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On Stein’s method for multivariate self-decomposable
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Abstract

We develop a multidimensional Stein methodology for non-degenerate self-decompos-
able random vectors in R? having finite first moment. Building on previous univariate
findings, we solve an integro-partial differential Stein equation by a mixture of semi-
group and Fourier analytic methods. Then, under a second moment assumption, we
introduce a notion of Stein kernel and an associated Stein discrepancy specifically
designed for infinitely divisible distributions. Combining these new tools, we obtain
quantitative bounds on smooth-Wasserstein distances between a probability measure
in R? and a non-degenerate self-decomposable target law with finite second moment.
Finally, under an appropriate Poincaré-type inequality assumption, we investigate, via
variational methods, the existence of Stein kernels. In particular, this leads to quanti-
tative versions of classical results on characterizations of probability distributions by
variational functionals.
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1 Introduction

Stein’s method is a powerful device to quantify proximity in law between random
variables. It has proven to be particularly useful to compute explicit rates of convergence
in several limiting results of probability theory (from the standard central limit theorem
to more complex paradigms satisfying some specific asymptotic behavior). Moreover,
it has been successfully implemented for a large collection of one dimensional target
limiting laws (see [45, 46, 13, 43] for standard references on the subject and [27] for a
more recent survey). Most of these works essentially focus on the unidimensional setting
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and related multidimensional results are relatively sparse in the literature. Indeed, the
multidimensional Stein’s method has essentially been developed in the multivariate
normal case (see e.g. [2, 22, 20, 41, 39, 11, 40, 31, 34, 42, 35]) and for invariant
measures of multidimensional diffusions ([29, 21]). In particular, [21] proposes a general
Stein’s method framework for target probability measures ;. on R?, d > 1, which satisfy
the following set of assumptions: p has finite mean, is absolutely continuous with respect
to the d-dimensional Lebesgue measure and its density is continuously differentiable
with support the whole of R?.

Below, we introduce and develop a multidimensional Stein’s methodology for a
different specific class of probability measures on R¢, namely non-degenerate self-
decomposable laws with finite first moment (see (2.4) in Section 2 for a definition). This
class of probability measures, introduced by Paul Lévy in [26], is rather natural in the
context of limit theorems for sum of independent summands and has been thoroughly
studied in several classical books (see e.g. [24, 26, 19, 28, 38, 44]). Nevertheless,
while being very classical in the context of limit theorems, no systematic Stein’s method
has been carried out for multivariate non-degenerate self-decomposable distributions.
(The whole class of non-degenerate self-decomposable laws with finite first moment is
different, but has a non-empty intersection with the class of target probability measures
analyzed in [21]. Indeed, non-degenerate self-decomposable laws with finite first moment
admit a Lebesgue density, which might not be differentiable on R¢, and whose support
might be a half-space of R?.) Finally, many classical probability measures on R? are
self-decomposable (see [44, 47] and Section 3 below for some examples).

From our previous univariate work [1], the multidimensional Stein’s method we
implement is a generalization of the semigroup method “a la Barbour” ([2]). Thanks to
the particular structure of self-decomposable characteristic functions, this semigroup
approach relies heavily on Fourier analytic tools. Moreover, the generator of the afore-
mentioned semigroup is an integro-differential operator, reflecting the infinite divisibility
of the target law, which can be seen as a direct consequence of a characterization
identity originating in [23] and further developed and analyzed in [1]. The resulting
Stein equation is a non-local partial differential equation and contrasts with the usual
second order partial differential equations associated with the multivariate Gaussian
distribution or with the invariant measures of It0 diffusions.

Our methodology is then applied to quantify proximity, in smooth Wasserstein dis-
tances of order 1 and 2, between an appropriate probability measure on R? and a
non-degenerate self-decomposable laws with finite second moment. Key quantities used
in our analysis are relevant versions of Stein kernels and of Stein discrepancies in
this infinitely divisible setting (see Definition 4.1). Stein kernel and Stein discrepancy
are concepts which have mostly been well developed in the Gaussian setting and have
recently gained a certain momentum in connection with random matrices ([9]), Malliavin
calculus ([32, 33]), functional inequalities ([25, 16]), optimal transport ([18]) and rates
of convergence in multidimensional central limit theorems ([35]). In particular, [16]
investigates the question of existence of a Gaussian Stein kernel for probability measures
satisfying a Poincaré inequality or a converse weighted Poincaré inequality (see, e.g.,
[3] for a definition). Thanks to earlier work on characterizing functionals of infinitely
divisible distributions [14], we introduce in the last section of the present manuscript
the relevant variational setting which ensures the existence of Stein kernels and implies
manageable upper bounds on the Stein discrepancy. In particular, Theorem 4.5 is a
quantitative version of the characterizing results contained in [14].

Let us further describe the content of the present notes. In the next section, we
introduce notations used throughout this work. In Section 3, we develop the multidi-
mensional Stein methodology for non-degenerate self-decomposable random vector with
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finite first moment, extending our univariate approach ([1]). In Section 4, we introduce
an infinitely divisible version of Stein kernel (and of the Stein discrepancy) and study the
existence of the latter under an appropriate version of a Poincaré inequality. We end this
section by providing quantitative upper bounds on the smooth Wasserstein distance of
order two in terms of Poincaré constants and the second moment of the Lévy measure of
the target self-decomposable distribution. A technical appendix finishes our manuscript.

2 Notations

Throughout, let || - || and (-;-) be respectively the Euclidean norm and the inner
product on R?, d > 1. Let also S(R?) be the Schwartz space of infinitely differentiable
rapidly decreasing real-valued functions defined on R¢, and by F the Fourier transform
operator given, for f € S(R?), by

FOE) = [ f@)e o, B

On S(RY), the Fourier transform is an isomorphism and the following well known
inversion formula holds

f@ = [ Fp@erien L

R4 (27T)d7

z € RY.

Let Cy(RY) be the space of bounded continuous functions on R? endowed with the
uniform norm || f|s = sup,egq |f(x)], for f € Cy(R?). For any bounded linear operator,
T, from a Banach space (X, | - || x) to another Banach space (), || - ||y) the operator norm
is, as usual,

rexiflleo Iflle

More generally, for any r-multilinear form F from (R%)", r > 1, to R, the operator norm
of F'is

| Fllop := sup (|F(v1, )| v € RY, lvjll =1, j= 1,...,r) . (2.2)

Throughout, a Lévy measure is a positive Borel measure on R? such that v({0}) = 0
and [p.(1 A [Jul?)v(du) < +oo. An R%-valued random vector X is infinitely divisible with
triplet (b, %, v) (written X ~ ID(b,X,v)), if its characteristic function ¢ writes, for all
£ € R, as

o€ o (it - 550+ [ (@S- ig o) van ), @

with b € R?, ¥ a symmetric nonnegative definite d x d matrix, v a Lévy measure on R¢
and D the closed Euclidean unit ball of R?. In the sequel, we are mainly interested in a
subclass of infinitely divisible distributions, namely the self-decomposable laws (SD). If ¢
is the characteristic function of a self-decomposable distribution, then for any v € (0, 1),
there exists, on R?, a probability measure, say v, such that, forall £ € R4

ei(i;u)M (du) = &7 (2.4)
/]Rd () o(v€)

(Recall that ¢(¢&) # 0, for all ¢ € RY, e.g., see [44, Lemma 7.5]). Moreover, e.g., see [44,
Theorem 15.10], the Lévy measure of a self-decomposable distribution is given, for any
Borel set B in R4\ {0}, by

+oo r
v(B) = /Sdil )\(das)/o ]lB(m:)km(r)d—, (2.5)

r
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with \ a finite positive measure on the Euclidean unit sphere S¢~! and k,(r) a non-
negative function (Lebesgue) measurable in z € S9-1 and decreasing in r > 0 (namely,
ks (s) < ky(r), for 0 < r < s). Thanks to [44, Remark 15.12 (iii)], since v # 0, let us assume
that A(S%1) = 1, that [,"°°(r> A 1)k, (r)dr/r is finite and independent of « and that k, ()
is right-continuous in » > 0. Finally, since they satisfy the divergence condition (see
e.g. [44, Theorem 27.13]), non-degenerate self-decomposable laws on R¢ are absolutely
continuous with respect to the d-dimensional Lebesgue measure.

