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Asymptotic behaviour of heavy-tailed branching
processes in random environments*
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Abstract

Consider a heavy-tailed branching process (denoted by Zn) in random environments,
under the condition which infers that E logm(ξ0) = ∞. We show that (1) there exists
no proper cn such that {Zn/cn} has a proper, non-degenerate limit; (2) normalized by
a sequence of functions, a proper limit can be obtained, i.e., yn

(
ξ̄, Zn(ξ̄)

)
converges

almost surely to a random variable Y (ξ̄), where Y ∈ (0, 1) η-a.s.; (3) finally, we give the

necessary and sufficient conditions for the almost sure convergence of
{
U(ξ̄,Zn(ξ̄))

cn(ξ̄)

}
,

where U(ξ̄) is a slowly varying function that may depend on ξ̄.
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1 Introduction

Let {Zn} be a Galton-Watson branching process with Z0 = 1 and governed by the
family size probability generating function f(s) =

∑∞
j=0 pjs

j , where p1 6= 1. Let m =∑∞
j=0 jpj = f

′
(1−) denote the mean of the offspring distribution.

Martingale convergence of branching processes have been investigated extensively.
Kesten and Stigum ([9]) showed that the limit of the martingale

{
Zn
mn

}
is proper if and

only if EZ1 logZ1 <∞. After that, if only the condition EZ1 <∞ is fulfilled, Seneta ([11])
showed that if we use fn(s) to denote the probability generating function of Zn, kn(s) =

− log fn(e−s), hn(s) is the inverse function of kn(s), then for every s ∈ (0,− log q), Znhn(s)

converges in distribution to a proper, non-degenerate law. Heyde ([8]) strengthened this
result to almost sure convergence, using a martingale argument.
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Asymptotic behaviour of heavy-tailed branching processes

When m =∞, the situation is more complicated. In this case, Seneta ([11]) showed

that it is never possible to find {cn} such that
{
Zn
cn

}
converges in distribution to a proper,

non-degenerate law. Darling ([6]) and Seneta ([12]) gave sufficient conditions for the

existence of a sequence {cn} such that
{

log(Zn+1)
cn

}
converges in distribution to a non-

degenerate law. Schuh and Barbour ([10]) showed that branching process with infinite
mean can be classified as regular or irregular according to the property that whether

there exists a sequence of constants {cn} such that P
(

0 < limn→∞
Zn
cn

<∞
)
> 0. In that

paper, they derived necessary and sufficient conditions for the almost sure convergence
of U(Zn)

cn
, where U is a slow varying function, moreover, the distribution function of the

limit satisfies a Poincaré functional equation.
When this model is extended to a random environment, the corresponding martingale

convergence results have been proved by Tanny([14], [15]). The Kesten-Stigum type
theorem was proved in Tanny ([15]), limn→∞

Zn
πn

= W w.p.1, where W is proper and non-

degenerate if and only if E(Z1 log+ Z1/m(ξ0)) < ∞ when the environmental sequence
ξ̄ = (ξ0, ξ1, · · · ) is i.i.d. (Theorem 2, [15]), where m(ξi) is the expected number of
offspring of particle conditioned on the environment ξi, and πn := Πn−1

i=0 m(ξi). The
Seneta-Heyde type theorem was considered in Tanny ([14]) if the environmental sequence
ξ̄ = (ξ0, ξ1, · · · ) is stationary and ergodic and satisfies E| logm(ξ0)| <∞, then there exists
a sequence of random variables cn(ξ̄), depending only on the environment sequence ξ̄
such that limn→∞

Zn
cn

= W w.p.1 and W is proper and non-degenerate, i.e., P(0 < W <

∞|ξ̄) = 1− q(ξ̄), where q(ξ̄) is the extinction probability conditioned on ξ̄.
In the present paper, we are interested in the case E| logm(ξ0)| =∞. We investigate

the asymptotic behaviors of branching processes in random environments under the
condition (A2) (which infers E| logm(ξ0)| =∞). Part of the results in Schuh and Barbour
([10]) will be extended to this random environment situation, in particular, (1) we

show that for a.s. ξ̄, there exists no {cn(ξ̄)} such that
{
Zn(ξ̄)

cn(ξ̄)

}
converges to a proper

random variable; (2) Zn can be normalized by a sequence of functions, i.e., let yn(ξ̄, x) =

fξ0

(
· · ·
(
fξn−1

(
e−

1
x

))
· · ·
)

, then yn(ξ̄, Zn(ξ̄)) converges almost surely to a proper and

non-degenerate random variable Y (ξ̄), where Y ∈ (0, 1) η-a.s.; (3) we give the necessary

and sufficient conditions for the almost sure convergence of
{
U(ξ̄,Zn(ξ̄))

cn(ξ̄)

}
, where U(ξ̄) is

a slowly varying function that may depend on ξ̄.

2 Description of the model and main results

Let ξ̄ = {ξn : n ∈ Z} be a sequence of independent and identically distributed
probability distributions on nonnegative integers, where

ξn =
{
ξ(0)
n , ξ(1)

n , · · ·
}
, ξ(i)

n > 0,

∞∑
i=0

ξ(i)
n = 1.

The law of the environment ξ̄ is given by η.
Let Z0 = 1, Zn be the sum of Zn−1 independent random variables, each of which has

distribution ξn−1. Then the sequence of random variables Z0, Z1, · · · is called a branching
process in the random environment ξ̄. We use Pξ̄ to denote the probability when the
environment ξ̄ is fixed. As usual, Pξ̄ is called quenched law. The total probability P,
which is usually called annealed law, is given by

P(·) :=

∫
Pξ̄(·)η(dξ̄).

Assumption 2.1. (A1) η(ξ
(0)
0 = 0) = 1.
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Asymptotic behaviour of heavy-tailed branching processes

Remark 2.2. (A1) ensures that each particle produces at least one particle, then this
is an increasing branching process in the random environment, i.e., the extinction
probability q(ξ̄) = 0. We propose this assumption to simplify our statement, but in fact
this assumption can be removed by using Theorem 2 in [14] to get the main result in our
passage on the non-extinction event.

Some notations:

• m(ξ0) := Eξ0(Z1) =
∑∞
y=0 yξ

(y)
0 ; fξi(s) :=

∑∞
k=0 ξ

(k)
i sk;

• kξi(s) := − log fξi(e
−s); hξi(s) := − log f

(−1)
ξi

(e−s), 0 < s <∞;

• k0(ξ̄, s) := s; h0(ξ̄, s) := s;

• kn(ξ̄, s) := kξ0(kξ1(· · · (kξn−1
(s)) · · · ) = − log fξ0

(
fξ1
(
· · ·
(
fξn−1

(e−s)
)
· · ·
))

(n ≥ 1),

• hn(ξ̄, s) := hξn−1
(· · · (hξ0(s)) · · · ) = − log f

(−1)
ξn−1

(
· · ·
(
f

(−1)
ξ0

(e−s)
)
· · ·
)

(n ≥ 1);

• θ is the shift operator, for any ξ̄ = {ξ0, ξ1, · · · }, θξ̄ := {ξ1, ξ2, · · · };

• d
(
ξ̄, s
)

:= limn→∞
hn+1(ξ̄,s)
hn(θξ̄,s)

= limn→∞
hξn(···(hξ0 (s))··· )
hξn(···(hξ1 (s))··· )

.

