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Abstract

We propose a general method for investigating scaling limits of finite dimensional
Markov chains to diffusions with jumps. The results of tightness, identification and
convergence in law are based on the convergence of suitable characteristics of the
chain transition. We apply these results to population processes recursively defined as
sums of independent random variables. Two main applications are developed. First,
we extend the Wright-Fisher model to independent and identically distributed random
environments and show its convergence, under a large population assumption, to a
Wright-Fisher diffusion in random environment. Second, we obtain the convergence in
law of generalized Galton-Watson processes with interaction in random environment
to solutions of stochastic differential equations with jumps.
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1 Introduction

This work is a contribution to the study of scaling limits of discrete population models.
The parameter N ∈ N scales the population sizes. The population processes (ZNn : n ∈ N)

are Nd-valued Markov chains inductively defined by

ZNn+1 =

FN (ZNn )∑
j=1

LNj,n(ZNn , E
N
n ),

where FN is a function giving the number of individual events. For each z, e,N ,
(LNi,n(z, e) : i, n ≥ 1) is a family of independent identically distributed random vari-
ables and ENn is a Rd-random variable describing the environment at generation n. This
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Scaling limits of population and evolution processes

class of processes includes well known processes in population dynamics and population
genetics. In particular, Galton-Watson processes correspond to the case when FN (z) = z

and LNi,n = LN , i.e it does not depend on (z, e), while Wright-Fisher processes are ob-
tained when FN (z) = N and LNi,n(z, e) are Bernoulli random variables with parameter
z/N . More generally, these population models can also take into account the effect of
random environment and include many additional ecological forces such as competition,
cooperation and sexual reproduction.

We are interested in the convergence of the sequence of processes (ZN[vN t]/N : t ≥ 0),
as N tends to infinity, vN being a time scale tending to infinity with N . We provide
a unified framework adapted to population models and characterize this convergence
through the asymptotic properties relying on vN , FN and LN . Many works have been
devoted to the approximation of Markov processes. They are essentially based on
tightness arguments and identification of the martingale problem, see for example [12,
19]. Unfortunately, this general method does not satisfactorily apply to our framework
since the required assumptions are difficult to check. Applying for instance this method to
the classical Galton-Watson framework seems to lead to moment assumptions. However,
it is well known from the works of Lamperti [24, 25] and Grimvall [16] that the finite
dimensional convergence of the renormalized processes (ZN[vN t]/N : t ≥ 0) with a time
scale vN →∞ is equivalent to the convergence of a characteristic triplet associated with
(vN , L

N ) when N tends to infinity. In this case, the sequence of processes (ZN[vN t]/N :

t ≥ 0) converges as N →∞ to a Continuous State Branching Process (CSBP) defined as
the unique strong solution of a Stochastic Differential Equation (SDE). The parameters
of this SDE are given by the limiting characteristic triplet of (vN , L

N ). Note that the
proof is based on the branching property, using either the Laplace exponent [16], or the
relation with the convergence of the associated random walk to a spectrally positive
Lévy process via a Lamperti time change (cf. [25] [8]). Lamperti also introduced a
powerful transform in the stable framework, see e.g. [25] and [29] and [5]. Other
time changes have been successfully used to obtain scaling limits of discrete processes,
in particular for some diffusion approximations, see for instance [21] for branching
processes in random environment, [9] for branching processes with immigration and
[33] for controlled branching processes, amongst others. Such time change techniques
seem essentially restricted to branching processes or stable processes or diffusion
approximations. In our work, we are interested in the convergence in law of discrete
Markov processes (ZN )N which do not enjoy the branching property and may jump in
the limit. The limiting processes may even be explosive and are not necessarily stable.

It is well known that the law of the process (ZN[vN .]/N) is determined by its initial law
and the family of functions

x→ GNx (H) = vNE
(
H(ZN1 /N − x)|ZN0 = Nx

)
for H continuous and bounded on Rd. Moreover, the asymptotic behavior of GNx (H)

as N → ∞ for a large enough class of functions H captures the convergence of the
processes. In such discrete cases, Jacod and Shiryaev in [19, II.3, IX] prove that the
tightness and the identification are deduced from the convergence as N → ∞ of the
characteristics of the semimartingales∑

i≤[vN t]

GNZNi /N (H)

defined for certain functions H: a truncation (vector) function and its squares and a
determining class of smooth functions vanishing in a neighborhood of 0. The convergence
of Markov chains to Lévy driven SDEs proved in [20] essentially uses such strategy.
Unfortunately, this strategy is difficult to apply in our framework, even for Galton-Watson
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Scaling limits of population and evolution processes

processes. This is why we prove that the functions H can be chosen differently, belonging
to some (rich enough) functional space H, dense in the set of regular functions vanishing
at zero for a norm equivalent to

‖H‖ = sup
u∈(Rd)∗

|H(u)|
1 ∧ |u|2

.

The choice of the space H depends on the assumptions on the model. In our applications,
we exploit the independence property of the variables (LNi,.(., .) : i ≥ 1). The charac-
terization of the law by the Laplace exponent is then used at the level of conditional
increments, which is well adapted to the sum of independent non-negative random
variables.

Our main motivations were the famous frameworks of population genetics and popula-
tion dynamics. The efficiency of our method can be seen in the generalizations obtained
for the approximation of Wright-Fisher and Galton-Watson chains. We first study a
Wright-Fisher model with selection in a random environment impacting the selective
advantage. The environments are assumed to be independent and identically distributed
and the associated random walk converges to a Lévy process. We obtain the convergence
of the joint law of the processes and random walks, by using the functional space

H = {(u,w) ∈ [−1, 1]× (−1,∞)→ 1− e−ku−`w ; k, ` ≥ 0}.

We thus derive a diffusion with jumps in random environment, which generalizes the
Wright-Fisher diffusion with selection and takes into account small random fluctuations
and punctual dramatic advantages in the selective effects.

The second application focuses on generalized Galton-Watson processes with repro-
duction law that is both density and environment dependent. We obtain a result of
convergence in law to the so called continuous state branching process with interaction
in Lévy environment henceforth called BPILE (introduced in [31, 17]). These processes
have unbounded characteristics and the result is deduced from the convergence of the
compactified processes

exp(−ZNk /N).

To deal with the joint laws of the latter and the environment random walk, we use the
space of functions from [−1, 1]× (−1,∞) to R defined by

H = {(v, w)→ vk exp(−`w) : k ≥ 1, ` ≥ 0} ∪ {(v, w)→ 1− exp(−`w) : ` ≥ 1}.

Our results extend the criterion for the convergence of a sequence of Galton-Watson pro-
cesses as well as the results we know in random environment [21, 4] or with interactions
[11, 32]. They are further applied to Galton-Watson processes with cooperation and to
branching processes with logistic growth in random environment.

The paper is organized as follows. In Section 2, we give general results for the
tightness, the identification and the convergence in law of a scaled Markov process
to a diffusion with jumps in Rd. The functional space H is introduced in Section 2.1.
Tightness and identification results are stated in Section 2.2 by assuming the uniform
convergence and boundedness of characteristics GN. (H) for any H ∈ H. Convergence
requires an additional uniqueness assumption, obtained from pathwise uniqueness in the
applications, using standard techniques for non-negative SDE [18, 14]. Proofs of these
general statements are given in Section 2.3. In Section 3, we apply our method to a
Wright-Fisher model with selection in a random environment. We obtain in a suitable scal-
ing limit a Wright-Fisher diffusion in random environment for which we prove uniqueness
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of solution. In Section 4 (Sections 4.1, 4.2, 4.3), we apply our method to Galton-Watson
processes with reproduction law both density dependent and environment dependent.
Section 4.4 is devoted to explosive CSBP with interaction in random environment. In
particular, we consider Galton-Watson processes with cooperative effects. Section 4.5 is
dedicated to the conservative case and an application to Galton-Watson processes with
logistic competition and small environmental fluctuations is studied. Finally, we expect
the method to be applied in various contexts, in particular for structured populations
models with sexual reproduction, competition or cooperation, see Section 5.

Notation. For x ∈ Rd, we denote by |x| the euclidian norm of x. If A ⊂ Rd, A is the
closure of A in Rd.

The functional norms are denoted by ‖.‖. In particular the sup norm of a bounded
function f on a set U is denoted by ‖f‖U,∞. The sets Cb(U ,R) and Cc(U ,R) denote the
spaces of continuous real functions defined on U respectively bounded and with compact
support.

As usual, we write h(u) = o(g(u)) (resp. h(u) ∼ g(u)) when h(u)/g(u) tends to 0 (resp.
to 1) as u tends to 0. Id denotes the identity function.

For any U subset of Rd containing a neighborhood of 0, we define U∗ as U \ {0}.

2 A criterion for tightness and convergence in law

Let X be a Borel subset of Rd and U be a closed subset of Rd containing a neighbor-
hood of 0.

Let us introduce a scaling parameter N ≥ 1. For any N , we consider a discrete time
X -valued Markov chain (XN

k : k ∈ N) satisfying for any k ≥ 0,

L(XN
k+1 |XN

k = x) = L(FNx ),

where for any N ∈ N, (FNx , x ∈ X ) denotes a measurable family of X -valued random
variables such that for any x ∈ X , the random variable FNx − x takes values in U .

The natural filtration of the processXN is denoted by (FNk )k.Note that the increments
XN
k+1 −XN

k take values in U .
Our aim is the characterization of the convergence in law of the sequence of processes

(XN
[vN .]

, N ∈ N), where (vN )N is a given sequence of positive real numbers going to infinity
when N tends to infinity. It is based on the criteria for tightness and identification of
semimartingales by use of characteristics given in [19, IX], which consists in studying
the asymptotic behavior of

GNx (H) = vN E
(
H(FNx − x)

)
= vN E

(
H(XN

k+1 −XN
k ) |XN

k = x
)
, (2.1)

for real valued bounded measurable functions H defined on U .

Hypothesis (H0) We first assume that the family of random variables (FNx )N,x satisfies

lim
b→∞

sup
x∈X ,N∈N∗

GNx
(
1B(0,b)c

)
= 0.

This hypothesis avoids to get infinite jumps in the limit. We will see in the examples
that this condition affects both the population and the environment dynamics.

Under (H0), we will prove that the study of (2.1) can be reduced to a rich enough
and tractable subclass H of functions H. The choice of H depends on the particular
models and is illustrated in the examples.
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2.1 Specific and truncation functions

We consider a closed subset U of Rd containing a neighborhood of 0 and introduce
the functional space

C2
b,0 =C2

b,0(U ,R)=

H∈Cb(U ,R) :H(u)=

d∑
i=1

αiui+

d∑
i,j=1

βi,juiuj+o(|u|2), αi, βi,j ∈R

 .

The functions of C2
b,0 can be decomposed in a similar way with respect to any smooth

function which behaves like the identity at 0, as stated in the next lemma. The proof
uses the uniqueness of the second order Taylor expansion in a neighborhood of 0.

Lemma 2.1. Let f = (f1, . . . , fd) ∈ (C2
b,0)d such that f i(u) = ui(1+o(|u|)) for i = 1, . . . , d.

For any H ∈ C2
b,0, there exists a unique decomposition of the form

H =

d∑
i=1

αfi (H)f i +

d∑
i,j=1

βfi,j(H)f if j +H
f
,

where H
f

= o(|f |2) is a continuous and bounded function and αfi (H), βfi,j(H), i, j = 1 · · · d
are real coefficients and βf is a symmetric matrix.

We introduce

• the specific function h which satisfies

h = (h1, · · · , hd) ∈ (C2
b,0)d ; hi(u) = ui(1 + o(u)) ;

hi(u) 6= 0 for u 6= 0 (i = 1, . . . , d). (2.2)

• the truncation function h0, as defined in [19] :

h0 = (h1
0, · · · , hd0) ∈ Cb(U ,Rd), h0(u) = u in a neighborhood of 0. (2.3)

Obviously, hi0h
j
0 ∈ C2

b,0 for any i, j = 1, . . . , d.

Note that in general a specific function is not a truncation function since it may not
coincide with the identity function in a neighborhood of 0. Its choice will be driven by
the processes we are considering. We will give different choices of functions h in the
next sections, for instance h(x) = 1 − exp(−x) on [−1,∞) when d = 1. These specific
functions will play a crucial role in the whole paper.

2.2 General statements

We introduce a functional space H containing the coordinates of the specific function
h and their square products and which “generates” the continuous functions with
compact support in U in the sense described below. The space H will be a convergence
determining class.

Hypotheses (H1) There exists a functional space H such that

1. H is a subset of C2
b,0 and hi, hihj ∈ V ect(H) for i, j = 1, . . . , d.

2. For any g ∈ Cc(U ,R) with g(0) = 0, there exists a sequence (gn)n ∈ C2
b,0 such that

limn→∞ ‖g − gn‖∞,U = 0 and |h|2 gn ∈ V ect(H).

3. There exists a family of real numbers (Gx(H);x ∈ X , H ∈ H) such that for any
H ∈ H,

(i) lim
N→∞

sup
x∈X

∣∣GNx (H)− Gx(H)
∣∣ = 0.

(ii) sup
x∈X
|Gx(H)| < +∞.
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Remark 2.2. In the examples of the next sections, (H1.2) is proved with the use of the
locally compact version of the Stone-Weierstrass Theorem. We refer to the Appendix for
a precise statement.

Contrary to the “convergence determining class” of [19], the functions of H will not
be vanishing (or o(u2)) in a neighborhood of 0.

Hypothesis (H1.3) implies that the map x ∈ X → Gx(H) is measurable and bounded
for any H ∈ H.

We first obtain a tightness result based on the space H of test functions.

Theorem 2.3. Assume that the sequence (XN
0 )N is tight in X and that (H0) and (H1)

hold. Then the sequence of processes (XN
[vN .]

, N ∈ N) is tight in D([0,∞),X ).

The next hypothesis (H2) in addition to (H1) is sufficient to get the identification of
the limiting values by their semimartingale characteristics, and then their representation
as solutions of a stochastic differential equation.

