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Stopping with expectation constraints: 3 points suffice
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Abstract

We consider the problem of optimally stopping a one-dimensional regular continuous
strong Markov process with a stopping time satisfying an expectation constraint. We
show that it is sufficient to consider only stopping times such that the law of the
process at the stopping time is a weighted sum of 3 Dirac measures. The proof uses
recent results on Skorokhod embeddings in order to reduce the stopping problem to a
linear optimization problem over a convex set of probability measures.
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1 Introduction

Let (Yt)t∈R≥0
be a one-dimensional regular continuous strong Markov process with

respect to a right-continuous filtration (Ft). In the sequel we use the term “general
diffusions” as a synonym for these processes. Let f : R→ R be measurable and denote
by T (T ) the set of (Ft)-stopping times such that E[τ ] ≤ T ∈ R≥0. In the following we
consider the optimal stopping problem

maximize E[f(Yτ )] subject to τ ∈ T (T ). (1.1)

The problem (1.1) arises whenever an average time constraint applies for any stopping
rule. If a process has to be stopped repeatedly and independently of the previous
stopping times, then it is reasonable to impose an average time constraint instead of a
sharp constraint of the type τ ≤ T , a.s. For example think of the question of when to
stop searching for a parking space. If you face this question every morning when driving
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Stopping with expectation constraints

to your work, it is more likely that you impose an average constraint on your searching
time than just a sharp upper bound.

Notice that there is no deterministic dependence of the constraint on time. For
solving the stopping problem (1.1) one needs to turn the expectation constraint into a
path-dependent constraint.

In this article we show that for the stopping problem (1.1) it is sufficient to consider
only stopping times τ such that the law of Yτ is a weighted sum of at most 3 Dirac
measures. Any such stopping time can be interpreted as a composition of exit times from
intervals.

We also show that in general a reduction to weighted sums of 2 Dirac measures is
not possible. In particular, one can not split the state space into a deterministic stopping
and continuation region. This is in contrast to stopping problems with a sharp bound on
the stopping time and to stopping problems with infinite time horizon and discounting.

Our idea for proving a reduction to 3 Dirac measures is to rewrite the stopping
problem (1.1) as a linear optimization problem over a set of probability measures. To
this end we use recent results on the Skorokhod embedding problem characterizing
the set A(T ) of probability distributions that can be embedded into Y with stopping
times having expectation smaller than or equal to T (see [1] and [13]). As for standard
linear problems the maximal value of the optimization is attained by extreme points. The
extreme points of A(T ) turn out to be contained in the set of probability measures that
can be written as weighted sums of at most 3 Dirac measures.

To the best of our knowledge, the idea of using Skorokhod embeddings to directly
solve optimal stopping problems first appeared in [30], where the authors deal with
an optimal stopping problem for the geometric Brownian motion, under the Choquet
integral, and where the only condition imposed on the stopping times is that they are
almost surely finite. Connections between specific optimal stopping problems and the
Skorokhod embedding problem have already been observed and examined earlier, see
e.g. [17, 21, 19, 12]. When it comes to optimal stopping problems with constraints
on the stopping time distribution, the literature is rather scarce: The seminal book by
Shiryaev [27] discusses in Section 4.3 and 4.4 versions of the quickest detection problem
with probability constraints. Kennedy [15] solves an optimal stopping problem with
an expectation constraint for a discrete time process. In [27] and in [15] the authors
use Lagrangian techniques to reduce the constrained problems to unconstrained ones.
Within a continuous time setting, the article [2] formulates a dynamic programming
principle for stopping problems with expectation constraints and derives a verification
theorem. Bayraktar and Yao [5] provide a proof of the dynamic programming principle
and characterize the value function of the stopping problem as the unique viscosity
solution of the associated fully non-linear Hamilton-Jacobi-Bellman equation. Different
constraints have been recently studied: Bayraktar and Miller [4] consider the problem
of optimally stopping the Brownian motion with a stopping time whose distribution
is atomic with finitely many points of mass. Miller [18] analyzes stopping problems
with time inconsistent constraints. In [6], the authors use optimal transport techniques
to treat the problem of optimally stopping the Brownian motion with a stopping time
having a fixed specified distribution. Further stopping problems with an expectation
constraint on the stopping time have been solved by Urusov [28]. Let θ ∈ [0, 1] be the
moment at which a standard Brownian motion attains its maximal value on [0, 1] and
let α ≥ 0. Then Urusov [28] characterizes the stopping time that minimizes E[(τ − θ)+]

over all stopping times τ satisfying the expectation constraint E[(τ − θ)−] ≤ α. Shiryaev
[26] determines the stopping time τ minimizing E[(τ − θ)+] among all stopping times
satisfying the probability constraint P [τ < θ] ≤ α. Likewise, Shiryaev [26] solves a
variant of this stopping problem where θ is replaced by the last time before 1 when the
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Stopping with expectation constraints

Brownian motion visits zero.
The article is organized as follows. In Section 2 we describe the precise setting of the

stopping problem considered. In Section 3 we show how one can reduce the stopping
problem to an optimization over the set of probability measures that are weighted
sums of 3 Dirac measures. Finally, in Section 4 we provide sufficient conditions for the
existence of an optimal stopping time.

2 Stopping after consecutive exit times

In this section we rigorously set the framework for the optimal stopping problem. The
process to stop is assumed to be a one-dimensional regular continuous strong Markov
process (general diffusion). Let the state space J ⊆ R be an open, half-open or closed
interval and denote by J̊ := (l, r) the interior of J , where −∞ ≤ l < r ≤ ∞. Moreover,
denote by J̄ the closure of J in R. Let Ω = C([0,∞), J) be the space of all continuous
J -valued functions and (Yt)t∈R≥0

be the coordinate process, i.e. Yt(ω) = ω(t), t ∈ R≥0,
ω ∈ Ω. Let F0

t be the σ-algebra generated by (Ys)s≤t and F0 := F0
∞ :=

∨
t∈R≥0

F0
t .