Assumption 2.3. (A2) η(D) = 1, where D =
{
ξ̄ : for any s ∈ (0,∞), d(ξ̄, s) = 0

}
.

Remark 2.4. Tanny (Lemma 2.4, [14]) proved that for a.e. ξ̄, d(ξ̄, s) always exists.
What’s more, if E| logm(ξ0)| < ∞, then 0 < d(ξ̄, s) 6 1 w.p.1. Thus under the as-
sumption (A2) we know E| logm(ξ0)| = ∞. Actually, we conjecture (A2) is equivalent
with E| logm(ξ0)| =∞, but unfortunately we have not proved it yet.

An example is given in Example 4.3, where the Assumption (A1) and (A2) are
fulfilled.

1 No proper limit exists

If E| logm(ξ0)| < ∞, Tanny ([14]) proved that there exists a sequence of random
variables cn(ξ̄), depending only on the environment sequence ξ̄ such that limn→∞

Zn
cn

= W

w.p.1 and W is proper and non-degenerate, i.e., P
(
0 < W <∞|ξ̄

)
= 1− q(ξ̄), where q(ξ̄)

is the extinction probability conditioned on ξ̄. The key step of the proof is in Tanny
(Lemma 2.4, [14]), where showed that if E| logm(ξ0)| <∞, then 0 < d(ξ̄, s) 6 1 w.p.1.

We are interested in the other situation when d(ξ̄, s) = 0 w.p.1, 0 < s < ∞, i.e.,
Assumption 2.3 (where (A2) infer that E| logm(ξ0)| = ∞), we will see that for a.e. ξ̄,
no cn(ξ̄) exists such that Zn(ξ̄)/cn(ξ̄) has a proper and non-degenerate limit. At first,
we show that for any s ∈ (0,∞), hn(ξ̄, s) is not the suitable norming for Zn(ξ̄) as the
following,

Theorem 2.5. For any s ∈ (0,∞), Zn(ξ̄)hn(ξ̄, s) converges to W (ξ̄, s) w.p.1. If η(D) > 0

then Pξ̄
(
W (ξ̄, s) =∞

)
> 0, Pξ̄

(
W (ξ̄, s) = 0

)
> 0, η-a.e..

Remark 2.6. Note that the condition in Theorem 2.5 is weaker than condition (A2). We
conjecture that η(D) = 0 or 1.

Based on these facts, it is necessary to classify s ∈ (0,∞) as two different types of
points from the following definition.

Definition 2.7. A point s ∈ (0,∞) is called ξ̄-regular if Pξ̄
(
W (ξ̄, s) ∈ {0,∞}

)
= 1, and

ξ̄-irregular otherwise.

Definition 2.8. The branching process
{
Zn(ξ̄)

}
is called ξ̄-regular if all 0 < s <∞ are

ξ̄-regular and ξ̄-irregular otherwise.

We have the following 0-1 law.

Theorem 2.9. Let A =
{
ξ̄ : Zn(ξ̄) is ξ̄-regular

}
, then η(A) = 0 or 1.
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Asymptotic behaviour of heavy-tailed branching processes

In section 3.2, we will discuss the limit behavior of Zn(ξ̄)hn(ξ̄, s) in details, and finally
conclude that no cn(ξ̄) exists such that Zn(ξ̄)/cn(ξ̄) has a proper and non-degenerate
limit.

2 Normalized by a sequence of functions
Since for η-a.e. ξ̄, limn→∞ Zn(ξ̄)/cn(ξ̄) is never a proper, non-degenerate random

variable, we now consider other possibilities for normalizing Zn(ξ̄).
For 0 6 x <∞, let

yn
(
ξ̄, x
)

= fξ0

(
· · ·
(
fξn−1

(
e−

1
x

))
· · ·
)
,
(
yn(ξ̄, 0) = fn(ξ̄, 0)

)
.

Theorem 2.10. Under Assumption 2.3 (1) yn
(
ξ̄, Zn(ξ̄)

)
converges almost surely to a

random variable Y (ξ̄). Furthermore, if sr is a ξ̄-regular point and xr = e−sr , then
Pξ̄
(
Y (ξ̄) 6 xr

)
= xr and Pξ̄

(
Y (ξ̄) = xr

)
= 0.

(2) Y ∈ (0, 1) η-a.s.. In particular, if {Zn} is a regular branching process, then Y is
uniformly distributed on (0, 1).

3 Normalized by an increasing slowly varying function

Theorem 2.11. For η-a.e. ξ̄, let U(ξ̄, x) : [0,∞)→ [0,∞) be an increasing slowly varying
function with U(ξ̄, 0) = 0, limx→∞ U(ξ̄, x) = ∞, and {cn(ξ̄)} a sequence of positive
constants. Then under Assumption 2.3 we have:
(1) For η-a.e. ξ̄, if

H(ξ̄, s) := lim
n→∞

(
U(ξ̄, 1/hn(ξ̄, s))/cn(ξ̄)

)
(2.1)

exists for all but at most countably many s ∈ (0,∞), then for η-a.e. ξ̄, U
(
ξ̄, Zn(ξ̄)

)
/cn(ξ̄)

converges to H
(
ξ̄, T (ξ̄)

) (
T (ξ̄) = sup

{
s|0 < s <∞ and W (ξ̄, s) < 1

})
almost surely.

(2) On the other hand, if for η-a.e. ξ̄,
{
U(ξ̄, Zn(ξ̄))/cn(ξ̄)

}
converges in distribution to a

distribution function Fξ̄, and define

G
(
ξ̄, x
)

= inf
{
y | 0 6 y <∞ and Fξ̄(y) > x

}
, 0 6 x <∞. (2.2)

Then for η-a.e. ξ̄,

lim
n→∞

(
U(ξ̄, 1/hn(ξ̄, s))/cn(ξ̄)

)
= G(ξ̄, e−s) (2.3)

exists for all the points s ∈ (0,∞) such that G(ξ̄) is continues at e−s
(
Since G(ξ̄) is an

increasing function, these are all but at most countably many s ∈ (0,∞)
)
.