Hypotheses (H2)

1. For any H ∈ H, the map x ∈ X → Gx(H) is continuous and extendable by continuity
to X .

2. For any x ∈ X and any H ∈ H,

Gx(H) =

d∑
i=1

αh0
i (H)bi(x) +

d∑
i,j=1

βh0
i,j(H)ci,j(x) +

∫
V

H
h0

(K(x, v))µ(dv), (2.4)

where

i) αh0
i , βh0

i,j and H
h0

have been defined in Lemma 2.1,

ii) bi and σi,j are measurable functions defined on X ,

iii) V is a Polish space, µ is a σ-finite positive measure on V , K is a function from
X × V with values in U ,

∫
V

1 ∧ |K(., v)|2µ(dv) < +∞ and

ci,j(x) =

d∑
k=1

σi,k(x)σj,k(x) +

∫
V

(hi0h
j
0)(K(x, v))µ(dv).

The elements (b, σ, V, µ,K) will be specified in the applications.

Theorem 2.4. If the sequence (XN
0 )N is tight in X and (H0), (H1), (H2) hold then

any limiting value of (XN
[vN .]

, N ∈ N) is a semimartingale solution of the stochastic
differential system

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

∫
V

h0(K(Xs−, v))Ñ(ds, dv)

+

∫ t

0

∫
V

(Id− h0)(K(Xs−, v))N(ds, dv), (2.5)

where X0 ∈ X and B is a d-dimensional Brownian motion and N is a Poisson point
measure on R+ × V with intensity dsµ(dv). Moreover X0, B , N are independent and Ñ
is the compensated martingale measure of N .

To obtain the convergence in law of the sequence of processes (XN
[vN .]

, N ∈ N) in

D([0,∞),X ), we need

Hypothesis (H3) The law of the initial condition X0 ∈ X being given, the uniqueness in
law of the solution of (2.5) holds in D([0,∞),X ).

We are now in position to state the convergence result.
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Theorem 2.5. Assume that the sequence (XN
0 )N converges in law in X to X0 and that

(H0), (H1), (H2) and (H3) hold. Then the sequence of processes (XN
[vN .]

)N converges

in law in D([0,∞),X ) to the solution of (2.5).

2.3 Proofs

From now on, we assume that hypotheses (H0) and (H1) hold. We recall that
U∗ = U \ {0}.

In the proofs, we use the space Rb of continuous and bounded functions which are
small enough close to 0 :

Rb = {H ∈ Cb(U ,R), H(u) = o(|u|2)}.

Using Lemma 2.1 and (H1.1), we have

C2
b,0 = V ect(H) +Rb. (2.6)

We work with the norm

‖H‖h = sup
u∈U∗

|H(u)|
|h(u)|2

,

defined for H ∈ Rb such that supu∈U∗ |H(u)|/|h(u)|2 < +∞. In that case, the positivity
and linearity of GNx for all x ∈ X and N ≥ 1 imply that

|GNx (H)| ≤ GNx (|h|2) ‖H‖h ≤ α(|h|2) ‖H‖h, (2.7)

where α(|h|2) = supN,x∈X |GNx (|h|2)| <∞ by (H1.3) since |h|2 ∈ V ect(H) by (H1.1).

2.3.1 Proof of Theorem 2.3

We first extend the assumptions (H1.3) to C2
b,0 in order to prove the tightness. We

note that (H1.3i) and (H1.3ii) extend immediately to H ∈ V ect(H) by linearity of
H → GNx (H) for any x ∈ X and N ≥ 1.

Lemma 2.6. For any x ∈ X , there exists a linear extension of Gx to C2
b,0 such that (H1.3)

hold for any H ∈ C2
b,0.

As a consequence, writing α(H) = supN,x∈X |GNx (H)|, for any H ∈ C2
b,0,

sup
x∈X
|Gx(H)| ≤ sup

N,x∈X
|GNx (H)| = α(H) < +∞. (2.8)

Proof. Using (2.6) and linearity, we only have to prove the extension to Rb. Let us first
prove the result for the compactly supported functions of Rb. We consider H ∈ Rb with
compact support and show that the sequence (GNx (H))N converges when N tends to
infinity. The function H/|h|2 defined on U∗ can be extended to a continuous function
g on U with compact support and g(0) = 0. Then by (H1.2), there exists a sequence
(gn)n of functions of C2

b,0 uniformly converging to g and such that Hn = |h|2gn ∈ V ect(H).

Since H = |h|2g, ‖Hn − H‖h → 0 when n → ∞. Moreover the sequence
(
GN. (Hn)

)
N

converges to G.(Hn) when N tends to infinity for any fixed n and uniformly on X . Let us
now consider two integers m and n. Equation (2.7) tells us that

sup
N,x

∣∣GNx (Hm)− GNx (Hn)
∣∣ ≤ α(|h|2) ‖Hm −Hn‖h

and letting N go to infinity, we obtain that (Gx(Hn))n is a Cauchy sequence. Then it
converges to a limit denoted by Gx(H), which satisfies supX |G.(H)| <∞. Moreover

|GNx (H)− Gx(H)| ≤
∣∣GNx (H)− GNx (Hn)

∣∣+
∣∣GNx (Hn)− Gx(Hn)

∣∣+
∣∣Gx(Hn)− Gx(H)

∣∣.
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Since
∣∣GNx (H)− GNx (Hn)

∣∣ ≤ α(|h|2) ‖g − gn‖∞, an appropriate choice of n and then of N
allows us to upper bound the left hand side by any ε > 0 and this ensures

sup
x∈X
|GNx (H)− Gx(H)| N→∞−→ 0.

Let us now consider H ∈ Rb. We introduce a non-decreasing sequence (ϕn)n ∈
C2(Rd, [0, 1]) such that

ϕn(x) =

{
1 on B(0, n)

0 on B(0, n+ 1)c.

For x ∈ X and N ≥ 1,

|GNx (Hϕm)− GNx (Hϕn)| ≤ ‖H‖∞ GNx (1B(0,n)c) ≤ ‖H‖∞ Cn, m ≥ n ≥ N ≥ 1

where Cn → 0 as n → ∞ by (H0). Letting N tend to infinity, we obtain that for any
x ∈ X , the sequence (Gx(Hϕn))n is Cauchy and converges to some real number Gx(H).
Moreover |Gx(H)− Gx(Hϕn)| ≤ Cn‖H‖∞. It follows that for any H ∈ Rb,

|GNx (H)− Gx(H)| ≤ |GNx (H)− GNx (Hϕn)|+ |GNx (Hϕn)− Gx(Hϕn)|+ |Gx(Hϕn)− Gx(H)|
≤ 2Cn‖H‖∞ + |GNx (Hϕn)− Gx(Hϕn)|

As Hϕn ∈ Rb and has compact support, GN. (Hϕn) − G.(Hϕn) and then GN. (H) − G.(H)

tend to 0 as N tends to infinity uniformly on X . It proves (H1.3) and (2.8).

We now prove that a σ-finite measure can be associated to Gx for each x ∈ X . It
describes the jumps of the limiting process.

Lemma 2.7. There exists a family of σ-finite measures (µx : x ∈ X ) on U∗ such that for
any x ∈ X and H ∈ Rb,

Gx(H) =

∫
U∗
H(u)µx(du). (2.9)

For any x ∈ X , Gx is then extended by (2.9) to any measurable and bounded function H
on (Rd)∗ such that H(u) = o(|u|2). Moreover

lim
b→∞

sup
x∈X
|Gx(1B(0,b)c)| = 0. (2.10)

Proof. For any x ∈ Rd and H ∈ Cc(U∗,R), the map H → Gx(H) is a positive linear
operator. Adding that U∗ is locally compact, Riesz Theorem leads to the existence of
a σ-finite measure µx on U∗ such that for any H ∈ Cc(U∗,R), Gx(H) =

∫
U∗ H(u)µx(du).

The extension of this identity to any H ∈ Rb follows again from an approximation
procedure, using ϕn defined in the proof of Lemma 2.6. Indeed, on the one hand
monotone convergence ensures that

∫
U∗ Hϕnµx goes to

∫
U∗ Hµx. On the other hand,

|Gx(Hϕn)−Gx(H)| ≤ Cn‖H‖∞ goes to 0. Finally (2.10) comes from (H0) with a monotone
approximation of 1B(0,b)c by elements of Rb and the convergence of GN to G.

We now prove the convergence of conditional increments functionals, defined for any
function H ∈ C0

b,2 and t > 0 by

φNt (H) =

[vN t]∑
k=1

E
(
H(XN

k −XN
k−1) | FNk−1

)
=

1

vN

[vN t]∑
k=1

GNXNk−1
(H), (2.11)

where the last identity follows from the Markov property.
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Proposition 2.8. For any function H ∈ C0
b,2 and t > 0,

lim
N→∞

sup
t≤T

∣∣∣φNt (H)−
∫ t

0

GXN
[vNs]

(H) ds
∣∣∣ = 0 a.s.

Proof. Using (2.8), we have

1

vN

[vN t]∑
k=1

GNXNk−1
(H)=

∫ t

0

GNXN
[vNs]

(H)ds−
∫ t

[vNt]

vN

GNXN
[vNs]

(H)ds=

∫ t

0

GNXN
[vNs]

(H)ds+O
(
α(H)

vN

)
.

Then

sup
t≤T

∣∣∣φNt (H)−
∫ t

0

GXN
[vNs]

(H)ds
∣∣∣ ≤ T sup

x∈X
|GNx (H)− Gx(H)|+O

(
α(H)

vN

)
and the conclusion follows from (H1.3i), which holds for H thanks to Lemma 2.6.

We define on the canonical space D([0,∞),X ) a triplet which characterizes the limit-
ing values of the sequence (XN

[vN .]
, N ∈ N). Using the measurability and boundedness of

x→ Gx(f) for x ∈ X and f ∈ C2
b,0 and the truncation function h0 introduced in (2.3), we

define for any ω = (ωs, s ≥ 0) ∈ D([0,∞),X ) the functionals

Bt(ω) =

∫ t

0

(
Gωs(h1

0), · · · ,Gωs(hd0)
)
ds,

C̃ijt (ω) =

∫ t

0

Gωs(hi0h
j
0) ds,

νt(ω,H) =

∫ t

0

Gωs(H1U ) ds =

∫ t

0

∫
U∗
H(u)µωs(du) ds


(2.12)

for any H ∈ Cb(Rd,R) such that H(u) = o(|u|2). The last identity comes from (2.9).
As in Chapters II. 2 & 3 in [19] adapted to the state space X (instead of Rd), the

characteristic triplet associated with the semimartingale XN is given for i, j ∈ {1, . . . , d}
by

BNt =
∑

k≤[vN t]

E(h0(UNk )|FNk−1) = (φNt (h1
0), · · · , φNt (hd0))

C̃N,ijt =
∑

k≤[vN t]

(
E(hi0(UNk )hj0(UNk )|FNk−1)− E(hi0(UNk )|FNk−1)E(hj0(UNk )|FNk−1)

)
φNt (H) =

∑
k≤[vN t]

E(H(UNk )|FNk−1),


(2.13)

where UNk = XN
k −XN

k−1 and H is a continuous bounded function on Rd vanishing in a
neighborhood of 0. Proposition 2.8 implies the convergence of the characteristics, as
stated in the next proposition.

Proposition 2.9. For any T > 0 and any i, j = 1, · · · , d and any H ∈ Cb(U ,R) equal to 0

in some neighborhood of 0, we have the following almost-sure convergences

sup
t≤T

∣∣∣ BN,it −Bit ◦XN
[vN .]

∣∣∣ N→∞−→ 0; (2.14)

sup
t≤T

∣∣∣C̃N,ijt − C̃ijt ◦XN
[vN .]

∣∣∣ N→∞−→ 0; (2.15)

sup
t≤T

∣∣∣φNt (H)− νt(XN
[vN .]

, H)
∣∣∣ N→∞−→ 0. (2.16)
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Proof. From Proposition 2.8, we immediately obtain the first and last convergences and

sup
t≤T

∣∣∣φNt (hi0h
j
0)− C̃ijt ◦XN

[vN .]

∣∣∣→N→∞ 0 a.s.

So it remains to replace φNt (hi0h
j
0) by C̃N,ijt . We have

|E(hk0(UNk )|FNk−1)| ≤ 1

vN
sup

N,x∈X

∣∣GNx (hk0)
∣∣ ≤ α(hk0).

1

vN

and α(hk0) <∞ from (2.8). Hence the second term in C̃N,ijt tends to 0 as N →∞, which
yields the result.

We are now in position to provide a proof of Theorem 2.3. In order to apply Theorem
3.9 IX p543 in [19] and get the tightness, we need to check the strong majoration
hypothesis and the condition on big jumps required in its statement.

First, if H ∈ C0
b,2 then G.H is bounded and there exists a positive constant A such

that for any ω ∈ D([0,∞),X ),

d∑
i=1

Var(Bi(ω))t +

d∑
i,j=1

C̃ijt (ω) + νt(w, r) ≤ A t, (2.17)

where Var(X)t denotes the total variation of X on [0, t] and r(u) := |u|2 ∧ 1.
Second, to control the big jumps, we use the fact that νt(.,1B(0,b)c) ≤ t ‖G.(1B(0,b)c)‖∞,

which tends to 0 as b tends to infinity from (2.10). We thus obtain

lim
b↑∞

sup
w∈D([0,∞),X )

νt(w,1B(0,b)c) = 0. (2.18)

The tightness of (XN
[vN .]

, N ∈ N) follows from (2.14)-(2.18) and from the tightness of
the initial condition, by an application of the forementioned theorem in [19].

2.3.2 Proofs of Theorems 2.4 and 2.5

Let us now assume the additional Hypothesis (H2). We wish to identify the limiting
values of (XN

[vN .]
, N ∈ N) as solutions of the stochastic differential system (2.5). We first

need to extend continuously the limiting characteristic triplet to the boundary.

