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Abstract

We consider the hydrodynamic scaling behavior of the mass density with respect to a
general class of mass conservative interacting particle systems on Zn, where the jump
rates are asymmetric and long-range of order ‖x‖−(n+α) for a particle displacement of
order ‖x‖. Two types of evolution equations are identified depending on the strength of
the long-range asymmetry. When 0 < α < 1, we find a new integro-partial differential
hydrodynamic equation, in an anomalous space-time scale. On the other hand, when
α ≥ 1, we derive a Burgers hydrodynamic equation, as in the finite-range setting, in
Euler scale.
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1 Introduction

In this paper, we consider hydrodynamic limits in a class of mass conserving par-
ticle systems in several dimensions n ≥ 1 on Zn with certain asymmetric long-range
interactions. These limits, when they exist, capture the space-time scaling limit of the
microscopic empirical mass density field of the particles as the solution of a ‘hydrody-
namic’ equation governing a macroscopic flow. When the interactions are symmetric and
finite-range, such limits have been shown in a variety of stochastic particle systems (cf.
[9], [20], [28]). Also, when the interactions are asymmetric and finite-range, for systems,
such as ‘simple exclusion’ and ‘zero-range’, as well as other processes, hydrodynamics
has been proved (cf. [2], [3], [4], [14], [16], [17], Chapter 8 in [20], [24], and reference
therein).

However, less is known about hydrodynamics when the dynamics is of long-range
type, although such processes are natural in applications, for instance with respect to
wireless communications. The only works, to our knowledge, which considers ‘long-
range’ limits are [5] and [19], where hydrodynamics of types of symmetric, long-range
exclusion and zero-range processes was shown.

In this context, our main purpose is to derive the hydrodynamic equation in a general
class of asymmetric long-range particle models, which includes simple exclusion and
zero-range systems. Another motivation was to understand if there is a ‘mode coupling’
basis for certain ‘stationary’ fluctuation results in asymmetric long-range models seen
in [6], [25]. There, the fluctuations of the empirical mass density field, translated
by characteristic speeds, was shown to obey in a sense either a stochastic heat or
Burgers equation, depending on the strength of the long-range interactions. One may
ask whether such fluctuations could be inferred from associated hydrodynamics through
mode coupling analysis (cf. [28]), as is the case with respect to asymmetric finite-range
systems.
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Hydrodynamics for long-range asymmetric systems

Informally, the particle systems studied follow a collection of dependent random
walks which interact in various ways. For instance, in the exclusion and zero-range
particle systems, the random walks interact infinitesimally in time and space respectively.
In the exclusion process, particles move freely except in that jumps, according to a
jump probability p(·), to already occupied locations are suppressed. Whereas, in the
zero-range process, the jump rate of a particle at a site depends on the number of
particles at that site, but the location of the jump is freely chosen according to p(·).

In this article, we will consider a general form of the ‘misanthrope’ process, for which
features of exclusion and zero-range interactions are combined, so that both the jump
rate and location of jump may depend infinitesimally on the other particles.

In such dynamics, as mass is preserved, that is no birth or death allowed, there is
a family of product invariant measures νρ indexed by density ρ. Let ηt(x) denote the
number of particles at location x at time t.

By ‘long-range’, to be concrete, we mean, for α > 0 and d ∈ Zn, that p(·) takes the
form

p(d) =
1(d > 0)

‖d‖n+α
,

where d > 0 means di ≥ 0 for 1 ≤ i ≤ n and d 6= 0. The form we have chosen may be
generalized as discussed in Subsection 3.1.

We will start the process in certain ‘local equilibrium’ nonstationary states µN , that
is when initially particles are put independently on lattice sites, according to a varying
mass density ρ0, where the marginal at vertex x has mean ρ0(x/N), and N is a scaling
parameter. We will restrict attention to initial densities ρ0 such that the relative entropy
of µN with respect to an invariant measure νρ∗ for ρ∗ > 0 is of order Nn. In effect, this
means ρ0 = ρ0(u) is a function which equals a constant ρ∗ for all u large. This restriction
is further discussed in Subsection 3.1.

Consider, the formal ‘hydrodynamic’ density, where space is scaled by N and time is
speeded up by Nθ,

ρ(t, u) = lim
ε↓0

lim
N↑∞

1

(2Nε)n

∑
|y/N−u|≤ε

ηNθt(y).

Initially, by the law of large numbers, ρ(0, ·) = ρ0(·). Our goal will be to derive, choosing
θ = θ(α) appropriately, a ‘hydrodynamic’ partial differential equation for ρ(t, ·).

The choice of θ is usually determined by the time needed in order for a single particle
to travel a microscopic distance of order Nn, or a nonzero macroscopic distance. When
α > 1, as p(·) has a mean, the travel time is of the same order as in the finite-range
asymmetric case, namely of order N , indicating θ = 1, the ‘Euler’ scale. While, when
0 < α < 1, because of the heavier tail in p(·), the travel time is of shorter duration, and it
turns out θ should be taken as θ = α, an anomalous scale, interestingly the same as in
[19] when the jumps are symmetric. However, in the case α = 1, time should be speeded
up by N/ logN

Our main results are as follows. When 0 < α < 1 (Theorem 3.1), we derive that the
hydrodynamic equation is a weak form of

∂tρ(t, u) =

∫
[0,∞)n

F (ρ(t, u− v), ρ(t, u))− F (ρ(t, u), ρ(t, u+ v))

‖v‖n+α
dv,

where the function F reflects a homogenization of the microscopic rates in the system.
This equation appears novel in the PDE literature. It is, in a sense, a ‘long-range’

integro-differential form of a Burgers equation. Although the step function ρ0(u) = 1[a,∞),
in n = 1, is an invariant solution, as no particle moves, our intuition, without further
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substantiation, is that if motion is allowed in Rn, because of the long-range character
of the jump probability, the solution may be more regular than in the Burgers equation,
where shocks may form in finite time from smooth initial densities. Although we show
existence of weak solutions of the hydrodynamic equation, uniqueness of these solutions,
in any particular class of solutions, is not yet known. As a consequence, the result we
show is that all limit points of the mass density field satisfy weakly this hydrodynamic
equation.

