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Profile of a self-similar growth-fragmentation
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Abstract

A self-similar growth-fragmentation describes the evolution of particles that grow and
split as time passes. Its genealogy yields a self-similar continuum tree endowed with
an intrinsic measure. Extending results of Haas [13] for pure fragmentations, we
relate the existence of an absolutely continuous profile to a simple condition in terms
of the index of self-similarity and the so-called cumulant of the growth-fragmentation.
When absolutely continuous, we approximate the profile by a function of the small
fragments, and compute the Hausdorff dimension in the singular case. Applications
to Boltzmann random planar maps are emphasized, exploiting recently established
connections between growth-fragmentations and random maps [1, 5].
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1 Introduction

The main purpose of this work is to answer, for a specific family of continuous random
trees (CRT in short), the following general question about measured metric spaces: if
m(r) denotes the measure assigned to the ball centered at some fixed distinguished
point and with radius r ≥ 0, is the non-decreasing function m absolutely continuous with
respect to the Lebesgue measure on [0 ,∞) ? When the answer is positive, the density
m′(r) can then be viewed as the measure of the sphere with radius r. When furthermore
the metric space is a continuum tree, the density m′ is sometimes known as the profile
of the tree.

This question has been answered by Haas [13] for the class of self-similar fragmenta-
tion trees, which notably includes Aldous’ CRT. Recall that a conservative self-similar
fragmentation describes the evolution of a branching particle system such that at every
branching event, the sum of the masses of the children coincides with the mass of the
parent, and self-similarity refers to the property that the evolution of a particle with
mass x > 0 is a scaling transformation (depending on an index α ∈ R) of that of a particle
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with unit mass. Haas and Miermont [14] associated to a conservative self-similar frag-
mentation with index α < 0 a self-similar continuous random tree which is furthermore
naturally equipped with a root and a probability mass measure, and Haas [13] proved
that under some very minor hypotheses, the non-decreasing function m is then absolutely
continuous if α > −1, and singular if α ≤ −1.

The present work should be viewed as a generalization of [13] to self-similar growth-
fragmentations, introduced by Bertoin [4]. As the name suggests, the latter extend pure
fragmentations by incorporating a growth element in the dynamics of particles, and
this changes the behaviour of the system deeply. Rembart and Winkel [20] constructed
recently the CRT’s which describe the genealogy of self-similar growth-fragmentations
with index α < 0, whereas the so-called intrinsic area measure was introduced in [1].

The motivation of the present work is not just getting a formal extension of the
results of Haas; it also stems from the connection between random surfaces and growth-
fragmentations as we shall now explain informally. It was pointed out in [1] and [5] that
for certain random surfaces with a boundary, the process obtained by slicing the surface
at fixed distances from the boundary and measuring the lengths of the resulting cycles
yields a self-similar growth-fragmentation with negative index. One might then expect
that, just as for smooth surfaces, the area A(r) of the components at distance at most r
from the boundary can then be recovered by integrating the total cycle lengths at height
0 ≤ r′ ≤ r; that is, that the non-decreasing function r 7→ A(r) is absolutely continuous
with density given by the total cycle lengths. It turns out that this intuition is wrong in
general, and it is thus natural to wonder whether nonetheless the absolute continuity of
A(·) holds.

The law of a growth-fragmentation is determined by the index of self-similarity and
the so-called cumulant function κ, that we supposed satisfies the forthcoming condition
(2.2) (more details are given in Section 2). Our main result is stated in terms of α and
the smallest root ω− of κ.

Theorem 1.1. dA is almost surely singular with respect to the Lebesgue measure if
and only if α ≤ −ω−, whereas dA(x) is absolutely continuous almost surely whenever
α > −ω−.

In particular, we shall see that for the whole family of random maps considered in [1],
x 7→ A(x) is absolutely continuous. Note also that we recover Theorem 4 of Haas [13],
since in the pure fragmentations case ω− = 1 (though she considers pure fragmentation
processes in which a random number of particles emanates from each dislocation and
not simply two).

When dA(x) = a(x)dx, i.e. α > −ω−, the profile a can be approximated by using the
small (or equivalently relatively large) fragments, under the additional assumption that
ω− ≥ 1. More precisely, define the processes M,N for all ε > 0, t ≥ 0 by

M(t, ε) :=
∑
i≥1

X
ω−
i (t)1{Xi(t)≤ε},

N(t, ε) :=
∑
i≥1

1{Xi(t)>ε}.

Theorem 1.2. Suppose that α > −ω− and ω− ≥ 1. Then for almost every t ≥ 0, we have
that

(i) εαM(t, ε)
a.s.−−−→
ε→0

a(t)

ακ′(ω−)
,

(ii) εω−+αN(t, ε)
a.s.−−−→
ε→0

a(t)

(ω− + α)|κ′(ω−)|
.
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We stress that the above limits are well defined, since the forthcoming hypothesis
(2.2) ensures that κ′(ω−) ∈ (−∞ , 0). Theorem 1.2 is the analogue of Theorem 7 in [13],
which deals with self-similar fragmentations (see also [11] Proposition 4.2 addressing the
profile of Lévy trees associated with fragmentations that are not necessarily self-similar).

When dA is singular with respect to the Lebesgue measure, i.e. α ≤ −ω−, although
A is strictly increasing on an interval, the Hausdorff dimension of dA can be strictly
smaller than 1:

Theorem 1.3. Suppose −ω+ < α ≤ −ω−, then almost surely, it holds that:

dimH(dA) =
ω−
−α

.

Furthermore, dimH(dA) ≥ −ω−/α holds for any value of α ≤ −ω−.

Remark 1.4 (Hölder continuity). Copying the argument of Haas [13] Proposition 12(i),
Theorem 1.3 directly implies that if −ω+ < α ≤ −ω−, then A is γ-Hölder continuous for
every γ < −ω−/2α.

The paper is organized as follows. In Section 2, we recall the settings of [1]. This
includes the definition of a growth-fragmentation and its CRT. The construction of the
intrinsic area measure from the branching random walk following in generations the
collection of particles at birth is recalled. A loose description of the spinal decomposition
is also given.

Section 3 is divided in three subsections. The first one is a toolbox that recalls basic
properties of the major ingredients of the proof of Theorem 1.1, which is given in the
second subsection. A simple corollary on the number of fragments is stated in the third
subsection.

We dwell on the absolutely continuous case in Section 4 and we see that, modulo few
adjustments, the proof of Haas adapts to prove Theorem 1.2.

Finally, Section 5 is devoted to the proof of Theorem 1.3. We obtain the lower bound
from Frostman’s Lemma, and derive the upper bound from the Hausdorff dimension of
the leaves of the CRT, obtained by Rembart and Winkel [20].

In Appendix are shown two technical lemmas, including the Feller property of the
growth-fragmentation (Lemma 6.2), which is needed for the arguments of Haas to apply
in Section 4.

2 Preliminaries

The cell-system. We consider a positive self-similar Markov process X with index
α < 0, in the sense that its law Px started from X0 = x > 0 is the same as that of
(xXtxα)t≥0 under P1. We assume that X converges almost surely to 0. Lamperti’s
transformation [16] enables us to view X as a time changed of exp(ξ), where ξ is a Lévy
process. As a consequence the lifetime of X, i.e. the first hitting time of the absorbing
state 0, is equal to an exponential functional of ξ (we shall provide more details in the
end of this section).