Lemma 2.10. (i) For any H ∈ Rb, the map x ∈ X → Gx(H) is continuous and extendable
by continuity to X . Moreover

sup
x∈X
|Gx(H)| ≤ α(H) < +∞. (2.19)

(ii) For any H ∈ Rb and x ∈ X ,

Gx(H) =

∫
V

H(K(x, v))µ(dv) (2.20)

and where k, µ are defined in (H2) and
∫
V

1 ∧ |K(., v)|2µ(dv) is bounded on X .

Proof. Let H ∈ Rb. Using the sequences ϕn and (Hn)n defined in the proof of Lemma
2.6 and approximating ϕnH for ‖ . ‖h by Hn ∈ V ect(H) ∩ Rb as in the proof of Lemma
2.7, we obtain

sup
x∈X ,N≥1

∣∣GNx (H)− GNx (Hn)
∣∣ ≤‖ H‖∞Cn+ ‖ ϕnH −Hn ‖h α(|h|2),
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which tends to 0 as n → ∞. Letting N → ∞ ensures that G.Hn converges uniformly
to G.H as n → ∞. Combining this with (H2.1) applied to Hn, we deduce that G.H is
continuous on X and extendable by continuity to X . Moreover (2.8) yields (2.19) by
continuity, which proves (i).

For (ii), we first consider H ∈ V ect(H) ∩ Rb. Then αh0(H) = βh0(H) = 0, H
h0

= H

and (H2.2) ensures that (2.20) holds for H. Let us now extend this identity to H ∈ Rb
with compact support. We note that H = |h|2g with g ∈ Cc(U ,R). By (H1.2), the function
g is uniformly approximated by a sequence gn such that |h|2gn ∈ V ect(H) ∩ Rb. The
identity (2.4) implies that (2.20) holds for any |h|2gn and

∀x ∈ X , Gx(|h|2gn) =

∫
V

(|h|2gn)(K(x, v))µ(dv).

We let n tend to infinity in both terms using (2.8) and the assumption∫
V

1 ∧ |K(x, v)|2µ(dv) < +∞. The extension to Rb follows again from a monotone
approximation by the compactly supported functions Hϕn, which ends the proof.

This lemma allows us to extend the definitions of the characteristics and the iden-
tities of (2.12) to any w ∈ D([0,∞),X ). Moreover (i) ensures that w ∈ D([0,∞),X ) →
(Bt(ω), C̃t(ω), νt(ω,H)) is continuous and that the dominations (2.17) and (2.18) extend
from X to X . We can then apply [19, Theorem 2.11, chapter IX, p530] on the closed set
X for the identification. We obtain that any limiting value of the law of (XN

[vN .]
)N is a so-

lution of the martingale problem on the canonical space D([0,∞),X ) with characteristic
triplet (B,C, ν), where

Cijt = C̃ijt − νt(., hi0h
j
0).

Finally, using (H2.2) for H ∈ {hi0, hi0h
j
0} and (2.20), the characteristics in (2.12) can

be written as

Bt(w) =

∫ t

0

b(ws)ds

Cijt (w) =

∫ t

0

(
d∑
k=1

σi,k(ws)σj,k(ws)

)
ds

νt(w,H) =

∫ t

0

∫
V

H(K(ws, v))µ(dv)ds,

for any w ∈ D([0,∞),X ). By [19, Chapter III, Theorem 2.26 p157], the set of solutions
of the martingale problem with characteristic triplet (B,C, ν) coincides with the set of
weak solutions of the stochastic differential equation (2.5). The proof of Theorem 2.4 is
now complete.

To conclude the proof of the convergence, we remark that uniqueness hypothesis
(H3) guarantees (iii) in [19] Theorem 3.21, chapter IX, p.546]. The other points (i− vi)
of this theorem have been checked above and Theorem 2.5 follows.

3 Wright-Fisher process with selection in Lévy environment

3.1 The discrete model

Let us consider the framework of the Wright-Fisher model: at each generation,
the alleles of a fixed size population are sampled from the previous generation. We
consider a population of N individuals characterized by some allele. The number of
individuals carrying this allele is a process (ZNk , k ∈ N) whose dynamics depends on
the environment. When N ≥ 1 is fixed, we consider the coupled process describing the
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discrete time dynamics of the population process and the environment process. It is
recursively defined for k ≥ 0 by

ZNk+1 =
∑N
i=1 ENk,i(ZNk /N,ENk ),

SNk+1 = SNk + ENk ,

(3.1)

and SN0 = 0, ZN0 = [NZ0], Z0 ∈ [0, 1] is a finite random variable, (ENk )k are independent
and identically distributed with values in (−1,+∞) and the family of random variables(
(ENk,i(z, w), (z, w) ∈ [0, 1] × (−1,∞)); k ≥ 1, i ≥ 1

)
are independent. Moreover for each

(z, w) ∈ [0, 1] × (−1,∞), the random variables (ENk,i(z, w); k ≥ 1, i ≥ 1
)

are identically

distributed as a Bernoulli random variable EN (z, w) defined by

P(EN (z, w) = 1) = p(z, w) ; P(EN (z, w) = 0) = 1− p(z, w).

We also assume that Z0,
(
(ENk,i(z, w), (z, w) ∈ [0, 1]×(−1,∞)); k ≥ 1, i ≥ 1

)
and (ENk , k ≥ 0)

are independent.
Moreover p is a C3-function from [0, 1]× (−1,∞) to [0, 1] verifying p(z, 0) = z for any

z ∈ [0, 1]. A main example, developed in Section 3.4, is given by p(z, w) = z(1 +w)/(z(1 +

w) + 1− z) and extends the classical Wright Fisher model with rare selection to random
environments.

Following [19] [chap.VII Corollary 3.6,p.415], we state an assumption for the random
walk SN[N.] to converge in law to a Lévy process with characteristics (αE, βE, νE). Let us
consider a truncation function hE defined on (−1,+∞), i.e. continuous and bounded
and satisfying hE(w) = w in a neighborhood of 0. For convenience, we also assume that
hE(w) 6= 0 for any w 6= 0.

Assumption A. There exist αE ∈ R, σE ≥ 0 and a measure νE on (−1,+∞) satisfying∫
(−1,+∞)

(w2 ∧ 1)νE(dw) < +∞ such that

lim
N→∞

N E(hE(EN )) = αE ; lim
N→∞

N E(h2
E(EN )) = βE = σ2

E +

∫
(−1,∞)

h2
E(w)νE(dw),

lim
N→∞

N E(f(EN )) =

∫
(−1,∞)

f(w)νE(dw),

for any f vanishing in a neighborhood of 0, continuous and bounded.

The small fluctuations of the environment are given by σE, while the dramatic
events are given by the jump measure νE. Negative jumps will correspond to dramatic
disadvantages of allele A and an usual set of selection coefficient is (−1,∞), as illustrated
in Section 3.4.

The limiting environment process Y can thus be defined by

Yt = αEt+

∫ t

0

σEdB
E

s +

∫ t

0

∫
(−1,+∞)

hE(w)ÑE(ds, dw)

+

∫ t

0

∫
(−1,+∞)

(w − hE(w))NE(ds, dw), (3.2)

where BE is a Brownian motion and NE is a Poisson point measure on R+ × (−1,+∞)

independent of BE with intensity measure νE. By construction, this Lévy process has
jumps larger than −1.

Let us first prove a consequence of Assumption A which will be needed in the proof
of the next theorem.
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Lemma 3.1. Let g ∈ C3([0, 1] × (−1,∞),R) bounded and satisfying g(z, 0) = 0 for any
z ∈ [0, 1]. Then, under Assumption A,

NE(g(z, EN ))
N→∞−→ Bz(g),

uniformly for z ∈ [0, 1], with

Bz(g) = αE
∂g

∂w
(z, 0) +

βE
2

∂2g

∂w2
(z, 0) +

∫
(−1,∞)

ĝ(z, w)νE(dw)

and ĝ(z, w) = g(z, w)− hE(w) ∂g∂w (z, 0)− hE(w)2

2
∂2g
∂w2 (z, 0).

Proof. Indeed, we can decompose NE(g(z, EN )) as follows

NE(g(z, EN )) =
∂g

∂w
(z, 0)NE(hE(EN )) +

1

2

∂2g

∂w2
(z, 0)NE(hE(EN )2) +NE(ĝ(z, EN )).

The first two terms converge uniformly as N → ∞ by a direct application of Assump-
tion A. Moreover the last part of Assumption A can be extended to any continuous
function f(w) = o(w2) using a monotone approximation of f by functions vanishing
in a neighborhood of 0. Then the last term converges for fixed z and it remains to
prove that the convergence is uniform on [0, 1]. First, let us consider a compact subset
K = [0, 1]× [−1 + ε0, A] of [0, 1]× (−1,∞). As g is C3([0, 1]× (−1,∞),R), the function

(z, w)→ ĝ(z, w)

hE(w)2
=
g(z, w)− hE(w) ∂g∂w (z, 0)

hE(w)2
− 1

2

∂2g

∂w2
(z, 0)

and its first derivative with respect to z are well defined on [0, 1]× (−1,∞) \ [0, 1]× {0}
and extendable by continuity to [0, 1] × (−1,∞). Thus the derivative of ĝ(z, w)/hE(w)2

with respect to z is bounded on K. As (NE(hE(EN )2))N is bounded by the second part
of Assumption A, there exists C > 0 such that for any N ≥ 1,∣∣∣∣NE (ĝ(z, EN )1EN∈[−1+ε0,A]

)
−NE

(
ĝ(z′, EN )1EN∈[−1+ε0,A]

) ∣∣∣∣ ≤ C|z − z′|.
Moreover, since all functions involved in the definition of ĝ are bounded, there exists
C ′ > 0 such that∣∣∣∣N E (|ĝ(z, EN )|1EN 6∈[−1+ε0,A]

) ∣∣∣∣ ≤ C ′N P(EN 6∈ [−1 + ε0, A])

and by the last part of Assumption A,

lim
ε0→0,A→∞

sup
N
N P(EN 6∈ [−1 + ε0, A]) = lim

ε0→0,A→∞
νE((−1,−1 + ε0) ∪ (A,∞)) = 0.

Combining the last two inequalities, we obtain that the family of functions (NE(ĝ(., EN )))N
is uniformly equicontinuous on [0, 1] and the convergence is uniform by Ascoli Theorem.

We can now generalize the classical convergence in law to the Wright-Fisher diffusion
with selection to i.i.d. environments.
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3.2 Tightness and identification

We are interested in the asymptotic behavior of the Markov chain

XN
k =

(
ZNk
N

,SNk

)
, k ∈ N

when N tends to infinity. This process takes values in X = [0, 1]×R.
For the statement, we introduce the drift coefficient inherited from the fluctuations

of the environment:

b1(z) = αE
∂p

∂w
(z, 0) +

σE
2

∂2p

∂w2
(z, 0) +

∫
(−1,∞)

(
p(z, w)− z − hE(w)

∂p

∂w
(z, 0)

)
νE(dw).

Theorem 3.2. Under Assumption A, the sequence of processes
(
ZN[N.]/N, S

N
[N.]

)
N

is

tight in D([0,∞), [0, 1] × R) and any limiting value of this sequence is solution of the
following stochastic differential equation

Zt = Z0 +

∫ t

0

b1(Zs)ds+

∫ t

0

√
Zs(1− Zs)dBD

s + σE

∫ t

0

∂p

∂w
(Zs, 0) dBE

s

+

∫
(−1,∞)

(p(Zt−, w)− Zt−)Ñ(dt, dw);

Yt = αEt+ σEB
E

t +

∫ t

0

∫
(−1,∞)

hE(w)Ñ(dt, dw) +

∫ t

0

∫
(−1,∞)

(w − hE(w))N(dt, dw),

(3.3)

where BD and BE are Brownian motions; N is a Poisson point measure on R+ × (−1,∞)

with intensity dtνE(dw) and Ñ is the compensated martingale measure of N ; Z0, B
D, BE

and N are independent.

Proof. We apply our results to the Markov chain XN
k =

((ZNk
N , SNk

)
, k ∈ N

)
.

Let x = (z, y) ∈ X , we set FNx = FN(z,y) =
(

1
N

∑N
i=1 Ei(z, EN ), y + EN

)
and we have

FNx − x =

(
1

N

N∑
i=1

(Ei(z, EN )− z), EN
)
. (3.4)

The state space of the random variables FNx − x is U = [−1, 1]× (−1,+∞).
We first prove that (H0), (H1) and (H2) are satisfied with vN = N .

(i) Let us first check (H0). We take b > 0 and consider

GNx (1B(0,b)c) = N E(1B(0,b)c(F
N
x − x)).

Then

N E(1B(0,b)c(F
N
x − x)) ≤ N P

(
1

N

∣∣ N∑
i=1

(Ei(z, EN )− z)
∣∣ > b/

√
2

)
+N P

(
|EN | > b/

√
2
)
.

We observe that 1
N

∣∣∑N
i=1(Ei(z, EN )− z)

∣∣ ≤ 1 a.s. Moreover the last part of Assumption
A ensures that

lim sup
N→∞

N P(|EN | > b/
√

2) ≤ ν[b/
√

2− 1,∞),

which tends to 0 as b → +∞. Then supN,x∈[0,1]×(−1,∞) GNx (1B(0,b)c) tends to 0 and (H0)
is satisfied.
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(ii) We define the function h on U by

h(u,w) = (1− e−u, 1− e−w).

The space H is the subset of real functions on U defined as

H = {(u,w) ∈ U → Hk,`(u,w) ; k, ` ≥ 0}, with Hk,`(u,w) = 1− e−ku−`w.

We can apply the local Stone-Weierstrass Theorem to the algebra V ect(H) ∩ C0(U∗),
U∗ = U \ {0, 0} being a locally compact Hausdorff space (see Appendix 6.4). This algebra
in dense in C0(U∗) and then any function in Cc(U) vanishing at zero is the uniform limit
of elements of V ect(H). Moreover V ect(H) is stable by multiplication by |h|2. We deduce
that (H1.2) is satisfied, while (H1.1) is obvious.