(3) Furthermore, under the condition of (2), if for η-a.e. ξ̄, U(ξ̄, x) = U(θξ̄, x) and for
η-a.e. ξ̄, Fξ̄ satisfies for any 0 < x <∞,

0 < Fξ̄(x) < 1, lim
x→0

Fξ̄(x) = 0, lim
x→∞

Fξ̄(x) = 1. (2.4)

Then,

lim
n→∞

cn−1(θξ̄)

cn(ξ̄)
= α(ξ̄) > 0 (2.5)

exists, and

G
(
ξ̄, e−s

)
/G
(
θξ̄, e−hξ0 (s)

)
= α

(
ξ̄
)

for s ∈ (0,∞). (2.6)

What’s more, for η-a.e. ξ̄, the distribution function Fξ̄ and Fθξ̄ satisfy the functional
equation

Fξ̄
(
α(ξ̄)u

)
= fξ0

(
Fθξ̄(u)

)
, 0 6 u <∞, (2.7)

where α(ξ̄) is as in (2.5).
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Asymptotic behaviour of heavy-tailed branching processes

The paper is arranged as the following. All the above results will be proved in
section 3. Based on Theorem 2.5 (which will be proved in section 3.1), we will give
the classification for s ∈ (0,∞) as the regular and irregular point in section 3.2, and
some facts for the regular and irregular point will be pointed out, but the proof will omit
as it is similar as those in Schuh and Barbour ([10]). In section 3.3, a proper limit will
be obtained when Zn is normalized by a sequence of functions, i.e., Theorem 2.10 will
be proved. In section 3.4, we will discuss the necessary and sufficient conditions for

the almost sure convergence of
{
U(ξ̄,Zn(ξ̄))

cn(ξ̄)

}
, where U(ξ̄) is a slowly varying function

that may depends on ξ̄, i.e., Theorem 2.11 will be proved. In section 4, we will give a
sufficient criteria for regular process, and finally we give an Example 4.3 to illustrate
our results in this paper.

3 Proofs

3.1 Proof of Theorem 2.5

Proof. (i) Denote by Fn(ξ̄) the σ-field generated by Z0, Z1, · · · , Zn and ξ̄, let

Xn(ξ̄, s) = e−Zn(ξ̄)hn(ξ̄,s). (3.1)

Then it is easy to check that
{
Xn(ξ̄, s),Fn(ξ̄)

}∞
n=0

is a martingale bounded between 0
and 1, by the Martingale Convergence Theorem,

X(ξ̄, s) := lim
n→∞

Xn(ξ̄, s) exists w.p.1.

By the property of martingale,

E(Xn(ξ̄, s)|ξ̄) = E(X0(ξ̄, s)|ξ̄) = e−s

E(X(ξ̄, s)|ξ̄) = lim
n→∞

E(Xn(ξ̄, s)|ξ̄) = e−s (3.2)

Therefore for any s ∈ (0,∞), Zn(ξ̄)hn(ξ̄, s) converges to W (ξ̄, s) := − logX(ξ̄, s) w.p.1.

(ii) Let
Wn(ξ̄, s) = Zn(ξ̄)hn(ξ̄, s),

then Xn(ξ̄, s)u = e−uWn(ξ̄,s) = e−uZn(ξ̄)hn(ξ̄,s) and

Eξ̄
[
Xn(ξ̄, s)u

]
= Eξ̄

[
e−uZn(ξ̄)hn(ξ̄,s)

]
= fξ0

(
· · ·
(
fξn−1

(
e−uhn(ξ̄,s)

))
· · ·
)

= fξ0

(
fξ1

(
· · ·
(
fξn−1

(
e−uhn−1(θξ̄,hξ0 (s))

))
· · ·
))

= fξ0
(
Eθξ̄

(
Xn−1(θξ̄, hξ0(s))u

))
. (3.3)

Let χ(u; ξ̄, s) = Eξ̄(X(ξ̄, s)u), then n goes to infinity in (3.3) yields

χ(u; ξ̄, s) = fξ0
(
χ(u; θξ̄, hξ0(s))

)
. (3.4)

It is easily seen that

lim
u↓0

χ(u; ξ̄, s) = lim
u↓0

Eξ̄

(
e−uW (ξ̄,s)

)
= Pξ̄

(
W (ξ̄, s) <∞

)
. (3.5)

Using the functional relation (3.4) with equation (3.5) yields:

Pξ̄
(
W (ξ̄, s) <∞

)
= fξ0

(
Pθξ̄(W (θξ̄, hξ0(s)) <∞)

)
. (3.6)
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Asymptotic behaviour of heavy-tailed branching processes

Let

A =
{
ξ̄ : there exists s such that Pξ̄(W (ξ̄, s) <∞) = 1

}
.

Combined with (3.6) and the property of fξ0(s), we have θA = A, i.e. A is a θ-invariant
set, since θ is ergodic,

η(A) = 0 or 1. (3.7)

Then we only need to prove η(A) 6= 1.

Since

Eξ̄
[
Xn(ξ̄, s)u

]
= fξ0

(
fξ1

(
· · ·
(
fξn−1

(
e
−uhn−1(θξ̄,s)

hn(ξ̄,s)

hn−1(θξ̄,s)

))
· · ·
))

, (3.8)

let n→∞, we have

χ(u; ξ̄, s) = fξ0
(
χ(ud(ξ̄, s); θξ̄, s)

)
. (3.9)

Consequently for any ξ̄ ∈ D, 0 < s <∞, u > 0, we can get that

χ(u; ξ̄, s) = fξ0
(
χ(0; θξ̄, s)

)
.

Using the fact that

lim
u↑∞

χ(u; ξ̄, s) = lim
u↑∞

Eξ̄

(
e−uW (ξ̄,s)

)
= Pξ̄

(
W (ξ̄, s) = 0

)
,

we have

for any ξ̄ ∈ D, Pξ̄
(
W (ξ̄, s) = 0

)
= fξ0

(
χ(0; θξ̄, s)

)
. (3.10)

Note that Eξ̄

(
e−W (ξ̄,s)

)
= e−s, which implies Pξ̄

(
W (ξ̄, s) = 0

)
< 1. From (3.10) we have

χ
(
0; θξ̄, s

)
< 1, thus

for any ξ̄ ∈ D, Pθξ̄
(
W (θξ̄, s) =∞

)
> 0.

This means for any ξ̄ ∈ D, θξ̄ ∈ Ac. Hence

η(A) = 1− η(Ac) 6 1− η(θD) = 1− η(D) < 1,

recall (3.7), we have η(A) = 0, i.e.,

for any s ∈ (0,∞), Pξ̄
(
W (ξ̄, s) =∞

)
> 0, η-a.e..

(iii) Let

B =
{
ξ̄ : there exists s such that Pξ̄(W (ξ̄, s) = 0) = 0

}
.

Similar to (ii) we can get that

Pξ̄
(
W (ξ̄, s) = 0

)
= fξ0

(
Pθξ̄(W (θξ̄, hξ0(s)) = 0)

)
, (3.11)

χ

(
u

d(ξ̄, s)
; ξ̄, s

)
= fξ0

(
χ(u; θξ̄, s)

)
. (3.12)

From (3.11), we know that θB = B, then η(B) = 0 or 1.
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For any ξ̄ ∈ D, 0 < s <∞, from (3.12), we get for any u > 0,

fξ0
(
χ(u; θξ̄, s)

)
= χ

(
∞; ξ̄, s

)
.