We follow Bertoin’s construction [4] of the cell-system driven by X: let χ∅ :=

(χ∅(t))t≥0 have law P1. The process χ∅ is viewed as the size of the Eve cell ∅, evolving
in time. Its birth-time b∅ is taken to be 0. Let (bi)i≥1 be an exhausting sequence of
its negative jump times and let (∆i)i≥1 be the corresponding sequence of the absolute
values of the sizes of its negative jumps (the existence is ensured by the fact that χ∅
converges to 0 almost surely). Each negative jump is interpreted as the birth of a new
cell, that is at time bi a cell labeled i is born and evolves independently of the other cells,
with law P∆i

. The other generations are defined recursively in the same manner, using
the Ulam-Harris-Neveu notation, that is every cell is labeled by some u ∈ U :=

⋃
n≥0N

n.
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We denote |u| its generation and u(k) its ancestor at generation k ≤ |u| (by convention,
|∅| = 0). For x > 0, we denote Px the law of the cell-system starting from a single cell of
initial size x. Similarly, if x := (x1, x2, · · · ) is a non-decreasing null sequence, Px is the
distribution of a cell-system starting from independent cells of sizes x1, x2, · · · .

The branching random walk. Define the collections of logarithms of cells at birth,
indexed by generations, as

Zn := {{lnχu(0) : u ∈ Nn}} ,

where {{· · · }} refers to multiset, meaning that the elements are repeated according
to their multiplicities. Thanks to self-similarity, (Zn)n≥1 is a branching random walk.
Let (b, σ2,Λ) be the characteristics of the Lévy process ξ and assume that there exists
p > 0 such that

∫∞
1
epyΛ(dy) < ∞ (we also assume that Λ((−∞ , 0)) > 0 as there

are no children otherwise). We thus have that the Laplace exponent of ξ, given by
ψ(q) := logE(exp(qξ(1))) is finite at least on [0 , p] (see e.g. [15] Theorem 3.6); we set
ψ(q) = ∞ whenever the expectation is infinite. The so-called cumulant function is
defined as

κ : q 7→ ψ(q) +

∫
(−∞ ,0)

(1− ey)qΛ(dy), q > 0. (2.1)

The mean Laplace transform of Z1 is then given by q 7→ 1− κ(q)/ψ(q), when this makes
sense (see [4] Lemma 3). Hence, as soon as κ(q) = 0, the process (

∑
|u|=n χu(0)q)n≥0 is

a martingale. We thus naturally assume that there exists ω− > 0 such that1

κ(ω−) = 0, −∞ < κ′(ω−) < 0. (2.2)

The so-called intrinsic martingale introduced in [1] is then defined as

M(n) :=
∑
|u|=n

χu(0)ω− , n ≥ 0.

This martingale is moreover uniformly integrable with mean 1 under P1 (see [1] Lemma
2.3). We shall also denote ω+ := sup {q ≥ 0 : κ(q) < 0}, which is strictly greater than ω−
thanks to (2.2). (In [1], ω+ is a second root of κ, which if it exists, is consistent with our
definition.) Finally, we rule out the case where X is the negative of a subordinator, as
this induces fragmentation processes, which are fully addressed by [13].

The Ulam tree, the CRT and the intrinsic area measure. In [1], the authors define
a random measure on the boundary of the Ulam tree ∂U, which is the set of infinite
integer sequences, endowed with the distance d(`, `′) := exp(− sup{n ≥ 0 : `(n) = `′(n)})
which makes it a complete metric space (recall that `(n) ∈ Nn denotes the ancestor of `
at generation n, that is the sequence ` up to n). Specifically, for every u ∈ U with |u| = n,
let B(u) := {` ∈ ∂U : `(n) = u} be the ball in ∂U generated by u. The intrinsic area
measure on ∂U is then the unique measure that satisfies

A(B(u)) = lim
k→∞

∑
|v|=k,v(n)=u

χv(0)ω− ,

see [18] for background and references. (This is well-defined thanks to the uniform
integrability of (M(n))n≥0 and the branching property.) The total mass is denoted

1In the context of branching random walks, this assumption is known as the Cramér hypothesis and ω− is
called the Malthusian parameter.
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M := limn→∞M(n) = A(∂U). Note that almost surely, a cell begets infinitely many
children before dying, hence the branching property ensures thatM > 0 almost surely.

Rembart and Winkel [20] built a CRT from the cell-system as follows: construct a first
segment of length equal to the lifetime ζ∅ of ∅, endowed with a metric corresponding
to the age of the cell. It means that each point of this branch corresponds to the Eve
cell at a particular time of its life; the root ρ is thus naturally taken to be the point
corresponding to 0. On this branch, at every jump location bi, glue a new branch of
length equal to the lifetime ζi of the cell i, with the corresponding metric. This yields a
CRT (T1, d1). For all n ≥ 1, to obtain (Tn+1, dn+1), repeat this procedure on every branch
u ∈ Nn at locations {buj : j ≥ 1}.

Theorem 1.7 in [20] shows that, whenever ψ(−α) < 0, (Tn, dn)n≥1 converges almost
surely in the Gromov-Hausdorff topology to some compact CRT (T , d). Even though
it is not explicitely given in their construction, there is a very natural way to define
simultaneously the analogue of the intrinsic area measure on L(T ), the set of leaves
of T , that we now introduce. Fix n ≥ 1 and consider Tn. For every u ∈ Nn and j ≥ 1,
put a mass χuj(0)ω− at location buj on the branch of u. This defines a measure An on
Tn, with total mass given by M(n + 1). As for the Ulam tree, it is clear that (An)n≥1

converges weakly toward a measure AT with total massM and supported on L(T ), the
set of leaves of T . The correspondance between T and U := U ∪ ∂U is straightforward
from the two constructions, that is every x ∈ T corresponds to either a unique χu(t) for
some u ∈ U, t ∈ [0 , ζu], or a unique ` ∈ ∂U. In particular, AT and A are essentially the
same, this is even clearer when looking at the masses at heights.

Recall that the height function on T is defined as the distance to the root

ht(x) := d(ρ, x).

We then define AT : R+ → R+ by

AT : t 7→ AT ({` ∈ L(T ) : ht(`) ≤ t}).
This coincides exactly with

A : t 7→ A({` ∈ ∂U : ζ` ≤ t}), (2.3)

where ζ` := limn→∞ b`(n). (Actually, L(T ) also contains cells at death-times, but they do
not generate area since there are only countably many.) Since the cell system carries
more informations, we shall rather work with A than AT .

The elements of T \ L(T ) at a fixed height t ≥ 0 correspond to the collection of cells
alive at time t:

X(t) := {{χu(t− bu) : u ∈ U, bu ≤ t < bu + ζu}} .

This is the definition of Bertoin [4] of the growth-fragmentation process induced by
the cell-system. Shi [21] showed that the distribution of X is characterized by the pair
(κ, α).2 The lifetime of X is defined as ζ := inf {t > 0 : X(t) = ∅}. In [4], it is shown that
the Cramér hypothesis (2.2) ensures that the following properties hold:

• Almost surely, for any fixed ε > 0, there are finitely many fragments larger than ε in
X(t) for all t ≥ 0.

• ζ <∞ almost surely. ([4] Corollary 3)

• X enjoys the self-similarity and branching properties, as stated in [4] Theorem 2.

2However, this is not the case of the distribution of the cell-system.
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As a consequence, T satisfies a Markov-branching type property, that we express in
terms of A as follows: let t ≥ 0 and let (Ai)i≥1 be a sequence of i.i.d. copies of A,
independent of (X(u);u ≤ t), then for all s ≥ 0:

A(t+ s)−A(t)
d
=
∑
i≥1

Xi(t)
ω−Ai(sXi(t)

α), (2.4)

where for i ≥ 1, Xi(t) denotes the size of the ith largest fragment in X(t) (being possibly
0).