Denote by (θt)t∈R≥0
the family of shift operators on Ω defined by (θtω)(s) = ω(t + s),

s ∈ R≥0. Let (P x)x∈J be a family of probability measures on (Ω,F0) that is a regular
diffusion in the sense of [25, Chapter V.45]. In particular, we have P x[Y0 = x] = 1 for all
x ∈ J . Regularity means that for every y ∈ J̊ and x ∈ J we have that P y[τx < ∞] > 0,
where τx = inf{t ∈ R≥0 : Yt = x}. Here and in the sequel we use the convention that
inf ∅ =∞.

For a probability measure ν on (J,B(J)) let

P ν(A) :=

∫
P x(A)ν(dx), A ∈ F0.

Let Fν be the completion of F0 with respect to P ν and set Fνt = σ(F0
t ,N ), t ∈ R≥0,

whereN denotes the collection of P ν -null sets in Fν . One can show that (Ω,Fν , (Fνt ), P ν)

satisfies the usual conditions. We set Ft =
⋂
ν Fνt and F =

⋂
ν Fν . Observe that (Ft) is

right-continuous, but that in general (Ω,F , (Ft), P ν) does not satisfy the usual conditions.
The process (Yt)t∈R≥0

fulfills the strong Markov property (cf. Theorem 9.4, Chapter III,
in [24]): For any bounded F -measurable mapping η and any finite (Ft)-stopping time τ
we have

Eν [η ◦ θτ | Fτ ] = EYτ [η], P ν − a.s.

Let m be the speed measure of the diffusion (P x)x∈J on J (see Theorem 3.6 and Defini-
tion 3.7 in Chapter VII of [23]). Since Y is regular we have for all a < b ∈ J̊

0 < m([a, b]) <∞.

Throughout we assume that the diffusion Y is in natural scale. If Y is not in natural
scale, then there exists a strictly increasing continuous function s : J → R, the so-called
scale function, such that s(Yt), t ∈ R≥0, is in natural scale. In Remark 4.5 below we show
how to reduce the case where Y is not in natural scale to the case where it is in natural
scale.

In addition, we assume that if one of the endpoints l and r is accessible, then it is
absorbing. This implies Y is a local martingale (see Corollary 46.15 in [25]).

For y ∈ J̊ we define qy : J̄ → [0,∞],

qy(x) =
1

2
m({y})|x− y|+

∫ x

y

m((y, u)) du, x ∈ J̄ , (2.1)
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with the convention that m((y, u)) = −m((u, y)) whenever u < y. Moreover, we set
qy(r) := limx↑r qy(x) =∞ if r =∞ and qy(l) := limx↓l qy(x) =∞ if l = −∞.

Let τl,r = inf{t ∈ R≥0 : Yt /∈ (l, r)}. One can show that qy(Yt) − (t ∧ τl,r), t ∈ R≥0, is
a local martingale with respect to P y and (Ft) (see Theorem 2.1 in [3]). Moreover, the
behavior of qy at l and r determines whether the process attains the boundary points
with a positive probability or not.

Lemma 2.1 (see Theorem 3.3 in [3]). Let y ∈ J̊ . We have qy(r) <∞ if and only if r ∈ J .
Similarly, qy(l) <∞ if and only if l ∈ J .

Remark 2.2. Observe that the case where the process to stop is described by a ho-
mogeneous stochastic differential equation (SDE) driven by a Brownian motion W is a
special case of the general framework that we set up above. Indeed, let b, η : R → R

be Borel-measurable functions that satisfy η(x) 6= 0 for all x ∈ (l, r), η(x) = 0 for all
x ∈ R \ (l, r) and 1+|b|

η2 ∈ L1
loc((l, r)). Then for all y ∈ (l, r) the SDE

dYt = b(Yt)dt+ η(Yt)dWt, Y0 = y, (2.2)

possesses a weak solution (Y,W ) that is unique in law (see e.g. Theorem 2.11 in [9] or
Section 5.5 C in [14]). If b ≡ 0, then Y is in natural scale and the speed measure of Y is
given by m(dx) = 2

η2(x)dx. For all y ∈ (l, r) the function qy satisfies

qy(x) =

∫ x

y

∫ z

y

2

η2(u)
du dz, x ∈ J̄ .

The case where the SDE (2.2) contains a non-zero drift component b is a special case of
the setting considered in Remark 4.5.

Let f : J → R be a Borel-measurable function determining the payoff of the stopping
problem. Throughout we make the following assumption on f :

Assumption (A). For every y ∈ J̊ there exists C(y) ∈ R≥0 such that

f(x) ≥ −C(y)(1 + qy(x)), ∀x ∈ J. (2.3)

For any T ∈ R≥0, let T (T, y) be the set of all (Ft)-stopping times τ with Ey[τ ] ≤ T .

Remark 2.3. Assumption (A) ensures that the expectation Ey[f(Yτ )] exists for all y ∈ J̊ ,
T ∈ R≥0 and τ ∈ T (T, y). Indeed, for an appropriately chosen localizing sequence of
stopping times (τn), it holds that

Ey[{f(Yτ )}−] ≤ Ey[C(y)(1 + qy(Yτ ))] = C(y)(1 + Ey[lim inf
n→∞

qy(Yτ∧τn)])

≤ C(y)(1 + lim inf
n→∞

Ey[qy(Yτ∧τn)]) = C(y)(1 + lim inf
n→∞

Ey[τ ∧ τn])

≤ C(y)(1 + T ).