However, when α > 1 (Theorem 3.2), under an additional assumption that the
misanthrope system is ‘attractive’, that is a monotonicity condition on the rates (cf.
definition in Section 2), we show that the hydrodynamic equation is a Burgers equation

∂tρ(t, x) + γα∂1(n)F (ρ(t, x)) = 0,

where γα is a specified constant, F again depends on particle interactions, and ∂1(n) is
the directional derivative in x in direction 〈1, 1, . . . , 1〉. For the boundary value α = 1, one
recovers the same hydrodynamic equation as when α > 1, however with an extra ‘log’
scaling factor in the scaling, as remarked in Subsection 3.1.

The α ≥ 1 hydrodynamic equation may be understood in terms of results say in [4],
[24], for finite-range asymmetric systems. When α > 1, the mean of the jump probability
p(·) is bounded. In particular, long jumps are not so likely, and it is perhaps expected in
this case that a Burgers equation would be derived.

In both settings, these hydrodynamic limit results are the first for long-range asym-
metric misanthrope processes on Zn. In Subsection 3.1, further remarks on these limits,
their assumptions, and extensions are discussed.

The general scheme of proof is to obtain the hydrodynamic equation by an application
of an Itô formula with respect to the evolving empirical mass density. In this computation,
the generator action gives an average of nonlinear rates of interaction, in terms of the
occupation variables ηt. The main point is to replace this average, which immediately
cannot be written in terms of the empirical density itself, by a homogenized or averaged
function of the empirical mass density, thereby allowing one to close the equation.

When 0 < α < 1, we follow the ‘entropy’ method strategy of Guo-Papanicolaou-
Varadhan (cf. [20]) as invoked in [19] for the symmetric long-range zero-range model.
There are however important differences, especially with respect to the ‘1 and 2-block’
estimates, where the general long-range asymmetric misanthrope structure complicates
the analysis. Ingredients, perhaps of their own interest, include a non-standard non-local
replacement used in the ‘1-block’ estimate. Whereas, in the ‘2-block’ estimate, averaged
Dirichlet forms, in terms of a ‘moving particle’ scheme (cf. Subsection 6.2.1), a type first
used in [19], are employed to make the replacements. Notably, when 0 < α < 1, the
‘attractiveness’ condition is not used.

When α ≥ 1, we follow the scheme in [24] and Chapter 8 [20] for finite-range systems,
although several steps in the infinite-volume long-range setting take on a different
character. The technique is to show a ‘1-block’ estimate, and then to close equations,
through use of Young measures, by invoking a uniqueness result for measure-valued
solutions in [11]. Though the ‘attractiveness’ condition on the process is used in two
important places, many estimates we make do not rely on this condition. Moreover,
verification of several of the conditions in [11] seems novel, and may be of independent
interest.

Returning now to part of our motivation discussed above, in light of the form of the
hydrodynamics shown for α > 1, there is no difference in the type of hydrodynamic
equation when α ≥ 3/2 or when 1 < α < 3/2, and so it would seem the fluctuation results
seen in [6], [25], when α ≥ 3/2, may not have a ‘mode coupling’ interpretation.
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Finally, we comment, although we have chosen the ‘entropy’ method of proof of
hydrodynamics, that there are other techniques, such as ‘compensated compactness’ (as
in [3]) and ‘relative entropy’ (cf. Chapter 6, [20]), which might be explored with profit to
treat related and different scenarios.

The structure of the article is as follows. In Section 2, we introduce the processes
studied and, in Section 3, we state our main results, Theorems 3.1 and 3.2, and related
remarks. After some preliminaries in Section 4, we prove Theorem 3.1 in Section 5,
relying on 1 and 2-block estimates shown in Section 6. In Section 7, we prove Theorem
3.2, stating key inputs, Theorems 7.2, 7.3, 7.4, and 7.5, which are then proved in Sections
8, 10, 11, 12, with the aid of estimates in Section 9 and the Appendix.

2 Models

Let N0 = N ∪ {0}. We will consider a class of n ≥ 1 dimensional ‘misanthrope’
particle systems evolving on the state space X = NZ

n

0 , which includes simple exclusion
and zero-range systems. The configuration ηt = {ηt(x) : x ∈ Zn} gives the number of
particles ηt(x) at locations x ∈ Zn at time t. Let p : Zn → [0,∞) be a single particle
transition rate such that

∑
d p(d) < ∞. We say that a function f : X → R is local if it

depends only on a finite number of occupation variables {η(x) : x ∈ Zn}.
In the simple exclusion process, at most one particle may occupy each site, η(x) = 0

or 1 for all x ∈ Zn. Informally, each particle carries an exponential rate 1 clock. When
a clock rings, the particle may displace by d with probability proportional to p(d). If
the destination site is empty, this jump is made, however, if the proposed destination is
occupied, the jump is suppressed and the clock resets, hence the name ‘simple exclusion’.
Formally, the system is the Markov process on {0, 1}Z ⊂ X with generator action on local
functions given by

Lf(η) =
∑
x,d

p(d)η(x)(1− η(x+ d))(f(ηx,x+d)− f(η))

where ηx,y is the configuration obtained from η by moving a particle from x to y:

ηx,y(z) =


η(x)− 1 if z = x

η(y) + 1 if z = y

η(z) if z 6= x, y.

See [23] for the construction and further details of the simple exclusion process.
In the zero-range process, however, any number of particles may occupy a site.

Informally, each site x holds an exponential clock with rate g(η(x)), where g : N0 → R+

is a fixed function, such that g(0) = 0 and g(k) > 0 for k ≥ 1. When a clock rings, from
that site a particle at random displaces by d with chance proportional to p(d). The name
‘zero-range’ comes from the observation that, infinitesimally, particles interact only with
those on the same site. Formally, the zero range process is a Markov process on X with
generator action on local functions given by

Lf(η) =
∑
x,d

p(d)g(η(x))(f(ηx,x+d)− f(η)).

