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A boundary local time for one-dimensional
super-Brownian motion and applications”

Thomas Hughes'

Abstract

For a one-dimensional super-Brownian motion with density X (¢,z), we construct a
random measure L; called the boundary local time which is supported on BZ; :=
O{z : X (¢,z) = 0}, thus confirming a conjecture of Mueller, Mytnik and Perkins [13].
L, is analogous to the local time at 0 of solutions to an SDE. We establish first and
second moment formulas for L;, some basic properties, and a representation in terms
of a cluster decomposition. Via the moment measures and the energy method we
give a more direct proof that dim(BZ;) = 2 — 2X\¢ > 0 with positive probability, a
recent result of Mueller, Mytnik and Perkins [13], where — )¢ is the lead eigenvalue of
a killed Ornstein-Uhlenbeck operator that characterizes the left tail of X (¢,z). In a
companion work [6], the author and Perkins use the boundary local time and some of
its properties proved here to show that dim(BZ;) = 2 — 2\ a.s. on {X;(R) > 0}.
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1 Introduction & statement of main results

Super-Brownian motion is a Markov process taking values in the space of finite
measures on R¢, M F(]Rd), equipped with the topology of weak convergence. We denote
this process by X = (X; : ¢ > 0) and denote by P}gU and EXO, respectively, a probability
and its expectation under which X is a super-Brownian motion with initial data Xy €
Mp(R?). In one dimension, X; is almost surely an absolutely continuous random
measure and thus has a density we denote by X (¢, ). The density is jointly continuous
(and will exist) for ¢ > 0, and is continuous with Holder index % — ¢ in the spatial variable
for all € > 0 (see [17], for example, where this is implicit in the proof of Theorem II1.4.2).
It was shown by Konno and Shiga in [9] and independently by Reimers in [18] that X (¢, x)
satisfies the following stochastic partial differential equation (SPDE):
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The boundary local time of super-Brownian motion

8X(§?”C> _ AX;“C) X)W, ), (1.1)
where V'V(t7 x) is a space-time white noise. For a complete discussion of such equations,
including the precise definition of a solution, see [20] and [9].

Before discussing our results, we give a brief introduction to the canonical mea-
sure of super-Brownian motion. The canonical measure IN; is a o-finite measure on
C([0,00), Mp(R))\{0}. It describes the behaviour of a single cluster, that is, the descen-
dants of a single ancestor, of super-Brownian motion started at the origin. (Likewise IN,,
is a cluster started from x and is just a translation of INy.) In fact, one way of obtaining
INy is as a weak limit of branching particle systems starting with a single particle, as
in Theorem I1.7.3 of [17]. Although INj itself is an infinite measure, when restricted to
{X: > 0} for t > 0 it is finite; in particular we have INy({X; > 0}) = 2/t (see Theorem
11.7.2 of [17]). A fact of central importance about the canonical measure is that super-
Brownian motion under P))((O can be understood as a superposition of canonical clusters.
This is discussed in greater detail later on (see (1.15)). We will use the notation X; and
X (t,z) to denote the superprocess and its density, respectively, under both P))g0 and INg.
The law of the process will always be clear from context. For a complete overview of the
canonical measure, including proofs of the properties just stated, see Section I1.7 of [17].

In a recent work by Mueller, Mytnik and Perkins [13], the authors studied the small-
scale asymptotic behaviour of X (¢, x), as well as the boundary of its zero set. We define
the random set Z; = {x € R : X(¢,2) = 0}. The boundary of the zero set BZ; is then
defined as

BZ,:=0Z,={x€Z,: (x —e,x+€)NZ{ # D Ve > 0},
where the second equality holds by continuity of the density. The results in [13] involve
an eigenvalue )\ € (%, 1) which we describe in greater detail shortly. The authors of [13]
show that the left tail of the distribution of X (¢, z) behaves like

PE (0 < X(t,x) < a) < t1/27 20 g2ho~1 (1.2)

as a } 0, where f(a) < g(a) means that f(a) is bounded above and below by cg(a) for
different constants c. Clearly for the above to be true we must take ¢t > ¢, for some tg > 0.
The upper bound is uniform in x and the lower bound required a localizing assumption.
For details, see Section 4 and in particular Theorem 4.8 of [13]. Let dim(B) denote the
Hausdorff dimension of a set B C RR.

Theorem A (Mueller, Mytnik, Perkins [13].) Under P))((D, dim(BZ;) < 2 — 2)¢ almost
surely on {X, > 0} and dim(BZ;) > 2 — 2\, with positive probability.

Because \g € (1/2,1), the dimension satisfies 2 — 2\ € (0,1). The lower bound was
conjectured to hold with full probability on {X; > 0}, implying that dim(BZ;) = 2 — 2
almost surely on {X; > 0}. The difficulty in proving that the lower bound for the
dimension holds with probability one on {X; > 0} is owing to the delicate nature of the
BZ;. It is not monotone in the initial conditions nor in the measure X; itself.

We will construct a random measure L;, which we call the boundary local time of X;,
supported on BZ;. (See Theorems 1.1 and 1.2.) The existence of L; was conjectured in
Section 5.1 of [13]. Once we have constructed L;, we use it to give a simpler alternative
proof of the lower bound in Theorem A. Our method is to show that L; has finite p-energy
for all p < 2 — 2)\g; in particular, see Theorem 1.3 below. In a future work [6], L; and
several of its properties derived here, including Theorem 1.2(a), Proposition 1.6 and
Theorem 1.9, will be used to resolve the problem left open in Theorem A and Theorem 1.3,
showing that dim(BZ;) = 2 — 2\, almost surely on {X; > 0}.

We now give a description of \g. Define a function F'(z) by

F(z):= —log P ({X(1,2) = 0}) = No({X(1,2) > 0}) > 0. (1.3)
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The second equality is standard and is a consequence of (1.14) below. Section 3,
from (3.5) to (3.14), provides a thorough overview of F as the limit as A — oo of the
family of functions {V;*},-¢ which characterize the Laplace transform of the density
X(t,z). Let Af(z) = 3 f”(x) — £ f'(z) denote the infinitesimal generator of a standard,
one-dimensional Ornstein-Uhlenbeck process Y. For a bounded, continuous and non-
negative function ¢ with limits at infinity (F is such a function), A?f = Af — ¢f is the
generator of an Ornstein-Uhlenbeck process with Markovian killing corresponding to
¢; that is, for a sample path {Y; : s € [0,00)} € C(|0,0); R), we define the lifetime of
the process as p?, after which it is “killed,” or put into an inert cemetery state. The
distribution of p? is given by

t
P(p>t|Y)=exp (—/ o(Ys) ds) fort > 0. (1.4)
0

Section 2 develops the relevant theory for these processes and their generators. In
particular, Theorem 2.1 states that A?, taken as an operator on the appropriate Hilbert
space, has a countable orthonormal family of eigenfunctions {wff o with corresponding
discrete spectrum 0 > —)\g > —)\f > ... — —o0o. We define \g = )\g > 0. As we have
noted, it was shown in [13] that A\ € (1/2,1). Numerical estimates by Zhu [22], for which
the stated digits are expected to be accurate, suggest that \g ~ 0.8882. This implies that
the value of dim(BZ;) from Theorem A, 2 — 2\, is approximately 0.224. A more detailed
discussion of the numerics can be found in the introduction of [6].

The method the authors of [13] used to show (1.2) involved computing the asymptotic
behaviour of the Laplace transform of the density. In particular (see Proposition 4.5 of
that work),

Jim tho Ao g ( / o(z) X (t,z) e_)‘X(t’“)dx>

= ¢ // d(wo + \/fz) exp (—1 /F(z + t*1/2(w0 — Z0) dXO(w0)> ng(z) dm(z) dXo(xo)
(1.5)

for every bounded Borel function ¢, where m(dz) denotes the unit variance Gaussian
measure in one dimension, ¢, is a positive constant and ¢{" is the lead eigenfunction of
AT, For a super-Brownian motion with density X (¢, ), for A > 0 we define the measure
L} € Mp(R) by dL}(z) = \2*e X2 X (¢t ) dz. That is, for a bounded measurable
function ¢ : R — R, we define

L (¢) =A™ /¢(x)X(t,x)e—AX(tv-’ﬂ>dx. (1.6)

L} is defined the same way under P))((0 and Ny. The scaling factor of A?*¢ can be deduced
from (1.5). The convergence of E§§0(L§(¢)) as A\ — oo, noted in (1.5), led the authors of
[13] to conjecture (Section 5.1 of that reference) that there is a random measure L; on
R such that L} — L; in Mp(R) in probability. Our main result is the verification of this
conjecture. In all that follows, Xy € Mg(R).

Theorem 1.1 (Boundary local time: existence and convergence). Let ¢t > 0. Under both
P))((O and Ny there is a random measure L;(dz) € Mg (R), supported on BZ;, such that
Lg\ — L, in measure as A\ — oo, and there is a sequence \,, — oo such that L;\” — Ly
a.s. asn — oo. Moreover, under ngo or Ny, for all bounded and continuous functions ¢,
L)M¢) — Li(¢) in L? as A\ — oo.

By almost sure convergence, we mean that for Pg or No-a.e. w, L} (w) — Li(w)
weakly in M r(R). Convergence in measure means with respect to any metric on My (R)
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which induces the weak topology, e.g. the Wasserstein metric (see for example p. 48 of
[161).

Theorem 1.2 (Properties of L;). (a) For allt > 0, we have P}fa (L > 0] X; > 0) >0 and
No(L; > 0] X; > 0) > 1520,

(b) L, is atomless almost surely under P5\ and INy.

Definition. L; is the boundary local time of X;.

We note that Z; will contain intervals, unlike the zero set of a Brownian motion (which
is equal to its boundary). It is easy to see that L, is supported on BZ; from the fact that
as \ gets large, L} concentrates on {z : 0 < X(¢,7) = O(\~!)}, and properties of the
weak topology on M (R) (see the proof of Theorem 1.1 in Section 4). For fixed ¢ > 0,
xr — X (t,r) is a continuous path taking values in R* = [0,00). BZ; is the set of points
where this path begins and ends its excursions from 0. As L; is supported on BZ;, in
this sense L, is a local time of x — X (¢, x) on these excursion endpoints, and hence the
boundary local time of X (¢, -).

The existence of a measure supported on BZ; allows us to use the energy method to
study its dimension. We will provide a second moment formula for L;, with which we
compute the expectation of energy integrals of the form

/ & — 4 dLy(z) dLu(y). (1.7)

If L; > 0 and the above energy is finite, then dim(supp(L;)) > p by Frostman’s connection
between energy integrals and Hausdorff dimension (see Theorem 4.27 of Morters and
Peres [12]). We introduce some notation. For s : R? — R, define (L; x L;)(h) by

(Lo x L) = [ [ e.g) dLie) aLio).

For p > 0, we define h,(z,y) = |z — y|~P. The second moment formula for L, allows us to
establish the following.

Theorem 1.3 (Finite energy and Hausdorff dimension). Both EX ((L; x L¢)(h,)) and
No((L¢ x Ly)(hy)) are finite for all p < 2 — 2)¢. Moreover, dim(BZ;) = 2 — 2\ almost
surely on {L; > 0} under both measures.

The fact that dim(BZ;) < 2 — 2 P)){(O-a.s. is already known from Theorem A, and
from this it follows easily under Ny, as we point out in the proof of Theorem 1.3. By
the above, the lower bound, ie. dim(BZ;) > 2 — 2)\,, holds with at least the probability
that L; > 0, as in Theorem 1.2(a). This plays an important role in Hughes-Perkins [6];
in Theorem 1.2 of [6] we show that with respect to both P))g0 and Ny, L; > 0 almost
surely on {X; > 0}, thus improving part (a) of Theorem 1.2 above and establishing
almost sure non-degeneracy of ;. Combined with Theorem 1.3, this will show that
dim(BZ;) = 2 — 2\ almost surely on {X; > 0}.

There are a number of other potential uses for such a local time. We now discuss
some possibilities. By sampling a point from L;, we are able to “view X; from the
perspective of a typical point in BZ;.” More precisely, one can define Qx,((Z, X;) € A) =
EX,([1a(z,X;)dL,(z)) and study properties of the Palm measure Qx,(X; € -|Z = z).
The behaviour of X; near BZ; is complex and there is still much that is not understood
about it. For example, the density has an improved modulus of continuity and is
nearly Lipzschitz (ie. Holder 1 — 5 for all n > 0) at points in BZ; (see Theorem 2.3
of [15]). This suggests that BZ; would be small, but despite this BZ; has positive
dimension. Constructing and studying the Palm measure described above would give a
more structured approach for investigating this phenomenon.
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As a local time, L; has the potential to study pathwise uniqueness in the SPDE (1.1),
a problem which remains open, assuming a similar role as that of the semi-martingale
local time in the Yamada-Watanabe Theorem for one-dimensional SDEs (see Theorem
V.40 of Rogers and Williams [19]). It may also provide insight in the behaviour of some
discrete processes; super-Brownian motion in high dimensions is the scaling limit of a
number of lattice models and interacting particle systems. In dimension one, it is still
the scaling limit of branching random walk (for example see [21] or Theorem I1.5.1(iii)
of [17]). One could obtain information about the boundaries of such approximating
processes by proving a limit theorem establishing weak convergence of the laws of their
discrete local times to that of L,. Of course, L; allows for us to study BZ; more directly,
as we have done in Theorem 1.3. In fact, with L; it may be possible to determine the
exact Hausdorff measure function of BZ;.

We now discuss the method of our proof. Upper bounds on second moments of
L} were obtained in Section 5.1 of [13], but in order to establish the existence of L;
we require exact asymptotics, which are more delicate. The main ingredient is the
following convergence result. In order to state it we need to introduce some notation.
Recall that m(dz) denotes the centred unit variance Gaussian measure. Let 1)y = 9
(the eigenfunction of AF corresponding to eigenvalue —)\;). The constant C, 4 is given
explicitly in (5.46), and the function p is defined in (5.47). The function V,>>* is defined
in Section 3 as V"7 (z1,x2) = No ({ X (¢,21) > 0} U{X(t,z2) > 0}) (see (3.25)). Finally,
we will denote by P2 and EZ the law and associated expectation of a standard Brownian
motion B; with initial value By = x.

Theorem 1.4 (Convergence of second moments of LtA). There exists a constant C; 4 > 0
and continuous function p : R x R — (0, 1] such that for bounded Borel h : R?> — R,

lim No((L} x LY)(h))

AN oo

= 0124 /t(t _ S)—Q)\o |:/ EOB (h(\/t —S8z1+ BS, Vit — S 2o + Bs))
0
X exp (— /S V.22 (Wt — s2z1 + Bs — By, Vt — sz + Bs — By) du)
0
x p(z1,22) Yo(z1) Yo(z2) dm(z1) dm(zz)} ds.

Moreover, the limit is finite for all bounded h.

That the formula above is finite is not obvious, as A\g > 1/2; we discuss this in more
detail shortly. From the above we can deduce that {L}(¢)},>0 is Cauchy in £2(INy) and
therefore has a limit by completeness; in particular see Corollary 4.1 and its proof. We
then argue that the limit is in fact the integral with respect to a unique measure, which
is L;. The proof of Theorem 1.4 is long and technical; Section 5 is entirely devoted
to it. We use the Laplace functional to obtain a Feynman-Kac type representation for
INo(L}(¢) L) (¢)) and then establish its convergence. The reason we do so under INj is
because the Feynman-Kac formulas are simpler in this setting. We now present first
and second moment formulas for L; under INp; as one would expect, the second moment
formula in part (b) agrees with the limit of No((L} x L}')(h)) given in Theorem 1.4. The
terms C; 4 and p are the same that appeared in that result.

Theorem 1.5 (Moments of L; under INy). (a) For a bounded or non-negative Borel
function ¢ : R — R,

No(Li(6)) = Crat™ / H(VE2) Yol2) dm(z). (1.8)
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(b) For measurable h : R?> — R, either bounded or non-negative,

INo((Le x L¢)(h))
203,4/;@_5)—%[/ B (h(mzl+35,mz2+33))
X exp (— /O Vo (V=52 + Bs — By, VT — 529 + By — Bu)du)

X p(z1,22) Yo(z1) Yo(z2) dm(z1) dm(zz)} ds. (1.9)

Moreover, (1.9) is finite for all bounded h.

As we noted earlier, finiteness of (1.9) is not obvious since Ao > 1/2 (although it is
implicit in the proof of Theorem 1.4), which can make (1.9) hard to use; for applications,
the following upper bound for second moments is easier to apply than the exact formula.
The value 0 is defined as 6 = f 1o dm. Y is an Ornstein-Uhlenbeck process started at
z1 with corresponding expectation EZ The exponential term in the first bound of the
following proposition can be interpreted as a survival probability of Y, producing a w*°
term which makes the integral finite. (The proofs of Theorem 1.3 and Theorem 1.2(b) in
Section 4 both use this technique.)

Proposition 1.6 (Second moment bounds under INy). For a non-negative Borel function
h:R2 >R,

No((Le x L) < €24 | L (e~ [ = e )

X h(VtYio0g(t /) VE¥iog(t/w) + V(22 — Zl)))%(zl) Yo(z2) dm(z1) dm(zz)} dw.
(1.10)

Moreover,

2 CP40% 1 an
No(L(1)?) < L4120, (1.11)
1-2Xo

As we have alluded to, applying (1.10) with h(z,y) = |z—y| P gives an upper bound for
the expectation of energy integrals of the form (1.7), which is how we prove Theorem 1.3.
Thus far, we have not commented on the proofs of existence and properties of L;
under P))fo. The proofs rely on the conditional representation in terms of canonical
clusters, which we will discuss shortly. First, in order to keep the moment results

together, we state our results regarding the moments of L; under Pf((o.

Theorem 1.7 (Moments of L, under P))((O). For a bounded or non-negative Borel function
¢: R —R,

B3, (14(0) = Cuat™ [ [ otan s Viyexn (=3 [ PG+ a0 — o) dXotun))
x o (2) dm(z) dXo (). (1.12)
(b) There is a constant C' 7 such that
B, (Lt(1)?) < Crr (Xo(1) #1722 + Xo(1) 7 220) . (1.13)

We note that the right hand side of (1.12) is equal to that of (1.5), and so was
originally computed in Proposition 1.5 of [13] as limy_,o, EX, (L} (#)). The fact that the
same formula gives the mean measure of L; then follows from the £? convergence of
L)}(¢), as in Theorem 1.1.
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We first establish the existence of L;, as well as its properties, under the measure
Ny, owing to the fact that the second moments of L? admit simpler formulas in this case.
In order to prove the same for super-Brownian motion, we need to use the relationship
between super-Brownian motion under P))((O and the canonical measure, which we now
describe. We recall that IN, is a o-finite measure such that N, ({X; > 0}) = 2/t which
describes the “law” of a single cluster of super-Brownian motion started at z; that
is, the descendants of a single ancestor at . More precisely, super-Brownian motion
is a superposition of canonical clusters; for a bounded, non-negative Borel function
¢: R —R,

EZ, (exp (—X:(¢))) = exp (— //1 — e @, (1) dXO(x0)> ‘ (1.14)

This expression for the Laplace functional is in fact a consequence of a distributional
equality between super-Brownian motion under P}g and a Poisson point process of
canonical clusters. For X, € Mp(R), let Nx,(-) = [IN,(-)dX((x) and let Oy, be a
Poisson point process on C([0,00), Mr(R)) with intensity Nx,. We define a Mr(R)-
valued process (X; : t > 0) by

X() = {fuf )40, (1) >0, i 15)
Xo() ift =0.

By Theorem 4 of Section IV.3 of [10], (X} : ¢t > 0) is a super-Brownian motion with initial
measure X,. The “points” of the point process O x, are the clusters of X. For fixed ¢t > 0,
(1.15) leads to

=3 u

JEIL

where {ug : j € I} are the points of a Poisson point process with finite intensity
Wx, (s € -| e > 0}. Let Xo(-) = Xo(-)/Xo(1). Assuming our probability space is rich
enough to allow us to choose random relabellings of these points, by the above we can
write

N
X, =Y X, (1.16)

where N is Poisson(2X,(1)/t) and, given N, {X} :i=1,..., N} are iid with distribution
N, (X; € -| X; > 0). We can and do condition on the values of the initial points of the
clusters, denoted by x1,. .., xy, which are iid points with distribution X, in which case
X/ has conditional distribution IN,, (X; € -| X; > 0). In order to prove the existence
and properties of L; with respect to a super-Brownian motion X;, we realize the super-
Brownian motion as a point process and express X; as above. Conditioning on N and
applying (1.16), we can write L} (¢) as

L)N9) )\2’\0/ [ZX (t,z)

The almost sure existence of boundary local times corresponding to the canonical clusters
allows us to take this limit quite easily and so establish that L, exists under P}((O (ie.
Theorem 1.1). Furthermore, we obtain a conditional representation for L; in terms of its
clusters; this allows us to transfer the properties of L; under INy to L, under P))((O. Let Li
denote the boundary local time of X;. In the statement that follows, we assume that we
have realized X; using (1.16).

