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Abstract

A mated-CRT map is a random planar map obtained as a discretized mating of corre-
lated continuum random trees. Mated-CRT maps provide a coarse-grained approxima-
tion of many other natural random planar map models (e.g., uniform triangulations
and spanning tree-weighted maps), and are closely related to γ-Liouville quantum
gravity (LQG) for γ ∈ (0, 2) if we take the correlation to be − cos(πγ2/4). We prove
estimates for the Dirichlet energy and the modulus of continuity of a large class of
discrete harmonic functions on mated-CRT maps, which provide a general toolbox
for the study of the quantitative properties of random walk and discrete conformal
embeddings for these maps.

For example, our results give an independent proof that the simple random walk
on the mated-CRT map is recurrent, and a polynomial upper bound for the maximum
length of the edges of the mated-CRT map under a version of the Tutte embedding.
Our results are also used in other work by the first two authors which shows that
for a class of random planar maps — including mated-CRT maps and the UIPT — the
spectral dimension is two (i.e., the return probability of the simple random walk to its
starting point after n steps is n−1+on(1)) and the typical exit time of the walk from a
graph-distance ball is bounded below by the volume of the ball, up to a polylogarithmic
factor.
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1 Introduction

1.1 Overview

There has been substantial interest in random planar maps in recent years. One
reason for this is that random planar maps are the discrete analogs of γ-Liouville quantum
gravity (LQG) surfaces for γ ∈ (0, 2). Such surfaces have been studied in the physics
literature since the 1980’s [45, 46], and can be rigorously defined as metric measure
spaces with a conformal structure [16, 37, 41, 42, 25]. The parameter γ depends on
the particular type of random planar map model under consideration. For example,
γ =

√
8/3 for uniform random planar maps, γ =

√
2 for spanning-tree weighted maps,

and γ =
√

4/3 for bipolar-oriented maps.
Central problems in the study of random planar maps include describing the large-

scale behavior of graph distances; analyzing statistical mechanics models on the map;
and understanding the conformal structure of the map, which involves studying the
simple random walk on the map and various ways of embedding the map into C. Here
we will focus on this last type of question for a particular family of random planar
maps called mated-CRT maps, which (as we will discuss more just below) are directly
connected to many other random planar map models and to LQG.
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Harmonic functions on mated-CRT maps

To define mated-CRT maps, fix γ ∈ (0, 2) (which corresponds to the LQG parameter)
and let (L,R) : R → R2 be a pair of correlated, two-sided standard linear Brownian
motions normalized so that L0 = R0 = 0 with correlation − cos(πγ2/4), i.e., corr(Lt, Rt) =

− cos(πγ2/4) for each t ∈ R \ {0} and (Lt, Rt) can be obtained from a standard planar
Brownian motion by applying an appropriate linear transformation. We note that the
correlation ranges from −1 to 1 as γ ranges from 0 to 2. The mated CRT map is the
random planar map obtained by mating, i.e., gluing together, discretized versions of the
continuum random trees (CRT’s) constructed from L and R [1, 2, 3]. More precisely, the
ε-mated-CRT map1 associated with (L,R) is the random graph with vertex set εZ, with
two vertices x1, x2 ∈ εZ with x1 < x2 connected by an edge if and only if either(

inf
t∈[x1−ε,x1]

Lt

)
∨
(

inf
t∈[x2−ε,x2]

Lt

)
≤ inf
t∈[x1,x2−ε]

Lt; (1.1)

or the same holds with R in place of L. If |x2 − x1| > ε and (1.1) holds for both L and
R, then x1 and x2 are connected by two edges. We note that the law of the planar map
Gε does not depend on ε due to Brownian scaling, but for reasons which will become
apparent just below it is convenient to think of the whole collection of maps {Gε}ε>0

coupled together with the same Brownian motion (L,R). See Figure 1 for an illustration
of the definition of Gε and an explanation of how to endow it with a canonical planar map
structure under which it is a triangulation.

Mated-CRT maps are an especially natural family of random planar maps to study.
One reason for this is that these maps provide a bridge between many other interesting
random planar map models and their continuum analogs: LQG surfaces. Let us now
explain the precise sense in which this is the case, starting with the link between
mated-CRT maps and other random planar map models; see Figure 2 for an illustration.

A number of random planar maps can be bijectively encoded by pairs of discrete
random trees (equivalently, two-dimensional random walks) by discrete versions of the
above definition of the mated-CRT map. Consequently, the mated-CRT map (with γ

depending on the particular model) can be viewed as a coarse-grained approximation of
any of these random planar maps. For example, Mullin’s bijection [44] (see [9, 53, 11] for
more explicit expositions) shows that if we replace (L,R) by a two-sided simple random
walk on Z2 and construct a graph with adjacency defined by a direct discrete analog
of (1.1), then we obtain the infinite-volume local limit of random planar maps sampled
with probability proportional to the number of spanning trees they admit. The left-right
ordering of the vertices corresponds to the depth-first ordering of the spanning tree.
There are similar bijective constructions, with different laws for the random walk, which
produce the uniform infinite planar triangulation (UIPT) [8, 10] as well as a number of
natural random planar maps decorated by statistical mechanics models [53, 23, 30, 35].

At least in the case when the encoding walk has i.i.d. increments, one can use
a strong coupling result for random walk and Brownian motion [31, 56], which says
that the random walk Z and the Brownian motion Z can be coupled together so that
max−n≤j≤n |Zj−Zj | = O(log n) with high probability, to couple one of these other random
planar maps with the mated-CRT map. This allows us to compare the maps directly.
This approach is used in [20] to couple the maps in such a way that graph distances
differ by at most a polylogarithmic factor, which allows one to transfer the estimates for
graph distances in the mated-CRT map from [21] to a larger class of random planar map
models. A similar approach is used in [24, 22] to prove estimates for random walk on
these same random planar map models.

1In this paper we only consider the mated-CRT map with the plane topology. Mated-CRT maps with the disk
and sphere topology are studied in [26].
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Figure 1: Left: To construct the mated-CRT map Gε geometrically, one can draw the
graph of L (red) and the graph of C − R (blue) for some large constant C > 0 chosen
so that the parts of the graphs over some time interval of interest do not intersect.
Here, this time interval is [0, 12ε]. One then divides the region between the graphs
into vertical strips (boundaries shown in orange). Each vertical strip corresponds to
the vertex x ∈ εZ which is the horizontal coordinate of its rightmost points. Vertices
x1, x2 ∈ εZ are connected by an edge if and only if the corresponding vertical strips are
connected by a horizontal line segment which lies under the graph of L or above the
graph of C−R. For each pair of vertices for which the condition holds for L (resp. C−R),
we have drawn the lowest (resp. highest) segment for which joins the corresponding
vertical strips in green. Equivalently, for each x ∈ εZ, we let tx be the time in [x− ε, x] at
which L attains its minimum value and we draw in green the longest horizontal segment
under the graph of L which contains (tx, Ltx); and we perform a similar procedure for
R. Note that consecutive vertices are always joined by an edge. Right: One can draw
the graph Gε in the plane by connecting two vertices x1, x2 ∈ εZ by an arc above (resp.
below) the real line if the corresponding vertical strips are connected by a horizontal
segment above (resp. below) the graph of L (resp. C −R); and connecting each pair of
consecutive vertices of εZ by an edge. This gives Gε a planar map structure. With this
planar map structure, each face of Gε corresponds to a horizontal strip below the graph
of L or above the graph of C −R which is bounded by two horizontal green segments
and two segments of either the graph of L or the graph of C −R. Almost surely, neither
L nor R attains a local minimum at any point in εZ and neither L nor R has two local
minima where it attains the same value. From this, it follows that a.s. the boundary of
each horizontal strip intersects the boundaries of exactly three vertical strips (two of
these intersections each consist of a segment of the graph of L or C − R, and one is
a single point). This means that a.s. each face of Gε has exactly three vertices on its
boundary, so Gε is a triangulation.

On the other hand, the mated-CRT map possesses an a priori relationship with SLE-
decorated Liouville quantum gravity. We will describe this relationship in more detail in
Section 1.2, but let us briefly mention it here. Suppose h is the random distribution on C
which describes a γ-quantum cone, a particular type of γ-LQG surface. Let η be a whole-
plane space-filling SLEκ′ from∞ to∞ with2 κ′ = 16/γ2 > 4, sampled independently of
h and then parameterized by γ-LQG mass with respect to h (we recall the definition

2 Here we follow the imaginary geometry [38, 39, 40, 43] convention of writing κ′ instead of κ for the SLE
parameter when it is bigger than 4.
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and basic properties of space-filling SLE in Section 2.1.3). It follows from [15, Theorem
1.9] that if we let Gε for ε > 0 be the graph whose vertex set is εZ, with two vertices
x1, x2 ∈ εZ connected by an edge if and only if the corresponding cells η([x1 − ε, x1]) and
η([x2 − ε, x2]) share a non-trivial boundary arc, then {Gε}ε>0 has the same law as the
family of mated-CRT maps defined above.

The above construction gives us an embedding of the mated-CRT map into C by
mapping each vertex to the corresponding space-filling SLE cell. It is shown in [26] that
the simple random walk on Gε under this embedding converges in law to Brownian motion
modulo time parameterization (which implies that the above SLE/LQG embedding is close
when ε is small to the so-called Tutte embedding). The main theorem of [26] is proven
using a general scaling limit result for random walk in certain random environments [27],
which in turn is proven using ergodic theory. The theorem gives us control on the
large-scale behavior of random walk and harmonic functions on Gε under the SLE/LQG
embedding, but provides very little information about their behavior at smaller scales
and no quantitative bounds for rates of convergence.

The goal of this paper is to prove quantitative estimates for discrete harmonic
functions on Gε, which can be applied at mesoscopic scales and which include polynomial
bounds for the rate of convergence of the probabilities that the estimates hold. In
particular, we obtain estimates for the Dirichlet energy and the modulus of continuity of
a large class of such discrete harmonic functions. See Section 1.5 for precise statements.
We will not use the main theorem of [26] in our proofs. Instead, we will rely on a
quantitative law-of-large-numbers type bound for integrals of functions defined on C
against certain quantities associated with the cells η([x− ε, x]).

Our results provide a general toolbox for the study of random walk on mated-CRT
maps, and thereby random walk on other random planar maps thanks to the coupling
results discussed above. For example, our results give an independent proof that the
random walk on the mated-CRT map is recurrent (Theorem 1.4; this can also be deduced
from the general criterion of Gurel-Gurevich and Nachmias [18], see Section 2.2). We also
obtain a polynomial (in ε) upper bound for the maximum length of the edges of the mated-
CRT map under the so-called Tutte embedding with identity boundary data (Corollary 1.6).
We note that [26] shows only that the maximum length of these embedded edges tends
to zero as ε→ 0, but does not give any quantitative bound for the rate of convergence.

The results of this paper will also play a crucial role in the subsequent work [24],
which proves that the spectral dimension of a large class of random planar maps —
including mated-CRT maps, spanning-tree weighted maps, and the UIPT — is two (i.e.,
the return probability after n steps is n−1+on(1)) and also proves a lower bound for
the graph distance displacement of the random walk on these maps which is correct
up to polylogarithmic errors (the complementary upper bound is proven in [22]). We
expect that our results may also have eventual applications to the study of discrete
conformal embeddings of random planar maps, e.g., to the problem of showing that the
maximal size of the faces of certain random planar maps — like uniform triangulations
and spanning tree-weighted maps — under the Tutte embedding tends to 0. See the
discussion just after Corollary 1.6.

One way to think about the approach used in this paper is as follows. A powerful
technique for studying random walk and harmonic functions on random planar maps is to
embed the map into C in some way, then consider how the embedded map interacts with
paths and functions in C. A number of recent works have used this technique with the
embedding given by the circle packing of the map [54]; see, e.g., [6, 18, 4, 17, 5, 33, 34].
Here, we study random walk and harmonic functions on the mated-CRT map using the
embedding of this map coming from SLE/LQG instead of the circle packing. For many
quantities of interest, one can get stronger estimates using this embedding than using
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circle packing since we have good estimates for the behavior of space-filling SLE and
the γ-LQG measure.

Random walk
Brownian motion → mated-CRT map

Planar map decorated by trees Graph of space-filling SLE cells

Bijective
encoding

Strong
coupling

A priori
embedding

Figure 2: A visual representation of the relationship between mated-CRT maps and other
objects. Left: Various random planar maps (e.g., the UIPT or spanning-tree weighted
maps) can be encoded by means of a two-dimensional random walk via a discrete version
of the construction of the mated-CRT map (we will not use these bijections in this paper).
Right: The mated-CRT map is defined using a pair of Brownian motions and has an
embedding into C as the adjacency graph on the “cells” η([x − ε, x]) for x ∈ εZ of a
space-filling SLE parameterized by γ-LQG mass. This paper proves estimates for the
mated-CRT map under this embedding. One can transfer these estimates to other random
planar maps (up to a polylogarithmic error) using a strong coupling of the encoding walk
for the other planar map and the Brownian motion used to define the mated-CRT map;
see [20, 24].

1.2 Mated-CRT maps and SLE-decorated Liouville quantum gravity

We now describe the connection between mated-CRT maps and SLE-decorated LQG,
as alluded to at the end of Section 1.1. This connection gives an embedding of the
mated-CRT map into C, which will be our main tool for analyzing mated-CRT maps.
Moreover, most of our main results will be stated in terms of this embedding. See
Section 2 for additional background on the objects involved.

Heuristically speaking, for γ ∈ (0, 2) a γ-LQG surface parameterized by a domain
D ⊂ C is the random two-dimensional Riemannian manifold with metric tensor eγh dx⊗dy,
where h is some variant of the Gaussian free field (GFF) on D [51, 50, 38, 43] and dx⊗dy
is the Euclidean metric tensor. This does not make literal sense since h is a random
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distribution, not a pointwise-defined function. Nevertheless, one can make literal sense
of γ-LQG in various ways. Duplantier and Sheffield [16] constructed the volume form
associated with a γ-LQG surface, a measure µh which is the limit of regularized versions
of eγh(z) dz, where dz denotes Lebesgue measure. One can similarly define a γ-LQG
boundary length measure νh on certain curves in D, including ∂D and SLEκ-type curves
for κ = γ2 [52]. These measures are a special case of a more general theory called
Gaussian multiplicative chaos; see [29, 47, 7].

Mated-CRT maps are related to SLE-decorated LQG via the peanosphere (or mating-
of-trees) construction of [15, Theorem 1.9], which we now describe. Suppose h is
the random distribution on C corresponding to the particular type of γ-LQG surface
called a γ-quantum cone. Then h is a slight modification of a whole-plane GFF plus
−γ log | · | (see Section 2.1.2 for more on this field). Also let κ′ = 16/γ2 > 4 and let η
be a whole-plane space-filling SLEκ′ curve from ∞ to ∞ sampled independently from
h and then parameterized in such a way that η(0) = 0 and the γ-LQG mass satisfies
µh(η([t1, t2])) = t2 − t1 whenever t1, t2 ∈ R with t1 < t2 (see Section 2.1.3 and the
references therein more on space-filling SLE).

η([t1, t2])

η((−∞, t1])

η([t2,∞))

Lt2 − Lt1 = νh(brown) νh(orange)− Rt2 −Rt1 =νh(purple) νh(green)−

η([t1, t2])

η([t2,∞))

η((−∞, t1])

η(t1)

η(t2)

η(t1)
η(t2)

Figure 3: Illustration of the definition of the left/right boundary length process (L,R)

for space-filling SLE on a γ-quantum cone. The left figure corresponds to the case when
κ′ ≥ 8, so that η([t1, t2]) is simply connected. The right figure corresponds to the case
when κ′ ∈ (4, 8), in which case the topology is more complicated since the left and right
boundaries of the curve can intersect each other, but the definition of the left/right
boundary length process is the same. In both cases, the intersection of the left (resp.
right) outer boundaries of η((−∞, t1]) and η([t2,∞)) is shown in red (resp. blue). The
black dots on the boundary correspond to the endpoints η(t1) and η(t2) and the points
where η((−∞, t1]) ∩ η([t1, t2]) and η([t2,∞)) ∩ η([t1, t2]) meet. These latter two points are
hit by η at the times when L and R, respectively, attain their minima on [t1, t2].

Let νh be the γ-LQG length measure associated with h and define a process L : R→ R

in such way that L0 = 0 and for t1, t2 ∈ R with t1 < t2,

Lt2 − Lt1 = νh(left boundary of η([t1, t2]) ∩ η([t2,∞)))

− νh(left boundary of η([t1, t2]) ∩ η((−∞, t1])). (1.2)

Define Rt similarly but with “right” in place of “left” and set Zt = (Lt, Rt). See Figure 3
for an illustration. It is shown in [15, Theorem 1.9] that Z evolves as a correlated
two-dimensional Brownian motion with correlation − cos(πγ2/4), i.e., Z has the same
law as the Brownian motion used to construct the mated-CRT map with parameter γ
(up to multiplication by a deterministic constant, which does not affect the definition of
the mated-CRT map). Moreover, by [15, Theorem 1.11], Z a.s. determines (h, η) modulo
rotation and scaling.
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We can re-phrase the adjacency condition (1.1) in terms of (h, η). In particular, for
x1, x2 ∈ εZ with x1 < x2, (1.1) is satisfied if and only if the cells η([x1 − ε, x1]) and
η([x2 − ε, x2]) intersect along a non-trivial connected arc of their left outer boundaries;
and similarly with “R” in place of “L” and “left” in place of “right”. Indeed, this follows
from the explicit description of the curve-decorated topological space (C, η) in terms of
(L,R) given in [15, Section 8.2].

Consequently, the mated-CRT map Gε is precisely the graph with vertex set εZ, with
two vertices connected by an edge if and only if the corresponding cells η([x1 − ε, x1])

and η([x2 − ε, x2]) share a non-trivial connected boundary arc. The graph on cells is
sometimes called the ε-structure graph of the curve η since it encodes the topological
structure of the cells. The identification of Gε with the ε-structure graph of η gives us an
embedding of Gε into C by sending each vertex x ∈ εZ to the point η(x). See Figure 4 for
an illustration.

1.3 Basic notation

We write N for the set of positive integers and N0 = N ∪ {0}.
For a, b ∈ R with a < b and r > 0, we define the discrete intervals [a, b]rZ := [a, b]∩(rZ)

and (a, b)rZ := (a, b) ∩ (rZ).

For K ⊂ C, we write area(K) for the Lebesgue measure of K and diam(K) for its
Euclidean diameter. For r > 0 and z ∈ C we write Br(z) be the open disk of radius r
centered at z. For K ⊂ C, we also write Br(K) for the (open) set of points z ∈ C which
lie at Euclidean distance less than r from K.

If a and b are two “quantities” (i.e., functions from any sort of “configuration space” to
the real numbers) we write a � b (resp. a � b) if there is a constant C > 0 (independent
of the values of a or b and certain other parameters of interest) such that a ≤ Cb (resp.
a ≥ Cb). We write a � b if a � b and a � b. We typically describe dependence of implicit
constants in lemma/proposition statements and require constants in the proof to satisfy
the same dependencies.

If a and b are two quantities depending on a variable x, we write a = Ox(b) (resp.
a = ox(b)) if a/b remains bounded (resp. tends to 0) as x→ 0 or as x→∞ (the regime
we are considering will be clear from the context). We write a = o∞x (b) if a = ox(bs) for
every s ∈ R.

For a graph G, we write V(G) and E(G), respectively, for the set of vertices and
edges of G, respectively. We sometimes omit the parentheses and write VG = V(G) and
EG = E(G). For v ∈ V(G), we write deg(v;G) for the degree of v (i.e., the number of
edges with v as an endpoint).

1.4 Setup

In this subsection, we describe the setup we consider throughout most of the paper
and introduce some relevant notation. Let h be a random distribution on C whose γ-
quantum measure µh is well-defined and has infinite total mass. We will most frequently
consider the case when h is the distribution corresponding to a γ-quantum cone, since
this is the case for which the corresponding structure graph coincides with a mated-CRT
map. However, we will also have occasion to consider a choice of h which does not have
a γ-log singularity at the origin—in particular, we will sometimes take h to be either a
whole-plane GFF or the distribution corresponding to a 0-quantum cone.

Let η be a whole-plane space-filling SLEκ′ sampled independently from h and then
parameterized by γ-quantum mass with respect to h. For ε > 0, we let Gε be the graph
with vertex set εZ, with two vertices x1, x2 ∈ εZ connected by an edge if and only if the
cells η([x1 − ε, x1]) and η([x2 − ε, x2]) share a non-trivial boundary arc.
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Gε

Figure 4: Top left: A segment of a space-filling curve η : R → C, divided into cells
η([x− ε, x]) for x ∈ εZ. This figure looks like what we would expect to see for a space-
filling SLEκ′ parameterized by γ-quantum mass when κ′ ≥ 8, since this is the range when
the curve does not make and fill in bubbles (see Section 2.1.3). Top right: Same as
top-left but with an orange path showing the order in which cells are hit by η. Bottom
left: A point in each cell is shown in red, and is connected to each adjacent cell by a
red edge. As explained in Figure 1, Gε can be viewed as a planar triangulation. In the
present picture, the faces correspond to the points where three of the black curves meet.
Note that we cannot have more than three black curves meeting at a single point or we
would have a face of degree greater than three (this can also be seen directly from the
geometry of space-filling SLE; see [15, Section 8.2]). Bottom right: If we forget the
original cells η([x− ε, x]) but keep the red edges we get an embedding of Gε into C.