To construct the zero range process, we require that g be Lipschitz. See [1] for the
construction and further details of the zero range process.

On the other hand, the misanthrope process {η(t) : t ≥ 0} is a more general Markov
process on X with generator

Lf(η) =
∑
x,d

p(d)b(η(x), η(x+ d))(f(ηx,x+d)− f(η)),
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Here, to avoid degeneracies, b : N0 × N0 → [0,∞) is such that b(0,m) = 0 for m ≥ 0.
Also, we restrict to two cases: (i) If b(l,m) = 0 for some l,m ≥ 1, then b(l,m) = 0 for all
l ≥ 0 and m ≥ M0, where M0 ≥ 1 is the first such m, and in this case, b(l,m) > 0 for
1 ≤ l ≤M0, 0 ≤ m < M0. (ii) If b(l,m) > 0 for all l,m ≥ 1, we denote M0 =∞.

To get the simple exclusion process, let b(l,m) = 1(l = 1,m = 0) so that b(η(x), η(y)) =

η(x)(1−η(y)). To recover the zero-range process, let b(l,m) = g(l) so then b(η(x), η(y)) =

g(η(x)). The name ‘misanthrope’ refers to the observation in [8], where the process was
introduced, that particles tend to avoid crowded sites, if b(l,m) is increasing in l and
decreasing in m.

In this article, we concentrate on ‘decomposable’ misanthrope systems, where
b(l,m) = g(l)h(m), in terms of functions g and h, satisfying the restrictions on b(·, ·)
above. Such a class is large enough to include exclusion and zero-range processes, yet
concrete enough to streamline later proofs. We comment, although not pursued here,
that more general misanthrope systems might also be considered with more involved
estimates and notation.

The associated generator action reduces to the form

Lf(η) =
∑
x,d

p(d)g(η(x))h(η(x+ d))(f(ηx,x+d)− f(η))

To aid in construction of the process and for other estimates, we will impose that (i) g
is Lipschitz: |g(k + 1) − g(k)| ≤ κ for k ≥ 0, (ii) h be bounded, in which case, h is also
Lipschitz, |h(k + 1) − h(k)| ≤ κ1 := 2‖h‖∞ for k ≥ 0, and (iii) |g(a)h(b) − g(u)h(v)| ≤
κ2

[
|a− u|+ |b− v|

]
for a, b, u, v ≥ 0. The last condition (iii) is a sufficient ingredient to

construct the process, and forces g to be bounded if h is nontrivial (cf. equation (7.1) in
[18]). However, it is not a necessary condition, and will not be used in the main body of
the paper.

Since g(0) = 0, we have g(l) ≤ κl. We also have h(0) > 0. If h has a zero, and M0 <∞
is the first root, then h(m) = 0 for m ≥M0; in this case, the process, starting with less
than M0 particles per site, remains so in the evolution.

We refer to [18] for further discussion and the construction of the process on a
complete, separable space X0 = {η : ‖η‖X0

< ∞} ⊂ NZ
n

0 with metric ‖η − ξ‖X0
=∑

x∈Zn β(x)|η(x) − ξ(x)|, where β(·) is a suitable positive function on Zn such that∑
x∈Zn β(x) <∞.

2.1 Long range asymmetric transitions

In this article, we concentrate on ‘long range’ totally asymmetric processes, where
p(·) is in form

p(d) =
1(d > 0)

‖d‖n+α
. (2.1)

Here, ‖ · ‖ is the Euclidean norm, and d = (d1, ..., dn) > 0 means di ≥ 0 for all i, but
d 6= 0. We require α > 0 so that

∑
d p(d) < ∞. Although more general transition rates

can be treated, as discussed in Subsection 3.1, the form of p chosen allows for simplified
notation and encapsulates the complexity of the more general situation.

We will distinguish three cases α < 1, α = 1, and α > 1. The transition rate p(·) has
a finite mean exactly when α > 1, and the corresponding model shares some of the
properties of the finite-range situation where p is compactly supported. However, when
α < 1, the behavior of the associated process does reflect that long jumps are more likely.
The α = 1 case, although borderline, turns out in some ways to be similar to the α > 1

case.
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In particular, a random walk with transition rate p(·) will take an order γN steps to
travel an order N distance on Zn where

γN =


N when α > 1

N/ log(N) when α = 1

Nα when α < 1.

These orders will be relevant when discussing hydrodynamic space-time scaling of the
process.

2.2 Invariant measures

As the decomposable misanthrope system is mass conservative, one expects a family
of invariant probability measures νρ indexed by particle density ρ ≥ 0. In fact, there
is a family of translation-invariant product stationary measures, for a general class of
misanthrope processes, including the long-range asymmetric decomposable models,
when

g(i)h(j)− g(j)h(i) = g(i)h(0)− g(j)h(0)

for 0 ≤ i, j ≤M0 if M0 <∞, and i, j ≥ 0 otherwise, which we will also assume (cf. [18]).
In the case h is nontrivial, this implies a linear relation between g and h.

To specify the marginal Θρ of the measure νρ =
∏
x∈Zn Θρ, consider the probability

measure Θ̄λ on N0 given by

Θ̄λ(k) =
1

Z(λ)

λk
∏k−1
j=0 h(j)∏k

j=1 g(j)

where Z(λ) is the normalizing constant. Let ρ(λ) =
∑
k≥0 kΘ̄λ(k) be the mean of Θ̄λ.

Both Z(λ) and ρ(λ) are well defined for 0 ≤ λ < λc, where λc = ∞ if M0 < ∞ and
λc = lim infk↑∞ g(k)/h(k) otherwise. One can see they are strictly increasing on this
range, and so invertible. Let ρc = limλ→λc ρ(λ). Now, for density ρ ∈ [0, ρc), define
Θρ = Θ̄λ(ρ) where λ = λ(ρ) is such that ρ(λ) = ρ.

