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Abstract

For a given normalized Gaussian symmetric matrix-valued process Y (n), we consider
the process of its eigenvalues {(λ(n)

1 (t), . . . , λ
(n)
n (t)); t ≥ 0} as well as its correspond-

ing process of empirical spectral measures µ(n) = (µ
(n)
t ; t ≥ 0). Under some mild

conditions on the covariance function associated to Y (n), we prove that the process
µ(n) converges in probability to a deterministic limit µ, in the topology of uniform
convergence over compact sets. We show that the process µ is characterized by its
Cauchy transform, which is a rescaling of the solution of a Burgers’ equation. Our
results extend those of Rogers and Shi [14] for the free Brownian motion and Pardo et
al. [12] for the non-commutative fractional Brownian motion when H > 1/2 whose
arguments use strongly the non-collision of the eigenvalues. Our methodology does
not require the latter property and in particular explains the remaining case of the
non-commutative fractional Brownian motion for H < 1/2 which, up to our knowledge,
was unknown.
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1 Introduction

Let us consider a family of independent centered Gaussian processes {Xi,j ; i, j ∈ N}
defined in a probability space (Ω,F ,P), with common covariance function here denoted
by R(s, t), for s, t ≥ 0. That is to say, the Gaussian processes Xi,j := (Xi,j(t); t ≥ 0) are
independent with zero mean and covariance given by

E [Xi,j(s)Xi,j(t)] = R(s, t), for s, t ≥ 0,
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Empirical spectral distribution of Gaussian matrix-valued processes

where R(s, t) is a non-negative definite covariance function. For n ∈ N, we also consider

the renormalized symmetric Gaussian matrix-valued process Y (n)(t) := [Y
(n)
i,j (t)]1≤i,j≤n,

for t ≥ 0, defined as follows

Y
(n)
i,j (t) :=


1√
n
Xi,j(t) +A

(n)
i,j if i < j,

√
2√
n
Xi,i(t) +A

(n)
i,i if i = j,

where the A(n)
i,j are the coefficients of a deterministic symmetric matrix An = [Ani,j ]1≤i,j≤n.

Let us denote the n-dimensional process of eigenvalues of Y (n) by (λ
(n)
1 (t), · · · , λ(n)

n (t)),
for t ≥ 0. We also denote by Pr(R) for the space of probability measures on R endowed
with the topology of weak convergence and let C(R+, Pr(R)) be the space of continuous
functions from R+ into Pr(R), endowed with the topology of uniform convergence on
compact intervals of R+.

In this manuscript, we are interested in the asymptotic behaviour of the Pr(R)-valued

process of empirical distributions {µ(n);n ≥ 1}, defined by µ(n) := (µ
(n)
t , t ≥ 0) where

µ
(n)
t :=

1

n

n∑
j=1

δ
λ
(n)
j (t)

, t ≥ 0,

and δx denotes the Dirac measure centered at x. In particular, we aim to determine the
limit in probability of the process µ(n), viewed as an element of the space C(R+, Pr(R))

of Pr(R)-valued stochastic processes with continuous trajectories.
This problem has been studied before in the framework of interacting particles by

Rogers and Shi [14] and Cépa and Lépingle in [5], when the Xi,j ’s are standard Brownian
motions. We also refer to Cabanal-Duvillard and Guionnet [4] for the case of Hermitian
Brownian motion where the latter case is included. The authors in [5, 14] proved that µ(n)

converges, as n tends to infinity, to a deterministic process whose Cauchy transforms are
given by the solution of a Burgers’ equation. More recently, Pardo et al. [12] extended
the previous result to the case where the Xi,j ’s are fractional Brownian motions with
Hurst (or self-similar) index H > 1/2. We briefly describe the main ideas presented in
all these manuscripts where the no-collision of the eigenvalues is crucial. Let Cr(R)

denote the set of real-valued functions with continuous derivatives of order r, and let us
introduce the subset

Crb (R) :=

{
f ∈ Cr(R)

∣∣∣∣ r∑
i=1

sup
x∈R

∣∣∣f (r)(x)
∣∣∣ <∞}. (1.1)

In the Brownian case, the main idea for determining the asymptotic behaviour of µ(n)

consists, first, in characterizing the process of its eigenvalues (λ
(n)
1 , . . . , λ

(n)
n ) as the

unique strong solution of a system of stochastic differential equations. Then one can
prove that for every f ∈ C3

b (R), the process

〈µ(n)
t , f〉 :=

∫
f(x)µ

(n)
t (dx), t ≥ 0, (1.2)

satisfies a stochastic differential equation which converges, as n tends to infinity, to a
deterministic differential equation with a given initial condition. Using the characteriza-
tion of 〈µ(n)

t , f〉 as the solution of an initial value problem and a suitable approximation

argument, one can also show that the Cauchy transform of µ(n)
t , defined by

G
(n)
t (z) =

∫
(x− z)−1µ

(n)
t (dx),

EJP 24 (2019), paper 10.
Page 2/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP203
http://www.imstat.org/ejp/


Empirical spectral distribution of Gaussian matrix-valued processes

for z belonging to the upper half plane C+ := {z ∈ C | I(z) > 0}, converges in probability
to a function Ft(z), which can be characterized as the unique solution, absolutely
continuous over t and holomorphic over z ∈ C+, of the complex deterministic Burgers’
equation

∂

∂τ
Fτ (z) = Fτ (z)

∂

∂z
Fτ (z),

F0(z) =

∫
R

1

x− z
µ0(dx), (1.3)

for τ ≥ 0 and z ∈ C+. The complex Burgers equation has previously appeared in free
harmonic analysis in the work of Voiculescu [16], in connection to the free Brownian
motion with a given starting law. We refer the reader to [1, Lemma 4.3.15] for a proof of
the existence and uniqueness of the system (1.3). Notice that in the case where A(n) is
the zero matrix, we have that µ0 is the Dirac measure centered at zero and the solution
of the system (1.3) is given by

Fτ (z) =
1

2τ

(√
z2 − 4τ − z

)
, τ ≥ 0, z ∈ C+, (1.4)

under the convention that the square root is taken with respect to a branch for which the
logarithm defined in C\[0,∞), so that the image of C+ under the mapping z 7→ z2−4τ lies
in the domain of the square root function (such convention will be adopted as well for the
rest of the paper). Since the unique measure µτ associated to the Cauchy transform (1.4)
is a semicircle distribution with variance t, the above convergence gives a dynamical
version of Wigner’s theorem. A key ingredient in the argument presented above, consists
in using the well known fact that for any fixed n ∈ N, the eigenvalues (λ

(n)
1 , . . . , λ

(n)
n )

never collide, in other words, the trajectories of λ(n)
i and λ

(n)
j never intersect for any

1 ≤ i, j ≤ n, and satisfy the following non-colliding diffusion equation

λ
(n)
i (t) = λ

(n)
i (0) +

√
2W i

t +
∑
j 6=i

∫ t

0

1

λ
(n)
i (s)− λ(n)

j (s)
ds, (1.5)

where W 1, . . . ,Wn are independent one-dimensional standard Brownian motions. For
further details we refer Anderson et al. [1] and Cabanal-Duvillard and Guionnet [4].

The case where the Xi,j ’s are fractional Brownian motions of Hurst parameter
H ∈ (1/2, 1) was handled in [12] using Young integrals and Malliavin calculus tech-

niques. In particular, it was shown that its eigenvalues (λ
(n)
1 , . . . , λ

(n)
n ) satisfy a Young

integral equation which in turn induces a Skorokhod integral equation for 〈µ(n)
t , f〉, when

f ∈ C3
b (R). Then by taking limits as n tends to infinity in this equation and using some es-

timations based on Malliavin calculus techniques, one can prove that 〈µ(n)
t , f〉 converges

to the solution of a deterministic differential equation which implicitly characterizes the
limit process. Similarly to the Brownian case, the well-posedness of the stochastic Young
integral equation for (λ

(n)
1 , . . . , λ

(n)
n ) requires the non-collision of the eigenvalues of Y (n),

which was proved by Nualart and Perez-Abreu in [11].
As we said before, the previous arguments rely heavily on the fact that the eigenvalues

of a fractional Brownian motion with Hurst parameter H ≥ 1/2 never collide and that a

suitable Itô or stochastic Young integral equation for (λ
(n)
1 , . . . , λ

(n)
n ) can be formulated.