We abbreviate cells by

Hε
x := η([x− ε, x]), ∀x ∈ εZ (1.3)

and for z ∈ C, we define the vertex

xεz := min{x ∈ εZ : z ∈ Hε
x}, (1.4)
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Harmonic functions on mated-CRT maps

so that Hε
xεz

is the (a.s. unique) structure graph cell containing z.

For a set D ⊂ C, we write Gε(D) for the sub-graph of Gε with vertex set

VGε(D) := {xεz : z ∈ D} = {x ∈ εZ : Hε
x ∩D 6= ∅} (1.5)

with two vertices connected by an edge if and only if they are connected by an edge in
Gε. See Figure 5 for an illustration of the above definitions.

z
Hε
xεz

Gε(D)

∂D

Figure 5: Illustration of the definitions in Section 1.4. A collection of cells of Gε is shown
with black boundaries and a domain D is shown with red boundary. The pink cells are
the those of the form Hε

x for vertices x ∈ VGε(D). Also shown is a point z ∈ C and the
cell Hε

xεz
containing it (light blue).

1.5 Main results

Suppose we are in the setting of Section 1.4 with h equal to the circle-average
embedding of a γ-quantum cone (i.e., h is the random distribution from Definition 2.3
with α = γ), so that the graphs {Gε}ε>0 are the same in law as the ε-mated CRT maps
defined in Section 1.1.

We will study discrete harmonic functions on sub-maps of Gε corresponding to do-
mains in C. We want to work at positive distance from ∂D to avoid complications arising
from the choice of normalization of the field,3 so we fix ρ ∈ (0, 1) and restrict attention to
Bρ(0). Let D ⊂ Bρ(0) be an open set and let f : D → C be a continuous function.

Recall the sub-graph Gε(D) ⊂ Gε from (1.5) and let fε : VGε(D)→ R be the function
such that

fε(x) = sup
z∈Hεx∩∂D

f(z), ∀x ∈ VGε(∂D) (1.6)

and fε is discrete harmonic on VGε(D) \ VGε(∂D). The first main result of this paper
shows that the discrete Dirichlet energy of fε can be bounded above by a constant times
the Dirichlet energy of f .

3In particular, the law of h|D agrees in law with the corresponding restriction of the whole-plane GFF plus
−γ log | · |, but this property does not hold outside of D; see Section 2.1.2.
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Definition 1.1. For a graph G and a function g : V(G) → R, we define its Dirichlet
energy to be the sum over unoriented edges

Energy(g;G) :=
∑

{x,y}∈E(G)

(g(x)− g(y))2,

with n-tuple edges counted n times.

Definition 1.2. For a domain D ⊂ C and a function f : D → R whose gradient ∇f exists
in the distributional sense, we define its Dirichlet energy

Energy(f ;D) :=

∫
D

|∇f(z)|2 dz.

Theorem 1.3 (Dirichlet energy bound). Suppose f is continuously differentiable, the
gradient ∇f is Lipschitz continuous, and D has bounded convexity in the sense that
there exists C = C(D) > 0 such that any two points z, w ∈ D can be joined by a path in
D of Euclidean length at most C|z −w|. There are constants α > 0 (depending only on γ)
and A > 0 (depending only on D, γ, and the Lipschitz constants for f and ∇f ) such that
with probability at least 1−Oε(εα), the discrete and continuum Dirichlet energies of fε

and f are related by
Energy(fε;Gε(D)) ≤ AEnergy(f ;D). (1.7)

We will actually prove a more quantitative version of Theorem 1.3 below (see Theo-
rem 3.2), which makes the dependence of A more explicit.

One reason why bounds for Dirichlet energy are important is that one can express
many quantities related to random walk on the graph — such as the Green’s function,
effective resistances, and return probabilities — in terms of the discrete Dirichlet energy
of certain functions (see, e.g., [36, Section 2]). These relationships together with
Theorem 1.3 lead to a lower bound for the Green’s function of random walk on Gε on the
diagonal, or equivalently for the effective resistance to the boundary of a Euclidean ball
(Theorem 1.4 just below). Further applications of our Dirichlet energy estimates will be
explored in [24].

For n ∈ N and ε > 0, let Grεn(·, ·) be the Green’s function of Gε at time n, i.e., Grεn(x, y)

for vertices x, y ∈ VGε gives the (conditional given Gε) expected number of times that
simple random walk on Gε started from x hits y before time n.

Theorem 1.4 (Green’s function on the diagonal). Fix ρ ∈ (0, 1) and let τ ε for ε > 0 be the
exit time of simple random walk on Gε from VGε(Bρ(0)). There exists α > 0 (depending
only on γ) and A > 0 (depending only on ρ and γ) such that

P

[
Grετε(0, 0)

deg(0;Gε)
≥ 1

A
log ε−1

]
≥ 1−Oε(εα) as ε→ 0. (1.8)

Furthermore, the simple random walk on Gε is a.s. recurrent.

The recurrence of random walk on Gε can also be deduced from the general recur-
rence criterion for random planar maps due to Gurel-Gurevich and Nachmias [18] (see
Section 2.2), but our results give an independent proof. Note, however, that our results
do not give an independent proof of the recurrence of random walk on other planar
maps, such as the UIPT.

Our next main result gives a Hölder continuity bound for the functions fε for ε > 0 in
terms of the Euclidean metric.

Theorem 1.5 (Hölder continuity). Suppose D is simply connected and f |∂D is χ-Hölder
continuous (with respect to the ambient Euclidean metric) for some exponent χ > 0.
There are constants α = α(γ) > 0, ξ = ξ(ρ, χ, γ) > 0, and A′ = A′(f,D, γ) > 0 such
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that with probability at least 1−Oε(εα), the discrete harmonic function fε defined just
below (1.6) satisfies

|fε(x)− fε(y)| ≤ A′(ε ∨ |η(x)− η(y)|)ξ, ∀x, y ∈ VGε(D), (1.9)

where η is the space-filling SLEκ′ as in Section 1.4.

As in the case of Theorem 1.3, we will prove a more quantitative version of Theo-
rem 1.5; see Theorem 3.9. The proof of this theorem proceeds by way of a “uniform
ellipticity” type estimate for simple random walk on Gε, which says that the walk has
uniformly positive probability to stay close to a fixed path in C (Proposition 3.6).

Theorem 1.5 gives a polynomial bound for the rate at which the maximal length of an
edge of the graph Gε(D) under the so-called Tutte embedding with identity boundary data
converges to 0 as ε→ 0 (since Gε is a triangulation, this is equivalent to the analogous
statement with faces in place of edges). Note that [26] shows that the Tutte embedding
with identity boundary data converges to the identity, but gives no quantitative bound on
the maximal length of the embedded edges.

To state this more precisely, let Φε1 be the function fε from above with f(z) = Re z

and let Φε2 be defined analogously with f(z) = Im z. Then Φε := (Φε1,Φ
ε
2) : VGε(D)→ R2

is discrete harmonic on the interior of Gε(D) and approximates the map x 7→ η(x) on
VGε(∂D). The function Φε is called the Tutte embedding of Gε(D) with identity boundary
data.

It is easy to see that the maximal size of the cells Hε
x for x ∈ VGε(D) is at most

some positive power of ε with probability tending to 1 as ε→ 0 (Lemma 2.7). Applying
Theorem 1.5 to each coordinate of Φε and considering vertices x and y which are
connected by an edge in Gε yields the following.

Corollary 1.6 (Maximal length of embedded edges). Define the Tutte embedding Φε

with identity boundary data as above. If D ⊂ Bρ(0) is simply connected, then there exists
ξ′ = ξ′(ρ, γ) > 0 such that with probability tending to 1 as ε→ 0,

max
{x,y}∈EGε(D)

|Φε(x)− Φε(y)| ≤ Oε
(
εξ
′
)

(1.10)

It is a major open problem to prove that the maximal length of the embedded edges
of other types of random planar maps—e.g., uniform random planar maps or planar
maps sampled with probability proportional to the number of spanning trees—under the
Tutte embedding (or under other embeddings, like the circle packing [54]) tends to 0 as
the total number of vertices tends to 0. Indeed, this is believed to be a key obstacle to
proving that such embedded maps converge to γ-LQG in various senses, as conjectured,
e.g., in [16, 52, 13, 12].

Corollary 1.6 suggests a possible approach to proving that the maximal edge length
for various additional types of embedded random planar maps, besides just the mated-
CRT map, also tends to zero. The reason for this is that in many cases it is possible
to transfer estimates from the mated-CRT map to estimates for other random planar
maps modulo polylogarithmic multiplicative errors. So far, this has been done for graph
distances [20], random walk speed [24, 22], and random walk return probabilities [24].
However, we have not yet found a way to transfer modulus of continuity bounds for
harmonic functions, which is what is needed to deduce an analog of Corollary 1.6 for
other planar map models.

1.6 Outline

Figure 6 shows a diagram of the logical connections between the main results related
to this paper. In Section 2, we will review some facts from the theory of SLE and LQG,
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prove that the law of the degree of a vertex of the mated-CRT map has an exponential
tail (Lemma 2.5), and prove that the maximum diameter of the cells of Gε which intersect
a fixed Euclidean ball decays polynomially in ε (Lemma 2.7). We then state an estimate
(Proposition 2.10) which says that if D ⊂ C and f : D → R is a sufficiently regular
function, then except on an event of probability decaying polynomially in ε,

∫
D

f(z)
diam(Hε

xεz
)2

area(Hε
xεz

)
deg(Hε

xεz
) dz = Oε(1) (1.11)

where here we recall that Hε
xεz

is the cell of Gε containing z. The proof of this estimate
is deferred to Section 4. Intuitively, (1.11) says that the measure which assigns mass
diam(Hεxεz

)2

area(Hε
xεz

) deg(Hε
xεz

) to each z ∈ C is not too much different from Lebesgue measure,

which in turn is a consequence of the fact that
diam(Hεxεz

)2

area(Hε
xεz

) deg(Hε
xεz

) is of constant order

for most z ∈ D.

In Section 3, we assume the aforementioned estimate (1.11) and deduce our main
results. We first prove in Section 3.1 an estimate to the effect that if f : D → R is as
in (1.11), then with high probability∑

x∈VGε(D)

f(η(x)) diam(Hε
x)2 deg(Hε

x) = Oε(1), (1.12)

which follows from (1.11) by breaking up the integral in (1.11) into integrals over
individual cells. The bound (1.12) is used in Section 3.2 to prove an upper bound for
the discrete Dirichlet energy of x 7→ f(η(x)), which in turn implies (a more precise
version of) Theorem 1.3 since discrete harmonic functions minimize Dirichlet energy. In
Section 3.3, we deduce Theorem 1.4 from this more general bound. In Section 3.4, we
use our Dirichlet energy bound to show that the simple random walk on Gε has uniformly
positive probability to stay close to a fixed Euclidean path, even if we condition on Gε.
The basic idea is to first prove a lower bound for the probability of hitting the inner
boundary of an annulus before the outer boundary (using Dirichlet energy estimates and
the Cauchy-Schwarz inequality) then cover a path by such annuli. In Section 3.5, we use
the result of Section 3.4 to prove a Hölder continuity estimate for harmonic functions on
Gε(D) which includes Theorem 1.5 as a special case.

In Section 4, we prove (1.11), taking the moment bounds for the squared diameter
over area and degree of the cells of Gε from [26, Theorem 4.1] as a starting point.
Heuristically, these moment bounds say that cells are not too likely to be “long and
skinny” and are not too likely to have large degree. The proof is outlined in Section 4.1,
and is based on using long-range independence properties for the GFF to bound the
variance of the integral appearing in (1.11).

Appendix A contains some basic estimates for the GFF which are needed in our
proofs. Appendix B contains an index of notation.
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Figure 6: Schematic illustration of how various results related to this paper fit together.

2 Preliminaries

2.1 Background on GFF, LQG, and SLE

Throughout this paper, we always fix an LQG parameter γ ∈ (0, 2) and a corresponding
SLE parameter κ′ = 16/γ2 > 4. Here we provide some background on the main
continuum objects involved in this paper, namely the Gaussian free field, Liouville
quantum gravity, and space-filling SLEκ′ . A reader who is already familiar with these
objects can safely skip this subsection.

2.1.1 The Gaussian free field

Here we give a brief review of the definition of the zero-boundary and whole-plane
Gaussian free fields. We refer the reader to [51] and the introductory sections of [50, 38,
43] for more detailed expositions.

For an open domain D ⊂ C with harmonically non-trivial boundary (i.e., Brownian
motion started from a point in D a.s. hits ∂D), we define H(D) be the Hilbert space
completion of the set of smooth, compactly supported functions on D with respect to the
Dirichlet inner product,

(φ, ψ)∇ =
1

2π

∫
D

∇φ(z) · ∇ψ(z) dz. (2.1)

In the case when D = C, constant functions c satisfy (c, c)∇ = 0, so to get a positive
definite norm in this case we instead take H(C) to be the Hilbert space completion of the
set of smooth, compactly supported functions φ on C with

∫
C
φ(z) dz = 0, with respect to

the same inner product (2.1).
The (zero-boundary) Gaussian free field on D is defined by the formal sum

h =

∞∑
j=1

Xjφj (2.2)

where theXj ’s are i.i.d. standard Gaussian random variables and the φj ’s are an orthonor-
mal basis for H(D). The sum (2.2) does not converge pointwise, but for each fixed φ ∈
H(D), the formal inner product (h, φ)∇ :=

∑∞
j=1Xj(φj , φ)∇ is a centered Gaussian ran-

dom variable and these random variables have covariances E[(h, φ)∇(h, ψ)∇] = (φ, ψ)∇.
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In the case when D 6= C and D has harmonically non-trivial boundary, one can use inte-
gration by parts to define the ordinary L2 inner products (h, φ) := −2π(h,∆−1φ)∇, where
∆−1 is the inverse Laplacian with zero boundary conditions, whenever ∆−1φ ∈ H(D).
This allows one to define the GFF as a distribution (generalized function). See [51,
Section 2] for some discussion about precisely which spaces of distributions the GFF
takes values in.

For z ∈ D and r > 0 such that Br(z) ⊂ D, we write hr(z) for the circle average of
h over ∂Br(z), as in [16, Section 3.1]. Following [16, Section 3.1], to define this circle
average precisely, one can let ξzr (w) := − log max{r, |w − z|}, so that −∆ξzr (defined in
the distributional sense) is 2π times the uniform measure on ∂Br(z). One then defines
hr(z) to be the Dirichlet inner product (h, ξzr )∇.

In the case when D = C, one can similarly define (h, φ) := −2π(h,∆−1φ)∇ where ∆−1

is the inverse Laplacian normalized so that
∫
C

∆−1φ(z) dz = 0. With this definition, one
has (h+ c, φ) = (h, φ) + (c, φ) = (h, φ) for each φ ∈ H(C), so the whole-plane GFF is only
defined as a distribution modulo a global additive constant; that is, h can be viewed
as an equivalence class of distributions under the equivalence relation whereby two
distributions are equivalent if their difference is a constant. We will typically fix the
additive constant for the GFF (i.e., choose a particular equivalence class representative)
by requiring that the circle average h1(0) over ∂D is zero. That is, we consider the
field h− h1(0), which is well-defined not just modulo additive constant. The law of the
whole-plane GFF is scale and translation invariant modulo additive constant, which

means that for z ∈ C and r > 0 one has h(r ·+z)− hr(z)
d
= h− h1(0).

If h is a GFF on D, we can define the restriction of h to an open set U ⊂ D as the
restriction of the distributional pairing φ 7→ (h, φ) to test functions φ which are supported
on V . It does not make literal sense to restrict the GFF to a closed set K ⊂ D, but
the σ-algebra generated by h|K can be defined as

⋂
ε>0 σ(h|Bε(K)), where Bε(K) is the

Euclidean ε-neighborhood of K. Hence it makes sense to speak of, e.g., “conditioning on
h|K”.

The zero-boundary GFF on D possesses the following Markov property (see, e.g., [51,
Section 2.6]). Let U ⊂ D be a sub-domain with harmonically non-trivial boundary. Then
we can write h = h + h̊, where h is a random distribution on D which is harmonic on U
and is determined by h|D\U ; and h̊ is a zero-boundary GFF on U which is independent
from h|D\U . The restrictions of these distributions to U are called the harmonic part and
zero-boundary part of h|U , respectively.

In the whole-plane case, one has a slightly more complicated Markov property due to
the need to fix the additive constant. We state two versions of this Markov property, one
with the field viewed modulo additive constant and one with the additive constant fixed.
The first version is a re-statement of [43, Proposition 2.8].

Lemma 2.1. Let h′ be a whole-plane GFF viewed modulo additive constant. For each
open set U ⊂ C with harmonically non-trivial boundary, we have the decomposition

h′ = h′ + h̊′, (2.3)

where h′ is a random distribution viewed modulo additive constant which is harmonic
on U and is determined by h′|C\U , viewed modulo additive constant; and h̊′ is a zero-
boundary GFF on C \ U which is determined by the equivalence class of h′|C\U modulo
additive constant.

We refer to the distributions h′|U and h̊′|U as the harmonic part and zero-boundary
part of h′|U , respectively.

Now suppose we want to fix the additive constant for the field so that h1(0) = 0, i.e.,
we want to consider h′ − h′1(0). In the setting of Lemma 2.1, the distributions h′ − h′1(0)
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and h̊′ are not independent if ∂D ∩ U 6= ∅ since h′1(0) depends on h̊′. Nevertheless, it
turns out that a slight modification of these distributions are independent.

Lemma 2.2. Let h be a whole-plane GFF with the additive constant chosen so that
h1(0) = 0. For each open set U ⊂ C with harmonically non-trivial boundary, we have the
decomposition

h = h + h̊ (2.4)

where h is a random distribution which is harmonic on U and is determined by h|C\U and

h̊ is independent from h and has the law of a zero-boundary GFF on U minus its average
over ∂D ∩ U . If U is disjoint from ∂D, then h̊ is a zero-boundary GFF and is independent
from h|C\U .

Proof. Let h′ be a whole-plane GFF viewed modulo additive constant, so that h =

h′ − h′1(0). Write h′ = h′ + h̊′ as in Lemma 2.1. Let h̊′1(0) be the average of h̊′ over ∂D
(equivalently, over ∂D ∩ U ). Also let h′1(0) = h′1(0)− h̊′1(0) be the average of h′ over ∂D.
We define

h := h′ − h′1(0) and h̊ := h̊′ − h̊′1(0). (2.5)

Then h is a harmonic function in U and is well-defined (not just modulo additive constant)
and h̊ is a zero-boundary GFF in U minus its average over ∂D∩U . By definition, we have
h + h̊ = h′ − h′1(0) = h. Furthermore, h (resp. h̊) is determined by h′ (resp. h̊′), so h and h̊
are independent. Since h′ is determined by h′|C\U , viewed modulo additive constant, it
follows that h′ is determined by h|C\U . Hence h is determined by h|C\U .

If ∂D is disjoint from U , then h̊′1(0) = 0 so h|C\U = h|C\U . This implies that h̊ is a

zero-boundary GFF and h̊ is independent from h|C\U .

2.1.2 Liouville quantum gravity

Fix γ ∈ (0, 2). Following [16, 52, 15], we define a γ-Liouville quantum gravity (LQG)
surface to be an equivalence class of pairs (D,h), where D ⊂ C is an open set and h is a
distribution on D (which will always be taken to be a realization of a random distribution
which locally looks like the Gaussian free field), with two such pairs (D,h) and (D̃, h̃)

declared to be equivalent if there is a conformal map f : D̃ → D such that

h̃ = h ◦ f +Q log |f ′| for Q =
2

γ
+
γ

2
. (2.6)

One can similarly define a γ-LQG surface with k ∈ N marked points. This is an equiv-
alence class of k + 2-tuples (D,h, x1, . . . , xk) with the equivalence relation defined as
in (2.6) except that the map f is required to map the marked points of one surface to the
corresponding marked points of the other. We call different choices of the distribution h
corresponding to the same LQG surface different embeddings of the surface.

If h is a random distribution on D which can be coupled with a GFF on D in such a
way that their difference is a.s. a continuous function, then one can define the γ-LQG
area measure µh on D, which is defined to the a.s. limit

µh = lim
ε→0

εγ
2/2eγhε(z) dz

in the Prokhorov distance (or local Prokhorov distance, if D is unbounded) as ε → 0

along powers of 2 [16]. Here hε(z) is the circle-average of h over ∂Bε(z), as defined
in [16, Section 3.1] and discussed in Section 2. One can similarly define a boundary
length measure νh on certain curves in D, including ∂D [16] and SLEκ type curves for
κ = γ2 which are independent from h [52]. If h and h̃ are related by a conformal map
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as in (2.6), then f∗µh̃ = µh and f∗νh̃ = νh. Hence µh and νh can be viewed as measures
on the LQG surface (D,h). We note that there is a more general theory of regularized
measures of this type, called Gaussian multiplicative chaos which originates in work of
Kahane [29]. See [47, 7] for surveys of this theory.

In this paper, we will be interested in two different types of γ-LQG surface. The first
and most basic type of LQG surface we consider is the one where h is a whole-plane GFF,
as in Section 2.1.1. We will typically fix the additive constant for the whole-plane GFF by
requiring that the circle average over ∂D is 0.