The functions,

Φ(ρ) = Eνρ [g(η(x))], and Ψ(ρ) = Eνρ [h(η(x))], (2.2)

will play important roles in the sequel. One can observe that Φ,Ψ are C∞ on their
domains.

Moreover, as g and h are Lipschitz, both Φ and Ψ will be Lipschitz. (following the
method of Corollary 2.3.6 [20]). Also, note by boundedness of h that ‖Ψ‖ ≤ ‖h‖∞. Hence,
we have the following inequalities,

g(η(x))h(η(y)) ≤ κ‖h‖∞η(x), Φ(ρ)Ψ(ρ) ≤ κ‖h‖∞ρ, and

|Φ(b)Ψ(b)− Φ(a)Ψ(a)| ≤ κ‖h‖∞|b− a|+ κ1κb|b− a|. (2.3)

In later calculations, we will need finite exponential moments of η(x) and g(η(x)) with
respect to νρ for ρ ∈ [0, ρc). Since g(η(x)) ≤ κη(x) for some constant κ > 0, we note
g(η(x)) will have a finite exponential moment if η(x) does. We say that the FEM satisfied
if

Eνρ
[
eγη(x)

]
=

1

Z(λ)

∞∑
k=0

(λeγ)k
∏k−1
j=0 h(j)∏k

j=1 g(j)
=
Z(λeγ)

Z(λ)
<∞ (2.4)

for all γ ≥ 0 and ρ ∈ [0, ρc). FEM is a condition on the rates g and h, which we will
assume holds throughout. For instance, if limk→∞ h(k)/g(k + 1) = 0 or M0 < ∞, then
FEM holds.
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We will also assume that ρc = M0, a condition on the rates g and h that ensures a
stationary measure at each possible density.

To relate with zero-range and simple exclusion, if we set h ≡ 1, the measure νρ
reduces to the well known family of invariant probability measures for the zero-range
process. However, when h(1) = 0, we recover that νρ is the Bernoulli product measure
with parameter ρ ∈ [0, 1].

Finally, we remark, with respect to νρ∗ , one may construct an L2(νρ∗) Markov process
as in [26]. The associated adjoint L∗ may be computed as the generator of the process
with reversed jump rates p∗(d) = p(−d) for d ∈ Zn.

2.3 Initial, empirical and process measures

We will examine the scaling behavior of the process as seen when time is speeded up
by γN and space is scaled by parameter N ≥ 1. Let LN := γNL and process ηNt := ηγN t
for t ≥ 0. Let TNt be the associated semigroup. Often, we will drop the superscript ‘N ’
when the context is clear.

We will focus on the cases α 6= 1, discussing the case α = 1 in Subsection 3.1. Then,
for α 6= 1, we have γN = Nα∧1. The space-time scaling is the ‘Euler’ scaling when α > 1,
but is an anomalous scale when α < 1.

Define, for t ≥ 0, the empirical measure

πNt =
1

Nn

∑
x∈Zn

ηNt (x)δ x
N
.

We will use the following notation for spatial integration against test functions G:

〈πNt , G(t, ·)〉 =
1

Nn

∑
x∈Zn

ηNt (x)G
(
t,
x

N

)
.

For T > 0 fixed, the measure-valued trajectories {πNt : 0 ≤ t ≤ T} are in the Skorohod
space D([0, T ],M+(Rn)), where M+(Rn) is the set of positive Radon measures on Rn

endowed with the vague topology.

Suppose that we start the process at level N according to an initial measure µN . We
denote the distribution at times t ≥ 0 by µNt := µNTNt . The initial measures that we will
use are such that the law of large numbers holds in probability with respect to an initial
density profile ρ0 as N →∞:

〈πN0 , G(u)〉 =
1

N

∑
x∈Zn

G(
x

N
)ηN0 →

∫
G(u)ρ0(u)du.

We will assume that ρ0 : Rn → R is continuous, and the range of ρ0 lies in [0, ρc). We
will also suppose that µN is a product measure, whose marginal at x ∈ Zn is Θρ0(x/N)

with mean ρ0(x/N). Moreover, we will assume that the relative entropy of µN with
respect to an invariant measure νρ∗ for 0 < ρ∗ < ρc is of order Nn. Then, for ‖x‖ large,
the marginals of µN , in this case would be very close to those of νρ∗ and, in particular,
ρ0(x) ∼ ρ∗. For convenience, throughout, we will assume that ρ0 is such that it equals
ρ∗ outside a compact set. We also remark the measures {µN}, by their definition, are
stochastically bounded by νρ# where ρ# = ‖ρ0‖∞; that is,

∫
fdµN ≤

∫
fdνρ# for all

functions f on X which are increasing coordinatewise in η = {η(x) : x ∈ Zn}.
Define also {PN}N≥1 to be the sequence of probability measures on the Skorohod

space D([0, T ],M+(Rn)), governing πN· when the process η· starts from µN . Expectation
with respect to PN will be denoted as EN .
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2.4 Additional assumption when α > 1

We will assume further the following condition, in force only when α > 1. Namely, we
will assume the misanthrope process is ‘attractive’, that is b(n,m) is increasing in n and
decreasing in m. In other words, the ‘decomposable’ process is ‘attractive’ when g is
increasing and h is decreasing.

2.5 Model assumptions summary

To summarize, we gather here some of the assumptions on the rates and initial
measures discussed earlier.

1. The rate b(n,m) is in form b(l,m) = g(l)h(m) where

• g is Lipschitz with Lipschitz constant κ, and g(0) = 0;

• h is bounded, and hence Lipschitz with constant κ1;

• |g(a)h(b)− g(u)h(v)| ≤ κ2

[
|a− u|+ |b− v|

]
;

• M0 is the maximum particle number per site: M0 = inf{m ≥ 1 : g(l,m) =

0 for l,m ≥ 1} with convention M0 =∞ if g(l,m) > 0 for all l,m ≥ 1.