We consider the problem of finding the stopping time in T (T, y) that maximizes the
expected payoff Ey[f(Yτ )]. The value function is defined by

v(T, y) = sup
τ∈T (T,y)

Ey[f(Yτ )] (2.4)

for all T ≥ 0 and y ∈ J . Observe that v(0, y) = f(y) for all y ∈ J . Moreover, for y ∈ J\J̊ it
holds true that v(T, y) = f(y) for all T ∈ R≥0, because accessible endpoints are assumed
to be absorbing. Therefore, we assume throughout this article that y ∈ J̊ .

Remark 2.4. If Assumption (A) is replaced by the stronger assumption that there exists
C(y) ∈ R≥0 such that

|f(x)| ≤ C(y)(1 + qy(x)), x ∈ J, (2.5)
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then the value function v(T, y) is finite. Indeed, it follows by using similar arguments
as in Remark 2.3 that supτ∈T (T,y)E

y[f(Yτ )] ≤ C(y)(1 + T ) in this case. The following
example shows that in general one can not dispense with condition (2.5) if we want
to guarantee that v is finite. For a Brownian motion Y = W we have q0(x) = x2. Let
f(x) = |x|2+ε, ε > 0, be the payoff function. The first time τ−Ta ,a, a ∈ R>0, when W hits a

or −T/a has expectation T under P 0. Hence,

v(T, 0) ≥ sup
a∈R>0

E0[f(Wτ−T
a
,a

)] = sup
a∈R>0

{
a2+ε T

a2 + T
+

a2

a2+ε

T 2+ε

a2 + T

}
=∞.

For stopping problems without an expectation constraint an optimal stopping time is
given by the exit time of the continuation region (see Corollary 2.9, Chapter I in [22]).
In particular, for solving unconstrained stopping problems it is enough to consider exit
times from intervals. For constrained stopping problems a reduction to simple exit times
is not possible. We show, however, that it is enough to consider at most three consecutive
exit times.

To give a precise statement, we denote for a, b ∈ R with a ≤ b the first hitting time
of a by τa = inf{t ∈ R≥0 : Yt = a} and the first exit time from the interval (a, b) after
time r ∈ R≥0 by τa,b(r) = inf{t ∈ [r,∞) : Yt /∈ (a, b)}. Moreover, we write T3(T, y) for
the collection of stopping times τ ∈ T (T, y) for which there exist p1, p2, p3 ∈ [0, 1] with
p1 + p2 + p3 = 1 and a, c, d ∈ R with a ≤ c ≤ d such that

τ =

{
τa,b(τµ̄) + 1{Yτa,b(τµ̄)=b} inf{t ∈ R≥0 : Yt+τa,b(τµ̄) ∈ {c, d}}, if µ̄ > a,

τa, if µ̄ = a,

where µ̄ = p1a + p2c + p3d and b = p2c+p3d
1−p1

if µ̄ > a. Notice that b ∈ (max{c, µ̄}, d) for
p1, p2, p3 ∈ (0, 1) and c < d.

One of our main results is that the stopping problem (2.4) can be simplified to the set
T3(T, y).

Theorem 2.5. We have

v(T, y) = sup
τ∈T3(T,y)

Ey[f(Yτ )]. (2.6)

We prove Theorem 2.5 in the following section. We do so by reducing problem (2.4)
to an optimization over a set of probability measures.

Theorem 2.5 brings up the question whether the supremum is attained in T3(T, y).
In Section 4 below we provide sufficient conditions guaranteeing the existence of an
optimal stopping time in T3(T, y).

3 Optimal stopping as a measure optimization

In this section we first explain how one can reduce the stopping problem (2.4)
to a linear optimization problem over a set of probability measures satisfying some
integrability constraints. The linear nature of the measure optimization allows us then
to conclude that the maximum values are attained by extreme points, which here are
weighted sums of three Dirac measures.

We denote byM =M(J) the set of all probability measures on R with support in J
and byM1 the set of all measures µ inM with finite first moment µ̄ =

∫
xµ(dx). For

y ∈ J̊ let A(T, y) be the set of measures µ ∈M1 satisfying the following properties:

1. (a) If l > −∞, then µ̄ ≤ y.
(b) If r <∞, then µ̄ ≥ y.
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2. µ integrates qy such that ∫
qy(x)µ(dx) ≤ T −H(y, µ̄), (3.1)

where

H(y, µ̄) =


(y − µ̄)

(
m((y,∞)) + 1

2m({y})
)
, µ̄ < y,

0, µ̄ = y,

(µ̄− y)
(
m((−∞, y)) + 1

2m({y})
)
, µ̄ > y.

Remark 3.1. Observe that the following consequences of the definition of A(T, y) hold
true. If there exists µ ∈ A(T, y) such that µ̄ > y, then it follows that l = −∞ and that
m((−∞, y)) < ∞. Indeed, the fact that l = −∞ follows directly from Condition 1. (a)
in this case. For the second claim, suppose on the contrary that m((−∞, y)) = ∞.
Then it follows from the definition of H that H(y, µ̄) = ∞ and hence (3.1) can not be
satisfied by µ. Consequently, m((−∞, y)) < ∞. Similarly, it holds that r = ∞ and that
m((y,∞)) <∞ if there exists µ ∈ A(T, y) such that µ̄ < y.

Results from [13] on the Skorokhod embedding problem for diffusions (and from [1]
for processes described in terms of SDEs) imply that A(T, y) coincides with the set of
probability measures that can be embedded into Y under P y with stopping times τ
satisfying Ey[τ ] ≤ T . More precisely, we have the following:

Proposition 3.2. Let µ ∈ M. There exists a stopping time τ ∈ T (T, y) with Yτ ∼ µ

under P y if and only if µ ∈ A(T, y).

Proof. Let τ ∈ T (T, y) be an embedding of µ in Y under P y, i.e. let Yτ have the distribu-
tion µ under P y. Then [10] and [20] imply that

• if l > −∞, then µ̄ ≤ y,

• if r <∞, then µ̄ ≥ y.