Spinal decomposition We now give an informal description of the spinal decomposi-
tion induced by A, introduced in [1] Section 4. The statements are provided without
proof, the reader is refered to this paper for a rigorous treatment.

We introduce a probability measure P̂1 describing the joint distribution of a cell-
system and a random leaf σ ∈ ∂U. Under P̂1, the law of the cell-system is absolutely
continuous with respect to P1, with density M. The random leaf σ is then tagged
according to the intrinsic area. In particular we have

Lemma 2.1. Under P̂1 and conditionally on the cell-system, the probability measure
dA/M satisfies

dA(t)

M
= P̂1 (ζσ ∈ dt|(χu)u∈U) .

Let φ : q 7→ κ(ω−+q), q ≥ 0. It is known that φ can be viewed as the Laplace exponent
of a Lévy process3 that we denote η. We then define the positive self-similar Markov
process (Yt)t≥0 with index α, associated with η by Lamperti’s transformation, that is

(Yt)t≥0 := (exp (η(τt)))t≥0 ,

where the time-change τt is defined for all t ≥ 0 by

τt := inf

{
s ≥ 0 :

∫ s

0

e−αη(u)du ≥ t
}
. (2.5)

The absorption time of Y is thus given by the following exponential functional

I =

∫ ∞
0

e−αη(t)dt. (2.6)

Since κ′(ω−) < 0 by (2.2), we know that η drifts to −∞ and I < ∞ almost surely. We
shall denote P̂x the law of Y starting from x > 0.

The spine (σ(t))t≥0 is the process following the size of the ancestors of σ in time.
Remark that we can write ζσ = inf {t > 0 : σ(t) = 0}. We thus call ζσ the lifetime of σ to
emphasize that we will look at σ as a random process rather than a random element of a
random metric space. In this direction, we have

Lemma 2.2. Under P̂1, the spine σ is distributed as Y under P̂1. In particular, it holds

that ζσ
d
= I.

Lemma 2.1 relates A to the lifetime of the spine, which in turns is distributed as the
variable I by Lemma 2.2. Let C∞0 (R∗+) be the set of infinitely differentiable functions on
R∗+ vanishing together with their derivatives at infinity. Equation (2.6) plays a crucial
role to obtain distributional properties of I. The next lemma collects some that we shall
extensively use throughout the rest of this work.

3This fact is stated in [1] Lemma 2.1 for q 7→ κ(ω+ + q), however it is also true for φ by the same arguments.
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Lemma 2.3. The law of I is absolutely continuous with a bounded density in C∞0 (R∗+),
which we denote by k. Furthermore, limx→0+ k(x) = 0 and

Ê1

(
I−1

)
= ακ′(ω−) <∞.

These results are already known. Hence in the following proof, we only provide
references and check that the hypotheses of the cited theorems are fulfilled.

Proof. Theorem 3.9 in [6] ensures the existence of k. Recently, Patie and Savov [19]
have shown that k is infinitely differentiable. The Lévy measure Π of η is given (see [1]
Section 4.3) by

Π(dy) := eω−y(Λ + Λ̃)(dy). (2.7)

where Λ̃ is the push-forward of Λ by y 7→ 1{y<0} log(1− ey). We see that if Λ(R−) =∞,
then Π also has infinite total mass. Notice that either Λ(R−) = ∞, or σ2 > 0, or η is
a compound Poisson process with a non-negative drift. Theorem 2.4.(3)4 in [19] thus
shows that k ∈ C∞0 (R∗+) (see in particular Remark 2.5 in the same paper). Finally, the
limit at 0 of k is given in [19] by Theorem 2.15. The statement on the moment of order
−1 can be found in [9] Proposition 3.1(iv).

We conclude this section by recalling the following essential fact on the spinal
decomposition: conditionally on (σ(t))t≥0, a child depends only on the spine through its
own initial value, given by the size x of the negative jump who generated it, and then
evolves with law Px, independently from (σ(t))t≥0 and the other children.

Notation: In the sequel, the expectations under Px, P̂x,Px, P̂x are denoted respec-
tively by Ex, Êx, Ex, Êx.

3 Existence of the profile

In this section we provide the proof of Theorem 1.1. Recall that this theorem can be
read as a statement on A stemming from either ∂U or T , as explained in Section 2.

3.1 Toolbox

We introduce in this subsection the main tools of the proof of Theorem 1.1. Let µ be
a measure on R. We denote its Fourier-Stieltjes transform

Fµ(θ) :=

∫
R

eiθxµ(dx), θ ∈ R.

Recall from Plancherel’s Theorem that

µ(dx)� dx with µ(dx)/dx ∈ L2(dx) ⇔ Fµ ∈ L2(dx). (3.1)

We shall use (3.1) to prove the next lemma, which is the main ingredient in the proof of
the absolute continuity of dA. It was used in [13] but somewhat implicitely. We state it
in a general setting.

Let P be a probability measure on a generic random space. Let (E, d, µ, ρ) be a
random measured metric space, where µ is a measure on E with finite total mass P-
almost surely and ρ ∈ E is a distinguished element. Let B(ρ, r) be the open ball centered
in ρ with radius r > 0. Let γ, γ′ be two random variables in E such that γ and γ′ are
conditionally independent given (E, d, µ, ρ), with conditional law µ(·)/µ(E).

4In [19], the authors use the equivalent convention that the process drifts to +∞ and they take the
exponential of the negative of the process to define I.
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Lemma 3.1. If the law of ∇ := d(ρ, γ)− d(ρ, γ′) is absolutely continuous with a density h
bounded in a neighbourhood of 0, then m : r 7→ µ(B(ρ, r)) is absolutely continuous with
respect to the Lebesgue measure, with a density in L2(dx) P-almost surely.

Proof. Recall (3.1), we thus look at

|Fdm(θ)|2

µ(E)2
=
Fdm(θ)

µ(E)
· Fdm(−θ)

µ(E)
=

∫ ∞
0

∫ ∞
0

dm(x)

µ(E)
· dm(y)

µ(E)
eiθ(x−y)

= E
(
eiθ∇|(E, d, µ, ρ)

)
,

where E is the expectation operator induced by P. We see in particular that θ 7→
E
(
eiθ∇

)
≥ 0. Theorem 9 in [8] ensures that if ∇ has a density bounded in a neighbour-

hood of 0, then its Fourier transform is integrable, that is∫
R

E
(
eiθ∇

)
dθ = E

(∫
R

|Fdm(θ)|2

µ(E)2

)
<∞.

We conclude by Plancherel’s Theorem (3.1).

We shall use this Lemma for two suitable choices of P, taking (E, d, µ, ρ) as (T , d,A, 0),
the distance d being the age, see Section 2. This means in particular that m = A.

We now state an easy but important consequence of Lemma 2.1. Recall that ζ denotes
the lifetime of X.

Lemma 3.2. The function t 7→ A(t) is strictly increasing on (0 , ζ) and it holds that

E1 (A(ε)) = o(ε), ε→ 0.

Proof. Fix ε > 0. Recall that (σ(t))t≥0 denotes the size process of the spine. We write

E1(A(ε)) = Ê1
(
A(ε)

M

)
= P̂1 (ζσ ≤ ε) ,

where the last identity is seen from Lemma 2.1. Lemma 2.2 combined with the fact that
k(x)→ 0 as x→ 0+ from Lemma 2.3 entail that

E1 (A(ε)) = o(ε), ε→ 0.

Very similar arguments to those used in [13] Proposition 10(iv) can be applied to show
that A is strictly increasing on (0 , ζ).

