=0380998
http://www.ams.org/mathscinet-getitem?mr=877607
http://www.ams.org/mathscinet-getitem?mr=2583621
http://www.ams.org/mathscinet-getitem?mr=0319274
http://www.ams.org/mathscinet-getitem?mr=3592203
http://www.ams.org/mathscinet-getitem?mr=0205288
http://www.ams.org/mathscinet-getitem?mr=0312585
http://www.ams.org/mathscinet-getitem?mr=1733154
http://www.ams.org/mathscinet-getitem?mr=1676839
http://www.ams.org/mathscinet-getitem?mr=657919
http://www.ams.org/mathscinet-getitem?mr=0362503
http://www.ams.org/mathscinet-getitem?mr=0362503
http://www.ams.org/mathscinet-getitem?mr=1742891
http://www.ams.org/mathscinet-getitem?mr=1989232
https://doi.org/10.1214/19-EJP330
http://www.imstat.org/ejp/


Random walks in a moderately sparse random environment

[39] Zerner, M. P. W.: Lyapounov exponents and quenched large deviations for multidimensional
random walk in random environment. Ann. Probab. 26(4), (1998), 1446–1476. MR-1675027

[40] Zeitouni, O.: Random Walks in Random Environment. XXXI Summer School in Probability,
(St. Flour, 2001). Lecture Notes in Math., 1837, Springer, 193–312, 2004. MR-2071631

Acknowledgments. We thank the two anonymous referees for a number of useful
suggestions and Vitali Wachtel for bringing the article [28] to our attention. D. Bu-
raczewski and P. Dyszewski were partially supported by the National Science Center,
Poland (Sonata Bis, grant number DEC-2014/14/E/ST1/00588). A. Marynych was par-
tially supported by the Return Fellowship of the Alexander von Humboldt Foundation. A
part of this work was done while A. Iksanov and A. Marynych were visiting Wroclaw in
February 2018. They gratefully acknowledge hospitality and the financial support.

EJP 24 (2019), paper 69.
Page 44/44

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1675027
http://www.ams.org/mathscinet-getitem?mr=2071631
https://doi.org/10.1214/19-EJP330
http://www.imstat.org/ejp/

	Introduction
	Main results
	Branching processes in random environment with immigration
	Branching process with immigration
	Notation
	Analysis of the environment

	Proof strategy
	Tail behavior of 1
	Critical Galton–Watson process with immigration
	Proofs
	Proof of Proposition 2.1
	Proof of Theorem 2.2 and Corollary 2.4
	Proof of Theorem 2.6 and Corollary 2.8
	Proof of auxiliary Lemmas 5.3, 5.5, 5.6 and 5.7
	Proof of Lemma 5.3
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Lemma 5.7


	Appendix
	References