2. The following ensure product stationary measures indexed by all possible densities
with finite exponential moments.

• g(i)h(j) − g(j)h(i) = g(i)h(0) − g(j)h(0) for i, j ≤ M0 if M0 < ∞ and i, j ≥ 0 if
M0 =∞;

• condition FEM in (2.4) holds;

• ρc, defined above (2.2), satisfies ρc = M0.

3. The rate p is long-range and is in form (2.1).

4. The initial measures µN satisfy the following.

• µN =
∏
x∈Zn Θρ0(x/N) where ρ0 : Rn → [0, ρc) is a continuous function such that

ρ0(u) = ρ∗ for u outside a compact set, and 0 < ρ∗ < ρc;

• the relative entropy H(µN |νρ∗) = O(Nn).

5. The parameter α is such that α 6= 1 in the main body of the article. Remarks about
α = 1 are in Subsection 3.1.

6. When α > 1, the rates are ‘attractive’, that is g is increasing and h is decreasing.

3 Results

We will split the main results according to the settings α < 1 and α > 1. The case
α = 1 is discussed in the remarks in Subsection 3.1.

Suppose α < 1. and consider the operator L acting on smooth, compactly supported
test functions G : Rn → R by

L(G) =

∫
[0,∞)n

Φ(G(u− v))Ψ(G(u))− Φ(G(u))Ψ(G(u+ v))

‖v‖n+α
dv. (3.1)

Note that the integral in (3.1) is well-defined as the integrand is O(‖v‖−(n+α−1)) for v
near the origin. Let also

∇α,vG(u) =
G(u+ v)−G(u)

‖v‖n+α
.
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Theorem 3.1. Suppose α < 1. Then, the sequence {PN}N≥1 is tight, and every limit
point P ∗ is supported on absolutely continuous measures πt = ρ(t, u)du whose densities
are weak solutions of the hydrodynamic equation ∂tρ = L(ρ) with initial condition
ρ(0, u) = ρ0(u).

That is, for test functions G with compact support in [0, T )×Rn, so that G(T, ·) ≡ 0,
we have ∫

Rn
ρ0(u)G(0, u)du+

∫ ∞
0

∫
Rn
ρ(s, u)∂sG(s, u)ds

+

∫ T

0

∫
Rn

∫
[0,∞)n

Φ (ρ(s, u)) Ψ (ρ(s, u+ v))∇α,vG(s, u)dvduds = 0.

We now assume α > 1, and state the hydrodynamic limit in this setting.

Theorem 3.2. Suppose α > 1, and in addition that the process is ‘attractive’. Then,
{PN}N≥1 converges weakly to the point mass supported on the absolutely continuous
measure πt = ρ(t, u)du whose density is the weak entropy solution (cf. (3.3)) of the
hydrodynamic equation

∂tρ+ γα∂1(n)[Φ(ρ)Ψ(ρ)] = 0, (3.2)

with initial condition ρ(0, u) = ρ0(u). Here, 1(n) is the unit vector in the direction
〈1, ..., 1〉, and γα is the constant defined by γα =

∑∞
‖d‖=1 d1/‖d‖n+α.

We comment, as is well known, the scalar conservation law (3.2) may not have a
classical solution for all times. However, a weak solution ρ(t, u) exists (cf. [10], [15]):
Namely, for test functions G with compact support in [0, T )×Rn, we have∫

Rn
G(0, u)ρ0(u)du+

∫ ∞
0

∫
Rn
∂sG(s, u)ρ(s, u)duds

+γα

∫ ∞
0

∫
Rn
∂1(n)G(s, u)ΦΨ(ρ(s, u))duds = 0.

We say that a weak solution ρ(t, u) is a ‘weak entropy’ solution if in the weak sense, with
respect to nonnegative test functions G with compact support in [0, T )×Rn, that

∂t|ρ− c|+ γα∂1(n)[sgn(ρ− c)(ΦΨ(ρ)− ΦΨ(c))] ≤ 0, for each c ∈ R and (3.3)

∃ a null set E ⊂ [0, T ] such that lim
t↘0

t6∈E

∫ R

−R
|ρt(u)− ρ0(u)|du = 0, for all R > 0.

Kruz̆kov proved that there is a unique bounded weak entropy solution if ρ0 is bounded,
which is implied by our assumptions [21]. See [10], [15], and [21] for further discussion
about weak entropy solutions.

3.1 Remarks

We now make several remarks about Theorems 3.1 and 3.2.

1. Uniqueness of solution. When α < 1, an open question is to understand in
what sense a weak solution is unique. If there is an unique weak solution ρ(t, u) of the
hydrodynamic equation, then PN would converge weakly to δρ(t,u)du. However, it is not
clear what additional criteria, if at all, as in the finite-range or α > 1 setting, needs to be
imposed to ensure an unique weak solution.

In this context, we note, in [19], for certain attractive long-range symmetric zero-
range evolutions, with symmetric jump rate psym(d) = p(d) + p(−d), the hydrodynamic
equation derived is ∂tρ = Lsymρ where

Lsym(G) =

∫
Rn

Φ(G(u− v))Ψ(G(u))− Φ(G(u))Ψ(G(u+ v))

‖v‖n+α
dv

EJP 23 (2018), paper 130.
Page 10/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

allows variation in all directions, as opposed to (3.1). Uniqueness of weak solution, under
an ‘energy’ condition, is shown there. Symmetric long-range exclusion processes are
also considered in [19]. However in such models, as is well known, the hydrodynamic
equation is linear, and so uniqueness of solution is more immediate.

2. General jump rates. The jump rate p(·) may be generalized to a larger class, in
which jumps are allowed in all directions. When α < 1, the jump rate can be in form, say

pgen(d) = β(d)/‖d‖n+α where β(y) =

n∑
i=1

[
b+i 1(y · ei ≥ 0) + b−i 1(y · ei ≤ 0)

]
1(y 6= 0),

in terms of constants {b+i , b
−
i }ni=1, and {ei}ni=1 is the standard basis. We note, in this case,

pgen may even be symmetric as in [19].
However, when α > 1, the same generalization is allowed, except the jump rate must

have a drift,
∑
dpgen(d) 6= 0.