Let u goes to 0, we have

fξ0
(
Pθξ̄(W (θξ̄, s) <∞)

)
= χ

(
∞; ξ̄, s

)
. (3.13)

We note that Eθξ̄

(
e−W (θξ̄,s)

)
= e−s implies Pθξ̄(W (θξ̄, s) <∞) > 0. Combined with (3.13)

we have χ(∞; ξ̄, s) > 0, thus

for any ξ̄ ∈ D, 0 < s <∞, Pξ̄
(
W (ξ̄, s) = 0

)
> 0.

This means for any ξ̄ ∈ D, ξ̄ ∈ Bc. Then

η(B) 6 1− η(D) < 1.

Accordingly η(B) = 0, i.e.,

for any s ∈ (0,∞), Pξ̄
(
W (ξ̄, s) = 0

)
> 0, η-a.e..

3.2 ξ̄-regular and ξ̄-irregular points

From Theorem 2.5, we know that for any s ∈ (0,∞),

Pξ̄

(
lim
n→∞

Zn(ξ̄)hn(ξ̄, s) =∞
)
> 0, Pξ̄

(
lim
n→∞

Zn(ξ̄)hn(ξ̄, s) = 0
)
> 0 η-a.e.,

then it is necessary to distinguish between two types of points. (Recall Definition 2.7)
We can get the following theorem which gives a necessary and sufficient condition

for a point to be regular. The proof is almost the same as that of Theorem 1.1.2 in [10],
we omit the details.

Theorem 3.1. s ∈ (0,∞) is ξ̄-regular if and only if lim
n→∞

hn(ξ̄, t)

hn(ξ̄, s)
= 0 for all 0 < t < s, (or

equivalently lim
n→∞

hn(ξ̄, t)

hn(ξ̄, s)
=∞ for all s < t <∞).

Remark 3.2. From Theorem 3.1 and the fact that

hn(ξ̄, s) = hn−k
(
θk ξ̄, hk(ξ̄, s)

)
,

we know that if s ∈ (0,∞) is ξ̄-regular (irregular), then hk(ξ̄, s) is θk ξ̄-regular (irregular).

Lemma 3.3. The set of the irregular points is open. More precisely, if si is ξ̄-irregular,
then an open interval I(ξ̄, si) = (s1, s2) of maximal length exists, such that si ∈ I(ξ̄, si)

and all s ∈ I(ξ̄, si) are ξ̄-irregular.
If we define l(ξ̄, s) = limn→∞

(
hn(ξ̄, s)/hn(ξ̄, si)

)
for all s ∈ [s1, s2] then l(ξ̄, s) is a

continuous, strictly increasing function with l(ξ̄, s1) = 0 and l(ξ̄, s2) =∞. s1 and s2 are
both ξ̄-regular.

The proof is similar as Lemma 1.1.5 in [10], we omit the details.

Lemma 3.4. Under condition (A2) (i.e., for any ξ̄ that satisfies for any s ∈ (0,∞), d(ξ̄, s) =

0), every interval [hξ0(s), s], 0 < s <∞, contains at least one θξ̄-regular point sr.

Proof. Define

sr = sup

{
t
∣∣∣ hξ0(s) 6 t 6 s and lim

n→∞

hn(θξ̄, t)

hn(θξ̄, s)
= 0

}
,
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Asymptotic behaviour of heavy-tailed branching processes

d(ξ̄, s) = 0 tells us

d(ξ̄, s) = lim
n→∞

hn+1(ξ̄, s)

hn(θξ̄, s)
= lim
n→∞

hn
(
θξ̄, hξ0(s)

)
hn(θξ̄, s)

= 0.

Then sr exists and hξ0(s) 6 sr 6 s.

If lim
n→∞

hn(θξ̄, sr)

hn(θξ̄, s)
= 0, then lim

n→∞

hn(θξ̄, sr)

hn(θξ̄, t)
= 0 for all t > sr, since lim

n→∞

hn(θξ̄, t)

hn(θξ̄, s)
> 0;

and if lim
n→∞

hn(θξ̄, sr)

hn(θξ̄, s)
> 0, then lim

n→∞

hn(θξ̄, t)

hn(θξ̄, sr)
= 0 for all t < sr, since lim

n→∞

hn(θξ̄, t)

hn(θξ̄, s)
= 0.

In both cases sr is θξ̄-regular by Theorem 3.1.

We also distinguish the branching process {Zn(ξ̄)} between two types (see Definition
2.8). And we have the following 0-1 law.

Theorem 3.5. Let A = {ξ̄ : Zn(ξ̄) is ξ̄-regular}, then η(A) = 0 or 1.

Proof. From Definition 2.8 and Theorem 3.1 we know that for any ξ̄ ∈ A, 0 < s <∞, if
0 < t < s, then

lim
n→∞

hn(ξ̄, t)

hn(ξ̄, s)
= 0.

On the other hand, for any ξ̄ ∈ A, if {Zn(θξ̄)} is θξ̄-irregular, then there exists s, 0 < t < s,

such that lim
n→∞

hn(θξ̄, t)

hn(θξ̄, s)
> 0, i.e.,

lim
n→∞

hξn (· · ·hξ1(hξ0(kξ0(t))) · · · )
hξn (· · ·hξ1(hξ0(kξ0(s))) · · · )

> 0. (3.14)

Combining with the monotonicity of kξ0 , we have kξ0(t) < kξ0(s). (3.14) means kξ0(s) is
a ξ̄-irregular point, as a consequence {Zn(ξ̄)} is ξ̄-irregular, which contradicts to the
fact that ξ̄ ∈ A. Thus, for any ξ̄ ∈ A, θξ̄ ∈ A. In a similar way we see that for any
θξ̄ ∈ A, ξ̄ ∈ A. So θA = A, i.e., A is a θ-invariant set. Since θ is ergodic, we infer that
η(A) = 0 or 1.

Thus we can make the following definition classifying the processes.

Definition 3.6. The branching process in random environment {Zn} is called regular
branching process if η

(
{ξ̄ : Zn(ξ̄) is ξ̄-regular}

)
= 1, otherwise irregular.

The following results can also be proved similar as that of Theorem 1.1.7 in [10], we
omit the details.