In the case where the Xi,j ’s are general Gaussian processes, these two properties may
not hold and a more refined treatment of the problem is required. Indeed, the non-
collision of the eigenvalues for Gaussian processes with highly rough paths, is still an
open problem. In addition, if the trajectories of Y (n)

i,j are too rough, it is not possible
to formulate a stochastic differential equation for its eigenvalues neither in the Itô or
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Young integral sense. In other words an extended version of the Skorokhod integral
is required and consequently the estimations based on Malliavin calculus are harder
to handle, since the extended Skorokhod integration doesn’t have a clear analogue of
Meyers’ inequality which is required for characterizing the limiting object.

In the present manuscript, we show that under some mild conditions on the covari-
ance function associated to Y (n), the process 〈µ(n)

t , f〉, for t ≥ 0, satisfies a Skorokhod
stochastic differential equation (see Lemma 3.1) defined in the extended domain of the
divergence (see Section 2.1 for a proper definition). In particular, we prove that the
Skorokhod stochastic differential equation makes sense even in the presence of collision
of the eigenvalues. Then we prove a tightness property for the sequence of processes
{µ(n);n ≥ 1} using similar arguments as those presented in [12]. It is important to
note that due to the lack of a clear analogue of Meyers’ inequalities for the extended
Skorokhod integral deducing the limiting object is not straightforward, in fact we need
completely different estimates and techniques to those used in [12].

Our main result requires the following assumptions on the covariance function R:

(H1) For every T > 0, the mapping s 7→ R(s, s) is continuously differentiable in (0,∞),
continuous at zero and d

dsR(s, s) has finitely many zeros in (0, T ]. In addition, there
exists α > 1 such that for all t ∈ [0, T ], the mapping s 7→ R(s, t) is absolutely
continuous on [0, T ], and

sup
0≤t≤T

∫ T

0

∣∣∣∣∂R∂s (s, t)

∣∣∣∣α ds <∞.

(H2) There exist constants κ, γ > 0, such that for every s, t > 0,

R(s, s)− 2R(s, t) +R(t, t) ≤ κ |t− s|γ .

Theorem 1.1. Assume that the covariance function R satisfies conditions (H1) and
(H2), and µ

(n)
0 converges weakly to a probability measure µ0. Then the family of

measure-valued processes {µ(n) : n ≥ 1} converges weakly in C(R+, Pr(R)) to the unique
(deterministic) continuous probability-measure valued function (µt; t ≥ 0), satisfying

〈
µt, f

〉
=
〈
µ0, f

〉
+

1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x− y
d

ds
(R(s, s))µs(dx)µs(dy)ds, (1.6)

for each t ≥ 0 and f ∈ C3
b . Moreover, its Cauchy transform Gt(z), satisfies

Gt(z) = FR(t,t)(z), for z ∈ C+ and t ≥ 0, (1.7)

where Fτ (z), for τ ≥ 0, is the unique solution of the system (1.3).

We note that the term f ′(x)−f ′(y)
x−y when x = y, in the integral of the right-hand side of

(1.6) is understood as f ′′(x).
Another important observation is related to the fractional Brownian motion. Recall

that its covariance function satisfies

R(s, t) =
1

2
(s2H + t2H − |t− s|2H), (1.8)

for H ∈ (0, 1). Such covariance function clearly satisfies conditions (H1) and (H2) and
consequently, Theorem 1.1 generalizes the results previously proved for the Brownian
motion in [5] and [14], and for the fractional Brownian motion with Hurst parameter
H ∈ (1/2, 1) in [12].
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Finally, we recall that in the case that µ0 = δ0, the unique solution to (1.3) is given by
(1.4). The latter implies that

Gt(z) =
1

2R(t, t)

(√
z2 − 4R(t, t)− z

)
t ≥ 0, z ∈ C+.

Hence, for each t ≥ 0, µt is a semicircle distribution with variance R(t, t).
The remainder of this manuscript is organized as follows. In Section 2 we present

some preliminaries on Malliavin calculus and Skorohod integration. In particular, we
introduce the extended domain of the divergence. Section 3 is devoted to the proof of
the Skorokhod stochastic differential equation for the process of eigenvalues associated
to Y (n). The tightness property is proved in Section 4 and, finally in Section 5, the
convergence in law of the sequence {µ(n);n ≥ 1} is given.

2 Preliminaries on Malliavin calculus and Skorokhod integral

Let d ≥ 1 and T > 0 be fixed. We denote by X = ((X1
t , . . . , X

d
t ); t ∈ [0, T ]) a d-

dimensional continuous Gaussian process defined in a probability space (Ω,F ,P) whose
covariance satisfies

E
[
Xi
sX

j
t

]
= δi,jR(s, t), s, t ∈ [0, T ],

for some positive definite covariance function R. Denote by E the space of step functions
on [0, T ]. We define in E the scalar product〈

1[0,s],1[0,t]

〉
H

:= E
[
X1
sX

1
t

]
for s, t ∈ [0, T ].

Let H be the Hilbert space obtained by taking the completion of E with respect to this
product. For every 1 ≤ i ≤ n fixed, the mapping 1[0,t] 7→ Xi

t can be extended to linear
isometry between H and the Gaussian subspace of L2 (Ω) generated by the process
(Xi

t , t ≥ 0). We will denote this isometry by Xi(h), for h ∈ H.
If f ∈ Hd is of the form f = (f1, . . . , fd), we set X(f) :=

∑d
i=1X

i(fi). The mapping
f 7→ X(f) is a linear isometry between Hd and the Gaussian subspace of L2 (Ω) generated
by X. Let S denote the set of all cylindrical random variables of the form

F = g(X(h1), . . . , X(hm)),

where g : Rm → R is an infinitely differentiable function with compact support, and
hj ∈ E d. The Malliavin derivative of F with respect to X, is the element of L2(Ω;Hd),
defined by

DF =

m∑
i=1

∂g

∂xi
(X(h1), . . . , X(hm))hi. (2.1)

For p ≥ 1, the set D1,p denotes the closure of S with respect to the norm ‖·‖D1,p , defined
by

‖F‖D1,p :=
(
E [|F |p] + E

[
‖DF‖pHd

] ) 1
p

.

The operator D can be consistently extended to the set D1,p. We denote by δ the adjoint
of the operator D, also called the divergence operator. A random element u ∈ L2(Ω;Hd)

belongs to the domain of δ, denoted by Dom δ, if and only if satisfies∣∣E [〈DF, u〉Hd]∣∣ ≤ CuE [F 2
] 1

2 , for every F ∈ D1,2,
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where Cu is a constant only depending on u. If u ∈ Dom δ, then the random variable δ(u)

is defined by the duality relationship

E [Fδ(u)] = E
[
〈DF, u〉Hd

]
,

which holds for every F ∈ D1,2. We will make use of the notation

d∑
i=1

∫ t

0

uisδX
i
s := δ(u1[0,t]), (2.2)

for u ∈ L2(Ω;Hd) of the form ut = (u1
t , . . . , u

d
t ).

In the case where X is a d-dimensional Brownian motion, i.e. its covariance function
is given by R(s, t) = s ∧ t and H = L2[0, T ], the random variable (2.2) is an extension of
the Itô integral. Motivated by this fact, we may interpret

∑d
i=1

∫ t
0
uisδX

i
s as the stochastic

integral of the process u. Nevertheless, the space H turns out to be too small for this
purpose. Indeed, in [6] it was shown that in the case where X is a fractional Brownian
motion with Hurst parameter 0 < H < 1

4 , that is to say its covariance function is of
the form (1.8), the trajectories of X do not belong to the space H, and in particular,
non-trivial processes of the form (f(us); s ∈ [0, T ]), with f : R → R, might not belong
to the domain of δ. In order to overcome this difficulty, we extend the domain of δ by
following the approach presented in [10] (see also [6]). The main idea for extending the
domain of δ, consists on extending the definition of 〈ϕ,ψ〉H to the case where ϕ ∈ Lβ [0, T ]

for some β > 1, and ψ belongs to the space E of step functions over [0, T ].
In the sequel, we will assume that there exists a constant α > 1 such that the following

condition holds. Let β be the conjugate of α, defined by β := α/(α− 1). For any pair of
functions ϕ ∈ Lβ [0, T ] and ψ ∈ E of the form ψ =

∑m
j=1 cj1[0,tj ], we define

〈ψ,ϕ〉H :=

m∑
j=1

cj

∫ T

0

ϕ(s)
∂R

∂s
(s, tj)ds. (2.3)

This expression is well defined since

∣∣∣〈1[0,t], ϕ
〉
H

∣∣∣ =

∣∣∣∣∣
∫ T

0

ϕs
∂R

∂s
(s, t)ds

∣∣∣∣∣ ≤ ‖ϕ‖Lβ [0,T ] sup
0≤t≤T

(∫ T

0

∣∣∣∣∂R∂s (s, t)

∣∣∣∣α ds

) 1
α

<∞,

and coincides with the inner product in H in the case where ϕ ∈ E . Indeed, for ϕ ∈ E of
the form ϕ =

∑n
i=1 ai1[0,ti], we have

〈
1[0,t], ϕ

〉
H

=

n∑
i=1

aiR(ti, t) =

n∑
i=1

ai

∫ ti

0

∂R

∂s
(s, t)ds =

∫ T

0

ϕ(s)
∂R

∂s
(s, t)ds.