Thus, µ ∈ M1 whenever r or l is finite. Section 3.5 in [13] shows that if J = (−∞,∞)

and τ is an integrable embedding for µ, then µ ∈ M1. If µ̄ = y, then it follows from
Theorem 2.4. in [13] that∫

qy(x)µ(dx) ≤ Ey[τ ] ≤ T = T −H(y, µ̄).

If µ̄ < y, then we conclude from Theorem 3.6 in [13] that∫
qy(x)µ(dx) + (y − µ̄)

(
m((y,∞)) +

1

2
m({y})

)
≤ T,

which implies that Property 2 holds true. If µ̄ > y, we again apply Theorem 3.6 in [13] to
obtain

∫
qy(x)µ(dx) ≤ T −H(y, µ̄).

For the reverse direction let µ ∈ A(T, y) and assume first that µ is centered around y.
Then µ can be embedded in Y under P y for −∞ ≤ l < r ≤ ∞ by [10] and [20]. It follows
from Theorem 3.4 in [13] that there exists a minimal stopping time τ with Yτ ∼ µ under
P y and

Ey[τ ] =

∫
qy(x)µ(dx) ≤ T.

Hence, τ ∈ T (T, y).
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Now let µ ∈ A(T, y) with µ̄ < y. Then we have r =∞. Theorem 3.6 in [13] shows the
existence of a minimal embedding τ of µ in Y under P y with

Ey[τ ] =

∫
qy(x)µ(dx) + (y − µ̄)

(
m((y,∞)) +

1

2
m({y})

)
≤ T,

where the last inequality follows from the second property of µ. Hence, τ ∈ T (T, y).
Finally, for µ ∈ A(T, y) with µ̄ > y, using similar arguments, one can show that there

exists a stopping time τ with Yτ ∼ µ under P y and Ey[τ ] ≤ T .

Remark 3.3. The function qy appearing in the definition of the set of measures A(T, y)

plays for the Markov process Y the same role as the function x 7→ x2 plays for the
Brownian motion. Indeed, we know that when Y is a Brownian motion starting in y = 0,
we can find an embedding of µ with an integrable stopping time if and only if µ is
centered and in L2. The papers [13] and [1] identify the function qy as the counterpart
of the second-order moment when Y is a general diffusion.

Remark 3.4. When µ ∈ A(T, y) is not centered around y (i.e. µ̄ 6= y), the function H does
not vanish in the constraint 2 of A(T, y). In this case, the measure µ can be embedded
by the following stopping rule τ : First wait until τµ̄ = inf{t ∈ R≥0 : Yt = µ̄} and then
embed µ in Y , started at µ̄. To prove this, note that

qz(x) = qy(x)− qy(z)− 1

2
(x− z)

(
∂+qy
∂x

(z) +
∂−qy
∂x

(z)

)
, x ∈ J, (3.2)

where ∂+qy
∂x and ∂−qy

∂x denote the right-hand side and left-hand side derivative of qy,
respectively. Let an = −n if µ̄ > y (i.e. l = −∞ by Remark 3.1) and an = n otherwise.
Define τµ̄,an = inf{t ≥ 0 : Yt /∈ (µ̄ ∧ an, µ̄ ∨ an)}. Monotone convergence and Lemma 2.2
in [3] imply

Ey[τµ̄] = lim
n→∞

Ey[τµ̄,an ] = lim
n→∞

Ey
[
qy
(
Yτµ̄,an

)]
= qy(µ̄) +

1

2
m({y})|y − µ̄|+ 1{µ̄<y}(y − µ̄)m

(
(y,∞)

)
+ 1{µ̄>y}(µ̄− y)m

(
(−∞, y)

)
= qy(µ̄) +H(y, µ̄).

(3.3)

(3.3) together with (3.2) yields that

Ey[τ ] = Ey[τµ̄] +

∫
qµ̄(x)µ(dx) = qy(µ̄) +H(y, µ̄) +

∫
qµ̄(x)µ(dx)

=

∫
qy(x)µ(dx) +H(y, µ̄).

Proposition 3.2 allows to reformulate the stopping problem (2.4) as a linear problem
onM.

Corollary 3.5. We have

v(T, y) = sup
µ∈A(T,y)

∫
f(x)µ(dx) (3.4)

and for any optimal µ ∈ A(T, y) there exists an optimal stopping time τ ∈ T (T, y) in (2.4)
with Yτ ∼ µ under P y.

Notice that the functional µ 7→
∫
f(x)µ(dx) is linear onA(T, y). We have thus obtained

a linear problem over a set of probability measures µ with some integrability constraints.
Recall that for standard linear problems the maximum value is attained by extreme
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points. We have a similar result for an optimization problem
∫
gdµ over measures µ ∈M

satisfying moment constraints of the form
∫
fidµ ≤ ci, g and fi measurable, ci ∈ R,

i ∈ {1, . . . , n}. The maximum value of
∫
gdµ is also attained in the set of extreme points,

see [29]. Furthermore, the extreme points are contained in the set of all weighted Dirac
measures with at most n+ 1 mass points satisfying the moment constraints.

In the following we denote the extreme points of a convex set A ⊆M by E(A) and for
any M ⊆M we denote by M3 the set of all measures in M which are a weighted sum of
at most 3 Dirac measures.

Now we reduce the optimization problem (3.4) to an optimization problem over
weighted sums of Dirac measures.