)| e Sl X (tw) o(x) dx
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Theorem 1.8 (Cluster decomposition). Let X; be super-Brownian motion under P))fu and
L; be its boundary local time. Conditional on N, we have

N
dLi(z) = > 1(YX(t,x) = 0) dL;(x)

i=1  j#i

N
=1(X(t,z) =0)>_dLj(x). (1.17)

Remark. Given the nature of BZ;, we expect this behaviour. In the cluster decomposi-
tion, each cluster has a boundary local time of its own. Since each is supported on the
boundary of its respective zero set, the local time L; of X; will be equal to the sum of
cluster local times, except the boundary of the zero set of one cluster may be “swallowed”
by the support of another, hence the indicator functions.

The idea of representing the boundary local time of X; in terms of the boundary
local time of its clusters is not restricted to a super-Brownian motion and its comprising
canonical clusters. The following formulation of the same principle will be useful in
Hughes-Perkins [6]. Recall that a sum of independent super-Brownian motions is a
super-Brownian motion.

Theorem 1.9 (General cluster decomposition). Suppose X', ..., X" are independent
super-Brownian motions with corresponding boundary local times L at time t > 0, for
i=1,...,n. Let X = > | X" and let L; be the boundary local time of X,. Then

n

dL(z) =Y 1(>_ X7 (t,z) = 0) dLj(x)

i=1 j#i
=1(X(t,x) = 0) ZdL;‘(x).

One example of superprocesses satisfying the above conditions follows from (I1I1.1.3)
of [17]. Let Xy € Mp(R) and suppose that {A;, ..., A,} is a Borel partition of R. Define
X' as the contribution to X from ancestors at time 0 which are in A4;. (This makes X* a
super-Brownian motion with initial measure X, (- N A;); a precise definition of X* may be
given in terms of the historical process as in the above reference.) Then X = Zfi L X!
satisfies the conditions of the above theorem.

Notations. We will make use of the common convention that C' denotes any positive
constant whose value is not important. The value of C may change line to line in a
derivation; to bring attention to the fact that the constant has changed, we will sometimes
label the new constant C’'. We write [ ~ g iflim, f(z)/g(x) = 1, where the limit will be
clear from context. As the reader has probably inferred, we will write n > 0 when a
measure has positive mass (that is, to indicate that p(1) > 0). For an interval I C R, let
C(I,R) denote the space of continuous maps from I to R.

Let S; denote the semi-group of Brownian motion and p; the associated heat kernel
(the Gaussian density of variance t). Let J\/(xo, 02) denote the law of a one-dimensional
Gaussian with mean z, and variance 2.

Organization of Paper. The paper is organized as follows. Section 2 gives a brief
overview of the theory of one-dimensional Ornstein-Uhlenbeck processes with Markovian
killing. Our method relies on a change of variables which allow us to express certain
quantities in terms of eigenvalue problems involving these processes’ generators.

Section 3 describes fundamental background connecting the Laplace functional of
super-Brownian motion to a family of semi-linear PDEs. We also introduce the families
V> and V*', which play a key role in our analysis.
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In Section 4, we assume Theorem 1.4 (the £2-convergence result) and proceed
to prove our main results, including existence and properties of L; and the cluster
representations. First we prove the existence of L; under INg (Theorem 1.1 for INy) and
the formulae for its first and second moments (Theorem 1.5). Next, we use the cluster
decomposition to prove the existence of L; under P))((D (Theorem 1.1 for Pjgo) and its
representation in terms of clusters (Theorems 1.8 and 1.9). We then establish the upper
bound on second moments of L; under INy (Proposition 1.6), which allows us to prove
the remaining results, including Theorem 1.3, the dimension result.

Section 5 contains the proof of Theorem 1.4, with the proof of one technical lemma
given in Section 6.

2 Killed Ornstein-Uhlenbeck processes

As above, we define the operator A by Af(z) = @ - %(:”) The Markov process
generated by A is a one-dimensional Ornstein-Uhlenbeck process with mean zero. We
denote this process by Y, denote its law when started at # by P} with corresponding
expectation EY . For general initial conditions Yy ~ 2 € M;(R) (the space of probability
measures on R), we write its law as Plf . Y has a stationary measure, the unit variance
Gaussian measure, m. When Y, ~ m, the process is reversible and can be defined for
time values in R. We will denote the law of this stationary process on R by PY .

We now introduce the notions of killing and lifetime for the process (Y; : ¢t > 0).
Let ¢ € CT([—00,¢],R), the space of non-negative continuous functions with limits
at +o0o0. Such functions are also bounded. We will call this family of functions killing
functions. Let A?f(z) = Af(x) — f(x)¢(x). A? is the generator of an Ornstein-Uhlenbeck
process subjected to Markovian killing at rate ¢(Y;). The lifetime of the killed process is
p? =inf{t >0: fot ¢(Ys)ds > e}, where e is an independent Exp(1) random variable. We
recall that the distribution of p¢ is given by (1.4).

The generators A and A? correspond to strongly continuous contraction semigroups
on £%(m). The following theorem is proved in [13], where it is stated as Theorem 2.3. We
note that the statement of the result in that paper had a misprint when describing the
convergence of of the transition densities, which appeared in part (c). We have corrected
the statement, which is in part (b) of the following.

Theorem 2.1. For ¢ € C*([—00,00],R), the following statements hold.

(a) A? has a complete orthonormal family of C? eigenfunctions {1, : n > 1} in £2(m)
satisfying A¢1/Jn = —A\p¥n, where 0 < \g < \; < ... — 0. Furthermore, — )\ is a simple
eigenvalue and vy > 0.

(b) Fort > 0, the diffusion Y generated by A? has a jointly continuous transition density
qt(z,y) with respect to m, given by

qlx,y) =D e (@)Yn(y), 2.1)
n=0

where the series converges in £L?(m x m) and uniformly absolutely on sets of the form
[e,00) x [—e~1, e71)? for all e > 0.
(c) For 0 < § < i, there exists a constant ¢s > 0 such that

q(x,y) < cse 2tV forallt > s*(0), (2.2)

where s*(§) > 0 is the solution of

—s*/2 _ ,—s"
P (2.3)
1—es
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(d) Denote § = [¢odm. Forallt >0 and z € R,
M PL(p? > t) = Oapo(z) + 7(t, ), (2.4)
where, for any § > 0, there is a constant c¢s > 0 such that

bolw) < c5e, (2.5)
[r(t, )| < caeémze_()‘l_%)t. (2.6)

(e) AsT — oo, P,(Y € -| pp > T) — PY>° weakly on C([0,0), R), where P)>*° is the law
of the diffusion with the transition density

7/)0(21) ot
Yo(z)

Gi(z,y) = qi(z,y) (2.7)

with respect to m.

The bounds in part (d) of the above easily imply the following estimates, which we
will often use. For 0 < § < 1/2, there is a constant Cs > 0 such that

PY(p? > 1) < CseP ™! Yz e Ryt > 0. (2.8)
This implies that there is a constant C' > 0 such that
PY(p? >t) < Ce Mt Vi > 0. (2.9)

The following limit result is a simple consequence of the eigenfunction expansion for
qt (.’17, y)
Lemma 2.2. Forall z,y € R,

lim gy (2, y) = ho(z)to(y).

t—o0

The convergence is uniform on compact sets.

Proof. Forallt > 0and z,y € R, from (2.1), we have

o0

eNli(w,y) = do()o(y) + Y ™A, (@) (y). (2.10)

n=1

As we are taking t — co we can restrict to ¢ > 1, in which case the absolute value of the
sum above is bounded above by

o0
e~ (A1=20)(t-1) Z e~ (An=20) |¢n(-r)wn (y)l

n=1

By Theorem 2.1(b) with ¢ = 1, the series in the above is convergent, and the convergence
is uniform on compact sets. Part (a) of the same theorem states that —)\ is a simple
eigenvalue. Hence \; — A\g > 0 and the above vanishes as t — oo; in fact, because
the series converges uniformly on compacts to a continuous limit, the above vanishes
uniformly on compacts as t — 0o, so (2.10) gives the result. O

It will be useful for us to study the distribution of the process Y when conditioned
on survival and its endpoint. Hereafter we assume that Y has killing function ¢ <
C*(]—o0, ], R) and we denote its lifetime by p. For fixed 7' > 0 and z € R, consider the
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[0, T]-indexed inhomogeneous Markov process taking values in R with transition density
(with respect to dm(ys))
_ G—s(y1,y2) ar—e(y2, 2)

Gs,t(Y1,92) = (2.11)
(91 2) qr—s(y1,2)

for 0 < s <t < T. (The kernels are degenerate when ¢t = T, since Yy = z.) Below
we verify that the finite dimensional distributions defined by this transition kernel
have an extension to a (necessarily) unique law on C([0,7],R), which we denote by
PY(-|p > T,Yr = z) when the initial point is € R, and show that it gives an explicit
version of the suggested regular conditional distribution for all z € R. We then establish
that for fixed S > 0, P;/(Yho,s] € -|p>T,Yr = z) converges weakly to PX’OO(Y|[O’S] €-)
asT — oo forall z € R.

Lemma 2.3. (a) Letx € R and T > 0. For all z € R, the finite dimensional distributions
described in (2.11), with initial value x, have a unique extension to C([0,T],R). The
resulting laws PY (-|p > T,Yr = z) are continuous in z and define a regular conditional
probability for Y|[0 7 under P conditioned on Yr.

(b) Letz,z € R, S > 0 be fixed. Then PQC(Y|[O 5 € |p>T,Yr = z) converges weakly on
([0, S],R) to P;’voo(Yho’S] €-)asT — .

(c) For all S,K > 0, {Px(
C([0,S], R).

Before proving the lemma, we make an observation concerning time reversals of Y
under PY (-|p > T,Yp = z). For T > 0 and t € [0, T), define Y; = Y;_,. Let z, z € R. For
0 < t1 <ty <T and ¢1, ®»2 bounded Borel functions, we have

EY (61(Ys,) 62(Ys,) | p > T, Yr = 2)
— o [ 61000 6200 411 ,92) -1, (20 30) 1, (0,2 o) i)
 qr(z, 2) 1(y1) P2(Y2) ar—12 (%, Y2) Gt —t, (Y2, Y1) 4t, (Y1, 2) dm(yr) dm(y2

= E;/<¢1(Y;fl) ¢2(Y2,) |P >T,Yr =x),

Yigg € lp>TYr =2):lallz| < KT > S} is tight on

where the last equality uses ¢;:(x,y) = ¢:(y, x). The above equality of distributions can be
extended to general finite dimensional distributions. Because the extension of the finite
dimensional distributions to a law on C([0,7],R) (ie. from Lemma 2.3(a)) is unique, we
therefore have that for all z, z € R,

Py (

€-lp>T Yr=2)=PY( €-|p>TYr=ux). (2.12)

Y|[0»T] Y|[07T]

As a last note, we will sometimes denote the law PY (-|p > T,Yr = z) simply by
PY (.| Yy = z) when it is clear from context that we are working with the killed process.

Proof of Lemma 2.3. Let x,z € R and T > 0. We define a distribution, which we denote
by PY (-|p > T,Yr = z), on finite (time-indexed) collections of random variables, which
describes the finite dimensional distributions (FDDs) of the inhomogeneous Markov
process with transition density (2.11). For 0 = ¢35 < t; < --- < t, < T and bounded,
continuous functions ¢s, ..., ¢,, we define the n-dimensional FDD of (Y;,,...,Y; ) under
PY(-|p>T,Yr =2)as

EZ(Hqsi(ni)‘p >T,Yp = z)
=1

- / |:H¢i(yi)Qt"tnl(ynhyn)]QTt" (yn> 2) [ [ dm(:), (2.13)
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where we use the convention yo = z. We note that (2.13) also defines the FDDs of a
regular conditional distribution of (Y; : ¢ € [0,7]) under P} conditioned on Y7 = z (which
is why we have used this notation). Thus when we have established that these laws
extend to a probability on C([0,T],R), we will have explicitly constructed a version of
the regular conditional distribution.

To prove that PY (-|p > T,Yr = z) extends to a probability on C([0,7],R), we will
establish a tightness criterion. We consider the fourth moments of increments of Y. Let
0 < s <t < T. Expanding using (2.13), we have

EY((Y, = Y)* | p>T,Yr = 2)

V45 (2, 91) e—s (Y1, Y2) g7t (Y2, 2) dm(y1) dm(yz). (2.14)

We now collect some elementary bounds and inequalities which will allow us to obtain a
useful upper bound for the above. First, we note that while ¢;(z,y) is a transition density
with respect to m, it will sometimes be useful to express it as a density with respect to
the Lebesgue measure. Since p;(-) is the density of m, we have

qt(z,y) dm(y) = qi(z,y) p1(y) dy. (2.15)

We will use a comparison with an un-killed Ornstein-Uhlenbeck process. The transi-
tion kernel of a standard Ornstein-Uhlenbeck process is described by, for 0 < s < ¢,

(Vi =Y, |V, =y) ~ N(e 92y 1 — e~ (9,

Let k;(x,y) denote the a transition density of an un-killed Ornstein-Uhlenbeck process
with respect to Lebesgue measure. Then for x,y € R and ¢t > 0,

(27‘r) —-1/2
V1—et

The transition densities of the killed Ornstein-Uhlenbeck process are bounded above by
those of the un-killed process. This implies that

k(z,y) = exp ( e 2y )%/ 2(1 ) (2.16)

@) q(x,y) dm(y) < ki(x,y) dy, (i) gi(z,y) p1(y) < ke(z,y). (2.17)
It is easy to establish from (2.16) that there is a constant ¢ > 0 such that
ki(z,y) < epi(y — xe /%) forallt <2and z,y € R. (2.18)

where we recall that p;(-) is the Gaussian density of variance ¢. Let K > 0. From (2.17)(ii)
and (2.18) it follows that there is a constant C4 (K) such that

1 GiUE)

qr—+(y2, 2) < kr—i(y2, 2)p1(2) 7" < \/ﬁ VypeR,ze[-K, K], andt <T' < T.

(2.19)
Next, we note that it holds by elementary formulas for moments of Gaussians that there
is a constant ¢ > 0 such that

/(y2 —y1)*'pe(y2) dy2 < c(t® + |ia]*) Vi € R, t > 0. (2.20)

Finally, observe that ¢r (-, -) is bounded below by the transition density of Y with constant
killing function ||¢||oc. Thus for all K > 0 and M > 1, from (2.15) we have

qr(z,2) > e Nl T r(, 2)py (2) 7 > 6(K, M) Va,z € [-K,K], Te [M~', M] (2.21)
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for a sufficiently small constant 6(K, M) > 0.

Let 0 < T < T and suppose that 0 < s <t < T” such thatt—s < 1. Let K > 0 and sup-
pose that z, z € [- K, K|. Using (2.17)(i) to bound ¢,(x, y1)dm(y1) and ¢;—s(y1, y2)dm(yz),
and (2.19) to bound gr_;(y2, 2), from (2.14) we obtain that

By ((Ye =Yo) [ p>T,Yr = 2)
_ n—1/2
< C’1(K)qEFT(x,S) /ks(x,yl) {/(yQ yl)%t—s(yl’w)dm} o
< OuE) (T - )"
- qT(.’L‘,Z)

/ks(% Y1) {/C(iﬁ - y1)4pt—s(y2 - e(ts)/zyl)dyg} dyn,
(2.22)

where the second inequality uses (2.18). Changing variables and applying (2.20), we
obtain that

/C(yz — 1) pe_s(ya — e T2y ) dys < Oy |* (1 — e /21 4 (1 — 5)?)
<O+ |y|*)(t—s)?, (2.23)

where in the second inequality we have 1 —e~* < z for x > 0 and (¢t — s)* < (¢t —s)? (since
t — s < 1). Substituting this into (2.22), we obtain that

Cy(K)(T —T1")7'/2
qr(z, 2)

EY (Y= Y,) | Yy = 2) < (1= [ Chula,) (mnl*+ 1) din. @20

Recall that we have assumed z, z € [ K, K]. By (2.16) it is clear that for K > 0, the
integral is bounded above by some constant C3(K) > 0 for all z € [-K, K] and s > 0.
Using this along with (2.21), with a choice of M > 1 for which T' € [M~!, M], from the
above we deduce the following:

Forall z,2 € [-K,K|,0<s<t<T suchthatt—s<1,
EY((Y; = Y)* | Y7 = 2) < Co(K) 6(K, M) L C1(K) (T —T') "2 x (t —s)%. (2.25)
Let T' = 2T'/3. Hereafter we consider increments of size at most 1 A 7//3. We have
that (2.25) holds for all 0 < s < t < 27/3 such that ¢t — s < 1 A T/3 with constant

Co(K)§(K, M)~'C1(K)(T/3)~'/2. It remains to show that it also holds on [27/3,T]. To
do so, we make use of reversibility. Suppose 7/3 < s < ¢t < T. Then

EX((Yy = Y)*|Yr = 2)
= (@) // (z,91) qe—s(y1,92) ar—¢(y2, 2) dm(y1) dm(y2)
= EY (Yr—s — Yr_¢) ‘YT =), (2.26)

where the last equality uses ¢;(z,y) = ¢:(y, z) (a consequence of (2.1)) and (2.13). Since
0<T—t<T-s5<2T/3, by (2.25) and (2.26) we have that for all 2,z € [-K, K] and
T/3<s<t<Tsuchthatt—s<1AT/3,

EX((Y; = Y)* | p>T,Yr = 2) = Co(K) (K, T) L C1(K) (T/3)" Y2 x (t — 5)2.

Combined with the previous statement that this holds for all 0 < s < ¢t < 27'/3, we have
that

Forall z,z € [-K,K],0< s <t<Tsuchthatt—s<1AT/3,
EY (Y, = Y)* | Y = 2) < Co(K) (K, M)~  CL(K) (T/3)"Y/2 x (t — 5)%. (2.27)
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The above proof can be easily modified to obtain the same bound (with a potential
change to the constant) for increments in which s = 0 or ¢t = T, and we omit it. Thus
by (2.27) and the Kolmogorov Continuity Theorem, PY (-|p > T,Yr = z) has a unique
extension to a probability on C([0,T],R), also denoted by PY (-|p > T,Yr = z). As we
noted earlier, this gives an explicit construction of the regular conditional distribution
(Y; : t €[0,7]) under PY given p > T and Yr = 2, Additionally, suppose that z, — z and
that z, € [-K, K] for all n > 1. From (2.27), {PY (:|p > T,Yr = 2z,) : n > 1} is tight.
It is clear from (2.13) and continuity of ¢(-,-) that the FDDs of PY (-|p > T, Yy = z,)
converge to those of PY (-|p > T,Yr = z). Thus the aforementioned tightness proves
that PY(-|p > T,Yr = z,) converges to PY (-|p > T,Yr = 2) as a law on C([0,T],R).
Thus we have proved part (a).