3.2 Proof of Theorem 1.1

In the case of self-similar pure fragmentations, Haas [13] exploited the unit interval
representation to tag two fragments by sampling two independent uniform random
variables on [0 , 1]. In the context of Lemma 3.1, it means that the measure µ is uniform
over the leaves, given the tree. Recall that we work on U. In our case, A is not uniform
on ∂U. However it is not required to apply Lemma 3.1.

There are two main difficulties stemming from the presence of growth. The first
one is to deal with the dependence of the two leaves selected according to the random
measure A. It is done in the proof of the next lemma, thanks to the use of optional
projections. The second obstacle is that the total area M is not necessarily square
integrable.

We divide the proof into two subsections to separately answer these two issues. Even
though the second subsection would be enough to prove Theorem 1.1 in great generality,
it is very similar to the first one but involves considerations that can be avoided in some
cases, and we do so for the sake of clarity.
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3.2.1 The case ω+/ω− > 2 and α > −ω−

We assume throughout this subsection that ω+/ω− > 2 and α > −ω−. The reason is that
thanks to Lemma 2.3 in [1], E1(M2) <∞. We can thus define a probability measure P̌x,
that is absolutely continuous with respect to P̂x with densityM/Êx(M) = xω−M/Ex(M2).
In particular, P̌x has densityM2/Ex(M2) with respect to Px. In particular, we can choose
P = P̌1 and try to apply Lemma 3.1. (This argument does not apply when ω+/ω− ≤ 2

since we then know, still from [1] Lemma 2.3, that E1(M2) =∞.)
In this subsection, we write C = 1/E1(M). We extend k on R to be such that k(x) = 0

if x ≤ 0.

Lemma 3.3. Consider ∇ as in Lemma 3.1. Under P̌1, ∇ has a density h : R→ R+ ∪{∞},
given by

h(x) = CÊ1

(∑
s>0

|∆−Y (s)|ω−+αY (s)α
∫ ∞

0

duk(u|∆−Y (s)|α)k((u− x)Y (s)α)

)
,

where k denotes the density of the law of I from Lemma 2.3.

Proof. In what follows, we shall implicitely use several times Tonelli’s Theorem, since
every term involved in the proof is non-negative. Let (σ′(t))t≥0 be the size process of the
ancestor of a leaf in ∂U, chosen according to A, independently from σ given (χu)u∈U.
Note that the independence between σ and σ′ does not hold without the conditionning.
Let f : R→ R+ be any non-negative measurable function. We have

Ě1 (f(∇)) = CÊ1 (Mf(∇)) = CÊ1 (Mf(ζσ − ζσ′))

= CÊ1
(
MÊ1 (f(ζσ − ζσ′)| (χu)u∈U, σ)

)
= CÊ1

(∫
∂U

A(d`)f(ζσ − ζ`)
)
,

where we used the conditional independence of σ and σ′ given (χu)u∈U. We now choose
a subtree among those generated by the children of the spine (σ(s))s≥0 (the ancestors
of σ), according to the intrinsic area. Denoting ∂Us the leaves of the tree descending
from the negative jump (if any) of the spine at time s and using that the jump times are
measurable with respect to the natural filtration of (σ(t))t≥0, it reads as

Ě1 (f(∇)) = CÊ1

(∑
s>0

Ê1
(
Ms

∫
∂Us

A(d`)

Ms
f(ζσ − ζ`)

∣∣∣∣ (σ(t))t≥0

))

= CÊ1

(∑
s>0

Ê1 (f(ζσ − s− ζσ̂)| (σ(t))t≥0)

)
,

where σ̂ is a random leaf of ∂Us tagged according to the restriction of the intrinsic area
on this subtree and ζσ̂ denotes the height of σ̂ seen in Ūs; note that the root of the
latter is at height s, therefore the height of σ̂ in the full tree Ū is s + ζσ̂. Hence, ζσ̂ is
distributed as the lifetime of a spine under P̂|∆−σ(s)|ω− , conditionally on (σ(t))t≥0. More
precisely, Theorem 4.7 in [1] ensures that ζσ̂ depends on σ only through ∆−σ(s), and is
independent of what happens to the spine at other times. The scaling property yields
that the above is equal to

CÊ1

(∑
s>0

|∆−σ(s)|ω− Ê1
(
f
(
ζσ − s− |∆−σ(s)|−αζσ̂

)∣∣ (σ(t))t≥0

))
, (3.2)
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where now the law of ζσ̂ is independent of σ and is that of I under P̂1 by Lemma 2.2. We
thus get

Ě1 (f(∇)) = CÊ1

(∑
s>0

|∆−σ(s)|ω−
∫ ∞

0

dxk(x)f
(
ζσ − s− |∆−σ(s)|−αx

))

= CÊ1

(∑
s>0

|∆−Y (s)|ω−
∫ ∞

0

dxk(x)f
(
I − s− |∆−Y (s)|−αx

))
,

by Lemma 2.2. Note that I − s can be seen as the lifetime of a process distributed as Y

started from Y (s), that is by self-similarity I − s d
= Y (s)−αI ′ where I ′ is independent of

(Y (t))t≤s and is distributed as I under P̂1. We then view the above sum as the Stieltjes
integral of

S : s 7→
∫ ∞

0

dxk(x)f
(
I − s− |∆−Y (s)|−αx

)
with respect to the non-decreasing process

∑
t≤s |∆−Y (s)|ω− (which is adapted with

respect to the natural filtration of Y ). Since both processes are non-negative, we can use
the optional projection Theorem ([10] Theorem 57), which consists of replacing S(s) by
its conditional expectation with respect to the natural filtration of Y without changing
the expectation of the sum (see also Theorem 43 in the same book for a definition of
optional projection). Informally, this eliminates the randomness of the remaining lifetime
after the jumps, and the right-hand side above becomes

CÊ1

(∑
s>0

|∆−Y (s)|ω−
∫ ∞

0

dxk(x)

∫ ∞
0

dyk(y)f
(
Y (s)−αy − |∆−Y (s)|−αx

))

= CÊ1

(∑
s>0

|∆−Y (s)|ω−+αY (s)α
∫ ∞

0

dxk(x|∆−Y (s)|α)

∫ ∞
0

dyk(yY (s)α)f (y − x)

)
,

which gives the claim.

We now provide the proof of the absolute continuity of dA.

Proof of Theorem 1.1, case α > ω− and ω+/ω− > 2. By the lemmas 3.1 and 3.3, it is suf-
ficient to show that the supremum of h is finite, that is

sup
x∈R

Ê1

(∑
s>0

|∆−Y (s)|ω−+αY (s)α
∫ ∞

0

duk(u|∆−Y (s)|α)k((u− x)Y (s)α)

)
<∞.

For all x ∈ R, we can bound h(x) after a suitable change of variable by

h(x) ≤ CÊ1

(∑
s>0

|∆−Y (s)|ω−(Y (s) ∨ |∆−Y (s)|)α
)
||k||∞

∫ ∞
0

k(u)du, (3.3)

the last integral being equal to 1 since k is a density. It remains to show that the
expectation is finite. Since the terms in the sum do not depend on α, we can assume
without loss of generality that Y is homogeneous, that is Y (s) = exp(η(s)) for all s ≥ 0.
The compensation formula for Poisson point processes then yields that the expectation
in the right-hand side above is equal to∫ ∞

0

dsÊ1

(
e(ω−+α)η(s)

)∫
(−∞ ,0)

Π(dy)(1− ey)ω−(ey ∨ (1− ey))α

≤
∫ ∞

0

dseκ(2ω−+α)s

∫
(−∞ ,0)

Λ(dy)eω−y(1− ey)ω−2−α.
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The last integral is finite by definition of ω−, as well as the first one when κ(2ω−+α) < 0,
that is −ω− < α < ω+ − 2ω−. Since α > −ω− and ω+/ω− > 2 by assumption, we always
have −ω− < α < 0 < ω+ − 2ω−, which ends the proof.