We define the extended domain of the divergence as follows.

Definition 2.1. Let 〈·, ·〉H be the bilinear function defined by (2.3). We say that a
stochastic process u ∈ L1(Ω;Lβ [0, T ]) belongs to the extended domain of the divergence
Dom∗δ if there exists p > 1, such that∣∣E [〈DF, u〉Hd]∣∣ ≤ Cu ‖F‖Lp(Ω) ,

for any smooth random variable F ∈ S , where Cu is some constant depending on u. In
this case, δ(u) is defined by the duality relationship

E [Fδ(u)] = E
[
〈DF, u〉Hd

]
. (2.4)
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It is important to note that for a general covariance function R(s, t) and β > 1, the
domains Dom∗δ and Dom δ are not necessarily comparable (see Section 3 in [10] for
further details about this fact).

The next result is a multidimensional version of Itô’s formula for the Skorokhod
integral and for functions that are smooth only on a dense open subset of the Euclidean
space and satisfy some extra regularity conditions. In the sequel, for every i ∈ {1, . . . , d},
the map γi : Rd → Rd−1 denotes the orthogonal projection onto the hyperplane Pi :=

{(x1, . . . , xd) | xi = 0}. We use as well the following notation: for every real function
h : D ⊂ Rd → R, we define

1D(x)h(x) :=

{
h(x) if x ∈ D,

0 if x ∈ Rd\D,

for every x ∈ Rd.
Theorem 2.2. Assume that R satisfies (H1). Consider a function F : Rd → R, with
d > 1, satisfying the following conditions:

1. There exists a measurable set M ⊂ Rd, with Lebesgue measure zero, such that
F is twice continuously differentiable in D := Rd\M and γi(M) has measure zero
with respect to the Lebesgue measure in Pi.

2. There exist constants C > 0 and N > 0, such that for all x ∈ D and i ∈ {1, . . . , d},

|F (x)|+
∣∣∣∣ ∂F∂xi (x)

∣∣∣∣ ≤ C(1 + |x|N ). (2.5)

3. The random variable |∂
2F
∂x2
i

(Xs)| has finite expectation, and there exists a determin-

istic constant C > 0, such that with probability one,∣∣∣∣∣
d∑
i=1

∂2F

∂x2
i

(Xs)

∣∣∣∣∣ ≤ C, (2.6)

Then, the process us = (u1
s, . . . , u

d
s) defined by uis := 1D(Xs)

∂F
∂xi

(Xs)1[0,t](s), belongs to
Dom∗δ, and

F (Xt) = F (X0) +

d∑
i=1

∫ t

0

1D(Xs)
∂F

∂xi
(Xs)δX

i
s +

1

2

d∑
i=1

∫ t

0

1D(Xs)
∂2F

∂x2
i

(Xs)
dR(s, s)

ds
ds,

(2.7)

for every t ∈ [0, T ].

It is well known from classical papers by Cheridito-Nualart, Decreusefond & al. (see
[6], [7] and [8]) and others, that some regularity is required for the extended Skorokhod
integral in (2.7) to make sense. For instance, it would seem natural to require F to be
twice continuously differentiable in Rd with polynomial growth. Nevertheless, for the
purposes of our application, F will be closely related to the function that associates a
symmetric matrix to its vector of eigenvalues and will be only differentiable in a dense
subset of the space of symmetric matrices. This motivates the use of conditions (1),(2)
and (3) in Theorem 2.2, rather than a (more classical) smoothness condition on F over
Rd. Before proving this result, we provide some interesting remarks.

(i) For every T > 0, with probability one, the random set IT = {s ∈ [0, T ] | Xs ∈M} has
Lebesgue measure |IT | equal to zero, since

E [|IT |] = E

[∫ T

0

1{Xs∈M}ds

]
=

∫ T

0

P[Xs ∈M ]ds = 0,
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where the last equality follows from the fact that M has Lebesgue measure zero and
Xs has a Gaussian distribution. As a consequence, with probability one the trajectories
of 1D(Xs) are Lebesgue almost everywhere equal to one, which allows us to rewrite
equation (2.7) as follows

F (Xt) = F (X0) +

d∑
i=1

∫ t

0

∂F

∂xi
(Xs)δX

i
s +

1

2

d∑
i=1

∫ t

0

∂2F

∂x2
i

(Xs)
dR(s, s)

ds
ds,

with the understanding that, although the integrands might be undefined for some values
of s, they are well defined Lebesgue almost everywhere. Nevertheless, we will use the
notation (2.7), in order to avoid confusion.

(ii) A version of the previous result was first presented in [11, Theorem 3.1] for d ≥ 1,
where the condition (1) was replaced by the weaker condition that f is differentiable in
an open dense set D of Rd. Unfortunately, this result is false, as we can verify by taking
d = 1, f(x) = |x|, and covariance R(s, t) = s ∧ t, which corresponds to the standard
Brownian motion. Under these conditions, the third term appearing in the right hand
side of (2.7) must be replaced by the local time of the Brownian motion. In order for the
result to hold, we require the more restrictive condition (1) instead of the differentiability
of f over an open dense set.

(iii) Condition (3) is slightly different than the one presented in [11, Theorem 3.1].
This alternative condition is crucial for providing a Skorohod integral equation for
〈µ(n)
t , f〉, since in the application to random matrices that we address in this paper, the

function
∑d
i=1

∂2F
∂x2
i

is smooth and bounded, unlike the individual components ∂2F
∂x2
i

, which

are considerably more erratic (see Section 3 for details).

The proof that we present below is based on similar arguments as those used in [11,
Theorem 3.1], but some modifications and additional techniques are required.

Proof of Theorem 2.2. Let Y ∈ S be of the form

Y = g̃(V (h1), . . . , V (hq)),

for hi = (h1
i , . . . , h

d
i ), with hli ∈ E and g̃ : Rqd → R infinitely differentiable with compact

support. Since each hli is a step function of the form

hli(x) =

r∑
j=1

ali,j1[0,sli,j)
(x),

for some r ∈ N, ali,j ∈ R and sli,j ∈ R+ for 1 ≤ j ≤ r, we deduce that there exist m ∈ N
and 0 < t1 < · · · < tm, such that

Y = g(Xt1 , . . . , Xtm),

for some g : Rmd → R infinitely differentiable with compact support. Using the chain
rule for D, we obtain

DY =

m∑
i=1

d∑
j=1

∂g

∂yi,j
(Xt1 , . . . , Xtm)DXj

ti ,

where ∂g
∂yi,j

(v1, . . . , vm) denotes the partial derivative of g with respect to the j-th com-

ponent of vi, evaluated at (v1, . . . , vm). By condition (2.5) and the way we choose the
process us, the inner product

〈
1[0,ti], u

j
〉
H

is well defined and satisfies

〈
1[0,ti], u

j
〉
H

=
〈
1[0,ti],1D(X·)

∂F

∂xj
(X·)1[0,t](·)

〉
H

=

∫ t

0

1D(Xs)
∂F

∂xj
(Xs)

∂R

∂s
(s, ti)ds.
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Hence, using the fact that
〈
DXj

ti , u
〉
Hd

=
〈
1[0,ti], u

j
〉
H

, we get

〈DY, u〉Hd =

m∑
i=1

d∑
j=1

∂g

∂yi,j
(Xt1 , . . . , Xtm)

∫ t

0

1D(Xs)
∂F

∂xj
(Xs)

∂R

∂s
(s, ti)ds.