Before proving (b), we note the following consequence of (2.27) and its proof. Let
S,K > 0 and fix M > 1 such that S € [M~!, M]. By considering increments of (Y; : s €
[0, S]) but allowing the time T" at which we condition Y7 = z to take values in [S, M], we
have that

{Pf(YhO’S] €-lp>T,Yr=2):|z|,|2| < K,T €[S, M]} is tight. (2.28)

Next we turn to part (b). Fix S > 0 and z,z € R. We now check that the FDDs of
(Ys : s €1[0,5)) under PY(-|p > T,Yr = z) converge to those of (Y; : s € [0,5]) under
PY>® as T — oo. Let 0 < t; < ty < S and let ¢1 and ¢2 be bounded and continuous
functions. Then from (2.13), we have

By (01(Ye) $2(Ye) | p > T, Y7 = 2)

= ﬁ/ ¢1(y1) P2(y2) @t (2, Y1) Qo —t, (Y1, Y2) a1 —15 (Y2, 2) dm(y1) dm(y2)

etz

)/ d1(y1) d2(y2) au, (2, 1) Qo —t, (Y1, y2)

erTgr(z, 2

x eMT=t2) g (o 2) dm(yr) dm(ys). (2.29)
By Lemma 2.2, we have
Jim T 0gr_4(ya, 2) = wo(y2)to(2), Jim eMTqr(z,2) = o(z)do(z).  (2.30)

Moreover, applying (2.2) with § = 1/8, we have that
e)‘O(T_t)qT_t(yg,z) < ceva/8+27/8 Vya,z € Ryt € (0,5] and T > S + s%(1/8), (2.31)

where s*(1/8) is as in (2.3). Using (2.31) (replacing ¢ with ¢5) and (2.17)(i) we obtain the
following bound for the integrand in (2.29):

|61 (Yer) d2(Yey) @i (2, 91) Gty —12 (1, y2) €T =2 gy (3, 2)| dm(yr) dim(ys)
< e /%1l oo | Bl o2 Skt (2, y1 ks —t, (1, o) dyn dys

forall T > S+ s*(1/8). By (2.16), k¢, (z,y1) and k¢, —+, (y1,y2) are Gaussians with variance
at most 1, and so a short argument shows that the above quantity is integrable. This
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allows us to use Dominated Convergence in (2.29), so by (2.30) we have

Jim Eo(61(Ys,) 62(Yi,) | Y = 2)

)\[)tz
Po()o(2)

//¢1 Y1) 2(y2) [ At (oY 1)1200((1/1” |:6A0(t2_t1)qt2tl(y17y2)w0( 1) dm(y1)dm(yz)

- / / 61 (1) 2(u2) s (2, 91) Geg—y (01, w2 )y ) (i)

= E;/’OO(¢1(YH) ¢2(Y22)>

The above argument can be easily generalized to n-fold FDDs for all n > 2, (the 6 = 1/8
in (2.31) can be reduced to handle larger n) and thus we have the desired convergence
of the FDDs as T' — oo. In order to obtain weak convergence of the laws on C([0, S],R),
we need tightness of the distributions as T' — oo. To prove that the distributions are
tight we will analyse the fourth moments of increments, as in (2.14), but first we obtain
one more bound. We note that by Lemma 2.2 and joint continuity of (T, (z,y)) — qr(z,y),
it holds that for all K > 0,

/ 61(91) ba(y2) 46, (2, 91) s (91, y2) Boly2) o (=)dm(y)dm(ys)

T gr(x,2) > 8(K) >0 Va,z € [-K, K], T>1 (2.32)

for sufficiently small §(K) > 0. Let K > 0 and z,z € [-K, K]. In (2.14), we bound
qr—+(y2, z) above using (2.31) and bound the other transition densities using (2.17),
which gives

B ((Ye=Yo)'|p>T,Yr =2)

6A0t+z2/8 4 5 s
S M]W/ks(m?yl)[/(yQ - Y1) ktfs(ylayZ)e‘%/ dya | dy1

< QoSTRY/S ()~ / ks (2, y1)e¥t/ 4[ / cy—yi(1—e /2, (y)ed'/ dy} dy

< erS+K2/8 5(K)_1 /C/ ks(x,yl)ey%/‘l l:/C/ (y _ y1(1 _ 6_(t_s)/2))4p2(t75)(y) dy:| dy1

forall T > S + s*(1/8). In the second inequality we have used (2.32) as well as (2.18)
and a change of variables. The third follows from a short calculation and the fact that
t — s < 1. Applying (2.20) to the above and arguing as in (2.23), we obtain that, for all
T>5+s"(1/8),

Ey (Y, =Ys)'[p>T,Yr = 2)
< MTHESS(K) T (t— ) C / (e, o) /4 (L yal*) dy,
<C3(S,K)(t—s)? Va,2€ [-K,K],0<s<t<Ssuchthatt—s<1, (2.33)

for a constant C3(S, K) > 0, where to see that the integral is bounded uniformly for
|z] < K, we use the fact, from (2.16), that k,(z,y;) is Gaussian with mean of absolute
value bounded above by |z| and variance less than 1. The fact that (2.33) holds for all
T > S + s*(1/8) implies that the laws PIY(Y“O,S] €-1p>T,Yr = z) are tight as T" — 0.
Combined with the convergence of the FDDs to those of PY>, this proves (b).

Observe that (2.33) proves part (c) if we restrict to T > S + s*(1/8). If we choose
M > 1suchthat M~! < S < S +s*(1/8) < M, then (2.28) gives tightness of the laws for
T €[S, S + s*(1/8)]. Combining these two cases gives the desired tightness and proves
(c). O
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3 Some non-linear PDE

Let By+ (R) denote the space of bounded, non-negative Borel functions. Recall that .S,
denotes the semigroup of Brownian motion. By Theorem III.5 of [10], for ¢ € By+(R),
there exists a unique non-negative solution, denoted Vf(x), to the evolution equation

vi=sio- ([ 5 (V2)2) ). a1

such that ,
B (e X(@) = e~ Xo(Vi) (3.2)

for all Xy € Mp(R). Applying the above with X, = ¢,, (1.14) gives
N, (1—e X)) = V2 (x). (3.3)

We are interested in the case when the initial data is a measure, and also in the differen-
tial form of the equation. The integral equation (3.1) has a corresponding PDE, which is
the following:

2 2
%—‘;:%%—VT for (t,z) € (0,00) xR, V; — ¢ ast 0. (3.4)
In [1], this equation was shown to have a unique C'*? solution when ¢ € Mr(RR), where
Vi, — ¢ is understood as weak convergence of measures. That is, we identify the
function V; with the measure V;(x)dx, which converges weakly to ¢. By Lemma 2.1 of
[14], the solution of (3.4) is also the unique solution to (3.1). We denote the unique
solution to (3.1) and (3.4) by Vﬁ. Part (d) of the same lemma establishes that if ¢,, — ¢
weakly as n — oo, then Vf’" (z) — V?(z) for all t > 0,z € R. We note from (3.1) that
VP < Sypn < ct~/2¢,(R). Using this and the fact that X; has a bounded, continuous
density, if we approximate measures by functions in B,+(R), we can take bounded limits
in (3.2) and (3.3) to establish that (3.2) and (3.3) hold for Vf when ¢ € Mpr(R).

Notation. As X, is absolutely continuous, when ¢ € Mp(R) we interpret X,(¢) as
JX(t, x)do(x).

We now state some useful properties of solutions to (3.4). For a proof, see Lemma 2.6
in [14].

Proposition 3.1. Let ¢,9 € Mpr(R).
(a) (Monotonicity) If ¢ < 1, then 0 < Vf < Vt“” forallt > 0.
(b) (Sub-additivity) VY < V¢ + V¥ for all t > 0.
Next we fix ¢ = A\J, € Mp(R) for A > 0, so that X;(¢) = AX(¢,z). Denote by V,* the

unique, non-negative C%! solution to the initial value problem

oV 10°v V2

5 =552 5 for (t,z) € (0,00) xR, V; — Aoy weakly ast | 0. (3.5)
This family was originally studied in [7]. It is an exercise to use (3.5) or the scaling
properties of super-Brownian motion to show that V(z) satisfies the following space-
time scaling relationship. For A\, > 0, we have

VAT (x) = N2V, (\x). (3.6)

By translation invariance in the initial conditions of (3.5), and by (3.2) and (3.3) we have

Egg (e—xx(t,w)) _ e—Vt)‘(x)7 (3.7)
No (1 — e MXE2)) = VA (2) (3.8)
EJP 24 (2019), paper 54. http://www.imstat.org/ejp/
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forall z € R and t > 0. It is clear from (3.7) that Vt)‘ increases to a limit as A — oo. In the
PDE literature this was established in [7], where it was shown that V* converges locally
uniformly as A — oo to a function V> on (0, 00) x R. Heuristically, V,*° is the solution of
(3.5) when A\ = +o00. Rigorously, it is the unique solution to the following problem:
oV 19*°v V2
§:§W—7 fOI‘(t,x)E(0,00)X]R,
lim Vi (z) =0 Va # 0, lim/ Vi(x)dr = 400 Ve >0, (3.9
t10 tl0 Jp._

where B, = B(0, €), the ball with radius e centered at the origin. V,>° was introduced and
shown to solve (3.9) in [2]; uniqueness of the solution is a consequence of Theorem 3.5
of [11]. Taking A — oo in (3.8), we see that V> satisfies

Vio(x) = No({ X (¢, z) > 0}). (3.10)
We recall that (see Theorem I1.7.2 of [17])
No({X; > 0}) = 2/t. (3.11)

Thus (3.10) implies that
Vi>e(x) <2/t V. (3.12)

Taking \? = 1/t and letting r — oo in (3.6), one obtains that V,>°(z) = t 'V, (t~/2x).
Definition. Define F': R — R™' by

F(z) :=V>(x). (3.13)

It follows that V;>°(z) = t ' F(t~/2z). It was shown in [2] that F is the solution to an
ODE problem. (In fact, their PDEs and ODEs have different (constant) coefficients, but
Section 3 of [13] shows that F' is a rescaled version of the function they study.) F'is the
unique solution of

(1) F"(x) + 2F'(x) + F(2)(2 - F(2)) =0
(1) F > 0,F € C*(R) (3.14)

(iii) F'(0) = 0, F(z) ~ cilzle " /2 as |z| = oo

for some ¢; > 0. We recall that f(z) ~ h(xz) means f(z)/h(z) — 1 as ¢ — oo. This F is
the function we discussed in the introduction, for which — ) is the lead eigenvalue of
the operator AY. In particular, by evaluating (3.10) at t = 1 we can recover (1.3), our
preliminary definition.

As part of the proof of Theorem A, the authors of [13] computed the rate of conver-
gence of V;* to V,*°. In particular, Proposition 4.6 of that reference states that

sup [V, (z) — VM 2)] < Ct=1/27 20 \1=2% (3.15)
zeR
for some constant C. (This is closely connected to (1.5).) A similar lower bound with
the same power of )\ is established in the same proposition, although in this case one
must be careful when ¢ is close to zero. We will make frequent use of (3.15) in this work
to bound error terms arising when we make approximations to obtain an eigenvalue
problem. Let Y be an Ornstein-Uhlenbeck process. We define Zr(Y) as

s/2

Zr(Y) =exp (/OT F(Ys) -V (Ys) ds>. (3.16)
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Since st/z 1TV = F as s — oo, the integrand converges to zero as s — oco. As Z7(Y) is
increasing in T, we can define Zo(Y) := limy_, o, Z7(Y). By (3.15), we can easily deduce
that the (monotone) limit

Zoo(Y):= lim Zp(Y) (3.17)

T—o0

exists and is finite, and that moreover there is a constant C; > 0 such that, uniformly
forall Y,
Zr(YV)< Zo(Y)<Cz <00 VT > 0. (3.18)

Finally, we introduce another family of solutions to (3.4), which arise when we
compute second moments of L}'; we will evaluate expressions that involve the density at
two points z1, x5 € R. Let V**@1:%2) denote V;? when ¢ = Ad,, + Nds, € Mz (R), s0
that, by (3.3),

‘/;()\,)\/),(131,12)(2/) _ ]Ny (1 . e—/\X(t,wl)—)\’X(t,xg)). (3.19)

When evaluating this function at 0, we will denote it by V;’\’/\/ (21,m2) = XQ(A’A/)’(“’“)(O).
In other words,
VAN (21, 29) = N (1 — e AN (o) =M X(La2)) (3.20)
By (3.19), (3.20) and translation invariance of the canonical measure, these families
satisfy
Vt()w\ ),(901,932)(y) _ Vt()w\ ):(ml—y,mz—y)(o) _ Vt)\)\ (21 — y, 20 — y). (3.21)

Lastly, as can be readily seen from (3.20) and the symmetry of the canonical measure,

VAN (@1, 22) = VN (=21, —2) (3.22)

for all z1, 22 € R. This family also satisfies a following scaling relationship which can be
derived from studying the associated PDE directly. In particular,

Vtr)\,c)\’(xl’ ;Eg) _ )\2‘/;"27?/\ //\(/\1'1; /\l‘g) = ()\')QV(T;/\)/;; ’C()\/l’l, )\/IQ), (3.23)

for all \, ', r,c > 0 and z1, z2 € R. Taking limits and applying bounded convergence in
(3.2), we see that Vt’\’x (z1,x2) has a monotone limit as A\, \’ — oo (by Proposition 3.1(a)).
We denote this limit V,°"°°(z1, z2). In agreement with our previous notation we define
the following.

Definition. We define F, : R? — Rt by
FQ(Il, IQ) = Vloo’oo(ilil,fﬂg). (3.24)

By taking the limit as A\, )’ — oo in (3.20) (and in (3.2) with ¢ = \d,, + N,,) we
obtain that

Vtoo’oo(xl,xg) = ]N()({X(t,xl) > 0} U {X(t,iﬁg) > 0}) = —logP(;f(X(t,xl) = X(t,.’tz) = 0)

(3.25)
We conclude by stating a version of (3.15) for the functions Vtk’A .
Lemma 3.2. There is a positive constant C' such that for all t, \, \' > 0,
sup |:Vvtoo,oo<xl7$2) _ V;)"X (th)} < Ot Y2 o [)\1—2)\0 + )\/1—2>\0] )

z1,22€R

Proof. Let x1,72 € R and ¢, A\, X > 0. We write
Voo (21, w9) — VN (a1, 22)

= [‘/;500700(x17x2) - Vf’w(m,xz)} + [V?“(ﬂchxz) -V (55171'2)} : (3.26)
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Using (3.25) and (3.20) and taking A’ — oo in the latter, it follows that the first term in
the above is equal to

No (1 — L(X(t,21) = X(t,25) = 0)) — N (1 — eI (X (¢, 15) = 0))
N, (1(X(t 22) = 0) ( “AX (o) (X (tz) = 0)))
<N, (e—*xﬁvwl) X (tx) = o))

= V2 (21) = V(@)
< O 1/2 o)1= 2%

where the second last line follows from (3.10) and (3.8), and the final inequality is
by (3.15). We use similar reasoning to bound the second term of (3.26) by the same
expression with )\’ replacing A\, which gives the desired result. O

4 Existence and properties of L;

As stated in the introduction, our method first establishes the existence and properties
of L; under INy and then uses the cluster decomposition to establish them under Pffo.
The main ingredient in the proof of Theorem 1.1 is the convergence of second moments
of L} (¢) as A — oo. For a bounded Borel function ¢, we show that INg (L (¢)?) converges
as A — oo. In fact, we prove convergence of second moments of general functions of two
variables. For h : R? — R we recall the notation

(L) % LY)(h) = / W, y) dLN) AL (y).

L} (¢)? is easily recovered by taking h(z,y) = ¢(z)¢(y). The following result is the
workhorse of this paper.

Theorem 1.4 (Convergence of second moments of Lt*). There exists a constant C; 4 > 0
and continuous function p : R x R — (0, 1] such that for bounded Borel h : R? — R,

lim No((L} x L) (h))

AN =00

fCM/ (t—s) 2A0[//]30< tszl+Bs,\/ﬁzQ+B)>
Xexp( /V75 Vt—sz + By — By,Vt—sz +Bs — B )d)
x p(z1, 22) Yo(21) Yo(22) dm(z1) dm(zz)} ds.

Corollary 4.1. For a bounded Borel function ¢, L} (¢) converges in £?(INg) as A — oc.

Proof. Since L£2(INy) is complete, it is enough to show that {L}(4)}r~0 is Cauchy in
L2(Np). For A\, \' > 0, we have

No((L3(9) — LY (6))*) = No((L(9)*) + No (L} (6)*) — 2No(L}N (@) L7 ().
By Theorem 1.4, this converges to 0 as A, \' — co. O

The proof of Theorem 1.4 is long and technical. We defer it to Section 5, which is
devoted to its proof. For now, we assume the result and use it to establish our other
main results, the first being the existence of L; under IN.
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Proof of Theorem 1.1 for Ny. Fix t > 0. Because X; = 0 implies that Lf‘ =0forall A >0,
without loss of generality we can work under the finite measure INo(- N {X; > 0}). By
Corollary 4.1, for a bounded continuous function ¢, there exists a random variable (¢, ¢)
such that L} (¢) — (¢, ¢) in £2(Ng) as A — oc. It follows that Ly (¢) — (¢, ¢) in measure.
We will now establish that there exists a unique random measure L; such that the random
variable [(t, ¢) is the integral of ¢ with respect to a random measure L, ie. I(t, ) = Li(¢)
for all continuous and bounded functions ¢.

We need to establish that the measures {L} : A > 0} are tight Np-almost surely. To
see that this is true, we recall that X (¢, ) is compactly supported INy-a.s., (see Corollary
I11.1.4 of [17] for the result under P)O( ; condition the cluster representation on N =1
to get it for INy) and hence the mass of X; is contained in a ball B(0, R) for some
R = R(w) > 0. Since L}(A) = A2 [, X(t,z)e~*X(:2) dz, this implies that the mass of L}
is contained in B(0, R) for all A > 0, which implies that {L}(w) : A > 0} is tight.

Let {¢,}52, be a countable determining class for Mz(R) consisting of bounded,
continuous functions. We choose ¢; = 1. L'-boundedness of the total mass and tightness
are sufficient conditions for a family in Mr(R) (with the weak topology) to be relatively
compact. By Corollary 4.1, {L}(1) : A > 0} is £2(INg)-bounded, and hence L£!(INy)-
bounded, and so from the above we see that

{L}: X > 0} is relatively compact Ny-a.s.

As we have noted, L}(¢,) — I(t,4,) in measure as A — oo. Using the fact that
convergence in measure implies almost sure convergence along a subsequence, we
can iteratively define subsequences and take a diagonal subsequence {\,,}°_; which
satisfies

L) (¢n) — U(t, ¢y) as m — 0o foralln >1 INg-a.s. 4.1)

As shown above, {Li‘m o _, is relatively compact INy-almost surely. Combined with (4.1),
this means that for INg-a.a. w we have the above convergence for all n > 1 and relative
compactness of the measures {L?’"}Zﬁzl. Choose such an w. By relative compactness
of {L}}x0, any subsequence of {)\,,}>°_, admits a further sequence along which the
measures converge in the weak topology. It remains to show that all subsequential
limits coincide. Suppose L;(w) and L}(w) are two such limit measures. Since w has
been chosen so that (4.1) holds, we have that L;(w)(¢,) = Lj(w)(¢,) for all n. Since
the family {¢,},>1 are a determining class, this implies that L;(w) = Lj(w). Hence
all subsequences admit a further subsequence with the same limit L;(w) in the weak
topology. Since the weak topology on Mp(R) is metrizable, the “every subsequence
admits a further converging subsequence” criterion for convergence applies, and we
have L™ (w) converges to Li(w) € Mp(R) as m — oco. This gives the almost sure
convergence along { A\, }%°_;.

We now check that L} — L, in measure as A — co. First note that we can restrict
to the finite measure No(- N {X; > 0}), since L} = L, =0 forall A > 0 on {X; = 0}. Let
d(u,v) be a metric which metrizes the weak topology on Mr(R), e.g. the Wasserstein
metric (see p. 48 of [16]). If Lg\ did not converge to _Lt in measure, then there would
be a sequence {\;}3>, and ¢, > 0 such that No({d(L}*, L;) > €} N {X; > 0}) > ¢ for all
k > 1. However, using the previous argument we can obtain a subsequence on which
the measures converge to L, No(- N {X; > 0})-a.s., which, because INo(- N {X; > 0}) is a
finite measure, contradicts the previous statement. Hence we must have that Lg\ — Ly
in measure.