The other type of γ-LQG surface with the topology of the plane which we will be
interested in is the α-quantum cone for α ∈ (−∞, Q), which is a doubly marked LQG
surface (C, h, 0,∞) introduced in [15, Definition 4.10]. Roughly speaking, the α-quantum
cone is obtained by starting with a whole-plane GFF plus α log(1/| · |) then “zooming in”
near the origin and re-scaling [15, Proposition 4.13(ii) and Lemma A.10].

We will not need the precise definition of the α-quantum cone in this paper, but we
recall it here for completeness. Recall the Hilbert space H(C) used in the definition
of the whole-plane GFF. Let H0(C) (resp. H†(C)) be the subspace of H(C) consisting of
functions which are constant (resp. have mean zero) on each circle ∂Br(0) for r > 0.
By [15, Lemma 4.9], H(C) is the orthogonal direct sum of H0(C) and H†(C).

Definition 2.3 (Quantum cone). For α < Q, the α-quantum cone is the LQG surface
(C, h, 0,∞) with the distribution h defined as follows. Let B be a standard linear Brownian
motion and let B̂ be a standard linear Brownian motion conditioned so that B̂t+(Q−α)t >

0 for all t > 0. Let At = Bt − αt for t ≥ 0 and let At = B̂−t + αt for t < 0. Then the
projection of h onto H0(C) takes the constant value At on each circle Be−t(0). The
projection of h onto H†(C) is independent from the projection onto H0(C) and agrees in
law with the corresponding projection of a whole-plane GFF.

We will typically be interested in quantum cones with α = 0 or α = γ. The case α = γ

is special since a γ-LQG surface has a γ-log singularity at a typical point sampled from its
γ-LQG measure (see, e.g., [16, Section 3.3]), so the γ-quantum cone describes the local
behavior of such a surface near a quantum typical point. The γ-quantum cone is also
the type of LQG surface appearing in the embedding of the mated-CRT map. Similarly,
the 0-quantum cone describes the behavior of a γ-LQG surface near a Lebesgue typical
point.

By the definition of an LQG surface, one can get another distribution describing the
γ-quantum cone by replacing h by h(r·) + Q log r for some r > 0. But, we will almost
always consider the particular choice of h appearing in Definition 2.3, which satisfies
sup{r > 0 : hr(0) + Q log r = 0} = 1. This choice of h is called the circle average
embedding. A useful property of the circle average embedding (which is essentially
immediate from [15, Definition 4.10]) is that h|D agrees in law with the corresponding
restriction of a whole-plane GFF plus −α log | · |, normalized so that its circle average
over ∂D is 0.

2.1.3 Space-filling SLEκ′

The Schramm-Loewner evolution (SLEκ) for κ > 0 is a one-parameter family of random
fractal curves originally defined by Schramm in [49]. SLEκ curves are simple for κ ∈ (0, 4],
self-touching, but not space-filling or self-crossing, for κ ∈ (4, 8), and space-filling (but
still not self-crossing) for κ ≥ 8 [48]. One can consider SLEκ curves between two marked
boundary points of a simply connected domain (chordal), from a boundary point to an
interior point (radial), or between two points in C ∪ {∞} (whole-plane). We refer to [32]
or [55] for an introduction to SLE. We will occasionally make reference to whole-plane
SLEκ(ρ), a variant of whole-plane SLEκ where one keeps track of an extra marked “force
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point” which is defined in [43, Section 2.1]. However, we will not need many of its
properties so we will not provide a detailed definition here.

Space-filling SLEκ′ is a variant of SLEκ′ for κ′ > 4 which was originally defined in [43,
Section 1.2.3] (see also [15, Section 1.4.1] for the whole-plane case). Here we will
review the construction of whole-plane space-filling SLEκ′ from ∞ to ∞, which is the
only version we will use in this paper.

The basic idea of the construction is that, by SLE duality [57, 58, 14, 38, 43], the
outer boundary of an ordinary SLEκ′ curve stopped at any given time is a union of
SLEκ-type curves for κ = 16/κ′ ∈ (0, 4). It is therefore natural to try to construct a
space-filling SLEκ′ -type curve by specifying its outer boundary at each fixed time. To
construct the needed boundary curves, we will use the theory of imaginary geometry,
which allows us to couple many different SLEκ curves with a common GFF.

Let χIG := 2/
√
κ−
√
κ/2. Following [43, Section 2.2], we define a whole-plane GFF

viewed modulo a global additive multiple of 2πχIG to be a random equivalence class of
distributions obtained as follows. First, sample hIG from the law of the whole-plane GFF
with the additive constant chosen so that hIG1 (0) = 0. Then, consider the equivalence
class of hIG w.r.t. the equivalence relation whereby h1 ∼ h2 if and only if h1 − h2 is a
constant in 2πχIGZ. Here, IG stands for “Imaginary Geometry” and is used to distinguish
the field hIG from the field h corresponding to an LQG surface).

Let hIG be a whole-plane GFF viewed modulo a global additive multiple of 2πχIG.
By [43, Theorem 1.1], for each fixed z ∈ C and θ ∈ (0, 2π), one can define the flow line
of hIG started from z with angle θ, which is a whole-plane SLEκ(2− κ) curve from z to
∞ coupled with hIG, where κ = 16/κ′ ∈ (0, 4) is the dual SLE parameter. Whole-plane
SLEκ(2− κ) is a variant of SLEκ which is defined rigorously in [43, Section 2.1]. For our
purposes we will only need the flow lines started from points z ∈ Q2 with angles π/2
and −π/2, which we denote by ηLz and ηRz , respectively (the L and R stand for “left” and
“right”, for reasons which will become apparent momentarily).

For distinct z, w ∈ Q2, the flow lines ηLz and ηLw a.s. merge upon intersecting, and
similarly with R in place of L. The two flow lines ηLz and ηRz started at the same point a.s.
do not cross, but these flow lines bounce off each other without crossing if and only if
κ′ ∈ (4, 8), equivalently κ ∈ (2, 4) [43, Theorem 1.7].

We define a total order on Q2 by declaring that z comes before w if and only if w lies
in a connected component of C \ (ηLz ∪ ηRz ) which lies to the right of ηLz (equivalently, to
the left of ηRz ). The whole-plane analog of [43, Theorem 4.12] (which can be deduced
from the chordal case; see [15, Footnote 4]) shows that there is a well-defined continuous
curve η : R→ C which traces the points of Q2 in the above order, is such that η−1(Q2) is
a dense set of times, and is continuous when parameterized by Lebesgue measure, i.e.,
in such a way that area(η([a, b])) = b− a whenever a < b. The curve η is defined to be the
whole-plane space-filling SLEκ′ from∞ to∞ associated with hIG.

The definition of η implies that for each z ∈ C, it is a.s. the case that the left and right
boundaries of η stopped when it first hits z are equal to the flow lines ηLz and ηRz (which
can be defined for a.e. z ∈ C simultaneously as the limits of the curves ηLw and ηRw as
Q2 3 w → z w.r.t., e.g., the local Hausdorff distance). See Figure 3. The topology of η
is rather simple when κ′ ≥ 8. In this case, the left/right boundary curves ηLz and ηRz do
not bounce off each other, so for a < b the set η([a, b]) has the topology of a disk. In the
case when κ′ ∈ (4, 8), the curves ηLz and ηRz intersect in an uncountable fractal set and
for a < b the interior of the set η([a, b]) a.s. has countably many connected components,
each of which has the topology of a disk.

It is shown in [43, Theorem 1.16] that for chordal space-filling SLE, the curve η is
a.s. determined by hIG. The analogous statement in the whole-plane case can be proven
using the same argument or deduced from the chordal case and [15, Footnote 4]. We
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will need the following refined version of this statement.

Lemma 2.4. Let D ⊂ C and let hIG and η be as above. Assume that η is parameterized
by Lebesgue measure. Let U ⊂ D be an open set and for z ∈ U ∩Q2, let Tz (resp. Sz) be
the last time η enters U before hitting z (resp. the first time z exits U after hitting z).
Then for each δ > 0, hIG|Bδ(U) a.s. determines the collection of curve segments(

η(·+ Tz)|[0,Sz−Tz ]
)
z∈U∩Q2 . (2.7)

Here Bδ(U) is the Euclidean δ-neighborhood of U , as in Section 1.3.

Proof. It is shown in [43, Theorem 1.2] that the left/right boundary curves ηLz and ηRz for
z ∈ Q2 are a.s. determined by hIG. For z ∈ U ∩Q2, let τLz (resp. τRz ) be the exit time of
ηLz (resp. ηRz ) from U . By [43, Theorem 1.1], each of the sets ηLz ([0, τLz ]) and ηRz ([0, τRz ]) is
a local set for hIG in the sense of [50, Lemma 3.9], so is a.s. conditionally independent
from hIG|C\Bδ(U) given hIG|Bδ(U). Each of these sets is a.s. determined by hIG, so is
a.s. determined by hIG|Bδ(U). It is clear from the definition of space-filling SLEκ′ given
above that the curve segments (2.7) are a.s. determined by ηLz |[0,τLz ] and ηRz |[0,τRz ] for
z ∈ U ∩Q2.

2.2 The degree of the root vertex has an exponential tail

Most of the results in this paper make use of the embedding of the mated-CRT maps
which comes from SLE-decorated LQG (see Section 1.2). However, the following result
is proved directly from the “Brownian motion” definition of the mated-CRT maps in (1.1),
and does not rely on this embedding.

Lemma 2.5. Let γ ∈ (0, 2) and let Gε for ε > 0 be a mated-CRT map. There are constants
c0, c1 > 0, depending only on γ, such that for n ∈ N, ε > 0, and x ∈ εZ,

P[deg(x;Gε) > n] ≤ c0e−c1n.

Proof. By Brownian scaling and translation invariance, the law of the pointed graph
(Gε, x) does not depend on ε or x, so we can assume without loss of generality that ε = 1

and x = 0. By (1.1), the time reversal symmetry of (L,R), and the fact that (L,R)
d
= (R,L),

it suffices to show that there exists constants c0, c1 > 0 as in the statement of the lemma
such that with

N := #

{
y ∈ N :

(
inf

t∈[−1,0]
Lt

)
∨
(

inf
t∈[y−1,y]

Lt

)
< inf
t∈[0,y−1]

Lt

}
,

we have P[N > n] ≤ c0e
−c1n. This follows from a straightforward Brownian motion

argument based on the fact that for each stopping time τ for L with Lτ ≤ L0 = 0, it holds
with positive conditional probability given L|(−∞,τ ] that inft∈[τ,τ+1] Lt ≤ inft∈[−1,0] Lt;
along with the Gaussian tail bound for inft∈[−1,0] Lt.

From Lemma 2.5 and a union bound, we get the following upper bound for the
maximal degree of the cells of Gε which intersect a specified Euclidean ball.

Lemma 2.6. Suppose we are in the setting of Section 1.4 with h equal to the circle-
average embedding of a γ-quantum cone into (C, 0,∞). If we define the vertex xεz ∈ εZ
as in (1.4), then for each ζ > 0,

P

[
max
z∈D

deg(xεz;Gε) ≤ (log ε−1)1+ζ
]
≥ 1− o∞ε (ε). (2.8)
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Proof. By standard SLE/LQG estimates (see, e.g., [28, Proposition 6.2]), for M > 0 we
have D ⊂ η([−ε−M , ε−M ]) except on an event of probability decaying like some positive
power of εM (the power depends only on γ). By Lemma 2.5 and a union bound, it holds
with probability 1 − o∞ε (ε) that deg(x;Gε) ≤ (log ε−1)1+ζ for each x ∈ [−ε−M , ε−M ]εZ.
Combining the above estimates and sending M →∞ shows that (2.8) holds.

In light of Lemma 2.5, we can deduce the recurrence of the simple random walk on
Gε from the results of [18] (we will give an independent proof in Section 3.3). Indeed,
by [18, Theorem 1.1], the random walk on an infinite rooted random planar map (G, v)
is recurrent provided the law of the degree of the root vertex v has an exponential tail
and (G, v) is the distributional limit of finite rooted planar maps in the local (Benjamini-
Schramm) topology [6]. The first condition for (Gε, 0) follows from Lemma 2.5. To obtain
the second condition, we observe that the law of Gε is invariant under the operation of
translating its vertex set by ε, and consequently Gε is the distributional local limit as
n→∞ of the planar map whose vertex set is [−nε, nε]εZ, with two vertices connected by
an edge if and only if they are connected by an edge in Gε, each rooted at a uniformly
random vertex in [−nε, nε]Z.

We note that it is also known that the simple random walk on the adjacency graph
of cells associated with a space-filling SLEκ′ on an independent 0-quantum cone is
recurrent: indeed, this follows from [27, Theorem 1.16] and [26, Proposition 3.1].

2.3 Maximal cell diameter

In this brief subsection we establish a polynomial upper bound for the maximum size
of the cells of Gε which intersect a fixed Euclidean ball. In other words, we prove an
analog of Corollary 1.6 with the SLE/LQG embedding in place of the Tutte embedding,
which we will eventually use to prove Corollary 1.6.

Lemma 2.7. Suppose we are in the setting of Section 1.4, with h either a whole-plane
GFF normalized so that its circle average over ∂D is zero or the circle-average embedding

of a 0-quantum cone or a γ-quantum cone. For each q ∈
(

0, 2
(2+γ)2

)
, each ρ ∈ (0, 1), and

each ε ∈ (0, 1),

P[diam(Hε
x) ≤ εq, ∀x ∈ VGε(Bρ(0))] ≥ 1− εα(q,γ)+oε(1), (2.9)

where the rate of the oε(1) depends only on q, ρ, and γ and

α(q, γ) :=
q

2γ2

(
1

q
− 2− γ2

2

)2

− 2q.

Lemma 2.7 is an easy consequence of the following basic estimate for the γ-LQG
measure.

Lemma 2.8. Let h be as in Lemma 2.7. For δ ∈ (0, 1), p > 2γ, and ρ ∈ (0, 1),

P

[
inf

z∈Bρ(0)
µh(Bδ(z)) ≥ δ2+

γ2

2 +p

]
≥ 1− δ

p2

2γ2−2+oδ(1), (2.10)

with the rate of the oδ(1) depending on p, ρ, and γ.

Proof. If h is a circle-average embedding of an α-quantum cone, then h|D agrees in law
with a whole-plane GFF normalized so that its circle average over ∂D is 0 plus −α log | · |.
If h is a whole-plane GFF, then µh−α log |·|(A) ≥ µh(A) for each Borel set A ⊂ D. So, we
can restrict attention to the case when h is a whole-plane GFF normalized so that its
circle average over ∂D is 0.
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Let {hr}r≥0 be the circle average process of h and fix ζ ∈ (0, 1). By standard estimates
for the γ-LQG measure (see, e.g., [19, Lemma 3.12]), for z ∈ C,

P

[
µh(Bδ(z)) < δ2+

γ2

2 +ζeγhδ(z)
]

= o∞δ (δ).

For z ∈ Bρ(0), the random variable hδ(z) is centered Gaussian with variance log δ−1 +

Oδ(1). Therefore,

P
[
eγhδ(z) < δp−ζ

]
≤ δ

(p−ζ)2
2γ2 .

Combining these estimates and sending ζ → 0 shows that

P

[
µh(Bδ(z)) < δ2+

γ2

2 +p

]
≤ δ

p2

2γ2 +oδ(1). (2.11)

We obtain (2.10) by applying (2.11) with δ/2 in place of δ then taking a union bound over
all z ∈ ( δ4Z

2) ∩Bρ(0).

Proof of Lemma 2.7. Fix q̃ ∈
(
q, 2

(2+γ)2

)
. By Lemma 2.8 applied with 1/q̃− 2− γ2/2 > 2γ

in place of p and εq̃ in place of δ, it holds with probability at least 1 − εα(q̃,γ)+oε(1) that
each Euclidean ball contained in B(1+ρ)/2(0) with radius at least εq̃ has µh-mass at least ε.
By [19, Proposition 3.4 and Remark 3.9], it holds except on an event of probability o∞ε (ε)

that each segment of η contained in D with diameter at least εq contains a Euclidean
ball of radius at least εq̃. Hence with probability 1 − εα(q̃,γ)+oε(1), each segment of η
which intersects Bρ(0) and has Euclidean diameter at lest εq has µh-mass at least ε.
Each cell Hε

x = η([x− ε, x]) is a segment of η with µh-mass ε, so with probability at least
1− εα(q̃,γ)+oε(1) each such cell which intersects Bρ(0) has diameter at most εq. Sending
q̃ → q concludes the proof.

2.4 Estimates for integrals against structure graph cells

A key input in our estimates for harmonic functions on Gε (i.e., Theorem 1.3 and
Theorem 1.5) is a bound for the integrals of Euclidean functions against quantities
associated with the cells of Gε. We state this bound in this subsection, and postpone its
proof until Section 4.

Suppose we are in the setting of Section 1.4 and that h is the circle-average embed-
ding of a γ-quantum cone. For z ∈ C, let

uε(z) :=
diam(Hε

xεz
)2

area(Hε
xεz

)
deg(xεz;Gε). (2.12)

Our main estimate for uε(z) is a one-sided “law of large numbers” type estimate for
integrals against uε(z). The following is a simplified (but perhaps more intuitive) version
of our result, which states in quantitative way that the mean value of uε(z) tends to be
smaller than a fixed constant.

Proposition 2.9. For each ρ ∈ (0, 1), there are constants α = α(γ) > 0 and A = A(ρ, γ) >

0 such that the following is true. Suppose C > 1 and ε ∈ (0, 1) and D ⊂ Bρ(0) is a domain
with area(Br(∂D)) ≤ Cr for each r ∈ (0, 1) and area(D) ≥ εα. Then

P

[∫
D

uε(z) dz ≤ A area(D)

]
≥ 1−Oε(εα) (2.13)

with the rate of the Oε(εα) depending only on C, ρ, and γ.
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Proposition 2.9 is an immediate consequence of Proposition 2.10 below; it can be
derived from Proposition 2.10 by setting f = 1D.

Proposition 2.10. For ε ∈ (0, 1) and z ∈ C, define uε(z) as in (2.12). There exists
α = α(γ) > 0 and β = β(γ) > 0, and A = A(ρ, γ) > 0 such that the following is true. Let
C > 1 and let D ⊂ Bρ(0) be a domain such that area(Br(∂D)) ≤ Cr for each r ∈ (0, 1).
Also let f : D → [0,∞) be a non-negative function which is Cε−β-Lipschitz continuous
and which satisfies ‖f‖∞ ≤ Cε−β . Then

P

[∫
D

f(z)uε(z) dz ≤ A
∫
D

f(z) dz + εα
]
≥ 1−Oε(εα) (2.14)

with the rate of the Oε(εα) depending only on C, ρ, and γ.

3 Estimates for harmonic functions on Gε

Suppose we are in the setting of Section 1.4 with h equal to the circle-average
embedding of a γ-quantum cone. Recall that η is a whole-plane space-filling SLEκ′

parameterized by γ-quantum mass with respect to h, and Gε for ε > 0 is the associated
mated-CRT map. Recall also that for z ∈ C, xεz is the smallest (and a.s. only) element of
εZ = VGε for which z is contained in the cell Hε

xεz
= η([xεz − ε, xεz]).

In this section, we assume Proposition 2.10 and use it to deduce various bounds for
harmonic functions on the sub-graph Gε(D) defined as in (1.5), which will eventually
lead to Theorems 1.3 and 1.5.

Many of the estimates in this subsection will include constants α, β, and A which
are required to be independent of ε, but are allowed to be different in each lemma /
proposition / theorem.

Throughout this section, we fix ρ ∈ (0, 1) and work on the ball Bρ(0).

3.1 Comparing sums over cells and Lebesgue integrals

In this subsection we establish a variant of Proposition 2.10 which allows us to
compare the weighted sum of the values of a function on C over all cells in the restricted
structure graph VGε(D) to its integral over D.

Lemma 3.1. There exists α = α(γ) > 0, β = β(γ) > 0, and A = A(ρ, γ) > 0 such that the
following is true. Let C ≥ 1 and let D ⊂ Bρ(0) be a domain such that area(Br(∂D)) ≤ Cr
for each r ∈ (0, 1). Let f : D → [0,∞) be a non-negative function which is Cε−β-Lipschitz
continuous and which satisfies ‖f‖∞ ≤ Cε−β and define f ε : VGε(D)→ R by

f ε(x) :=

{
f(η(x)), x ∈ VGε(D) \ VGε(∂D)

supz∈Hεx∩∂D f(z), x ∈ VGε(∂D).
(3.1)

Then

P

 ∑
x∈VGε(D)

f ε(x) diam(Hε
x)2 deg(x;Gε) ≤ A

∫
D

f(z) dz + εα

 ≥ 1−Oε(εα) (3.2)

at a rate depending only on C, ρ, and γ.

We note that the choice of boundary data for f ε in (3.1) (which will also show up in
other places) is somewhat arbitrary—we just need boundary data which is close in some
sense to the boundary data for f when ε is small.