Using the previous expression as well as (2.5), we deduce that 〈DY, u〉Hd is integrable.
Indeed, since g is compactly supported, we can use (2.5) to obtain a constant C > 0 such
that

E
[∣∣〈DY, u〉Hd ∣∣] ≤ C m∑

i=1

d∑
j=1

∫ T

0

E
[
(1 + |Xs|N )

] ∣∣∣∣∂R∂s (s, ti)

∣∣∣∣ds. (2.8)

Moreover, since Xs is Gaussian and the mapping s 7→ R(s, s) is continuous in [0, T ],

E
[
|Xs|N

]
≤ N !!R(s, s)

N
2 ≤ N !! sup

0≤s≤T
R(s, s)

N
2 <∞,

where N !! denotes the double factorial of N . The integrability of
∣∣〈DY, u〉Hd ∣∣ then follows

from (2.8) and condition (H1). As a consequence, we can write

E
[
〈DY, u〉Hd

]
=

m∑
i=1

d∑
j=1

∫ t

0

E

[
∂g

∂yi,j
(Xt1 , . . . , Xtm)1D(Xs)

∂F

∂xj
(Xs)

]
∂R

∂s
(s, ti)ds

=

m∑
i=1

d∑
j=1

∫ t

0

∫
Rdm

∫
Rd

∂g

∂yi,j
(y)1D(x)

∂F

∂xj
(x)

∂R

∂s
(s, ti)fs(x, y)dxdy ds,

(2.9)

where fs : Rd(m+1) → R+ denotes the join density of the Gaussian vector (Xs, Xt1 , . . . Xtm).
Let x be of the form x = (x1, . . . , xd). Since γj(M) has measure zero in Pj , we deduce
that for every y ∈ Rmd, s > 0 and j ≥ 1,∫

Rd
1D(x)

∂F

∂xj
(x)fs(x, y)dx =

∫
Pj

∫
R

1D(x)
∂F

∂xj
(x)fs(x, y)dxj

∏
i 6=j

dxi

=

∫
γj(M)c

∫
R

1D(x)
∂F

∂xj
(x)fs(x, y)dxj

∏
i 6=j

dxi. (2.10)

By condition (1), for every (x1, . . . , xj−1, xj+1, . . . , xd) ∈ γi(M)c, the mapping

t 7→ F (x1, . . . , xj−1, t, xj+1, . . . , xd)

is differentiable in R, and hence, using the polynomial growth of F and ∂F
∂xj

, we can

remove the term 1D(x) in the right hand side of (2.10), and integrate by parts the
variable xi, in order to deduce∫

Rd

∂F

∂xj
(x)fs(x, y)dx =

∫
γj(M)c

∫
R

∂F

∂xj
(x)fs(x, y)dxj

∏
i6=j

dxi

= −
∫
γj(M)c

∫
R

F (x)
∂fs
∂xj

(x, y)dxj
∏
i 6=j

dxi

= −
∫
Rd

1D(x)F (x)
∂fs
∂xj

(x, y)dx. (2.11)
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From (2.9) and (2.11), we conclude that

E
[
〈DY, u〉Hd

]
= −

m∑
i=1

d∑
j=1

∫ t

0

∫
Rdm

∫
Rd

∂g

∂yi,j
(y)1D(x)F (x)

∂R

∂s
(s, ti)

∂fs
∂xj

(x, y)dxdy ds

=

m∑
i=1

d∑
j=1

∫ t

0

∫
Rdm

∫
Rd
g(y)1D(x)F (x)

∂R

∂s
(s, ti)

∂2fs
∂yi,j∂xj

(x, y)dx dy ds.

(2.12)

Similarly, using relation (2.6), as well as the fact that g is compactly supported, we have
that for every 1 ≤ j ≤ d, the random variable

Y

∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds (2.13)

is integrable. Indeed, by (2.6), there exists a constant C > 0 such that

E

∣∣∣∣∣∣Y
∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds

∣∣∣∣∣∣
 ≤ C ∫ T

0

E

∣∣∣∣∣∣
d∑
j=1

∂2F

∂x2
j

(Xs)

∣∣∣∣∣∣
 ∣∣∣∣ d

ds
R(s, s)

∣∣∣∣ds
≤ C

∫ T

0

(1 +R(s, s)−1+δ)

∣∣∣∣ d

ds
R(s, s)

∣∣∣∣ds.
(2.14)

By condition (H1), there exist L ∈ N and 0 = T1 < · · · < TL = T , such that R(s, s) is
monotone in [Ti, Ti+1] for all 1 ≤ i ≤ L− 1. Hence,∫ T

0

(1 +R(s, s)−1+δ)

∣∣∣∣dR(s, s)

ds

∣∣∣∣ ds =

L−1∑
i=1

∣∣∣∣ ∫ Ti+1

Ti

(1 +R(s, s)−1+δ)
dR(s, s)

ds
ds

∣∣∣∣
=

L−1∑
i=1

∣∣R(Ti+1, Ti+1)−R(Ti, Ti)

+
1

δ
(R(Ti+1, Ti+1)δ −R(Ti, Ti)

δ)
∣∣. (2.15)

Therefore, by (2.14), the random variable in (2.13) is integrable, as required. Proceeding

as in the proof of (2.11) and using the fact that E
[∣∣∣∂2F
∂x2
j

(Xs)
∣∣∣] <∞ for all s > 0, we can

show that for all y ∈ Rmd and s > 0,∫
Rd

1D(x)
∂2F

∂x2
j

(x)fs(x, y)dx =

∫
Rd

1D(x)F (x)
∂2fs
∂x2

j

(x, y)dx,

and consequently,

E

Y ∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds


=

∫ t

0

∫
Rdm

∫
Rd
g(y)1D(x)

d∑
j=1

∂2F

∂x2
j

(x)fs(x, y)
d

ds
R(s, s)dxdy ds

=

∫ t

0

∫
Rdm

∫
Rd
g(y)1D(x)

d∑
j=1

F (x)
∂2fs
∂x2

j

(x, y)
d

ds
R(s, s)dxdy ds.

(2.16)
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In addition, by (2.5), the random variable Y F (Xt) is integrable for every t ≥ 0, and

E [Y F (Xt)− Y F (X0)] =

∫
Rdm

∫
Rd
g(y)F (x)ft(x, y)dx dy −

∫
Rdm

∫
Rd
g(y)F (x)f0(x, y)dx dy

=

∫ t

0

∫
Rdm

∫
Rd
g(y)F (x)

∂fs
∂s

(x, y)dx dy ds

=

∫ t

0

∫
Rdm

∫
Rd
g(y)1D(x)F (x)

∂fs
∂s

(x, y)dxdy ds, (2.17)

where the last identity follows from the fact that R\D has Lebesgue measure zero.
Finally, if Σ(s) denotes the covariance function of (Xs, Xt1 , . . . , Xtm), by the Fourier
inversion formula we have that for every x ∈ Rd and y ∈ Rdm,

∂fs
∂s

(x, y) =
1

2π

∂

∂s

∫
Rd

∫
Rdm

ei〈(ξ,η),(x,y)〉e−
1
2 (ξ,η)∗Σ(s)(ξ,η)dηdξ

=
1

2π

∫
Rd

∫
Rdm

ei〈(ξ,η),(x,y)〉e−
1
2 (ξ,η)∗Σ(s)(ξ,η)

(
− 1

2
(η, ξ)∗

∂

∂s
Σ(s)(η, ξ)

)
dηdξ.