Theorem 3.6. We have

v(T, y) = sup
µ∈A3(T,y)

∫
f(x)µ(dx). (3.5)

Proof. We consider two cases. In the first case we assume that all measures µ in A(T, y)

are centered around y, i.e. µ̄ = y. Observe that µ̄ = y for all µ ∈ A(T, y) if and only if
one of the following four cases is satisfied: 1. J is bounded, 2. l > −∞, r = ∞ and
m((y,∞)) = ∞, 3. l = −∞, r < ∞ and m((−∞, y)) = ∞ and 4. J = R, m((y,∞)) = ∞
and m((−∞, y)) =∞. The optimization problem (3.4) can be rewritten as

v(T, y) = sup
t∈[0,T ]

sup
µ∈D(t,y)

∫
f(x)µ(dx),

where D(t, y) = {µ ∈ M1 : µ̄ = y and
∫
qy(x)µ(dx) = t}, 0 ≤ t ≤ T . Theorem 2.1(b),

Proposition 3.1 and Theorem 3.2 in [29] imply that

sup
µ∈D(t,y)

∫
f(x)µ(dx) = sup

µ∈E(D(t,y))

∫
f(x)µ(dx) = sup

µ∈D3(t,y)

∫
f(x)µ(dx)

because D3(t, y) coincides with E(D(t, y)). For all t ∈ [0, T ] we have D3(t, y) ⊆ A3(T, y).
Therefore,

v(T, y) = sup
t∈[0,T ]

sup
µ∈D3(t,y)

∫
f(x)µ(dx) ≤ sup

µ∈A3(T,y)

∫
f(x)µ(dx)

≤ sup
µ∈A(T,y)

∫
f(x)µ(dx) = v(T, y).

This proves (3.5) in the first case.
In the second case the set A(T, y) also contains uncentered measures. We define

A+(T, y) =

{
{µ ∈ A(T, y) : µ̄ ≥ y}, if ∃µ ∈ A(T, y) with µ̄ > y,

∅, if µ̄ ≤ y for all µ ∈ A(T, y),

A−(T, y) =

{
{µ ∈ A(T, y) : µ̄ ≤ y}, if ∃µ ∈ A(T, y) with µ̄ < y,

∅, if µ̄ ≥ y for all µ ∈ A(T, y).

Observe that at least one of the sets A+(T, y) or A−(T, y) is nonempty and that (3.4) can
be reduced to the two optimization problems supµ∈A+(T,y)

∫
f(x)µ(dx) and

supµ∈A−(T,y)

∫
f(x)µ(dx), where we follow the convention that the supremum over the

empty set is equal to −∞. If A+(T, y) is nonempty, then

A+(T, y) =

{
µ ∈M1 : µ̄ ≥ y,

∫
qy(x)µ(dx) ≤ T −H(y, µ̄)

}
=

{
µ ∈M1 :

∫
−xµ(dx) ≤ −y,

∫
(qy(x) + Cx)µ(dx) ≤ T + Cy

}
,
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where C = m((−∞, y)) + 1
2m({y}) < ∞. Therefore, Proposition 3.1 and Theorem 3.2

in [29] imply that

sup
µ∈A+(T,y)

∫
f(x)µ(dx) = sup

µ∈E(A+(T,y))

∫
f(x)µ(dx).

By Theorem 2.1(a) in [29] we have E(A+(T, y)) ⊆ A+
3 (T, y). Thus,

sup
µ∈A+(T,y)

∫
f(x)µ(dx) = sup

µ∈A+
3 (T,y)

∫
f(x)µ(dx). (3.6)

If A−(T, y) is nonempty, similar arguments show that (3.6) holds with A+(T, y) and
A+

3 (T, y) replaced by A−(T, y) and A−3 (T, y), respectively. Since A3(T, y) = A−3 (T, y) ∪
A+

3 (T, y) we conclude that

v(T, y) = sup
µ∈A3(T,y)

∫
f(x)µ(dx).

With Theorem 3.6 we can prove Theorem 2.5.

Proof of Theorem 2.5. Let µ ∈ A3(T, y) with exactly three mass points a < c < d. First
observe that we can assume that µ is centered around y. Otherwise the first hitting time
of µ̄ is integrable with respect to P y (Theorem 2.4 in [13]) and we wait until Y hits µ̄ and
then continue as in the centered case (cf. Remark 3.4).

We next use the balayage method, developed by Chacon and Walsh in [8] for Brownian
motion and extended in [11] to general starting and target distributions, in order to
construct a stopping time that embeds µ into Y . More precisely, we define consecutive
exit times for the diffusion Y as follows:

τ1 = inf{t ∈ R≥0 : Yt /∈ (a, b)}
τ2 = τ1 + inf{t ∈ R≥0 : Yt /∈ (c, d)} ◦ θτ1 ,

where b = (µ({c})c + µ({d})d)/(1− µ({a})). Notice that b ∈ (c, d). Moreover, since µ is
centered around y and a < y, it holds that b = (y − µ({a})a)/(1 − µ({a})) > y. Thus,
b ∈ (max{c, y}, d). The stopping time τ2 is an embedding of µ into Y under P y. By using
that qy(Yt)− (t∧ τl,r) is a local martingale, one can show Ey[τ2] = Ey[qy(Yτ2)] ≤ T ; hence
τ2 ∈ T3(T, y).

If µ has two mass points a < c, then τ = inf{t ∈ R≥0 : Yt /∈ (a, c)} ∈ T3(T, y). And
similarly, if µ = δa, then τ = inf{t ∈ R≥0 : Yt = a} ∈ T3(T, y).

The following example shows that in general a reduction to A2(T, y), the set of
probability measures in A(T, y) that are weighted sums of at most 2 Dirac measures, is
not possible.