Next, we observe that for continuous and bounded ¢, L,(¢) = (¢, ¢). To see this, recall
that L} (¢) converges to I(t, ¢) in £2(INy). As we have just shown that lim,, . L™ (¢) =
Li(¢) No-a.s, it must hold that L;(¢) = I(t, ¢). This implies that L} (¢) — L(¢) in £2(INg)
by Corollary 4.1.
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Finally, we verify that L; is supported on BZ;. We fix w outside of a null set such
that L}™ — L; in Mp(R) as m — oo. For an open set U, Ly(U) < liminf,, o L} (U)
(a consequence of the Portmanteau theorem). From (1.6), we have L?’"’(Zt) = 0 for
all m > 1, which implies that L(int(Z;)) = 0. Moreover, X (¢,z) > 0 implies that
Ao X (t x)e AmX(B2) 5 0 as m — oo, so for € > 0, Ly({x : X(t,x) > €}) = 0, and hence
Li(Z§) = 0. Since L(int(Z;) U Z¢) = 0, we must have supp(L;) C BZ;. O

Proof of Theorem 1.5. To prove (b), by Theorem 1.4 it is enough to show that Ng((L; x
Ly)(Rh)) = lim, 00 No((L}™ x L} )(h)) for a sequence \,, — oo, which we choose to be
the sequence from Theorem 1.1 on which Lg\" — L, almost surely. Because L; = 0
when X; = 0, we can work on the probability measure INy(-| X; > 0). For bounded
and continuous h : R? — R, |(L}" x L})(h)| < ||hllec L} (1)2. By Theorem 1.1, L (1)
converges in probability and in £2(INo(-| X; > 0)) to L(1), which implies that L} (1)?
and hence (L}" x L}")(h) are uniformly integrable (see, e.g. Theorem 4.6.3 of [4]). We
can therefore exchange limit and expectation, giving

No( lim (L x L)(h)) = Tim No((L x 137)(h)).
Since L? — Ly in Mp(R) and h is bounded and continuous, the integrand on the left
hand side is equal to (L; x L;)(h), which gives the result. By a Monotone Class Theorem
(e.g. Corollary 4.4 in the Appendix of Ethier and Kurtz [5]), the same holds for all
bounded and measurable h.
We now turn to part (a). Let ¢ : R — R be bounded and Borel. We recall from the
Introduction (see (1.5)) that Proposition 4.5 of [13] states that

lim % B, (L7 (9))

A—00

= Cua [ otan + Viyexp (3 [Pl 20 = ) Xolun) ) o) din(z) X
(4.2)

(The fact that the constant appearing in Proposition 4.5 of [13] equals C 4 is implicit in
the proof.) The proof uses the Palm measure formula for X; under PX0 ; see Theorem 4.1.3
of Dawson-Perkins [3]. The corresponding Palm measure formula for the superprocess
under Ny is in fact simpler, and the same proof shows that

Jim No(23(9) = Cuat™ [ 6(vVEz) u(2) dm(2). 43)

Consider now a bounded and continuous function ¢; we can also clearly assume that
¢ > 0. By Theorem 1.1 (under INy), L} (¢) converges in £2 with respect to the probability
measure Ny (X; € -| X; > 0), which implies that it also converges in £!, allowing us to
exchange limit and expectation in (4.3), which gives part (a) for bounded and continuous
¢. This extends to all bounded and measurable ¢ by a monotone class argument (as
above for part (b)). Finally, it is clear that both (a) and (b) hold for general non-negative
functions by the Monotone Convergence Theorem. O

We now describe how to ascertain the existence of L; when X; is a super-Brownian
motion under P))((0 via the cluster representation. In particular, we recall (1.15) and
(1.16). Let Xp € Mp(R) and ¢t > 0.

Proof of Theorem 1.1 for Pfgo. Let N,x1,...,on, X}, ... X}V be as in the cluster decom-
position (1.16). For A > 0, define the measure L7 via (1.6) using X;. Fori=1,..., N, let
Li”\ denote the measure defined in (1.6) corresponding to XZ. By Theorem 1.1 for IN,
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and translation invariance, N,, (X/ € -| X/ > 0)-a.s. there exists L! such that L\ — L,
in Mp(R) in measure. Define L; € Mp(R) by (1.17). That is,

dLi(z) =Y 1(D_X(t,x) = 0) dLj(x).
i=1  ji
Let ¢ : R — R be bounded and continuous. We will show that
L}(¢) — Ly(¢) in probability as A — oo. (4.4)
Once we establish (4.4), the proof of Theorem 1.1 for INy applies and shows that Lf‘ — L

in probability in Mr(R) as A — oo. With the exception of £? convergence, which we
show afterward, this proves Theorem 1.1 for P))fo.

Turning to (4.4), we will argue conditionally on (N, z1,...,2zy). That is, we argue
under the regular conditional distribution for (X},..., X)) given (N, x1,...,7x). As
such, we treat N > 1 and z1,...,2y € R as fixed, and X},..., X}¥ are independent
random measures with respective laws IN,,(X; € -|X; > 0) fori =1,...,N. Let F

denote the expectation of a probability realizing this conditional representation for X;.
Expanding L;(¢) in terms of the clusters, we have

LX) = / N0 X (1, 2)e MO () d
N

_ / 2N lz Xi(t,2)
=1

N
:Z/)\Q)‘OXi(t,x)e*)‘Xi(t’m) {e—/\Z#i X162) ¢(2) | da
i=1

e AT Xi(t””%(;v) dx

N )
_ ZL?A@ ) e”\ZflV(t")), 4.5)
i=1

where we define Z}(t,z) = Dt X (t,x), in which the indices are understood to sum

from 1 to N. Using this notation, L;(¢) = Y.~ | Li(¢ - 1(Zi(t,-) = 0)). Thus by (4.5), to
prove (4.4) it is clearly enough to show that forany 1 <:¢ < N,

Li* (¢ e MNE)) 5 Li(g - 1(Z(t,-) = 0)) in probability as A — oo. (4.6)
Without loss of generality, assume that A > 1. Let 1 < ) < A. Then
L (¢ e MM D) — Li(g - 1(Zi (¢, ) = 0)))
S|LiMN ¢ - (e AN I — e NINEN)| 4 |LiN (g e TN INED) — Ll e N AN (D))
+|Li(¢ - (e NN —1(Zi (¢, ) = 0)))]
<N @lloo|LiM e ENEIL(ZE (¢, ) > 0))] + [Li (¢ - e M INED) — Li(g - eV Zn(t))]
+ {16 ]|oo L (e AN EI1(ZY (2, ) > 0))

=t[[pllc R (N, A) + Ra(, N') + [[$lloc R3(X', A). (4.7)

We first consider R;. Since X; and Z§(t,-) are independent and L; is a measurable
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function of X}, conditional on X} we have, forall A > 1and 1 < )\ < ),
BN X) = | E(e_A/ZIIV(t’I)l(Z}'V(t,x) S 0)) | X5) dLi @)

/E TN Ry XD (N X (¢, 2) > 0)) AL ()

J#i
<Z/]N (XD (X (1, 2) > 0)| XI > 0) LI (x)

J#i
= N, (X{ > 0) / IN,., (e X' () — (X7 (¢, 2) = 0)) dL{* ()
J#i
= (t/2) Z/]N (1= 1(X(t,2) = 0)) = N, (1 — e XX ED) gL ()
J#i
= (t/2) Z/V (x — ;) Vtx(x—mj)dLi’A(:c), (4.8)
J#i

where in the second last line we have used (3.11), and the last follows from (3.8), (3.10),
and translation invariance. We apply (3.15) to the integrand and take the expectation of
the above to obtain that

E(Ri(N,\) < ¢ 120y @0 (£ (1) X7 > 0)
_ N =L@ DN, (LEM1)) (by (3.11))
S C(t,N)A/ (2/\0—1)7 (4.9)

forall A > 1and 1 < ) < A, where the last inequality is by Theorem 1.5(a) and the fact
that L2*(1) — Li(1) in £2(IN,,) (from Theorem 1.1). Next we consider Rs. Note that we
can expand and bound this term in exactly the same way as we did R; in (4.7) but with
Li replacing L” Taking the expectation and proceeding as above then gives

N —
E(Rg) I t3/2 )‘U]N (Lz( )))\/7(2)\071). (410)

Fix § > 0. By (4.9) and (4.10) and Markov’s inequality there exists 5\(5) such that for
N > \(6),
P(Ry(N,\) > 6) + P(R3(N, \) > ) < C'(t, N)N'~ o= /5, (4.11)

Now consider Ry (¢). Since ¢ - e~ Z¥(t) is a bounded, continuous function for all \' > 1,
by Theorem 1.1 for IN,.., Ra(¢, \') — 0 in probability as A — oo for all \’ > 1. From this
and (4.11) we conclude, by choosing A’ < ) sufficiently large, that (4.7) converges to 0
in probability as A — co. As we noted in (4.6), this is sufficient to prove the result.

It remains to show that L} (¢) — Li(¢) in L?(Pg,) for all continuous and bounded
functions ¢. Let ¢ be such a function, and suppose that X; is realized as in (1.16) under
a probability P5\ . Under Pg (-|N), from (4.5) and (1.17) we have

N ‘ 2
(LM6) = Lu(9))? = (ZL“ ) ) L (1(Zig (1) = 0) - ¢>)

i=1
N
NI LA 0 - Bz ) =00 @12)

We recall that X}, ... ,X are iid with distribution N (X; € -|X; > 0), where X, =
Xo(+)/Xo(1) and Nx, (-) = [ IN,(-)dXo(x). This implies that the N summands in (4.12) are
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identically distributed; in particular, conditional on NV we define identically distributed

random variables ef\/,k >0,fort=1,...,N, by
i —A\ZL (¢, i i 2
ei\f«,/\ _ [Lt’)‘(e AZy (t,) @) — LY(1(Z4(t,-) = 0) - ¢)] . (4.13)
By (4.6), efv’A converges to 0 in probability as A — co when conditioned on (z1,...,zn).
However, one can integrate the conditional probabilities over (x1,...,zy5) € R to

determine that

e;” = 0 in probability under P{ (-| N) as A — oo. (4.14)

It is clear from (4.13) that for all A > 0,
NN < 2|| 3 (LN + Li(1)?) Vi=1,...,N,YN > 1. (4.15)

By Theorem 1.1 for Ny, L{*(1)> — Li(1)? in probability under Ng, (X, € -|X, > 0)
and hence under P (-|N). Furthermore, since LM1) — Li(1) in £2(Ng, (-| X, > 0))
(by Theorem 1.1 for Ny), it follows from Cauchy-Schwarz that L:*(1)2 — Li(1)? in
L'(Ng, (-] X; > 0)); since X/ has distribution N (X; € -| X; > 0) under P (-| N), this
implies L;*(1)2 — Li(1)? in £1(Pg (| N)). Hence {2[[¢||loc(Li*(1)% + Li(1)%) : A > 1} is
uniformly integrable. Thus by (4.15), {eiv A > 1} is uniformly integrable, and by (4.14)
we have £! convergence. That is,

EX (e N) =0 as A — 0. (4.16)

(2

Conditioning on N = n and summing over n € IN, by (4.12) and Fubini’s Theorem we
have

EX, (LX) = Li(9))?) < > PR (N =n)n > _ EX (e} | N =n).

=1

Since B (e; | N) < 2|l B (LyN(1)? + Ly(1)?) < C(t,¢) for all A > 1, for some
constant C(t,¢) > 0 (by uniform integrability), the nth term in the above is bounded
above by C(t, ¢) P))((O (N = n)n?. Dominated Convergence therefore allows us to exchange
limit and summation in the above, which by (4.16) gives the result. O

Proof of Theorems 1.8 and 1.9. The proof of Theorem 1.8 is in fact implicit in the above
proof of Theorem 1.1 for Py . Conditionally on the number of clusters N, L; was defined
under P}fO by (1.17), so by construction it has the claimed conditional representation.
The proof of Theorem 1.9 is virtually identical to that of Theorem 1.8, except in this
case we already know that L; exists and Lg\ — Ly in Mg(R). One can then decompose X;
in terms of the different contributions and show that L, has the desired representation
using the same argument as appears above, making the obvious changes between the
law of super-Brownian motion and canonical measure where necessary. O

As we have commented on, the expression in Theorem 1.4, which is the same as (1.9)
in Theorem 1.5(b), is finite for all bounded h, despite the appearance of non-integrability
(since Ay > 1/2). Proposition 1.6, which we restate here for convenience, provides a
useful upper bound on second moments which is our main tool for studying L;. The
bound is not difficult to obtain. Its derivation relies only on trivial upper bounds and
several changes of variables. Recall that EY denotes the expectation of a standard
Ornstein-Uhlenbeck process Y with Yy = z.
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Proposition 1.6 (Second moment bounds under INy). For a non-negative Borel function
h:R?2 >R,

INo((Ls x L;)(h)) < C%, / ~2Xo U/E <exp( /log(t/w)F(Yu)du>

AVt 505t j10) s VYiog(t/w) + V(22 — Zl)))%(zl) Yo(z2) dm(21) dm(zz)} dw.
(1.10)

Moreover,

C?,6?
No(L(1)?) < 11_4)\0t1 2o, (1.11)

Proof. Let h : R? — R be Borel measurable and non-negative. We use the formula for
INo((Ly x L¢)(h)) given by (1.9). We recall that p(z1, 22) < 1 and use this bound, and we
bound above by using V,>°°*°(x, y) > V.>°(x) in the exponential. This gives

Wo((Ls x L) (h))

<Ci, /Ot(t —5) 2 [//E(?(exp (— /O Vi (Wt —sz1 + By — Bu)du) )

X h(Vt — s 21 + Bs, Vt — 5 20 + By) tho(21) Yo (22) dm(z1) dm(zz)} ds.

Since z; ~ m, v/t — s z; has a normal distribution with variance ¢t — s, and we interpret it
as the Brownian increment B; — B;. Hence the above is equal to

c? / 2A°[/E0 (exp( / Vi, (B, —Bu)du> X h(By, V't — 520 + By)

o B ) e (e[ s
=C?, /Otw% [/ EY (exp ( /wt V.o (W) du) h(Wi, Vw 2o + Wy — W)

X o ( ) ¢0(22)dm(22)>}dwa

where in the second line we have used w = ¢t — s and defined W,, = B; — B;_,,. Hence W,,
is a standard Brownian motion under PV. Recall that V,>°(x) = u~'F(u~'/2z). Applying
this and letting u = €” in the integral, we obtain that the above is equal to

t logt
05.4/0 w20 [/ E(‘)/V(exp ( /1 F(e "?W,) dr) h(Wy, Vw 2o + Wy — W)
ogw

X %(\f) Yo (22) dm(zg))]dw.

We now define a stationary Ornstein-Uhlenbeck process Y (with stationary measure m)
by Y, = e~ "/2W,» for r € R. Recall that we denote its law by EY . The above is therefore
equal to

t logt
05_4/0 wk[/EY(p(/l F(n)du)h(x/mgt,ﬂmmfmgtmymgw)

ogw

% 0 (YViog ) to(22) dm<z2>)] du.
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By stationarity of Y, we can shift time by logw in the above to obtain

t log(t/w)
012.4/ w2 {/ EY (eXp < — / F(Yy) du)
0 0

h<\/¥}/10g(t/w)a \/622 + \/g}/log(t/w) - \/EYE)) X ’(/}O(Y0> ¢0(22) dm(z2>>:| dw.

Yy has distribution m, so we condition on the value of Y, and call it z;. This gives the
desired expression and proves that (1.10) holds. The proof of (1.11) is a consequence of
the following lemma.

Lemma 4.2. Fort > 0,
/ PY (p¥ > ) 4o (2) dm(z) = e,

Returning to (1.11), we apply (1.10) with h = 1. Separating the integrals, we obtain
that

No(Lal1)?) £ 200 [ w2 ([ P2 (6" > t0g(t/w) vl am() ).

where we have used f Podm = 0. The inequality (1.11) now readily follows from
Lemma 4.2, which completes the proof of Proposition 1.6. O

Proof of Lemma 4.2. Expanding in terms of the transition densities, we have

[ = wtrame) = | ( [atzw dm<y>) (=) dm(2)
= (qt, 1 @ Y0) £2(mxm) 4.17)

where (-, ) £2(mxm) denotes the inner product on L%(m x m) and ® is the tensor product
of functions. Recall from that Theorem 2.1(a) that the eigenfunction expansion (2.1)
converges in £?(m x m) to g(-,-), and that ||¢g| z2(,n) = 1. Thus by the above and Fubini’s
theorem, (4.17) is equal to

Z e (b, @ Y, 1 ® P0) £2(mxm) = € (1o ® o, 1 @ 1) £2(mxm)
n=0

= e—*ot/wg dm/z/JO dm = e 0!,

where the first equality follows from orthogonality of the eigenfunctions, which implies
that [ ,%odm = 0 for all n > 1. The last line uses [¢odm = 6 and [¢§dm = 1. O

We now use the bounds in Proposition 1.6 to derive the remaining properties of L;
and their consequences. In order of presentation, we now prove Theorem 1.3, Theorem
1.7, and Theorem 1.2.

Proof of Theorem 1.3. Recall that for p > 0, h,(x,y) = |r — y| P. We first establish that

No((Ls % L) (hy)) < 00 (4.18)
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for all p < 2 — 2. Applying (1.10) with h,, we have

INo((L¢ x Lt)(hy)) <C3 4 /Ot w2 U/ EY <exp < - /Olog(t/m F(Y,) du>)

X |vw(za — 21)| 7P o (21) 1o (22) dm(z1) dm(zg)} dw

. [ [ )

X |21 — 21| Po(21) o(2z2) dm(z1) dm(zz)] dw.

Recalling (1.4), the expectation is equal to the survival probability PZ (pF > log(t/w)),
so the above equals

012.4/ T2 p/z[// (p"" > log(t/w)) |21 — 22| " b0 21)¢0(Z2)dm(21)dm(22)]dw

Applying (2.5) and (2.8), both with § = 1/8, this is bounded above by

t
O/ w™ e/ [// |21 — za| PN w0 e/ e/ din(2y) dm(@)} o
0
t
el T
0

The second line follows because the integrand has Gaussian tails in z; and 2o and
p < 2 —2)g < 1. Finally, the integral in the final line is finite because —\y — p/2 >
—Xo — Ag + 1 > —1, which proves (4.18). In fact, we have shown that

No((L¢ % Ly)(hy)) < C(p)tt=2ro—p/2, (4.19)
Next, we establish the same under P))((O. That is, we will show that
%, (L % L) (hy)) < 00 (4.20)

for p < 2 —2X\g. We use the cluster decomposition and argue conditionally as in the proof
of Theorem 1.1 (for Pffo) above. Suppose that P))g0 is a probability under which X; is
realized as in (1.16). Conditioning on N, zy,...,xN, by (1.17) we have

N
dLy(x Z

Thus we obtain that

/ & — y|"PdLy(z) dLi(y)

s//z—yP(idw))(idm(y))

_Z// |z — y|"PdL (x) dLi(y +ZZ//‘x_y\_de ) dLi(y). @.21)

i=1 j#i

Recall that the X are independent with distributions IN,,(X; € -| X; > 0). By (3.11) and
(4.19), we therefore have

N, (/ |z —y| PdLi(z) dLi(y) ‘X} > ()> _ O(p) P2 (24)1 = Oy (p) 12002,
(4.22)
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which provides a bound for the summands in the first term of (4.21). We now consider
the mixed integrals in (4.21), that is, the summands in the second term. Without loss
of generality, let ¢« = 1 and 5 = 2, and denote their (independent) distributions by
N (X} €] X} >0),IN2 (X? € -| X? > 0). Because the integrands are non-negative, we
can change the order of integration and obtain

N ® N2, (/ lx —y| PdL} () dL? (y) ‘ X} >0,X2> 0)

o, ([ (1o ol rarzn | x2 > 0) ario

To compute the inner expectation we apply translation invariance and (3.11), which
gives

X} > 0> (4.23)

N2, (/ ly — x| "PdL?(y) ’Xf > 0)
= /2o ([ Iy = al Pty - a2))
— (t/2) N, (/ ly—z+ x2|_det(y))
= Cralt/Dr [ Vs = (o = 2)| Pin(a) dm (o),

where the last line follows from the mean measure formula (1.8). By (2.5) with § = 1/4,
we have that ¢p(z2) dm(z2) < ce=*2/4dz,. Thus the above is bounded above by

Ct=ro /(|\/£z —(x—ax9)|7PV 1)6_22/4 dz
ot /(|w (=) PV L2 M gy
< Ot 1/2 / |w — (2 — 22)| 7P 1}y (2—a) <1 dw + Ctl=2o /t71/267“’2/4t dw
= O (p)tt/* 20 £ Ot < 0.
By the above bound and another application of (1.8), (4.23) is bounded above by
O’ (p)tH/ >0 Ctl—ﬂ N (LL(1)]| X} > 0) = Ca(p) [t3/2_2’\° + tH*O} L (424

We note that both (4.22) and (4.24) are independent of the points z1,...,zx. Therefore
by these bounds and (4.21) we have shown that

EX, (L x Ly)(hy) | N) < Ci(p)Nt*~2207P/2 4 Cy(p)(N? — N) [ti”/?—% - t2_2’\°} :

Taking the expectation above with respect to N, which we recall is Poisson with mean
2Xo(1)/t, gives

B3, ((L % Lo) (hy)) < C1(p)Xo(1) 1172907/ 4 Cy(p) Xo(1)% [¢71/2720 44720 < ox,
(4.25)
which proves (4.20).
Under both Pfgo and Ny, we have shown that the p-energy of L; has finite expectation,
and hence L; has finite p-energy almost surely, for all p < 2 — 2);. By the energy method
(see, for example, Theorem 4.27 of Moérters and Peres [12]), this implies that dim(BZ;) >
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2 —2)p a.s. on {L; > 0} under Pfgo and INy. Combined with Theorem A, this completes
the proof of Theorem 1.3 for P))((O. To see that the upper bound on the dimension holds
for INy follows from the cluster decomposition. Consider X; under ng . In the cluster
decomposition of X;, the probability that NV = 1 is positive. Conditioning on this event,
X, is equal to X}, which has law No(X} € -| X; > 0). Because dim(BZ;) < 2 — 2\ a.s.
on this event, we therefore have N ({dim(BZt) <2-2)\} \ X > O) = 1. In particular,
this implies that Ny ({dim(BZ;) < 2 — 2\o} | Ly > 0) = 1, since {L; > 0} C {X; > 0}. We
note that conditioning on the event {L; > 0} is valid under both P5 and INo by Theorem
1.2(a). This completes the proof. O

Proof of Theorem 1.7. To see part (a), we note that (4.2) gives an expression for
limy 0 B, (L} (4)). On the subsequence {\,}32; from Theorem 1.1, L}"(¢) — Ly(¢)
a.s. for bounded and continuous ¢, so it is enough to show that lim,, E))go(Lg\" (9)) =
E¥, (lim,, o0 L} (¢)). By Theorem 1.1, L} (¢) converges in £2(P5 ) and hence is bounded
in £2(Pg). It is therefore uniformly integrable, which justifies the above exchange of
limit and integration. This proves the result for bounded and continuous ¢. We extend
the moment formula to bounded measurable functions by a Monotone Class Lemma and
to non-negative measurable functions by Monotone convergence.