Theorem 3.7. (1) Let cn(ξ̄) be a sequence of positive constants, such that Zn(ξ̄)/cn(ξ̄)

converges in distribution, and let Fξ̄ denote the distribution function of the limit. Then
there are four cases:

(a) Fξ̄(0) = 1 =⇒ lim
n→∞

hn(ξ̄, s)cn(ξ̄) =∞ for all 0 < s <∞;

(b) Fξ̄(0) = Fξ̄(∞) = 0 =⇒ lim
n→∞

hn(ξ̄, s)cn(ξ̄) = 0 for all 0 < s <∞;

(c) 1 > Fξ̄(0) = Fξ̄(∞) > 0 =⇒ a ξ̄-regular point sr exists such that

lim
n→∞

hn(ξ̄, t)cn(ξ̄) =

{
0 if 0 < t < sr

∞ if sr < t <∞;

(d) Fξ̄(0) < Fξ̄(∞) =⇒ a ξ̄-irregular point si exists such that

lim
n→∞

hn(ξ̄, si)cn(ξ̄) = 1.
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Asymptotic behaviour of heavy-tailed branching processes

(2) On the other hand, in (1) if one of the conditions on the right-hand side is satisfied,
then Zn(ξ̄)/cn(ξ̄) converges almost surely to a (possibly infinite-valued) random variable
W (ξ̄); more specifically there are four cases:

(a) lim
n→∞

hn(ξ̄, s)cn(ξ̄) =∞ for all 0 < s <∞ =⇒ lim
n→∞

Zn
cn

= 0 Pξ̄-a.s.;

(b) lim
n→∞

hn(ξ̄, s)cn(ξ̄) = 0 for all 0 < s <∞ =⇒ lim
n→∞

Zn
cn

= lim
n→∞

Zn(ξ̄) Pξ̄-a.s.;

(c) a ξ̄-regular point sr exists such that

lim
n→∞

hn(ξ̄, t)cn(ξ̄) =

{
0 if 0 < t < sr

∞ if sr < t <∞
=⇒ lim

n→∞

Zn
cn

= W (ξ̄, sr) Pξ̄-a.s.;

(d) a ξ̄-irregular point si exists such that

lim
n→∞

hn(ξ̄, si)cn(ξ̄) = 1 =⇒ lim
n→∞

Zn
cn

= W (ξ̄, si) Pξ̄-a.s..

Remark 3.8. Combining with Theorem 2.5, Theorem 3.7 implies that in our case, for
a.e. ξ̄, no cn(ξ̄) exists that Zn(ξ̄)/cn(ξ̄) has a proper and non-degenerate limit. Morever,
if {Zn} is a regular branching process, then the growth of Zn can not be measured by a
sequence of positive constants.

3.3 Normalized by a sequence of functions

Since for η-a.e. ξ̄, limn→∞ Zn(ξ̄)/cn(ξ̄) is never a proper, non-degenerate random
variable, we now consider other possibilities for normalizing Zn(ξ̄).

For 0 6 x <∞, let

yn
(
ξ̄, x
)

= fξ0

(
· · ·
(
fξn−1

(
e−

1
x

))
· · ·
)
, yn(ξ̄, 0) = fn(ξ̄, 0).

Proof of Theorem 2.10. (1) The proof of the first part is similar to the discussion of
Theorem 2.1.1 in [10], we rewrite it briefly as follows. For any x ∈ (0, 1),

{
yn(ξ̄, Zn(ξ̄)) < x eventually

}
=

{
Zn(ξ̄) <

(
− log f (−1)

n (ξ̄, x)
)−1

eventually

}
⊇
{
W (ξ̄,− log x) < 1

}
,

(3.15)

and{
yn(ξ̄, Zn(ξ̄)) > x eventually

}
=

{
Zn(ξ̄) >

(
− log f (−1)

n (ξ̄, x)
)−1

eventually

}
⊇
{
W (ξ̄,− log x) > 1

}
.

(3.16)

From (3.15) , (3.16), similar to the discussion of Theorem 2.1.1 in [10], we have
yn(ξ̄, Zn(ξ̄)) converges almost surely to a random variable Y (ξ̄).

If sr=− log xr is a ξ̄-regular point, from the property of regular points and (3.15) , (3.16)

we have

Pξ̄
(
Y (ξ̄) < e−sr

)
> Pξ̄

(
W (ξ̄, sr) < 1

)
= Pξ̄

(
W (ξ̄, sr) = 0

)
= Eξ̄

(
X(ξ̄, sr)

)
= e−sr ,

Pξ̄
(
Y (ξ̄) > e−sr

)
> Pξ̄

(
W (ξ̄, sr) > 1

)
= Pξ̄

(
W (ξ̄, sr) =∞

)
= 1− e−sr .

Thus

Pξ̄
(
Y (ξ̄) = xr

)
= 0 and Pξ̄

(
Y (ξ̄) 6 xr

)
= xr.
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(2)We only need to prove P(Y = 1) = 0, P(Y = 0) = 0. Let

D =
{
ξ̄ : for any s ∈ (0,∞), d(ξ̄, s) = 0

}
,

from Lemma 3.4 we know that for any ξ̄ ∈ D, s ∈ (0,∞), there exists at least one
θξ̄-regular point in [hξ0(s), s]. If we assume that

Pξ̄
(
Y (ξ̄) = 1

)
= δ > 0,

we claim that for any s ∈ (0,− log(1− δ)), s is a ξ̄-irregular point. Otherwise, if there
exists s ∈ (0,− log(1− δ)) a ξ̄-regular point, then

Pξ̄(Y (ξ̄) < e−s) = e−s > 1− δ,

that contradicts to Pξ̄(Y (ξ̄) = 1) = δ > 0.

Then for any

s ∈ (0, hξ0(− log(1− δ))) ,

s is a θξ̄-irregular point. But since ξ̄ ∈ D, we already know (Lemma 3.4) that for any

0 < s0 < hξ0 (− log(1− δ)) ,

there exists at least one θξ̄-regular point in [hξ0(s0), s0], since

[hξ0(s0), s0] ⊆ (0, hξ0 (− log(1− δ))) ,

thus the assumption is not valid, i.e.,

Pξ̄
(
Y (ξ̄) = 1

)
= 0 for any ξ̄ ∈ D.

In a similar way we can prove that

Pξ̄
(
Y (ξ̄) = 0

)
= 0 for any ξ̄ ∈ D.

Accordingly P (Y ∈ (0, 1)) = 1 because under the assumption (A2), P(D) = 1.
In particular, if {Zn} is a regular branching process, for η-a.e. ξ̄, any e−s ∈ (0, 1),

s is a ξ̄-regular point, Pξ̄
(
Y (ξ̄) 6 e−s

)
= e−s, obviously, Y is uniformly distributed on

(0, 1).

Remark 3.9. The proof of the first part is similar to that of Theorem 2.1.1 in [10]. But to
conclude that Y ∈ (0, 1) η-a.s. can not followed there, because if s ∈ (0,∞) is ξ̄-regular
(irregular), we only know that hk(ξ̄, s) is θk ξ̄-regular (irregular) from Remark 3.2.

We define the random variable

T (ξ̄) = sup
{
s|0 < s <∞ and W (ξ̄, s) < 1

}
.