Under these generalizations, the form of Theorems 3.1 and 3.2 remain the same
except that the hydrodynamic equation now involves straightforwardly the constants
{b+i , b

−
i }: When α < 1, weakly

∂tρ =

n∑
i=1

∑
σ=+,−

bσi

∫
σ
[
ei·v
]
>0

Φ(ρ(u− v))Ψ(ρ(u))− Φ(ρ(u))Ψ(ρ(u+ v))

‖v‖n+α
dv,

and when α > 1, in (3.2) and (3.3), γα∂1(n) is replaced by
∑
dpgen(d) · ∇. The proofs are

the same, albeit with more notation.

3. Case α = 1. Although we assume throughout that α 6= 1 and do not consider the
case α = 1 in the sequel, we remark, when α = 1, a log correction is needed in the
definition of the empirical measure since the jump rate p does not have mean, but just
‘barely’ so in that

∑
‖d‖≤N dp(d) = O(log(N)). In this case, instead of πNt , we should use

the rescaled measures 1
Nn

∑
x∈Zn η(N/ log(N))t(x)δ x

N
. The arguments, when α > 1, are

straightforwardly adapted to yield the equation ∂tρ+ ∂1(n)[Φ(ρ)Ψ(ρ)] = 0, here γα being
replaced by 1.

4. Long-range communication α > 2 versus 1 ≤ α ≤ 2. In the Euler scale, when α > 2,
as opposed to when 1 < α ≤ 2, the influence from long distances to the origin, say, is
minimal. From considering the single particle displacement rates, the chance a particle
displaces by order N is of order N1−α. So, the likelihood of a particle a distance of order
N or more away from the origin to pass by is minimal when α > 2, but this chance it
appears is nontrivial when 1 < α ≤ 2.

In this case, it seems not possible to overestimate the chance of travel of particles
located at sites x where |x| ≥ cN to an εN neighborhood of the origin by a convergent
sum as in [24]. In particular, it is not clear how to use the method in [24] to approximate
the process starting from L1 initial densities by those starting from arbitrary initial
states. Please see Lemma 5.7 in [24] for details about this approximation method.

Hence, rather than start in an L1 density ρ0, under which the system would have only
a finite number of particles at each scaling level N as in [24], we have tried to understand
infinite volume effects, using the ‘entropy’ method, by starting in a non-integrable density
ρ0. That ρ0(u) = ρ∗ for large u is a consequence of this method.

5. Use of ‘attractiveness’ when α > 1. Only for the proof of Theorem 3.2 is ‘attrac-
tiveness’ used. This condition allows to show in Step 1 of Section 7 that solutions ρ
are in L∞ when M0 = ∞. However, when M0 < ∞, we have a priori that ρ ∈ L∞ and
‘attractiveness’ is not needed for this point.

On the other hand, ‘attractiveness’ is used to rewrite the generator of a coupled
process in (9.2), and then to bound it in Lemma 9.1. These are important ingredients for
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the ‘ordering’ Lemma 9.3, which is used to show a ‘measure weak’ formulation of the
entropy condition in Theorem 7.3, proved in Section 10.

6. Initial conditions. Only in the proof of Theorem 3.2 is the full description of the
initial measures µN used. In particular, the full structure is employed in Step 3a in
Subsection 10.1, for the proof of the entropy condition inequality. However, with respect
to the proof of Theorem 3.1, we note only the fact that the marginals of µN at x ∈ Zn
have mean ρ0(x/N) is used.

4 Preliminaries

Throughout this paper, a test function will be a smooth C1,2 function G : [0, T )×Rn →
R with compact support. Typically, given a test function G, we will denote, in terms of
the letter R, that its support lies in [0, T )× [−R,R]n. Define ‖G‖ = supt,u |G(t, u)|, and
similarly ‖∇G‖, ‖∇2G‖ and ‖∂sG‖. Often, we will write Gt(x) for G(t, x) in the sequel.

Also, to reiterate, in the sequel, the parameter α 6= 1.
For y ∈ Zn, let τy represent the shift operator: τy(η(x)) = η(x + y) and τy(f(η)) =

f(τyη). Define, for d ∈ Zn, hd(η(x)) = τdh(η(x)) = h(η(x+ d)).
Define also |y| = max{y1, ..., yn} for y = (y1, ..., yn) ∈ Zn. In later calculations, we will

use the notion of an ‘l-block’ average of a function f = f(η): That is, define

f l(η) =
1

(2l + 1)n

∑
|y|≤l

τyf(η).

In particular, ηl(x) = 1
(2l+1)n

∑
|y|≤l η(x+ y).

Form now the mean-zero martingale with respect to 〈Gt, πNt 〉:

MN,G
t := 〈πNt , Gt〉 − 〈πN0 , G0〉 −

∫ t

0

〈πNs , ∂sGs〉ds−
∫ t

0

N1∧αLN 〈πNs , Gs〉ds.

Also, with respect to its quadratic variation,

〈MN,G〉t :=

∫ t

0

N1∧αLN [(〈πNs , Gs〉)2]− 2N1∧α〈πNs , Gs〉LN 〈πNs , Gs〉ds,

we have that (MN,G
t )2 − 〈MN,G〉t is a mean-zero martingale.

Explicitly, we may compute

N1∧αLN 〈πNs , Gs〉 =
N1∧α

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
ghd(ηs(x))

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
and

〈MN,G〉t =

∫ t

0

N1∧α

N2n

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
ghd(ηs(x))

[
Gs
(x+ d

N

)
−Gs

( x
N

)]2
ds. (4.1)

Here, and in the body of the paper, our convention will be that the sums over d
implicitly contain the restriction that d = (d1, . . . , dn) > 0, that is di > 0 for 1 ≤ i ≤ n, as
p is supported on such d, to reduce notation.