To end this section, let us introduce some natural distances between probability
measures on R?. For p > 1, the Wasserstein-p distance between two probability measures
wx and py with finite p-th moment is

1

P

Wyt = ot ([ ey ) 2.6)
Hel'(px,puy) \JRExRe

where I'(ux, 1y is the collection of probability measures on R? x R? with, respective,

first and last d-dimensional marginal given by ux and py. By Holder inequality, for

I<p<gq

Wy (px, py) < Wolpx, py), (2.7)
while, by duality,
Wi(px,py) = sup [Eh(X)—TEA(Y)], (2.8)
IRllLip<1

where X ~ px, Y ~ py and where Lip is the space of Lipschitz functions on R¢ endowed
with the seminorm

h(x) —h
Wl = sup P& =hW) (2.9)
etyerd T =yl

Let IN“ be the space of multi-indices of dimension d. For any a € N%, let [a| = Y7, |a;]
and let D® be the corresponding partial derivatives operator defined on smooth enough
functions f, by D*(f)(z1, ..., xa) = 021...094(f) (21, ..., xa), for all (z1, ..., x4) € R%. Next,
for any r-times continuously differentiable function, h, on R?, viewing its /th-derivative
D¢ (h) as a {-multilinear form, 1 < ¢ <, let

-1 ) — DL op
My(h) = sup [ D (k) (@) = sup 2N =D (1))l

(2.10)
z€ERA z#y lz —yll

For r > 0, let H, be the space of bounded continuous functions defined on R¢ which are
continuously differentiable up to (and including) the order r and such that, for any such
function f,

< .
Org?gxr Mo(f) <1, (2.11)

with My(f) := sup,cge | f(2)|. In particular, for f € #,,

max  [[D*(f)[l < 1. (2.12)

aeN? 0<|a|<r
Therefore, the space H, is a subspace of the set of bounded functions which are r-times
continuously differentiable on R? such that || D?(f)||c < 1, foralla € N with 0 < |a| < 7.

Then, the smooth Wasserstein distance of order » between two random vectors X and Y
with respective law px and py is defined by

dw, (px, py) = hsu?g) |EA(X) — ER(Y)|. (2.13)
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Moreover, the smooth Wasserstein distance of order » > 1 admits the following represen-
tation (see Lemma A.2 of the Appendix)

dw, (ux,py) = sup |EA(X) — ER(Y)], (2.14)
heH,NC (R4)

where C§°(]R‘i) is the space of infinitely differentiable compactly supported functions on
R?. In particular, forp > 1and r > 1

dw, (x, py) < dw, (px, py) < Wilpx, py) < Wylpx, py)- (2.15)

Finally, and as usual, for two probability measures, p; and pg, on R4, w1 is said to be
absolutely continuous with respect to ue, written p; << uo, if for any Borel set, B, such
that po(B) = 0, then p1(B) = 0.

3 Stein’s equation for SD laws via semigroup methods

Let X be a non-degenerate self-decomposable random vector in R¢, without Gaussian
component, and with law px. By non-degenerate, we mean that the support of the law of
X is not contained in some d— 1 dimensional subspace of R¢. Denote by X;, fori =1, ...,d,
its coordinates and assume that E|X;| < oo, for all i = 1, ..., d. Its characteristic function
¢ is given, for all £ € R?, by

p(§) = exp (i<£;EX> + /Rd (e“f”” -1 =iy 5>) V(dU)>

= exp <z<§, EX) +/ (e“f;”") -1- i(m”;&))
§d=1%(0,400)

where v is the Lévy measure, while k£, and A are given in (2.5). Further, assume that, for
any 0 < a < b < +oo the functions k,(-) are such that

ka (1)

r
r

dT)\(dJC)) ,  (3.1)

sup sup k,(r) < +oo. (3.2)
z€Si-1re(a,b)
Since the function k,(-) is a decreasing function in > 0, the previous condition boils
down to,

sup ky(at) < 400, a>0,
zeSd-1

where k,(at) = lim,_, o+ k.(r), z € S971. In (3.2), the supremum over z in S%~! has to
be understood as the A-essential supremum of the function k,(r) in the x variable. In
the univariate case, d = 1, the polar decomposition of the Lévy measure v boils down
to v(du) = k(u)du/|u| where k is non-negative, increasing on (—o0,0) and decreasing
on (0, +00). Thus, the condition (3.2) is automatically satisfied for d = 1. For d > 2, the
polar decomposition of the Lévy measure associated with a stable distribution of index
a € (1,2) is given by

dr
v(du) = L0 400) (1) Lga-1 (:c)m/\(dx),

for some finite positive measure A\ on the d-dimensional unit sphere (see [44, Theorem
14.3]). Then, k,(r) = 1/r%, for all » > 0, and condition (3.2) is automatically satisfied (see
below for more examples). Next, define a family of operators (P});>o, for all f € S(R?),
allz € RY and all t > 0, via

1

PN = o [ F OO 92 ae (.3)
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Denoting by (4t)¢>0 the family of probability measures given by (2.4) with v = e~ * and
using Fourier inversion on S(R), it follows that
P/ (f)(z) = flu+ e tz)py(du). (3.4)

R4

For all ¢t > 0, the probability measure p;, is infinitely divisible with finite first moment and
its characteristic function ¢, admits, for all £ € R¢, the following representation

) = oxp (G EXY L -7+ [ (4657 1 — itra:))

d=1x(0,4+00)
ko (r) — kg (et
x Mdr)\(dx)). (3.5)
r

The next lemma asserts that the family of operators (P/);>¢ is a Cp-semigroup on the
space L'(ux). Its proof is very similar to the one dimensional case (see [1, Proposition
5.1]) thanks to the polar decomposition (2.5).
Lemma 3.1. Let X be a non-degenerate self-decomposable random vector without
Gaussian component, with law px, Lévy measure v and such that E|| X | < co. Moreover,
let the functions k, given by (2.5) satisfy (3.2). Let ¢ be its characteristic function and
let (P})t>0 be the family of operators defined by (3.3). Then, (P} ):>o is a Cy-semigroup
on the space L'(ux) and its generator A is defined, for all f € S(R?) and for all x € R4,

by

A(f) (@) = (EX —;V(f)(2)) + / (VN +u) = V(f)(2); ur(du). (3.6)

R4

Proof of Lemma 3.1. Let f € C,(RY). First, by (3.4), for all 5,¢ > 0 and for all z € RY,

PLaN@) = [ flut e )., du),
Moreover, for all s, > 0,
PO PN = [ PU e ()
= [ e e () 3.7

Let v+, be the measurable function defined by v ; ,(u,v) = v + e *(u + e 'z), for all
u,v € R? x R?. Then, from (3.7), for all s,¢ > 0 and for all =z € R¢,

o P(N@ = [ fw)n s p)ovrd(du).

R4 xR

Let us now compute the characteristic function of the probability measure (u;® ) Ow;t17x'
For all ¢ € RY,

[ e o p) ovrlade) = [ ey i) @ ()
R4 R4 xR
_ pitge ) / GHED 65070 () @ pug (do)
Rd

©s(§)pi(eE)
R P A (I
p(e (1))

(Ero— (D)
_ oilEe )

= ei<
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ilge—(sHt) 4 (&
— & * >/ & >us+t(du)
R4
:/ ei<£;%'t’w(u)>us+t(du)
R4
:/ 6i<£;u>ﬂs+t © @;z},x(du%
]Rd

where @ ; . (u) = e~z 4 v, for all z € R, s > 0 and ¢ > 0. This implies that

P o P/(f)(x) = Py (f) (),

and so the semigroup property is verified on Cb(]Rd). Moreover,

PN @hx(dn) = [ flut e op(du (o) (3.8)

R4 RIXRE

Setting w;(u, r) = u + ez, for all u € R? and all » € R?, (3.8) then becomes

PP @xdn) = [ f0) ® ex) o (00)

R4

The characteristic function of the probability measure (du; ® dux ) ow, lis, for all £ € RY,

/ 6 (1, @ pix) o wiH (dv) = / e &)y (du) px (dar)
R4 RexR4
B / et ) (du) i (dr)
R4 xR
= 0i(&)p(e™€)
©(&)-

Therefore, for all t € RY,

/ PY(f) (2 (de) = / F(@)ux (d),
]Rd, ]Rd

and so the probability measure px is invariant for the family of operators (P/);>. One
can further check, by Fourier arguments, that, for all = € R¢,

t—0+ t——+o00

lim PY(/)(w) = S(@). lim P = [ f@hnxis).

Next, by Jensen inequality and the invariance property,
[P @lex(d) < [ PES) @ (o)
R R4
< [ 1r@lnxda).
]Rd

Then, by the density of C,(RY) in L'(ux) ([4, Corollary 4.2.2]), one can extend the
family of operators (P}):>¢ to functions in L' (ux ), and, this extension, still denoted by
(PY)¢>0, is a Cp-semigroup on L' (ux). To end the proof of the lemma, let us compute
the generator of this semigroup on S(R%). Let f € S(R?). By Fourier inversion, for all
r € R% and for all t > 0,

Ly z) — f(z S oilEa) [ pil&a) (e =1 e
PHD@) ~ ) = gy [ F D@ A1)
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First, for all z € R? and for all £ € R¢,

L e ey _2(6) . L9
fim L [ gitgare -1 _PE) >Z . i
Ho+t( p(etE) ! & >+;£ e(&)

which is a well-defined limit since X has finite first moment. Now, from the representation
(3.1), for all ¢ € R?,

L DO =, (e
jzlgj«p(ff):;ﬁ (ZEXj+Z/]Rd“j (1m0 —1) u(du))

— (<§;1EX> + [ (g (e -1) u(dm) |

Moreover, by Lemma A.1 (ii) of the Appendix, for all t € (0,1), z € R? and ¢ € R,