We now prove part (b). Suppose we realize X; under a probability P))((U such that
(1.16) holds. Conditionally on N, by (1.17) we have

N 2 N N
(2 < (o) =S rie2+ Y S nmn)
i=1 i=1 i=1 ji
The clusters are independent with laws N (X} € - | X{ > 0) = (t/2)Ng, ({X; > 0, X} €
-}), the equality by (3.11). Thus, applying Theorem 1.5(a) and Proposition 1.6(b) to the
above and using independence, we obtain

Ex,(L(1)? | N) < CN(t/2)t' 722 + C(N? — N)(t/2)*t~ . (4.26)

As in the proof of Theorem 1.3, we take the expectation with respect to N, which has a
Poisson(2X,(1)/t) distribution. This proves part (b). O

It remains to prove Theorem 1.2. We will derive part (a) below using Proposition 1.6;
part (b) requires a few lemmas which we now discuss.
We say that L; has an atom of mass ¢ > 0 at « if L;({z}) = ¢. We decompose L, as

Li = L; + vy, (4.27)

where it is atomless and v, is strictly atomic. We begin with an elementary observation
which provides an upper bound for the mass of the atoms of a measure. Let M € IN.
Let I = [-M,—M +27"], and for k = 2,3...,2M2", define the dyadic interval I}’ =
(—M + (k—1)27",—M + k27"]. Then {I} : k < 2M2"} is a partition of [-M, M] into
disjoint intervals of length 27", The following lemma is elementary.

Lemma 4.3. Fix M € N and suppose that p is a finite measure supported on [—M, M|
with decomposition i = p + v, where p is atomless and v = ), _; ¢;0,, is strictly atomic.
Then for everyn > 1,

2M2™
>R =
k=1 i€l

The next lemma gives an upper bound for the second moment of L; on a ball. We
denote by B(z,r) the ball of radius r > 0 centred at € R. We recall s*(d) from Theorem
2.1(c); in what follows we use § = 1/8, and s* denotes s*(1/8).
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Lemma 4.4 (Second moments on balls). There is a constant Cy 4 > 0 and t-dependent
constant Cy 4(t) > 0 such that for all z € R and r < e s"t,

INo(L¢(B(z,7))?) < Cya [t_)‘(’rQ—”“’ POW(W4t/3 € B(z,r)) + t—3ro /2, P (W, € B(, r))}
< Caalt) [7“3_2)‘0 n r2] 7

where W is a standard Brownian motion under P}V

We delay the proof of this lemma to the end of the section and first prove Theorem
1.2.

Proof of Theorem 1.2. First consider part (a). For canonical measure, via the second
moment method we have

(No(L(1))? CR6%2  1-)
2

> =
]NO (Lt(].) > 0) jl INO(Lt(l) ) - 012.4621)1_2)\0(1 _ /\0)_1 t ’

where we recall that f 1o dm = 6 and we have used Theorem 1.5(a) and (1.11). We recall
that INo (X, > 0) = 2/t, which implies that Ny (L; > 0|X; > 0) > 152¢. This proves the
result for INy.

To see that Pj’f0 (Ly > 0) > 0, we realize X; under Pffo via a cluster decomposition.
The event that the number of clusters N is exactly one has some positive probability
p > 0; restricted to this event, X; is equal to a single canonical cluster conditioned on
survival (as in the proof of Theorem 1.3), which we just showed has probability at least
1220 that L, > 0. Hence P (Ly > 0) > pi5re > 0.

We now prove part (b). First consider L; under INy and recall the decomposition (4.27),
ie. L; = it + 14, the latter strictly atomic. Fix M € IN and consider the restriction of L;
to [-M, M], ie. dLEM)(x) = 1j_n,nm)(z) dL¢ (), with decomposition LgM) = Eﬁ”” + z/t(M).
Note that the radius of the dyadic intervals is 7(I*) = » = 2-(*+1), By Lemma 4.4, we
have

2M2™ 2M2™
M M
No ( > L >(I:§>2> = 3 o (£ k)
k=1 k=1

<C(t)2Mm2" {(2*(”+1))372,\0 i (27(n+1))2]
< C(t)2M [(gfn)%zxo 42

—0 as n— oo

because 2 — 2)\y > 0. Moreover, by Lemma 4.3, the first expression is greater than or
equal to the expectation (under INy) of the sum of the squares of the atoms of LgM). The
above implies that this expectation must in fact be zero, so yt(M) = 0 INg-a.s. As this holds
for all M, v =0 and L, is atomless under INy. To obtain the result under PXO, we note
from the cluster decomposition and (1.17) that (conditionally) L; is a sum of N measures
which are atomless by the above, and hence is atomless. O

Proof of Lemma 4.4. We apply (1.10) with h(z1, 22) = 15(4,r)(21) 1 B(z,r)(22). This gives

INo(Li(B(z,7))?)

(
_ c/otwm U EY <exp <— /Olog(t/w) F(Yu)du>

X 1500 (V¥ og(t/0) ) 1 B2y (VEViog(t/w) + VW (22 — 21))) Yo(21)%0(22)dm(z1)dm(zz) | dw.
(4.28)
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We now divide the above into two cases depending on the size of w. We first consider
the singular case, where w is small.

Case 1: w < e 5 t.

We interpret the exponential in (4.28) as the probability that Y survives until time
log(t/w) when it is subject to Markovian killing with rate F(Y,,). Because this probability
is equal to the integral of the transition density over all of R, the portion of the integral
corresponding to w € [0, e’s*t] equals

C/Oes*t e [/// Quog(t/w) (21,9) 1B(ar) (V) 1p (o) (VEY + V(22 = 21))

X Yo(z1) Yo(z2) dm(z1) dm(z2) dm(y)} dw.

e "t
< C/ w*2’\° |:/// 67>\0 log(t/w) ezf/8ey2/8 ]-B(x,r)(\/iy) 13(%7“)(\/%:[/_’_ \/E(Z2 _ Zl))
0

X 1 (21) Yo(z2) dm(z1)dm(z2) dm(y)} dw.

e t
< Ct*AO/ w*AO/e”Q/Sls(x,m(\/iy)
0

x [ / / A g (Vi + (22— 21)) dm(z1) dm(z) | dm(y) de.
(4.29)

The first inequality uses (2.2) with 6 = 1/8, which applies because log(t/w) > s* for all w
in the above integral, and the second uses (2.5), both with § = 1/8. In the integral in the
last line we collect all the Gaussian terms. The square-bracketed term is equal to

C// lB(xyr)(\/fy + Vw(zz — 21)) e#1/4e73%2/8 () dzy
= [ (Vi + VB2 0

We have used the convolution property for independent Gaussians. We define Gaussian
random variables g; ~ N(0,4t/3) and g ~ N'(0,10/3). Substituting the last expression
into (4.29), we obtain

*

e 7t
cro [ w { [ 1800 (Vi) Loy (Vi + az) 7050 00 g dy] duw
0

e ° t
= ('t / w {P(gl € B(x,7),91 + Vwgz € B(%T))]dw
0
et
< Ot o / w™Ao [P(gl € B(z,r)) P(v/wgs € B(0, 27"))] dw
0

_s*

e t
= Ct_’\OP(gl € B(x,r))/ w_’\OP(gg € B(0,2rw_1/2))dw. (4.30)
0

Suppose that 472 < e~*"t. If 2rw='/2 > 1, we bound the probability in the integral above
by 1. If 2rw—1/2 < 1, the probability is simply bounded by the diameter of the ball,
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4rw~1/2. Thus (4.30), and hence (4.29), is bounded above by

4r? e "t
Ct ™ P(g; € B(z,r)) {/ w0 dw + 47’/ w>‘°1/2dw]
0 472

2—2)\o 4r

— Ct™™P(g, € B 41202 4r2)~Co=1/2) _ (4o=5"~(ho=1/2)
(o € Bl |10 () (1)

< Ct™2P(g1 € B(z,r))r2 2, (4.31)

Finally, note that if 472 > e~*"t, then (4.30) is bounded above by

e t
Ct=2P(g; € B(%T))/ w N dw < Ct™ 0 P(gy € B(x,r))(e™ )10
0
< Ot P(g, € B(x,r))r?>=2%,

so the upper bound for (4.29) obtained in (4.31) holds in this case as well.

Case 2: w € (e™° t,1].

In this case we simply bound the exponential term in (4.28) above by 1, effectively
ignoring the killing, in which case Yiyg(;/w) ~ m. We also use (2.5) with § = i. Hence the
contribution to (4.28) from the w € (e*S*t, t] case is bounded above by

C/ets*t w0 {/// 150, (V) 1 (e, (Viy + Vw(za — 21))

« eFi/4 o7 /4 dm(z1) dm(zz) dm(y)} dw

< C/ets*tw_”” {/// 150, (V) 1 (e, (Viy + Vw(ze — 21))

x e /4 e B4 dy dzy dm(y)} dw

t 2
= C/ S*twm” {//15;(%,7-)(\/51/) 15z, (Viy + Vwz) e = /2 dz dm(y)}dw

t
< Ct™P(g3 € B(a:,r))/ w0 P(gy € B(0, 2rw™"/?)) dw.
e—s"t
In the above, g3 ~ N(0,t) and g4 ~ N(0,1). The third line follows by the convolution
property of Gaussians. We again bound the probability in the integral by the size diameter
of the ball, which gives the following upper bound for the above:

t

Ct~™P(g3 € B(,r)) 4r/ w2012 gy,

eS¢t
< Ct 2 P(gg € B(x,r)) 4r (e75 t) "2 oF1/2

= Ot~ H1/2p(gs € B(x,r)) . (4.32)

By combining (4.31) and (4.32) and interpreting the Gaussian probabilities in terms
of Brownian motion, we obtain the first inequality of the result. The second bound is
obtained by bounding the Brownian density above by its maximum value. O

5 Proof of Theorem 1.4

The proof of Theorem 1.4 is split up into two main parts. In the first, we obtain
representations for No((L} x L}')(h)) in terms of solutions to (3.4), in particular the
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family VA introduced in Section 3. In the second part, using these representations, we
establish convergence of No((L} x L} )(h)) as A\, X' — oo. The proof of a technical lemma
(Lemma 5.5) is given in Section 6.

5.1 PDE representations and preliminary bounds

We begin by deriving an expression for second moments of L} under the canonical
measure. In particular, we study No((L)}x, L} )(h)) for A, X’ > 0. The formula we obtain

is naturally suggested by a branching particle heuristic. Its proof uses PDE methods. Let

B

2
EP denote the expectation of a Brownian motion started at x. E(x ])3 denotes the law of

1

Y
two independent Brownian motions B! and B? started from points x and y respectively.
We recall the definition of Vt’\”\ from (3.20).

Proposition 5.1 (PDE representation for second moments). Let  : R? — R be a bounded

Borel function and X\, \',t > 0. Then

t 1 2
No((L} x LY )(h)) = (AN)20 / Ef (Eéi,af [h(Bs + Bl B,+B.,)

X exp (— /O VAMN(BL, + B, — By, B2, + B, — By) du)

t—s
X exp ( — VAN(BYL, B+ B, — BE,) dr)
0

t—s
X exp ( / VIM(B2+ B, — B>, B?) dr>Dds.
0

The proof of Proposition 5.1 requires the following lemma.
Lemma 5.2. Let ¢ € Mp(R) and ¢1, p2 € L(R) be non-negative and continuous. Then

N (XXl ) = [ (o (- [TV uma as)
< 11 Ef [exp ( /Ots Vi s (Bs + By) dr) 0i(Bs + Bz'_s)])ds.

i=1,2

Proof. Let €1,e5 > 0 and ¢, 1 and p, be as in the statement. Viewing ¢; and ¢, as
the density functions of the finite measures they induce (ie. ;(A) = [, @i(x)dz), let
V20 denote the solution to (3.4) when ¢ = ¢ + €11 + 292 € Mp(R). By (3.3) and
the discussion below (3.4),

]No(l _ e*Xt(AP+61<P1+62<P2)) — Vt%él,ez (0)

We differentiate this expression once with respect to ¢; and once with respect to €;. The
derivatives of the inner expression of the left hand side are bounded above by integrable
quantities (i.e. X;(p1) and X;(1)X:(p2)) so we can take the differentiation inside the
expectation in the probabilistic representation, and the derivatives of the right hand side
exist. The resulting equation is the following:

2
O e (0). (5.1)

N (X X 7Xt(ap+61t,01+624/72)) = —
0 ( Xt(p1) Xi(pa)e De10ey !

We note that the limit of the left hand side as €1, €2 | 0 is the desired expression. We
now obtain an expression for the first derivatives of V,”"“**“?(0) with respect to ¢; and es.
Consider the following partial differential equation:

ou A
87; = St — VP y, for(t,z) € (0,00) xR,  us — 1 ast 0, (5.2)
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where the u; — ¢ in the sense of weak convergence of measures. The above can be
obtained heuristically by formally differentiating (3.4) with respect to ¢; when the initial
conditions are ¢+ €191 +e€2¢02. By Lemmas 2.3 and 2.5 of [14], (5.2) has a unique solution,
which we denote by Utl"el’”, which satisfies

€1
V;(p,ﬂ,ez (:C) — ‘/;80,0,62 (117) _|_/ U'tl’e’62 (x) de.
0

Thus U0 = %V?’E“EZ. We can apply the same argument to obtain a similar rep-
resentation for %Vﬂ”el’”, which we denote by U/*">. Both U;"“""® and U*"*** have
Feynman-Kac representations; for example, see Theorem 7.6 of Karatzas and Shreve [8]
(on p. 366). For ¢ = 1,2 we have

) t
Uy (z) = EB (goi(Bt) exp (—/ V22 (By) ds)) . (5.3)
0
We take the expression for ¢ = 1 and differentiate it with respect to ¢;. We obtain
_ 82 90761,62( )
862861

t t—s
x / EF <soz<Bs + B2 ) exp ( / Ve By B?) dr) ds>),
0 0

where the final line follows from another application of (5.3), this time with ¢ = 2. First
we note that all the terms are non-negative, so we can take the internal integral over time
outside the expectation. For s < ¢, the integrand then describes one Brownian motion
started at 0 and run to time ¢, and a second which branches from the first at time s and
evolves independently. By applying the Markov property at time s we equivalently view
it as a Brownian path that branches at time s into two independent Brownian motions
B' and B? which themselves run for a duration of t — s. This formulation combined with
the independence of the Brownian motions gives us

0? - )
Ve () _/ Ez (ex <_/ V%Zl,ez Bu ds)
G0V (z) ; P ) t (Bu)

X . t—s )
< ] B¥ [soi(Bs +Bj_,)exp ( /0 VP (g, +B¢)dr> }ds).

i=1,2

The derivatives in €¢; and e» are one-sided at 0 so we cannot exactly evaluate at €; = €5 = 0.
However, V;”"“"?(z) is continuous in ¢; and ¢, and the integrand is bounded above by
lo1]lsollp2]loc SO We can apply bounded convergence. As e, ez | 0, V2% — V2 by
Lemma 2.1(d) of [14]. We also take €1,¢2 | 0 in the left hand side of (5.1) and apply
Dominated Convergence. Evaluating at x = 0 gives the result. O

Proof of Proposition 5.1. We will prove the result for functions of product form, ie.
h(z,y) = ¢1(x) p2(y), and then use a monotone class theorem. Let 1,22 € R and
A, A > 0. Consider the expression from Lemma 5.2 with ¢ = A\d,, + \'d,,. For now we
simply let ¢; and ¢, be functions satisfying the assumptions of Lemma 5.2, but we will
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shortly choose them to be approximate identities at z; and z5. Applying Lemma 5.2, we
have

t s
No (Xi(i01) Xi(pa)e M ()= Xtz ) /O EY (exp (—/0 V2 (By — w1, By — 2) du>

i t—S ’ . . .
< [ B {exp (—/0 VMY (Bs + Bl — 1, By + Bl — a3) dr) ©i(Bs + B!_,) D ds,
i=1,2
(5.4)

where we have also used (3.21), ie. translation invariance of VAN (z1,22). Now let
w; = ps(- — x;), where we recall that ps(-) denotes the Gaussian density of variance 0.
Let ¢1, ¢ be bounded, continuous functions and integrate ¢, (x1)¢1 (z2) multiplied by the
above over z; and z5. The left hand side is then

/ ¢1(x1) p2(22) No (Xt(pa(- — 1)) X4 (ps(- — xz))e‘AX(t’“)_’\/X(t’“D dxy dzs.  (5.5)

The absolute value of (5.5) is bounded above by

1611 [63]]c1No ( [ itoat = ey [ ot - wz))drz) , (5.6)

where the change of order of integration follows because all the terms are non-negative
once we bound |¢;(z;)| by ||$i]lcc. Now we note that

[ xutos = s = [[ Xwppstes— )y, = [ X<t7y>( [ pstei—v) dx> dy

Combined with (5.6), this implies that the expression in (5.5) is integrable and its absolute
value is bounded above by ||¢1[|co||@2 [l coINo (X¢(1)?). We note that INo(X;(1)?) < co. To see
this, first observe that E (X;(1)?) is finite and in fact equals 1+¢, which follows from the
martingale problem for super-Brownian motion (see Section II.5 of [17]). By the cluster
decomposition (1.16), Ej (X;(1)?) is equal to the mean of a Poisson random variable
multiplied by No(X,(1)?|X; > 0), and so the latter quantity, and hence INy(X;(1)?), are
also finite. Thus we can apply Fubini and rewrite (5.5) as

N (// D1(21) do(2) Xe(ps(- — 21)) X (ps (- — w2))e AN E#) =N X(E22) gy dacg) . (5.7)

As noted, the absolute value of the expression inside INy is bounded above by
|61 so||@2]| 00 X¢(1)?, which is integrable under N, for all . We take § | 0 and apply
Dominated Convergence to obtain that the limit of (5.7) as 0 | 0 is equal to

No (51_1361+/ $1(21) da(22) Xe(ps(- — 11)) Xe(ps(- — wa))e MK B =N X (Ew2) gy d$2>
B ]N0<51_i>rg+ (/ ¢1(21) Xe(ps(- — ml))e_kx(txl)dxl)
% ( [t xitont: - xz))e-”(wdm) ) (5.8)

We know that
Xils(c —2) = [ X(t,0ps(y — 23) dy = X1 ps()
Moreover, X (t,-) € C.(R) (ie. X(¢,-) is continuous with compact support) INy-a.s. and

{ps}s>0 are an approximate identity family, which together with the above imply that
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Xu(ps(-—a:)) = X (t,,) (ps(-— )] = [ Xops(ai)] <
|IX(t,)]lco- Choose K € IN such that supp(X;) C [-K, K]. On the set [-2K,2K]| we
bound |X;(ps(- — x;)| above by || X (¢, )||c. For |z;| > 2K, a short calculation shows that
| X:(ps(- — ;)| < C(K)X(1) p1(|zi| — K) for some constant C'(K) > 0forall 0 < ¢ <1/2.
Hence | X;(ps(- — z;))| has an upper bound which is a bounded function with Gaussian
tails, uniformly for 0 < § < 1/2. Using this bound and boundedness of ¢;, we can apply
Dominated Convergence in (5.8), which gives that the limit of (5.5) as ¢ | 0 equals

]NO(</¢1(331)X(t,1:) e)‘X(t’xl)dm) </¢2(:c2)X(t,x2)e’\'X(t’“)dm)).