4.1 Entropy and Dirichlet forms

Recall the distribution of the process at the Nth level at time t ≥ 0, µNt = µNTNt .
Consider the relative entropy H(µNt |νρ∗) of µNt with respect to the invariant measure
νρ∗ . One may show that H(µNt |νρ∗) is finite, and hence µNt is absolutely continuous with
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respect to νρ∗ . In terms of the Radon-Nikodym derivative fNt = dµNt /dνρ∗ , we have
H(µNt |νρ∗) = H(fNt ) where H(f) =

∫
f log fdνρ∗ .

Recall the adjoint L∗ defined in Subsection 2.2. Define now the Dirichlet form of
a density f by D(f) = −

∫ √
fLsym

√
fdνρ∗ , where we define Lsym = (L + L∗)/2 as the

symmetric part of L. We will on occasion define new Dirichlet forms in terms of pieces
of the above Dirichlet form. For x, y ∈ Zn, define the bond Dirichlet form as

Dx,y(f) =
1

2

∫
psym(y − x)g(η(x))h(η(x+ y))(

√
f(ηx,y)−

√
f(η))2dνρ∗ ,

where psym(d) = (p(d) + p(−d))/2. By properties of νρ∗ , one can calculate Dx,y(f) =

Dy,x(f). Roughly speaking, Dx,y(f) is a measure of how much f(η) can vary as one
particle is moved from x to y or vice versa. In particular, if Dx,y(f) = 0, then f(η) =

f(ηx,y) when p(y − x)g(η(x))h(η(x + y)) 6= 0. In terms of these bond forms, the ‘full’
Dirichlet form may be written as D(f) = (1/2)

∑
x,yD

x,y(f).
One may relate the entropy and Dirichlet form as follows, justification below:

H(µNt |νρ∗) + 2γN

∫ t

0

D(fNs )ds ≤ H(µN |νρ∗). (4.2)

Then, by convexity of the Dirichlet form, we have the bound D
(
f̄Nt
)
≤ H(µN |νρ∗)/(2γN t),

where f̄Nt = 1
t

∫ t
0
fNs ds. Moreover, by our entropy assumption on the initial distributions

{µN}, and with C0 = C/(2t), we have

H(µNt |νρ∗) ≤ H(µN |νρ∗) ≤ CNn and D
(
f̄Nt
)
≤ C0N

n

γN
. (4.3)

In the finite volume, (4.2) and (4.3) are well-known (cf. Chapter 5 in [20]). In the
infinite volume, to obtain finiteness of the relative entropy, (4.2) and (4.3), we may
approximate µNt by distributions µN,Rt = µNTN,Rt of processes with dynamics localized
to boxes of growing width R and sites frozen outside, with semigroup TN,Rt starting from
the product measure µN , for which the relative entropy and localized Dirichlet form of
dµN,Rt /dνρ∗ satisfy (4.2) and (4.3).

In particular, by the construction estimates in Sections 8 of [18], for Lipschitz func-
tions u on the complete, separable metric space X0, we have TN,Rt u → TNt u as R ↑ ∞;
also, as |TN,Rt u(η)|, |TNt u(η)| ≤ cue

crt‖η‖X0 + |u|(0) ∈ L1(µN ), where cu is the Lipschitz
constant with respect to u, 0 is the empty configuration, and cr is a constant depending
on process parameters, we have the ‘convergence’, EµN,Rt

[u]→ EµNt [u], as R ↑ ∞. There-

fore, µN,Rt converges weakly to µNt by the Portmanteau theorem (cf. Section 3.9 in [13]).
Hence, by lower semi-continuity of the relative entropy (cf. [12]), H(µNt |νρ∗) ≤ CNn is
finite.

Now, note that the localized Dirichlet form is greater than the Dirichlet form DK

involving only bonds in a fixed box with width K for all large R, and that such fixed
forms increase as K grows to the full one. We claim that the form DK is lower semi-
continuous: lim infR↑∞DK(dµN,Rs /dνρ∗) ≥ DK(dµNs /dνρ∗). Indeed, this follows noting
that µN,Rt ⇒ µNt , and observations −2

√
f(η)f(ηx,x+y) = supε{−εf(η) − ε−1f(ηx,x+y)},

g(·)h(·) is Lipschitz in X0 by use of the construction assumption (iii; see also 1. in
Subsection 2.5), and Eνρ∗ [f(ηx,x+y)g(η(x))h(η(x + y))] = Eνρ∗ [f(η)g(η(x + y))h(η(x))]

(applied with f = dµN,Rs /dνρ∗ and dµNs /dνρ∗). With these ingredients, it is straightforward
to conclude (4.2) and (4.3). See also [22] and references therein for related approaches.

Recall now the ‘entropy inequality’ (cf. Appendix 1 in [20]): For γ > 0, and bounded
or nonnegative f ,

Eµ[f ] ≤ 1

γ

(
logEν [eγf ] +H(µ|ν)

)
.
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Then, with respect to a bounded or nonnegative function f , noting (4.3), we have

EN [f(ηs)] ≤
1

γNn

{
logEνρ∗ [eγN

nf(η)] + CNn
}
. (4.4)

A common application of the entropy inequality is to bound the numbers of particles
in various sets.

Lemma 4.1. For N ≥ 1, 0 ≤ s ≤ T , and sets AN ⊂ Zn with Card(AN ) ≤ C1N
n, we have

1

Nn
EN
[ ∑
x∈AN

ηs(x)
]
≤ C1K,

where K = (logEνρ∗
[
eγη(0)

]
+ C/C1)/γ, C is the constant in (4.3) and γ > 0

Proof. By the entropy inequality (4.4), and finite exponential moments FEM, the left-side
of the display, for γ > 0, is bounded by

1

γNn

{
logEνρ∗

[
exp

(
γ
∑
x∈AN

η(x)
)]

+ CNn
}
,

which is further bounded by (C1/γ) logEνρ∗
[
eγη(0)

]
+ (C/γ) since νρ∗ is a translation

invariant product measure.