Proof of Lemma 3.1. Let q ∈
(

0, 2
(2+γ)2

)
, chosen later in a manner depending only on γ,

and let β > 0 be smaller than the minimum of q and the parameter β of Proposition 2.10.
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We define the event

Êε0 :=
{

diam
(
Hε
xεz

)
≤ εq and deg(xεz;Gε) ≤ (log ε−1)2, ∀z ∈ Bρ(0)

}
, (3.3)

where here we recall that Hε
xεz

is the cell of Gε containing z. By Lemmas 2.6 and 2.7,

P[(Êε0)c] decays faster than some positive power of ε.
Fix β > 0 to be chosen later in a manner depending only on γ. We will bound

the sum over VGε(∂D) and VGε(D) \ VGε(∂D) separately. We start with the boundary
vertices. If x ∈ VGε(∂D) then by the definition (3.3) of Êε0, we have deg(x;Gε) ≤ (log ε−1)2

and Hε
x ⊂ Bεq (∂D) on this event. By our hypotheses that area(Br(∂D)) ≤ Cr for each

r ∈ (0, 1) and ‖f‖∞ ≤ Cε−β ,

1Êε0

∑
x∈VGε(∂D)

f ε(x) diam(Hε
x)2 deg(x;Gε) ≤ 1Êε0‖f‖∞(log ε−1)2

∑
x∈VGε(∂D)

diam(Hε
x)2

≤ ‖f‖∞(log ε−1)2 area(Bεq (∂D)) ≤ C2(log ε−1)2ε−β+q. (3.4)

Since β < q this last quantity is bounded above by Oε(εα0) for α0 ∈ (0, q − β).
Now we turn our attention to the interior vertices. Recall the definition (2.12) of

uε(z). For x ∈ VGε(D) \ VGε(∂D),

f ε(x) diam(Hε
x)2 deg(x;Gε) =

∫
Hεx

f ε(x)uε(z) dz

≤
∫
Hεx

f(z)uε(z) dz + Cε−β diam(Hε
x)3 deg(x;Gε), (3.5)

where in the last inequality we use the Cε−β-Lipschitz continuity of f to get that for
z ∈ Hε

x, |f ε(x)− f(z)| ≤ Cε−β diam(Hε
x). By (3.5),∑

x∈VGε(D)\VGε(∂D)

f ε(x) diam(Hε
x)2 deg(x;Gε)

≤
∫
D

f(z)uε(z) dz + Cε−β
∑

x∈VGε(D)\VGε(∂D)

diam(Hε
x)3 deg(x;Gε). (3.6)

On Êε0, the sum on the right in (3.6) satisfies

ε−β
∑

x∈VGε(D)\VGε(∂D)

diam(Hε
x)3 deg(x;Gε)

= ε−β
∑

x∈VGε(D)\VGε(∂D)

∫
Hεx

diam(Hε
x)3

area(Hε
x)

deg(x;Gε) dz

≤ ε−β
∫
D

diam(Hε
xεz

)uε(z) dz ≤ εq−β
∫
D

uε(z) dz. (3.7)

Proposition 2.10 (applied to f and with 1 in place of f ) shows that there are constants
α1 = α1(γ) ∈ (0, α0] and A = A(ρ, γ) > 0 such that with probability at least 1−Oε(εα1),∫

D

f(z)uε(z) dz ≤ A
∫
D

f(z) dz + εα1 and

∫
D

uε(z) dz ≤ A area(D) + εα1 . (3.8)

Plugging (3.8) and (3.7) into (3.6) and then adding the resulting estimate to (3.4) and
possibly shrinking α1 shows that on Êε0,∑

x∈VGε(D)

f ε(x) diam(Hε
x)2 deg(x;Gε) ≤ A

∫
D

f(z) dz +Oε(ε
α1). (3.9)

Since P[(Êε0)c] decays like a positive power of ε, we obtain (3.2) with an appropriate
choice of α ∈ (0, α1).
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3.2 Dirichlet energy bounds

In this subsection, we will use Proposition 2.10 to prove bounds for the Dirichlet
energy of discrete harmonic functions on subgraphs of Gε in terms of the Dirichlet energy
of functions on subsets of C. We will consider the following setup. Recall that we have
fixed ρ ∈ (0, 1). For C ≥ 1 and δ ∈ (0, 1), let CC(δ) = CC(δ, ρ) be the set of pairs (D, f)

where D is an open subset of Bρ(0) and f : D → R is a differentiable function such that
the following is true.

1. area(Br(∂D)) ≤ Cr for each r ∈ (0, 1).

2. D has C-bounded convexity, i.e., for each z, w ∈ D there is a path from z to w

contained in D which has length at most C|z − w|.

3. ∇f is δ−1-Lipschitz continuous and both ‖f‖∞ and ‖∇f‖∞ are at most δ−1.

The main result of this subsection is the following more quantitative version of Theo-
rem 1.3.

Theorem 3.2. There are constants α = α(γ) > 0 and β = β(γ) > 0 such that for each
C ≥ 1 there exists A = A(C, ρ, γ) > 0 such that the following hold for each ε ∈ (0, 1),
each C ≥ 1, and each (D, f) ∈ CC(εβ). Let fε : VGε(D)→ R be the function such that

fε(x) = sup
z∈Hεx∩∂D

f(z), ∀x ∈ VGε(∂D)

and fε is discrete harmonic on VGε(D)\VGε(∂D). Then (recalling Definitions 1.1 and 1.2),

P[Energy(fε;Gε(D)) ≤ AEnergy(f ;D) + εα] ≥ 1−Oε(εα) (3.10)

at a rate depending only on C, ρ, and γ.

Theorem 3.2 will be an immediate consequence of the following estimate, which in
turn is deduced from Lemma 3.1.

Lemma 3.3. There are constants α = α(γ) > 0, β = β(γ) > 0, and A = A(C, ρ, γ) > 0

such that the following is true for each ε ∈ (0, 1) and each (D, f) ∈ CC(εβ). As in
Lemma 3.1, define f ε : VGε(D)→ R by

f ε(x) :=

{
f(η(x)), x ∈ VGε(D) \ VGε(∂D)

supz∈Hεx∩∂D f(z), x ∈ VGε(∂D).
(3.11)

Then
P[Energy(f ε;Gε(D)) ≤ AEnergy(f ;D) + εα] ≥ 1−Oε(εα) (3.12)

at a rate depending only on C, ρ, and γ.

Proof. Fix q ∈
(

0, 2
(2+γ)2

)
, chosen in a manner depending only on γ, and let

Eε0 = Eε0(q, ρ) :=
{

diam
(
Hε
xεz

)
≤ εq, ∀z ∈ Bρ(0)

}
. (3.13)

Also fix β > 0 to be chosen later in a manner depending only on γ and suppose
(D, f) ∈ CC(εβ). By analogy with (3.11), define

F ε(x) :=

{
|∇f(η(x))|2, x ∈ VGε(D) \ VGε(∂D)

supz∈Hεx∩∂D |∇f(z)|2, x ∈ VGε(∂D).

Now consider an edge {x, y} ∈ EGε(D). Then Hε
x ∩ Hε

y 6= ∅, so diam(Hε
x ∪ Hε

y) ≤
diam(Hε

x) + diam(Hε
y). By the C-convexity of D, for any z ∈ Hε

x ∩D and any w ∈ Hε
y ∩D,
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there is a path Pz,w from z to w in D of Euclidean length at most C(diam(Hε
x)+diam(Hε

y)).
By the ε−β-Lipschitz continuity of ∇f , for each u ∈ Pz,w we have

|∇f(u)| ≤ |∇f(z)|+ Cε−β
(
diam(Hε

x) + diam(Hε
y)
)

≤
√
F ε(x) + 2Cε−β

(
diam(Hε

x) + diam(Hε
y)
)
,

and similarly with y in place of x. Therefore,

|f ε(x)− f ε(y)|
≤ C

(
diam(Hε

x) + diam(Hε
y)
)

sup
z∈Hεx∩D,w∈Hεy∩D

sup
u∈Pz,w

|∇f(u)|

≤ C
√
F ε(x) diam(Hε

x) + C
√
F ε(y) diam(Hε

y) + 4Cε−β
(
diam(Hε

x)2 + diam(Hε
y)2
)
.

Using the above estimate and the inequality (a+ b)2 ≤ 2(a2 + b2) and breaking up the
sum over edges based on those edges which have a given vertex x as an endpoint, we
obtain that on Eε0,

Energy(f ε;Gε(D)) (3.14)

�
∑

x∈VGε(D)

F ε(x) diam(Hε
x)2 deg(x;Gε) + ε−2β

∑
x∈VGε(D)

diam(Hε
x)4 deg(x;Gε)

�
∑

x∈VGε(D)

F ε(x) diam(Hε
x)2 deg(x;Gε) + ε2q−2β

∑
x∈VGε(D)

diam(Hε
x)2 deg(x;Gε)

(3.15)

with implicit constant depending only on C, where here we use that diam(Hε
x) ≤ εq on

Eε0. Since (D, f) ∈ CC(εβ), the function |∇f |2 is 2ε−2β-Lipschitz and ‖|∇f |2‖∞ ≤ ε−2β . We
can therefore apply Lemma 3.1 (with each of |∇f |2 and 1 in place of f ) to see that if β is
smaller than the minimum of q and 1/2 times the parameter β from Lemma 3.1, then the
following is true. For appropriate constants A,α > 0 as in the statement of the lemma,
it holds except on an event of probability decaying faster than some positive power of
ε that the right side of (3.14) is bounded above by AEnergy(f ;D) + εα. Since P[(Eε0)c]

decays like a positive power of ε, this concludes the proof.

Proof of Theorems 1.3 and 3.2. Since discrete harmonic functions minimize Dirichlet
energy subject to specified boundary data, Theorem 3.2 is an immediate consequence of
Lemma 3.3. Theorem 1.3, in turn, follows from Theorem 3.2.

3.3 Green’s function and recurrence

We will now explain why Theorem 3.2 implies Theorem 1.4. The main step is the
following upper bound for the Dirichlet energy of certain discrete harmonic functions on
Gε.
Lemma 3.4. There exists α = α(γ) > 0 such that for each ρ ∈ (0, 1), there exists
A = A(ρ, γ) > 0 such that for each s ∈ [0, ρ/2] and each ε ∈ (0, 1), it holds with probability
at least 1−Oε(εα) (at a rate depending only on ρ and γ) that the following is true. Let
fεs : VGε(Bρ(0) \Bs(0))→ [0, 1] be the function which is equal to 0 on VGε(∂Bρ(0)), 1 on
VGε(∂Bs(0)), and is discrete harmonic on the rest of VGε(Bρ(0) \ Bs(0)). Then (in the
notation of Definition 1.1)

Energy(fεs;Gε(Bρ(0))) ≤ A

log(ε−1 ∨ s−1)
. (3.16)

We note that by Lemma 2.7, we have VGε(∂Bρ(0))∩VGε(Bρ/2(0)) = ∅— which implies
that fεs is well-defined for each s ∈ [0, ρ/2] — except on an event of probability decaying
faster than some positive power of ε.
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Proof of Lemma 3.4. To lighten notation, define the open annulus As := Bρ(0) \ Bs(0).
We will apply Theorem 3.2 to the function gs : As, → [0, 1] which is equal to 0 on ∂Bρ(0),
1 on ∂Bs(0), and is harmonic on the interior of As. That is, gs(z) = log(ρ/|z|)/ log(ρ/s). A
direct calculation shows that the Euclidean Dirichlet energy of gs on As is 2π/ log(ρ/s).
Furthermore, gs and each of its first and second order partial derivatives are bounded
above by a universal constant times a universal negative power of s on As. Consequently,
Theorem 3.2 implies that there exists β = β(γ) > 0 and an appropriate choice of α and
A as in the statement of the lemma such that the statement of the lemma is true if we
impose the additional requirement that s ≥ εβ .

To remove the restriction that s ≥ εβ, we extend fεs to all of VGε(Bρ(0)) by requiring
it to be identically equal to 1 on VGε(Bs(0)). Then the total Dirichlet energy of fεs is
unchanged and if s′ > s, then fεs and fεs′ agree on VGε(As). Since fεs has the minimal
Dirichlet energy among all functions on VGε(As) with the same boundary data, we infer
that s 7→ Energy(fεs;Gε(As)) is non-decreasing. Therefore, (3.16) for s = εβ implies (3.16)
for s ∈ [0, εβ ] with A/β in place of A.

Proof of Theorem 1.4. By Dirichlet’s principle (see, e.g., [36, Exercise 2.13]), if fε0 :

VGε(Bρ(0))→ [0, 1] is the function which vanishes on VGε(∂Bρ(0)), is equal to 1 at 0, and
is otherwise discrete harmonic then

Grετε(0, 0)

deg(0;Gε)
= Energy(fε0;Gε(Bρ(0)))

−1

Hence the Green’s function bound (1.8) follows from Lemma 3.4.

To deduce the recurrence of simple random walk on Gε from this bound, it suffices
to consider the case when ε = 1 since the law of Gε (as a graph) does not depend on
ε. We will use the scaling property of the γ-quantum cone (described just below) to
produce an increasing sequence of sub-graphs of G1 (each corresponding to an open
ball of random radius), whose union is all of G1, with the property that the Green’s
function of the walk stopped upon exiting these subgraphs a.s. tends to∞, which implies
recurrence by a well-known criterion [36, Theorem 2.3]. For this purpose, for b > 0 let
Rb := sup{r > 0 : hr(0) +Q log r = 1

γ log b}, where hr(0) denotes the circle average. Note
that R0 = 1 since h is assumed to have the circle average embedding. By [15, Proposition

4.13(i)], for b > 0 we have h
d
= hb for hb := h(Rb·)+Q logRb− 1

γ log b, where Q = 2/γ+γ/2

is as in (2.6). It is easily seen from the definition of h (Definition 2.3) that a.s. Rb →∞
as b→∞. Since η is sampled independently from h and then parameterized by γ-LQG

mass with respect to h, it follows that (hb, ηb)
d
= (h, η) for ηb := R−1b η(b·). In particular,

G1(BρRb(0))
d
= G1/b(Bρ(0)). Applying this with b = 2k for k ∈ N, using (1.8) with ε = 2−k,

and applying the Borel-Cantelli lemma now gives the desired recurrence.

3.4 Random walk on Gε stays close to a curve with positive probability

In this subsection, we will prove Proposition 3.6, which says that, roughly speaking,
the simple random walk on Gε has positive probability to stay close to a fixed Euclidean
curve for a long time, even if we condition on Gε. This estimate is the key input in the
proof of our modulus of continuity bound in Section 3.5 below, but we expect it to also
have other applications.

Definition 3.5. For x ∈ VGε, we write P
ε

x for the conditional law given (h, η) (which
determines Gε) of the simple random walk Xε on Gε started from x.

Proposition 3.6. For each ρ ∈ (0, 1), there exists s0 = s0(ρ, γ) > 0, α = α(γ) > 0, and
β = β(γ) > 0 such that the following is true. Let P ⊂ Bρ(0) be a compact connected set,
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let ε ∈ (0, 1), and let r̃, r > 0 with εβ ≤ r̃ < r ≤ dist(P, ∂Bρ(0)). Also set

N := min{n ∈ N : Br̃(P ) can be covered by n Euclidean balls of radius s0(r − r̃)}.
(3.17)

Then with probability at least 1−NOε(εα) (at a rate depending only on ρ and γ),

min
x∈VGε(Br̃(P ))

min
z∈Br̃(P )

P
ε

x[Xε enters VGε(Br(z)) before leaving VGε(Br(P ))] ≥ 2−N .

(3.18)

We note that Proposition 3.6 is not implied by the quenched convergence of Xε to
Brownian motion modulo time parameterization (proven in [26, Theorem 3.4]) since
the latter convergence does not give a quantitative bound for the annealed probability
that (3.18) holds.

To prove Proposition 3.6, we will show that a simple random walk on Gε started close
to the inner boundary of a Euclidean annulus is likely to hit the inner boundary before
the outer boundary (Lemma 3.8). This leads to Proposition 3.6 by considering N such
annuli with the property that the union of their inner boundaries contains a path from
η(x) to z. See Figure 7 for an illustration of the proof.

∂B10sr(z)

∂B5sr(z)

∂Bsr(z)

P 1,ε
s

P 2,ε
s

P

Br(P )

Br̃(P )

Figure 7: Left: Illustration of the proof of Lemma 3.8. We use Lemma 3.7 and
Theorem 3.2 to find a circle P 1,ε

s separating ∂B5sr(z) and ∂B10sr(z) and a radial line
segment P 2,ε

s from ∂Bsr(z) to ∂B10sr(z) over which the total variation of fεs is at most
a constant times 1/

√
log s−1. By the maximum principle, this gives us a bound for the

maximum value of fεs onB5sr(z)\Bsr(z). Right: Illustration of the proof of Proposition 3.6.
We cover Br̃(P ) by N balls of radius s0(r − r̃), then use Lemma 3.8 to force a random
walk to follow a “string” of such balls from η(x) to z.

Our desired bound for the probability of exiting an annulus at a point of its inner
boundary can be re-phrased as a pointwise bound for a certain discrete harmonic function
on Gε. The following technical lemma (which is a variant of [27, Lemma 2.16]) enables
us to transfer from the Dirichlet energy bounds of Section 3.2 to the needed pointwise
bounds. The idea of the statement and proof of the lemma is to consider a collection of
paths {Pt}t∈[a,b], indexed by some finite interval, with the property that the Euclidean
distance between Ps and Pt is bounded below by |s − t|. Due to the Cauchy-Schwarz
inequality, the t-average of the total variation of a function on VGε over the paths Pt can
be bounded above in terms of the Dirichlet energy of f ε. There must be one path Pt
over which the total variation of f ε is smaller than average, which (together with the
maximum principle) will allow us to prove pointwise bounds for harmonic functions on
Gε in Lemma 3.8 below.

Lemma 3.7. There exists α = α(γ) > 0 such that for each C ≥ 1 and each ρ ∈ (0, 1), we
can find A = A(C, ρ, γ) > 0 such that the following is true. Let D ⊂ Bρ(0) be a domain
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such that area(Br(∂D)) ≤ Cr for each r ∈ (0, 1). For ε ∈ (0, 1), it holds with probability
at least 1−Oε(εα), at a rate depending only on C, ρ, and γ, that the following holds. Let
{Pt}t∈[a,b] be a collection of compact subsets of D such that dist(Ps, Pt) ≥ C−1|s− t| for
each s, t ∈ [a, b]. Then for each function f ε : VGε(D)→ R,∫ b

a

∑
{x,y}∈EGε(Pt)

|f ε(x)− f ε(y)| dt ≤ A(area(D) + εα)1/2 Energy(f ε;Gε(D))
1/2
. (3.19)

Proof. By Lemma 3.1 (applied with f = 1D) we can find α = α(γ) > 0 and A0 =

A0(C, ρ, γ) > 0 such that with probability 1−Oε(εα),∑
x∈VGε(D)

diam(Hε
x)2 deg(x;Gε) ≤ A0(area(D) + εα). (3.20)

It therefore suffices to show that if (3.20) holds, then for an appropriate choice of A as
in the statement of the lemma, the estimate (3.19) holds for every possible choice of
{Pt}t∈[a,b] and f ε.

For such a collection of paths {Pt}t∈[a,b] and an edge {x, y} ∈ EGε(D), let M ε(x, y) be
the Lebesgue measure of the set of t ∈ [a, b] for which {x, y} ∈ EGε(Pt). By interchanging
the order of integration and summation, for any f ε : VGε(D)→ R,∫ b

a

∑
{x,y}∈EGε(Pt)

|f ε(x)− f ε(y)| dt ≤
∑

{x,y}∈EGε(D)

|f ε(x)− f ε(y)|M ε(x, y). (3.21)

Since the cellsHε
x andHε

y intersect whenever {x, y} ∈ EGε, our hypothesis on the paths Pt
implies that if {x, y} ∈ EGε(Pt), then {x, y} /∈ EGε(Ps) whenever |s− t| ≥ C diam(Hε

x∪Hε
y).

Therefore,
M ε(x, y) ≤ C(diam(Hε

x) + diam(Hε
y)). (3.22)

By (3.21), (3.22), and the Cauchy-Schwarz inequality, we see that if (3.20) holds, then∫ b

a

∑
{x,y}∈EGε(Pt)

|f ε(x)− f ε(y)| dt

� C

 ∑
{x,y}∈EGε(D)

(diam(Hε
x)2 + diam(Hε

y)2)

1/2

Energy(f ε;Gε(D))
1/2

� C

 ∑
x∈VGε(D)

diam(Hε
x)2 deg(x;Gε)

1/2

Energy(f ε;Gε(D))
1/2

≤ CA1/2
0 (area(D) + εα0)

1/2
Energy(f ε;Gε(D))

1/2
, (3.23)

with universal implicit constants. Thus (3.19) holds for an appropriate choice of A.

The following lemma says that the random walk on Gε started close to the inner
boundary of a Euclidean annulus is likely to hit the inner boundary before the outer
boundary. The lemma will be a consequence of Lemma 3.7 applied to the discrete
harmonic function which equals 0 on the inner boundary and 1 on the outer boundary.

Lemma 3.8. For each ρ ∈ (0, 1), there exists α = α(γ) > 0, β = β(γ) > 0, and A =

A(ρ, γ) > 0 such that for each r ∈ [εβ , ρ], each ε ∈ (0, 1), and each z ∈ Bρ(0) such that
Br(z) ⊂ Bρ(0), it holds with probability at least 1−Oε(εα) (at a rate depending only on ρ
and γ) that for each s ∈ [εβ , 1/10],

min
x∈VGε(B4sr(z))

P
ε

x[Xε hits VGε(∂Bsr(z)) before VGε(∂Br(z))] ≥ 1− A√
log s−1

. (3.24)
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Proof. See Figure 7, left panel, for an illustration of the proof. Fix z ∈ Bρ(0) and r ∈ (0, ρ]

with Br(z) ⊂ Bρ(0). To lighten notation, define the open annulus

Aa,b(z) := Bb(z) \Ba(z), ∀b > a > 0.