Then for any ξ̄ ∈ D
(
D =

{
ξ̄ : for any s ∈ (0,∞), d(ξ̄, s) = 0

})
,

1 > Pξ̄
(
W (ξ̄, s) = 0

)
> Pξ̄

(
W
(
ξ̄, kξ0(s)

)
<∞

)
> e−kξ0 (s) s→0−→ 1,

and

1 > Pξ̄
(
W (ξ̄, s) =∞

)
> Pξ̄

(
W (ξ̄, hξ0(s)) > 0

)
> 1− e−hξ0 (s) s→∞−→ 1.
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This implies that for any ξ̄ ∈ D, Pξ̄-a.s. W
(
ξ̄, s
)

= 0 if s is close to 0 and W
(
ξ̄, s
)

=∞ if s
is large enough. Therefore by Lemma 3.3 for ξ̄ ∈ D, either

T (ξ̄) is a ξ̄-regular point with W
(
ξ̄, s
)

=

{
0 if 0 < s < T (ξ̄)

∞ if T
(
ξ̄
)
< s <∞,

(3.17)

or

T
(
ξ̄
)

is a ξ̄-irregular point with W
(
ξ̄, T (ξ̄)

)
= 1 and W

(
ξ̄, s
){< 1 for s < T (ξ̄)

> 1 for s > T (ξ̄).
(3.18)

Corollary 3.10. Under Assumption 2.3, for η-a.s. ξ̄,

W
(
ξ̄, s
)
< 1 < W

(
ξ̄, t
)

for 0 < s < T (ξ̄) < t <∞. (3.19)

T (ξ̄) = − log Y (ξ̄), (3.20)

and therefore T (ξ̄) ∈ (0,∞), for any ξ̄-regular point sr,

Pξ̄
(
T (ξ̄) > sr

)
= e−sr and Pξ̄

(
T (ξ̄) = sr

)
= 0. (3.21)

Proof. (3.19) follows immediately from (3.17) and (3.18). From (3.15) and (3.16) we have

e−T (ξ̄) = inf
{
x|W (ξ̄,− log x) < 1

}
> Y (ξ̄) > sup

{
x|W (ξ̄,− log x) > 1

}
,

and by (3.19)

inf
{
x|W (ξ̄,− log x) < 1

}
= sup

{
x|W (ξ̄,− log x) > 1

}
,

hence, T (ξ̄) = − log Y (ξ̄). Other properties are easy corollaries from Theorem 2.10.

3.4 Proof of Theorem 2.11

In order to prove Theorem 2.11, we need the following two lemmas, which are similar
as Lemma 2.2.4 and Lemma 2.2.5 in [10], we omit the details of the proof.

Lemma 3.11. Let U(ξ̄) be as in Theorem 2.11 and

V (ξ̄, x) := inf
{
y|y > 0 and U(ξ̄, y) > x

}
, 0 6 x <∞.

Then

U
(
ξ̄, V (ξ̄, x)

)
∼ x (3.22)

Lemma 3.12. Let Fξ̄ be as in Theorem 2.11 (2). If Fξ̄ is continuous at x ∈ (0,∞), then
either Fξ̄(x) = 0 and

lim
n→∞

V
(
ξ̄, cn(ξ̄)x

)
hn(ξ̄, t) = 0 for 0 < t <∞,

or Fξ̄(x) = 1 and

lim
n→∞

V
(
ξ̄, cn(ξ̄)x

)
hn(ξ̄, t) =∞ for 0 < t <∞,

or s := − logFξ̄(x) is a ξ̄-regular point and

lim
n→∞

V
(
ξ̄, cn(ξ̄)x

)
hn(ξ̄, t) =

{
0 if 0 < t < s

∞ if s < t <∞.
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Proof of Theorem 2.11. (1) If si is a ξ̄-irregular point, and if

H(ξ̄, si) = lim
n→∞

(
U

(
ξ̄,

1

hn(ξ̄, si)

)
/cn(ξ̄)

)
exists, then by Lemma 3.3, the limit H(ξ̄, s) exists for all I(ξ̄, si) and is equal to H(ξ̄, si),
since U(ξ̄) varies slowly. Thus H(ξ̄) is continuous at si.

Since now we assume that (2.1) holds, then the points where the limit H(ξ̄) does not
exist can only be ξ̄-regular points, and there are at most countably many such points.
Further H(ξ̄) is a monotonic function, and therefore at most countably many points
in (0,∞) exist, where H(ξ̄) is not continuous. Since ξ̄ ∈ D, by Corollary 3.10, for any
ξ̄-regular point sr, Pξ̄(T (ξ̄) = sr) = 0, and T (ξ̄) ∈ (0,∞) Pξ̄-a.s..

Take 0 < s < T (ξ̄) < t <∞, then by (3.19),

1/hn(ξ̄, t) < Zn(ξ̄) < 1/hn(ξ̄, s) eventually.

Therefore,

U
(
ξ̄, 1/hn(ξ̄, t)

)
/cn(ξ̄) 6 U

(
ξ̄, Zn(ξ̄)

)
/cn(ξ̄) 6 U

(
ξ̄, 1/hn(ξ̄, s)

)
/cn(ξ̄) eventually.

Since H(ξ̄) is continuous at T (ξ̄), and H(ξ̄) exists at s and t arbitrarily close to T (ξ̄), we
have

lim
n→∞

U
(
ξ̄, Zn(ξ̄)

)
/cn(ξ̄) = H

(
ξ̄, T (ξ̄)

)
almost surely. (3.23)

(2) We define

G
(
ξ̄, x
)

= inf
{
y | 0 6 y <∞ and Fξ̄(y) > x

}
, 0 6 x <∞.

Let G(ξ̄) be continuous at y ∈ (0, 1), and x = G
(
ξ̄, y
)
. Since Fξ̄ is right-continuous as a

distribution function, we always have

Fξ̄
(
G(ξ̄, y)

)
= Fξ̄

(
inf{z|Fξ̄(z) > y}

)
> y. (3.24)

If Fξ̄(x) = y, then Fξ̄ is strictly increasing at x, since G(ξ̄) is continuous at y. We can
choose x1 < x < x2 arbitrarily close to x, such that Fξ̄ is continuous at x1 and x2. Lemma
3.12 implies

V
(
ξ̄, cn(ξ̄)x1

)
<
(
1/hn(ξ̄, s)

)
< V

(
ξ̄, cn(ξ̄)x2

)
(3.25)

eventually for s = − logFξ̄(x) = − log y.
Therefore by Lemma 3.11, when n→∞,

U
(
ξ̄, V (ξ̄, cn(ξ̄)x1)

)
cn(ξ̄)

−→ x1,

U
(
ξ̄, V (ξ̄, cn(ξ̄)x2)

)
cn(ξ̄)

−→ x2.

Thus,

lim
n→∞

U
(
ξ̄, 1/hn(ξ̄, s)

)
/cn

(
ξ̄
)

= x = G
(
ξ̄, e−s

)
exists.

If on the other hand Fξ̄(x) > y, then

a := Fξ̄(x−) < y < Fξ̄(x) =: b.
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Choose x1 < x < x2 arbitrarily close to x such that Fξ̄ is continuous at x1 and x2, and
hence

− logFξ̄(x2) 6 − log b < s = − log y < − log a 6 − logFξ̄(x1).

Again Lemma 3.12 implies (3.25) and therefore lim
n→∞

U
(
ξ̄, 1/hn(ξ̄, s)

)
/cn

(
ξ̄
)

= G
(
ξ̄, e−s

)
.