When rescaled by (AX/)2* this is equal to No (L} (¢1) L) (¢2)). We now turn our attention
to the right hand side of (5.4). With ¢; = ps(- — x;), integrating against ¢(x1)p(xs)dxidzs,
we have

/ ¢1 X1 ¢2 X2 </ (Ef)lofz {exp <—/ Vt)ii/(Bu — 21, By —$2)du>
0

X exp ( / Vt’\;\ ~(Bs + BT1 —x1,Bs + Bi — xg)dr> ps(Bs + B,LS — 1)
0

t—s
X exp <— VMY (By+ B2 —11,B, + B? — m)dr) ps(Bs + B, — m)})ds) dzidzs.
0
Since the above is equal to (5.5), which we have shown is integrable, we can take the
spatial integrals inside the expectations. At this point we note that we are integrating a
bounded function of z; and z, with respect to the densities ps(B; + Btl_s — x;), which,

because ps is the kernel of the Brownian semigroup, is the same as viewing z; as
B, + Bj_, 5. Hence the above is equal to

t
R (EB 2 [¢1<B T+ BY ) 6a(Be + B2 y)
0
con (= [V (B B BlLrig B B Bi)
t—s
X exp <_ Vt>:2\—7'<Bl Bt 5+67B1 Bt s+6)d )
0

t—s
X exp (—/0 VMY (B2 - BL .5 B>~ B 5)dr )Dds. (5.9)

Taking ¢ | 0 and applying Dominated Convergence, we note that because BZ_S 15— B},
and ¢, and VM are continuous, the limit is equal to the above with § = 0. To

obtain the desired form we make a time reversal of the Brownian motions. Define
Bl = B! . — B! . .. We note that the B’ are standard Brownian motions and that
B! ,=B! ,, Bi=0and B! — B! , = —Bi _ .. Making this substitution shows that
(5.9) with 4 = 0 is equal to
/ Eg (Eoo) [¢1(B + Bl_,) ¢2(B. + B,
0
X exp (—/ v (B, — B, — B, B, — B, —st)du)
0
t—s , N
X exp (/ ‘/;):?—r( Btl s—r? Btl s—r +Bt1—s - Btz—s) d7’>
0

t—s
X exp (— VtA_i‘_T( Bf o T+Bt2 Bt1 o Bt2 o 7)dr)})ds.
0
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The time index of the Brownian motions now matches the time index of the function
V*A in the last two lines, allowing us to reverse the time of the integrals for a simpler
expression. To obtain the desired expression we now use (3.22), ie. Vf"’\l(a,b) =
VY (—a, —b), and relabel B to be simply Bi. This proves the result for h(z;,xs) =
¢1(x1) ¢2(x2) when ¢1, @2 are bounded and continuous. The result for general bounded
measurable h : R> — R now follows from a standard monotone class argument such as
Corollary 4.4 in the Appendix of Ethier and Kurtz [5]. O

Definition. Let F’\’/\/(s) denote the integrand in Proposition 5.1, so that the proposition
states that .
No((L) x L)) (Rh)) = (AN)?M0 / YN (s)ds. (5.10)
0

VY (s) also depends on h, but we omit this. The next lemma changes variables
to obtain an expression involving Ornstein-Uhlenbeck processes. We first introduce
some notation. For boun(/ied and measurable h : R? — R and a (continuous) path
(Bu :u € [0,5)), define W)y, (-,-) by

0

We define HY as a scaling of Vt’\’)‘/

HE (2, y) = uVh (Vaz, Vay) = VYV (2, y). (5.12)

The scaling in the following lemma cannot be done uniformly for all s € [0,¢] because
it requires A2 > (t —s)~' and N2 > (¢t — s)~'. We derive an expression for I'**'(s) in

terms of two independent Ornstein-Uhlenbeck processes which we denote Y'! and Y?2,

for which we denote the joint (independent) expectation EEY ’)/ .

Lemma 5.3. Let 0 < s < t, Ty = T1(s) = log(\2(t — s)), Ty = Tx(s) = log(\2(t — s)). Then
forall A > (t —s)~Y/? and N > (t — s)~'/2, we have

IR (s Eo <EB1 )32

1 2 /\ A

) |:E(YBlBZ (\IJBS(Vt_SYT7V YT2)
X exp ( V1 YINBL B + M (YE, - YA)) + VY (BE B 4 (Y, - Yé))d“)
x exp< / HAA YL Y 4 e/ y2 YTl))du)
X exp < - Hju/*' (Y2, Y2+ ePem0/2(yvh YTZ))du)ﬂ)

0
Proof. We begin with the expression from Proposition 5.1. We observe that \Ilg”’\s/ appears
and we may write the quantities in the first two lines as ‘I’AB’,S (B}_,,B? ). In the third
and fourth lines we apply (3.23) to obtain

’ A

FA)\ (8) = EOB <E£ O)B |:\I]B,s (Btl s?Bths)
_ T A/ 1 1 2 _ pl
X exp AVl "C(AB,N(B, + Bi_, — B;_,))dr
0

t—
con (= [ el - B2 g ar) ).
0
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We define B1 = AB;_,, and B2 = XN'B3,_,,, which are both standard Brownian motions.
Making a time change in the integrals (1e letting u = \?r or \'?r) gives

’ Bl, 32 )\.A/ TS 1
A (3) = E(? <E(o,o) [\IIB,s (/\ 1B/1\2(t—s)a N 1B§’2(t—s))
Az(tfs) , R . A - .
cexp (= [ VINABLBL + By — Blagy) du

)\,Q(tfs) , R )\/ . . .
X exp <_/O VAN LB 4 XBiz(t_s) — BYe(_s), BY) du) D

Because we have assumed \, \' > (¢t — s)~'/2, the upper bounds of integration in the
integrals are greater than 1. We now apply the Markov property for Bt at time u = 1. We
collect the portions of the integrals from the second and third lines on the interval [0, 1],
leaving the integrals from 1 to A2(t — s) and A2(¢ — s). Conditional on B!, the Brownian
motions in the integrands arguments are Brownian motions with initial position Bi. If
we denote these by BZ (in which case, essentially, B = BZH) we obtain

' AN (—17 15
D ()= 2 (B [ B (3 07 Bl s N B )
1
X exp <—/0 VAN NBL, B+ )\,Bw e — Bleg_g 1)

’ A A 5 >, :
+ Vu)\/)\ ,1(BZ 4 XB;P(t—S)—l — B§/2(t—8)—17B12L) d’u,>

2(t—s
e 1v““B1 B! A2 ~ B! d
X €xXp ; ut1 ( +)\, N2(t—s)—1 /\Q(t—s)—l) U

)xlz(tfs) A/ _ B B
X €xp (_ /0 Vo (B2 + XB}\Q(t—s)—l ~ Bln(—s)-1:BY) du))} )

(5.13)
Recall that if a process Y is defined by
Y, =e 2By

where B is a standard Brownian motion, then Y is a standard one-dim~ensiona1 Ornstein-
Uhlenbeck process with Yy = By. For i = 1,2 we let Y = ¢ "/2B%,_,. Recall that
=log(\%(t — 5)) and Ty = log(\?(t — s)). We therefore have that

B)\2(t 5)—1 = = "2V sz(t 1= e™PYE .
Expressing A and ) in terms of 77, 75 shows that

A 2o Ty /22 N oo
*BA2(t—s)—1 =e Y, XBA’Q(t—s)—l =€

N\ T2/2Y'111 :

Likewise, we express the argument of \P%’i‘gl in terms of Y and 7. We substitute u = e"—1
and apply the above in (5.13) to obtain

’ Pl H2 1 2
Y (s) = BY <Efé,a>3 [ (515 (\IfzwtsYT,% sYZ,)

1
X exp < - / VINNBL BL 4 eTV/2(YE — Y4)) + VI N(B2 + €T/ (Y~ Y2), B2) d“>
0
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) ,
o ( B / VN Py e Y 4+ MY~ V) d’)
0
Ty ,
cexp (= [Nt L i - va)e v )|).
0
We now apply (3.23) and (5.12) in the third and fourth lines. In the third line this gives

VI ey e Y 4 N (YR V)
_ Vler/2,er/2>\//)\(Yr1,Yr1 + e(Tlfr)/Z(ngz _ Yill))

— HYMYL Y+ D22 —vE)),

and similar in the fourth. Noting that V,*%(a, b) = V;%(b, a), we have obtained the desired
expression. O

We now obtain an upper bound for I'**'(s) and show that the contribution to INo((L x
L}")(R)) from the integral over [t — ¢, ] vanishes as (e, \') — (0, 00).

Lemma 5.4. Suppose A\t > 1, and let h : R?> — R be bounded and measurable. There is
a constant Cs 4, > 0 such that the following hold.
(a) For all \' > (t —s)~1/2,

(AN)220| DM ()] < Csa|hllsct ™ (E — 5) 7.

(b) For0 < e <t,

t
()\A/)Q)\O/ |F)\7>\/(S)‘d5§ 05‘4“h||oct—)\0(61—)\0 _"_)\/—2(1—)\0)).
t—e

Proof. To begin we use |h| < ||k and apply monotonicity (Proposition 3.1(a)), ie.
VA(x), VY (y) < AN (z,y), to obtain

()\)\/)2)\0 ’Fk,)\/ (S)’

< Il B (B [ (- [ VB + B, By au)
’ 0

X exp ( _ /Ots VA(BY) dr) exp ( _ /Ots V> (B2) dr)D
= W) 28 (o (= [v2Ean) e (oo (- [ v ),

where the final line follows from a time reversal of B and concatenating the time-reversed
B with B'. Applying (3.6) twice and changing the time variable, the above is equal to

A2t
1hlloe (AN) 2 EE (exp < - / VL(ABy-,) d“))
0

) A2 (t—s)
x EP (exp ( - / V.HN B3 -s,) du) )
0

The rescaled Brownian motions in the above are themselves standard Brownian motions
which we will denote by B!, B2. We next let e” = u in both integrals and apply (3.6) to
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see that the above equals

) log(\?t) o .
Ao (N2 BB (exp(— J (€T/2Belv~)dr>)

— 00

. log(\?*(t=s)) .
x EP <exp < - / Ve (e7T/2B) dr))ds

. log(\%t) 2
< Rl DN Y, (exp ( [ (Yﬁ)dr))
0

R log()\'Q(tfs)) /2
x BY <exp</ Ve (Y,?)dr>>, (5.14)

where Y = ¢~/ 232), which makes Y, a stationary Ornstein-Uhlenbeck process for
u € R, and we recall our assumption that At > 1. We condition on the value of Yol, which
has distribution m.

We first use the above to prove (a). Assuming that \' > (¢t — s)*l/ 2, the upper endpoint
of the second integral is positive, so by (5.14) we have

, s log()\zt) 2
W) [T (5)] < ([l (AN)?EY, (exp ( - / ve <Y:>dr))

R log()\’Z(tfs)) 2
x EY <exp ( —/ Ve (Y,?)dr», (5.15)
0

where we have also conditioned on Y. In order to approximate the expectations
above with survival probabilities for killed Ornstein-Uhlenbeck processes, we add and
subtract F(Y,!) in the integrals. Recalling the definition of Zr(Y) from (3.16), we define
ZL(Y'Y), Z2(Y?) in the same way. Thus (5.15) is equal to

log(A?t)
Al (XY (Zﬁ)g.(m) () exp ( [ ro du))
) log(\? (1))
By, <Z120g()\’2(ts))(y2)exp(_/o F(Yr2)d7°)>

) log(\%t)
<oz (e (= [T o au))
0

) log(\'2(t—s))
x CzEY (exp(/ F(Yf)dr))ds
0

= CO||hllse AN PY" (o7 > log(A%t)) PY” (pF > log(N2(t — s))). (5.16)

In the first inequality we have used (3.18) twice, and the second equality follows by
recognizing the expectations as survival probabilities of killed Ornstein-Uhlenbeck
processes killed at rate F(Y,?). By (2.9), we have

PY(pF > log(M2t)) < Ct2on"2  PYP(pF S log(V2(t — 5))) < C(t — s) N2,

Using the above in (5.16), which is an upper bound for (A\)?*e [T (s)
We now show (b). Let 0 < € < t. Using (5.14) we obtain that

¢ / . log(A?t)
QP [N ()] ds < )P EY (exp (— / ve'l <Y:>dr))
t

t ) log(N\'2(t—s)) /2
x/ EY (exp(—/ Ve (Yf)dr))ds. (5.17)
t—e —00
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We can approximate the first expectation with the survival probability of Y, just as we
did in the proof of (a), and bound it above by CA~2*¢t~*o_ Furthermore, by the proof
of part (a), we know that when X > (¢t — s)_l/2 the expectation in the integral above is
bounded above by C()\)~2* (¢t — s)~*0. When this is not the case we bound it above by 1.
Thus the right hand side of (5.17) is bounded above by

t_)\/—z

Ol h|oct ™0 [1()\’ > 51/2)/ (t—s)~ ds
t

—€

t R log(\'2(t—s)) 2
+ (X))o / EY [exp | — / VE (YA dr | | ds
t—X\—2 —oo

< C||h||oot7)\0 {617)\0 + )\/72(17>\0):| )
The result now follows. O

5.2 Convergence

We now show that the expressions for INo((L} x L}')(h) obtained in the previous
section converge as A\, \’ — co. We do so by computing the limit explicitly. Let h : R? = R
be bounded and measurable. Clearly we may assume without loss of generality that
h > 0. We recall from (5.10) and Proposition 5.1 that

No((L} x L')(h)) = /Ot(/\/\’)%FA’X (s) ds,

where h > 0 implies I’’’ (s) > 0. Our strategy is to compute the limit of (AX)2*e I} (s)
as A\, M — oo and pass the limit through the integral. However, the scaling we use cannot
be done uniformly in s. In order to handle this and the singularity at s = ¢, we fix e > 0
and analyse the integral on [t — €, t] separately. We have

t—e t
No((L) x LY )(R)) :/ (AN)2TA (5) ds + (AX)%/ M (s) ds. (5.18)
0 t—e

By Lemma 5.4(b), the limit superior of the absolute value of the second term as \' — oo
is bounded above by C/||h|| st 0!, Hence, if

t—e

lim (AN)2TA (5) ds
AN =00 o

exists for all € > 0, then by the Cauchy condition limy y/_,o No((L} x L} (h)) exists and is
the limit of the above as ¢ | 0. Thus it suffices to fix € > 0 and establish the convergence
of, and find the limit of, the first term of (5.18), first as A, \’ — oo and then as ¢ | 0. By
Lemma 5.4(a), we have

(AN)22 DM (5)] < g(s) forall s € [0,t — ¢

for all A\, \' > ¢~'/2 for a function g(s) > 0 satisfying fot*e g(s)ds < co. It follows that, if
(AN)22TMN (5) converges as A, A — oo, then Dominated Convergence implies that

t—e

. A N\ Y . 220 A, N
i WNo((L7 > Li7)(h)) = lim  lim ; (AX)=eD M (s) ds
t—e
= lim lim  (AX)2TM () ds, (5.19)

e—=0t Jo AN =00
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and so it suffices to find the limit of (AN )22 T () as A, X' — oo.
Let s € (0,¢) and assume ), \ > (t — s)~!/2. By Lemma 5.3,

’ 1 2 1 2 ’
NPT (5) = (AN)2N BB (E(Jf),é? (Egi:;% [\II’EAS (Vt—sY} ,Vt—sY})
X exp ( / VAN B BY 4 eD2(YE —Y4) + VAN (B2 B2 4 e/ (Y — YTi))du>

Ty —

(Y2 - V) du)

x exp< / HYY (Y2, Y2 +e77 (Y, —Yé))du)))}, (5.20)

where Ty = T1(s) = log(A?(t — 5)), To = Tx(s) = log(N?(t — s)). Inside the integral in the
third term we add and subtract F(Y;’) and decompose as follows

™
Xexp( H)‘/)‘(YI,Y,}—&-e

T —u
ow (- [ L0 YT 0 v )
0

Ty Th —u
exp</0 F(Yul)du) exp (/O PV = HNYANYL Y 4677 (V2 YTII))du>.

We do the same to the fourth term with the obvious changes of indices. The first term
in the above is the probability that the Ornstein-Uhlenbeck process Y'! with killing
function F' survives until time 77. We extract a similar term from the symmetric term
corresponding to Y2 and T». Weighting the expectation of a functional with this survival
probability is equivalent to restricting the expectation to the event that the process
survives; in our case, we restrict to the event that Y' and Y2 survive until 7} and 75,
respectively. Thus (5.20) is equal to

()\)\/)QAUE(])B(E(BS,(;)B ( ;1 }B:Q |:\I/%As(\/tSYT17\/7YT2)

1
X exp < - / VINNBL By + A (YE, = YA) + VIVY(BE B + <A (Y, - YA ))dU>
0

T L—u
<o ([P0~ PO Y4 P 0, - V)
0

T2 u
coxp ([P0 - w22+ 0, - VR du) 1601 > TG > T | )
0
(5.21)

where p; = pf’ is the lifetime of the killed process Y. Recall the transition density g; (-, -)
(with respect to m) of the killed diffusion. We condition on the endpoints Y}i = z; (recall
from Lemma 2.3(a) that the regular conditional distributions exist for all z; € R) and
integrate against qr, (-, z;) dm(z;) to obtain that (5.21) is equal to

()\)\/)QAOE(J)B(EESO;B (// \11/1\3)§ (Vt — sz1,Vt — sz3)
x oxp (‘ / VINBL By + €12 (2 — ) + ViV (B, BY + €7/ (21— 22)) d“)
0
vl n 1 N/Ay 1oy, T 1
X Epi | exp ; F(Y,)—H. (Y, Y, +e 2 (z2—z1))du || pr >T1, Yy =21

T, ’ —u
X E};;(exp </ F(Yf)fH;\u/A (Yf,Yf+eT22 (21 — 22)) du)‘pQ > 1o, Y7 22)
0
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<, (B 2) (B, 20) ) ) ) )
- //(M’)”o 8 (B (GOWN, s, B BY B 21, 2)
x qr, (B1,21) qr, (312,22))) }dm(zl) dm(z2). (5.22)

The function G is defined implicitly. The conditional probabilities that appear are the
same that are defined in Section 2, in particular Lemma 2.3. We have used that the terms
in the third and fourth lines are independent conditional on the endpoints. Hereafter,
Y! and Y2, and their respective laws, refer to killed Ornstein-Uhlenbeck processes with
killing function F'. Furthermore, after this point we will suppress the conditioning on
pi > T;, as it is implicit in the conditioning Y}, = z; that p; > T;.