3.2.2 The case ω+/ω− ≤ 2 and α > −ω−

The main issue when ω+/ω− ≤ 2 is that the measure P̌, defined earlier in order to select
two spines, has now infinite total mass. In particular, this prevents us from using Lemma
3.1. We overcome this by defining a new measure P̌(K) in such a way that the two
random leaves are tagged among those whose ancestors’ sizes have never been too
large, which, we will see, entails that P̌(K) has finite total mass. In this direction, let
K > 0 intended to tend to∞. Define BK as

BK := {` ∈ ∂U : `∗ ≤ K} ,

where `∗ := supt≥0 `(t). Let AK be the restriction of the measure A to BK , andMK :=

AK(BK). We now define for all x > 0 the probability measure P̂(K)
x such that it is

absolutely continuous with respect to Px, with density MK/Ex(M(K)). In the same

vein, we would like to define P̌(K)
x to be absolutely continuous with respect to P̂(K)

x with
density MK/Ê(K)

x (MK). To ease the expressions, we shall write C for the finite and
strictly positive constants that appear when changing of measures. Even if C may vary
from line to line, it is always known and only depends on the starting point and K, which
will play no role in the proofs. We need the following

Lemma 3.4. For all x > 0, it holds that Ê(K)
x (MK) = Ex(M2

K) < ∞. In particular,{
P̌(K)
x ;x > 0

}
is a family of probability measures.

Proof. By self-similarity, it is enough to show that E1(M2
K) <∞. Let σK denote a random

leaf sampled on BK with conditional law AK(·)/MK given (χu)u∈U. Similarly as in the
previous subsection, we write

E1
(
M2

K

)
= CÊ(K)

1 (MK) = CÊ(K)
1

(∑
s>0

|∆−σK(s)|ω− Ê(K)
1 (MK,s|(σK(t))t≥0)

)
whereMK,s is the rescaled truncated mass generated by the cell born at time s (trun-
cated when cells reach a size K/|∆−σK(s)|ω− by the scaling property). Since MK,s

cannot be greater than the non-truncated area, that has expectation 1, we get

E1
(
M2

K

)
≤ CÊ(K)

1

(∑
s>0

|∆−σK(s)|ω−
)

= CÊ1

(∑
s>0

1{σ∗≤K}|∆−σK(s)|ω−
)

= CÊ1

(∑
s>0

1{Y ∗≤K}|∆−Y (s)|ω−
)
.

As previously we assume without loss of generality that Y is homogeneous. Now we fix
p ∈ (0 , ω+ − ω−) and we bound the latter from above by

CKω−−pÊ1

(∑
s>0

epη(s−)(1− e∆−η(s))ω−

)
.

The compensation formula yields that the expectation is equal to∫ ∞
0

dsesκ(ω−+p)

∫
(−∞ ,0)

Π(dy)(1− ey)ω− ,

which is finite since κ(ω− + p) < 0 and by definition of ω− and Π. This shows that
Ex(M2

K) <∞ for any x > 0 by self-similarity.
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Thanks to Lemma 3.4, Lemma 3.1 applies with P = P̌(K)
1 and ∇K := ζσK − ζσ′K , where

σK and σ′K are conditionally independent random leaves in BK with conditional law
AK(·)/MK given (χu)u∈U. We claim that when K is large enough, BK = ∂U, that is

P1 (∃K > 0 : A = AK) = 1.

Indeed, as a direct consequence of Corollary 4 in [4], we have that supu∈U χ
∗
u <∞ P-a.s.,

where χ∗u := supt≥0 χu(t). By Lemma 3.1, it is hence enough to show that ∇K has a
bounded density in a neighbourhood of 0 to prove the Theorem. Similarly to Lemma 3.3,
we have

Lemma 3.5. Under P̌(K)
1 , ∇K has a density h : R→ R+ ∪ {∞} given by

h : x 7→CÊ1

(∑
s>0

1{supt≤s Y (t)≤K}|∆−Y (s)|ω−+αY (s)α

×
∫ ∞

0

dug2,s(u|∆−Y (s)|α)g1,s((u− x)Y (s)α)

)
,

where C is known and comes from the change of measure, and g1,s, g2,s are non-negative
random functions, measurable with respect to the natural filtration of Y at time s for all
s ≥ 0, that are all pointwise bounded by k.

The proof being very similar to that of Lemma 6, we do not provide all the steps, but
only those where new arguments are needed.

Proof. We have the following analogue of (3.2):

Ě(K)
1 (f(∇K)) = CÊ1

(∑
s>0

1{σ∗≤K}|∆−σ(s)|ω−

× Ê1
(
1{σ̂∗≤K|∆−σ(s)|−ω−}f

(
ζσ − s− |∆−σ(s)|−αζσ̂

) ∣∣∣(σ(t))t≥0

))

= CÊ1

(∑
s>0

1{Y ∗1 ≤K}|∆−Y1(s)|ω−

× Ê1

(
1{Y ∗2 ≤K|∆−Y1(s)|−ω−}f

(
I1 − s− |∆−Y1(s)|−αI2

)∣∣∣Y1

))
,

by Lemma 2.2, where I1 and I2 are the respective absorption times at 0 of two inde-
pendent positive self-similar Markov processes Y1, Y2 with same distribution P̂1. The
expectations in the right-hand side then becomes

Ê1

(∑
s>0

1{Y ∗1 ≤K}|∆−Y1(s)|ω−
∫ ∞

0

dxg2,s(x)f
(
I1 − s− |∆−Y1(s)|−αx

))
,

where for any s > 0 such that ∆−Y1(s) < 0, the random function

g2,s : x 7→ k(x)P̂ (Y ∗2 ≤ K|∆−Y1(s)|α| I2 = x)

is measurable with respect to the natural filtration of Y1 at time s. Clearly, g2,s(x) ≤ k(x)

for all x > 0. As before, applying [10] Theorem 57, we obtain that

Ě1
(
f(∇|B)

)
= CÊ1

(∑
s>0

1{supt≤s Y1(t)≤K}|∆−Y1(s)|ω−
∫ ∞

0

dxg2,s(x)

∫ ∞
0

dyg1,s(y)

× f
(
Y1(s)−αy − |∆−Y1(s)|−αx

))
,
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where g1,s is defined in the same way as g2,s.

Proof of Theorem 1.1, the case α > −ω− and ω+/ω− ≤ 2. As previously, we only need to
show that h given in Lemma 3.5 is bounded to conclude by Lemma 3.1. Recall that the
(random) functions g1,s, g2,s, s ≥ 0 in the definition of h are bounded by k. For any x ∈ R,
similarly to (3.3), we thus have that

h(x) ≤ CÊ1

(∑
s>0

1{supt≤s Y (t)≤K}|∆−Y (s)|ω−(Y (s) ∨ |∆−Y (s)|)α
)
||k||∞||k||1.