1| semye—on_96)
= leeme 0 2o g <o c EX 2
s le S ‘ < Cullgllll=]l + C2(llEN + NEINEX ]+ [1€]7),
for some C > 0,C3 > 0, independent of ¢, £ and z. Then, by dominated convergence,

i (P (7)(0) = £2) = sz [ PO (= itgia) + il BX)

t—0+ T
+i/ (& u) (e“";£> - 1) V(du))df,
R4

which is equal, by standard Fourier arguments, to

lim - (PY()(@) — f(2) = (V(F)(@): EX — a) + / (V) (2 +u) = V(f)(2); wpv(du).

t—0t ¢ R4

This concludes the proof of (3.6) and of the lemma. O

Remark 3.2. The analysis performed in this paper relies heavily on the properties of
the semigroup of operators (P} );>o. It is, moreover, possible to build a Markov process
with values in R? such that its induced semigroup corresponds to (P})>0. Indeed, for
all t > 0, since P} is mass conservative and is a contraction on Ll(,u x ),[3, Proposition
1.2.3] ensures the existence of a kernel p} (-, -) such that, for all f € G, (Rd),

P (f)(x) = Rdf(z)p?(m,dZ% z € R

In particular, p¥ (z,dz) = utow&%)x(dz), forallt > 0 and » € RY, where ¢ ;. (y) = etz +y,
for all y € RY, and where p, is given by (2.4) with v = e~*. Besides, the semigroup
property of (P} ):>o implies that the kernels (pf (-, -))¢>0 satisfy the Chapman-Kolmogorov
equation. In turn, this latter relation ensures the existence of a Markov process {Z} :
t > 0}, such that Z = z, with = € R? and such that, for all f € C, (R?),

Ef(Z) = FY(f)(x), zcR%, t>0.

Finally, for all ¢ > 0, denoting by X; the random vector with law pu;, one has the
representation in law

Zy =q et 4+ X,

where =, stands for equality in distribution. Based on this representation, the Markov
process {ZF : t > 0} can be thought of as a generalization of the classical Ornstein-
Uhlenbeck process whose invariant measure is the multivariate Gaussian distribution on
R? (see e.g. [3, Part I, Chapter 2, Section 2.7.1]).
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Let h € H, N C(RY), for some r > 1. The aim of the rest of the section is to solve,
for all z € RY, the following integro-partial differential equation,

(EX —z;V(f)(z)) + / (V@ +u) = V(f)(x);upr(du) = h(z) —EL(X),  (3.9)

R4

which will serve as the fundamental equation in our Stein’s methodology for non-
degenerate self-decomposable law. As done in the one-dimensional case in [1], we
first introduce a potential candidate solution for this equation then study its regularity
and finally prove that it actually solves the equation (3.9). The following proposition
deals with the existence and the regularity of the candidate solution.

Proposition 3.3. Let X be a non-degenerate self-decomposable random vector in R?,
without Gaussian component, with law ux, characteristic function ¢ and such that
E||X|| < co. Moreover, let the functions k, given by (2.5) satisfy (3.2). Let (P});>0 be
the semigroup of operators obtained in Lemma 3.1. Then, for any h € H-, the function
fn given, for all z € R%, by

+oo
fulz) = — / (PY (h)(x) — ER(X))dt, (3.10)

is well defined and twice continuously differentiable on R?. Moreover, for any a € IN?
such that |a| =1,

D% (fr)lloo <1, (3.11)
and, for any o € N? such that |a| = 2,
1
1D (f)lloo < 5- (3.12)

Proof of Proposition 3.3. Let h € Hs. By (3.4) and Theorem A.4 of the Appendix, for all
r € R4,

[P (h)(z) = BR(X)| < |[x[le™ Mi(h) + dw, (X, X;)
< |lzlle” + Cqe AT @D ,
and so the function

+o0
flw) = — / (P (h)(x) — BA(X))dt,

is well defined for all € R®. Moreover, by (3.4) and the regularity of h € H,, for all
1< j <dand forall z € RY,

+oo
0,h)w) == [ POt
which implies that, forall 1 < j < d and for all z € R4,
0;(fn)(z)] < 1.
Similarly for all 4,5 € {1,..,d} and for all z € R?,
+oo
() == [ R m) @)
which implies that
1
(@) < 3,

and concludes the proof of the proposition. O

EJP 24 (2019), paper 29. http://www.imstat.org/ejp/
Page 9/33


http://dx.doi.org/10.1214/19-EJP285
http://www.imstat.org/ejp/

On Stein’s method for multivariate self-decomposable laws with finite first moment

Proposition 3.4. Let X be a non-degenerate self-decomposable random vector in R
without Gaussian component, with law px, characteristic function ¢, and such that
E||X|| < oo. Moreover, let the function k, given by (2.5) satisfy (3.2), and let (X;);>o be
the collection of random vectors such that, for allt > 0, X; has law u,; given by (2.4) with
~v=e~t. Foreacht > 0, let u; be absolutely continuous with respect to the d-dimensional
Lebesgue measure and let its Radon-Nikodym derivative, denoted by q,, be continuously
differentiable on R® and such that, for all1 < i < d,

“+o0
i a) =0, [ mla <o [ e ([ a@mla) i<
Yi—L 00 R4 0 Rd
(3.13)

Let h € H; and (P});>0 be the semigroup of operators obtained in Lemma 3.1. Then, the
function f;, given, for all x € RY, by

+oo
(@) = — /0 (PY(h)(x) — ER(X))dt, (3.14)

is well defined and twice continuously differentiable on R?. Moreover, for any a € IN?
such that |a| =1

1D (fn)lloe <1, (3.15)
and, for any o € N? such that |a| = 2
1D (fn)lloe < Cla. (3.16)
for some C; > 0 only depending on d.
Proof of Proposition 3.4. Let h € H;. By (3.4) and Theorem A.4, for all x € R
[Py (h)(z) — BER(X)| < [[z]le™" Mi(h) + dw, (X, X¢)
< [l@fle™t + Cue” @D,

and so the function
+oo
fuwz—/’<mwmw—ﬁmxmw
0

is well defined for all € R?. Moreover, by (3.4) and the regularity of h € H;, for all
1< j <dand forall z € RY,

+oo
0@ == [ E M) @),
which implies that, for all 1 < j < d and for all z € R?,

10;(fn)(@)| < 1.

Let us fix 1 < i < d and « € R%. By definition and an integration by parts (thanks to
(3.13)),

B (9i(h))(z) = » 0i(h)(ze™" + y)ar(y)dy

= —/ h(xe_t +v)0i(q:)(y)dy.
]Rd
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Thus, forall 1 <i,j < d and z € RY,

0; (P (0i(h)(@)) = —e™" | 05(h)(we™" +1)0i(qr) (y)dy.

R4

This representation, together with the third condition in (3.13), ensures that f is twice
continuously differentiable on R? and that, for all z € R and forall 1 <i,j < d,

+oo
0@ = [ ([ o ot way ) ar

Finally, forall z € R*and all 1 <4, < d,

05,5 (fn)(@)] < /Om e 2 (/R 10;(q0) (y)| dy) dt < 4oo0.

This concludes the proof of the proposition. O

Before showing that f;, as given in the two previous propositions, is a solution to the
integro-partial differential equation

(EX —2;V(f)(x)) + /}RdW(f)(x +u) = V(f)(2);u)r(du) = h(z) — BR(X), = €RY,

for h respectively in Hy N CP(RY) and H; N C°(R?), we provide some examples of
non-degenerate self-decomposable random vectors satisfying the assumptions of the
aforementioned propositions.

Some examples

Rotationally invariant a-stable random vector in R?. Let o € (1,2) and let X be
an a-stable random vector whose law is rotationally invariant. Then, its characteristic
function ¢ is, for all £ € RY,

¢(&) = exp (—Cad

1€11)

for some constant C, 4 > 0 depending on « and d. Hence, the characteristic function of
1 is given, for all € € R%, and t > 0 by

1(€) = exp (~Cla a1 — e IE]|") -

Thus, for all t > 0, u; is absolutely continuous with respect to the Lebesgue measure and
its density ¢, is given for all = € R¢, by the Fourier inversion formula,

1 e 1 .
W /]Rd 62<£,x><ﬂt(€)d§ = W /]Rd &) exp (*Ca,d(l _ efat)”ﬂla) e, (3.17)

qt(z) =
(
From (3.17), it is clear that ¢ is continuously differentiable on R¢ and that, for all z € R?
and 1 < j <d,

9j(qt)(x) = @/}R e &) (i¢;) exp (—Caa(l — e24)]1€]|) de.