For s ∈ (0, 1/2] and ε ∈ (0, 1), let fεs : VGε(Asr,r(z))→ [0, 1] be the function which equals 0
on VGε(∂Bsr(z)), 1 on VGε(∂Br(z)), and is discrete harmonic on the rest of VGε(Asr,r(z)).
We need an upper bound for the values of fεs on VGε(Asr,4sr(z)).

Step 1: Dirichlet energy bound. We first bound the Dirichlet energy of fεs. By Theorem 3.2,
applied to the Euclidean harmonic function on Asr,r(z) which equals 0 on ∂Bsr(z) and 1
on ∂Br(z), and the same argument used in the proof of Lemma 3.4, we find that there
exists α0 = α0(γ) > 0 and A0 = A0(ρ, γ) > 0 such that for each ε ∈ (0, 1) and each fixed
s ∈ [0, 1/2] it holds with probability at least 1 − Oε(εα0) (at a rate depending only on ρ

and γ) that

Energy(fεs;VGε(Asr,r(z))) ≤
A0

log s−1
. (3.25)

Step 2: averaging over segments and circles. We will now apply Lemma 3.7 to two
different collections of paths to deduce (3.24) from (3.25). For s ∈ [εβ0 , 1/10] define the
concentric circles

P 1
s,t := ∂B5(sr+t)(z), ∀t ∈ [0, sr]

and the radial line segments across Asr,10sr(z)

P 2
s,t :=

[
sr exp

(
2πi(sr)−1t

)
+ z, 10sr exp

(
2πi(sr)−1t

)
+ z
]
∀t ∈ [0, sr].

We observe that for each t ∈ [0, sr], each of P 1
s,t and P 2

s,t is contained in Asr,10sr(z).
Furthermore, there is a universal constant C > 0 such that for t, t′ ∈ [0, sr] and i ∈ {1, 2}
we have dist(P is,t, P

i
s,t′) ≥ C−1|t− t′|.

By Lemma 3.7 (applied with D = Asr,10sr(z) and each of the collections of paths
{P is,t}t∈[0,sr] for i ∈ {1, 2}) and (3.25), we can find constants α1 = α1(γ) ∈ (0, α0] and

A1 = A1(ρ, γ) > 0 such that for each ε ∈ (0, 1) and each s ∈ [εα1/2, 1/10] it holds with
probability 1−Oε(εα1) that for each i ∈ {1, 2},

1

sr

∫ sr

0

∑
{x,y}∈EGε(Pt)

|fεs(x)− fεs(y)| dt ≤ A1((sr)2 + εα1)1/2

sr
Energy(fεs;Gε(Asr,10sr(z)))

1/2

≤ A2√
log s−1

(3.26)

for some constant A2 > 0 depending only on ρ and γ.

Step 3: existence of good paths. If (3.26) holds for each i ∈ {1, 2}, then since the average
of any function is bounded below by its minimum value, there must exist tεi ∈ [0, sr] such
that with P i,εs := P εs,tεi , ∑

{x,y}∈EGε(P i,εs )

|fεs(x)− fεs(y)| ≤ A2√
log s−1

. (3.27)

The union P 1,ε
s ∪ P 2,ε

s is connected, intersects ∂Bsr(z), and disconnects Asr,5sr(z) from
∞. Since fεs vanishes on VGε(∂Bsr(z)), we infer from (3.27) and the maximum principle
for the discrete harmonic function fεs that with probability at least 1−Oε(εα1),

max
x∈VGε(Asr,5sr(z))

fεs(x) ≤ 2A2√
log s−1

,
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which by the definition of fεs implies

min
x∈VGε(A5sr(z))

P
ε

x[Xε hits VGε(∂Bsr(z)) before VGε(∂Br(z))] ≥ 1− 2A2√
log s−1

. (3.28)

The statement of the lemma with α slightly smaller than α1, β = α1/2, and A = 4A2

follows by applying (3.28) for a collection of Oε(log ε−1) different values of s ∈ [εβ , 1/10],
chosen so that each interval [s, 4s] for s ∈ [εβ , 1/4] is contained in [s′, 5s′] for some s′ in
this collection, then taking a union bound (note that this last step is why we used 5s

instead of 4s above).

Proof of Proposition 3.6. We will iteratively apply Lemma 3.8 and the Markov property
of the random walk to a collection of balls which cover Br̃(P ). Let α = α(γ) > 0,
β = β(γ) > 0, and A = A(ρ, γ) > 0 be as in Lemma 3.8 and let s0 ∈ (0, 1/10] be chosen so
that such that A/

√
log s−1 ≤ 1/2. To lighten notation, set r′ := s0(r − r̃).

By (3.17), for each P, ε, r̃, r as in the statement of the lemma we can find a finite
deterministic set W ⊂ Br̃+r′(P ) such that

#W ≤ N and Br̃(P ) ⊂
⋃
w∈W

Br′(w). (3.29)

By Lemma 3.8 (applied with r − r̃ in place of r) and a union bound over all w ∈ W , it
holds with probability at least 1−NOε(εα) that

min
w∈W

min
x∈VGε(B4r′ (w))

P
ε

x[Xε hits VGε(∂Br′(w)) before VGε(∂Br−r̃(w))] ≥ 1

2
. (3.30)

Suppose now that (3.30) holds. By (3.29), for each x ∈ VGε(Br̃(P )) and each z ∈ Br̃(P )

we can find distinct points w0, . . . , wm ∈ W such that Hε
x ∩ Br′(w0) 6= ∅, z ∈ Br′(wm),

and Br′(wk−1) ∩ Br′(wk) 6= ∅ for each k ∈ [1,m]Z. Since s0 ≤ 1/10 and each w ∈ W lies
in Br̃+r′(P ), each ball B4r′(wk) for k ∈ [1,m]Z is contained in Br(P ). Moreover, each
Br′(wk−1) is contained in B4r′(wk). By m applications of (3.30) and the Markov property
of Xε, it holds with P

ε

x-probability at least 2−m ≥ 2−N that Xε enters each VGε(Br′(wk))

before leaving VGε(Br(P )), in which case Xε enters VGε(Br(z)) ⊃ VGε(Br′(wm)) before
leaving VGε(Br(P )). Thus (3.18) holds.

3.5 Hölder continuity for harmonic functions on Gε

In this subsection, we use Proposition 3.6 to deduce a uniform (ε-independent) Hölder
continuity estimate for harmonic functions on Gε, which is a more quantitative version of
Theorem 1.5

Theorem 3.9. For each ρ ∈ (0, 1), there exists α = α(γ) > 0, ξ = ξ(ρ, γ) > 0, and
A = A(ρ, γ) > 0 such that for each ε ∈ (0, 1), the following holds with probability at least
1 − Oε(εα). Let D ⊂ Bρ(0) be a connected domain and let fε : VGε(D) → R be discrete
harmonic on VGε(D) \ VGε(∂D). Then we have the interior continuity estimate

|fε(x)− fε(y)| ≤ A‖fε‖∞
(
ε ∨ |η(x)− η(y)|
dist(η(x), ∂D)

)ξ
, ∀x, y ∈ VGε(D), (3.31)

where ‖fε‖∞ denotes the L∞ norm.
If D is simply connected, then we also have the boundary continuity estimate

min
y∈VGε(∂D∩Bt(η(x)))

fε(y)−A‖fε‖∞
(

t

dist(η(x), ∂D)

)−ξ
≤ fε(x)

≤ max
y∈VGε(∂D∩Bt(η(x)))

fε(y) +A‖fε‖∞
(

t

dist(η(x), ∂D)

)−ξ
, ∀x ∈ VGε(D), ∀t > 0.

(3.32)
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In particular, if fε has Hölder continuous boundary data, in the sense that there exists
χ ∈ (0, 1] and C > 0 such that

|fε(x)− fε(y)| ≤ C(ε ∨ |η(x)− η(y)|)χ, ∀x, y ∈ VGε(∂D) (3.33)

then

|fε(x)− fε(y)| ≤ max{C,A‖fε‖∞}(ε ∨ |η(x)− η(y)|)(ξ∧χ)/4, ∀x, y ∈ VGε(D). (3.34)

We note that (3.34) immediately implies Theorem 1.5. The basic idea of the proof of
Theorem 3.9 is to bound the total variation distance between the conditional laws given
(h, η) of the positions where the simple random walks on Gε started at two nearby vertices
of VGε(D) first hit VGε(∂D). This is sufficient to establish a modulus of continuity bound
since we are working with discrete harmonic functions. Our bound for total variation
distance will be established using the following lemma, which is an easy consequence of
Wilson’s algorithm (see [27, Lemma 3.12] for a proof).

Lemma 3.10 ([27]). Let G be a connected graph and let A ⊂ V(G) be a set such that the
simple random walk started from any vertex of G a.s. hits A in finite time. For x ∈ V(G),
let Xx be the simple random walk started from x and let τx be the first time Xx hits A.
For x, y ∈ V(G) \A,

dTV(Xx
τx , X

y
τy ) ≤ 1− P[Xx disconnects y from A before time τx], (3.35)

where dTV denotes the total variation distance.

To apply Lemma 3.10 in our setting, we need a lower bound for the probability that
simple random walk on Gε surrounds a nearby point before traveling a long distance.
Proposition 3.6 tells us that random walk on Gε has uniformly positive probability to
surround the inner boundary of an annulus of fixed aspect ratio before hitting the outer
boundary (see Lemma 3.11). Iterating this over dyadic annuli and applying Lemma 3.10
will then give us a polynomial upper bound on the total variation distance between the
hitting distributions for random walk started from two nearby vertices of Gε. For the
statement of the next lemma, we recall the notation P

ε

x from Definition 3.5.

Lemma 3.11. For each ρ ∈ (0, 1), there exists α = α(γ) > 0, β = β(γ) > 0, and
p = p(ρ, γ) > 0 such that for each ε ∈ (0, 1), the following holds with probability
1−Oε(εα). For each z ∈ Bρ(0) and each r ∈ [εβ , ρ] with B2r(z) ⊂ Bρ(0),

min
x∈VGε(Br(z))

P
ε

x

[
Xε disconnects VGε(∂Br/2(z)) from VGε(∂B2r(z))

before hitting VGε(∂B2r(z))
]
≥ p. (3.36)

Proof. If Xε starts inside VGε(Br(z)), then Xε must hit VGε(∂Br(z)) before hitting
VGε∂B2r(z)). By the strong Markov property of Xε, it suffices to prove (3.36) with
the minimum taken over VGε(∂Br(z)) instead of VGε(Br(z)). Let α0 = α0(γ) > 0 and
β0 = β0(γ) > 0 be chosen so that the conclusion of Proposition 3.6 is satisfied. It is easily
seen from Proposition 3.6, applied with r/4 in place of r, r̃ = r/8, say, and P equal to
each of three appropriately chosen arcs of ∂Br(z) that there is a p = p(ρ, γ) > 0 such
that for each fixed z ∈ Bρ(0) and each fixed r ∈ [εβ0 , ρ] with B5r/4(z) ⊂ Bρ(0), it holds
with probability at least 1−Oε(εα0) that

min
x∈VGε(∂Br(z))

P
ε

x

[
Xε disconnects VGε(∂B3r/4(z)) from VGε(∂B5r/4(z))

before hitting VGε(∂B5r/4(z))
]
≥ p. (3.37)

The statement of the lemma for a small enough choice of α ∈ (0, α0) and β ∈ (0, β0)

follows from this last estimate by taking a union bound over all z ∈ (εα0/100Z2) ∩Bρ(0)

and all r ∈ εα0/100Z with r ≥ εβ0 and B2r(z) ⊂ Bρ(0).

EJP 24 (2019), paper 58.
Page 31/55

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP325
http://www.imstat.org/ejp/


Harmonic functions on mated-CRT maps

Proof of Theorem 3.9. Let α, β, and p be chosen so that the conclusion of Lemma 3.11
is satisfied for ε > 0. We can assume without loss of generality that β < 1

50(2+γ)2 , so
that Lemma 2.7 applies with q = 100β. Let Eε be the event that (3.36) holds for each
z ∈ Bρ(0) and each r ∈ [εβ , ρ] with B2r(z) ⊂ Bρ(0) and that diam(Hε

x) ≤ ε100β for each
x ∈ VGε(Bρ(0)), so that by Lemma 3.11 and Lemma 2.7, after possibly shrinking α we
can arrange that P[Eε] = 1− Oε(εα). Throughout the proof we assume that Eε occurs
and we let fε : VGε(D)→ R be a discrete harmonic function as in the theorem statement.

Applying the Markov property of the walk Xε and the estimate (3.36) with r = e−k

for each k ∈ [logbdist(η(x), ∂D)−1c, logd(2(εβ ∨ |η(x)− η(y)|))−1e]Z, then multiplying over
all such k, shows that for each x, y ∈ VGε(D),

P
ε

x[Xε disconnects y from VGε(∂D) before hitting VGε(∂D)]

≥ 1− plog
dist(η(x),∂D)
εβ∨|η(x)−η(y)|−2 ≥ 1−A

(
ε ∨ |η(x)− η(y)|
dist(η(x), ∂D)

)ξ
(3.38)

for constants A > 0 and ξ > 0 depending only on p and β (and hence only on ρ and γ).
Note that we have absorbed β into ξ. By (3.38) and Lemma 3.10, we find that the total
variation distance between the P

ε

x-law of the first place where Xε hits VGε(∂D) and the
P
ε

y-law of the first place where Xε hits VGε(∂D) is at most the right side of (3.38). Since
fε is discrete harmonic, this implies (3.31).

Now assume that D is simply connected. To prove the boundary estimate (3.32),
we observe that if x ∈ VGε(D) and r ≥ 2 dist(η(x), ∂D), then since C \D is connected,
in order for a random walk started from x to disconnect VGε(Br/2(0)) from∞, it must
first hit VGε(∂D). By applying the Markov property of Xε and (3.36) with r = e−k for
k ∈

[
logdt−1e, logb2 dist(η(x), ∂D)−1c

]
, we get that for t > 2 dist(η(x), ∂D),

P
ε

x[Xε first hits VGε(∂D) at a point in VGε(∂D ∩Bt(η(x)))]

≥ 1− p
t

dist(η(x),∂D)−2 ≥ 1−A
(

t

dist(η(x), ∂D)

)−ξ
(3.39)

for a possibly larger choice of A and smaller choice of ξ. Again using that fε is discrete
harmonic, we obtain (3.32) (the when case t < 2 dist(η(x), ∂D) can be dealt with by
increasing A).

Assume now that the boundary Hölder continuity condition (3.33) holds. We will
deduce (3.34) from (3.31) and (3.32). If x, y ∈ VGε(D) with dist(η(x), ∂D) ≤ (ε ∨ |η(x)−
η(y)|)1/2, then by (3.31) we get |fε(x)− fε(y)| ≤ A‖fε‖∞(ε∨ |η(x)− η(y)|)ξ/2. On the other
hand, if dist(η(x), ∂D) ≤ (ε ∨ |η(x) − η(y)|)1/2 then also dist(η(y), ∂D) ≤ 2(ε ∨ |η(x) −
η(y)|)1/2. By applying (3.32) to each of x and y and using (3.33) to estimate the boundary
terms, we get that for t > 0,

|fε(x)− fε(y)| ≤ Ctχ +A‖fε‖∞
(

t

(ε ∨ |η(x)− η(y)|)1/2

)−ξ
. (3.40)

Choosing t = (ε ∨ |η(x)− η(y)|)1/4 and combining with our earlier estimate for the case
when dist(η(x), ∂D) ≤ (ε ∨ |η(x)− η(y)|)1/2 gives (3.34).

4 Estimates for the area, diameter, and degree of a cell

The goal of this section is to prove Proposition 2.10. Throughout most of this section,
we restrict attention to the case when h is either the circle-average embedding of a
0-quantum cone or a whole-plane GFF normalized so that h1(0) = 0. Note that the
structure graph corresponding to such a choice of h is not the same as the mated-CRT

EJP 24 (2019), paper 58.
Page 32/55

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP325
http://www.imstat.org/ejp/


Harmonic functions on mated-CRT maps

map. We will transfer to the γ-quantum cone case, which corresponds to the mated-CRT
map, in Section 4.6. Throughout, we define the cell Hε

xεz
containing a fixed point z ∈ C as

in Section 1.4 and we define uε(z) as in (2.12).
Most of this section is devoted to the proof of the following variant of Proposition 2.10

for a 0-quantum cone or whole-plane GFF which does not assume any continuity condi-
tions for f or D. Proposition 2.10 (which we recall is a statement about the γ-quantum
cone) will be deduced from this proposition and an absolute continuity argument in
Section 4.6.

Proposition 4.1. Suppose we are in the setting of Section 1.4 with h equal to either the
circle-average embedding of a 0-quantum cone or a whole-plane GFF normalized so that
h1(0) = 0. For each ρ ∈ (0, 1), there are constants A = A(ρ, γ) > 0 and α = α(γ) > 0 such
that for each ε ∈ (0, 1), each bounded measurable function f : Bρ(0)→ [0,∞), and each
Borel measurable set D ⊂ Bρ(0),

P

[∫
D

f(z)uε(z) dz ≤ A
∫
D

f(z) dz + εα‖f‖∞
]
≥ 1−Oε(εα) (4.1)

at a rate depending only on ρ and γ.

The reason why we first prove the statement for the 0-quantum cone given in Propo-
sition 4.1 is as follows. For a 0-quantum cone, the origin is a “Lebesgue typical point”; in
particular, there is no log singularity. Hence, estimates for uε(0) can be transferred to
estimates for uε(z) for a deterministic point z ∈ Bρ(0) (or a point sampled uniformly from
Lebesgue measure on Bρ(0)); see Lemma 4.9. This will allow us to apply the bounds for
diam2(Hε

0)/ area(Hε
0) and deg(Hε

0) in the case of the 0-quantum cone from [26, Section 4]
to estimate the integral appearing in (4.1). At one point in the proof of Proposition 4.1
(in particular, Lemma 4.6), we will need to prove an estimate for the γ-quantum cone,
then transfer to the 0-quantum cone. The reason for this is that we want to use the
degree bound of Lemma 2.5, which is proven using the Brownian motion definition of
the mated-CRT map.

Throughout this section, for z ∈ C and r ≥ 0, we let

τz := inf{t ∈ R : η(t) = z} (4.2)

and note that τz ∈ (xεz − ε, xεz].

4.1 Outline of the proof

Here we give an outline of the content of the rest of this section.
Throughout this section, we will work with “localized” versions of diam(Hε

xεz
)2/

area(Hε
xεz

) and deg(xεz;Gε) for z ∈ C and ε > 0 which we call DAε(z), degεin(z), and
degεout(z), such that

diam(Hε
xεz

)2

area(Hε
xεz

)
≤ DAε(z), deg(xεz;Gε) ≤ 2(degεin(z) + degεout(z)), (4.3)

and, crucially, all three random variables depend locally on h and η (see Lemma 4.3).

Remark 4.2. Structure graph cells are not locally determined by h and η. Indeed, if
z ∈ C then the cell Hε

xεz
of Gε containing z is only determined locally modulo an index

shift: if we only see the behavior of h and η in an open set U containing z, then a priori
Hε
xεz

could be any segment of the form η([t− ε, t]) which contains z. There is an ε-length
interval of times t for which this is the case.

The reason why we need things to depend locally on h and η is that in Section 4.5,
we will use long-range independence estimates for SLE and the GFF to get a second
moment bound for the integral appearing in Proposition 4.1.
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The localized quantities appearing in (4.3) are defined in Section 4.2 and illustrated
in Figure 8. The quantity DAε(z) is the maximum of the ratio of square diameter to area
over all ε-length segments of η contained in η([τz − ε, τz + ε]) (one of which is equal to
Hε
xεz

). The localized degree is split into two parts: the “inner degree” degεin(z), which
counts the number of ε-length segments of η contained in the ball centered at z with
radius 4 diam(η([τz − ε, τz + ε])) (here we use the notation (4.2)); and the “outer degree”
degεout(z), which counts the number of segments of η which intersect both η([τz−ε, τz+ε])

and the boundary of this ball.
In Section 4.3, we state ε-independent moment bounds for the above three quantities

which were proven in [26].
In Section 4.4, we prove a global regularity estimate (Proposition 4.5) which bounds

the maximum over all z ∈ Bρ(0) of the localized versions of diam(Hε
xεz

) and deg(xεz;Gε).
The bound for diam(Hε

xεz
) follows from Lemma 2.7, but the bound for the localized degree

will take a bit more work since Lemma 2.6 only provides a bound for the non-localized
degree and only applies in the γ-quantum cone case.

In Section 4.5, we prove Proposition 4.1 by, roughly speaking, using the moment
bounds of Section 4.3 to bound the expectation of

∫
D
f(z)uε(z) dz and using long-range

independence results for the Gaussian free field from Appendix A.2 to show that the
variance of

∫
D
f(z)uε(z) dz decays like a positive power of ε. The fact that we use long-

range independence for the GFF is the reason why we need to replace uε(z) by a localized
version.

In Section 4.6, we deduce Proposition 2.10 from Proposition 4.1 using the fact that
sampling a point z uniformly from the γ-LQG measure on some domain and re-centering
so that z is mapped to 0 produces a field with a γ-log singularity at 0, which locally looks
like a γ-quantum cone.

4.2 Localized versions of area, diameter, and degree

Suppose we are in the setting of Section 1.4 with h equal to the circle-average
embedding of a 0-quantum cone or a γ-quantum cone, or a whole-plane GFF normalized
so that h1(0) = 0.