Let us now prove that (H1.3) is satisfied. We need to study the limit of GNx (Hk,`) as
N tends to infinity. Recall that GNx (Hk,`) = N E(Hk,`(F

N
x −x)) with x = (z, y) and FNx −x

given by (3.4). We have

GNx (Hk,`) = N E
(

1− e− k
N

∑N
i=1(Ei(z,EN )−z)e−`E

N
)

= N
(

1− E
(
E
[
e−

k
N (E(z,EN )−z) |EN

]N
e−`E

N
))

= N
(

1− E
([
e−

k
N (1−z)p(z, EN ) + e

k
N z(1− p(z, EN ))

]N
e−`E

N
))
.

The following Taylor expansion gives

log

(
e−

k
N (1−z)p+ e

k
N z(1− p)

)
=

k

N
(z − p) +

k2

2N2
p(1− p) +O(1/N3),

with N3O(1/N3) bounded uniformly in p, z ∈ [0, 1]. Then we obtain

GNx (Hk,`) = NE
(

1− ek(z−p(z,EN ))−`EN .e
k2

2N p(z,E
N )(1−p(z,EN )).eO(1/N2)

)
= N E

(
1− [(1−Ak,`)(1 +Bk,N )(1 +Rk,N )] (z, EN )

)
,

where N2Rk,N (z, w) is uniformly bounded for z ∈ [0, 1], w ∈ (−1,∞) and N ≥ 1 and

Ak,`(z, w) = 1−exp
(
−k(p(z, w)−z)−`w

)
; Bk,N (z, w) =

k2

2N
p(z, w)(1−p(z, w))+O

( 1

N2

)
.

By expansion, we deduce that

GNx (Hk,`) = NE
(
Ak,`(z, E

N )
)(

1 +O
(
1/N

))
−k

2

2
E
(
p(z, EN )(1− p(z, EN ))

)
+O(1/N). (3.5)

Using Lemma 3.1 both for (z, w)→ Ak,`(z, w) and (z, w)→ p(z, w)(1−p(z, w))−z(1−z),
we obtain from (3.5) that

GNx (Hk,`)
N→∞−→ Gx(Hk,`) = Bz(Ak,`)−

k2

2
z(1− z),

uniformly for x = (z, y) ∈ [0, 1]×R. Then (H1.3i) is satisfied and for any x ∈ X ,

Gx(Hk,`) = αE
∂Ak,`
∂w

(z, 0) +
βE
2

∂2Ak,`
∂w2

(z, 0) +

∫
(−1,∞)

Âk,`(z, w)νE(dw) − k2

2
z(1− z)(3.6)
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Scaling limits of population and evolution processes

with

∂Ak,`
∂w

(z, 0) = k
∂p

∂w
(z, 0) + `,

∂2Ak,`
∂w2

(z, 0) = k
∂2p

∂w2
(z, 0)−

(
k
∂p

∂w
(z, 0) + `

)2
and

Âk,`(z, w) = Ak,`(z, w)− hE(w)
∂Ak,`
∂w

(z, 0)− h2
E(w)

2

∂2Ak,`
∂w2

(z, 0).

The assumptions on the function p allow us to conclude that (H1.3ii) is also satisfied.

(iii) We now check (H2). The continuity of G. on [0, 1]×R comes from the regularity of p,
from the integrability assumption on νE and from Lebesgue’s Theorem (by Assumption
A).

Now, let us introduce the truncation function defined on U = [−1, 1]× (−1,∞) by

h0(u,w) = (u, hE(w)).

With the notation of Section 2, recall that h1
0(u,w) = u and h2

0(u,w) = hE(w).
With the notation of Lemma 2.1 we have

αh0
1 (Hk,`) = k, αh0

2 (Hk,`) = `, βh0
11 (Hk,`) = −k

2

2
,

βh0
12 (Hk,`) = βh0

21 (Hk,`) = −k`
2
, βh0

22 (Hk,`) = −`
2

2
.

Moreover, setting K(z, w) = (p(z, w)− z, w), we note that Ak,` = Hk,` ◦K and

Âk,`(z, w) = Hk,`
h0

(K(x,w)) + kp1(z, w)− k2

2
p2(z, w)− k`hE(w)q(z, w),

with p1(z, w) = p(z, w)− z − hE(w) ∂p∂w (z, 0)− hE(w)2

2
∂2p
∂w2 (z, 0),

p2(z, w) = (p(z, w)− z)2 − h2
E(w)

(
∂p
∂w (z, 0)

)2

and q(z, w) = p(z, w)− z − hE(w) ∂p∂w (z, 0).

Now we set V = (−1,∞) and choose µ = νE and for x = (z, y) ∈ [0, 1]×R, we define

b1(x) = b1(z) = αE
∂p

∂w
(z, 0) +

βE
2

∂2p

∂w2
(z, 0) +

∫
V

p1(z, w)νE(dw) ; b2(x) = αE

σ1,1(x) =
√
z(1− z) ; σ2,2(x) = σE ; σ2,1(x) = 0 ; σ1,2(x) = σE

∂p

∂w
(z, 0).

Then (3.6) can be written as

Gx(Hk,`) = kb1(x) + `b2(x)− k2

2
c11(x)− `2

2
c22(x)− k`c12(x) +

∫
V

Hk,`
h0

(K(z, w))νE(dw),

where, recalling that βE = σ2
E +

∫
(−1,∞)

h2
E(w)νE(dw),

c11(x) = z(1− z) + βE

(
∂p

∂w
(z, 0)

)2

+

∫
V

p2(z, w)νE(dw)

= σ2
1,1(x) + σ2

1,2(x) +

∫
V

(
h1

0(K(z, w))
)2
µ(dw),

c22(x) = βE = σ2,2(x)2 +

∫
V

(
h2

0(K(z, w))
)2
µ(dw),

c12(x) = βE
∂p

∂w
(z, 0) +

∫
(−1,∞)

hE(w)q(z, w)νE(dw)

= σ12(x)σ2,2(x) +

∫
V

h1
0h

2
0(K(z, w))µ(dw).

Thus (H2) holds for any H = Hk,` ∈ H.
We can now apply Theorems 2.3 and 2.4 for tightness and identification and conclude.
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Scaling limits of population and evolution processes

3.3 Pathwise uniqueness and convergence in law

To get the uniqueness for (3.3), we will use the pathwise uniqueness result from Li-Pu
[28].

Corollary 3.3. Let us assume that Assumption A holds and that the function z →
p(z, w) is non-decreasing for any w ∈ (−1,+∞). Then the sequence of processes(
ZN[N.]/N, S

N
[N.]

)
N

converges in law in D([0,∞), [0, 1]×R) to the unique strong solution

(Z, Y ) of (3.3).

The monotonicity assumption on p is natural regarding the model since the more
individuals carry an allele in a generation, the more this allele should be carried in the
next generation.

Proof. In order to apply Theorem 2.5, let us first show that (H3) holds. The pathwise
uniqueness of the process Y is well known. Let us focus on the first equation of (3.3)
and prove the pathwise uniqueness of the process Z.
First, we rewrite the SDE for Z as

Zt = Z0 +

∫ t

0

b̃1(Zs)ds+

∫ t

0

√
Zs(1− Zs)dBD

s + σE

∫ t

0

∂p

∂w
(Zs, 0) dBE

s∫
(−1,∞)\[−1/2,1]

(p(Zt−, w)− Zt−)N(dt, dw) +

∫
[−1/2,1]

(p(Zt−, w)− Zt−)Ñ(dt, dw)

with

b̃1(z) =

(
αE −

∫
(−1,∞)\[−1/2,1]

hE(w)νE(dw)

)
∂p

∂w
(z, 0) +

σE
2

∂2p

∂w2
(z, 0)

+

∫
[−1/2,1]

(
p(z, w)− z − hE(w)

∂p

∂w
(z, 0)

)
νE(dw).

We are in the conditions of application of Theorem 3.2 in [28]. Indeed, we observe
first that b̃1 is Lipschitz since p ∈ C3([0, 1], (−1,∞)) and

sup
w∈[−1/2,1],z∈[0,1]

∣∣∣∣ ∂∂z
{
p(z, w)− z − hE(w)

∂p

∂w
(z, 0)

}∣∣∣∣/w2 <∞.

We remark also that the Brownian part of (3.3) writes

√
Zt(1− Zt)dBD

t + σE
∂p

∂w
(Zt, 0) dBE

t =

√
Zt(1− Zt) + σ2

E

(
∂p

∂w
(Zt, 0)

)2

dWt = σ(Zt)dWt,

with W Brownian motion since BD and BE are two independent Brownian motions. We
easily prove that for any z1, z2 ∈ [0, 1], |σ(z1) − σ(z2)|2 ≤ L|z1 − z2| for some constant
L > 0.

Finally νE((−1,∞) \ [−1/2, 1]) < ∞ and z ∈ [0, 1] → (p(z, w) − z)/w is uniformly
Lipschitz for w ∈ [−1, 2, 1] since its first derivative is bounded, so there exists L > 0 such
that ∫

(−1,∞)\[−1/2,1]

([p(z1, w)− z1]− [p(z2, w)− z2])2νE(dw) ≤ L|z1 − z2|

for any z1, z2 ∈ [0, 1]. Then all the required assumptions for [28] Theorem 3.2 are satisfied
and we get the pathwise uniqueness of the solution of (3.3).
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Scaling limits of population and evolution processes

3.4 Example

We consider the following main example

p(z, w) =
z(1 + w)

z(1 + w) + 1− z
, (3.7)

where the environment w acts as the selection factor. By construction, this selection
coefficient w is larger than −1. The particular case when the environment is non-random,
i.e. ENk = s/N a.s. for some real number s ∈ (−1,+∞), yields the classical Wright-Fisher
process with weak selection. It is well known that in this case, the processes (ZN[N.])N
converge in law to the Wright-Fisher diffusion with selection coefficient s whose equation
is given by dZt =

√
Zt(1− Zt)dBt + sZt(1 − Zt)dt. Here we generalize this result for

random independent identically distributed environments.
First, we observe that

∂p

∂w
(z, 0) = z(1− z) ;

∂2p

∂w2
(z, 0) = −2z2(1− z).

and

b1(z) = αEz(1− z)− σEz2(1− z) +

∫
(−1,∞)

(wz(1− z)
zw + 1

− hE(w)z(1− z)
)
νE(dw). (3.8)

Under Assumption A, we can apply Corollary 3.3 to obtain the proposition stated below.

Proposition 3.4. The sequence of processes
(
ZN[N.]/N, S

N
[N.]

)
N

converges in D([0,∞),

[0, 1]×R) and the limit of the first coordinate is the unique strong solution Z of

Zt = Z0 +

∫ t

0

b1(Zs)ds+

∫ t

0

√
Zs(1− Zs)dBD

s + σE

∫ t

0

Zs(1− Zs)dBE

s

+

∫ t

0

∫
(−1,+∞)

wZs−(1− Zs−)

1 + wZs−
Ñ(ds, dw). (3.9)

In particular if σE = 0 and νE = 0, we recover the classical Wright-Fisher diffusion
with deterministic selection αE. This extension allows us to consider small random
fluctuations (asymptotically Brownian) and punctual dramatic advantage of the selective
effects.

4 Continuous state branching process with interaction in Lévy
environment

In this section, we are interested in approximations of large population dynamics with
random environment and interaction. We generalize in different directions the classical
convergence of Galton-Watson processes to Continous State Branching processes (CSBP),
see for example [16, 24, 8]. We focus on models where the environment and the
interaction mainly affect the mean of the reproduction law and thus modify the drift term
of the CSBP by addition of stochastic and nonlinear terms. Our method based on Section
2 allows us to obtain new statements both for convergence of discrete population models
and for existence of solutions of SDE with jumps, as can be seen in the following theorems.
In particular we obtain a discrete population model approximating the so-called CSBP
with interaction in Lévy environment (BPILE) for large populations.

The CSBPs in random environment or with interaction have recently been subject
of great attention. We refer to [31] for existence of the solution of the associated SDE
under general assumptions, [4, 3, 29] for approximations and study of some classes of
CSBP in random environment (without interaction), [2, 11, 27] for CSBP with interaction
in continuous time (without random environment) and [33] for diffusion approximations.
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4.1 The discrete model

Let us now describe our framework. The population size is scaled by the integer
N ≥ 1. As in Section 3, we introduce for any N a sequence of independent identically
distributed real-valued random variables (ENk )k≥0 with same law as EN . The asymptotic
behavior of (ENk )k≥0 is similar to the one in Section 3 (Assumption A). Nevertheless, the
scaling parameter is no longer N but can be any sequence (vN )N tending to infinity with
N . As in the previous section, hE denotes a truncation function defined on (−1,+∞).

Assumption A1. Let us consider αE ∈ R, σE ∈ [0,∞) and νE a measure on (−1,∞) such
that ∫

(−1,∞)

(1 ∧ w2) νE(dw) <∞. (4.1)

Writing βE = σ2
E +

∫
(−1,∞)

h2
E(w)νE(dw), we assume that

lim
N→∞

vN E(hE(EN )) = αE; lim
N→∞

vN E(h2
E(EN )) = βE;

lim
N→∞

vN E(f(EN )) =

∫
(−1,∞)

f(w) νE(dw),

for any f vanishing in a neighborhood of zero.

We also consider the associated random walk defined by

SN0 = 0, SNk+1 = SNk + ENk (k ≥ 0).