(3) Since both G(ξ̄) and G(θξ̄) are continuous at all but at most countably many
s ∈ (0,∞), there exists at least one s0 ∈ (0,∞) that G(ξ̄) and G(θξ̄) are both continuous
at e−s0 , e−hξ0 (s0). Then from (2.3), for η-a.s. ξ̄,

lim
n→∞

U

(
ξ̄,

1

hn(ξ̄, s0)

)
/cn

(
ξ̄
)

= G
(
ξ̄, e−s0

)
exists, (3.26)

lim
n→∞

U

(
θξ̄,

1

hn−1(θξ̄, hξ0(s0))

)
/cn−1

(
θξ̄
)

= G
(
θξ̄, e−hξ0 (s0)

)
exists. (3.27)

Since from our assumption we know that U

(
ξ̄, 1

hn(ξ̄,s0)

)
= U

(
θξ̄, 1

hn−1(θξ̄,hξ0 (s0))

)
, more-

over, assumptions on Fξ̄ ensures that for 0 < y < 1, 0 < G(ξ̄, y) < ∞ for η-a.s. ξ̄. Then
combine with (3.26), (3.27), we have

lim
n→∞

cn−1(θξ̄)

cn(ξ̄)
=

G
(
ξ̄, e−s0

)
G
(
θξ̄, e−hξ0 (s0)

) := α(ξ̄) > 0. (3.28)

Then (2.3), (3.28) and the assumption U(ξ̄) = U(θξ̄) imply

G
(
ξ̄, e−s

)
G
(
θξ̄, e−hξ0 (s)

) = lim
n→∞

cn−1

(
θξ̄
)

cn
(
ξ̄
) = α

(
ξ̄
)

(3.29)

for all s for which G(ξ̄) is continuous at e−s. In particular G(ξ̄) is continuous at e−s if and
only if G(θξ̄) is continuous at e−hξ0 (s).

Since G(ξ̄) is left-continuous, (3.29) is true for all s ∈ (0,∞).

Now for every 0 < u <∞,{
y|G(θξ̄, y) 6 u

}
=
{
y|y 6 Fθξ̄(u)

}
, (3.30)

since Fθξ̄(x) < y for all x < G
(
θξ̄, y

)
by definition, and because of (3.24).

Our assumption ensures that − logFθξ̄(u) ∈ (0,∞) for 0 < u <∞. Since Fθξ̄ is right-
continuous there exists a sequence of points un > u, such that limn→∞ Fθξ̄(un) = Fθξ̄(u),
and Fθξ̄ is continuous at every un. Lemma 3.12 implies that − logFθξ̄(un) are θξ̄-regular
points, and therefore for every 0 < u <∞,

− logFθξ̄(u) is a θξ̄-regular point,

since {s|s is θξ̄-regular} ∪ {0,∞} is a closed set by Lemma 3.3.

Now since

kξ0
(
− logFθξ̄(u)

)
= − log fξ0

(
Fθξ̄(u)

)
,

− log fξ0
(
Fθξ̄(u)

)
is a ξ̄-regular point.
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Theorem 2.11 (1),(2) tells us that limn→∞ U
(
ξ̄, Zn(ξ̄)

)
/cn

(
ξ̄
)

= G
(
ξ̄, Y (ξ̄)

)
Pξ̄-a.s..

This combines with (2.6), (3.30) imply

Fξ̄
(
α(ξ̄)u

)
= Pξ̄

(
G
(
ξ̄, Y (ξ̄)

)
6 α(ξ̄)u

)
= Pξ̄

G(ξ̄, e−T (ξ̄)
)
6

G
(
ξ̄, e−T (ξ̄)

)
G
(
θξ̄, e−hξ0 (T (ξ̄))

)u


= Pξ̄

(
G
(
θξ̄, e−hξ0 (T (ξ̄)) 6 u

))
= Pξ̄

(
e−hξ0 (T (ξ̄)) 6 Fθξ̄(u)

)
= Pξ̄

(
f

(−1)
ξ0

(
e−T (ξ̄)

)
6 Fθξ̄(u)

)
= Pξ̄

(
Y
(
ξ̄
)
6 fξ0

(
Fθξ̄(u)

))
= fξ0

(
Fθξ̄(u)

)
for 0 < u < ∞, the last equality is due to the fact that − log fξ0(Fθξ̄(u)) is a ξ̄-regular
point and Theorem 2.10. Since

Fξ̄
(
α(ξ̄) · 0

)
= Fξ̄(0) = 0 = fξ0

(
Fθξ̄(0)

)
,

(2.7) is true.

Remark 3.13. Since T
(
ξ̄
)
∈ (0,∞), Theorem 2.11 (1) tells us that if we can find suit-

able U(ξ̄, x), cn(ξ̄) that makes H
(
ξ̄, s
)

:= limn→∞ U
(
ξ̄, 1/hn(ξ̄, s)

)
/cn

(
ξ̄
)

exists for all
but at most countably many s ∈ (0,∞) and 0 < H

(
ξ̄, s
)
< ∞ for s ∈ (0,∞), then

U
(
ξ̄, Zn(ξ̄)

)
/cn

(
ξ̄
)

has a non-degenerate and proper limit. What’s more, (1) combines
with (2) show that if U

(
ξ̄, Zn(ξ̄)

)
/cn

(
ξ̄
)

converges in distribution, then it must converge
almost surely.

4 Sufficient criteria for regular process

From Definition 3.6 we know that for a regular process, for a.e. ξ̄, any s < t,

limn→∞
hn(ξ̄,s)
hn(ξ̄,t)

= 0, then d
(
ξ̄, s
)

= 0 since

d(ξ̄, s) = lim
n→∞

hn
(
ξ̄, s
)

hn−1

(
θξ̄, s

) = lim
n→∞

hn
(
ξ̄, s
)

hn
(
ξ̄, kξ0(s)

) ,
where kξ0(s) > s. Thus, every regular process satisfies Assumption (A2). In this section,
we will derive some sufficient conditions for a process to be regular.

Let Qξi : [0, 1) −→ [0, 1) defined by

Qξi(s) =
f
′

ξi
(s)(1− s)

1− fξi(s)
.

Since fξi(x) is strictly convex and fξi(1) = 1, then f
′

ξi
(s) <

1−fξi (s)
1−s , i.e.

0 6 Qξi(s) < 1.

Theorem 4.1. s ∈ (0,∞) is ξ̄-regular if and only if
∞∏
n=0

Qξn

(
f

(−1)
n+1

(
ξ̄, e−s

))
= 0, where

fn(ξ̄, s) = fξ0
(
· · · (fξn−1

(s)) · · ·
)
.