As before, we can consider the simpler homogeneous case to show that h is bounded,
without loss of generality. Let η(s) = log(Y (s)), s > 0. We rewrite the expectation above
as

Ê1

(∑
s>0

1{supt≤s η(t)≤logK}e
(ω−+α)η(s−)(1− e∆−η(s))ω−(e∆−η(s) ∨ (1− e∆−η(s)))α

)

≤ 2−αÊ1

(∑
s>0

1{supt≤s η(t)≤logK}e
(ω−+α)η(s−)(1− e∆−η(s))ω−

)

= 2−αKω−+α−pÊ1

(∑
s>0

epη(s−)(1− e∆−η(s))ω−

)
,

for any arbitrary fixed p ∈ (0 , ω+ − ω−). The compensation formula then shows that the
last expectation is equal to∫ ∞

0

dseκ(ω−+q)s

∫
(−∞ ,0)

Λ(dy)eω−y(1− ey)ω− ,

which is clearly finite from the choice of q and the definition of ω−. We have thus proved
that h is bounded. By Lemma 3.1, this shows that t 7→ A({` ∈ BK : ζ` ≤ t}) is absolutely
continuous with respect to the Lebesgue measure P̌-a.s., and therefore P-a.s., and we
conclude using that P(∃K > 0 : AK = A) = 1 as stated earlier.

3.2.3 The singular case, α ≤ −ω−

We finish the proof of Theorem 1.1, that is we show that when α ≤ −ω−, dA is almost
surely singular with respect to the Lebesgue measure.

Since t 7→ A(t) is non-decreasing, almost surely, for almost every t ≥ 0, the derivative
of A at t exists. Therefore by Fubini’s Theorem, for almost every t ≥ 0 there exists
a finite random variable A′(t) such that A′(t) := limε→0(A(t + ε) − A(t))/ε. For such t,
applying (2.4) and using the same notation we obtain:

A(t+ ε)−A(t)
d
=
∑
i≥1

X
ω−
i (t)Ai(εX

α
i (t)).

Suppose that there are infinitely many fragments at time t. Then for all n ≥ 1, set
εn := X−αn (t) and divide the last expression by εn to get

ε−1
n (A(t+ εn)−A(t)) =

∑
i≥1

Xα
n (t)X

ω−
i (t)Ai(X

−α
n (t)Xα

i (t))

≥ Xα+ω−
n (t)An(1).

Since the An’s are i.i.d. copies of A, there are almost surely infinitely many An(1)’s which
are greater than any given constant. But if α ≤ −ω−, we see that lim supn→∞ ε−1

n (A(t+
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εn) − A(t)) = ∞ which is in contradiction with the fact that A admits a derivative at
t. This implies that there is only a finite number of fragments at time t, say N ∈ N,
therefore we can switch the sum and the limit and we obtain :

lim
ε→0

ε−1(A(t+ ε)−A(t)) =
∑
i≤N

X
α+ω−
i (t) lim

ε→0
Ai(εX

α
i (t))/ε,

where the limits are well defined and equal to 0 by Lemma 3.2. Hence A′(t) = 0 for
almost every t and dA is singular.

3.3 Number of fragments

As we just saw in the proof of the singular case of Theorem 1.1, there is a link
between the number of fragments in the growth-fragmentation and the regularity of A.
Even though we shall not use this relation later on, we state it in a corollary as it might
be of independent interest.

Corollary 3.6. Suppose that α > −ω−, then almost surely the number of fragments with
positive mass is infinite for every t such that a(t) > 0.

Conversely if α ≤ −ω−, then almost surely the number of fragments with positive
mass is finite for almost every t ≥ 0.

Proof. The second statement has been established in the subsection 3.2.3. If α > −ω−,
then by Theorem 1.1 we have dA(t) = a(t)dt. Fix s, t > 0 such that t < ζ. By (2.4) we can
write

A(t+ s)−A(t)
d
=

Nt∑
i=1

X
ω−
i (t)Ai(sX

α
i (t)), (3.4)

where Nt is the number of fragments (possibly infinite) with positive mass at time t,
{Ai; i = 1..Nt} are i.i.d. copies of A. Then using the above identity we have

1

ε

Nt∑
i=1

X
ω−
i (t)Ai(εX

α
i (t))

a.s.−−−→
ε→0

a(t).

Suppose moreover that Nt <∞, then Lemma 3.2 implies that a(t) = 0.

4 Approximation of the profile

Throughout this section, we assume that dA(t) = a(t)dt, or equivalently α > −ω−, by
Theorem 1.1. We moreover suppose that ω− ≥ 1, which ensures the Feller property of
X as stated in Lemma 6.2 in Appendix. Our main goal in what follows is to adapt the
arguments of Haas [13] Section 5 to the growth-fragmentations case to prove 1.2. Recall
the definitions of the processes M,N for all ε > 0, t ≥ 0:

M(t, ε) :=
∑
i≥1

X
ω−
i (t)1{Xi(t)≤ε},

N(t, ε) :=
∑
i≥1

1{Xi(t)>ε}.

As Haas we shall focus on the small fragments, since the behaviour of N(t, ε) as ε→ 0

can be deduced from that of M(t, ε) applying Tauberian theorems (as discussed in the
end of this section).

Lemma 4.1 (Analogue of Lemma 8 in [13]). Let I be a random variable with density k,
independent of X. If α > −ω− and ω− ≥ 1, then for almost every t > 0,

lim
ε→0

εαE
(
M(t, εI

1
α )
∣∣∣X) a.s.

= a(t).
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Provided that X is a Feller process, the proof is almost identical to that of Haas,
with the difference that one has to work on an event having a probability arbitrarily
close to 1 and that ensures

∫∞
0
a2(t)dt to have finite expectation (this event can be

HK := {supu∈U χ
∗
u ≤ K} where χ∗u := supt≥0 χu(t)). We skip the details of the proof of

Lemma 4.1, the Feller property and its proof are given in Appendix.
We can now make the proof of Theorem 1.2.

Proof of Theorem 1.2(i). This proof is again very similar to that of Haas, we thus just
focus on verifying that the hypotheses of the Wiener-Pitt theorem (Theorem 4.8.0 of [7])
are satisfied, and refer to the proof of [13] Theorem 7 to see how it applies to show the
convergence of small fragments. What has to be shown is that the Mellin transform of I,
defined as MI(ix) := Ê1(Iix−1), exists and is non zero for all x ∈ R. We already know by
Lemma 2.3 that Ê1(I−1) = ακ′(ω−) ∈ (0 ,∞). Let Ψ be the characteristic exponent of η
defined as Ψ : θ 7→ − log Ê(eiθη(1)). Theorem 2.7(1) in [19] shows that

MI(ix) =
Ψ(−αx)

ix
MI(1 + ix).

It is not hard to check that Ψ(−αx) 6= 0. Moreover, it is also stated in the same theorem
that

MI(1 + ix) = Φ+(0)
Γ(1 + ix)

WΦ−(1 + ix)
WΦ+(−ix),

where Φ+ (respectively Φ−) is the characteristic exponent of the ascending (respectively
descending) ladder height process of η and Wφ+

(respectively WΦ−) is the generalized
Weierstrass product of Φ+ (respectively Φ−) as in [19] (see Kyprianou [15] or Bertoin [2]
for definitions and details on ladder height processes). In particular, it is well-known
that since η drifts to −∞, we have Φ+(0) > 0. Therefore Wφ+

(z) 6= 0 for all z ∈ C with
Re(z) ≥ 0 by Theorem 3.2 of [19]. Furthermore, it also ensures that WΦ− is holomorphic
on {z ∈ C : Re(z) > 0} therefore |WΦ−(1 + ix)| <∞. Since Γ(1 + ix) is non-zero, we see
that MI(1 + ix) 6= 0, we can then apply the Wiener-Pitt theorem, as planned, giving the
claim.