We recall (as in Section 3) that A1 is equivalent to the convergence of the random walk
SN[vN .] to the Lévy process Y with characteristics (αE, βE, νE) defined in (3.2). We reduce
the set of jumps to (−1,∞) to avoid degenerated cases when a catastrophe below −1

could kill all the population in one generation.
Let us fix N . We assume that given a population size n and an environment w,

each individual reproduces independently at generation k with the same reproduction
law LN (n,w).We thus introduce random variables Z0 ≥ 0 and LNi,k(n,w) such that the

family of random variables (Z0, (L
N
i,k(n,w), n ∈ N, w ∈ (−1,+∞)), ENj ; i, k ∈ N∗, j ∈ N)

is independent and for each n ∈ N, w ∈ (−1,+∞), the random variables LNi,k(n,w) are

all distributed as LN (n,w) for i, k ≥ 1. We also assume that the function LNi,k defined on
Ω×N× (−1,+∞) endowed by the product σ-field is measurable.

The population size ZNk at generation k is recursively defined as follows,

ZN0 = [NZ0], ZNk+1 =

ZNk∑
i=1

LNi,k(ZNk , E
N
k ) ∀k ≥ 0. (4.2)

To investigate the convergence in law of the process
((

1
NZ

N
[vN t]

, SN[vN t]
)
, t ∈ [0,∞)

)
, we

cannot apply directly our general result to ZN[vN .]. Indeed, the (associated) characteristics

of the first component are not bounded. Moreover, scaling limits of ZN can lead to
explosive processes, as already happens in the Galton-Watson case. Therefore, we first
study the convergence of the process

XN
k =

(
exp(−ZNk /N), SNk

)
(k ∈ N) (4.3)

in D(R+, [0, 1]×R) where the state space of the first coordinate has been compactified.
Following the notation of Section 2, we introduce for x = (exp(−z), y) ∈ (0, 1] × R the
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quantity

FNx =

(
exp

(
− 1

N

[Nz]∑
i=1

(
LNi ([Nz], EN )− 1

)
− z
)
, y + EN

)
, (4.4)

and observe that for any z ∈ N/N , conditionally on XN
k = (exp(−z), y), the random

variable XN
k+1 is distributed as FNx .

To apply the theoretical framework developed in Section 2, we define χ = (0, 1]×R,
U = [−1, 1]× (−1,∞) and for (u,w) ∈ U ,

h(u) = h(v, w) = (v, 1− exp(−w)), h0(u) = h0(v, w) = (v, hE(w)) (4.5)

respectively as the specific function and the truncation function. We choose the functional
space H defined by

H = {Hk,` : k ≥ 1, ` ≥ 0} ∪ {H` : ` ≥ 1},

where for any u = (v, w) ∈ U ,

Hk,`(u) = vk exp(−`w) and H`(u) = 1− exp(−`w).

The fact that H satisfies (H1) is a consequence of the local Stone-Weierstrass Theorem
on [−1, 1]× [−1,∞) \ {(0, 0)} (cf. Appendix 6.4). For any k, ` ≥ 0 and x = (exp(−z), y) ∈
(0, 1]×R, we have

GNx (Hk,`) = vNE
(
Hk,`

(
exp

(
− 1

N

[Nz]∑
i=1

(LNi ([Nz], EN )− 1)− z
)
− exp(−z), EN

))
= e−kzvNE

((
e−

1
N

∑[Nz]
i=1 (LNi ([Nz],EN )−1) − 1

)k
e−`E

N

)
.

Let us set

PNk (z, w) = E
(
e−

k
N (LN ([Nz],w)−1)

)[Nz]

− 1 (4.6)

and

ANj,`(z) = vNE
(
PNj (z, EN )e−`E

N
)
. (4.7)

The presence of the term −1 in (4.6) may look strange at first glance, but it ensures
that PNk → 0 as N → ∞. Using the binomial expansion and by independence of the
reproduction random variables conditionally on EN , we obtain that

GNx (Hk,`) = e−kz
k∑
j=0

(
k

j

)
(−1)k−jANj,`(z) (4.8)

for k ≥ 1, since
∑k
j=0

(
k
j

)
(−1)j−k = 0 . We also obtain that for ` ≥ 1,

GNx (H`) = vNE(1− exp(−`EN )).

The convergence of ANj,` characterizes the effect of the reproduction law on the
population dynamics, including density dependence and random environment. The
uniform convergence and boundedness of exp(−kz)ANj,`(z) will ensure the tightness of

XN
[vN .]

by Theorem 2.3. The continuity of the limiting functions will be checked for the
identification of the characteristic triplet. Finally, the representation of the limiting
semimartingales as solutions of a stochastic differential equation and its associated
uniqueness will give the convergence (Theorem 2.5).
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Remark 4.1. In the case of Galton-Watson processes, EN = 0, LN (z, w) = LN and ANj,`(z)
becomes

ANj (z) = vNP
N
j (z, 0) = vN

(
E
(
e−

j
N (LN−1)

)[Nz]

− 1

)
.

We observe then that ANj (z) ∼ vN [Nz]E(1− exp(−j(LN − 1)/N)) as N →∞. It can easily
be proved that the uniform convergence of e−jzANj (z) is equivalent to the convergence
of vNNE(g((LN − 1)/N)) for any g in a set containing a truncation function, its square
and regular functions null in a neighborhood of zero. Thus this uniform convergence is
equivalent to the classical necessary and sufficient condition for convergence in law of
Galton-Watson processes [16, 4].

In the next section, we generalize this criterium to reproduction random variables
depending on the population size and the environment.

4.2 Tightness

We first prove the tightness of
(

1
NZ

N
[vN .]

, SN[vN .]
)
N

in D(R+, [0,∞] × R) by assuming
the uniform convergence of the characteristics.

Assumption A1’. Let the characteristics ANj,` be defined in (4.7). For any 1 ≤ j ≤ k and
` ≥ 0, there exists a bounded function Aj,k,` such that

e−kzANj,`(z)
N→∞−→ Aj,k,`(z)

uniformly for z ≥ 0.

Then we state a tightness criterion for the original scaled process in the state space
[0,∞] × R endowed with a distance d which makes it compact and then Polish, say
d(z1, z2) = | exp(−z1)− exp(−z2)| for z1, z2 ∈ [0,∞] with the convention exp(−∞) = 0.

Theorem 4.2. Under Assumptions A1 and A1’, the sequence of processes(( 1

N
ZN[vN t], S

N
[vN t]

)
, t ∈ [0,∞)

)
is tight in D(R+, [0,∞]×R).

Proof. Let us prove the tightness of (XN
[vN .]

)N in D(R+, [0, 1]×R). For ` ≥ 1, it follows
from Assumption A1 that

vN E
(

1− e−`E
N
)
N→∞−→ γE` = αE z −

1

2
σ2
E z

2 +

∫
(−1,+∞)

(
1− e−zw − zhE(w)

)
νE(dw),(4.9)

since 1− e−`w = `hE(w)− 1
2`

2h2
E(w) + κ(w), where κ(w) = o(w2) is continuous bounded.

Then we can define G. on H` for ` ≥ 1 as

Gx(H`) = γE` , (4.10)

for any x ∈ X = (0, 1]×R. Let us now define G. for Hk,` ∈ H and k ≥ 1, ` ≥ 0. We set

Gx(Hk,`) =

k∑
j=0

(
k

j

)
(−1)k−jAj,k,`(z). (4.11)

for x = (e−z, y) ∈ X . Using Assumption A1’ and (4.8), we obtain that

lim
N→∞

sup
x∈X

∣∣GNx (H)− Gx(H)
∣∣ = 0

for any H ∈ H. Moreover G.(H) is bounded by A1’ and Hypothesis (H1.3) is satisfied.
The tightness of (XN

[vN .]
)N in D(R+, [0, 1]×R) is then a consequence of Theorem 2.3 and

yields the result.
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4.3 Identification

Now, we identify the limiting values of (XN
[vN .]

)N as diffusions with jumps. We
are interested in models where the environment and the interaction affect the mean
reproduction law.

We introduce a truncation function hD on the state space (0,+∞), parameters αD ∈ R
and σD ≥ 0 and a σ-finite measure νD on (0,+∞) such that∫ ∞

0

(1 ∧ z2)νD(dz) < +∞. (4.12)

We also consider a locally Lipschitz function g defined on R+ such that

e−zz g(z)
z→∞−→ 0. (4.13)

The function g models the interaction between individuals. In the applications to popula-
tion dynamics, the most relevant functions will be polynomials.

We provide now the scaling assumption on the reproduction random variable LN

so that the limiting values of ZN/N can be identified to a BPILE. This assumption will
become more explicit and natural through the identification and examples of the next
sections.

Assumption A2. Setting for z ≥ 0,

γDz = αD z −
1

2
σ2
D z

2 +

∫
(0,+∞)

(
1− e−zr − zhD(r)

)
νD(dr),

γEz = αE z −
1

2
σ2
E z

2 +

∫
(−1,+∞)

(
1− e−zw − zhE(w)

)
νE(dw),

we assume that for any 1 ≤ j ≤ k and ` ≥ 0,

sup
z≥0

e−kz
∣∣ANj,`(z) + jz g(z) + γDj z + γEjz+` − γE`

∣∣ N→∞−→ 0, (4.14)

where ANj,` has been defined in (4.7).

Remark 4.3. (i) In Appendix 6.1, we provide an explicit construction of a family of
random variables LN (z, e) satisfying A2, in the case βD = 0.
(ii) We believe that the pointwise convergence induced by A2 is actually necessary for
the convergence of the process ZN/N to a BPILE. It does not seem sufficient in general
since some integration argument is involved. Uniformity in A2 provides a sufficient
condition. It can be proved for many classes of reproduction laws via uniform continuity,
using monotonicity or convexity arguments or boundedness of derivative on compact
sets, see the examples below.
(iii) Finally, let us remark that we only need to prove the previous convergence for
z ∈ N/N in A2, using the definition of ANj,`(z) and the uniform continuity of the limit. It
will be more convenient for examples.

We observe that under Assumption A2, Assumption A1’ is satisfied with

Aj,k,`(z) = e−kz
(
−jz g(z)− γDj z + γE` − γEjz+`

)
.

Indeed, this expression is bounded using (4.13) and the boundedness of exp(−kz)γEjz+`,
since |γEjz+`| ≤ C`,j(z + z2 + ejz/2z2βE + ejzνE(−1,−1/2)) for j ≤ k and k ≥ 1.

Let us then observe from the proof of Theorem 4.2 that (XN
[vN .]

)N is tight in D(R+,

[0, 1]×R). Moreover we can simplify the expression (4.11) of the limiting characteristic
Gx, which writes

Gx(Hk,`) = e−kz
k∑
j=0

(
k

j

)
(−1)k−j

(
−jz g(z)− γDj z + γE` − γEjz+`

)
(4.15)
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for x = (e−z, y). For that purpose, we denote

fz(u) = 1− e−zu

and observe that

k∑
j=0

(
k

j

)
(−1)k−jj = δ1,k (4.16)

k∑
j=0

(
k

j

)
(−1)k−j j2 = 2δ2,k + δ1,k (4.17)

k∑
j=0

(
k

j

)
(−1)k−jfj(u) = (−1)k+1f1(u)k (4.18)

k∑
j=0

(
k

j

)
(−1)k−jfjz+`(u) = (−1)k+1e−`ufz(u)k. (4.19)

For k ≥ 3, it follows from (4.18) and (4.19) and straightforward computation that

Gx(Hk,`) = (−1)ke−kz

(∫
(−1,+∞)

e−`w(fz(w))kνE(dw) + z

∫
(0,+∞)

(f1(r))kνD(dr)

)
.(4.20)

For k = 2, computation using (4.17) leads to

Gx(H2,`) = e−2z

{
z2βE +

∫
(−1,+∞)

(
e−`w(fz(w))2 − z2h2

E(w)
)
νE(dw) + zβD

+ z

∫
(0,+∞)

(
f2

1 (r)− h2
D(r)

)
νD(dr)

}
. (4.21)

Similarly (4.16) implies that

Gx(H1,`) = e−z
{
γE` − γEz+` − zg(z)− zγD1

}
. (4.22)

To identify the limiting SDE, we have to find the drift and variance terms and the
jump measures in (2.5), from the expressions (4.10), (4.20), (4.21) and (4.22).

We first remark that for k ≥ 3, ` ≥ 0, Hk,` = Hk,` with the notation introduced in
Lemma 2.1. We work by identification for x = (e−z, y) ∈ (0, 1]×R using (4.20). We thus
define the measure µ on V = [0,+∞)×R by

µ(dθ, dr) = 1θ≤1,r>−1 dθ νE(dr) + 1θ>1,r>0 dθ νD(dr), (4.23)

and the image function K = (K1,K2) by

K1(x, θ, r) = −e−z.
(
fz(r)1θ≤1 + f1(r)11<θ≤1+z

)
; K2(x, θ, r) = r1θ≤1. (4.24)

Then Hk,` satisfies (H2.2) for k ≥ 3, ` ≥ 0.
Moreover it is easy to find b2 and σ2,2 so that H` satisfies (H2.2) for ` ≥ 1 using that

H`(u) = `hE(w)− `2

2
hE(w)2 +H`(u), H`(v, w) = f`(w)− `hE(w)− `2

2
hE(w)2

for u = (v, w) and (4.10). Indeed, by identification and from (2.4), we set for x = (e−z, y)

b2(x) = αE ; σ2,2(x) = σE. (4.25)
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Scaling limits of population and evolution processes

Let us now consider the functions H2,` (` ≥ 0). Note that for u = (v, w), we have

H2,`(u) = v2e−`w = h2
D(v) +H2,`(u), H2,`(u) = v2(e−`w − 1) + v2 − h2

D(v).

The fact that (H2.2) is satisfied for H2,` comes from (4.21) for the left hand side and for
the right hand it is given by a direct computation of

σ1,1(x)2 + σ1,2(x)2 +

∫
V

K2
1 (x, θ, r)µ(dθ, dr) +

∫
V

H2,`(K(x, θ, r))µ(dθ, dr),

where K is defined from (4.24). Using H2,`(K(x, θ, r)) = K1(x, θ, r)2(e−`K2(x,θ,r) − 1), the
condition writes for x = (e−z, y),

σ1,1(x)2 + σ1,2(x)2 = e−2z(zσ2
D + z2σ2

E).