We introduce notation for the terms appearing in G(\, X, s, B, B!, B?, 21, z3). We
define

Q()‘?A/7B17B2a'21722) (523)

1
- exp(— i VJ“’“(Ba,BheTl/Q(zz—zm+V57*“'<Bi,33+eT2/Q<z1—za))du),
0

and
2'11“1 = Zjlwl (Yl, 21,22, )\l/)\)
Tl )\/ A T —u
‘= exp (/ FYH — HM A YLY 467 (2 — 21)) du>, (5.24)
0
Z%g = Z'12"2 (Yza 22,21, )‘/)\/)

Tz ’ —u
‘= exp ( FOY2) — HNN (Y2 Y2 4 e 7 (21 — ) du). (5.25)
0

Recall that \I!AB’if(\/t — 521,1/t — s22) was defined in (5.11). From (5.22) we have
G\ N,s,B,B', B 21, 2) (5.26)
= \I/g,); (\/t — S21, \/t—7522)Q(A, )\/, Bl, BZ, 21, 2’2) Eg; (27111 | Y%l = 21)E§§ (Z%Q | YT%z = 2;2),

We note that Z}l and 2%2 are perturbations of the corresponding Zj. terms. In particular,
we defined Z}, by

T . u .
Zi (Y?) = exp (/ F(Y) — V¢ /Z(Y;)du) (5.27)
0
By Proposition 3.1(a) and (5.12), we have that HS, (x,y) > Vfu/2 (z), and hence
Zin < Zh(Y') < Oy, (5.28)

where the second inequality is by (3.18). Using Q(\, ', B!, B2, 21, 25) < 1 and |\IIAB’§| <
I]| oo, both of which are obvious from these terms’ definitions, we therefore obtain that
for a constant C; > 0,

|G\, N, s,B,B',B? 21,2)| < C, (5.29)

uniformly in its arguments. We now define ©(\, X', s, B, B!, B2, 21, z3) as the function in
the square-bracketed term in (5.22) multiplied by the scaling factor (A\\')?*¢. That is,

@()‘7 )‘/a S, Ba Bl7 BQ; 21, 22)
=G\ N, s,B, B}, B2 21, 25) (AN)22 qp (BE, 21) qr, (B2, 23). (5.30)
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Note from (5.22) that
(s //EO B (O(\, N, s,B,BY, B2 21, z))) dm(z1) dm(z2). (5.31)

Recall that T} = log(A\?(t—s)) and Ty = log(\'?(t—s)). Taking s*(1/8) as in Theorem 2.1(c),
we note that if A\, \' > e*/2(t — 5)~/2, then T}, T > s*(1/8). We define \(s) as

As) = [ WO2 (1 — 5)71/2) v 1 (5.32)

and 7(s) by
7(s) = log(A(s)?(t — 5)). (5.33)
Applying (2.2) with § = 1/8, we obtain

g7, (by, 21) g, (b2, 22) < C(t — 5) 7220 (AN) "0 l/BiHbiFT+23)
for all Ty, T» > 7(s) (equivalently, A\, \’ > A(s)). Using the above and (5.29), we obtain

|@(>\,)\/7S7B7B1,B2,Zl,22)|
<C@t—s)exp ([(B1)?+ (BY)?+ 21 + 23] /8) forall A, X > \(s).  (5.34)

Since B! ~ m, (5.34) implies that © has a (uniform in \,\’ > \(s)) upper bound
which is integrable with respect to dPBdPE"dPB*dm(z1)dm(z;). From (5.31), this
implies that (AX)2*T*'(s) is bounded for A\, N > X(s) (for fixed s < t). Moreover,
if limy v 00 O\, N, 8, B, BY, B2, 21, 25) exists for PP ® P(B )B -a.a. w and Lebesgue-a.a.
21,22 € R, then by (5.31) and Dominated Convergence (using (5.34)), we have

lim  (AX)2TA (s)

AN —00

/ EP(ELGP] lim O\ N, s,B. B, B2 21, 2)]) dm(z1) dm(z).  (5.35)

AN — o0

In view of (5.19), the above implies the following:

If lim O\ N, s, B,B", B 2, 2) exists PP ®P£O)B -a.s. fora.e. 21,2 € R,
AN =00

then lim INo((L} x L} )(h))

A\ —o00

/ [/ EB Ef)OB )l\i,riloo@()\,X,&B,Bl,BQ,zl,zz)])dm(zl)dm(zQ) ds. (5.36)

As h > 0, and hence I‘/\”\/(s) > 0, the right hand side of the above is equal to the
last expression of (5.19) (provided © converges) by Monotone Convergence. Thus it
suffices to compute the limit of O(\, X', s, B, B, B2, 25, 25) as \, )’ — co. As we only need
to find the limit a.e. in (z1,22), we will hereafter assume that z; # z;. We also take
this opportunity to reiterate our assumptions about A and ). Originally we assumed
AN > (t —s)~'/2; in view of the above, we augment the assumption to A, X > A(s),
or equivalently, T7,T» > 7(s) (see (5.32) and (5.33)). This implies that A, )’ > 1 and
T, Ty > S*(l/g)

O is the product of the function G and the rescaled transition densities, that is,
A2ogr (BY, z1) and N*qp, (B2, z;). We will show that both of these approach finite
limits as A\, \' — oo. First, let us handle the transition densities. By Lemma 2.2,

lim et ar, (B, z;) = ¥o(B}) o ()

T;—o0
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for i = 1,2. Using the definitions of T} and T (e.g. T} = log(A\?(t — 5))), we readily obtain
from the above that

/\QA“qu(Bll, z1) = (t— 5)7)‘07,/)0(3}) Yo(z1) as A — oo, and
N20gm (B2, 20) — (t — s) 1 (B3) Yo(22) as N — oo (5.37)

for all B, B?, 2,2 € R.

We now compute the limit of G, whose definition we recall from (5.26). We proceed
by computing the limit of each constituent term. The analysis is most technical for
the conditional expectations of Z’ for ¢ = 1,2, which were defined in (5.24) and
(5.25). These two quantities are essentially the same with different parameters. To
avoid excessive and cumbersome notation we define a variable Z. Let A\, X > 0 and
T = log(A?(t — s)), and z, 20,22 € R. For a killed Ornstein-Uhlenbeck process Y, we
define

T , .
Zp = Zp(Y, 21, 20, N JA) := exp </ F(Y,) — HN Yy, Yo+ e 7 (20 — 21)) du). (5.38)
0

In order to characterize the limit of the conditional expectation of Zr (as in (5.26)), we
introduce a quantity Wg(Y, z). For S > 0 and z € R, we define

S
Ws(Y,z) = exp (/ F(Y,) — Fy(Yy,Y, —e“?(z = Yy)) du), (5.39)
0

where we recall from (3.24) that Fs(a,b) = V;°"°°(a,b). By Proposition 3.1(a), F(a) <
F5(a,b) for all a,b € R, so the integrand is non-positive and hence Wg(Y, z) < 1 and is
non-increasing in S. Since it is bounded below by 0, we can define its monotone limit as
Weo (Y, 2) = limg_o, Ws(Y,2) < 1.
Lemma 5.5. Let x, z1, 25 € R such that z; # z,. Then

im EX (Zp(Y, 21,22, N JN)| Y = 21) = EY™(Zo(Y)) EX® (Woo (Y, 22)).

Recall that £ is the expectation under the law of the killed process Y with Y, = z
conditioned to survive for all time, as defined in Theorem 2.1(e). Zr(Y) is as defined
in (3.16) and we recall from (3.17) and (3.18) that Z.(Y) = limy_,o, Z7(Y) exists and is
bounded by C7.

Heuristically, the Z, term in the limiting expression in Lemma 5.5 comes from the
early (small u) part of the integral in ZT, and the W, term comes from the tail part (ie.
u near 7T'), and these two contributions are asymptotically independent. Since the time at
which we condition is T and T goes to infinity, in the limit the expectations are computed
under the measure of the process conditioned to survive forever.

Section 6 is devoted to the proof of Lemma 5.5. For now, we carry on with the proof
of Theorem 1.4. Returning to Z}, and Z3,, it follows from Lemma 5.5 that

For all B}, B} € R and all z;, 2, € R such that z; # z,
lim E)B?il (271"1 (Yla 21,22, )\//A) | Yll'l = Zl) = EYOO(ZOO(Y)) EZ’OO(WOO(K Z2))7 and

AN =00 B{
lim Bz (23,(Y?, 22,20, \N) | Y, = 2) = B} (Zoo(Y)) EL > (Wao(Y, 1)) (5.40)

To find the limit of G it remains to identify the limits of \I’%’:(\/t — 821,V/t — s29) and
Q(A\1, A2, BY, B2, 21, z3). From (5.11) we recall that the former prelimit is defined as

\I/%’f;/(\/t — 821, Vt — 8229) = h(V/t — sz1 + Bs, V't — s22 + By)
X exp (—/ %i’il(\/t — 821 + Bs — By, Vt — s20 + Bs — By) du> .
0
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For all z;, z; € R and all Brownian paths (B,,u € [0, s]), the obvious limit of the above
as A\, \' — oo is obtained by replacing V;*) with V,>:*°. By monotonicity (in A, \') of the
integral and continuity of the exponential we can take the limit inside. Denoting the limit

by W (Vt — 521, V/t — 523), we have
lim \I/%vi;’(\/EZL\/mZQ) — ‘I’OBC)”:O(\/EZh\/t—iSZQ), (5.41)

AN 00
This leaves Q(\, N, B, B?, 21, 25), which we recall from (5.23) is defined by
Q</\a )‘Iv Bl7 327 21, 22)

1
= exp ( - / VININBL, BE 4 €T1/2(zg — 21)) + VIMVY (B2 B2 + €T2/2(2) — 25)) du).
0

The integrand is the sum of two terms that are very similar; for now we restrict our
attention to the first. In particular, we will show that

1
exp < - / Vul’X/A(Bi, Bi + €T1/2(Z2 —21)) du)
0

~ew (- [ VB )

We claim that since the second argument of the integrand goes to infinity, asymptotically
the function resembles V! (Bl). To see this use both parts of Proposition 3.1 to conclude
that

lim sup
T1—o00 N> (t—s)—1/2

=0. (5.42)

u

0.< [VAS(BL BL + ¢"/2( — 21)) - VA(BL)| < Ve*(BL 4 ¢7/2(z - 2))

for all ¢ > 0. PP-a.s., there is a constant R(w) > 0 such that |B}(w)| < R(w) for all
u € [0,s]. Provided z; # 2z, for sufficiently large \, e”/2|z; — z;| > 2R. Then for \
sufficiently large and A, X' > A(s),

1 1
e (= [ VENABLBL+ =) ) — e (— [ VB )]
0 0

1
< / V(T /?(29 — z1) — R) du.
0

The integrand is bounded above by V,>°(R). Since V,*(R) = u~'F(u~'/?R), (from (3.13))
by (3.14)(iii) we have V°(R) < cu=3/2Re~* 'R/2, which is bounded on [0, 1]. We take
A — oo and apply Dominated Convergence; since V.°(y) = u~'F(u~'/?y), applying
(3.14)(iii) again gives that lim|,| . V;>°(y) = 0, and hence limit of the above as A — oo
(ie. as T} — o0) is zero. Thus (5.42) holds. We handle the second term in the integral
in Q(\, N, B!, B%, 21, z3) in an identical fashion, now with the roles of A and )’ reversed,
thereby establishing that

For all 21, 2, € R such that z;, # 2, dPZ dPF"-a.s., (5.43)
1 1
lim Q(\ N, B', B? 21, 2) = exp < —/ V.H(BL) du> exp ( —/ V.1 (B?) du).
AN =00 0 0

We have therefore found the limit of G and hence of ©. In particular, recall the defi-
nitions (5.26) and (5.30). From (5.37), (5.40), (5.41) and (5.43), we have shown that
dPBdPB dPP’-a.s., for all 21, z, € R such that z; # 2,

lim O\ N, s,B,B', B? 21,25) = (t — 8) O UE X (VE — 521,V — 523)

AN =00
X EL>(Weo (Y, 22)) EL™ (Woo (Y, 21)) Ei™ (Zoo (Y ) E ™ (Zoo (Y )
1
X exp ( / —Vu(B,) =V, (BY) du) Yo(B) Yo(B) to(21) Yo(z2).  (5.44)
0
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Thus by (5.36), limy x/ 00 No((L) x L})(h)) exists and satisfies

lim No((L} x L)) (h))

AN —00

/ [/ EB( 130)3 lim ©(\ N, s, B, B!, B2 21,z2)])dm(z1)dm(z2)]ds. (5.45)

AN =00

To obtain the desired expression, we note that the terms in (5.44) that depend on B! and
B? can be collected in a constant. In particular, we define a constant C; 4 > 0 by

c?, = E(’fwf’ (exp< /V (BQ)du>

X EY(Zo(Y)ELS(Z <>>wo<81>¢0<32>)

{EO (exp( / Vi du>EY°°( W(Y))wo(Bl)”z. (5.46)

We also define a function p(-,-) by
p(z1,22) = EL®°(Wao (Y, 22)) B (Weo (Y, 21)). (5.47)

It is clear that p(+, -) is jointly continuous and bounded by 1 from the definition of W, (Y, 2).
Thus by (5.44),

EE B lim O\ N,s,B, B, B2 21, 2)

0,00 | AN oo
= CF 4t — )7 U (Vi — sz1, Vit — s22) p(21, 22) Po(21) Yo(22).-
Substituting the above into (5.45) completes the proof of Theorem 1.4. O

6 Proof of Lemma 5.5

Recalling the statement of the lemma, we will show that

N EIEOOE (Zr(Y, 21,22, N /N)| Y1 = 21) = EY™®(Zoo(Y)) EX > (W (Y, 22)) (6.1)
for all x, 21, 2z € R such that z; # 29, where the law of Y on the left hand side is that of
a killed Ornstein-Uhlenbeck process with killing function F', with Yy = x. Recall that
EY:> is the expectation under the law of the killed process Y with Y, = x conditioned
to survive for all time. For convenience, we now recall the definitions of the quantities
above: from (3.16), (5.38) and (5.39),

T / —u
Zp(Y, 21, 22, X' JA) = exp (/ F(Y,) — HN MY, Y4+ 7 (20 — 21)) du>,
0
S
Ws(Y,2) = exp </ F(Y,) — Fy(Y,,Y, —e¥?(z = Y})) du),
0

Zp(Y) = exp ( / R v ) du).

As we have previously discussed, Z.(Y) and W, (Y, z) are the respective limits of Z7(Y)
and Wg(Y, z) as T, S — oo, both of which exist. Recall from (3.18) that Z(Y) < Cz. Be-
cause z; and z, are fixed, we will hereafter suppress the dependence of Z7 (Y, 21, 2o, N /)
on z; and z, and simply write Zp(Y, X' /)\). Finally, we recall our working assumption
that A\, \' > A(s), (see (5.32)) which implies that A\, \’ > 1 and T > s*(1/8).
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Let 0 < K < T/2. We apply the Markov property to EY (Zr(Y, N/X)|Yr = z1) at times
K and T — K and expand in terms of the joint density of (Yx,Yr_k). Asin (2.11), the
joint density of (Y, Yr_ ) at (w,y) with respect to m x m under PY (Y € - |Yr = z;) is

ax (2, w)qr—2x (w,y)qK (y, 21)
qr(z, 1)

Thus we obtain the following:
EY (Zr(Y,N /)| Yr = =)
T
=Y (oo ([ P00 - B WV 7 a2 ) | Y = 1)
0

K
= / EY <exp (/ F(Y,) — HN MYy, Yy 4 e 7 (20 — 21)) du> ’ Yi = w)
0

—K—u
2

T—2K ,
x EY <exp </ F(Y,) = HXA (Y, Y+ e 2 (20— 21)) du) ‘ Yok = y>
0

K , .
x EY (exp </0 F(Yy) = HY o (Ya, Y 4 €7 (20 — 21)) du> ’ Vi = 21>

ar (z, w)qr—2x (W, y)qx (y, 21)
X d
qr (557 Zl)

m(w) dm(y). (6.2)

Denote the three conditional expectations by A;(z,w,\, N, K), As(w,y, A\, N, K) and
Ag(y, 21, )\, )\,, K) That is,

Ay (z,w, AN, K) (6.3)
K /A T—u
= Ef(exp (/ F(Y.) — HY (Yo Yo+ e (2 — zl))du> ‘ Yi = w)
0
AQ('LU,Z/,)\, A/vK) (6.4)
T—2K /A —
:EZ(GXP </ F(Yu)—HeK+u(Yu,Yu+€ 2 (22_21))du>‘YT—2K =y>,
0
As(y, 21, A\, N K) (6.5)

K ! K—u
= E;/ <exp (/0 F(Y,) — H;\T/,/\Kﬂ (Yo, Yo +e 7 (22— 21)) du) ’ Y = z1>.

We observe that A, A> and Az all depend on z; and 2, in addition to their listed ar-
guments, as these values appear in their integrands. Again, as z; and 2, are fixed,
we omit this additional dependence. Noting that the integrand is bounded above by
F(Y,) — Vf"/Z(Yu) in each case, from (3.18) we have A; < Cz fori = 1,2, 3. In terms of
the A;, (6.2) can be rewritten as

E?C/ (ZT(Y7 )\//A) ’YT = Zl) - // Al(x7w7>\a)‘/7K) AQ(wvya AvA/aK) A3(y721,)\7)\/,K)

L 3K (@) arook (W, y) 4k (Y, 21) d
QT(xvzl)

m(w) dm(y). (6.6)

There are two main contributions in the A;. The first comes from F' and the first argument
of the H function, and is approximately equal to F'(Y,) — Vfu/z(Yu) ; the second comes
from the second argument of the H function. We will see that, asymptotically, A; is only
affected by the first contribution and gives the Z.,(Y") term in (6.1); A3 is only affected
by the second contribution and gives the W (Y, 22) term in (6.1). The contribution of
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A, is will be seen to be negligible. We first show that A, is arbitrarily close to 1 as K is
made large, uniformly in T sufficiently large depending on K. Define Z7.(Y, \' /A, K) as
Zr(Y,N /X, K) with A, replaced by 1; that is,

K
Z5(Y, N /N, K) = exp (/ F(Y,) — " /)‘(YM,YM + e%(zg - 1)) du)
0

T
X exp (/ F(Y,) — HN Yy, Yu+e 7 (22— 21)) du). (6.7)
T-K

As in (6.2) and (6.6), we therefore have
EZ (Z’%(Y7 )‘,/Av K) | YT = Zl)

= // Aj(z,w, N\ N K)As(y, 21, \, N, K) 4 (@, w) gr—2xc(w, y) 4 (y, 1) dm(w) dm(y).

QT(Ia Zl)
(6.8)
By monotonicity (Proposition 3.1(a)) and (3.15) we have
F(Yy) = HO (Y Y+ 5 (g — 20)) S F(V) = Vi (1) < Cem (Frm@hom)/2
(6.9)

uniformly in 7' > 2K. Integrating this over u shows that the exponent in A, is bounded
above C’e~(220—1K/2 for a constant C’, uniformly in 7' > 2. We choose K large enough
so that exponent in A, is smaller than 2. Then by (6.6) and (6.7), applying the mean
value theorem, we have

2 (ZT(Y N/N) = ZE (Y, NI\ K) | Yo = 21) |

//Alacw)\/\ K)‘Ag(w Y, \, N, K) — 1| As(y, 21, \, N, K)

IN

QTiEzl

X qr (2, w)qr—2x (W, Y)qx (y, 21) dm(w) dm(y)

202 T-2K A//A T—K—u
< —=— (. 21) / EY(/ |F(Yy) — H S (Yo, Yu+e 2 (22— 21))| du

Yr_okx = y)
X i (2, w)qr—2kx (W, y)qK (y, 21) dm(w) dm(y) (6.10)

uniformly for all 7' > 2K, where we have also used A; A3 < C%. The term in the absolute
value inside the integral can be positive or negative; (6.9) provides an upper bound for
F - H;\K/;\u To obtain a lower bound, we note that HAK/fu (a,b) < Fy(a,b) < F(a) + F(b)
by Proposition 3.1 (using part (a) and then part (b)). This bound implies that

T-—K—u
-2z

F(Y,) = HY (Yo, Yo +e (25 —21)) > —F(Yy +e 5 (20— 21)).  (6.11)

Together, (6.9) and (6.11) imply that the absolute value appearing in the integral in (6.10)
is bounded above by

Ce —(K+u)(2Xo— 1)/2—|—F(Y +e _;(_’ (z2 _Zl))

We have already noted that when integrated over u, the first term is bounded by
C'e~K(2X=1)/2 (yniformly in T'). The first term has no dependence on the spatial param-
eters w and y, so in (6.10) the transition densities and can be integrated and cancelled
with the denominator. We get that for all 7' > 2K, (6.10) is bounded above by

C T—2K T-K-—u
e~ K2ro-1)/2 + 7/ E}Z(/ F(Yu +e =2 (zg _ 21)) du|Yr_ox = y>
qT(xv Zl) 0
X qrc (2, w)qr—26x (W, ¥)qx (Y, 21) dm(w) dm(y).
EJP 24 (2019), paper 54. http://www.imstat.org/ejp/

Page 49/58


https://doi.org/10.1214/19-EJP303
http://www.imstat.org/ejp/

The boundary local time of super-Brownian motion

We consider the time reversed process in the above and apply (2.12), which implies that
the above is equal to, and hence for all ' > 2K, (6.10) is bounded above by

T—-2K Kt
Cle—K(Do—l)/ o // (/ FY,+e 2 (22—21))du
1)

X qx (z,w)qr—2k (W, y)qK (y, 21) dm(w) dm(y). (6.12)

Yr_og = w)

We recall the asymptotic behaviour of F' from (3.14)(iii), ie. that F(z) ~ ¢:1|9L'|e*””2/2 as
|x| — oo. This implies there is a constant ¢; > 0 such that

F(z) < co(1+ |z])e /2 forall z € R. (6.13)

In order for this to give a useful upper bound in (6.12), we’ll need to show that the
argument of F' is large in absolute value. It is enough to show that |V, | < et |29 — 21|
with high probability when conditioned on its endpoint. Recall that we have assumed
z1 # z2. We bound the integrand over the two cases mentioned above and exchange the
integral and expectation, which is justifiable since F' is positive. We have

T-2K i
E;(/o F(Yy+e 2 (22—21))du

Yr_og = w)

T—-2K
gE;V(/ Fe 3" 20— z1|) + F(O)1(|Ya| > € 3" |22 — 21]) du
0

YT—sz)
0o K4u
Ktu CJEFe e
§c2/ (I4+e T |zg—z|)e * 2=l /2gy
0

T—-2K
+ F(O)/ PY(|Yul > e T2y — 2| | Yr_ok = w) du, (6.14)
0

where we have used (6.13) and the fact that F' is radially decreasing. A simple substitu-
tion shows that

oo . Ktu f
02/ (1+ 6%|22 — z|)e* 2 |22721|2/2du
0

<4c; / (1+ ail)e*“2/2da
eK/4|z0—21]
o) 1

< C/ e /2da + C1(ef |z — 21| < 1)/ a e "/ 2dq
K/4| 29 —21] eK/4 20 —24|

< C/ e 2dg — C log(eK/4|22—zl|)/\O} . (6.15)
K/4|22 21\

To bound the second term in (6.14) we expand the probability of the large excursion in
terms of the transition densities. There are two cases, which we handle in the following
lemma. In what follows, s* = s*(1/8) from Theorem 2.1(c).