Proof. From the proof of Theorem 3.1(for details see [10] Theorem 1.1.2) we know that
s is ξ̄-regular if and only if

lim
n→∞

kn
(
ξ̄, hn(ξ̄, s)x

)
= s for all 0 < x <∞.
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Since kn
(
ξ̄, hn(ξ̄, s)x

)
is a concave function of x, kn

(
ξ̄, hn(ξ̄, s) · 1

)
= s and kn

(
ξ̄, hn(ξ̄, s)x

)
6

s for all x 6 1(> s for all x > 1), this is equivalent to

γn
(
ξ̄, s
)

=
d

dx

(
kn(ξ̄, hn(ξ̄, s) · x)

)∣∣∣∣
x=1

n→∞−→ 0. (4.1)

We can calculate that

γn
(
ξ̄, s
)

= es · f
′

n

(
ξ̄, f (−1)

n

(
ξ̄, e−s

))
f (−1)
n

(
ξ̄, e−s

) (
− log f (−1)

n

(
ξ̄, e−s

))
,

and since

lim
n→∞

(
− log f (−1)

n

(
ξ̄, e−s

))(
1− f (−1)

n

(
ξ̄, e−s

))−1

→ 1,

(4.1) is equivalent to

f
′

n

(
ξ̄, f (−1)

n

(
ξ̄, e−s

))(
1− f (−1)

n

(
ξ̄, e−s

))
→ 0.

Since

f
′

n

(
ξ̄, f (−1)

n

(
ξ̄, e−s

))
=

n−1∏
j=0

f
′

ξj

(
f

(−1)
j+1

(
ξ̄, e−s

))
,

thus (4.1) is equivalent to
∞∏
n=0

Qξn

(
f

(−1)
n+1

(
ξ̄, e−s

))
= 0.

Corollary 4.2. If P ({ξ0 : sup0<s<1Qξ0(s) 6 c < 1}) > 0, then {Zn} is a regular branching
process.

Proof.

E

∞∏
i=0

Qξi

(
f

(−1)
i+1 (e−s)

)
= Ee

log
∏∞
i=0 Qξi

(
f

(−1)
i+1 (e−s)

)

= Ee
∑∞
i=0 logQξi

(
f

(−1)
i+1 (e−s)

)
6 Ee

∑∞
i=0 log(sup0<s<1 Qξi (s)). (4.2)

If

P

({
ξ0 : sup

0<s<1
Qξ0(s) 6 c < 1

})
> 0, (4.3)

since {ξi} is a sequence of independent and identically distributed random variables, we
know that P-a.e.,∑n

i=0 log (sup0<s<1Qξi(s))

n

n→∞−→ E log

(
sup

0<s<1
Qξ0(s)

)
.

Since P(supQξ0(s) 6 1) = 1, (4.3) ensures that on a set with positive probability
sup0<s<1Qξ0(s) < 1, thus E log(sup0<s<1Qξ0(s)) < 0, that is to say, for η-a.e. ξ̄,

∞∑
i=0

log

(
sup

0<s<1
Qξi(s)

)
= −∞ Pξ̄-a.e..
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Asymptotic behaviour of heavy-tailed branching processes

As a result,

E

∞∏
i=0

Qξi

(
f

(−1)
i+1 (e−s)

)
= 0,

for any 0 < s <∞.

From Theorem 4.1 we know that for η-a.e. ξ̄, every s ∈ (0,∞) is a ξ̄-regular point, then
{Zn(ξ̄)} is ξ̄ regular η-a.e., and {Zn} is a regular branching process by Definition 3.6.

Example 4.3. Let fξi(s) = 1 − (1 − s)αξi , where {αξi} is a collection of independent
and identically distributed random variables, taking values in (0, 1 − ε) (0 < ε < 1 is a
constant). Then this process is a regular process which satisfies our assumption and
U(ξ̄, x) = log x, cn(ξ̄) = 1

αξ0
· · · 1

αξn−1
is a suitable choice for the normalization of {Zn}.

Proof. (1) Since fξ0(s) = 1 − (1 − s)αξ0 , we can calculate that f ′ξ0(s) = αξ0(1 − s)αξ0−1.
Since 0 < αξ0 < 1− ε,E logm(ξ0) =∞.

Let rn(ξ̄, s) := 1− f (−1)
ξn−1

(
· · ·
(
f

(−1)
ξ0

(1− s)
)
· · ·
)

for all 0 6 s 6 1, then it is clear that

for all 0 < s < 1,

rn(ξ̄, s) ∼ hn
(
ξ̄,− log(1− s)

)
.

In our example, it is easy to calculate that rn(ξ̄, s) = s
1
αξ0

1
αξ1
··· 1
αξn−1 . Then for any

0 < s < 1,

d
(
ξ̄,− log(1− s)

)
= lim
n→∞

hn+1

(
ξ̄,− log(1− s)

)
hn
(
θξ̄,− log(1− s)

) = lim
n→∞

rn+1

(
ξ̄, s
)

rn
(
θξ̄, s

) = lim
n→∞

s
1
αξ0

1
αξ1
··· 1
αξn

s
1
αξ1
··· 1
αξn

= 0,

η-a.e. ξ̄, that means for any 0 < s <∞, d(ξ̄, s) = 0. Combined with the fact that fξ0(0) = 0,
this example satisfies Assumption (A1) and (A2).

(2) Since Qξi(s) =
f ′ξi

(s)(1−s)
1−fξi (s)

= αξi , P ({ξ0 : sup0<s<1Qξ0(s) 6 1− ε}) = 1. From

Corollary 4.2 we know that {Zn} is a regular branching process.

(3) If we choose

U(ξ̄, x) = log x, cn(ξ̄) =
1

αξ0
· · · 1

αξn−1

,

by calculation,

lim
n→∞

U

(
ξ̄,

1

hn(ξ̄, s)

)
/cn(ξ̄) = lim

n→∞
U

(
ξ̄,

1

rn(ξ̄, 1− e−s)

)
/cn(ξ̄)

=
log(1− e−s)

− 1
αξ0
··· 1
αξn−1

1
αξ0
· · · 1

αξn−1

= − log(1− e−s) ∈ (0,∞).

Then from Theorem 2.11 we know that in this case

lim
n→∞

log
(
Zn(ξ̄)

)
cn
(
ξ̄
) = − log

(
1− e−T (ξ̄)

)
= − log

(
1− Y (ξ̄)

)
∈ (0,∞).

Thus this is a suitable choice for the normalization of {Zn}.
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Asymptotic behaviour of heavy-tailed branching processes

(4) Note that in this example limn→∞
cn−1(θξ̄)
cn(ξ̄)

= αξ0 . If we use Fξ̄ to denote the

distribution function of the limit of
log(Zn(ξ̄))
cn(ξ̄)

, we have

Fξ̄(x) = Pξ̄
(
− log(1− Y (ξ̄)) 6 x

)
.

Since {Zn} is a regular branching process, Theorem 2.10 tells us that for η-a.s. ξ̄, Y (ξ̄)

is uniformly distributed on (0, 1). Thus Fξ̄(x) = 1− e−x. Then

fξ0
(
Fθξ̄(u)

)
= fξ0

(
1− e−u

)
= 1− e−αξ0u = Fξ̄(α0u),

which coincides with (2.7).

Remark 4.4. All results still hold if the environmental sequence ξ̄ is supposed to be
stationary and ergodic instead of i.i.d.. We thank the referee for pointing this out.
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