It remains to check (H2.2) for H1,`, with

H1,`(u) = ve−`w = v(1− `hE(w)) +H1,`(u),

where H1,`(u) = v(`hE(w)− f`(w)) = o(|u|2). Using (4.22), we have

Gx(H1,`) = e−z
(
− αEz − zγD1 − zg(z) +

z2

2
σ2
E + `zσ2

E

+

∫
(−1,+∞)

fzf`(w)νE(dw) +

∫
(−1,+∞)

(zhE(w)− fz(w))νE(dw)

)
.

As a conclusion, both sides of (2.4) coincide for H ∈ H by setting for any x =

(e−z, y) ∈ (0, 1]×R,

b1(x) = e−z
(
− αEz − zγD1 − zg(z) +

z2

2
σ2
E +

∫
(−1,+∞)

(zhE(w)− fz(w))νE(dw)

)
(4.26)

and b2(x) = αE and K,µ defined by (4.24) and (4.23) and

σ1,1(x) = −
√
zσDe

−z ; σ1,2(x) = −zσEe−z ; σ2,1(x) = 0 ; σ2,2(x) = σE, (4.27)

and for any x ∈ {0} ×R and (θ, r) ∈ V ,

b(x) = (0, αE), σ11(x) = σ21(x) = σ12(x) = 0, σ22(x) = σE, (4.28)

K1(x, θ, r) = 0, K2(x, θ, r) = r1θ≤1. (4.29)

The general identification result for the exponential transformation of the processes
can then be stated as follows, with h0(v, w) = (v, hE(w)).

Theorem 4.4. Under Assumptions A1 and A2, the sequence of processes((
exp

(
− 1

N
ZN[vN t]

)
, SN[vN t]

)
: t ∈ [0,∞)

)
is tight in D([0,∞), [0, 1]×R) and any limiting value X ∈ D([0,∞), [0, 1]×R) is a weak
solution of the following two-dimensional stochastic differential equation

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

∫
V

h0(K(Xs−, v))Ñ(ds, dv)

+

∫ t

0

∫
V

(Id− h0)(K(Xs−, v))N(ds, dv), (4.30)

whereX0 = (exp(−Z0), 0), N is Poisson point measure with intensity dsµ(dv) onR+×V =

[0,+∞)2 ×R and B is a two-dimensional Brownian motion and Z0, B,N are independent.
The function b = (b1, b2), the matrix σ, the measure µ and the image function K have
been defined in (4.23)-(4.29).
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Scaling limits of population and evolution processes

Proof of Theorem 4.4. We already know that (H1) is a consequence of A2. Let us check
that (H2) is satisfied. We first prove the continuity (H2.1) of x→ Gx(H) for any H ∈ H
and its extension to X . Recalling (4.15), we need to prove that z ∈ [0,∞)→ γE` − γEjz+`
is continuous and exp(−jz)(γE` − γEjz+`) → 0 as z → ∞. Indeed, the continuity can

be obtained from the bound |1 − e−(jz+`)w − (jz + `)hE(w)| ≤ C(1 ∧ w2) for any z ∈
[z0, z1] ⊂ [0,∞), while the limit as z →∞ can be proved using Lemma 6.2 in Appendix
and νE(−1,−1 + ε)→ 0 as ε→ 0. That allows us to prove that (H2.1) is satisfied.

Our choice of parameters in (4.23)- (4.29) ensures that (H2.2) is satisfied for any H`

and Hk,`. Applying Theorem 2.4 to XN allows us to conclude.

Let us now write explicitly the stochastic differential equation (4.30) for Xt = (X1
t , Yt):

dX1
t = X1

t logX1
t

(
αE +

σ2
E

2
logX1

t + g(− logX1
t ) + αD −

σ2
D

2

)
dt

−X1
t

(∫
(−1,+∞)

(1− ew log(X1
t ) + logX1

t hE(w))νE(dw)

− logX1
t

∫
(0,+∞)

(1− e−r − hD(r))νD(dr)

)
dt

+σEX
1
t logX1

t dB
E
t − σDX1

t

√
− logX1

t dB
D

t

−
∫

(−1,+∞)

X1
t−(1− ew log(X1

t ))ÑE(dt, dw)

−
∫

(0,+∞)2
1θ≤− logX1

t−
X1
t−(1− e−r)ÑD(dt, dθ, dr)

dYt = αEdt+ σEdB
E

t +

∫
(−1,+∞)

hE(w)ÑE(dt, dw) +

∫
(−1,+∞)

(w − hE(w))NE(dt, dw),

where BE and BD are Brownian motions, ND and NE are Poisson Point measures
respectively on [0,∞)×(0,∞) and on [0,∞)×(−1,∞) with intensity dtνD(du) and dtνE(dw)

and Z0, B
E, BD, ND and NE are independent.

Using Itô’s formula (see [18]), a straightforward computation leads to the equation
satisfied by Zt = − logX1

t . More precisely, we define the explosion time Texp by

Texp = lim
ε→0+

inf{t ≥ 0;X1
t ≤ ε} = lim

a→+∞
inf{t ≥ 0;Zt ≥ a} ∈ [0,+∞].

We obtain

Zt = Z0 + αD

∫ t

0

Zsds+

∫ t

0

Zs−dYs +

∫ t

0

Zsg(Zs)ds+ σD

∫ t

0

√
ZsdB

D

s (4.31)

+

∫ t

0

∫
(0,+∞)2

1θ≤Zs−hD(r)ÑD(ds, dθ, dr)

+

∫ t

0

∫
(0,+∞)2

1θ≤Zs−(r − hD(r))ND(dt, dθ, dr).

on the time interval [0, Texp) and Zt = +∞ for t ≥ Texp.
When Texp = +∞ almost surely, the process is said to be conservative (or non-

explosive). Grey’s condition gives a criteria for CSBP, which has been recently extended
to CSBP in random Lévy environment in [17].

We have thus proved the tightness of the process and identified the limiting values
of (XN

[vN .]
)N as weak solutions of a SDE. Uniqueness of the SDE (4.31) (Hypothesis H3)

has to be proven to conclude convergence. From the pioneering works of Yamada and
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Scaling limits of population and evolution processes

Watanabe, several results have been obtained for pathwise uniqueness relaxing the
Lipschitz conditions on coefficients. In particular, general results for positive processes
with jumps have been obtained in [14, 28] and used in random environment, see in
particular [31]. This technique allows us to conclude strong uniqueness before explosion.
Here, the process may explode in finite time, which is already the case for classical CSBP
and in our framework, explosion can also be due to cooperation or random environment.
This leads us to consider two cases. In the first case, we obtain a convergence in law on
the state space [0,∞] under an additional regularity assumption on the drift term close
to infinity. This result extends the classical criterion for convergence of Galton-Watson
processes, adding both random environment and interaction. In the second case, we
obtain the convergence of ZN[vN .] in [0,∞) when the limiting values of the sequence of
processes are non-explosive. We observe that it also extends results of [4] to Lévy
environment with infinite variation and of [11] by relaxing moment assumptions for
interaction.
The pathwise uniqueness of the SDE allows us to capture limiting processes where
infinity is either absorbing or non-accessible. Other situations are interesting, where
infinity is regular and uniqueness in law could be invoked. In particular, we refer to [13]
for a criterion for reflection at infinity of CSBP with quadratic competition and [22] and
[5] for similar issues.

4.4 Explosive CSBP with interaction and random environment

In this section, the process may be non-conservative, i.e. Texp may be finite. In
order to obtain the strong uniqueness and following [14, 29], we consider the following
assumption concerning the regularity of the drift term.

Assumption A3. There exist continuous functions r, br and bd such that for any z ∈
[0,∞),

e−z

(
zg(z)− σ2

E

2
z2 +

∫
[−1/2,1]

(1− e−zw − zhE(w))νE(dw)

)
= br(z) + bd(z), (4.32)

with r non-negative, non-decreasing and concave,
∫ .

0
1/r(z)dz = ∞, |br(− log(u)) −

br(− log(u′))| ≤ r(|u− u′|) for any u, u′ ∈ (0, 1] and bd non-increasing.

Theorem 4.5. We assume that A1, A2 and A3 hold.
Then there exists a unique strong solution (Z, Y ) ∈ D([0,∞), [0,∞]×R) of (3.2) and

(4.31) and ((
1

N
ZN[vN t], S

N
[vN t]

)
: t ∈ [0,∞)

)
⇒ ((Zt, Yt) : t ∈ [0,+∞))

in D([0,∞), [0,∞]×R), where [0,∞] is endowed with d(z1, z2) = | exp(−z1)− exp(−z2)|.

Proof of Theorem 4.5. We first remark that the convergence in law of (XN
[vN .]

)N in

D([0,∞), [0, 1] ×R) implies the weak convergence of (ZN[vN .]/N, S
N
[vN .]

) to (− log(X1), Y )

in D([0,∞), [0,∞]×R), where [0,∞] is endowed with d and − log(0) =∞.
We recall from the previous section that XN satisfies (H1) and (H2). To apply

Theorem 2.5, it remains to check that X defined in (4.30) is unique in law.
Let us prove that under A3, pathwise uniqueness holds for X in D([0, T ], [0, 1]×R).

First, the second component Y of X is a Lévy process and the pathwise uniqueness is
well known. Second, the equation for the first component X1 writes

X1
t = X1

0 +

∫ t

0

b̃1(X1
s )ds+

∫ t

0

σ(X1
s )dWs +

∫ t

0

∫
V \V0

K1(X1
s−, v)N(ds, dv)

+

∫ t

0

∫
V0

K1(X1
s−, v)Ñ(ds, dv)
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where σ(u) =
√
σ1,1(u)2 + σ1,2(u)2 and W is a Brownian motion independent of X1

0 and of
the Poisson point measureN . The set V0 is defined as V0 = [0, 1]×[−1/2, 1]∪(1,∞]×(0,∞).
For x1 = exp(−z) and ρ = αE + γD1 −

∫
(−1,∞)−[−1/2,1]

hEνE,

b̃1(x1) = e−z
(
− zρ− zg(z) +

z2

2
σ2
E +

∫
[−1/2,1]

(zhE(w)− fz(w))νE(dw)

)
.

We first observe that µ(V \ V0) <∞. Moreover, combining (4.26) and (4.32), we have

b̃1(x1) = x1 log(x1)ρ− br(− log(x1))− bd(− log(x1)) = b̃r(x1) + b̃d(x1),

where b̃d = −bd(− log .) is non-decreasing and b̃r satisfies |̃br(x1)− b̃r(x̃1)| ≤ r̃(|x1 − x̃1|)
for x1, x̃1 ∈ [0, 1], with

∫ .
0

1/r̃(z)dz =∞ and r̃ non-decreasing and concave. Indeed using
Lemma 6.3 in Appendix, one can take r̃(y) = r(y)+Cy+C1r1(y), with r1(x1) = −x1 log(x1)

and C,C1 well chosen.
Then we easily check that σ2 is Lipschitz continuous and |σ(y) − σ(y′)|2 ≤ |σ(y)2 −

σ(y′)2| and y → y +K1(y, v) is non-decreasing. Finally,∫
V0

(K1(y, v)−K1(y′, v))2µ(dv) = g1(y, y′)

∫
R+

(e−r − 1)2νD(dr)

+

∫
[−1/2,1]

(g2(y, w)− g2(y′, w))2νE(dw),

where for any y, y′ ∈ (0, 1],

g1(y, y′) = min(− log(y),− log(y′))(y − y′)2 + min(y, y′)2| log(y)− log(y′)| (4.33)

(with a null extension at 0) and

g2(y, w) = u(elog(y)w − 1). (4.34)

Using now Lemma 6.4 in Appendix and the integrability assumptions on νD and νE , there
exists L > 0 such that ∫

V0

(K1(y, v)−K1(y′, v))2µ(dv) ≤ L|y − y′|.

Then we can apply Theorem 3.2 in [28] and conclude by observing that Xt = 0 for
t ≥ Texp by pathwise uniqueness.

Recently, Pardoux and Dramé [11] have proven the convergence of some continuous
time and discrete space processes to CSBP with interaction. Here we relax their
conservative assumption and extend to random environments and to general classes of
reproduction laws, in a discrete time setting.

Application to Galton-Watson processes with cooperative effects. Note that The-
orem 4.5 allows us to recover the convergence in law of the Galton-Watson processes
(ẐN[vN .])N defined as in (4.2) with the reproduction laws LN ∈ N satisfying:

lim
N→∞

vNN E(hD((LN − 1)/N))) = αD; lim
N→∞

vNN E(h2
D((LN − 1)/N)) = βD;

lim
N→∞

vNN E(f((LN − 1)/N)) =

∫ ∞
0

f(v)νD(dv), (4.35)

for any continuous bounded function f vanishing in a neighborhood of 0, where hD is
a truncation function, αD ∈ R,

∫
(0,∞)

(1 ∧ v2) νD(dv) < ∞, βD = σ2
D +

∫
(0,∞)

h2
D νD and

σD ≥ 0.
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The limiting process is the (possibly explosive) CSBP with characteristics (αD, βD, νD)

solution of the stochastic differential equation

Ẑt = Z0 + αD

∫ t

0

Ẑsds+ σD

∫ t

0

√
ẐsdB

D

s + (4.36)

+

∫ t

0

∫
(0,∞)2

1θ≤Ẑs−hD(r)ÑD(ds, dθ, dr)

+

∫ t

0

∫
(0,∞)2

1θ≤Ẑs−(r − hD(r))ND(dt, dθ, dr),

where ND is a Poisson measure with intensity dtdθνD(dr).
As a new application of Theorem 4.5, we extend the convergence above by taking

into account a cooperative effect. In this case, the interactions prevent the use of the
classical generating function tool. The reproduction random variable LN (n) depends on
the total population size n and we set

LN (n) = LN + EN (n), (4.37)

where for each n ≥ 0, EN (n) ∈ {0, 1} is a Bernoulli random variable independent of LN

and

P
(
EN (n) = 1

)
=
g(n/N) ∧ vN

vN
(4.38)

for some function g ∈ C1([0,∞), [0,∞)). The process ZN is defined as in (4.2) with this
reproduction random variable LN (n).