Moreover, the characteristic function ¢, is linked to the Fourier transform of the tran-
sition density of a rotationally invariant d-dimensional a-stable process after the time
change 7 = (1—e~*'). Indeed, if (Z;*):> is a rotationally invariant d-dimensional a-stable
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Lévy process, then its characteristic function at time ¢ is given, for all ¢ > 0 and all
¢ e RY, by

e t @
E &%) = exp (—;CU ) .
2

Thus, forall ¢ € R? and all ¢ > 0,
w1 (&) = | HEV2CL 02T —ar)

Finally, Lemma 2.2 of [15] implies that the density ¢; and its gradient satisfy the following
inequalities, for all z € RY,
1—e @t 1—eat
()| < €l gL , N —
(1= e=ona + o)) (1= ey + o))

for some C}, ; > 0,C; ; > 0, only depending on a and d. It follows that ¢, satisfies the
conditions (3.13).

oa+d+17

Symmetric a-stable random vector in R?. Let a € (1,2) and let X be a symmet-
ric a-stable random vector on R¢. By [44, Theorem 14.13], the characteristic function of
X is given, for all ¢ € R with ||¢|| # 0, by

o) = exp <_ /S (a; )] Al(dx)) = exp <—||€||“/Sd1 ’<x||§”>

where )\; is a symmetric positive finite measure on S¢~!. Then, for all £ € R? and all

t>0,
er@ = (<=0l [ (i)

Moreover, let us assume that there exists ¢y > 0 such that [g,_, [(z;u)|*A1(dz) > co,
for any w € S?!. Then, yu, is absolutely continuous with respect to the d-dimensional
Lebesgue measure and its density ¢, is given, for all t > 0 and all =z € R¢, by

1 R 1 "
qi(z) = G /}Rd "6 o, (€)d¢ = W/Rd e &%) exp (—(1 — e™)[|€]|%na(€)) dE,

[0}

Al(dx)) ,

(e

Al(dx)> .

with 76,(8) = [ga—r [(z:€/1I€]1)|* M1 (dz). For all t > 0, ¢, is continuously differentiable on
R¢ and its partial derivative in the jth direction, j € {1,...,d}, is given, for all z € R?, by

0,a)(w) = gz [ @i exp (=(1 = €] a(9)

Takano distribution I [49]. Let o € (0, +00) and let y4,4 be the probability measure
on R? given by

—a—d/2

fa,a(dz) = caq (1 + Hx||2) dzx,

where ¢, ¢ > 0 is a normalizing constant. As shown in [49] such a probability measure
is self-decomposable. Moreover, from ([49, Theorem II]), its characteristic function is
given, for all ¢ € R?, by

+oo +oo
() —exp ( [ 2em ( / (mﬂd*z)“m_z)m(mwga@w)dw) o
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></ dfc/v giuat _q _ et ) du
gd—1 0 1+ u? w )’

where K(;_)/» denotes the modified Bessel function of order (d — 2)/2 while g, (w) =
2/(m?w) x 1/ (J2(vw) + YZ(yw))), w > 0, with J, and Y, the Bessel functions of the
first kind and of the second kind, respectively (see [36, Chapter 10] for definitions of
Bessel functions). Finally, the Lévy measure of p, 4 is given (see [49, Representation (2)
page 23]) by:

2

i) = 2 ([ gatzu)tags (VEui ) do)

where Lg/(v) = (27r)_d/2vd/2Kd/2(v), for all v > 0, implying the following polar decom-
position

v(du) = ]].(0,+OO)(7")]ISCL—1(£L')% </0+00 9o (2w)Lg /o (\/ﬂ7> dw) dro(dz),

where ¢ is the uniform measure on S¢~1. Hence, the condition (3.2) is automatically
satisfied. Therefore, our methodology applies as soon as a > 1/2 (which ensures that
f]Rd ||$||Ma,d(dx) < 400).

Takano distribution II [48]. Let i be the probability measure on R¢ given by
p(dx) = Cexp (—||z||) dz,

where C' > 0 is a normalizing constant. Thanks to [48, Result 1], its characteristic
function ¢ is given by

©(&) = exp </}Rd (ei<5;“t> — 1) ]W”(uuudl)du) , £eRY,

where M (w) = (2r)~%?(d + 1)wd/2Kd/2(w), for w > 0. Hence, p is an infinitely divisible
probability measure on R?. Moreover, the function M admits the following representation
(see the last formula page 64 of [48])

+oo
M(w) = Cd/ vd/2K(d_2)/2(v)du, w > 0,

w

which is non-negative and decreasing on (0, 4+00) (and Cy > 0). Thus, u is self-decompos-
able and its Lévy measure admits the following polar decomposition

M
v(du) = 10, 400) (1)L ga—1(x) (r) dro(dz),
T
where ¢ is the uniform measure on the Euclidean unit sphere. Finally, the associated
functions k, satisfy (3.2) and the probability measure ;1 admits finite moments of any
orders.

Multivariate gamma distribution. Let (ay,...,a4) € (0,4+00)? and let X = (Xi,...,
X,4) be a random vector whose independent coordinates are distributed according to
gamma laws with parameters («;,1), 1 < ¢ < d. The characteristic function of X is given
by

d

p)=J[-ig)™™, ¢er’

j=1
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For any b > 1, there exists p;, a probability measure on R?, such that, ¢(&) = ¢(£/b)ps(€),
for all ¢ € RY. Indeed, take p, = p1 ® ... ® pap, where, for any 1 < j < d, p;,, is defined,
forall {; € R, by

/ % p o (dr) = (ILJ)_%
R (1-i%)

Therefore, our methodology applies to these multivariate gamma distributions. Moreover,
forall ¢ € RY and all ¢ > 0,

i §
e tZ]zl J S ’szoe(_t)g)‘ S 1

Other types of self-decomposable multivariate gamma distributions have been considered
in the literature. In particular, [37] considers a class of infinitely divisible multivariate
gamma distributions with Lévy measure having the following polar decomposition,
v(du) = 1(g,400)(r)Lga— (x)awdr/\(dm),

where «, § are positive reals and A is a finite positive measure on the d-dimensional Eu-
clidean unit sphere. Therefore, k,(r) = ae B r > 0andso (3.2) is again satisfied. More-
over, such infinitely divisible multivariate gamma distributions are self-decomposable
and admit absolute moment of any orders.

Another way to build probability measures on R? which are self-decomposable is
through mixtures. For example, thanks to [50, Corollary p. 40], the mixture of a
d-multivariate normal distribution, N (m,T'I;), m € R4, and of a generalized gamma
convolution I' (see, [5] for a definition) is self-decomposable.

Finally, let us explain how one can build an example of a self-decomposable distri-
bution for which the k, function defined in (2.5) does not satisfied the condition (3.2).
Let d = 2 and let o be the uniform measure on the circle. Let o € (1,2) and let 5 be a
positive function defined on S!, measurable on S! and such that

B(x)o(dx) < +o0, sup f(z) = +oo.
St zeS!t

Then, the self-decomposable distribution whose Lévy measure is given through the polar
decomposition

v(du) = 1 (g, 4o0)(r)Ls1 () fogfz dro(dx),

has finite first moment but does not satisfied the condition (3.2) since then k,(r) =
B(z)/r®, forall r > 0 and a.e. x € S'.

Let us next return to the integro-partial differential equation (3.9) and solve it for
any h € Ha NCX(R?). In fact, under the assumption of Proposition 3.4, it is possible to
solve, mutatis mutandis, the Stein equation (3.9) for h € H; N C°(RY).

Proposition 3.5. Let X be a non-degenerate self-decomposable random vector in R¢
without Gaussian component, with law px, with Lévy measure v and such that E|| X || <
oo. Moreover, let the functions k, given by (2.5) satisfy (3.2). Let h € Ho N C°(R?) and
let f;, be the function given by Proposition 3.3. Then, for all z € R?,

(EX — o5V (fu)(@)) + / (V)@ +u) — V(f)(@): uhw(du) = hiz) — ER(X).

R4
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Proof of Proposition 3.5. Let h € H, N C°(R?), let f;, be given by (3.10) and let h =
h —Eh(X).
Step 1: Let us prove that for all ¢t > 0 and all z € R,

d

S (P I)(@) = AP () (@), (3.18)

Since h € C>*(R%), by Fourier inversion, for all ¢+ > 0 and for all x € R¢,
~t §) dg
PY(h)(x)= [ F(h)(&e (=€) il
t()() R ()() (_tﬁ)( )
which will be used to compute d(P} (h)(z))/dt. First, note that, for all z € R¢, ¢ € R? and

t>0,
7 ()

d —t
= *i67t<x; €>6ie“(x?§>& + eie—t@;g)w(f)eft (Z gjaj(@)(eg))

el ') (g
et PO [ e o, 2i(0)E')
@(e‘tf)( (@5 + e 6= e )

— le (wif) (&) je~t - w W) _ u(du
e (<EX 0+ [ o Du(d )).

Moreover, for all z € RY, for all ¢ € R and all ¢ > 0,

4 (o020 ) < o - .
(e e B — il + et [ i

w2l vt

(HEX allel + el / vt

w2lel [ ot

Hence,
d

L PR () = I CH) (&) —
G = [ Faee w0 K e (Bx - g

w: E (€T E) _ Vu(du dg
+ [ e Vi) ) s

To conclude the first step, let us precisely compute the right-hand side of the previous
equality. First,

Fay©ee @9 28 imx —we) % EX e PO (@)

dg
(2m)
= (EX — z; V(P! (h))(2))-

using e *PY(9;(h))(x) = 9;(P/(h))(z), forallt > 0, all € R? and all 1 < j < d.
Moreover, by Fubini Theorem and Fourier arguments,
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— eieft<:c;§) 90(5) it u: ei(u;eftQ_ v(du d€
0= [ Fme w0 2 i ([ e D)) o

- Z L (] (Fem + e - 70,0000 vt

iet(x;€) Qo(f) — d{
e e 9" @)

d
= Z /}Rd uje™" (PY(9;(h))(z +u) — PY(0;(h))(z)) v(du)

= /}Rd (u; V(P () (x +u) = V(P (h))(x))v(du).