A further application of the Fourier inversion formula to the right hand side of the
previous identity, leads to

∂fs
∂s

(x, y) =

m∑
i=1

d∑
j=1

∂R

∂s
(s, ti)

∂2fs
∂yi,j∂xj

(x, y) +
1

2

d∑
j=1

d

ds
R(s, s)

∂2fs
∂x2

j

(x, y). (2.18)

From (2.12),(2.16),(2.17) and (2.18), we get that

E [Y F (Xt)− Y F (X0)] = E
[
〈DY, u〉Hd

]
+

1

2
E

Y ∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds

 .
(2.19)

Next we use (2.19) to prove that u belongs to the extended domain of the divergence
Dom∗δ. Using Hölder inequality and Minkowski inequality, we have that∣∣∣∣∣∣E

Y ∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds

∣∣∣∣∣∣
≤ ‖Y ‖

L
p
p−1 (Ω)

∥∥∥∥∥∥
∫ t

0

1D(Xs)

d∑
j=1

∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds

∥∥∥∥∥∥
Lp(Ω)

≤ ‖Y ‖
L

p
p−1 (Ω)

∫ t

0

∥∥∥∥∥∥
d∑
j=1

∂2F

∂x2
j

(Xs)

∥∥∥∥∥∥
Lp(Ω)

∣∣∣∣ d

ds
R(s, s)

∣∣∣∣ds.
In addition, using (2.6), we get

∫ t

0

∥∥∥∥∥∂2F

∂x2
j

(Xs)

∥∥∥∥∥
Lp(Ω)

∣∣∣∣ d

ds
R(s, s)

∣∣∣∣ds ≤ C ∫ T

0

∣∣∣∣ d

ds
R(s, s)

∣∣∣∣ ds <∞. (2.20)

Therefore, using Hölder’s inequality, as well as (2.19) and (2.20), we deduce that

EJP 24 (2019), paper 10.
Page 11/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP203
http://www.imstat.org/ejp/


Empirical spectral distribution of Gaussian matrix-valued processes

there exists a constant K1 > 0 such that

∣∣E [〈DY, u〉Hd]∣∣ ≤ |E [Y F (X0)]|+ 1

2

∣∣∣∣∣E
[
Y

∫ t

0

1D(Xs)
∂2F

∂x2
j

(Xs)
d

ds
R(s, s)ds

]∣∣∣∣∣+ |E [Y F (Xt)]|

≤ K1

(
‖Y ‖L1(Ω) + ‖Y ‖

L
p
p−1 (Ω)

+ E
[
|Y | (1 + |Xt|N )

])
≤ K1

(
‖Y ‖L1(Ω) + ‖Y ‖

L
p
p−1 (Ω)

+ ‖Y ‖
L

p
p−1 (Ω)

∥∥∥1 + |Xt|N
∥∥∥
Lp(Ω)

)
,

and hence, there exists a constant K2 > 0 such that∣∣E [〈DY, u〉Hd]∣∣ ≤ K2 ‖Y ‖
L

p
p−1 (Ω)

. (2.21)

From (2.19) and (2.21), it follows that u belongs to the extended domain of the divergence
Dom∗δ, and

F (Xt)− F (X0) =

d∑
i=1

∫ t

0

1D(Xs)
∂F

∂xi
(Xs)δX

i
s +

1

2

d∑
i=1

∫ t

0

1D(Xs)
∂2F

∂x2
i

(Xs)
d

ds
R(s, s)ds,

as required.

3 Stochastic Evolution of the eigenvalues of a matrix-valued Gaus-
sian process

We first recall some notation. Consider a family of independent and identically
distributed centered Gaussian processes {Xi,j ; i, j ∈ N} defined in a probability space
(Ω,F ,P). We will assume that the covariance function R(s, t) := E [X1,1(s)X1,1(t)] sat-
isfies the hypotheses (H1) and (H2). Consider as well a sequence of deterministic
symmetric matrices A(n) = [A

(n)
i,j ]1≤i,j≤n, with ordered eigenvalues λ(n)

1 (0) ≥ · · · ≥ λ(n)
n (0)

and spectral empirical distribution

µ
(n)
0 :=

1

n

n∑
i=1

δ
λ
(n)
i (0)

satisfying µ
(n)
0

L→ µ0 as n→∞,

for some probability law µ0 and where
L→ means convergence in law. Let Y (n) =

[Y
(n)
i,j ]1≤i,j≤n be the renormalized symmetric Gaussian matrix of dimension n× n, given

by

Y
(n)
i,j (t) :=


1√
n
Xi,j(t) +A

(n)
i,j if i < j,

√
2√
n
Xi,i(t) +A

(n)
i,i if i = j,

(3.1)

Denote by λ
(n)
1 (t) ≥ · · · ≥ λ

(n)
n (t) the ordered eigenvalues of Y (n)(t), and by µ(n) :=

(µ
(n)
t , t ≥ 0) the corresponding empirical measure process

µ
(n)
t =

1

n

n∑
j=1

δ
λ
(n)
j (t)

.

For a given probability measure ν, and a ν-integrable function f , we use the notation
〈ν, f〉 :=

∫
f(x)ν(dx). In particular,

〈µ(n)
t , f〉 =

1

n

n∑
i=1

f(λ
(n)
i (t)). (3.2)
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From [11, Lemma 5.1], it follows that for every i = 1, . . . , n, there exists a function

Φni : R
n(n+1)

2 → R, which is infinitely differentiable in an open subset G ⊂ R
n(n+1)

2 , with

|Gc| = 0, such that λ(n)
i (t) = Φni (Y (n)(t)). Moreover, every element X ∈ G, viewed as an

n× n matrix, has a factorization of the form Z(n) = U (n)D(U (n))∗, where D is a diagonal

matrix with entries Di,i = λ
(n)
i such that λ(n)

1 > · · · > λ
(n)
n , U (n) is an orthogonal matrix

with U (n)
i,i > 0 for all i, U (n)

i,j 6= 0 and all the minors of U (n) have non zero determinants.
In addition, for any k ≤ h, we have

∂Φni
∂yk,h

(Z(n)) = 2U
(n)
i,k U

(n)
i,h 1{k 6=h} +

√
2(U

(n)
i,k )21{k=h}, (3.3)

∂2Φni
∂y2

k,h

(Z(n)) = 2
∑
j 6=i

∣∣∣U (n)
i,k U

(n)
j,h + U

(n)
i,h U

(n)
j,k

∣∣∣2
λ

(n)
i − λ(n)

j

1{k 6=h} + 4
∑
j 6=i

∣∣∣U (n)
i,k U

(n)
j,k

∣∣∣2
λ

(n)
i − λ(n)

j

1{k=h}. (3.4)

Using the orthogonality of the columns of U (n), we deduce from (3.3) and (3.4) that

∑
k≤h

∂2Φni
∂y2

k,h

(Z(n)) =
∑
j 6=i

2

λ
(n)
i − λ(n)

j

and
∑
k≤h

(
∂Φni
∂yk,h

(Z(n))

)2

= 2. (3.5)

Using Lemma 2.2, we can prove the following result, which describes the time evolution
of the eigenvalues (λ

(n)
1 (t), . . . , λ

(n)
n (t)) in terms of the Skorohod integral.

Lemma 3.1. For every f ∈ C2
b (R) and t ≥ 0, we have

〈
µ

(n)
t , f

〉
=
〈
µ

(n)
0 , f

〉
+

1

2n2

n∑
i=1

∫ t

0

f ′′(Φni (Y (n)(s)))
d

ds
R(s, s)ds

+
1

n
3
2

n∑
i=1

∑
k≤h

∫ t

0

f ′(Φni (Y (n)(s)))1G(Y (n)(s))
∂Φni
∂yk,l

(Y (n)(s))δXk,h(s) (3.6)

+
1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µ(n)

s (dx)µ(n)
s (dy)ds.

Proof. For simplicity, we introduce n−1/2X(n) := Y (n) −A(n) and we write

〈µ(n)
t , f〉 =

1

n

n∑
i=1

f(λ
(n)
i (t)) =

1

n

n∑
i=1

f(Φni (Y (n)(t))) =: Fn(n−1/2X(n)(t)), (3.7)

where Fn(B), for B ∈ R
n(n+1)

2 , is such that

Fn(B) :=
1

n

n∑
i=1

f(Φni (A(n) +B)).

Next we show that the right hand side of (3.7) satisfies the conditions of Theorem 2.2 for
a suitable choice of D and M .