We obtain the following convergence result.

Proposition 4.6. We assume that vN →∞ and that (4.35), (4.37) and (4.38) hold. We
also assume that z → exp(−z)zg(z) is non-increasing for z large enough and goes to 0 as
z →∞.

Then (ZN[vN .]/N : t ≥ 0) converges in D([0,∞), [0,∞]×R) to the unique strong solution
Z of

Zt = Z0 + αD

∫ t

0

Zsds+

∫ t

0

Zsg(Zs)ds+ σD

∫ t

0

√
ZsdB

D

s (4.39)

+

∫ t

0

∫
(0,∞)2

1θ≤Zs−hD(z)ÑD(ds, dz, dθ)

+

∫ t

0

∫
(0,∞)2

1θ≤Zs−(z − hD(z))ND(dt, dz, dθ)

for t < Texp and Zt = +∞ for t ≥ Texp.
The monotonicity assumption on z → exp(−z)zg(z) is chosen for sake of simplicity to

obtain the pathwise uniqueness. It captures in particular simple cooperative functions
as g(z) = czα (c > 0, α > 0) or g(z) = c+ b(1− 1/(1 + z)) (c ≥ 0, b > 0).

We observe that the limiting process Z may be explosive, due to the heavy tails of the
reproduction random variable LN (i.e. the CSBP part is explosive) or due to cooperative
effects (note for instance that y′t = ytg(yt) is explosive if g(z) = zα, α > 0).

Finally, we add that extensions of the last convergence to random environments are
possible in several ways, in particular catastrophes can be added and A3 still holds. But
if σE > 0, the function g has to compensate the quadratic term so that A3 can be fulfilled.
Otherwise, other arguments have to be invoked and one may expect to get uniqueness
in law using quenched Laplace exponent (without interaction) or duality arguments.
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Proof. Let us introduce

CNj (z) = vN

(
E
(
e−jΣ

N
)Nz (g(z) ∧ vN

vN
e−j/N +

(
1− g(z) ∧ vN

vN

))Nz
− 1

)
. (4.40)

By a Taylor expansion (developed in Appendix 6.2), one can prove that

sup
z;zN∈N

e−kz
∣∣CNj (z) + jz g(z) + γDj z

∣∣ N→∞−→ 0. (4.41)

Assumption A2 is fulfilled for z ∈ N
N , which is enough as commented in Remark 4.3,

while A1 is trivial (no random environment). As g ∈ C1([0,∞), [0,∞)) and exp(−z)zg(z)

is non-increasing for z large enough and goes to 0 as z goes to infinity, there exist br and
bd such that

e−zzg(z) = br(z) + bd(z),

with bd non-increasing and br(− log(u)) Lipschitz continuous such that Assumption A3
is fulfilled. Indeed there exists z0 such that z → e−zzg(z) is non increasing for z ≥ z0

and one can take bd(z) = e−zzg(z) for z ≥ z0 and bd constant for z ≤ z0, and br(z) =

e−zzg(z)− bd(z).
We conclude using Theorem 4.5.

4.5 Conservative CSBP with interaction and random environment

We focus on the conservative case. Now +∞ is not accessible and the pathwise
uniqueness is obtained without Assumption A3.

Theorem 4.7. We assume that A1 and A2 hold and that any solution of (4.31) is con-
servative, i.e. Texp = +∞ a.s. Then there exists a unique strong solution (Z, Y ) ∈
D([0,∞), [0,∞)×R) of (3.2) and (4.31) and((

1

N
ZN[vN t], S

N
[vN t]

)
: t ∈ [0,∞)

)
⇒ ((Zt, Yt) : t ∈ [0,∞))

in D([0,∞), [0,∞)×R).

Theorem 4.7 allows us to obtain various scaling limits to diffusions with jumps
due either to the environment or to demographic stochasticity. The conditions for
tightness and identification are very general. The conservativeness can be obtained
by different methods as moment estimates or comparison with a conservative CSBP
or conservative CSBP in random environment when the process is competitive or with
bounded cooperation.

Proof. Using that Texp = +∞ a.s., one can check that pathwise uniqueness holds for
(4.31). It can be achieved by using the pathwise uniqueness for Z obtained in [31] before
Texp or by adapting the proof of Theorem 4.5. We recall from Theorem 4.4 that weak
existence also holds for (4.30) under A1 and A2, so that both strong existence and weak
uniqueness hold.

Then (H3) is fulfilled and we can apply Theorem 2.5 to XN and get the weak
convergence of

(
exp(−ZN[vN .]/N), SN[vN .]

)
to X in D([0,∞), [0, 1] × R). Since Texp = +∞,

the weak convergence of (ZN[vN .]/N, S
N
[vN .]

) in D([0,∞), [0,∞) × R) and the pathwise
uniqueness of (Z, Y ) follow, which ends up the proof.

Application to logistic Feller diffusion in a Brownian environment. The next
example illustrates the result. We consider a reproduction law which takes into account
logistic competition and small fluctuations of the environment.
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Scaling limits of population and evolution processes

Corollary 4.8. Assume that (EN )N are centered random variables such that (
√
NEN )N

is uniformly bounded and has variance σ2
E. We define LN ∈ {0, 1, 2} for N large enough,

n ∈ N and e ∈ (−1,∞) by

P(LN (n, e) = 0) =
1

2
(σ2

D − e+ gN (n/N)), P(LN (n, e) = 2) =
1

2
(σ2

D + e− gN (n/N)),(4.42)

where σD ∈ (0,
√

2), gN (z) = αD/N + c(z/N) ∧ (1/
√
N) for z ≥ 0 and c ≥ 0 and αD ∈ R.

Then (ZNt /N : t ∈ [0,∞)) converges in law in D([0,∞),R× [0,∞)) to the unique strong
solution Z of

Zt = Z0 + αD

∫ t

0

Zsds− c
∫ t

0

Z2
sds+ σE

∫ t

0

ZsdB
E

s + σD

∫ t

0

√
ZsdB

D

s ,

where BE and BD are two independent Brownian motions.

Proof. Assumption A1 holds with vN = N , αE = 0, νE = 0 and βE = σ2
E. Let us now

prove that A2 holds.
First, from (4.42), we get

E
(
e−

j
N (LN (n,e)−1)

)
= 1− j

N
(e− gN (n/N)) +

j2

2N2
σ2
D + o(1/N2),

where o(1/N2) is uniform with respect to z and e. Then, for any z ∈ N/N ,

PNj (z, e) = E
(
e−

j
N (LN (Nz,e)−1)

)Nz
− 1 = e

Nz
(
− j
N (e+gN (z))+ j2

2N2 σ
2
D+o(1/N2)

)
− 1

= −jz(e− gN (z)) +
j2

2
z2e2 +

j2z

2N
σ2
D + o(ejz/N)

by considering the cases z ≤
√
N and z ≥

√
N . We obtain that for any 1 ≤ j ≤ k and

` ≥ 0,

e−kzNE
(
PNj (z, EN ) e−`E

N )
= e−kz

((
jzNgN (z) +

j2z

2
σ2
D

)
E
(
e−`E

N
)

− jzNE
(
ENe−`E

N
)

+
j2

2
z2NE

(
(EN )2e−`E

N
))

+ o(1).

Finally,
√
NEN is centered, bounded with variance 1, soE

(
e−`E

N
)
→1 andNE(f(EN ))→

σ2
Ef
′′(0)/2 for f ∈ Cb,20 when N tends to infinity. In particular,

NE(ENe−`E
N

)→ −`σ2
E, NE((EN )2e−`E

N

)→ σ2
E.

Writing g(z) = cz and using that γDj = jαD − j2

2 σ
2
D and γEv = σ2

Ev
2/2, we get

sup
z∈N/N

e−kz
∣∣∣∣CNj,`(z) + γEjz+` − γE` − jz g(z) + γDj z

∣∣∣∣ N→∞−→ 0.

since γEjz+` − γE` = σ2
E(zj` + z2j2/2). We recall from Remark 4.2(iii) that this uniform

convergence then holds for z ≥ 0 and A2 is satisfied.

Finally, a coupling with the Feller diffusion in Brownian environment (c = 0, studied
in [6]) allows us to prove that the process Z is conservative. The result is then an
application of Theorem 4.7.
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5 Perspectives and multidimensional population models

The general results of Section 2 have been applied in the two previous sections to
the Wright-Fisher processes in a Lévy environment and to the Galton-Watson processes
with interaction in a Lévy environment with jumps larger than −1. These generalizations
of historical population models were our initial motivation for this work. The results of
Section 2 can be applied in other interesting contexts. We mention here some suggestions
in these directions and ongoing works.

First, we could consider environments which are not independent and identically
distributed or not restricted to (−1,∞).

This restriction to (−1,∞) allowed us to consider a functional space generated by
the functions exp(−k.) (k ≥ 0) which are bounded on (−1,∞). To extend the results
to random walks converging to Lévy processes with a jump measure ν on R such that∫
R

(1 ∧ w2)νE(dw) <∞, one could consider the functional space of compactly supported
functions

H = {(x,w)→ (1−e−kx)f(w) : k ≥ 1, f ∈ C∞c (R)}∪{(x,w)→ f(w) : f ∈ C∞c (R), f(0) = 0}

for studying Wright Fisher in a Lévy environment and

H = {(u,w)→ ukf(w) : k ≥ 1, f ∈ C∞c (R)} ∪ {(u,w)→ f(w) : f ∈ C∞c (R), f(0) = 0}

for studying branching processes with interaction in random environment. Indeed these
spaces satisfy (H1.1,2). This would require to check that (H1.3) holds.

Such functional spaces could also help to study cases when the environment ENk
depends on SNk and SN converges to a diffusion with jumps.

Second, as explained in the introduction, we are more generally interested in k-type
population models, where the population at generation n is described by a vector

ZNn = (Z1,N
n , Z2,N

n , . . . , Zk,Nn ),

where Zi,Nn counts the number of individuals of type i in generation n. The following
processes have attracted a lot of attention in population dynamics framework:

Zi,Nn+1 =

k∑
α=1

F
(α)
N (ZNn )∑
j=1

LN,αi,j,n(ZNn ).

Such processes allow to model competition, prey-predators interactions, sexual repro-
duction, mutations .... Some examples have been well studied, as multitype branching
processes, controlled branching processes or bisexual Galton-Watson processes, see e.g.
respectively [30], [15] and [1].

One way to obtain the scaling limits is to consider the compactified proces

XN =
(
exp(−Z1,N

n ), exp(−Z2,N
n ), . . . , exp(−Zk,Nn )

)
and to use the functional space

H =
{

(u1, . . . , uk)→ ui1 × uik : (i1, . . . , ik) ∈ Nk \ (0, . . . 0)
}
.

Indeed H satisfies Assumption (H1.1,2) and the exponential transformation combined
with this functional space may allow to exploit the independence structure of the model as
for extended branching processes in Section 4. Some work will then be required to check
that Assumption (H1.3) holds. Moreover uniqueness can be delicate. In an ongoing
work, we consider bisexual Galton-Watson processes and their scaling limits to bisexual
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CSBPs under general conditions. It is also worth noticing that in the scaling limits, the
nonlinearity or the environment can impact the diffusion or jump terms, and not only the
drift as for BPILE considered in Section 4. One could also prove limits to CSBP with Lévy
environment, where the jump measure associated with the demographical stochasticity
(large jumps coming from the offsprings of one single individual, at a rate proportional to
the number of individuals) is impacted by the environment, see [4], [29] for an example.

Note also that one may want to go beyond the boundedness assumptions on the
characteristics GN . This seems to be a challenging question but our approach may
be extendable. Indeed, we obtain the boundedness assumptions in Section 4 by a
compactification of the state space using the function z → exp(−z), which allows us to
consider explosive processes.

The last point to mention is that our criteria concern semimartingales in general. The
Markov setting allows us to simplify the form of the characteristics GN and to reduce
the problem to analytical approximations, nevertheless we could try to work with non
Markovian processes with similar techniques.

6 Appendix

6.1 General construction of a discrete random variable satisfying A2

We first consider the case σD = 0 and assume EN ∈ (−1 + 1/
√
N,∞) for simplicity.

We also introduce gN which converges to g and such that

e−zzg(z)
z→∞−→ 0, sup

z≥0
e−zz|gN (z)− g(z)| N→∞−→ 0, sup

z≥0

|gN (z)|
N1/3

<∞. (6.1)

One can take for instance gN (.) = g(.) ∧N1/3. Let us define

mN (n, e) = 1 + gN (n/N)/N + αD/N + e

and observe that mN (n,EN ) is a.s. positive for N large enough. We consider the repro-
duction random variable AN (n, e) ∈ {[mN (n, e)], [mN (n, e)] + 1} defined by E(AN (n, e)) =

mN (n, e), i.e.

P(AN (n, e) = [mN (n, e)]) = pN (n, e), P(AN (n, e) = [mN (n, e)] + 1) = 1− pN (n, e),

with pN (n, e) = [mN (n, e)] + 1 −mN (n, e). For the large reproductions events, we also
introduce ΣN ∈ N independent of (AN (n, e) : n ≥ 0, e ∈ (−1,∞)) such that

lim
N→∞

N2E(hD(ΣN )) = 0; lim
N→∞

N2E(h2
D(ΣN )) = 0; lim

N→∞
N2E(f(ΣN )) =

∫ ∞
0

f(v)νD(dv)

for f continuous bounded and vanishing in a neighborhood of 0. The reproduction
random variable LN is then defined by

LN (n, e) = AN (n, e) +NΣN

for n ∈ N and e > −1 and writing κNj = − log(1− E(fj(Σ
N )), we have for z ∈ N/N ,

E
(
e−

j
N (LN (Nz,e)−1)

)
= E

(
e−jΣ

N
)
E
(
e−

j
N (AN (Nz,e)−1)

)
= e−κ

N
j −je/N

(
p(Nz, e)e−j([mN (n,e)]−1−e)/N + (1− p(Nz, e))e−j([mN (n,e)]−e)/N

)
= e−κ

N
j −je/N

(
1− j

N
(mN (Nz, e)− e− 1) +

φN (z, e)

N2

)
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where φN is bounded. By Taylor expansion, we obtain∣∣φN (z, e)
∣∣ ≤ c.