In this subsection we will define modified versions of the quantities diam(Hε
xεz

)2/

area(Hε
xεz

) and deg(xεz;Gε) appearing in the definition (2.12) of uε(z) which are locally
determined by h and η—in the sense of Lemma 4.3 just below—and which we will
work with throughout most of this subsection (recall from Remark 4.2 that the original
quantities are not locally determined by h and η). The definitions are illustrated in
Figure 8.

We start with the ratio of squared diameter to area. For z ∈ C, let

DAε(z) := sup

{
diam(η([s− ε, s]))2

area(η([s− ε, s]))
: s ∈ R, τz ∈ [s− ε, s]

}
, (4.4)

with τz as in (4.2). In words, DAε(z) is a.s. equal to the maximum ratio of the squared
diameter to the area over all of the segments of η with quantum mass ε which contain
z, so using DAε(z) instead of diam(Hε

xεz
)2/ area(Hε

xεz
) removes the arbitrariness coming

from the choice to define Gε using elements of εZ rather than εZ+ t for some t ∈ (0, ε).
By definition, the cell Hε

xεz
is one of these ε-length segments of η, so

diam(Hε
xεz

)2

area(Hε
xεz

)
≤ DAε(z). (4.5)

Since the degree depends on more than just the cell itself (unlike the area and the
diameter), we need a slightly more complicated definition than (4.4) to “localize” the
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Hε
xεz

z

η([τz − ε, τz + ε])

B
ε

z

Figure 8: Illustration of the definitions of the localized quantities DAε(z), degεin(z), and
degεout(z). The cell Hε

xεz
(yellow) is an ε-length segment of η contained in η([τz − ε, τz + ε])

(pink). The quantity DAε(z) is the maximum ratio of squared diameter to area over all of
these ε-length segments. The quantity degεin(z) counts the maximum possible number
of disjoint ε-length segments of η which intersect η([τz − ε, τz + ε]) and are contained in
B
ε

z (disk with red boundary). Several such segments are shown in blue. The quantity
degεout(z) counts the maximum possible number of disjoint segments of η contained in B

ε

z

with one endpoint in η([τz − ε, τz + ε]) and the other endpoint in ∂B
ε

z. Two such segments
are shown in green.

degree. Define the closed ball

B
ε

z := {w ∈ C : |z − w| ≤ 4 diam(η([τz − ε, τz + ε]))}. (4.6)

We will define two quantities whose sum provides an upper bound for deg(xεz;Gε).

• Let degεin(z) be the largest number N ∈ N with the following property: there
is a collection of N intervals {[aj , bj ]}j∈[1,N ]Z which may intersect only at their

endpoints, each of which has length bj − aj = ε, satisfies η([aj , bj ]) ⊂ B
ε

z, and is
such that η([aj , bj ]) ∩ η([τz − ε, τz + ε]) 6= ∅.

• Let degεout(z) be the largest number N ′ ∈ N with the following property: there is a
collection of N ′ intervals {[aj , bj ]}j∈[1,N ′]Z which intersect only at their endpoints

such that for each j ∈ [1, N ′]Z, η((aj , bj)) is contained in the interior of B
ε

z, one of
the endpoints η(aj) or η(bj) is contained in ∂B

ε

z, and the other endpoint is contained
in η([τz − ε, τz + ε]).

Since Hε
xεz
⊂ η([τz − ε, τz + ε]), the set of intervals [x− ε, x] for x ∈ εZ such that x ∼ xεz

in Gε and Hε
x ⊂ B

ε

z is a collection as in the definition of degεin(z), so the number of such
x is at most degεin(z). Similarly, the number of x ∈ εZ such that x is joined to xεz by an
edge in Gε and Hε

x 6⊂ B
ε

z is at most degεout(z), since for any such x the cell Hε
x contains a

different interval [aj , bj ] as in the definition of degεout(z). Since any two vertices of Gε are
connected by at most 2 edges,

deg(xεz;Gε) ≤ 2(degεin(z) + degεout(z)). (4.7)

The following lemma is our main reason for introducing the quantities DAε(z),
degεin(z), and degεout(z).
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Lemma 4.3. Let hIG be the whole-plane GFF viewed modulo 2πχIG which is used to con-
struct η in Section 2.1.3. For each open set V ⊂ C, the random variable DAε(z)1(Bεz⊂V )

is a.s. determined by h|V and hIG|V , where here B
ε

z is the ball defined in (4.6). The same
is true with DAε(z) replaced by either degεin(z) or degεout(z)

Proof. For each open set V ⊂ C, the measure µh is determined by h|V ; indeed, this
follows from the circle average construction of µh [16]. From this, Lemma 2.4, and the
definitions of DAε(z), degεin(z), and degεout(z), we obtain the statement of the lemma.

4.3 Moment bounds for localized area, diameter, and degree

The starting point of our proof is the following theorem, which follows from results
in [26, Section 4].

Theorem 4.4. Suppose h is the circle-average embedding of a 0-quantum cone and
define DAε(0), degεin(0), and degεout(0) for ε > 0 as in Section 4.2. Then for ε > 0,

E[DAε(0)p] � 1, ∀p ≥ 1 (4.8)

E[degεin(0)p] � 1, ∀p ∈ [1, 4/γ2), and (4.9)

E[degεout(0)p] � 1, ∀p ≥ 1, (4.10)

with the implicit constants depending only on p.

Proof. The bounds (4.8), (4.9), and (4.10) in the case ε = 1 follow from [26, Propositions
4.4 and 4.5]. We will now use the scaling property of the 0-quantum cone to argue
that the laws of DAε(0), degεin(0), and degεout(0) do not depend on ε. To this end, let

Rε := sup
{
r > 0 : hr(0) +Q log r = 1

γ log ε
}

, where hr(0) denotes the circle average, and

let

hε := h(Rε·) +Q logRε − 1

γ
log ε and ηε(t) := η(εt)/Rε.

By [15, Proposition 4.13(i)], hε
d
= h. By the γ-LQG coordinate change formula (2.6),

µh(X) = εµhε(X/R
ε) for each Borel set X ⊂ C, hence ηε is parameterized by γ-quantum

mass with respect to hε. From this and the scale invariance of the law of space-filling

SLEκ′4, we get (hε, ηε)
d
= (h, η). On the other hand, since the definitions of DAε(0),

degεin(0), and degεout(0) are unaffected by spatial scaling, DAε(0) is determined by (hε, ηε)

in the same manner that DA1(0) is determined by (h, η), and similarly for degεin(0) and
degεout(0). Hence the laws of these three quantities do not depend on ε and the theorem
statement follows.

4.4 Global regularity event for area, diameter, and degree

Theorem 4.4 and the translation invariance of the law of the whole-plane GFF modulo
additive constant allow us to control the quantities DAε(z), degεin(z), and degεout(z) for
one point z at a time (see Lemma 4.9), but to control various error terms in our estimates
we will also need global regularity bounds for these quantities which hold for all points
z in a fixed Euclidean ball simultaneously. One does not expect ε-independent global
bounds (since the number of cells in a fixed ball tends to∞ as ε→ 0) but the following
proposition will be sufficient for our purposes.

4This scale invariance is immediate from the construction of whole-plane space-filling SLEκ′ from [43],
as described in Section 2.1.3, and the scale invariance of the law of the whole-plane GFF modulo additive
constant.
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Proposition 4.5. Suppose we are in the setting of Section 1.4 with h equal to either
a whole-plane GFF normalized so that h1(0) = 0 or the circle-average embedding of a

0-quantum cone into (C, 0,∞). Also let ρ ∈ (0, 1), q ∈
(

0, 2
(2+γ)2

)
, and ζ ∈ (0, q/4). For

ε ∈ (0, 1), let Eε = Eε(ρ, q, ζ) be the event that the following is true.

1. For each z ∈ Bρ(0), diam(η([τz − ε, τz + ε])) ≤ εq and degεin(z) + degεout(z) ≤ ε−ζ .

2. The circle average process of h satisfies

sup
z∈Bρ(0)

|hεq−4ζ (z)| ≤ 2q log ε−1, (4.11)

and the same is true with h replaced by the whole-plane GFF hIG used to construct
η in Section 2.1.3 (when it is normalized so that hIG1 (0) = 0).

There exists α = α(γ, q, ζ) > 0 such that for ε ∈ (0, 1),

P[Eε] ≥ 1−Oε(εα)

at a rate depending only on q, ζ, ρ, and γ.

The hardest part of the proof of Proposition 4.5 is the upper bound for the localized
degree (as defined just after (4.6)) which we treat in the following two lemmas. We note
that the needed bound is not immediate from Lemma 2.6 since we are working with a
0-quantum cone rather than a γ-quantum cone and we need a bound for localized degree,
rather than un-localized degree. We first consider the inner localized degree, in which
case we get a polylogarithmic upper bound with extremely high probability thanks to
Lemma 2.6.

Lemma 4.6. Suppose we are in the setting of Proposition 4.5. For ζ ∈ (0, 1),

P

[
max

z∈Bρ(0)
degεin(z) ≤ (log ε−1)1+ζ

]
≥ 1− o∞ε (ε). (4.12)

Proof. Here we want to apply Lemma 2.6 (which is proven using the Brownian motion
definition of the mated-CRT map), so we first consider the case when h is the R-circle-
average embedding of a γ-quantum cone in (C, z0,∞) for some R > 0 and z0 ∈ C. This
means that h is normalized so thatR is the largest radius r > 0 for which hr(z0)+Q log r =

0 and h|BR(z0) agrees in law with the corresponding restriction of a whole-plane GFF
plus −γ log | · −z0|, normalized so that its circle average over ∂BR(z0) is 0. From here
until (4.15), we work in this setting and define the objects involved in Proposition 4.5
with this choice of h (note that the estimates of Section 4.3 do not apply in this setting
due to the log singularity of h at z0, but we will not need these estimates here).

By Lemma 2.6 (applied to the structure graph generated from the field h(R ·+z0) +

Q logR, which is the circle average embedding of a γ-quantum cone in (C, 0,∞), and the
SLEκ′ curve R−1η′ − z0, which is parametrized by γ-LQG mass w.r.t. this field),

P

[
max

z∈BR(z0)
deg(xεz;Gε) ≤ (log ε−1)1+ζ

]
≥ 1− o∞ε (ε). (4.13)

In fact, the proof of Lemma 2.6 shows that also

P

[
max

z∈BR(z0)
max

j∈{−1,1}
deg(xεz + jε;Gε) ≤ (log ε−1)1+ζ

]
≥ 1− o∞ε (ε), (4.14)

which is not quite implied by (4.13) since it could be that Hε
xεz+jε

does not intersect
BR(z0) if z is close to ∂BR(z0). Still assuming that h is the R-circle-average embedding
γ-quantum cone, we now transfer from (4.13) and (4.14) to an estimate for degεin(z).
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By definition, if we set N := degεin(z) then there is a collection of N intervals
{[aj , bj ]}j∈[1,N ]Z which intersect only at their endpoints, each of which has length

bj − aj = ε, satisfies η([aj , bj ]) ⊂ B
ε

z, and is such that η([aj , bj ]) ∩ η([τz − ε, τz + ε])

contains a non-trivial connected set. We have

η([τz − ε, τz + ε]) ⊂ Hε
xεz−ε ∪H

ε
xεz
∪Hε

xεz+ε
,

so for each j ∈ [1, N ]Z the segment η([aj , bj ]) intersects either Hε
xεz−ε, H

ε
xεz

, or Hε
xεz+ε

along a non-trivial boundary arc or at an interior point. Hence η([aj , bj ]) intersects the
interior of Hε

y for some y ∈ εZ such that y is either equal to or connected by an edge
in Gε to one of xεz − ε, xεz, or xεz + ε. Since the intervals [aj , bj ] intersect only at their
endpoints and each has length ε, each such vertex y can correspond to at most 2 of the
intervals [aj , bj ]. Furthermore, the total number of such vertices y is at most 3 plus the
sum of the degrees of xεz − ε, xεz, and xεz + ε in Gε. Therefore,

degεin(z) ≤ 2

1∑
j=−1

deg(xεz + jε;Gε) + 6.

By (4.13) and (4.14), the maximum of this last quantity over all z ∈ BR(z0) is at most
6(log ε−1)1+ζ + 6 except on an event of probability o∞ε (ε). Applying this estimate with a
slightly smaller value of ζ (to get rid of the 6’s) shows that in the case when h is the
R-circle average embedding of a γ-quantum cone into (C, z0,∞),

P

[
max

z∈BR(z0)
degεin(z) ≤ (log ε−1)1+ζ

]
≥ 1− o∞ε (ε). (4.15)

We now transfer to the case when h is equal to either a whole-plane GFF normalized
so that h1(0) = 0 or the circle-average embedding of a 0-quantum cone into (C, 0,∞)

using local absolute continuity. The argument will not depend on which choice of h we
are considering since the restrictions of both fields to D agree in law. Choose R > 0 and
z0 ∈ C such that D ⊂ B2R/3(z0) \BR/3(z0). Let h′ be the R-circle-average embedding of
a γ-quantum cone in (C, z0,∞). Recall that h|BR(z0) agrees in law with the corresponding
restriction of a whole-plane GFF normalized so that its circle average over ∂BR(z0) is
zero, plus −γ log | · |. The proof of [38, Proposition 3.4] therefore shows that the Radon-
Nikodym derivative of the conditional law of h|Bρ(0) with respect to the conditional law
of h′|Bρ(0) is equal to

M := E

[
exp

(
(h′, g)∇ −

1

2
(g, g)∇

) ∣∣h′|Bρ(0)] (4.16)

where (·, ·)∇ is the Dirichlet inner product (as in (2.1)) and g is a deterministic function
with finite Dirichlet energy supported on B(1+ρ)/2(0) which comes from multiplying the
log singularity of h′ by a smooth bump function supported on B(1+ρ)/2(0). Since (h′, g)∇
is Gaussian with variance (g, g)∇, the Radon-Nikodym derivative M has finite moments
of all orders.

We will now argue that the quantity maxz∈Bρ(0) degεin(z) appearing in (4.12) depends
on h in a sufficiently local manner, so we can apply the above Radon-Nikodym derivative
bound to transfer from (4.15) to (4.12). For this purpose let q ∈ (0, 2/(2 + γ)2). By
Lemma 2.7 and the definition (4.6) of B

ε

z, with α(q, γ) as in Lemma 2.7 it holds with
probability 1 − εα(q,γ)+oε(1) that B

ε

z ⊂ Bρ+εq (0) for each z ∈ Bρ(0). In particular, since
α(q, γ) → ∞ as q → 0, we can send q → 0 to get that for any fixed ρ′ ∈ (ρ, 1) it holds
with probability 1− o∞ε (ε) that B

ε

z ⊂ Bρ′(0) for each z ∈ Bρ(0). By Lemma 4.3, the event
that B

ε

z ⊂ Bρ′(0) for each z ∈ Bρ(0) is determined by (h, hIG)|Bρ′ (0) and on this event the
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quantity maxz∈Bρ(0) degεin(z) is also determined by (h, hIG)|Bρ′ (0). Hence, we can apply
the Radon-Nikodym derivative estimate of the preceding paragraph (with ρ′ in place of
ρ) along with Hölder’s inequality to deduce (4.12) from (4.15).

We next turn our attention to the outer localized degree, which we recall counts the
number of crossings of η between η([τz − ε, τz + ε]) and the boundary of the ball B

ε

z.

Lemma 4.7. Suppose we are in the setting of Proposition 4.5. There exists α = α(γ) > 0

such that for each ζ ∈ (0, 1),

P

[
sup

z∈Bρ(0)
degεout(z) > ε−ζ

]
= Oε(ε

α). (4.17)

Proof. By Lemmas 2.8 and 2.7, there exists α = α(γ) > 0 and p1 > p2 > 0 such that with
probability at least 1−Oε(εα), it holds that

εp1 ≤ diam(η([τz − ε, τz + ε])) ≤ εp2 , ∀z ∈ Bρ(0). (4.18)

By [19, Proposition 3.4 and Remark 3.9], it holds except on an event of probability o∞ε (ε)

that the following is true. For each δ ∈ (0, εp2 ] and each a, b ∈ R with a < b such that
η([a, b]) ⊂ D and diam(η([a, b]) ≥ δ, the set η([a, b]) contains a Euclidean ball of radius
at least δ1+ζ/(2p1). Let F ε be the event that this is the case and (4.18) holds, so that
P[F ε] = 1−Oε(εα).

Suppose now that F ε occurs. Let z ∈ Bρ(0) and let {[aj , bj ]}j∈[1,N ′]Z be a collection of

intervals as in the definition of degεout(z). Then each η([aj , bj ]) is contained in B
ε

z and

diam(η([aj , bj ])) ≥ diam(η([τz − ε, τz + ε])) ∈ [εp1 , εp2 ].

Therefore, η([aj , bj ]) contains a Euclidean ball of radius at least

diam(η([τz − ε, τz + ε]))
1+ζ/(2p1) ≥ εζ/2 diam(η([τz − ε, τz + ε]))

which is itself contained in B
ε

z. Since area(B
ε

z) � diam(η([τz − ε, τz + ε]))
2 and different

segments of the form η([a, b]) as above intersect only along their boundaries, by compar-
ing areas we find that degεout(z) � ε−ζ . The statement of the lemma follows from this and
our above estimate for P[F ε].

Proof of Proposition 4.5. By Lemmas 2.7, 4.6, and 4.7, condition 1 in the definition of
Eε holds except on an event of probability decaying faster than some positive power of
ε (when we apply Lemma 2.7, we note that η([τz − ε, τz + ε]) is contained in the union
of at most three of the cells Hε

x for x ∈ εZ). It follows from [41, Corollary 2.5] that the
probability that condition 2 in the definition of Eε fails to occur decays like a positive
power of ε.

4.5 Law of large numbers for integrals over structure graph cells

In this subsection we will prove Proposition 4.1. Let hIG be the whole-plane GFF
viewed used to construct η as in Section 2.1.3 (recall that IG stands for “imaginary
geometry”), and assume that hIG is normalized so its circle average over ∂D is 0.

For z ∈ C and ε ∈ (0, 1), define uε(z) as in (2.12) and define its localized analog

uε∗(z) := DAε(z)(degεin(z) + degεout(z)), (4.19)

where here DAε(z), degεin(z), and degεout are defined as in Section 4.2. We note that (4.5)
and (4.7) together imply that

uε(z) ≤ 2uε∗(z). (4.20)

The remainder of this subsection is devoted to the proof of the following proposition,
which (by (4.20)) immediately implies Proposition 4.1.
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Proposition 4.8. The statement of Proposition 4.1 is true with uε∗(z) in place of uε(z).

Fix ρ ∈ (0, 1). Also fix

q ∈
(

0,min
{

2
(2+γ)2 , γ

})
and ζ ∈ (0, q/100), (4.21)

chosen in a manner depending only on γ, and define the regularity event Eε = Eε(ρ, q, ζ)

as in Proposition 4.5 for this choice of ρ, q, and ζ. We note that the particular choice of q
and ζ satisfying (4.21) does not matter for the proof.

The idea of the proof of Proposition 4.1 is to show that (roughly speaking) the variance
of
∫
D
f(z)uε∗(z) dz on Eε decays like a positive power of ε using the local independence

result Lemma A.3; and bound the expectation of this integral on Eε using Theorem 4.4.
Since we will be using long-range independence for (h, hIG), we need to consider a

localized version of the event Eε. To this end, for z ∈ C and ε ∈ (0, 1), let F ε(z) be the
event that the following is true.

1. diam(η([τz − ε, τz + ε])) ≤ εq.

2. degεin(z) + degεout(z) ≤ ε−ζ .

3. |hεq−4ζ (z)| ∨ |hIGεq−4ζ (z)| ≤ 2q log ε−1.

By Lemma 4.3,

1F ε(z)u
ε
∗(z) is a.s. determined by (h, hIG)|B4εq (z) and (hεq−4ζ (z), hIGεq−4ζ (z)). (4.22)

We also note that by definition, ⋂
z∈Bρ(0)

F ε(z) = Eε. (4.23)

To prove Proposition 4.8, we will need moment bounds for 1F ε(z)uε∗(z) for all z ∈ Bρ(0)

(not just the moment bound when z = 0 which comes from Theorem 4.4). In fact, since
our local independence result Lemma A.3 involves the conditional law of a random
variable X given the circle average of the field, we will need a moment bound for
1F ε(z)uε∗(z) when we condition on certain circle averages of h and hIG.

Lemma 4.9. Suppose h is a whole-plane GFF with h1(0) = 0 and define the events F ε(z)
as above. There exists ε∗ = ε∗(ρ, γ) ∈ (0, 1) such that for each p ≥ 1,

E
[
1F ε(z) DAε(z)p |hεq−4ζ (z), hIGεq−4ζ (z)

]
� 1, ∀z ∈ Bρ(0), ∀ε ∈ (0, ε∗] (4.24)

and for each p ∈ (1, 4/γ2),

E
[
1F ε(z)u

ε
∗(z)

p |hεq−4ζ (z), hIGεq−4ζ (z)
]
� 1, ∀z ∈ Bρ(0), ∀ε ∈ (0, ε∗] (4.25)

with deterministic implicit constant depending only on p, ρ, and γ.

The larger range of possible values of p in (4.24) as compared to (4.25) is due to the
difference in the range of possible p values in Theorem 4.4.

Proof of Lemma 4.9. We will prove (4.25); the estimate (4.24) is proven in an identical
manner except that we only need to use (4.8) instead of all three of the estimates of
Theorem 4.4.