Observe that Φn is infinitely differentiable in the set of symmetric matrices whose
characteristic polynomials do not have multiple roots, or equivalently, the matrices
without multiple eigenvalues. As a consequence, the mapping x 7→ Φ(x + A(n)) is
differentiable in the complement of

MA(n) := {x ∈ R
n(n+1)

2 | p(x+A(n)) = 0}, (3.8)

where p : R
n(n+1)

2 → R denotes the discriminant of the matrix induced by x, defined by
p(x) =

∏
i 6=j(Φ

n
i (x)−Φnj (x))2. It is well known that p is a polynomial in the entries of x (see
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[1, Appendix A.4] for a proof of this fact) and consequently, MA(n) is an algebraic variety.
Moreover, by a result by Von Neumann and Wigner (see [9]), MA(n) has codimension 2,
namely, the maximal dimension of the tangent vector spaces at the non-singular points
of MA(n) is equal to n(n+1)

2 − 2. As a consequence, the projection γj(MA(n)) is a variety
of codimension at least 1 embedded in Pj := {(x1, . . . , xd) | xj = 0}, and thus γj(MA(n))

has Lebesgue measure zero on Pj . From here we conclude that condition (1) in Theorem

2.2 holds for D := R
n(n+1)

2 \M (n)
A .

Next we prove condition (2.5). First we observe for every B ∈ G that the partial
derivative of Fn(n−1/2B) with respect to the (k, h)-th component, denoted by ∂

∂yk,h
Fn(n−1/2B),

is given by

∂

∂yk,h
Fn(n−1/2B) =

1

n
3
2

n∑
i=1

f ′(Φni (n−1/2B +A(n)))
∂Φni
∂yk,h

(n−1/2B +A(n)), (3.9)

Hence, using the fact that
∣∣ ∂Φni
∂yk,h

∣∣ ≤ 2 (see equation (3.3)), we get

∣∣∣∣ ∂

∂yk,h
Fn(n−1/2B)

∣∣∣∣ ≤ 1

n
3
2

‖f ′‖∞
n∑
i=1

∣∣∣∣ ∂Φni
∂yk,h

(n−1/2B +A(n))

∣∣∣∣ ≤ 2√
n
‖f ′‖∞ .

Using the previous inequality, we conclude that condition (2.5) holds.

To prove condition (2.6) in Theorem 2.2, we see that for every 1 ≤ k ≤ h ≤ n and
t > 0 fixed,

∂2

∂y2
k,h

Fn(n−1/2X(n)(t)) =
1

n2

n∑
i=1

f ′′(Φni (Y (n)(t)))

(
∂Φni
∂yk,h

(Y (n)(t))

)2

+
1

n2

n∑
i=1

f ′(Φni (Y (n)(t)))
∂2Φni
∂y2

k,h

(Y (n)(t)), (3.10)

and hence, using relations
∣∣∣ ∂Φni
∂yk,h

∣∣∣ ≤ 2 and
∣∣∣ ∂2Φni
∂y2k,h

∣∣∣ ≤∑i 6=j
4

|λ(n)
i −λ

(n)
j |

(see equation (3.4)),

we obtain

E

[∣∣∣∣ ∂2

∂y2
k,h

Fn(n−1/2X(n)(t))

∣∣∣∣] ≤ 4

n
‖f ′′‖∞ +

1

n2

n∑
i=1

E

[∣∣∣∣∂2Φni
∂y2

k,h

(Y (n)(t))

∣∣∣∣]
≤ 4

n
‖f ′′‖∞ +

4

n2

∑
i 6=j

E

[
|λ(n)
i (t)− λ(n)

j (t)|−1

]
. (3.11)

To show the right hand side is finite we proceed as follows. For x ∈ R
n(n+1)

2 , let φε(x)

denote the Gaussian kernel given by

φε(x) = (2πε)−
n(n+1)

4 e−
1
2ε‖x‖

2

.

We can easily check that there exists constants C > 0 and σ > 0 only depending on

n,A(n) and R(t, t) such that, after identifying A(n) as an element of R
n(n+1)

2 ,

φR(t,t)(n
−1/2(y −A(n))) ≤ Cφσ2(x),
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and consequently,

E

[
|λ(n)
i (t)− λ(n)

j (t)|−1

]
=

∫
R
n(n+1)

2

|Φni (n−1/2x+A(n))− Φnj (n−1/2x+A(n))|−1φR(t,t)(x)dx

=

∫
R
n(n+1)

2

|Φni (y)− Φnj (y)|−1φR(t,t)(n
−1/2(y −A(n)))dx

≤ C
∫
R
n(n+1)

2

|Φni (x)− Φnj (x)|−1φσ2(x)dx

= Cσ
n(n+1)

2

∫
R
n(n+1)

2

|Φni (x)− Φnj (x)|−1φ1(x)dx. (3.12)

Similarly to [11, Equation (5.6)], we can use the joint density of the eigenvalues of
a standard GOE of dimension n, to deduce that the right hand side of (3.12) is finite.
Hence, from (3.11) we conclude that

E

[∣∣∣∣ ∂2

∂y2
k,h

Fn(n−1/2X(n)(t))

∣∣∣∣] <∞.
Moreover, by (3.5) and (3.10), we have

∑
k≤h

∂2

∂y2
k,h

Fn(n−1/2X(n)(t)) =
2

n2

n∑
i=1

f ′′(Φni (Y (n)(t))) +
2

n2

∑
i 6=j

f ′(Φni (Y (n)(t)))

Φni (Y (n)(t))− Φnj (Y (n)(t))

=
2

n2

n∑
i=1

f ′′(Φni (Y (n)(t))) +
1

n2

∑
i 6=j

f ′(Φni (Y (n)(t)))− f ′(Φnj (Y (n)(t)))

Φni (Y (n)(t))− Φnj (Y (n)(t))
,

where we have used

∑
i 6=j

f ′(Φni (Y (n)(t)))

Φni (Y (n)(t))− Φnj (Y (n)(t))
= −

∑
i 6=j

f ′(Φnj (Y (n)(t)))

Φni (Y (n)(t))− Φnj (Y (n)(t))
.

Thus, by the mean value theorem, we conclude that∣∣∣∣∑
k≤h

∂2

∂y2
k,h

Fn(n−1/2X(n)(t))

∣∣∣∣ ≤ 4

n
‖f ′′‖∞ ,

which proves relation (2.6). Therefore, the right hand side of (3.7) satisfies the conditions
of Theorem 2.2. As a consequence,

〈µ(n)
t , f〉 − 〈µ(n)

0 , f〉 =
∑

1≤k≤h≤n

∫ t

0

1D(X(n)(s))
∂Fn
∂yk,h

(n−1/2X(n)(s))δXk,h(s)

+
1

2

∑
1≤k≤h≤n

∫ t

0

1D(X(n)(s))
∂2Fn
∂y2

k,h

(n−1/2X(n)(s))
d

ds
R(s, s)ds. (3.13)

Moreover, by Remark (i) after Theorem 2.2, the indicators 1D(X(n)(s)) can be replaced
by 1G(X(n)(s)), which leads to

〈µ(n)
t , f〉 − 〈µ(n)

0 , f〉 =
∑

1≤k≤h≤n

∫ t

0

1G(X(n)(s))
∂Fn
∂yk,h

(n−1/2X(n)(s))δXk,h(s)

+
1

2

∑
1≤k≤h≤n

∫ t

0

1G(X(n)(s))
∂2Fn
∂y2

k,h

(n−1/2X(n)(s))
d

ds
R(s, s)ds. (3.14)
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From relations (3.5) and (3.10), we deduce that

1G(X(n)(t))
∑

1≤k≤h≤n

∂2

∂y2
k,h

Fn(n−1/2X(n)(t))

=
1G(X(n)(t))

n2

n∑
i=1

f ′′(Φni (Y (n)(t)))
∑

1≤k≤h≤n

(
∂Φni
∂yk,h

(Y (n)(t))

)2

+
1G(X(n)(t))

n2

n∑
i=1

f ′(Φni (Y (n)(t)))
∑

1≤k≤h≤n

∂2Φni
∂y2

k,h

(Y (n)(t))

=
21G(X(n)(t))

n2

 n∑
i=1

f ′′(Φni (Y (n)(t))) +

n∑
i=1

∑
j 6=i

f ′(Φni (Y (n)(t)))

λ
(n)
i − λ(n)

j

 .

(3.15)

Combining (3.9), (3.14) and (3.15), we get〈
µ

(n)
t , f

〉
=
〈
µ

(n)
0 , f

〉
+

1

n2

n∑
i=1

∫ t

0

f ′′(Φni (Y (n)(s)))
d

ds
R(s, s)ds

+
1

n
3
2

n∑
i=1

∑
k≤h

∫ t

0

f ′(Φni (Y (n)(s)))1G(Y (n)(s))
∂Φni
∂yk,l

(Y (n)(s))δXk,h(s)

+
1

2

∫ t

0

∫
R2

1{x 6=y}
f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µ(n)

s (dx)µ(n)
s (dy)ds.