Thus, forallz € R and all ¢ > 0,

d , _, _ v
= (P (W) () = A(PY () (@),

which gives (3.18) and finishes the proof of the first step.
Step 2: Let 0 < b < +o0. Integrating out the equality (3.18) gives,

Py (h)(x / A(PY (h
then, letting b — +o0 and using Lemma 3.1 lead to:

lim (Py(h)(z) — h(z)) = —h(z), r e R

b—+o0
Next, let us show that f |A(PY (h))(x)|dt < +o0, for all x € R, To do so, we need
to estimate the quantities | V(P (h))(z)| and || V(P! (h))(z + u) — V(PY (h))(x)],

z € RY, allu € RY, and all t > 0. Since 9; (P (h)) (z) = e *PY(9;(h))(x) and since
h € Ho,

IV (P! (h))(z)]| < Vde™,
V(P (h) (@ + u) = V(P (h)(@)]| < Vde ™ Ljy=1 + Ve ||ul| 1y <1

Then, by the very definitions of 4 and of P} and standard inequalities, for all z € R¢,
andallt > 0,

AP ()()] < Ve (IIEX —e + ( /” v + /| . ||u||u<du>>> ,

which implies that f |A(PY (h))(x)|dt < +oc, for all z € RY. Moreover, A(P?(h))(z) =
A(PY(h))(z), thus, for all z € R4,
+oo

—h(z) = A(PY (h)) () dt.

0

To conclude, one needs to prove that, for all z € R?,
o0 R +o0 R
Az =A( [ PG @ar) = - Ao
0

0

But, this follows from standard arguments as well as from Proposition 3.3. O
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We end this section by proving regularity estimates for the solution f; of the Stein
equation under the assumptions of Proposition 3.3. Similar estimates hold true under
the assumptions of Proposition 3.4. In particular, under these latter assumptions, it
is sufficient to have h € H; to obtain a bound on Ms(f;), and this is in line with the
Gaussian case (see [39, 11, 31]).

Proposition 3.6. Let X be a non-degenerate self-decomposable random vector in R?
without Gaussian component, with law ux, characteristic function ¢ and such that
E||X|| < co. Moreover, let the functions k, given by (2.5) satisfy (3.2). Let h € Hy and
(P!)¢>0 be the semigroup of operators obtained in Lemma 3.1. Then, f;, given, for all
xr € RY, by

—+oo
flw) = — / (PY(h)(x) — ER(X))dt,
is such that

Mi(fn) <1, My(fr) <

DN =

Proof of Proposition 3.6. By definition,

Miy(fn) = sup [IV(fn)(2)llop-
z€RA
Let u € RY with ||u| = 1. Then, by the commutation relation V (P} (h))(x) = e *P"(V(h))(z),
for all z € R? and for all ¢ > 0, one has

+oo
V(fn)(z) = —/O e tPY(V(h))(z)dt, xR

Hence, for all z € RY,

which readily implies that M;(f,) < Mi(h) < 1 since h € Hy. The bound on Ms(f3)
follows similarly using the commutation relation twice and the fact that h € Hs. O

4 Stein kernels for SD laws with finite second moment

In the Gaussian setting, a major finding in the context of Stein’s method is the
introduction of the notion of Stein kernel (see e.g. [46, 7, 8, 9, 32, 10, 33, 35, 25, 16]).
Recall that 4, a centered Gaussian measure on R?, satisfies the following integration by
parts formula,

/ (a: () va(d) = / div(f () ya(dz),
Rd

R4
for all smooth enough, R%valued function f = (fi,..., fs) and where div(f(z)) =
Z?Zl 9;(f;)(z). For a centered probability measure p on R¢, the Gaussian Stein kernel

of p is the measurable function 7,, from R to M« qa(R), the space of d x d real matrices,
such that, for all smooth enough Ré-valued function f,

/ (: f(2)) pld) = / (o 2); V(F)(@)) mrsp(de),
Rd ]Rd,

where (A4; BYgs = Tr (A'B), for A, B € Myx4(R). Recall, also from the previous section,
that a non-degenerate self-decomposable random vector X without Gaussian component,
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with law px and with finite first moment satisfies, for f smooth enough, the following
characterizing equation:

|- exiv@instan = [ ([ S0 40 - 90 ).

Rd
Then, quite naturally, in the infinitely divisible framework, let us introduce the following
definitions of Stein kernels and of the Stein discrepancy.

Definition 4.1. Let X be a centered non-degenerate infinitely divisible random vector
without Gaussian component, with law ;1 x, Lévy measure v and such that E|| X||? < oco.
Let Y be a centered random vector with law uy and such that E||Y|> < oco. A Stein
kernel of Y with respect to X is a measurable function 1y from R? to R¢ such that,

s srtan = [ ([ 0+ 0 = s+ 0 - e vt ) mv (@)

for all R%-valued test function f for which both sides of the previous equality are well
defined. The Stein’s discrepancy of iy with respect to yux is given by

S (py|[px) = inf (/Rd /Rd [y (y +u) — 7v (y) — u||2V(dU)MY(d?J)>1/2>

where the infimum is taken over all Stein kernels of Y with respect to X, and is equal to
+o00 if no such Stein kernel exists.

The next result ensures that the Stein’s discrepancy provides a good control of some
classical metrics between probability measures on R¢.

Theorem 4.2. Let X be a centered non-degenerate self-decomposable random vector
without Gaussian component, with law p1x, Lévy measure v, such that E|| X ||? < +oo and
let also the functions k, given by (2.5) satisfy (3.2). Let Y be a centered non-degenerate
random vector with law py, such that E||Y||?> < +oco, and for which a Stein kernel with
respect to X exists. Then,

1/2
watoxo) < 5 ([ TulPvia)) s Guvlles).

Proof of Theorem 4.2. Let h € Hy N C°(RY). By Proposition 3.5, f;, is a solution to,

—(@; V(fa)(@)) + /Rd (V(fn) (@ +u) = V(fu)(@); w)v(du) = h(z) — EM(X),  z€RY,

and thus,
B (-9 + [ (T + ) = V)W )suv(dn) ) = BA(Y) - BACX),

Now, since Y admits a Stein kernel with respect to X,

EA(Y) — BA(X) = E ( [ T +0) = T (Y 40+ TY<Y>>v<du>) |

d

Taking the absolute values and applying the Cauchy-Schwarz inequality,

[ER(Y) — ER(X)] < E/]Rd V)Y +u) = V() Y)llry (Y +u) = 7v (V) — ul[v(du).
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Now, by the very definition of Ms(f) and by the Cauchy-Schwarz inequality (applied
twice), the following bound holds true

|EA(Y) — EA(X)| < M2(fh)\//]Rd ||u||21/(du)\/E /]Rd Iy (Y +u) — v (V) — ul|Pv(du).

To conclude use the definition of the Stein discrepancy and Proposition 3.6. O

In the sequel, we wish to discuss sufficient conditions for the existence of Stein
kernels as defined above. For this purpose, let us recall, in connection with Poincaré type
inequalities in an infinitely divisible setting, some definitions and results from [12, 14].
First, if X is a non-degenerate infinitely divisible random vector in R¢ without Gaussian
component, with law px and with Lévy measure v and if f : R? — R is such that
Ef(X)?>+E [ga|f(X +u) — f(X)]*v(du) < 400, then [12, Theorem 4.1] gives

Var f(X) < E/ |F(X +u) — f(X)|Pv(du). (4.1)
R4

Further, if Y is a centered non-degenerate random vector in R such that E||Y|? < +o0,

if v is a Lévy measure in R? such that [p, [|u]?v(du) < +oco and if Hy is the space of real

valued functions f on R such that Ef(Y)? < +ooand 0 < E [p. | f(Y +u)— f(Y)|?v(du) <

+00, then the Poincaré constant U (Y, v) defined as

. Var(£(V))
VD)= S0 T 7 + ) — J(V)Polda)’

characterizes the proximity in law of Y to a centered infinitely divisible random vector
with finite second moment and Lévy measure v. Indeed, [14, Theorem 2.1] proves the
following: if E|Y;|? = [, |ui|*v(du), forall 1 <i <d, then U(Y,v) > 1and U(Y,v) = 1 if
and only if the characteristic function of Y is given by

ev@=e ([ (60 —1-itgu)viaw)) . e rt

ie. if and only if Y ~ ID(b,0,v), with b = — [, .-, uv(du).