Example 3.7. Let (Yt)t∈R≥0
be a Brownian motion starting in 0 and let f(x) = 1{|x|≥1},

x ∈ R, be the payoff function. According to Remark 2.2 the speed measure is in this case
given by m(dx) = 2 dx and the function q0 satisfies q0(x) = x2 for all x ∈ R. We claim that

v(T, 0) = sup
µ∈A(T,0)

∫
f(x)µ(dx) = T ∧ 1,

and

ṽ(T, 0) = sup
µ∈A2(T,0)

∫
f(x)µ(dx) =

{
T

1+T , T < 1,

1, T ≥ 1.
(3.7)
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To show this, first observe that the second constraint in the definition of A(T, 0) ensures
that all measures in A(T, 0) are centered around 0. If T ≥ 1, the measure µ∗ given by

µ∗ =
1

2
δ−1 +

1

2
δ1

satisfies µ∗ ∈ A2(T, 0) ⊆ A(T, 0). Since f attains its maximum at −1 and 1 it follows that
v(T, 0) = ṽ(T, 0) =

∫
f(x)µ∗(dx) = 1 in this case.

In the sequel assume that T < 1. Observe that for every measure µ ∈ A2(T, 0) at
least one mass point is contained in (−1, 1). Due to the symmetry of the optimization
problem in (3.7) and the form of f , we can restrict ourselves to measures of the form

µS =
1

1 + S
δ−S +

S

1 + S
δ1 ∈ A2(T, 0),

where S ∈ (0, T ]. Then we obtain

ṽ(T, 0) = sup
µ∈A2(T,0)

∫
f(x)µ(dx) = sup

S∈(0,T ]

∫
f(x)µS(dx) =

T

1 + T
.

Theorem 3.6 implies that in the maximization problem for v it is sufficient to consider
measures µ ∈ A3(T, 0). Moreover, since f is constant and maximal on R\(−1, 1) and
symmetric, we can restrict ourselves to mass points −1, c and 1 for c ∈ [0, 1). The class
of all centered probability measures µS,c with these three mass points and

∫
q0dµ

S,c = S

is given by

µS,c =
S + c

2(1 + c)
δ−1 +

1− S
1− c2

δc +
S − c

2(1− c)
δ1, c ∈ [0, 1), S ∈ [c, 1].

Hence µS,c ∈ A3(T, 0) if and only if c ∈ [0, T ] and S ∈ [c, T ]. We have∫
f(x)µS,c(dx) =

S − c2

1− c2
= 1− 1− S

1− c2
,

which is maximized for c = 0 and S = T . Hence we obtain,

v(T, 0) = sup
µ∈A(T,0)

∫
f(x)µ(dx) = sup

µ∈A3(T,0)

∫
f(x)µ(dx) =

∫
f(x)µ∗(dx) = T

with

µ∗ =
T

2
δ−1 + (1− T ) δ0 +

T

2
δ1.

The proof of Theorem 2.5 yields that the corresponding optimal stopping time is given by

τ = τ−1,b(0) + 1{Yτ−1,b(0)=b} inf
{
t ∈ R≥0 : Yt+τ−1,b(0) ∈ {0, 1}

}
,

where b = T
2−T .

Example 3.8. The framework of Section 2 allows to solve stopping problems where the
process to stop is not necessarily characterized as solution of an SDE. One such example
is Brownian motion on R sticky at 0. This process evolves like a Brownian motion outside
0 but spends a Lebesgue-positive amount of time at zero without having intervals of
zeros. More formally, let Y be a general diffusion in natural scale with state space J = R

and speed measure

m(dx) = 2dx+ 2κδ0(dx),
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where κ ∈ [0,∞). It follows that the function q0 satisfies

q0(x) = x2 + κ|x|, ∀x ∈ R.

One can generalize the results of Example 3.7 to the sticky case. Let f(x) = 1{|x|≥1},
x ∈ R, be the payoff function. Then similar calculations as in Example 3.7 show that

v(T, 0) = sup
µ∈A(T,0)

∫
f(x)µ(dx) =

T

1 + κ
∧ 1,

with optimal measure

µ∗ =
1

2

(
T

1 + κ
∧ 1

)
δ−1 +

(
1− T

1 + κ

)+

δ0 +
1

2

(
T

1 + κ
∧ 1

)
δ1.

Moreover, a straight-forward calculation shows that for T < 1 + κ the supremum over
A2(T, 0) is strictly smaller than the value function v(T, 0).

The parameter κ controls the amount of time spent at zero by the sticky Brownian
motion. For large values of κ, the process is held longer in zero, and the optimal value
v(T, 0), giving the probability of stopping the process Y outside the interval (−1, 1) is
small. Also, remark that when κ = 0, the optimal values given above for the sticky
Brownian motion coincide with the results of Example 3.7 for the Brownian motion.

4 Existence of an optimizer

The next example shows that the supremum in (3.5) is not always attained.

Example 4.1. Let f1(x) = x2 |x|
1+|x| , x ∈ R, and Y be a Brownian motion starting in 0

under P 0. In this case there does not exist an optimal stopping time. To prove this let
v1 := supτ∈T (T,0)E

0[f1(Yτ )]. Moreover, consider the second payoff function f2(x) = x2.
Note that for any integrable stopping time τ we have E0[Y 2

τ ] = E0[τ ]. Therefore,
v2 := supτ∈T (T,0)E

0[f2(Yτ )] = T .
One can show that v1 = v2. Indeed, on the one hand it must hold that v1 ≤ v2 since

f1 ≤ f2. On the other hand, for the stopping times τn = τ−1/n,nT we have E0[τn] = T and

E0 [f1(Yτn)] =
nT

1/n+ nT

1

n2

1/n

1 + 1/n
+

1/n

1/n+ nT
n2T 2 nT

1 + nT
−→ T,

as n→∞, and hence v1 ≥ v2.
From v1 = v2 we can deduce that the supremum can not be attained in v1, because

for any stopping time τ 6= 0 with E0[τ ] <∞ we have P 0[f1(Yτ ) < f2(Yτ )] > 0.

We now establish the existence of an optimal measure in A3(T, y) in (3.5) under mild
conditions on the payoff function f .