Fix a1, a2 ∈ [−2q log ε−1, 2q log ε−1]. To prove (4.25), we will condition on {hεq−4ζ (z) =

a1, h
IG
εq−4ζ (z) = a2}, apply an affine transformation sending Bεq−4ζ (z) to D and re-

normalize to get a new pair of fields with the same law as (h, hIG)|D, then apply The-
orem 4.4 to this new field/curve pair with ε replaced by a larger (a1-dependent) value
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determined by the γ-LQG coordinate change formula. Note that we can restrict attention
to this range of a1, a2 due to condition 3 in the definition of F ε(z).

By Lemma A.2 (applied to each of the independent fields h and hIG and with δ = εq−4ζ)
there exists ε∗ ∈ (0, 1) as in the statement of the lemma such that for ε ∈ (0, ε∗], the
conditional law of (h, hIG)|B

εq−4ζ (z) given {hεq−4ζ (z) = a1, h
IG
εq−4ζ (z) = a2} is absolutely

continuous with respect to the law of the restriction to Bεq−4ζ (z) of a pair (ha1 , hIG,a2) of
independent whole-plane GFFs normalized to have circle averages a1 and a2, respectively,
over ∂Bεq−4ζ (z). Furthermore, since a1, a2 ∈ [−2q log ε−1, 2q log ε−1], for each p > 0 the
pth moment of the Radon-Nikodym derivative Ma1,a2 of Lemma A.2 is bounded above by
a constant depending only on ρ and p.

Let Xa1,a2
be the random variable which is determined by (ha1 , hIG,a2)|B

εq−4ζ (z) in

the same manner that 1F ε(z)uε∗(z) is determined by (h, hIG)|B
εq−4ζ (z) (c.f. (4.22)). The

preceding paragraph together with Hölder’s inequality shows that for ε ∈ (0, ε∗] and
p, p′ ∈ (1, 4/γ2) with p < p′,

E
[
1F ε(z)u

ε
∗(z)

p |hεq−4ζ (z) = a1, h
IG
εq−4ζ (z) = a2

]
� E

[
Xp′

a1,a2

]p/p′
(4.26)

with the implicit constant depending only on ρ, p, and p′.
We now estimate the right side of (4.26) using Theorem 4.4. If we compose (ha1 , hIG,a2)

with an affine transformation which takes D to Bεq−4ζ (z) and subtract (a1, a2), we obtain
a new pair of fields (ĥ, ĥIG) with the same law as (h, hIG)|D. Let

ε̂ := e−γa1ε1−γQ(q−4ζ),

recall the ball B
ε

0 from (4.6), and let X̂a1,a2
be the random variable which is determined by

(ĥ, ĥIG) in the same manner that uε̂∗(0)1
B
ε̂
0⊂D

is determined by (h, hIG)|D (c.f. Lemma 4.3).

Using the γ-LQG coordinate change formula (2.6), we find that uε∗(z) (resp. ε−(q−4ζ)(B
ε

z

− z)) is determined by (ĥ, ĥIG) in the same manner that uε̂∗(0) (resp. B
ε̂

0) is determined
by (h, hIG). Since B

ε

z ⊂ Bεq−4ζ (z) on F ε(z), we infer that a.s. Xa1,a2
≤ X̂a1,a2

. Since the
h|D agrees in law with the corresponding restriction of the circle-average embedding of
a 0-quantum cone, we can apply Theorem 4.4 with ε̂ in place of ε to get

E
[
Xp′

a1,a2

]
≤ E

[
X̂p′

a1,a2

]
� 1

for each p′ ∈ (1, 4/γ2). Combining this with (4.26) concludes the proof.

Proof of Proposition 4.8. For most of the proof we consider the case of a whole-plane
GFF normalized so that h1(0) = 0; we transfer to the case of a 0-quantum cone only at
the very end.

Step 0: setup. By (4.25) of Lemma 4.9, there exists A = A(ρ, γ) > 0 and ε∗ = ε∗(ρ, γ) ∈
(0, 1) such that for z ∈ Bρ(0) and ε ∈ (0, ε∗], a.s.

E
[
1F ε(z)u

ε
∗(z) |hεq−4ζ (z), hIGεq−ζ (z)

]
≤ A. (4.27)

Let
uε∗(z) := 1F ε(z)u

ε
∗(z)− E

[
1F ε(z)u

ε
∗(z) |hεq−4ζ (z), hIGεq−4ζ (z)

]
, (4.28)

so that by (4.22), uε∗(z) is a.s. determined by (h, hIG)|B4εq (z), hεq−4ζ (z), and hIGεq−4ζ (z).
By (4.23), if Eε occurs then F ε(z) occurs for each z ∈ Bρ(0). Hence (4.27) implies that
on Eε, a.s. ∫

D

f(z)uε∗(z) dz −A
∫
D

f(z) dz ≤
∫
D

f(z)uε∗(z) dz. (4.29)
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We will now show that the right side of (4.29) is unlikely to be larger than a positive
power of ε by showing that its second moment is small on Eε.

We have

E

[
1Eε

(∫
D

f(z)uε∗(z) dz

)2
]

=

∫
D

∫
D

f(z)f(w)E[1Eεu
ε
∗(z)u

ε
∗(w)] dz dw

=

2∑
i=1

∫∫
W ε
i

f(z)f(w)E[1Eεu
ε
∗(z)u

ε
∗(w)] dz dw (4.30)

where

W ε
1 :=

{
(z, w) ∈ D ×D : |z − w| ≤ 2εq−4ζ

}
and W ε

2 := (D ×D) \W ε
1 . (4.31)

We will bound the integrals over W ε
1 and W ε

2 separately.

Step 1: the integral over W ε
1 . Let z, w ∈ Bρ(0). Using the definition (4.28) of U

ε

∗(z), we
make the following calculation, each line of which we justify just below.

E[1Eεu
ε
∗(z)u

ε
∗(w)]

≤ E[1Eεu
ε
∗(z)u

ε
∗(w)]

+ E

[
E
[
1F ε(z)u

ε
∗(z) |hεq−4ζ (z), hIGεq−4ζ (z)

]
E
[
1F ε(w)u

ε
∗(w) |hεq−4ζ (w), hIGεq−4ζ (w)

]]
≤ E[1Eεu

ε
∗(z)u

ε
∗(w)] +A2

≤ ε−2ζE[1Eε DAε(z) DAε(w)] +A2. (4.32)

The first inequality in (4.32) comes from expanding and dropping the negative terms.
The second inequality comes from (4.27). The last inequality comes from the fact that
degεin(z) + degεout(z) ≤ ε−ζ for all z ∈ Bρ(0) on Eε.

By taking an unconditional expectation in (4.24) of Lemma 4.9 and recalling that
F ε(z) ⊃ Eε, we find that for small enough values of ε > 0, for each p > 0 the pth moment
of 1Eε DAε(z) is bounded above by a constant depending only on p, ρ, and γ for z ∈ Bρ(0).
Using this and the Cauchy-Scwarz inequality to bound the last line of (4.32), we get

E[1Eεu
ε
∗(z)u

ε
∗(w)] � ε−2ζ +A2 � ε−2ζ , (4.33)

with the implicit constant depending only on p, ρ, and γ.
Using (4.33) and the definition (4.31) of W ε

1 , we now get∫∫
W ε

1

f(z)f(w)E[1Eεu
ε
∗(z)u

ε
∗(w)] dz dw �

∫∫
W ε

1

f(z)f(w)ε−2ζ dz dw

� ε−2ζ‖f‖2∞Vol(W ε
1 )

� ε2q−10ζ‖f‖2∞ area(D). (4.34)

Note that 2q − 10ζ > 0 by our choice of ζ from (4.21).

Step 2: the integral over W ε
2 . We now consider the integral over the off-diagonal

region W ε
2 . Here we need to use local independence. Recall that uε∗(z) for z ∈ Bρ(0)

is a.s. determined by (h, hIG)|B4εq (z), hεq−4ζ (z), and hIGεq−4ζ (z). Furthermore, by (4.28)
we have E

[
uε∗(z) |hεq−4ζ (z), hIGεq−4ζ (z)

]
= 0. Lemma A.3 (applied with δ = 4ε4ζ , s = 1/2,

and X = uε∗(z)) together with the invariance of the law of the whole-plane GFF under
translation and scaling, modulo additive constant, shows that for 1 < p < p′ < 4/γ2,
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there exists b = b(p, p′) > 0 such that for small enough ε > 0 (how small depends only on
p, p′, and ζ),

E
[∣∣∣E[uε∗(z) | (h, hIG)|C\B

εq−4ζ (z)

]∣∣∣p] � ε2pζE[|uε∗(z)|p] + e−bε
−2ζ

E
[
|uε∗(z)|p

′
]

(4.35)

with implicit constant depending only on γ provided we choose p and p′ in a manner
which depends only on γ. By taking the unconditional expectation of both sides of (4.25)
from Lemma 4.9, we find that the right side of (4.35) is bounded above by a constant
(depending only on ρ and γ) times ε2pζ .

For (z, w) ∈ W ε
2 , we have |z − w| > 2εq−4ζ . The random variable uε∗(w) is a.s. de-

termined by (h, hIG)|C\B
εq−4ζ (z), so by Lemma 4.9, for each pair (z, w) ∈ W ε

2 and each
p ∈ (1, 4/γ2),

E[1Eεu
ε
∗(z)u

ε
∗(w)]

= E
[
E
[
uε∗(z) | (h, hIG)|C\B

εq−4ζ (z)

]
uε∗(w)

]
� E

[∣∣∣E[uε∗(z) | (h, hIG)|C\B
εq−4ζ (z)

]∣∣∣p]1/pE[uε∗(w)
p

1−p 1F ε(w)

]1−1/p
(by Hölder)

� ε2ζE
[
uε∗(w)

p
1−p 1F ε(w)

]1−1/p
(by (4.35))

� εζE
[
DAε(w)

p
1−p 1F ε(w)

]1−1/p
(by condition 2 in the definition of F ε(w))

� εζ (by (4.24)), (4.36)

with implicit constant depending only on ρ and γ provided we choose p and p′ in a manner
which depends only on γ. Hence∫∫

W ε
2

f(z)f(w)E[1Eεu
ε
∗(z)u

ε
∗(w)] dz dw � εζ‖f‖2∞ area(D)2. (4.37)

Step 3: conclusion. By plugging the estimates (4.34) and (4.37) into (4.30), we get

E

[
1Eε

(∫
D

f(z)uε∗(z) dz

)2
]
� εα0‖f‖2∞ area(D) � εα0‖f‖2∞ (4.38)

where α0 = α0(γ) = (2q − 10ζ) ∧ ζ (recall that we have chosen q and ζ depending on γ

above). By applying (4.38) and the Chebyshev inequality to bound the right side of (4.29),
we obtain

P

[
1Eε

∫
D

f(z)uε∗(z) dz > A

∫
D

f(z) dz + εα0/4‖f‖∞
]
� εα0/2.

Since P[(Eε)c] decays like a positive power of ε (Proposition 4.5) we obtain (4.1) in the
case of a whole-plane GFF.

The case of a 0-quantum cone follows from the case of a whole-plane GFF and the
fact that the restrictions of a 0-quantum cone and a whole-plane GFF to D agree in law
together with Lemma 4.3 and Lemma 2.7 (the latter is used to make sure the balls B

ε

z

for z ∈ Bρ(0) are contained in D with high probability).

4.6 Proof of Proposition 2.10

Proposition 4.1 gives an analog of Proposition 2.10 in the case of the whole-plane
GFF or the 0-quantum cone. In this subsection we will transfer from the case of the
whole-plane GFF to the case of the γ-quantum cone. In fact, it will be convenient to work
with quantities which are locally determined by the field, so we will actually transfer
Proposition 4.8 instead of Proposition 4.1.
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Proposition 4.10. In the case when h is the circle-average embedding of a γ-quantum
cone into (C, 0,∞), the statement of Proposition 2.10 is true with uε∗(z), defined as
in (4.19), in place of uε(z).

We will deduce Proposition 4.10 from Proposition 4.8 and the following basic fact
about the γ-LQG measure: if h0 is a whole-plane GFF and we sample z uniformly from
Lebesgue measure on D, independently from everything else, and set h1 = h1 − γ log | ·
−z|+γ log max(| · |, 1), then the laws of h0 and h1 are mutually absolutely continuous, with
an explicit Radon-Nikodym derivative (see, e.g., [15, Lemma A.10]). Roughly speaking,
the reason for this is that h0 a.s. has a γ-log singularity at a point sampled uniformly
from its γ-LQG measure.

The field h1(· − z) is close to a γ-quantum cone on a neighborhood of 0 (modulo
normalization), so we can transfer statements about a whole-plane GFF to statements
about a γ-quantum cone. The details of the proof will involve several steps in which we
control the Radon-Nikodym derivatives between the laws of successive fields.

Fix q ∈
(

0, 2
(2+γ)2

)
, chosen in a manner depending only on γ. For a given random

distribution h on C, let uε∗(z) for z ∈ C be defined as in (4.19). For ρ ∈ (0, 1], define the
regularity event

Eε0(ρ) := {diam(η([τz − ε, τz + ε]) ≤ εq, ∀x ∈ VGε(Bρ(0))}. (4.39)

For α > 0, A > 0 and a bounded measurable function f : Bρ(0)→ [0,∞), also define

Gεf (h; ρ) = Gεf (h; ρ,A, α, q) := Eε0(ρ) ∩

{∫
Bρ(0)

f(z)uε∗(z) dz ≤ A
∫
Bρ(0)

f(z) dz + εα‖f‖∞

}
.

We observe that Gεf (h) is a.s. determined by h|Bρ+4εq (0) and the imaginary geometry field

hIG. We will prove the following statement for several different choices of h.

There exists α = α(γ) > 0 and A = A(ρ, γ) > 0 such that for each bounded

measurable function f : Bρ(0)→ [0,∞), we have P[Gεf (h; ρ)] ≥ 1−Oε(εα),

at a rate depending only on ρ and γ. (4.40)

Case 0. Let h0 be a whole-plane GFF normalized so that the circle average h01(0) is 0. By
Lemma 2.7 and Proposition 4.8, we know that (4.40) is true with h = h0.

Case 1. Let z be sampled uniformly from Lebesgue measure on D, independently from
everything else, and define the field

h1 := h0 − γ log | · −z|+ γ log max(| · |, 1).

By [15, Lemma A.10], the law of h1 is the same as the law of h0 weighted by µh0(D)/

E[µh0(D)]. Since µh0(D) has a finite pth moment for some p > 1 [47, Theorem 2.11] and
by Hölder’s inequality, (4.40) for h = h1 and any ρ ∈ (0, 1) follows from (4.40) for h = h0

(note that here the value of α corresponding to h1 is equal to 1− 1/p times the value of α
corresponding to h1).

In fact, for small enough ξ = ξ(γ) > 0, we have P[z ∈ Bεξ(0)] � εα/2 with universal
implicit constant (where here the value of α is the one corresponding to h1). Hence, (4.40)
also holds with h sampled from the conditional law of h1 given {z ∈ Bεξ(0)}. Henceforth
fix such a value of ξ; in what follows we will frequently condition on {z ∈ Bεξ(0)}.

Case 2. We next establish (4.40) for ρ ∈ (0, 1) and h replaced by the field

h2 := h1 − γ log max(| · |, 1) = h0 − γ log | · −z|.
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Indeed, since γ log max(| · |, 1) is identically equal to 0 on D, this case is immediate from
the preceding one. In fact, by the last paragraph of the preceding case we get that (4.40)
is satisfied with h sampled from the conditional law of h2 given {z ∈ Bεξ(0)}, for any
ρ ∈ (0, 1).

Case 3. We next consider a value of ρ ∈ (0, 1/2) and the field

h3 := h2 − h21/2(z) = h0 − γ log | · −z| − h01/2(z) + γ log(1/2),

i.e., h2 with the additive constant chosen so that h21/2(z) = 0.

For ε > 0 and i ∈ {2, 3}, let ui,ε∗ (·) be as in (4.19) with h = hi. Then for each z ∈ C,

u3,Sε∗ (z) = u2,ε∗ (z) for S := eγh
2
1/2(z). (4.41)

We can bound integrals against u2,ε∗ by case 2, so we need to convert from integrals
against u3,ε∗ to integrals against u3,Sε∗ . To this end, we will compare the unconditional
law of h3|B1/2(z) given only z to its conditional law given z and a. By Lemma A.2 (applied
with δ = 1/2, w = z, and h = h0), for a ∈ R and z ∈ Bεξ(0), the conditional law of
h3|B1/2(z) given {h21/2(z) = a} ∩ {z = z} is mutually absolutely continuous with respect to

the unconditional law of h3|B1/2(z) given only {z = z}. Furthermore, for p > 1 there exists
rp > 0 (depending only on p and ρ) such that for small enough ε > 0, the −pth moment of
the Radon-Nikodym derivative Ma,z is bounded above by a constant depending only on
p provided a ∈ [−rp, rp] (which happens with uniformly positive probability). For each
ρ ∈ (0, 1/2), we have Bρ(0) ⊂ B1/2(z) for small enough ε. Consequently, for each such ρ
and each a ∈ [−rp, rp],

P
[
Gεf (h3; ρ)c | z = z

]
� P

[
Gεf (h3; ρ)c | z = z, h1/2(z) = a

]
(by Hölder)

� P
[
Ge
−γaε
f (h2; ρ)c | z = z, h1/2(z) = a

]
(by (4.41)).

We now integrate both sides of this inequality over Bεξ(0) with respect to the law of z
and over [−rp, rp] with respect to the law of h1/2(z). The right side is at most Oε(εα) for
appropriate α = α(γ) since we know that P[h1/2(z) ∈ [−rp, rp]] � 1 and by (4.40) in the
case when h is sampled from the conditional law h2 given {z ∈ Bεξ(0)}, but with eγaε in
place of ε. We thus obtain (4.40) in the case when h is sampled from the conditional law
of h3 given {z ∈ Bεξ(0)} and ρ ∈ (0, 1/2).

Case 4. We next consider the field

h4 := h3
(

1

2
·+z

)
,

which has the law of a whole-plane GFF plus −γ log | · |, normalized so that its circle
average over ∂D is 0 (even if we condition on z). Fix ρ ∈ (0, 1). If we define u3,ε∗ (·) and
u4,ε∗ (·) as in (4.19) with h = h3 and h = h4, respectively, then by the γ-LQG coordinate

change formula u3,ε∗ (·) = u4,2
−γQε

∗ (2(· + z)). Hence for a bounded measurable function
f : Bρ(0)→ [0,∞),∫

D

f(z)u4,ε∗ (z) dz =
1

2

∫
Dz

f(2(w + z))u3,cε∗ (w) dw for Dz =
1

2
D + z and c = 2−γQ.

(4.42)
This does not immediately imply (4.40) for h = h4 since f(2(w + z)) is not deterministic
(it depends on z). To get around this difficulty, we will compare f(2(w + z)) to f(2w). For
this purpose we need to impose the continuity assumptions on f and D appearing in
Proposition 2.10.
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Fix β ∈ (0, ξ) and C > 0 and assume that D is such that area(Br(∂D)) ≤ Cr for each
r > 0 and f : D → [0,∞) is Cε−β-Lipschitz and bounded above by Cε−β . We also extend
f to be identically equal to Cε−β outside of D. Then if z ∈ Bεξ(0) and w ∈ Dz \Bεξ(∂Dz),

|f(2(w + z))− f(2w)| ≤ 2Cε−β+ξ

Consequently,∫
Dz

f(2(w + z))u3,cε∗ (z) dz

≤
∫
(1/2+εξ)D

(
f(2w) + 2Cε−β+ξ

)
u3,cε∗ (w) dw + Cε−β

∫
B

2εξ
(∂D)

u3,cε∗ (w) dw. (4.43)

Note that the second term comes from the integral over Dz ∩ Bεξ(∂Dz). By (4.40) in
the case when h is sampled from the conditional law of h3 given {z ∈ Bεξ(0)} (applied
with ρ/2 in place of ρ and to each of the function/domain pairs (f(2·), (1/2 + εξ)D),
(1, (1/2 + εξ)D), and (1, B2εξ(∂D)), there exists α0 = α0(γ) > 0 and A0 = A0(ρ, γ) > 0

such that with probability at least 1−Oε(εα0), the event in (4.39) holds with h = h3 and
the right side of (4.43) is at most

A0

∫
1
2D

f(2w) dw +A0Cε
−β+ξ + CA0ε

−β area
(
B2εξ

(
1
2∂D

))
+ εα0‖f‖∞. (4.44)

Note that here we bound the integral of f over (1/2+εξ)D\ 1
2D by Cε−β area

(
B2εξ

(
1
2∂D

))
.

By assumption, ‖f‖∞ ≤ Cε−β and area
(
B2εξ

(
1
2∂D

))
≤ Oε(εξ), so (if we take β < α0) then

the sum of the last three terms on right side of (4.44) is bounded above by Oε(εα) for an
appropriate α = α(γ) > 0. From this, (4.42), and (4.43), we infer that the conclusion of
Proposition 2.10 is true with h4 in place of h.

Proofs of Propositions 4.10 and 2.10. If h is the circle-average embedding of a γ-quantum

cone in (C, 0,∞), then h4|D
d
= h|D. Furthermore, by Lemma 4.3, uε∗(z) is a.s. determined

by hIG and h|B4εq (z) on the event {diam(Hε
xεz
≤ εq}. From this, we infer (4.40) with this

choice of h and any ρ ∈ (0, 1), and hence Proposition 4.10, from (4.40) with h4 in place of
h.