In the Gaussian case, the existence of a Stein kernel for multivariate distributions
has been investigated with the help of variational methods. Indeed, in [16], under a
spectral gap assumption, the existence of a Gaussian Stein kernel has been ensured
thanks to the classical Lax-Milgram Theorem. Thus, in view of (4.2) and the associated
characterization, it is natural to introduce the following variational setting: let Y be a
centered non-degenerate random vector with finite second moment and with law py and
let v be a Lévy measure on R? such that fl\u\l>1 |lu||*v(du) < +00. Moreover, assume that
vk uy << py, with v x uy denoting the convolution of the two positive measures v and
wy. Now, let H,(uy) be the vector space of Borel measurable R?valued functions on
R such that [y ||/ (4)[12y (dy) < +00 and [y, a7y + ) — £()|Pw(du)py (dy) < +oo
and let H, o(uy ) be the subspace of H, (uy) such that Ef(Y) = 0. (Two functions f and
g of H,(uy) are identified as soon as f = g, uy-almost everywhere.) Then, let us assume
that Y satisfies a Poincaré inequality of the following type: there exists a positive and
finite constant Uy such that, for all f € H, (uy)

(4.2)

E[f(Y) - Ef(Y)|* < Uy E/Rd 1F(Y +u) = FV)*r(du). (4.3)

In particular, note that if Y is such that U(Y,v) < +oo in (4.2), then, for all f € H,(uy)
such that f; € Hy, 1 <5 <d,

E|f;(Y) - Ef;(Y)]? <U(Y,v)E /Rd [£5(Y +u) = f;(Y)Pw(du),
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so that Y satisfies (4.3) with Uy = U(Y,v).
Moreover, let A be the bilinear functional defined, for all test functions f and g, by

A(f.g)=E / O ) — V) g(Y + ) — g(¥)w(du), (4.4)

Rd
and let L be the linear functional defined, for all test functions f, by

L(f) = E(Y; f(Y)). (4.5)

Before solving the variational problem associated with A, L and H,(uy ), we need the
following technical lemma.

Lemma 4.3. The vector space H,(uy) endowed with the bilinear functional

(3 9) 1, ) = BU(Y);:9(Y)) + A(f, 9), (4.6)

is a Hilbert space. Moreover, A, defined by (4.4), is continuous on H,(uy) x H,(uy),
coercive on H, o(uy) while, L, defined by (4.5), is continuous on H, (yty).

Proof of Lemma 4.3. First, it is clear that the bilinear symmetric functional (-;-) g, ()
is an inner product on H,(uy). Then, let | - ||z, (., ) be the induced norm defined via
11, Gy = EIF)I? + A(f, f), for all f € H,(uy). Let us prove that H, (uy) endowed
with this norm is complete. Let (f,),>1 be a Cauchy sequence in H,(py). Therefore
(fn)n>1 is a Cauchy sequence in L?(uy ), and there exists f € L?(uy) such that f,, — f,
as n — +oo in L?(uy ). Now, pick a subsequence (f,, )x>1 such that f,,, — f, uy-almost
everywhere, as k — +o0o. Fatou’s lemma together with the assumption that v * yuy << py
and the fact that (f,,),>1 is a Cauchy sequence in H, (uy) (thus is bounded), imply that

A(f, ) S TminfA(fo, , fu,) < supll fullr, () < +00- (4.7)
k—4o00 n>1

Therefore, f € H,(uy). Another application of Fatou’s lemma, and since (f,)n>1 is
Cauchy in H, (uy ), shows that f,, — fin H,(uy ). Now, by the Cauchy-Schwarz inequality,
forall f,g € H,(uy),

1/2

.01 = (B[ 150+ - g0 (B [ o+ o) Evian)

< ||fHHV(HY)||g||HV(/Ay))

which proves that A is a continuous bilinear functional on H,(uy). Moreover, since YV
satisfies (4.3), for all f € H, o(uy)

AL =B [ IO ) = £ o),

1 2 1 2
> 5B [ I 4+0) = SO Pl + Bl

> Cy 117, uy s

for 2Cy = min (1,1/(Uy)) > 0 and so A is coercive on H, o(uy). Finally, the continuity
property of the linear functional L on H, (uy ) follows from the Cauchy-Schwarz inequality,
from E||Y||* < +o0, and from the continuous embedding H, (uy) < L?(uy). O

Note that since H,, o(uy) is a closed subspace of H, (uy), it is as well a Hilbert space
with the inner product (.;.) g, (uy)-

Based on Lemma 4.3, a direct application of the Lax-Milgram Theorem (see, e.g., [17,
Theorem 1 page 297] for a precise statement as well as a proof) ensures the existence of
a Stein kernel in the sense of Definition 4.1 for probability measures py satisfying the
Poincaré-type inequality (4.3). This is the content of the next theorem.
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Theorem 4.4. Let Y be a centered non-degenerate random vector with finite second
moment and with law uy, let v be a Lévy measure on R such that fl\u\l>1 |lul?v(du) <
+o00 and let v * py << py. LetY satisfy the Poincaré-type inequality (4.3) for some
0 < Uy < +o0. Then, there exists a unique tv € H, o(uy ), such that, forall f € H, o(y)

A(f.1v) = L(f). (4.8)
Moreover,

]E/ |y (Y 4 u) — 7y (Y)||?v(du) < UyE[|Y |2 4.9)
R4

Proof of Theorem 4.4. The first part of the theorem is a direct application of the Lax-
Milgram Theorem with A, L and H,(uy). To obtain the inequality (4.9), note that
thanks to (4.8) with f = 7y,

E/ Iy (Y +u) = 7y (V) |Pv(du) = A(ry, 7v) = L(ry) < VEIY [2VE[7y (Y)]?. (4.10)
R4
Then, (4.3) applied to f(-) = 7v(-) (note that E7my (Y) = 0) ensures that
E|ry (Y)|? < Uy E/ 7y (Y 4 u) — 7y (V)| *v(du). (4.11)
R4

Finally, (4.10) together with (4.11) implies

E [ Ine Y ) = () Pt < @mnw\/m [ 0 = () oota),

which concludes the proof. O

The next theorem is the main result of this section.

Theorem 4.5. Let X be a centered non-degenerate self-decomposable random vector
without Gaussian component, with law p1x, with Lévy measure v, such that E|| X ||? < +oco
and let also the functions k, given by (2.5) satisfy (3.2). Let Y be a centered non-
degenerate random vector with law py, with E||Y||? < 40 and such that v * py << piy.
Let Y satisfy a Poincaré-type inequality (4.3) with 1 < Uy < +o0o. Then,

1 1/2 1/2
dwatoxo) < 5 ([ TPvta)) (GBI P+ [ JulPuian) - 2mIvE)
R4 R4
(4.12)

Moreover, if B||Y||? = [g. |ul*v(du), then

1

dw, (ix, py) < 3 (/d |u||21/(du)> Uy — 1. (4.13)
R

Proof of Theorem 4.5. Let us start with the proof of (4.13). First, note that since

Mi(fn) < +oo and Ma(fr) < +oo, for h € Ha N CX(RY), V(fs) belongs to H, (uy)

with f; given by Proposition 3.5. Thus, since EY = 0, by Theorem 4.2,

1 1/2
dwauxoi) < 5 ([ IulPrian)) S Gavllus). (4.14)
Rd

We continue by estimating E [, [|[7y (Y + u) — 7y (Y) — u|[*v(du). By the Pythagorean
Theorem, Definition 4.1 and the fact that E||Y||* = [p. [lul*v(du)
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T —ullPv(du) = T u) — T 2u(du u|*v(du
E/RdllTY(YJrU) y (V) —ull*v(du) ]E/RdH y (Y +u) =7y (Y)["v(d )+/]Rd|| [I7v(du)
fQE/ (u; 1y (Y +u) — v (YV))v(du),
R4

=E/Rd Iy (Y +u) — 7y (Y)[|*v(du) +/}Rd [|w)|?v(duw)

- 2B[Y|?,
:E/Rd Iy (Y +u) — Ty(Y)||2V(du) _/]Rd ||u||2l/(du),

where the definition of the Stein kernel has been used in the second equality with
f(y) =y, for all y € RY. Moreover, (4.9) implies that

E/]Rd Iy (Y +u) — 1y (V) — ul|*v(du) < (Uy —1) /}Rd ||| |?v(du),

so that

1/2
S (uvllx) < Oy =1 ( / ||u||2v<du>) . (4.15)
IR’d

Combining (4.14) and (4.15) concludes the proof of the theorem. The proof of (4.12)
follows in a completely similar manner. O

Remark 4.6. (i) When E||Y||? = [, |ul[*»(du) and EY = 0, note that Uy > 1, since, in
(4.3), one can take f(y) =y, for all y € R.

(ii) If Y is as in Theorem 4.5 with E||Y||? = [p. |lul|*v(du), and if Uy = 1, then, clearly
from Theorem 4.5, Y =, X since dw, (px, pry) = 0. Conversely, if Y =; X, with X as in
Theorem 4.5, then, for all f = (f1, ..., f4), (4.1) asserts that

B () = BLME<E [ 150 +0) = ) Prtdw). @.16)

for all 1 < j < d. Therefore, Uy = 1.
(iii) The following inequality on the Stein discrepancy is a direct byproduct of the proof
of the previous theorem

1/2
(e llx) < (OVEIVIE + [ JulPvlan) - 2B1Y 1)

(iv) All the results presented above should be compared with the analogous Gaussian
ones obtained in [16] (see [16, Theorem 2.4 and Corollary 2.5]).