Theorem 4.2. Assume that f : J → R is upper semi-continuous with lim supx↑r
f(x)
qy(x) ≤ 0

if r /∈ J and lim supx↓l
f(x)
qy(x) ≤ 0 if l /∈ J . Then there exists an optimal measure in A3(T, y)

for (3.5) and an optimal stopping time in T3(T, y) for (2.6).

Remark 4.3. In the special case where J is a compact interval and f : J → R is upper
semi-continuous, the existence of an optimal measure in A3(T, y) for (3.5) can be shown
using Prokhorov’s theorem. Indeed, if (µn)n∈N is a sequence in A3(T, y) such that
limn→∞

∫
fdµn = v(T, y), then compactness of J ensures that (µn)n∈N is tight. By

Prokhorov’s theorem, (µn)n∈N converges weakly along a subsequence to a probability
measure µ. It follows that µ ∈ A3(T, y) and, moreover, the Portmanteau theorem
and the fact that f is bounded from above by compactness of J ensure that v(T, y) =

limn→∞
∫
fdµn ≤

∫
fdµ. Hence, µ ∈ A3(T, y) is optimal in (3.5). For the more general

setting of Theorem 4.2 we provide a more elementary proof.
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Proof of Theorem 4.2. Throughout the proof we denote by C+, C− ∈ [0,∞] the extended
real numbers given by C+ = m

(
(y,∞)

)
+ 1

2m({y}) and C− = m
(
(−∞, y)

)
+ 1

2m({y}). Let

µn =
∑3
j=1 p

j
nδxjn ∈ A(T, y), n ∈ N, be a sequence of measures such that

lim
n→∞

∫
R

fdµn = v(T, y).

If the sequence (x1
n)n∈N is unbounded, choose a subsequence, also denoted by (x1

n)n∈N,
such that either limn→∞ x1

n = −∞ =: x1 or limn→∞ x1
n =∞ =: x1. If (x1

n)n∈N is bounded,
extract a subsequence such that limn→∞ x1

n = x1 ∈ J̄ . By extracting further subse-
quences, proceed in the same way with (x2

n)n∈N and (x3
n)n∈N. Refine once again the

sequence to obtain that (p1
n, p

2
n, p

3
n) → (p1, p2, p3) ∈ [0, 1]3 as n → ∞. Overall we obtain

for n→∞ that

(x1
n, x

2
n, x

3
n, p

1
n, p

2
n, p

3
n)→ (x1, x2, x3, p1, p2, p3) ∈ (J̄ ∪ {−∞} ∪ {∞})3 × [0, 1]3.

Recall that J̄ denotes the closure of J in R with respect to the Euclidean metric. Note
that xj =∞ and xj = −∞ are only possible if r =∞ and l = −∞, respectively.

Let K =
{
j ∈ {1, 2, 3} |xj ∈ J

}
, K̄+ =

{
j ∈ {1, 2, 3} |xj /∈ J, xj = r

}
and K̄− ={

j ∈ {1, 2, 3} |xj /∈ J, xj = l
}
. Define µ =

∑
k∈K p

kδxk . We show that µ is an optimizer
for (3.5).

From the fact that for all i ∈ {1, 2, 3} it holds

0 ≤ pinqy(xin) ≤
3∑
j=1

pjnqy(xjn) =

∫
R

qy(x)µn(dx) ≤ T (4.1)

and that limn→∞ qy(xin) = ∞ for all i ∈ {1, 2, 3} \ K by Lemma 2.1, it follows for all
i ∈ {1, 2, 3} \K that

lim
n→∞

pin = lim
n→∞

1

qy(xin)
pinqy(xin) = 0. (4.2)

We conclude from (4.2) that

µ(J) =
∑
k∈K

pk = lim
n→∞

∑
k∈K

pkn = lim
n→∞

3∑
j=1

pjn = lim
n→∞

µn(J) = 1.

Thus, µ ∈M1. Next we show that µ ∈ A3(T, y). To this end we distinguish four cases.
1. l > −∞, r < ∞. Observe that in this case we have µn = y for all n ∈ N. This

together with (4.2) ensures that

y = lim
n→∞

µn = lim
n→∞

∑
k∈K

pknx
k
n +

∑
i∈{1,2,3}\K

pinx
i
n

 =
∑
k∈K

pkxk = µ. (4.3)

Moreover, continuity and nonnegativity of qy on J imply that∫
R

qy(x)µ(dx) = lim
n→∞

∑
k∈K

pknqy(xkn) ≤ lim sup
n→∞

3∑
i=1

pinqy(xin) ≤ T = T −H(y, µ). (4.4)

This proves that µ ∈ A3(T, y).
2. l > −∞, r =∞. In this case we know that µn ≤ y for all n ∈ N. Let us first assume

that m((y,∞)) =∞. Then it holds that µn = y for all n ∈ N. Moreover, we have for all

i ∈ K̄+ that limn→∞
qy(xin)
xin

= 1
2m({y}) +m

(
(y,∞)

)
=∞ and hence, with (4.1),

lim
n→∞

pinx
i
n = lim

n→∞
pinqy(xin)

xin
qy(xin)

= 0. (4.5)
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This and (4.2) show that

y = lim
n→∞

µn = lim
n→∞

∑
k∈K

pknx
k
n +

∑
i∈K̄+

pinx
i
n +

∑
i∈K̄−

pinx
i
n

 =
∑
k∈K

pkxk = µ.

Then the same reasoning as in (4.4) demonstrates that
∫
qy(x)µn(dx) ≤ T −H(y, µ) and

hence µ ∈ A3(T, y).
Let us now assume that m((y,∞)) <∞. Equation (4.2) implies that

y ≥ lim sup
n→∞

µn = lim sup
n→∞

∑
k∈K

pknx
k
n +

∑
i∈K̄+

pinx
i
n +

∑
i∈K̄−

pinx
i
n


≥
∑
k∈K

pkxk + lim sup
n→∞

∑
i∈K̄−

pinx
i
n = µ.