Proposition 2.10 is an immediate consequence of Proposition 4.10 and (4.20).

A Estimates for the GFF

In this appendix, we record several facts about various types of Gaussian free field
which are needed in the proofs of our main results. Many of these lemmas state that
certain GFF-type distributions are absolutely continuous with respect to one another,
often with quantitative bounds for the Radon-Nikodym derivatives. The results of this
appendix are technical in nature and their proofs do not rely on any other results from
the paper (actually, we use only standard formulas for the GFF), so we collect them here
to avoid interrupting the flow of the main argument.

A.1 Conditioning on the average over a large circle

In this subsection, we record a lemma which makes the following intuitively obvious
statement precise. If h is a whole-plane GFF normalized so that h1(0) = 0, then condi-
tioning on the circle-average of h over a large circle ∂BR(w) which surrounds D does
not have a large effect on the conditional law of its restriction to D. The main point of
the lemma is that the circle ∂BR(w) is not required to be centered at 0, even though
we normalize the field so that its circle average over ∂D is 0. In the case when w = 0,
conditioning on hR(w) has no effect on h|D since t 7→ he−t(0) evolves as a standard linear
Brownian motion [16, Proposition 3.3].
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Lemma A.1. Let h be a whole-plane GFF normalized so that h1(0) = 0. Also fix ρ ∈ (0, 1)

and let R ≥ (1 − ρ)−1 and w ∈ C be such that |w| ≤ ρR, so that D ⊂ BR(w). For a ∈ R,
the conditional law of h|D given {hR(w) = a} is absolutely continuous with respect to the
unconditional law of h|D. Furthermore, for each p0 > 0 there are constants R∗ ≥ (1−ρ)−1

and c > 0 depending only on p0 and ρ such that for each p ∈ [−p0,∞) and R ≥ R∗, the
Radon-Nikodym derivative Ma satisfies

E[Mp
a ] � exp

(
c|p|a2|w|2

R4(logR)2

)
, (A.1)

with the implicit constant depending only on ρ and p.

Proof. Since t 7→ he−t(0) evolves as a standard linear Brownian motion [16, Proposi-
tion 3.3], the statement of the lemma in the case w = 0 is immediate. Henceforth assume
w 6= 0. We will compute the conditional law of hR(w) given h|D and apply Bayes’ rule.

By Lemma 2.2, we can write h|C\D = h + h̊, where h is a random harmonic function

on C \ D which is determined by h|D and h̊ is a zero-boundary GFF on C \ D which is
independent from h|D. The image of the circle BR(w) under the inversion map z 7→ 1/z

is the circle of radius 1/R̃ and center w̃, where

R̃ :=
R2 − |w|2

R
and w̃ := − w

R2 − |w|2
(A.2)

Note that R̃ ∈ [(1− ρ2)R,R] and |w̃| ≤ ρ(1− ρ2)−1R−1.

By applying [16, Proposition 3.2] to the inverted GFF h(1/·), we see that h̊R(w) is
centered Gaussian with variance log R̃ + log(1 − |w̃|2). Hence the conditional law of
hR(w) given h|D is Gaussian with mean equal to the circle average hR(w) and variance
log R̃+ log(1− |w̃|2).

Furthermore, h(1/·) is the harmonic part of h(1/·)|D, so by the mean value property
of harmonic functions, hR(w) = h(1/w̃). By [38, Lemma 6.4] applied to h(1/·), we infer
that hR(w) is centered Gaussian with variance log((1 − |w̃|2)−1) � 1. Since hR(w) =

hR(w) + h0R(w) and the two summands are independent, it follows that the marginal law
of hR(w) is Gaussian with mean log R̃.

By combining the above descriptions of the laws of hR(w) and h̊R(w) and applying
Bayes’ rule for conditional densities, we get the absolute continuity in the statement of
the lemma with Radon-Nikodym derivative

Ma =

√
log R̃√

log R̃+ log(1− |w̃|2)
exp

(
a2

2 log R̃
− (a− hR(w))2

2(log R̃+ log(1− |w̃|2))

)

� exp

(
a2

2 log R̃
− (a− hR(w))2

2(log R̃+ log(1− |w̃|2))

)
.

We now estimate the moments of Ma. Integrating against the law of hR(w) and
evaluating a Gaussian integral shows that if p ∈ R is such that

1

log((1− |w̃|2)−1)
+

p

log R̃+ log(1− |w̃|2)
> 0, (A.3)
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then

E[Mp
a ] �

exp

(
a2p

2 log R̃
− a2p

2(log R̃+log(1−|w̃|2)−p log(1−|w̃|2))

)
√

log((1− |w̃|2)−1)
√

1
log((1−|w̃|2)−1) + p

log R̃+log(1−|w̃|2)

� exp

(
a2p

2

(
(p− 1) log((1− |w̃|2)−1)

log R̃(log R̃+ (p− 1) log((1− |w̃|2)−1))

))
, (A.4)

where in the second proportionality we use that log((1− |w̃|2)−1) � 1.

By (A.2), log((1− |w̃|2)−1) � |w̃|2 � |w|2/R4. Moreover, if we are given p0 > 0 and R
is sufficiently large, depending only on ρ and p0, then for each p ≥ −p0 the relation (A.3)
holds and in fact log R̃ + (p − 1) log((1 − |w̃|2)−1) � logR, with the implicit constant
depending only on ρ. Plugging these two estimates into (A.4) shows that (A.1) holds for
p ≥ −p0.

By translating and scaling, we deduce from Lemma A.2 an estimate for a whole-plane
GFF normalized so that h1(0) = 0.

Lemma A.2. Let h be a whole-plane GFF normalized so that its circle average over ∂D
is 0. Also let ρ ∈ (0, 1] and δ ∈ (0, 1− ρ). For a ∈ R and z ∈ Bρ(0), the conditional law of
h|Bδ(z) given {hδ(z) = a} is absolutely continuous with respect to the law of a whole-plane
GFF in Bδ(z) normalized so that its circle average over ∂Bδ(z) is a. Furthermore, for
each p0 > 0 there are constants c > 0 and δ∗ ∈ (0, ρ2], depending only on ρ and p0, such
that for each p ∈ [−p0,∞) and each δ ∈ (0, δ∗] the Radon-Nikodym derivative Ma satisfies

E[Mp
a ] � exp

(
c|p|δ2a2|z|2

(log δ−1)2

)
(A.5)

with the implicit constant depending only on ρ and p.

Proof. Let hz,δ := h(δ ·+z)−hδ(z). Then hz,δ has the law of a whole-plane GFF normalized
so that its circle average over ∂D is 0 and hδ(z) = −hz,δδ−1(−δ−1z). The conditional law of
h|Bδ(z) given {hδ(z) = a} is the same as the conditional law of hz,δ(δ−1(· − z)) + a given

{hz,δδ−1(−δ−1z) = −a}. The statement of the lemma therefore follows from the invariance
of the law of the whole-plane GFF under complex affine transformations, modulo additive
constant, together with Lemma A.1 applied with R = δ−1 and w = −δ−1z.

A.2 Long-range independence

The goal of this subsection is to prove the following lemma, which tells us that
(roughly speaking) for a whole-plane GFF h and a small δ ∈ (0, 1), the only information
we need about h|C\D to determine most of the information about h|Bδ(0) is the circle
average h1(0). We will eventually need to apply the analogous fact for a pair of GFFs,
namely an embedding of a γ-quantum cone together with the independent whole-plane
GFF used to generate an independent whole-plane space-filling SLEκ′ as in Section 2.1.3.
So, we state the lemma for an N -tuple of independent whole-plane GFFs rather than a
single GFF.

Lemma A.3. Let N ∈ N and let BR(w) be a ball which contains D. Let h = (h1, . . . , hN )

be an N -tuple of i.i.d. whole-plane GFFs, each normalized so that its circle average
over ∂BR(w) is 0. For z ∈ C and r > 0, let hr(z) := (h1r(z), . . . , h

N
r (z)) be the N -tuple

of radius-r circle averages at z. For p′ > p > 1 and s ∈ (0, 1), there is are constants
a = a(p, p′, N) > 0 and b = b(p, p′, s,N) > 0 (which do not depend on w,R) such that for
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δ ∈ (0, a], the following is true. Let X be a random variable which is a.s. determined by
h|Bδ(0) and h1(0). Then

E

[∣∣∣∣E[X |h|C\D]− E[X |h1(0)]

∣∣∣∣p] � δspE[|X|p] + e−b/δ
1−s
E
[
|X|p

′
]p/p′

(A.6)

with implicit constant depending only on p, p′, s, and N .

The reason why we normalize the fields in Lemma A.3 so that their circle averages
over ∂BR(w) are 0 is because ∂BR(w) is disjoint from D, so we can apply the last
assertion of Lemma 2.2 (with h(R · +w) in place of h). The proof of Lemma 2.2, and
hence also the proof of Lemma A.3, works verbatim if we replace the circle average
over ∂BR(w) by, e.g., the distributional pairing (h, ψ) for some fixed test function ψ

which is supported on h|C\D and whose inverse Laplacian has finite Dirichlet energy (the
constants a and b and the implicit constants in (A.6) do not depend on ψ).

To prove Lemma A.3, we will bound for a whole-plane GFF h the Radon-Nikodym
derivative of the conditional law of h|Bδ(0) given h|C\D with respect to its conditional law
given only h1(0). For this purpose we need the following estimate for the harmonic part
of h|D.

Lemma A.4. Let h be a whole-plane GFF normalized (with any choice of additive
constant) and let h be the harmonic part of h|D as defined just after Lemma 2.1. There is
a universal constant a0 > 0 such that for δ ∈ (0, 1/4),

E

[
sup

z∈Bδ(0)
exp
(a0
δ2

(h(z)− h(0))2
)]
� 1

with universal implicit constant.

Proof. By the mean value property of harmonic functions,

sup
z∈Bδ(0)

|h(z)− h(0)| � 1

δ2

∫
B2δ(0)

|h(z)− h(0)| dz,

with universal implicit constant. By combining this with Jensen’s inequality, applied to
the convex function x 7→ ea0x

2

, we find that for a0 > 0,

sup
z∈Bδ(0)

exp
(a0
δ2

(h(z)− h(0))2
)
� 1

δ2

∫
B2δ(0)

exp

(
4πa0
δ2

(h(z)− h(0))2
)
dz

with universal implicit constant. By [38, Lemma 6.4], for z ∈ Bδ(0) the random variable

h(z)− h(0) is centered Gaussian with variance − log
(

1− |z|2
)

. This variance is bounded

above by a universal constant times δ2 for z ∈ Bδ(0). Hence for a small enough universal
choice of a0 > 0,

E

[
1

δ2

∫
B2δ(0)

exp

(
4πa0
δ2

(h(z)− h(0))2
)
dz

]
� 1.

The following Radon-Nikodym derivative estimate, which compares the conditional
law of h|Bδ(0) given h|C\D to its conditional law given only h1(0), is the key input in the
proof of Lemma A.3. In the statement, we will actually compare the conditional law of
h|Bδ(0) given h|C\D to the conditional law of h|Bδ(0) given h1(0), where here h is another
field coupled with h in such a way that h1(0) = h1(0); we find that this makes our moment
estimate for the Radon-Nikodym derivative more clear.
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Lemma A.5. Fix R > 1 and w ∈ C such that D ⊂ BR(w). Let h and h be whole-plane
GFFs, normalized so that their circle averages over ∂BR(w) are 0, coupled together
so that the circle averages h1(0) and h1(0) agree and h and h are conditionally inde-
pendent given these circle averages (note that the circle averages of our GFFs over
both ∂BR(w) and ∂D agree). For δ ∈ (0, 1), the conditional law of h|Bδ(0) given h|C\D is
a.s. absolutely continuous with respect to the conditional law of h|Bδ(0) given h1(0). Let
Mδ = Mδ

(
h|C\D, h|Bδ(0)

)
be the Radon-Nikodym derivative. There is a universal constant

a ∈ (0, 1) such that for δ ∈ (0, a],

E
[
M

a/δ
δ

]
� 1 and E

[
M
−a/δ
δ

]
� 1 (A.7)

with universal implicit constants.

Proof. Since ∂BR(w)∩D = ∅, by Lemma 2.2 (applied with h(R ·+w) in place of h) we can
write h|D = h + h̊, where h is a random harmonic function on D which is determined by
h|C\D and h̊ is a zero-boundary GFF on D which is independent from h|C\D. Decompose

h|D = h + h̊ analogously. By our choice of coupling, h(0) = h(0) = h1(0) = h1(0).

Furthermore, conditional on (h, h)|C\D (which a.s. determines h and h) the fields h̊ and h̊
are conditionally independent zero-boundary GFFs on D.

Let φ1 be a deterministic smooth bump function taking values in [0, 1] which equals 1
on B1(0) and 0 on C \B2(0). Let φδ(z) := φ1(z/δ), so that φ is supported on B2δ(0) and is
identically equal to 1 on Bδ(0). Also let gδ := (h−h)φδ. If we condition on (h, h)|C\D, then
the proof of [38, Proposition 3.4] shows that the conditional laws of h|Bδ(0) and h|Bδ(0)
are mutually absolutely continuous, and the Radon-Nikodym derivative of the former
with respect to the latter is given by

E

[
exp

(
(h, gδ)∇ −

1

2
(gδ, gδ)∇

)
| h, h, h|Bδ(0)

]
where (·, ·)∇ denotes the Dirichlet inner product. Averaging over the possible realizations
of h shows that the Radon-Nikodym derivative of the conditional law of h|Bδ(0) given
h|C\D with respect to the conditional law of h|Bδ(0) given h|C\D is equal to

Mδ = E

[
exp

(
(h, gδ)∇ −

1

2
(gδ, gδ)∇

)
| h, h|Bδ(0)

]
.

Note that Mδ is also the Radon-Nikodym derivative of the conditional law of h|Bδ(0) given
h|C\D with respect to the conditional law of h|Bδ(0) given h1(0) since h|C\D determines
h1(0) = h1(0) and h is conditionally independent from h given h1(0).

We now estimate Mδ. By Jensen’s inequality, for δ ∈ (0, a],

M
a/δ
δ ≤ E

[
exp
(a
δ

(h, gδ)∇ −
a

2δ
(gδ, gδ)∇

)
| h, h|Bδ(0)

]
so

E
[
M

a/δ
δ

]
≤ E

[
exp
(a
δ

(h, gδ)∇ −
a

2δ
(gδ, gδ)∇

)]
. (A.8)

If we condition on h and h, the conditional law of (h, gδ)∇ is centered Gaussian with
variance (gδ, gδ)∇ (note that (h, gδ)∇ = 0 since h is harmonic in D and gδ is compactly
supported in D). Hence, by first taking the conditional expectation given h and h,

E
[
exp
(a
δ

(h, gδ)∇ −
a

2δ
(gδ, gδ)∇

)]
= E

[
exp

((
a2

2δ2
− a

2δ

)
(gδ, gδ)∇

)]
≤ E

[
exp

(
a2

2δ2
(gδ, gδ)∇

)]
. (A.9)
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By integration by parts,

(gδ, gδ)∇ =

∫
D

(
1

2
∆(φ2δ)(z)− φδ(z)∆φδ(z)

)
(h(z)− h(z))2 dz. (A.10)

Since φ1 is smooth and supported on B2δ(0), the function 1
2∆(φ2δ) − φδ∆φδ is bounded

above by a constant c0 (depending only on φ1) times δ−2 and is supported on B2δ(0). By
combining this with (A.8), (A.9), and (A.10), we get

E
[
M

a/δ
δ

]
≤ E

[
exp

(
c0a

2

2δ4

∫
B2δ(w)

(h(z)− h(z))2 dz

)]

≤ E

[
sup

z∈B2δ(0)

exp

(
2πc0a

2

δ2
(h(z)− h(z))2

)]
. (A.11)

The random functions h− h1(0) and h− h1(0) are i.i.d. and centered Gaussian so h− h
d
=√

2(h− h1(0)). Hence the first estimate in (A.7) for a small enough universal choice of
a > 0 follows from Lemma A.4. We similarly obtain the second estimate in (A.7).

Proof of Lemma A.3. By considering the positive and negative parts X1(X≥0) and
X1(X≤0) separately, we can assume without loss of generality that X is non-negative.
We make this assumption throughout the proof.

In order to apply Lemma A.5, we let h = (h
1
, . . . , h

N
) be another N -tuple of inde-

pendent GFFs with the same law as h, coupled together with h in such a way that
h1(0) = h1(0) and h and h are conditionally independent given this circle average. Let
X = X(h|Bδ(0),h1(0)) be determined by h|Bδ(0) and h1(0) in the same manner that X is
determined by h|Bδ(0) and h1(0).

For k ∈ [1, N ]Z, let Mk
δ = Mk

δ (hk|C\D, h
k|Bδ(0)) be the Radon-Nikodym derivative of

the conditional law of hk|Bδ(0) given hk|C\D with respect to the law of h
k|Bδ(0), as in

Lemma A.5. Then the Mk
δ ’s are independent and

Mδ :=

N∏
k=1

Mk
δ (A.12)

is the Radon-Nikodym derivative of the conditional law of h|Bδ(0) given h|C\D w.r.t. the
conditional law of h|Bδ(0) given h1(0) (equivalently, by conditional independence, w.r.t.
the conditional law of hBδ(0) given h|C\D). Hence

E
[
X |h|C\D

]
= E

[
MδX |h|C\D

]
≤ (1 + δs)E

[
X1(Mδ≤1+δs) |h|C\D

]
+ E

[
MδX1(Mδ>1+δs) |h|C\D

]
≤ (1 + δs)E[X |h1(0)] + E

[
MδX1(Mδ>1+δs) |h|C\D

]
(A.13)

where in the last line we use that the conditional law of X given h|C\D is the same as the
conditional law of X given h1(0) (by our choice of coupling). Similarly,

E
[
X |h|C\D

]
≥ (1− δs)E

[
X1(Mδ≥1−δs) |h|C\D

]
≥ (1− δs)E[X |h1(0)]− E

[
X1(Mδ<1−δs) |h|C\D

]
. (A.14)

By (A.13), (A.14), and Jensen’s inequality,

E
[∣∣E[X |h|C\D]− E[X |h1(0)]

∣∣p] � δspE[Xp] +E
[
Mp

δX
p
1(Mδ>1+δs)

]
+E

[
X
p
1(Mδ<1−δs)

]
,

(A.15)
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with implicit constant depending only on p.

By Lemma A.5, there is a universal constant a′ > 0 such that for each δ ∈ (0, a′] and
each k ∈ [1, N ]Z, we have E[(Mk

δ )a
′/δ] � 1, with a universal implicit constant. By this and

the Chebyshev inequality,

P[Mδ > 1 + δs] ≤
N∑
k=1

P
[
Mk
δ > (1 + δs)1/N

]
� (1 + δs)−a

′/(Nδ) � e−b
′s/δ1−s (A.16)

with b′ > 0 a constant which depends only on N and the implicit constant in � also
depends only on N . Note that in the last inequality, we used that (1 + δs)1/δ = [(1 +

δs)1/δ
s

]1/δ
1−s � e−1/δ1−s .

By (A.16) and Hölder’s inequality (recall that Mδ has constant-order moments up to
order a′/δ by our choice of a′), if we choose a ∈ (0, a′] sufficiently small, in a manner
depending only on p, p′, N, and s, then for δ ∈ (0, a],

E
[
Mp

δX
p
1(Mδ>1+δs)

]
� e−b/δ

1−s
E
[
Xp′

]p/p′
(A.17)

for a constant b = b(p, p′, s,N) > 0. Similarly,

E
[
X
p
1(Mδ<1−δs)

]
� e−b/δ

1−s
E
[
Xp′

]p/p′
(A.18)

for a possibly smaller choice of the constant b. Combining (A.15), (A.17), and (A.18)
yields (A.6) with the above choice of a and b.

B Index of notation

Here we record some commonly used symbols in the paper, along with their meaning
and the location where they are first defined. Other symbols not listed here are only
used locally.

• γ: LQG parameter; Section 1.1.

• Gε: mated-CRT map; Sections 1.1.

• h: main GFF-type distribution; Sec-
tion 1.4.

• Q = 2/γ + γ/2: LQG coordinate
change constant; (2.6).

• κ′ = 16/γ2; SLE parameter; Sec-
tion 2.1.

• η: space-filling SLEκ′ ; Section 2.1.3.

• hIG: imaginary geometry GFF used to
construct η; Section 2.1.3.

• o∞C (C): a quantity decaying faster
than any negative power of C; Sec-
tion 1.3.

• V(G) and E(G); vertex and edge sets;
Section 1.3.

• Hε
x := η([x − ε, x]), structure graph

cell; (1.3).

• xεz: element of VGε with z ∈ Hε
x; (1.4).

• Gε(D): subgraph of Gε corresponding
to domain D ⊂ C; (1.5).

• hr(z): circle average; [16, Section
3.1].

• uε(z): diameter2/area times degree of
cell Hε

xεz
containing z; (2.12).

• Energy: Dirichlet energy; Defini-
tions 1.1 and 1.2.

• τz: time when η hits z; (4.2).

• DAε(z): localized version of
diam(Hε

xεz
)2/ area(Hε

xεz
); (4.4).

• B
ε

z: ball of radius 4 diam(η([τz − ε,

τz + ε])) centered at z; (4.6).

• degεin(z), degεout(z): localized versions
of deg(xεz;Gε); Section 4.2

• uε∗(z): localized version of
uε(z); (4.19).
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