(v) Finally, let us mention the work [51] where similar one-dimensional quantitative
results have been obtained in the Gaussian and Poisson cases. More specifically, [51,
Theorem 1] (respectively [51, Theorem 2]) provides upper bound on the total variation dis-
tance between a probability measure, for which an appropriate version of U (Y, v) defined
by (4.2) is finite, and the Gaussian distribution (respectively the Poisson distribution).

The following convergence result is a straightforward consequence of Theorem 4.5.

Corollary 4.7. Let X be a centered non-degenerate self-decomposable random vector
without Gaussian component, with law ux, Lévy measure v, such that E|| X||? < +oco
and let also the functions k, given by (2.5) satisfy (3.2). Let (Yn)n21 be a sequence of
centered square-integrable non-degenerate random vectors with laws (i ),>1, such that
vty << i, for alln > 1, and such thatY,, satisfies the Poincaré type inequality (4.3)
with 1 < U, < +oo, foralln > 1. IfE||Y,|* = [;. llul*v(du) and U,, — 1, as n tends to
+o0, then, (Y,,),>1 converges in distribution towards X.
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To end this section, we briefly discuss the condition v * uy << py appearing in

Theorems 4.4 and 4.5. For this purpose, let v be the Lévy measure of a non-degenerate
infinitely divisible random vector, X, in R¢ with law px. Now, let P(v) be the set of
probability measures, u, on R4, such that v * u << p. First of all, thanks to [12, Lemma
4.1], the set P(v) is non-empty and contains the probability measure px. Moreover,
it is clearly a convex set. Next, let us describe some further non-trivial examples of
probability measures belonging to P(v). For this purpose, we say that two probability
measures y; and p; on R? are equivalent (denoted by ji; ~ ps) if for any Borel set B of
RY, py(B) = 0 if and only if us(B) = 0.
Proposition 4.8. Let X be a non-degenerate infinitely divisible random vector in R
with law ux and Lévy measure v and P(v) be the set of probability measures, i, in R¢
such that v * u << . Let Y be a non-degenerate random vector in R? with law iy such
that py ~ px. Then, uy € P(v).

Proof of Proposition 4.8. Let B be a Borel set of R such that iy (B) = 0. Then, ux(B) =
0 since py ~ px. But, px € P(v), thus v * ux(B) = 0. Finally, v * uy << v ux, since
wy ~ px, and therefore, v x uy (B) = 0, which concludes the proof. O

As a further straightforward corollary, the following result holds true.

Corollary 4.9. Let X be a non-degenerate infinitely divisible random vector in R?
without Gaussian component, with law px, Lévy measure vx and parameterby € R4 and
let P(vx) be the set of probability measures, u, on R? such that vx * u << u. Let Y be a
non-degenerate infinitely divisible random vector in R? without Gaussian component,
with law uy, Lévy measure vy and parameter by € RY. Assume that vy ~ vy and that

2
/ (ewvz—l) vx(du) < +00, by —bx — / u(vy — vx)(du) =0,
Rd

llull<1
where exp(®(u)) = dvy /dvx, for allu € RY. Then, yuy € P(vx).

Proof of Corollary 4.9. This is a direct application of Proposition 4.8 together with [44,
Theorem 33.1]. O

A Appendix

The aim of this section is to provide technical results (which are often multivariate
versions of univariate ones proved in [1]) used throughout the previous sections.

Lemma A.1. Let X be a non-degenerate self-decomposable random vector in R?, without
Gaussian component, with law ;1 x, characteristic function ¢ and such that E|| X|| < cc.
Assume further that, for any 0 < a < b < 400 the functions k, given by (2.5) satisfy the
following condition

sup  sup k.(r) < +oo. (A.1)
z€89-1 re(a,b)

Let Xy, t > 0, be the random vectors each with characteristic functions, ¢;, given, for all
¢ e R by

e(8)
ee() = ——— - (A.2)
' 9]
Then,
()
sup E|| X¢]| < +o0, (A.3)
t>0
EJP 24 (2019), paper 29. http://www.imstat.org/ejp/
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and,
(i) for all ¢ € R¢ and all t € (0,1),

1
< leu(©) = 11 < CUEMEX| + €] + 11€]), (A4)

for some C > 0 independent of £ and t.

Proof of Lemma A.1. Let us start with the proof of (i). First note that, forall ¢ > 0,
Xt =d (1 - e_t)EX + }/;5 + Zt7

where Y, and Z, are independent, with, for all £ € R?,

Ee' &Y = exp (/ (6i<§;u> —1- i<§;u>) ut(du)> ,
ueD

Eeit&Ze) — exp (/ (e“&?“> -1 i({“;u)) I/t(du)) ,
ueDe

with v; the Lévy measure of X;. Then, for all ¢t > 0,
E[| X < (1 - e E|X] + EY:| + Bl Z,

and from [30, Lemma 1.1],

1/2
E||X. ] < (1— e HE|X] + ( / |u||2ut<du>> 12 / s (du).
[Ju]|<1 Jlul|>1

Now, thanks to the representation (3.5),

/ lul?v(du) < / il (du), / e (du) < / e
JJlul| <1 [Jul| <1 [Ju]|>1 [Jlul|>1
Thus,

1

2
sup B[ X|| < E||X| + ( / |u||2u<du>> 1 / lullv(du) < +oo.
t>0 Jlul| <1 [Jlul|>1

To prove (ii), first note that, for all ¢ € R? with Il€]l # 0 and all ¢ > 0,

1€l
Eei&Xe) 1 = <v t( 5); §>d,
¢ ! / ol (et ) e/

(& Xe) i
e 1] < Jell mane HVW (5||§||> H

SE[O7|

and thus

Noting that, forall ¢ € R and all 1 < j < d,

0,(p)(€) = (ﬂEXja e [

Ra

(¢4 = 1) wfa) ) )

it follows that

d
Eei(f;Xt) _ 1‘ < Hg”(l _ e—t> ZE‘X” + \/&”€”2/ HU||21/t(dU)
j=1

llul<1
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LoV /| | Tl

Next, the polar decomposition of v; allows to bound the terms fHUH<1 l|lu|*v4(du) and
fl\ul\zl |ullve(du). Let us start with f\IUHZI ||u||ve (du). By (3.5),

o t
/ [l (du) = / Pa(r) = Rele'r) b i)
lull>1 §4=1x(1,4+00) r

— /Sdil (/jt ky(r)dr + (1 —e™") /:OO k‘ac(r)d7“> A(dzx)

< —1) sup [ke(1H)]+(1— >/| o 1),

zeSd—1

which is finite in view of (A.1). For [, l|lw||?vs (du),

/ ul| 2 (du) = / P (ko (1) — Ko (c7))drA(dz)
lull<1 Sd=1x(0,1)

_ /S </01 (ko (r) — k:z(etr))dr> A(dz)

t

= /SH (—e_2t /1 ke (r)dr + (1 —e_Qt)/Olrkx(r)dr> A(dx)
<(1-e?) /Sdlx(o,l) ke (r)dr\(dz).

This concludes the proof of the lemma. O

Lemma A.2. Let X and Y be two random vectors in R? with respective law ux and jiy .
Letr > 1. Then,

dw,(px,py) = sup  |EA(X) - Er(Y)|. (A.5)
heH,.NC (RY)

Proof of Lemma A.2. Let r > 1. First, it is clear that

dw, (px, py) > sup [EA(X) — ER(Y)].
heH,NC (RE)

Now, let h € H, and let (h.).>o be the regularization of h with the Gaussian kernel,
namely, for all z € R% and all € > 0,

|y||2> dy
he(z) := h(x —y)exp | — —.
)= [ e vew (<) S5

Note that h. € C>°(RR?), the space of infinitely differentiable functions on R¢, for all £ > 0.
Moreover,

||h_hs|‘oo§d57 Mé(ha)gla 0<e<r.

Next, let ¥ be a compactly supported infinitely differentiable function with values in
[0, 1] such that supp(¥) C D(0,2), the closed Euclidean ball centered at the origin and of
radius 2, and such that U(z) = 1, for all € D. Then, for any R > 1 and any ¢ > 0, set,
for all z € R¢,
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Then, for X and Y two random vectors on R? with respective law px and py,

[BK(X) = ER(Y)] < [Bhe p(X) = Bhon(¥)| +2 + [ (1= () duxt@)

L e @)

< [Bhe,r(X) = Bhe v(Y)| +2de + P (| X[ = B) + P (Y] = R).
Now, for R > 1 such that max {P (| X|| > R) ,P(||]Y|| > R)} <,
[BA(X) — BA(Y)| < [Bhe n(X) — Bhe q(Y)| + (2d + 2)e.