Equation (3.6) then follows from the fact that for every s > 0,

1

n2

n∑
i=1

f ′′(Φni (Y (n)(s))) =

∫
R2

1{x=y}f
′′(x)µns (dx)µns (dy).

4 Tightness of the family of laws {µ(n), n ≥ 1}.
In order to prove tightness for the family {µ(n), n ≥ 1}, we follow the approach

presented in [12]. Namely, we show that for every test function f belonging to the set
C1(R), the process 〈µ(n)

t , f〉 satisfies the Billingsley criteria.

Proposition 4.1. Assume that R(s, t) satisfies hypothesis (H2). Then, almost surely, the
family of measures {µ(n), n ≥ 1} is tight in the space C(R+, Pr(R)).

Proof. We follow the same argument as in [12, Proposition 1]. It suffices to prove that for
every bounded function f ∈ C1(R) with bounded derivative, the process {(

〈
µ

(n)
t , f

〉
, t ≥

0), n ≥ 1} is tight. To show this, we observe that, since µ
(n)
0 converges weakly, by

Billingsley’s criteria (see [3, Theorem 12.3]), it is enough to show that there exist
constants C, p > 0 and q > 1, independent of n, such that for every 0 ≤ t1 ≤ t2,

E
[∣∣∣〈µ(n)

t1 , f〉 − 〈µ
(n)
t2 , f〉

∣∣∣p] ≤ C |t2 − t1|q . (4.1)

To prove (4.1) we proceed as follows. By the Cauchy-Schwarz inequality,∣∣〈µ(n)
t1 , f〉 − 〈µ

(n)
t2 , f〉

∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

f(λ
(n)
i (t2))− f(λ

(n)
i (t1))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
f(λ

(n)
i (t2))− f(λ

(n)
i (t1))

)2
∣∣∣∣∣
1
2

≤ ‖f ′‖∞

∣∣∣∣∣
n∑
i=1

1

n

(
λ

(n)
i (t2)− λ(n)

i (t1)
)2
∣∣∣∣∣
1
2

.
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Hence, using the Hoffman-Wielandt inequality (see [1, Lemma 2.1.19]), as well as the
symmetry of Y (n)(t), we deduce that for every 1 ≤ j ≤ n,

∣∣〈µ(n)
t1 , f〉 − 〈µ

(n)
t2 , f〉

∣∣ ≤ ‖f ′‖∞
(

1

n

n∑
i=1

(
λ

(n)
i (t2)− λ(n)

i (t1)
)2
) 1

2

≤ ‖f ′‖∞

(
1

n
Tr
(
Y (n)(t2)− Y (n)(t1)

)2
) 1

2

= ‖f ′‖∞

 1

n

n∑
i,k=1

(
Y

(n)
i,k (t2)− Y (n)

i,k (t1)
)2

 1
2

. (4.2)

By condition (H2), we have that for all γ > 0,

E
[(
Y

(n)
i,k (t2)− Y (n)

i,k (t1)
)2(γ+1)/γ]

≤ 2
κ

n
|t2 − t1|

γ+1
γ ,

for some constants κ, γ > 0, and consequently, by (4.2),

∥∥〈µ(n)
t1 , f〉 − 〈µ

(n)
t2 , f〉

∥∥
L

2γ+2
γ (Ω)

≤ ‖f ′‖∞E


 1

n

n∑
i,k=1

(
Y

(n)
i,k (t2)− Y (n)

i,k (t1)
)2


γ+1
γ


γ

2γ+2

= ‖f ′‖

∥∥∥∥∥∥ 1

n

n∑
i,k=1

(
Y

(n)
i,k (t2)− Y (n)

i,k (t1)
)2

∥∥∥∥∥∥
1
2

L
γ+1
γ (Ω)

≤ ‖f ′‖

 1

n

n∑
i,k=1

∥∥∥∥(Y (n)
i,k (t2)− Y (n)

i,k (t1)
)2
∥∥∥∥
L
γ+1
γ (Ω)

 1
2

≤ K ‖f ′‖∞ |t2 − t1|
1
2 , (4.3)

for some universal constant K > 0. The latter implies,

E

[∣∣∣〈µ(n)
t1 , f〉 − 〈µ

(n)
t2 , f〉

∣∣∣ 2γ+2
γ

]
≤ K

2γ+2
γ ‖f ′‖∞ |t2 − t1|

1+ 1
γ .

Thus Billingsley’s critera (4.1) holds for p = 2γ+1
γ and q = 1 + 1

γ . The proof is now
complete.

5 Weak convergence of the empirical measure of eigenvalues

This section is devoted to the proof of Theorem 1.1. It is worth mentioning that,
although some of the arguments we present are similar to [12], our estimates are very
different, mainly due to the fact that we do not have an analogue for Meyers’ inequality
for the extended Skorohod integral.

The following Proposition is useful for the proof of Theorem 1.1. Its proof will be
given at the end of this section.

Proposition 5.1. For every t > 0 fixed, the random variable

Gr :=
1

n
3
2
r

nr∑
i=1

∑
k≤h

∫ t

0

f ′(Φnri (Y (nr)(s)))1G(Y (nr)(s))
∂Φnri
∂yk,l

(Y (nr)(s))δXk,h(s), (5.1)

converges to zero in L2(Ω) as n→∞.
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Proof of Theorem 1.1: By Lemma 4.1, the sequence {µ(n), n ≥ 1} is tight, which implies
that there exists a subsequence {µ(nr), r ≥ 1} that converges in law, in the topology of
C(R+, Pr(R)), to a measure valued stochastic process µ = (µt, t ≥ 0). Then, if we show
that µ is deterministic, we conclude that {µ(n), n ≥ 1} converges in probability to µ.
Using Proposition 5.1 together with relation (3.6), we deduce that the sequence of
random variables〈

µ
(nr)
t , f

〉
−
〈
µ

(nr)
0 , f

〉
− 1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µ(nr)

s (dx)µ(nr)
s (dy)ds

− 1

2n2
r

nr∑
i=1

∫ t

0

f ′′(Φnri (Y (nr)(s)))
d

ds
R(s, s)ds, (5.2)

converges to zero in L2(Ω). In particular, since µ(nr) converges in law to µ, it implies
that µ satisfies the following measure-valued differential equation

〈
µt, f

〉
= 〈µ0, f〉+

1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µs(dx)µs(dy)ds, (5.3)

for each t ≥ 0 and f ∈ C2
b (R). Then we can conclude that any weak limit of a subsequence

{µ(nr), r ≥ 1} should satisfy (5.3). We now proceed to prove that µ is characterized by
(1.6). In order to do so, we apply (5.3) to the sequence of functions

fz(x) =
1

x− z
,

with z ∈ C+ having its real and imaginary parts in the rational numbers, we get

〈
µt, fz

〉
= 〈µ0, fz〉+

1

2

∫ t

0

∫
R2

(x− z) + (y − z)
(x− z)2(y − z)2

d

ds
R(s, s)µs(dx)µs(dy)ds

= 〈µ0, fz〉+

∫ t

0

∫
R2

1

(x− z)(y − z)2

d

ds
R(s, s)µs(dx)µs(dy)ds,

where the last identity follows from the symmetry over the variables x and y. There-
fore, using a continuity argument, we get that the Cauchy-Stieltjes transform Gt(z) :=∫
R

1
x−zµt(dx), defined in the domain C+, satisfies the integral equation

Gt(z) = G0(z) +

∫ t

0

∫
R2

1

(x− z)(y − z)2

d

ds
R(s, s)µs(dx)µs(dy)ds

= G0(z) +

∫ t

0

d

ds
R(s, s)Gs(z)

∂

∂z
Gs(z)ds.

In particular,

Gt(z) = FR(t,t)(z),

where Fτ (z), for z ∈ C+, is the unique solution to the Burgers’ equation

∂

∂τ
Fτ (z) = Fτ (z)

∂

∂z
Fτ (z),

F0(z) =

∫
R

1

x− z
µ0(dx),

which completes the proof.

Finally we prove Proposition 5.1.