To conclude the proof of Theorem 1.2, it remains to show that for almost every t ≥ 0,

−α
ω−

M(t, ε) ∼
ε→0

ω− + α

ω−
εω−N(t, ε). (4.1)

Let µ :=
∑
i≥1 δXi(t)ω− and let µ(x) := µ((x ,∞)). Define df(y) = yµ(dy). Equation (4.1)

can be shown using Tauberian theorems, we refer to the proof of equation (4) in [3] to
see that f is regularly varying at 0 with index 1− β ∈ (0 , 1) if and only if µ is regularly
varying at 0 with index −β. In that case, it holds that

βεµ(ε) ∼
ε→0

(1− β)f(ε).

Now notice that µ(ε) = N(t, ε1/ω−) and f(ε) = M(t, ε1/ω−) which implies with Theorem
1.2(i) that 1− β = −α/ω− ∈ (0 , 1). This proves that (4.1) holds.

5 Hausdorff dimension

We now study the case α ≤ −ω− so that dA is singular with respect to the Lebesgue
measure almost surely, by Theorem 1.1. Theorem 1.3 describes the set on which dA is
concentrated through its Hausdorff dimension (note that its support is exactly [0 , ζ] by
Lemma 3.2), see [12] for background.
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5.1 The lower bound

Frostman’s Lemma (see e.g. [12] Corollary 6.6(a)), that we now recall, is the key to
the lower bound.

Lemma 5.1 (Frostman’s Lemma). Let b ∈ (0 , 1] and let µ be a finite measure on R. If

Ib(µ) :=

∫
R

∫
R

dµ(u)dµ(v)

|u− v|b
<∞,

then dimH(µ) ≥ b.

Proof of Theorem 1.3: the lower bound. In the light of Lemma 5.1, it is sufficient to
show that

E1(Ib(dA)) <∞, (5.1)

for all b < ω−
−α . We write

E1(Ib(dA)) = E1
(∫ ∞

0

∫ ∞
0

dA(u)dA(v)

|u− v|b

)
.

As previously, we sample a first spine applying Lemma 2.1 and we get

E1(Ib(dA)) = Ê1
(
E1
(∫ ∞

0

dA(v)

|ζσ − v|b
∣∣∣(σ(t))t≤ζσ

))
.

We then decompose A as in the proof of Theorem 1.1, we write

E1(Ib(dA)) = Ê1

∑
s<ζσ

E|∆−σ(s)|

(∫ ∞
s

dAs(v)

|ζσ − v|b
∣∣∣(σ(t))t≤ζσ

) ,

where As is the intrinsic area function associated with the restriction of A to ∂Us, the
leaves of the subtree generated by the cell born at time s. In particular, As has same
conditional distribution as A under P|∆−σs| shifted by s (see [1] Theorem 4.7). We rewrite
the right hand-side above denoting A∗s := As(s+ ·) and get

E1(Ib(dA))

= Ê1

∑
s<ζσ

E|∆−σ(s)|

(∫ ∞
0

dA∗s(v)

|ζσ − s− v|b
∣∣∣(σ(t))t≤ζσ

)
= Ê1

∑
s<ζσ

|∆−σ(s)|ω−E1
(∫ ∞

0

dA∗s(v)

|ζσ − s− |∆−σ(s)|−αv|b
∣∣∣(σ(t))t≤σ

) ,

where we applied the self-similarity of A∗s for the last equality. Using Lemmas 2.1 and
2.2, let I2 be a random variable with density k independent of σ and write

E1(Ib(dA)) = Ê1

∑
s<ζσ

|∆−σ(s)|ω− Ê1
(∣∣ζσ − s− |∆−σ(s)|−αI2

∣∣−b∣∣∣(σ(t))t≤ζσ

)
= Ê1

(∑
s<I1

|∆−Y (s)|ω−
∣∣I1 − s− |∆−Y (s)|−αI2

∣∣−b) .
As in the proof of Lemma 3.3, we use Theorem 57 of [10], justified again by positivity:
the optional projection of s 7→ |I1 − s− |∆−Ys|−αI2|−b being given by

s 7→
∫ ∞

0

du

∫ ∞
0

dv
k(u)k(v)

|Y (s)−αu− |∆−Y (s)|−αv|b
.
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We hence obtain

E1(Ib(A)) = Ê1

(∑
s<I1

|∆−Y (s)|ω−
∫ ∞

0

du

∫ ∞
0

dv
k(u)k(v)

|Y (s)−αu− |∆−Y (s)|−αv|b

)
.

Assuming without loss of generality that Y is homogeneous, we see that the latter is
equal to

Ê1

(∑
s>0

e(ω−+αb)η(s−)(1− e∆−η(s))ω−
∫ ∞

0

du

∫ ∞
0

dv
k(u)k(v)

|e−α∆−η(s)u− (1− e∆−η(s))−αv|b

)
.

Lemma 6.1 in Appendix finally yields that

E1(Ib(A)) ≤ CÊ1

(∑
s>0

e(ω−+αb)η(s−)(1− e∆−η(s))ω−

)
,

where C is a deterministic finite constant. The compensation formula then shows that
the righ-hand side above is equal to

C

∫ ∞
0

esκ(2ω−+αb)ds

∫
R−

(1− ey)ω−eω−y(Λ + Λ̃)(dy).

The last integral being finite by definition of ω−, we see that this expression is finite

whenever κ(2ω−+αb) < 0, which is the case if and only if b ∈
(

2ω−−ω+

−α , ω−−α

)
(this interval

is never empty since we assume that ω− < ω+). We thus have shown that

b ∈
(

2ω− − ω+

−α
,
ω−
−α

)
⇒ (5.1) ⇒ Ib(A) <∞ a.s.,

which by Lemma 5.1 gives the lower bound for any α ≤ ω−.

5.2 The upper bound

In the pure fragmentation setting, the analogue of A is the function M of the loss
of mass. The upper bound of dimH(dM) has been obtained by Haas and Miermont in
[14] by constructing the CRT induced by the fragmentation. They first investigated the
Hausdorff dimension of the leaves of the tree, then they deduced the upper bound for
dimH(dM) using the fact that the image of a set by any surjective Lipschitz mapping (in
their case the cumulative height profile) has Hausdorff dimension at most equal to that
of the original set (this is a direct consequence of Lemma 1.8 in [12]). Since Rembart
and Winkel [20] already provided the Hausdorff dimension of the leaves L(T ) of the CRT,
we can use the same argument as Haas and Miermont to obtain the upper bound. For
this reason we now work on (T ,AT ) instead of (U,A).

It is not hard to see from its definition in Section 2 that the height function ht is
Lipschitz with respect to the metric d.

Proof of the upper bound. Recall that AT is supported on L(T ) (more precisely the
subset of L(T ) corresponding to leaves in ∂U). By definition of A (2.3), dA(ht(L(T ))) is
equal to its total massM. Therefore,

dimH(dA) ≤ dimH(ht(L(T ))) ≤ dimH(L(T ))

since ht is Lipschitz. By Theorem 4.5 in [20], dimH(L(T )) = −ω−/α, which gives the
claim.
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6 Application to Boltzmann random planar maps

In [1], the authors showed that by cutting particular Boltzmann random maps at
heights, one obtains a collection of cycles whose lengths are described in scaling limit
by a specific family of growth-fragmentations with cumulant function of the form

κθ(q) :=
cos(π(q − θ))
sin(π(q − 2θ))

· Γ(q − θ)
Γ(q − 2θ)

, q ∈ (θ , 2θ + 1) ,

with self-similarity index α = 1− θ, for some parameter θ ∈ (1 , 3/2]. (The case θ = 3/2

corresponds to the Brownian map.)
The Cramér hypothesis (2.2) holds with ω− = θ + 1/2 and ω+ = θ + 3/2, so that the

intrinsic area of the ball of radius r is an absolutely continuous function of r, by Theorem
1.1. The small cycle lengths in the random maps are related to a by Theorem 1.2 in this
paper and Theorem 6.8 in [1].