)

To continue, one needs to estimate the quantities M;(h. r), for all 0 < ¢ < r. First, since
heH,,

Mo (he g) := sup |he r(z)| < 1.
reRd

But, for v € R? such that |[v|| = 1 and = € RY,

d
D(h&R)(U)(J?) = Zviai (hE,R) (l‘)

Thus, forall R>1andalle >0

1
My ) < % sup |9 () () + 1
z€RY

With a similar reasoning, it follows that M,(h. r) < Cy,v (Zizl l/R’“) +1,foralll </ <

r, and for some Cy ¢ > 0 only depending on ¢ and ¥. Hence, the function }VLE,R defined,
for all z € R4, by

hep(@) = e ()
ST maxy<p<r(Cow) (Xg—y 1/RF) + 17

belongs to H, N C>(R?). Finally,

[EA(X)—Eh(Y)|< (gggr(ce,qz) <XT: le> +1> ‘Eﬁa,R(X)*EEs,R(Y) +(2d+2)e

- k=1

< ( max (Cy,w) <27: le> —l—l) sup |EA(X)—EA(Y)|+(2d+2)e.
k=1

1<e<r heH,NCx (RY)
Letting first R tend to +oco and then € tend to 0" concludes the proof of the lemma. O

The objective of Theorem A.4 below is to prove that the dyy, distance, between the
law of X and the law of X;, decreases exponentially fast as ¢ tends to +oo. For this
purpose, for any r > 1 and any random vectors X and Y/, let

dw,‘(Xv Y) = Sup |Eh(X) - Eh(y)‘ ) (A.6)

heH,
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where 7-[r is the set of functions which are r-times continuously differentiable onNIRd such
that || D%(f)|le < 1, for all & € N¢ with 0 < |a| < r. Since, for any r > 1, H, C H,,

The next lemma shows that in (A.6), it is enough to take the supremum over smooth
compactly supported functions in H,, r > 1.

Lemma A.3. Let X and Y be two random vectors in R¢ with respective law px and jiy .
Letr > 1. Then,

dyy, (bx,py) = sup |EA(X) — EA(Y)]. (A.8)
heH,NC (RE)

Proof of Lemma A.3. By definition,

dyy, (px, py) > sup [EA(X) — ER(Y)].
heH,.NC (RY)

Leth € ﬁr and let (h.).>o be a regularization by convolution of 4, such that h. € C>®(R%)
and

|h — helloo < de, [Dh)|eo <1, acN? 0<la|<r, r>1.

Let ¢ be a compactly supported, even, infinitely differentiable function on R with values
in [0,1] such that ¢)(x) = 1, for z € [~1,1]. Then, forall M > 1, ¢ > 0 and = € R? set
Uy (z) = Hle (x;/M) and set also,

hare(z) = Wps(x)he ().
Clearly, by construction, ks € C>*(R%). Then, forall M > 1and ¢ > 0,

JER(X) = ER(Y)| < [Bharo(X) = B (V)| + 20+ [ /1= 920(0)] dix(@)

+ [ =)l i ).
Choosing M > 1 large enough,
[EA(X) — BA(Y)| < [Bhare (X) — Eharo (V)] + (2d + 2)e.
Next, by the very definition of hjps .

”hM,sHoo <1,

and, moreover, by Leibniz formula, for all a € IN? with 1 < la| <7 and z € RY,

D () ()] < 3 (g) 1D (W40 ()| D% (k) ()]

Bl

D)@+ Y (g)|D6<w><x>||D“-B<he><x>|

B<a, B#£0
(6%
<1+ ) (5) |DP (W) ().
BLa, B#0
Now, forall f < o, f # 0 and z € R?,
1
D (War)(2)] < A [T suple ()]
; zeR
1<j<d
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Thus,

1

D ()@ <1+ Caa Y. 757

B<a, 70

for some Cy,, > 0 only depending on d, o and . This implies that

1
BA(X)-BaY)| < [1+Car > > | s [BR(X) — ER(Y)]
1<|a|<r B<a, B0 heH NCe (RY)
+ (2d + 2)e,

for some Cy, > 0 only depending on d, r and 3. The conclusion follows by, first taking
M — +oo, and then e — 0. O

Theorem A.4. Let X be a non-degenerate self-decomposable random vector in R,
without Gaussian component, with law ux, characteristic function ¢ and such that
E||X|| < co. Assume further that, for any 0 < a < b < +o0o the functions k, given by (2.5)
satisfy the following condition

sup  sup k.(r) < +oo. (A.9)
z€89-1 re(a,b)

Let X;, t > 0 be random vectors each with law pnx,, with characteristic function ., given,
for all ¢ € R? by

v(&)
= . (A.10)
et (§) o(e—t)
Then, fort > 0,
dw, (1x,, px) < Cye” 7FTGD (A.11)

for some C; > 0 independent of t.

Proof of Theorem A.4. Step 1: Letr > 2andleth € ﬁr,l. Let (he)e>0 be a regularization
by convolution of A such that
lh = helloo < dg,  [[D¥Mhe)|loo <1, 0<]a] <r—1.

For a € IN? such that |o| = 7, let us estimate || D%(h.)||~. By definition, for all x € R¢,

Now, by Rodrigues formula, forall j € 1, ...,d,

97 (exp <—2]>> = (=1)*Hg,(x;)exp (—;) .

where H,, is the Hermite polynomial of degree «;. Thus, for all a € IN? and z € R,
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where H,(z) = H;l:l H,, (z;). Hence, for all « € N? such that |o| = 7, for all z € R* and
for some 3 € N such that |3| =7 —land a — 3 >0

D(hee) = [ Dty () e (L) S

Then,

1 lyll*\ dy
D%(h < = H,_ —_—
D% (he) oo < g/ml o ;a(y)lexp( 2 ) an)?
<Che ' < et

for some C,, > 0, C,. > 0 depending only on «, on d and on r. Let Z and Y be two random
vectors with respective law 17 and py such that dg; (Z,Y) < 1. Then,

\ER(Z) — EA(Y)| < 2de + |Eh.(Z) — Eh(Y)].

Choosing ¢ € (0,C,),

Cr
[EA(Z) = ER(Y)] < 2de + —dy; (2,Y)

< max(2d,C,) (5 + E_IdWT(Z’ Y)) .

Taking e < C;./(1 + C), /dy; (Z,Y) yields,
dy (2,Y) < Cp\[Jdg (2,Y),

for some C, > 0 only depending on r and on d. Now, let Z and Y be two random vectors
such that dW/Z(Z’ Y) < 1. Then, thanks to (2.15), dWm(Z, Y) <1, forall2 <m <r. By
induction, we get

J
or—1

b, (2.Y) < C, (4 (27))7 T, (A.12)

for some C, > 0 only depending on r and on d.

Step 2: Let g be an infinitely differentiable function with compact support contained in
the closed Euclidean ball centered at the origin of radius R + 1, for some R > 0. Then by
Fourier inversion and Fubini theorem, for all ¢ > 0,

[B9(X) ~ Eg(X)| < e BIX oy [ 1Pl
B (1 + i)™+
< B Gy [ PO e e
. sz (1 Jelde
< e B1X s, (PN +1617) (e [ e )

Moreover, for all p > 2

sup (|f<g><§>|<1 n ||§|p>> < Cy(R+ 1)1 (ngnw © ma ||a§’<g>||oo> ,

¢eRrd 1<j<d
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for some C; > 0 depending on the dimension d only. Thus, forallt > 0

() - Eg(X0)| < Coe BIXI (R + 1 (gl + mox 02 ). 13

Step 3: Let h € C°*(R?) ﬂﬁd+2. Let ¥ i be a compactly supported infinitely differentiable
function on R? whose support is contained in the closed Euclidean ball centered at the
origin of radius R + 1, with values in [0,1] and such that U (z) = 1, for all = such that
lz|| < R. Then, forallt >0

[ER(X) — ER(X:)| <[ER(X)Yr(X) — ER(X:)¥r(X:)| + [ER(X)(1 — Ur(X))|
+ [ER(X:)(1 — Ur(Xy))l.

Next, note that

[ER(X)(1 = Wa(X)| < [ (1= Wa(@)du(a)

<P (Xl = R)
B[ X |
R

1
—sup E|| X¢||,
7 S ElLX|

IN

IN

using Lemma A.1. A similar bound holds true for |EA(X)(1 — Ux(X))|. Moreover, from
(A.13),

C s
[EA(X) — ER(X,)| < 2 + Cae™ B[ X||(R + 1)° (llh\PRHm + 1rgft§d||5f+2(h‘1/3)||oo> :
for some constant C; depending on d. Now,

and, by taking for ¥ an appropriate tensorization of one dimensional bump functions

YR,

d+2 <D
wax |07 (W R)loe < D,
for some D > 0 independent of R and h. Hence,
1
|ER(X) — ER(X,)| < Cy (R +(R+ l)de_tE||X||> .

Choosing R = e!/(¢+1), for all t > 0, it follows that

de (X, X;) < Cge 71,

W
for some C’d > 0, and from (A.12) withr =d + 2,
1 +
i, (X, X0) < T (dgy (%, X)) 77 < e

The inequality (A.7) concludes the proof of the theorem. O
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