(
([mN (Nz, e)]− e− gN (z)/N − α/N)(1− 2([mN (Nz, e)]− e))

+([mN (Nz, e)]− e)2

)
. (6.2)

Moreover mN (Nz, e)− e− 1 = O(N−2/3) uniformly for z, e and we obtain

PNj (z, e) = e−zNκ
N
j −jez

(
1− j

N
(mN (Nz, e)− e− 1) +

φN (z, e)

N2

)Nz
− 1

= e−zNκ
N
j −jez−jz(mN (Nz,e)−e−1)+zψN (z,e) − 1

= e−zNκ
N
j −zj(gN (z)+αD)/N .e−jze−zψN (z,e) − 1,

where NψN (z, e) is continuous bounded and N |ψN (z, e)| ≤ c(1/N4/3 + |φN (z, e)|) and c is
a constant which may change from line to line. Thus

E
(
PNj (z, EN ) e−`E

N )
= AN1 (z) +AN2 (z) +AN1 (z)AN2 (z) +AN3 ,

where

AN1 (z) = e−zNκ
N
j −zj(gN (z)+αD)/N − 1, AN2 (z) = E

(
e−(jz+`)EN−zψN (z,EN )

)
− 1

and AN3 = E(f`(E
N )). Assumption A1 ensures that vNAN3 converges to γE` when N tends

to infinity (see (4.9) for details). To conclude and prove (4.14), we prove and combine
the asymptotic results stated below.

Lemma 6.1. For any j ≥ 1,

(i) sup
z≥0

e−jz
∣∣NAN1 (z) + z(γDj + αD + g(z))

∣∣ N→∞−→ 0

(ii) sup
z≥0

e−jz
∣∣NAN2 (z) + γEjz+`

∣∣ N→∞−→ 0

(iii) sup
z≥0

e−jz
∣∣NAN1 (z)AN2 (z)

∣∣ N→∞−→ 0

Proof. (i) First, by Taylor expansion and using that gN (z)/N1/3 is bounded, there exists
c > 0 such that for any z ≤ N2/3,

e−jz
∣∣Ne−zNκNj −zj(gN (z)+αD)/N + z(γDj + αD + g(z))

∣∣
≤ c.e−jzz

(
|N2κNj − γDj |+ |gN (z)− g(z)|+N−1/3

)
.

The right hand side goes to 0 uniformly as N →∞. Second,

e−jzz(γDj + αD + g(z))
z→∞−→ 0, sup

z≥N2/3,N≥1

e−jz
∣∣Ne−zNκNj −zj(gN (z)+αD)/N − 1

∣∣ A→∞−→ 0,

since for z ≥ N2/3,

e−jz
∣∣Ne−zNκNj −zj(gN (z)+αD)/N−1

∣∣ ≤ e−jzN(ezc/N
2/3

+1) ≤ Ne−N
1/3.(1−c/N2/3) +Ne−N

1/3

,

which goes to 0. This proves (i).
Let us turn to (ii). We first prove the uniform convergence on compact sets using

convexity and simple convergence. Indeed, recalling that |NψN (z, e)| ≤ c(1/N4/3 +

|φN (z, e)|), ∣∣AN2 (z) + E
(
fjz+`(E

N )
) ∣∣ ≤ c

N

(
1/N4/3 + E(|φN (z, EN )|)

)
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for z ∈ [0, A]. By A1, EN goes in probability to 0 and φN is bounded and φN (z, e) → 0

as e → 0 uniformly with respect to z ∈ [0, A] from (6.2). It turns out that
supz∈[0,A]E(|φN (z, EN )|)→ 0 and

sup
z∈[0,A]

∣∣NAN2 (z) +NE
(
fjz+`(E

N )
) ∣∣ N→∞−→ 0.

Moreover, for any z ≥ 0, N E
(
fjz+`(E

N )
)
→ γEjz+` by Assumption A1 (see again (4.9) for

details) and the convergence is uniform on [0, A] by convexity of z → NE
(
fjz+`(E

N )
)

and by continuity of z → γEjz+` (third Dini’s theorem). It proves (ii) on compacts sets.

Let us now prove that supz≥A,N≥1 exp(−jz)
∣∣NAN2 (z)| → 0 as A→∞.

Let us fix ε > 0 and

AN2 (z) = BNε (z) + CNε (z) (6.3)

where
BNε (z) = E

(
1EN≥−1+εe

−(jz+`)EN−zψN (z,EN )
)
− 1.

Recalling that EN ≥ −1 + 1/
√
N and NψN bounded, we have

CNε (z) = E
(

1EN<−1+εe
−(jz+`)EN−zψN (z,EN )

)
≤ P(EN < −1 + ε)e−(jz+`)(1−1/

√
N+c/N).

Thus, the last part of Assumption A1 ensures that

lim
ε→0

sup
N≥c2,z≥0

e−jzNCNε (z) = lim
ε→0

sup
N≥1

NP(EN < −1 + ε) = lim
ε→0

νE(−1,−1 + ε) = 0.

Writing

gx(y) = fx(y)− xhE(y) = 1− e−xy − xhE(y), RN (z, e) = e−(jz+`)e
(
e−zψN (z,e) − 1

)
,

we have

BNε (z) = P(EN < −1 + ε)− (jz + `)E
(
hE(EN )1EN≥−1+ε

)
− E(gjz+`(E

N ))1EN≥−1+ε)

+E
(
RN (z, EN )1EN≥−1+ε

)
.

First, we recall that supN P(EN < −1 + ε) → 0 as ε → 0 and NE
(
hE(EN )1EN≥−1+ε

)
is

bounded (actually convergent by Assumption A1). Second, we prove that

sup
z≥A,N≥1

Ne−jzE
(
|gjz+`(EN )|1EN≥−1+ε

) A→∞−→ 0

using that (see forthcoming Lemma 6.2 for details)

sup
y≥−1+ε, y 6=0

e−jz

(1− e−y)2
|gx(y)| x→∞−→ 0

and that NE((1− exp(−EN ))2) is bounded from A1. Finally

e−jzN |RN (z, e)1e≥−1+ε| ≤ N exp(−(ε− 1/
√
N)jz).

∣∣ exp(cz/N)− 1
∣∣

ensures that
sup

z≥A,N
NE

(
RN (z, EN )1EN≥−1+ε

) A→∞−→ 0,

using again | exp(cz/N) − 1| ≤ c′z/N for z ≤ N , while the right hand is bounded by
z exp(−εjz/2) for z ≥ N and N ≥ 16/ε2 . Combing these estimates in (6.3) yields
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supz≥A,N≥1 exp(−jz)
∣∣NAN2 (z)| → 0 as A→∞ and ends the proof of (ii) by recalling

that exp(−jz)γEjz+` → 0 as z →∞.
We finally prove (iii). First,

sup
z≥0

e−jz/2
√
N |AN1 (z)| A→∞−→ 0

using that exp(−jz/2
√
N)|AN1 (z)| ≤ c exp(−jz/2

√
N)z/N2/3 for z ≤ N (and then one

may use for N large that z/N2/3 is small for z ≤ N7/12 and that exp(−z/2
√
N) is small

for N7/12 ≤ z ≤ N ) and exp(−jz/2
√
N)|AN1 (z)| ≤ exp(−jz(1/2

√
N − c/N2/3)) for z ≥ N .

Second
sup

N≥1,z∈[0,∞)

e−jz(1−1/2
√
N)NE(AN2 ) <∞,

since
E(AN2 ) ≤ P(EN ≤ −1/2)e(jz+`)(1−1/

√
N)+zc/N + E(AN2 1EN>−1/2)

and NP(EN ≤ −1/2) is bounded from A1 and NE(AN2 1EN>−1/2) is bounded, following
the point (ii) and using the following slight modification of Lemma 6.2

sup
y>−1/2, y 6=0, N≥N0

e−x(1−2/
√
N)

(1− e−y)2
|gx(y)| x→∞−→ 0,

where N0 is chosen such that 1− 2/
√
N0 > 1/2.

6.2 Taylor expansion for a Galton-Watson process with cooperation

Recalling (4.40) and (4.14),

CNj (z) = vN

((
1− γN,Dj /NvN

)Nz (
1− j

N

g(z) ∧ vN
vN

+O
(
g(z) ∧ vN
N2vN

))Nz
− 1

)
= vN

(
e−zγ

N,D
j /vN+O(z/Nv2N )−jz(1∧(g(z)/vN ))(1+O(1/N)) − 1

)
for any z ∈ N/N . For z such that z + g(z)z ≤ vN , we have z/vN ≤ 1 and 1 ∧ (g(z)/vN ) =

g(z)/vN for z ≥ 1. We make a Taylor expansion and get

e−jz
∣∣CNj (z) + zγN,Dj + jzg(z)

∣∣ ≤ e−jzc( 1

N
+
zg(z)

N

)
for some constant c > 0. We obtain

sup
z+g(z)z≤vN

e−jz
∣∣CNj (z) + zγDj + jzg(z)

∣∣ N→∞−→ 0.

To conclude, we observe that min{z : z + g(z)z ≥ vN} → ∞ as N → ∞. Then
supz+g(z)z≥vN e

−jz
∣∣zγN,Dj + jzg(z)

∣∣→∞. Let us now prove that

sup
z+g(z)z≥vN

e−jzvN
∣∣CNj (z)

∣∣ N→∞−→ 0.

Indeed, g ≥ 0 and either z ≥ vN/2 and

e−jzvN
∣∣CNj (z)| ≤ e−jzvNezc/vN ≤ 2ze−zj/2

for N such that j − c/vN ≥ j/2 or z ≤ vN/2 and vN ≤ 2zg(z) and there exists c > 0 such
that

e−jzvN
∣∣CNj (z)| ≤ e−jz2zg(z) ec.

Recalling that min{z; z + g(z)z ≥ vN} → ∞ as N → ∞ and that zg(z) exp(−z) → 0 as
z →∞, we obtain the desired result.
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6.3 Some technical results

Lemma 6.2. For x > 0, let us consider

gx(y) = 1− e−xy − xhE(y).

We have

sup
y>−1+ε, y 6=0

e−x

(1− e−y)2
|gx(y)| x→∞−→ 0.

Proof. Let V0 be an open bounded interval containing 0 such that hE(y) = y for y ∈ V0.
There exists C > 0 such that for any y 6∈ V0,

|gx(y)|
(1− e−y)2

≤ C (1 + x+ ex(1−ε))

since hE and 1/(1− exp(−y)) are bounded. The result follows on the complementary set
of V0. Let us now consider y ∈ V0. Assuming |xy| ≤ 1, we get |gx(y)| ≤ C x2y2 and we
conclude using that y/(1− exp(−y)) is bounded on (−1,∞).

If y ∈ V0 and |xy| ≥ 1, we have

|gx(y)|
(1− e−y)2

≤ C
(
|1− e−xy|

y2
+
x

y

)
≤ Cx2

(
1 + ex(1−ε)

)
,

which ends the proof.

Let us now prove the forthcoming inequality (6.4).

Lemma 6.3. Let r1(x) = −x log(x). Then for any x, x′ ∈ [0, 1],

|x log(x)− x′ log(x′)| ≤ K
(
|x− x′|+ r1(|x− x′|)

)
(6.4)

for some constant K > 0.

Proof. Let us first assume that min(x, x′) ≥ |x− x′|. In this case, it is immediate that

|x log x− x′ log x′| ≤ |x− x′|(1 + log(|x− x′|))

by the mean value theorem. We now assume that 0 ≤ x ≤ |x − x′| ≤ x′, which implies
that x′ ≤ 2|x− x′|. We have

|x log x− x′ log x′| ≤ |x log(x/x′) + (x− x′) log(x′)|
≤ |x log(x/x′)|+ | log(|x− x′|)| |x− x′|
≤ x′ − x+ | log(|x− x′|)| |x− x′|,

using that x/x′ ∈ [0, 1] and that the function α ∈ [0, 1] → α logα is bounded by some
constant C. We obtain that |x log x− x′ log x′| ≤ 2C|x− x′|+ | log(|x− x′|)| |x− x′|, which
ends the proof.

Lemma 6.4. Recall the definitions (4.33) and (4.34). For any x1, x̃1 ∈ [0, 1],

g1(x1, x̃1) ≤ L|x1 − x̃1|

and for any u ∈ [−1/2, 1],

(g2(x1, u)− g2(x̃1, u))2 ≤ C|x1 − x̃1|u2.
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Proof. For the first inequality, one can use that −x log x is bounded for the first term in
(4.33) and the mean value theorem for the second one.

Concerning the second inequality, we use

(g2(x1, u)− g2(x̃1, u))2 ≤
∣∣g2(x1, u)2 − g2(x̃1, u)2

∣∣ ≤ sup |(g2
2(., u))′||Zs|

and
(g2

2(., u))′(x1) = 2x1(elog(x1)u − 1)2 + ux1e
log(x1)u2(elog(x1)u − 1).

The results then come from the inequality |elog(x1)u − 1| ≤ | log(x1)|u.

6.4 Stone-Weierstrass theorem on locally compact space

We recall here the local version of Stone-Weierstrass Theorem and assume that the
space X is a locally compact Hausdorff space.

Let C0(X,R) the space of real-valued continuous functions on X which vanish at
infinity, i.e. given ε > 0, there is a compact subset K such that ‖f(x)‖ < ε whenever the
point x lies outside K. In other words, the set {x, ‖f(x)‖ ≥ ε} is compact.

Let us consider a subalgebra A of C0(X,R). Then A is dense in C0(X,R) for the
topology of uniform convergence if and only if it separates points and vanishes nowhere.
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