Appendix

We state and prove here a technical results on the density k which is used in the
proof of the lower bound in Theorem 1.3.

Lemma 6.1. Let b, c ∈ (0 , 1). We have that∫ ∞
0

du

∫ ∞
0

dv
k(u)k(v)

|uc−α − v(1− c)−α|b
≤ C,

where C is a finite constant not depending on c.

Proof. We have∫ ∞
0

du

∫ ∞
0

dv
k(u)k(v)

|uc−α − v(1− c)−α|b
= cα(1− c)α

∫ ∞
0

k(ucα)du

∫ ∞
0

dv
k(v(1− c)α)

|u− v|b
.

Consider the last integral, we have that∫ ∞
0

k(v(1− c)α)

|u− v|b
dv ≤

∫ u+1

u−1

||k||∞
|u− v|b

dv +

∫ ∞
0

k(v(1− c)α)dv

≤
∫ u+1

u−1

||k||∞
|u− v|b

dv +

∫ ∞
0

k(v)dv

= C,

where C denotes a constant not depending on c. This yields that∫ ∞
0

du

∫ ∞
0

dv
k(u)k(v)

|uc−α − v(1− c)−α|b
≤ cα(1− c)α

∫ ∞
0

Ck(ucα)du

= (1− c)αC

Notice that the same arguments apply when the roles of c and (1 − c) are exchanged,
which entails that the upper bound that we just obtained holds with (c∨ (1− c))α instead
of (1− c)α. One remarks that c ∨ (1− c) ≥ 1/2 and the claim follows.

For q ≥ 1, we define `q↓ the subset of `q of non-increasing null sequences with finite
q-norm, denoted by || · ||q.
Lemma 6.2 (Feller’s Property). Suppose that ω− ≥ 1. Then, the law of the growth-
fragmentation X satisfies the following Feller’s property: let xn, n ∈ N and x be
elements of `ω−↓ such that (xn)n≥1 converges in `ω−↓ to x. Then it holds that

Pxn ⇒ Px, as n→∞,
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where ⇒ means weak convergence in the sense of finite-dimensional distributions in
`ω−↓.

Proof of Lemma 6.2. We denote xn := (xn,1, xn,2, · · · ) and x := (x1, x2, · · · ). Let X(n)

(respectively Y) be a self-similar growth-fragmentation process with distribution Pxn
(respectively Px). We shall show that the Wasserstein distance between Pxn and Px
converges to zero, which will entail the claim. Thanks to the assumption ω− ≥ 1, the
distance of two sequences in `ω− of non-negative numbers decreases after rearranging
them in the non-increasing order (see [17] Theorem 3.5). Let t > 0, we thus have that

E
(
||X(n)(t)−Y(t)||ω−ω−

)
≤ E

∑
k≥1

||X(n)
k (t)−Yk(t)||ω−ω−

 , (6.1)

where X
(n)
k and Yk are growth-fragmentations with respective distributions Pxn,k , Pxk .

In the same vein as in the proof of Proposition 2 in [4] (viz the branching property for
growth-fragmentations), we fix ε > 0 and define X

(n)
k,ε , (respectively Yk,ε) the growth-

fragmentation obtained from X
(n)
k (respectively Yk) by killing every fragment - and

those it generates in the future - as soon as it reaches a size smaller than ε. Using that
(a+ b+ c)d ≤ 3d(ad + bd + cd) for all a, b, c, d > 0, the right-hand side of (6.1) entails that

E
(
||X(n)(t)−Y(t)||ω−ω−

)
≤ 3ω− (An +Bn + C) , (6.2)

where

An :=E

∑
k≥1

||X(n)
k (t)−X

(n)
k,ε (t)||ω−ω−


Bn :=E

∑
k≥1

||X(n)
k,ε (t)−Yk,ε(t)||ω−ω−


C :=E

∑
k≥1

||Yk,ε(t)−Yk(t)||ω−ω−

 .

Recall that Xj(t) is the size of the jth largest fragment in a growth-fragmentation at
time t. We define X∗j (t) an infimum of the sizes of the ancestors of Xj(t) before time t.
In particular, if Xj(t) > 0, then X∗j (t) > 0. Fix a > ε and write

An =
∑
k≥1

1{xn,k≤ε}Exn,k
(
||X(n)

k (t)||ω−ω−
)

+1{xn,k>ε}Exn,k

∑
j≥1

Xj(t)
ω−1{0<X∗j (t)≤ε, Xj(t)≤a}


+1{xn,k>ε}Exn,k

∑
j≥1

Xj(t)
ω−1{0<X∗j (t)≤ε, Xj(t)>a}

 .

The first part is smaller than
∑
k≥1 x

ω−
n,k1{xn,k≤ε} by Theorem 2 in [4]. Applying Proposi-

tion 4.6 and Theorem 4.7 in [1], we bound the second part by

∑
k≥1

1{xn,k>ε}Exn,k

∑
j≥1

Xj(t)
ω−1{Xj(t)≤a}

 ≤∑
k≥1

1{xn,k>ε}x
ω−
n,kP̂xn,k (0 < Y (t) ≤ a) .
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Hence, since Y is a Feller process, we have that

lim sup
n→∞

An ≤
∑
k≥1

1{xk≤ε}x
ω−
k + 1{xk≥ε}x

ω−
k P̂xk (0 < Y (t) ≤ a)

+ 1{xk≥ε}Exk

∑
j≥1

Xj(t)
ω−1{0<X∗j (t)≤ε, Xj(t)≥a}

 (6.3)

(the latter expectations follow from self-similarity, Fatou’s Lemma and stochastic conti-
nuity). The sum of the terms smaller than ε can be taken arbitrarily close to 0, which
is also the case of the second part of the sum with a, by dominated convergence. To
see that the last terms of(6.3) can also be taken as small as one wishes with ε and a, we
refer to the proof of Proposition 2 in [4]. Therefore, it holds that limn→∞An = 0. Similar
arguments can be used to deal with C.

It remains to show that limn→∞Bn = 0 and the claim will follow from (6.2). Using
the self-similarity, we have that

Bn = E

∑
k≥1

||1{xn,k>ε}xn,kX
(n)
k,ε/xn,k

(txαn,k)− 1{xk>ε}xkYk,ε/xk(txαk )||ω−ω−

 .

Now each growth-fragmentation has distribution P1, and since the Wasserstein metric is
given by the infimum over the set of joint distributions, we can assume that Yk = X

(n)
k .

We drop the indicator functions, letting Yk,δ be the null sequence whenever δ ≥ 1. Since

xn
`ω−−−→ x, we just need to show the following convergence:∑

k≥1

x
ω−
k E

(
||Yk,ε/xn,k(txαn,k)−Yk,ε/xk(txαk )||ω−ω−

)
−→
n→∞

0. (6.4)

The left-hand side is bounded by∑
k≥1

x
ω−
k E

(
||Yk,ε/xn,k(txαn,k)−Yk,ε/xk(txαn,k)||ω−ω− ||Yk,ε/xk(txαn,k)−Yk,ε/xk(txαk )||ω−ω−

)
.

The second part converges to 0 as n → ∞ by stochastic continuity. The first part
contains only fragments whose ancestors have minimum size between ε/(xn,k ∨ xk) and
ε/(xn,k ∧ xk). The dominated convergence theorem yields the claim, that is (6.4) holds,
which concludes the proof.
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