(4.6)

Moreover, it holds for all n ∈ N that

T ≥
∫
R

qy(x)µn(dx) +H(y, µn) =

3∑
i=1

pinqy(xin) + C+

(
y −

3∑
i=1

pinx
i
n

)

=

3∑
i=1

pin

(
qy(xin)− C+(xin − y)

)
.

(4.7)

It follows with (4.6) that

lim
n→∞

∑
k∈K

pkn
(
qy(xkn)− C+(xkn − y)

)
=
∑
k∈K

pk
(
qy(xk)− C+(xk − y)

)
=

∫
R

qy(x)µ(dx) +H(y, µ̄).

(4.8)

Combining (4.1) and limx→∞
qy(x)
x−y = C+ yields that

lim
n→∞

∑
i∈K̄+

pin
(
qy(xin)− C+(xin − y)

)
= 0. (4.9)

Moreover, the nonnegativity of qy and (4.2) imply that

lim inf
n→∞

∑
i∈K̄−

pin
(
qy(xin)− C+(xin − y)

)
≥ lim inf

n→∞

∑
i∈K̄−

C+p
i
n(y − xin) = 0. (4.10)

Combining (4.7), (4.8), (4.9) and (4.10) proves that µ ∈ A3(T, y).
3. l = −∞, r <∞. This case is analog to the case l > −∞, r =∞.
4. l = −∞, r = ∞. In this case no conditions on µ̄ have to be verified. Assume

first that m((y,∞)) = ∞ and m((−∞, y)) = ∞. As in (4.5) it follows in this case that
limn→∞ pinx

i
n = 0 for all i ∈ K̄+ ∪ K̄−. In addition, it holds that µn = y for all n ∈ N.

Hence, we conclude that y = limn→∞ µn = µ. As in (4.4) we obtain that µ ∈ A3(T, y).
Next, assume that m((y,∞)) < ∞ and m((−∞, y)) = ∞. In this case we obtain as in
(4.5) that limn→∞ pinx

i
n = 0 for all i ∈ K̄−. This, together with the fact that y ≥ µn for

all n ∈ N, proves that y ≥ µ (see also (4.6)). Since limn→∞ xin = −∞ for all i ∈ K̄− we
conclude that

lim inf
n→∞

∑
i∈K̄−

pin
(
qy(xin)− C+(xin − y)

)
≥ lim inf

n→∞

∑
i∈K̄−

C+p
i
n(y − xin) ≥ 0. (4.11)
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Then proceeding exactly as in (4.7), (4.8) and (4.9) shows that µ ∈ A3(T, y). The case
m((y,∞)) =∞ and m((−∞, y)) <∞ can be treated analogously. Finally, we assume that
m((y,∞)) < ∞ and m((−∞, y)) < ∞. Without loss of generality we also assume that
µ ≤ y. In this case we obtain for all n ∈ N that

T ≥
∫
R

qy(x)µn(dx) +H(y, µn)

=

3∑
i=1

pinqy(xin) + C+

(
y −

3∑
i=1

pinx
i
n

)
+ 1(y,∞)(µn)(C+ + C−) (µn − y)

≥
3∑
i=1

pin

(
qy(xin)− C+(xin − y)

)
.

(4.12)

Proceeding as in (4.8), (4.9) and (4.11) proves that µ ∈ A3(T, y).
To summarize, we have shown that µ ∈ A3(T, y) in any possible case. It remains to

show the optimality of µ. First note that v(T, y) ≥
∫
R
fdµ. The assumptions

lim supx↑r
f(x)
qy(x) ≤ 0 if r /∈ J and lim supx↓l

f(x)
qy(x) ≤ 0 if l /∈ J together with (4.1) imply that

for i /∈ K

lim sup
n→∞

pinf(xin) = lim sup
n→∞

pinqy(xin)
f(xin)

qy(xin)
≤ 0. (4.13)

Finally, the upper semi-continuity of f and (4.13) result in∫
R

f(x)µ(dx) =
∑
k∈K

pkf(xk) ≥ lim sup
n→∞

∑
k∈K

pknf(xkn)

≥ lim sup
n→∞

∑
k∈K

pknf(xkn) + lim sup
n→∞

∑
i/∈K

pinf(xin)

≥ lim sup
n→∞

3∑
i=1

pinf(xin) = lim
n→∞

∫
R

f(x)µn(dx) = v(T, y).

Therefore we conclude that v(T, y) =
∫
R
fdµ. Moreover, the proof of Theorem 2.5 allows

to construct a stopping time in T3(T, y) which is optimal in (2.6).

Remark 4.4. Example 4.1 shows that the condition that lim supx↑r
f(x)
qy(x) ≤ 0 if r /∈ J and

lim supx↓l
f(x)
qy(x) ≤ 0 if l /∈ J in Theorem 4.2 can not be weakened in general.

Finally, to complete the article, we explain how to deal with the optimal stopping
problem (2.4) if Y is not in natural scale.

Remark 4.5. Let Y be a general diffusion and suppose that Y satisfies all the properties
of Section 2 apart from being in natural scale. Let s be the scale function of Y . Then
Zt = s(Yt), t ∈ R≥0, is a diffusion in natural scale on s(J), see Theorem 46.12, in Chapter
V, [25] or Theorem 2.1 in [7]. Hence we can convert the optimal stopping problem with
reward function f for the process Y under P y into an optimal stopping problem with
reward function f ◦ s−1 for Z under a measure Qs(y).

If f ◦ s−1 satisfies Assumption (A), where y ∈ s(J̊) and qy is defined in (2.1) using the
speed measure of Z, then all results of Section 2–4 apply.

For more details see Section III.7 in [16].
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