Lemma 6.1. Let M > 0 and w,y € R.

(a) There is a constant C' > 0 such that for S, u > 0 satisfying u, S — u > s*,

C 2 2 €_M2/4
PY(|Y,| > M|Ys = w) < —— ¢ oSy +w?)/8 1|.
y ([Yul > M |Ys =w) < www’ e T

(b) For fixed ug > 0 the families

{PyY(Yu6~|YS:w):Szumoguguo} and
{PJ(YS_U€-|Y5:w):52u070§u§u0}

are tight.
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Proof. To see (a), we use (2.11) and (2.2) with § = 1/8 to obtain that for u, S —u > s*,

PyY(Yu Z M ’ YS = ’LU) = / Qu(y; a)qs_lu(al’ w) dm(a)
M qs(y, w)
2 0o
< 01/8 e—AUS/ e(y2+2a2+u)2)/8 dm(a)
qs(y, w) M
C

qs (yv U))

where the last line uses a standard upper bound on Gaussian tails and bounds the
integral above by a constant when M is small. The bound for Y,, < —M is the same. The
first family in part (b) is tight as a consequence of Lemma 2.3(c). To see that the second
family is tight we consider the time reversal of Y and use (2.12), from which tightness
now also follows from Lemma 2.3(c). O

IN

a2
e*AOSe(lﬁ‘HUQ)/S e M /4 Al
M b

Applying Lemma 6.1(a), using (6.15) and separating the integrals depending if
u, S —u > s* or not, we have that (6.14) is bounded above by

C/ e /2dq — C [1og(eK/4|22 —z1) A 0}
K/4‘22 Zl‘

T—2K—s" | e 3" |zg—2|2/4
_A'_#B—AO(T—QK)ey?/Sew?/S/ e - l22==l"/ Al du
qr—2x (Y, w) s* e |29 — 21
T—2K
+C(/ / )PY Y| > e 3 “leg — 21| | Yr_ak = w) du. (6.16)
2K —s*

As the above is an upper bound for the expectation appearing in the second term of
(6.12), and (6.12) is an upper bound for (6.10), we have

\EY (Zr (YN /X) = ZE(Y, N /N K) | Yo = 1) |

C( oo
<Ce K@o-D/24 2 // [/ e 2dq — C [log(eK/4|22 —z1|) A O}
qr(x, z1) eK/4) 29— 2|

B K+ )
T—2K—s" | —c 2 “ a2 |2/4

I ;e*)‘O(T*ZK)eyQ/Se“’Q/S/ - Al du
qT72K(yaw) s* GT‘ZQ — Zl|
T—-2K
(/ / )PY |Y‘>€ 4 |ZQ_Z]_||YT gK—w)du}
—2K—s*
X qr (T, w)qr—ox (W, Y)qK (y, 1) dm(w) dm(y). (6.17)

Note that the first two terms in the integral with respect to y and w are independent of
these variables. We can therefore integrate them out; using the fact that

// qr (x, w)qr—2x (w,y)qx (y, 21) dm(w) dm(y) = qr(z, z1)
(and an obvious cancellation) we obtain that
\EY (Zr (Y, N /A) = Z&(Y, N /N K) | Yr = 2|

< Ce K@Ao— 1/24—0/ e_a2/2da—C{log(eK/ﬂzg—zl\)/\O}

K/4|25—2|
C B _ 2
_ U hr-2K) // eV’ 8w 8 g (2, w)qr (y, 21) dm(w) dm(y)
QT(LZl)
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* Ktu
T—2K—s" | j—e" 2 |z3—21[?/4
s* € 4 |29 —Zl|

T—2K
//[(/ / )PY Yl = 5 e — 21| | Yrook = w) du
le 2K —s*

X 4K ($7 w)QT—QK (U}, y)QK (y7 Z]_) dm(w> dm(y)
=:01 4+ 02 + 03 + 04 + 5, (6.18)

where §; = §;(T, K, z1, 22) and is defined by the obvious correspondence. We first note
that
0;(T,K,z,22) = 0as K — oo (uniformly in 7' > 2K) fori = 1,2, 3.

Turning to &, and d5, we observe that by Lemma 2.2, e’ T gr(z, 21) — 1o (x)o(21) as A —
oo. Since T' — gr(z, z1) is continuous, ¢r(x, z1) > 0 for all ' > 7(s) and g (z)1o(z1) > 0,
this implies that there exists 5(x, z;) = 8 > 0 such that

qr(z, z1) > e 2Topo(x)ho(21) VT > 7(s). (6.19)
Applying (2.2) twice with 6 = 1/8 and using (6.19), we have
|54(T7 Ka 21, 22)‘

cpt 0K —2NK (22422 2/4 w?
< —————— M0 TN Zl)/s//ey 1414 dm(w) dm
= Yo(z)¥o(21) () dmy)
T—2K—5" e 3" |za—m|?/4
x / - du (6.20)
o* e 1 |zg — 21|
Clela®+:3)/8 T—2K—s* efe%prm?/zx
S - u— du
¢0($)1/)0(21) (l* = |22 — Zl| >
ACe(@*+21)/8 oo —a®/4
_ 0671/ ¢ da, (6.21)
wO(aj)wO(Zl) es*/4eK/4|zg—zy| @

where the last line follows from a simple substitution. Thus we have 64(7, K, z1,22) — 0
as K — oo, and again we note that convergence is uniform in 7" > 2K. It remains to
handle §5. By three applications of (2.2) with 6 = 1/8 and (6.19), we have

|65(TaKa 21, Z2)|

<ot ] ([ o J 0802 sl o=

« 612/861112/46?/2/462%/8 dm(w) dm(y).

The square bracketed term vanishes as K — oo uniformly in 7' > 2K + s*(1/8) by
Lemma 6.1(b). The probabilities are bounded so the integrand obviously has a uniformly
integrable upper bound. By Dominated Convergence, we have that d5(7', K, z1, 22) — 0 as
K — oo, uniformly in 7" > 2K +s*(1/8). We have therefore shown that Zle 0;(T, K, 21, 22)
is arbitrarily small as K — oo, uniformly in 7" > 2K + s*(1/8) and in ' > A(s), where we
recall that we have assumed A, \' > A(s). From (5.33), A > A(s) is equivalent to 7' > 7(s).
As 7(s) > s*(1/8), T > 2K + 7(s) implies that T > 2K + s*(1/8). Thus by (6.18) we have
proved the following. Recall that Zp (Y, X' /) = Z(Y, 21, 20, N /\).

Lemma 6.2. For all z, z1, 2o € R such that z; # 2o,

o (K) = sup |EX (Zr(Y, N /X) = ZE(Y, N /N K) | Y = 21)|
T>2K+7(s), N >X(s)

satisfies limg o 0,7 (K) = 0.
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Given this lemma, it suffices to find the limit of (the conditional expectation of)
Z%(Y, XN /A, K), and so A, has been replaced by 1.
Next we consider As(y, z1, A\, ', K), which we recall from (6.5) is defined as

K
E; (exp (/ FY,) — H:T/,)}(M(YU,Y,L + 6%(22 —z1)) du) ’ Yk = z1>.
0

We will show that in the limit as A\,\' — oo, the integrand will be F' — F,. Define
A3(y, 21, K) by

K
A5(y, 21, K) = BY ( exp ( [ R0 - B ¥t 5 (= o) du)
0

Y = zl>. (6.22)

The difference between the integrands of A3 and Aj is equal to (F» — H;\T,/_’\KM)(YH, Y. +

et (z2 — z1)), which is non-negative by monotonicity. To obtain an upper bound we
apply Lemma 3.2 to obtain

’ K—u
(Fy = HY o )Y, Yu+ €77 (25 — 21))

A
< Ce(K—u)(?)\g—l)/2(t _ S)—(2,\0—1)/2 [)\—(2,\0—1) + )\/_(2,\0—1)} ) (6.23)

—(2x0—1)
< Ole (T-K+w)2ro-1)/2 | <X> ’ 6(TK+u)(2)\01)/2:|

The first line uses the definition of H¢, which we recall from (5.12), and in the second line
we have used that 7' = log(A\?(t—s)). Since A, \ > A(s) > 1, the last expression in (6.23) is
bounded by CeX/2(t — s)~(2*=1/2 for all u € [0, K]. Thus, using |e® —e¥| < (e VeY)|z —y|
and (6.23), we have

|A§(ya217 K) - A3(y7 21, /\7 >‘/a K)‘
< exp (CK@K/Q(t - 5)7(2)“’*1)/2>

K ’
x By (/ (F2 = H ) (Y Yu + €572 (20 — 21)) du
0

YK = 21)

< exp (CKeK/Z(t _ s)_(2’\°_1)/2) (t - S)—(2,\0—1)/2
K
o {)\—(2,\0—1) n )\/—(2>\0—1):| / CeE—m(@r-1)/2,
0
< O(K,t—s) [/\‘(”0‘1) + X—@Ao—l)} (6.24)

for some constant C(K,t — s) > 0. Define Z5.(Y, X' /), K) as we defined Z4(Y, X' /), K) in
(6.7) but with F' — F; replacing the integrand in the second term. That is,

K
ZE(Y, N /X K) = exp (/ F(Y,) - Hju/)‘(Yu,Yu LT (22 — zl))du)
0

T
X exp (/ F(Y,) — Fh(Y,, Y, + e%(@ —21)) du). (6.25)
T-K

In particular, we have

EY (ZR(Y NN K) | Yr = 21) (6.26)

:/ A (w0, M X, ) A3 (g, 2, ) P80 40260 9) G 21) o 0 ().
qr(z, 1)

Because (6.24) is uniform in y and z; and |A;| < Cz, we can integrate out the transition
densities to obtain the following.
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Lemma 6.3. For K > 0 and s € [0,t), there is a constant C(K,t — s) such that
51()1([(7 /\a )‘/) = ’E;/ (Z’%(Y7 A//Av K) - Z%(Yv /\,/)‘7[() | YT = Zl)‘
< C(K = 5) [\ x=@h0)]
for all \, \' > X(s).

We now analyse Aj in greater detail. In particular, we perform a time reversal on the
process Y. By (2.12), we have

K
A3y, 1, K) = EY (exp (/ F(Ya) = Fa(Ya, Yo + % (23— ) du) ] Vi — y)
0

This is the term that in (6.1) we claimed converges to E)ZZOO(WOO(Y, 22)), defined in (5.39),
in the limit. However, the above expectation is still conditional on the endpoint. We now
show that the contribution from the tail of the integral is vanishing, making the quantity
asymptotically independent of the endpoint y. Let 0 < M < K. Define Aj(y, z1, M, K) by
truncating the integral in (6.22) at time M. That is,

M
A5(y, 21, M, K) = EZ (exp (/ F(Y,)— F(Y,, Y, +e%(22 —z1)) du> ’ Y = y) (6.27)
0

We now define Z¢(Y, /A, M, K) by truncating the corresponding integral in Z*(Y, \’/
A, K) (the integral over [T — K, T] in (6.25) becomes the integral over [T — M, T]) so that
A3(y, z1, M, K) replaces Aj(y, z1, K) in the conditional expectation.

Lemma 6.4. For all z, z1, zo € R such that z; # 2o,

S(M)= sup sup |EY (Z5(Y, N N K) = Z§ (YN /A, M, K) | Yr=2)]
K>M+5*(1/8) T>2K+7(s), N >A(s)

satisfies lim ;o 62(M) = 0.
Proof. Using the inequality |[e™* — e Y| < |z — y| for z,y > 0, we have

|A§(yazlaK) _Ag(y,ZLM,K)l

K
< E, </ [F(Yy) = Fa(Ya, Yu+ "2 (22 = 21))| du
M

Yg = y> (6.28)

By Proposition 3.1(b), the absolute value of the above integrand is at most F (Y, + ez (22—
z1)) (for a similar argument see (6.11)). Exchanging expectation and integration, we
proceed as in (6.14), (6.15), and (6.16), and apply Lemma 6.1 to bound (6.28) above by

M+4u

K-M M+u 3 2 /9
cl/ (I+e % |22 —21|)e”° lz2==1l"/2 gy,
0

K
+F(O)/ PZ(|YH| > ez — 2] ’Ysz)du
M

o0
2
§4cl/ (1+aHe */?da
eM/4| 29—z |
MoK K—M-—s* M 2
— A0 - - —€ Z2—Z21
L Le(z?w?)/s/ c T | du
9k (21,9) 0 e 1 |zg— 2|
K 0% M+tu
+C PY([Yul > e 7 |22 — 21| | Yk = y) du. (6.29)
K—s*
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Expanding in terms of transition densities and using |A4;| < Cz, we have
|Ef(Z%(Y, N/NK) = Z5(Y, N /X, M, K) | Yr = zl)]
C * *
<— / |A3(y> 21 K) - Ad(yv 21 M7 K>|qT7K(x7 y) QK(% Zl) dm(y)
qT(xv Zl)

Using (6.29) as an upper bound for the integrand, we obtain an expression which closely
resembles (6.18); in particular, four terms appear, directly corresponding to d-, d3, 34 and
05 of that expression. Moreover, they can be handled using the exact same arguments,
as in the proof of Lemma 6.2, but with (M, K) playing the roles of (K, T). Because the
arguments are the same, we omit them. O

We now establish the limit of A%(y, 21, M, K) as K — co. Recalling (6.27) and the
definition of W), in (5.39), we have

M
Aj(y,z1, M, K) = E), (eXp ( (Yo) — Fo(Ya, Yo + €"/?(20 — 21)) du) ’YK = y)
0

The functional Wy, (Y, 23) is a bounded continuous function of Y|[
we have

0,M]" By Lemma 2.3(b),

VM >0, lim A3(y,z1, M, K) = EY° (W (Y, 22)) (6.30)
— 00
We define Z4(Y, N /A, M, K) by
Z&(Y,N/\, M, K)

K
= exp (/ F(Yy) = HOD (Yo, Yu + ¢ 7 (20 — 21)) du) EY> (W (Y, 22)). (6.31)
0

Note that the second term is now deterministic; it no longer depends on the original
Ornstein-Uhlenbeck process Y or the spatial variable y. We then have
EX(ZEY, NN M,K) | Zp = z)
qr (z,w) gr Kk (w, 21)
qr(w, z1)

Bounding A; < Cz and integrating out the transition densities, by (6.30) we obtain the
following.

= EX™ (W (Y, zz))/Al(az,w,/\,)\’,K) dm(w).

Lemma 6.5. For all x, z1, 22 € R,

55(M, K) = sup  |EY (Z5(Y, N /AN M K) = ZE(Y, N\ M K) | Y = 21)|
T>2K+7(s), N'>X(s)

satisfies limg_, o, 05(M, K) = 0 for each fixed M > 0.

From our starting expression for ZT(Y, A'/A) in (6.6), all that remains to be handled
in Z4(Y, N /A, M, K) is the A; term, whose definition we recall from (6.3) is

K
Aj(z,w,\,\ N K) = E;/(exp (/ F(Y,) — H?u/)‘(Yu,Yu + e%(ZQ - zl))du> ‘ Yi = w)
0

The dominant contribution to the integral in A; resembles F(Y,,) — Vfu/z (Y..). By Proposi-
tion 3.1 we have the following upper and lower bounds for the difference of this quantity
and the integrand:

0< [F(Yu) et (Yu)} - [F(Yu) CHN AN Y Y e (2 — 21))}
<F(Yy+e = (20— 21)). (6.32)
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Recall from (3.16) that Zx (Y) is defined as

eu/2

Zi(Y) = exp (/OK F(Y,) = Ve (v) du).

Because the exponentials in both A; and Zk (V') are bounded above by Cz, by (6.32) we
have

’Al(m?wv)‘a/\vi) - E;/(ZK(Y) ‘ Yk = w)’

K
<Cyz E;,/(/ F(Y, + e%(@ —z1))du
0

Vi = w). (6.33)

We define Z¢(Y, M, K) by
Z(Y,M,K) = Zg(Y) x EL>° (W (Y, 22)) - (6.34)
Using (6.33) and proceeding as in the proofs of Lemmas 6.2 and 6.4, we obtain the
following.
Lemma 6.6. For all x, z1, 22 € R such that z; # 2o,
SHT,M,K) = sup |EY(Z{(Y,N/N\M,K)—Z(Y,M,K)|Yr = z)|
X' >X(s)
satisfies limr_,, 6¢(T, M, K) = 0 for all fixed M and K such that0 < M < K.
From (6.34), we have

EX(Z(Y,M,K)|Yr = z) = EY (Zg(Y) | Yr = 21) EL™° (Wu (Y, 22)) .

Thus by Lemma 2.3(b) and the fact that Zx (YY) < Cz (and is a continuous function of Y')
we have the following.

Lemma 6.7. For all z, z1, 25 € R,
§4(I, M, K) = |EY (Z°(Y, M, K) | Yr = 21) — EX*(Zg(Y)EX:> (War(Y, 22)) |

satisfies lim7_, o 6;(T, M, K) =0 for all fixed M and K such that0 < M < K.

We are now ready to establish the limiting form of EEY (Zp(Y,XN/\) | Y7 = 21) (provided
21 # 2z2). Let M >0, K > M, T > 2K + 7(s) and X' > \(s). Bounding above by the sum
of the ¢ terms in Lemmas 6.2-6.7, we have that

|EY (Zr(Y, N /) [ Yo = 21) — EY > (Zx (V) B2 (W (Y, 2)) |
< 67 (K) + S (K, A\ X)) + 00(M) + 65(M, K) + 64(T, M, K) + 6%(T, M, K). (6.35)

Let ¢ > 0. By Lemma 6.4, we can choose M; > 0 to be sufficiently large such that
88(M) < e/4 for all M > My, and choose some M > M,. By Lemma 6.2 and Lemma 6.5,
we can then choose K to be large enough such that 6, (K) + §5(M, K) < €/4 for all
K > Ky. Fix K > Kjy. Next, by Lemmas 6.6 and 6.7 we can choose T > 2K + 7(s)
such that for all T' > Ty, §4(T, M, K) + 0%(T, M, K) < €/4. Finally, Lemma 6.3 allows
us to choose A(e) > A(s) such that 7 = log(A\2(t — s)) > Tp and 6 (K, A\, \') < ¢/4 for all
A, A > A(e). We therefore obtain from (6.35) that

limsup |EY (Zr(Y,N /) |Yr = 21) — EX>®(Zg (Y))EL>® (Wy (Y, 22)) | < €

AN =00

for the M and K chosen above. This holds for all € > 0 for sufficiently large M and K
(with M < K). It therefore holds that if limas, ko0, k>0 B (Zg (Y))EXL> (Wi (Y, 22))
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exists, then limy y 00 EY (Z7(Y, N /A) | Y1 = 21) exists and is equal to it. Thus it suffices
to find the limit of E}"*°(Zx (Y))EY:>° (W (Y, 22)) as M, K — oo with M < K. As the
first term depends only on K and the second depends only on M, we can consider the
limits independently. First consider EY>°(Z(Y)). By (3.18), Zx 1 Zso < Cz, so the limit
of the first term as K — oo is EY**°(Z.(Y)) by Monotone Convergence. We recall the
definition of Wy, from (5.39). The integral in W), is monotone in M and hence converges
to the integral on [0, 00] as M — oo. Using the fact that |Wjy, (Y, 22)| < 1 for all M and
continuity of the exponential, we can bring the limit inside, and E)>*° (W (Y, 22)) —
EY*°(Wx(Y,22)) as M — oo. Thus we have shown that

lim EY (Zr(Y,N/A) | Y = 21) = EY*°(Zoo(Y))EL>® (W (Y, 22)) -

AN 00

This is (6.1), which is what we wanted to show, so the proof of Lemma 5.5 is complete. O
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