EJP 24 (2019), paper 10.
Page 18/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP203
http://www.imstat.org/ejp/


Empirical spectral distribution of Gaussian matrix-valued processes

Proof of Proposition 5.1. By relation (3.6), we have that

Gr =
〈
µ

(nr)
t , f

〉
−
〈
µ

(nr)
0 , f

〉
− 1

2n2
r

nr∑
i=1

∫ t

0

f ′′(Φni (Y (nr)(s)))
d

ds
R(s, s)ds

− 1

2

∫ t

0

∫
R2

f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µ(nr)

s (dx)µ(nr)
s (dy)ds, (5.4)

and consequently, we can write

E
[
G2
r

]
= E

[
(〈µ(nr)

t , f〉 − 〈µ(nr)
0 , f〉)Gr

]
(5.5)

− 1

2n2
r

nr∑
i=1

∫ t

0

E
[
f ′′(Φnri (Y (nr)(s)))Gr

] d

ds
R(s, s)ds

− 1

2

∫ t

0

E

[∫
R2

f ′(x)− f ′(y)

x− y
d

ds
R(s, s)µ(nr)

s (dx)µ(nr)
s (dy)Gr

]
ds.

Next we bound the terms appearing in the right hand side. Using relation (5.4), as well
as the fact that f ′ and f ′′ are bounded, we can easily show that for every T > 0, there
exists a constant K1 > 0, only depending on T and the properties of R(s, t), such that for
every t ∈ [0, T ],

|Gr| ≤ K1(‖f‖∞ + ‖f ′′‖∞). (5.6)

From here we obtain∣∣∣∣∣ 1

n2
r

nr∑
i=1

∫ t

0

E
[
f ′′(Φnri (Y (nr)(s)))Gr

] d

ds
R(s, s)ds

∣∣∣∣∣
≤ K1

nr
‖f ′′‖∞ (‖f‖∞ + ‖f ′′‖∞)

∫ T

0

∣∣∣∣ ddsR(s, s)

∣∣∣∣ds,
and hence

lim
r→∞

∣∣∣∣∣ 1

n2
r

nr∑
i=1

∫ t

0

E
[
f ′′(Φnri (Y (nr)(s)))Gr

] d

ds
R(s, s)ds

∣∣∣∣∣ = 0. (5.7)

Next we notice, by the zero mean property of Gr, that

E
[(
〈µ(nr)
t , f〉 − 〈µ(nr)

0 , f〉
)
Gr

]
= E

[
〈µ(nr)
t , f〉Gr

]
=

1

nr

nr∑
i=1

E
[
f(Φi(Y

(nr)(t)))Gr

]
.

Consequently, using the the duality property (2.4), as well as the fact that Gr = δ(ur),
with ur = (uk,hr (s) | k ≤ h) of the form

uk,hr (s) :=
1

n
3
2
r

nr∑
i=1

1[0,t](s)f
′(Φnri (Y (nr)(s)))1G(Y (nr)(s))

∂Φnri
∂yk,h

(Y (nr)(s)),

we get that

E
[(
〈µ(nr)
t , f〉 − 〈µ(nr)

0 , f〉
)
Gr

]
=

1

nr

nr∑
i=1

E
[〈
Df(Φnri (Y (nr)(t))), ur

〉
H
nr(nr+1)

2

]
=

1

n3
r

nr∑
i,j=1

∑
k≤h

E

[
f ′(Φnri (Y (nr)(t)))1G(Y (nr)(t))

∂Φnri
∂yk,h

(Y (nr)(t))

×
∫ t

0

f ′(Φnrj (Y (nr)(s)))1G(Y (nr)(s))
∂Φnrj
∂yk,h

(Y (nr)(s))
∂R

∂s
(s, t)ds

]
.

(5.8)
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On the other hand, by the Cauchy-Schwarz inequality and the relation (3.5), we have
that for every u, v > 0 and i, j ∈ N,∣∣∣∣∣∣
∑
k≤h

(
∂Φnri
∂yk,h

(Y (nr)(u))

)(
∂Φnrj
∂yk,h

(Y (nr)(v))

)∣∣∣∣∣∣
≤

∑
k≤h

(
∂Φnri
∂yk,h

(Y (nr)(u))

)2
 1

2
∑
k≤h

(
∂Φnrj
∂yk,h

(Y (nr)(v))

)2
 1

2

= 2. (5.9)

Hence, from (5.8) we conclude that

E
[(
〈µ(nr)
t , f〉 − 〈µ(nr)

0 , f〉
)
Gr

]
≤

2 ‖f ′‖2∞
nr

∫ T

0

∣∣∣∣∂R∂s (s, t)

∣∣∣∣ds,
and consequently,

lim
r→∞

E
[(
〈µ(nr)
t , f〉 − 〈µ(nr)

0 , f〉
)
Gr

]
= 0. (5.10)

Finally, we handle the third term in (5.5). Using the following identity

f ′(x)− f ′(y)

x− y
=

∫ 1

0

f ′′(θx+ (1− θ)y)dθ,

we deduce that for every s > 0,

E

[∫
R2

f ′(x)− f ′(y)

x− y
µ(nr)
s (dx)µ(nr)

s (dy)Gr

]
=

1

n2
r

n∑
i,j=1

∫ 1

0

E
[
f ′′(Is,ri,j (θ))Gr

]
dθ, (5.11)

where

Is,ri,j (θ) := θΦnri (Y (nr)(s)) + (1− θ)Φnrj (Y (nr)(s)).

The term in the right hand side of (5.11) can be estimated as follows. Define the
processes

Λl,rk,h(u) :=
∂Φnrl
∂yk,h

(Y (nr)(u)).

We can easily show that

Df ′′(Is,ri,j (θ)) =
θ√
n
f ′′′(Is,ri,j (θ))Λi,rk,h(s)1[0,s] +

1− θ√
n
f (′′′)(Is,ri,j (θ))Λj,rk,h(s)1[0,s].

Then, using the duality relation of the Skorohod integral, as well as the expression (5.1),
we obtain

E
[
f ′′(Is,ri,j (θ))Gr

]
=

1

n2
r

nr∑
l=1

∑
k≤h

E

[ ∫ t

0

θf ′′′(Is,ri,j (θ))f ′(Φnri (Y (nr)(s)))Λi,rk,h(s)Λl,rk,h(u)
∂R

∂u
(u, s)du

]

+
1

n2
r

nr∑
l=1

∑
k≤h

E

[ ∫ t

0

(1− θ)f ′′′(Is,ri,j (θ))f ′(Φnri (Y (nr)(s)))Λj,rk,h(s)Λl,rk,h(u)
∂R

∂u
(u, s)du

]
,
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which, by the boundedness of f ′′′ and f ′, implies that there exists a constant K2 > 0,
only depending on f , such that

∣∣E [f ′′(Is,ri,j (θ))Gr
]∣∣ ≤ K2

n2
r

E

[ ∫ t

0

nr∑
l=1

∣∣∣∣∑
k≤h

Λi,rk,h(s)Λl,rk,h(u)

∣∣∣∣ ∣∣∣∣∂R∂u (u, s)

∣∣∣∣du]

+
K2

n2
r

E

[ ∫ t

0

nr∑
l=1

∣∣∣∣∑
k≤h

Λj,rk,h(s)Λl,rk,h(u)

∣∣∣∣ ∣∣∣∣∂R∂u (u, s)

∣∣∣∣ du]. (5.12)

Using (5.9) and (5.12), we get

∣∣E [f ′′(Is,ri,j (θ))Gr
]∣∣ ≤ 4K2

nr

∫ t

0

∣∣∣∣∂R∂u (u, s)

∣∣∣∣ du ≤ 4K2t
1− 1

α

nr

(∫ t

0

∣∣∣∣∂R∂u (u, s)

∣∣∣∣α du

) 1
α

≤ 4K2t
1− 1

α

nr
sup
s∈[0,t]

(∫ t

0

∣∣∣∣∂R∂u (u, s)

∣∣∣∣α du

) 1
α

.

Using the previous identity in (5.11), we deduce that there exists a constant K3 > 0,
such that ∣∣∣∣E [∫

R2

1{x 6=y}
f ′(x)− f ′(y)

x− y
µ(nr)
s (dx)µ(nr)

s (dy)Gr

]∣∣∣∣ ≤ K3

nr
. (5.13)

From (5.5), (5.7), (5.10) and (5.13), we conclude that Gr converges to zero in L2(Ω), as
required.
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