For later reference, we state the following ‘truncation’ bounds, which holds under
FEM, using also the entropy inequality; see p 90-91 in [20].

Lemma 4.2. For R <∞ and 0 ≤ s ≤ T , we have

lim sup
A→∞

lim sup
N→∞

EN
[ 1

Nn

∑
|x|≤RN

ηs(x)1(ηs(x) > A)
]

= 0 and

lim sup
A→∞

lim sup
l→∞

lim sup
N→∞

EN
[ 1

Nn

∑
|x|≤RN

ηls(x)1(ηls(x) > A)
]

= 0.

4.2 Generator and martingale bounds

We now collect a few useful bounds. Let σn be the surface area of the part of an unit
radius n-sphere, centered at the origin, contained in the first orthant. In this subsection,
to make expressions compact, we will adopt the convention that

∑
A(x) orB(x) is a sum

over x where x satisfies specifications A(x) or B(x).

Lemma 4.3. Let G be a test function supported on [0, T )× [−R,R]n. We have

EN [|N1∧αLN 〈πNs , Gs〉|] ≤ CG

where CG = κ‖h‖∞(n+ σn
|α−1|‖∇G‖+ σn

α 2‖G‖)K ′, K ′ = 2(R+1)nK and K is the constant
in Lemma 4.1.

Before going to the proof, we remark that we have made precise the constant CG,
especially its dependence on R, as it will be of use in a later estimate (cf. Lemma 11.1).

Proof. First, as h is bounded and g is Lipschitz, by (2.3), we have

|N1∧αLN 〈πNs , Gs〉| ≤ κ‖h‖∞N1∧α
∞∑
‖d‖=1

1

‖d‖n+α

1

Nn

∑
x∈Zn

ηs(x)
∣∣Gs(x+ d

N

)
−Gs

( x
N

)∣∣.
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The sum over d can be divided into a sums over 1 ≤ ‖d‖ ≤ N and ‖d‖ > N . We may
bound

∣∣Gs(x+d
N

)
− Gs

(
x
N

)∣∣ by ‖∇G‖‖d‖N 1(|x| ≤ (R + 1)N) when 1 ≤ ‖d‖ ≤ N , and by
‖G‖

(
1(|x| ≤ RN) + 1(|x+ d| ≤ RN)

)
when ‖d‖ > N . Hence, we have the further bound

|N1∧αLN 〈πNs , Gs〉| ≤ κ‖h‖∞
(N1∧α

N

N∑
‖d‖=1

1

‖d‖n−1+α
‖∇G‖ 1

Nn

∑
|x|≤(R+1)N

ηs(x)

+N1∧α
∞∑

‖d‖=N+1

1

‖d‖n+α
‖G‖ 1

Nn

∑
|x|≤RN or
|x+d|≤RN

ηs(x)
)
. (4.5)

Both sums over x add over at most 2((R + 1)N)n sized regions. Hence, by Lemma
4.1, the expected value of both sums are less than 2K(R+ 1)nNn.

Also, the sums over d can be bounded as follows:

aN∑
‖d‖=1

1

‖d‖n−1+α
≤ n+ σn

∫ aN

1

1

rα
dr = n+ σn

( 1

α− 1
− 1

α− 1

aN

(aN)α
)

∞∑
‖d‖=bN+1

1

‖d‖n+α
≤ σn

∫ ∞
bN

1

r1+α
dr =

σn
α(bN)α

. (4.6)

We note also, an alternate bound,
∑aN
‖d‖=1 ‖d‖−(n−1+α) ≤ σnN1−α ∫ a

0
r−αdr can be used

when α < 1.
Then,

EN |N1∧αLN 〈πNs , Gs〉|

≤ κ‖h‖∞K ′
(N1∧α

N

(
n+ σn

[ 1

α− 1
− 1

α− 1

N

Nα

])
‖∇G‖+N1∧α σn

αNα
2‖G‖

)
≤ CG,

as desired.

We state here straightforward corollaries of the proof of Lemma 4.3, adjusting the
values of a and b in the sums over d near (4.6).

Lemma 4.4. We have, when α < 1, that

lim
ε↓0

lim
D↑∞

lim
N↑∞

EN
∣∣∣ ∫ t

0

Nα

Nn

∑
x∈Zn

∑
‖d‖<εN or
‖d‖>DN

1

‖d‖n+α
ηs(x)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds
∣∣∣ = 0.

Lemma 4.5. We have, when α > 1, that

lim
ε↓0

lim
N↑∞

EN
∣∣∣ ∫ t

0

N

Nn

∑
x∈Zn

∑
‖d‖>εN

1

‖d‖n+α
ηs(x)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds
∣∣∣ = 0.

The difference of quadratic variations defined in (4.1) can be bounded as follows:

Lemma 4.6. For 0 ≤ t1 ≤ t2 ≤ T , we have that

EN
∣∣〈MN,G〉t2 − 〈MN,G〉t1

∣∣ ≤ KG
|t2 − t1|
Nn

where KG is a constant depending on G.

Proof. Recall the formula for 〈MN,G〉t in (4.1). By (2.3), it is enough to show that

κ‖h‖∞
N1∧α

N2n
EN

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
ηs(x)

∣∣Gs(x+ d

N

)
−Gs

( x
N

)∣∣2 ≤ KG

Nn
. (4.7)
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We can bound one factor
∣∣Gs(x+d

N

)
−Gs

(
x
N

)∣∣ by 2‖G‖. The left-side of the display is then
bounded by 2‖G‖/Nn times

κ‖h‖∞N1∧αEN
∞∑
‖d‖=1

1

‖d‖n+α

1

Nn

∑
x∈Zn

ηs(x)
∣∣Gs(x+ d

N

)
−Gs

( x
N

)∣∣.
However, we have already bounded this expression in the proof of Lemma 4.3 by CG.

4.3 Tightness of {PN}
We now show, when α 6= 1, that the sequence {PN} is tight and therefore weakly rel-

atively compact. For smooth G with compact support, let PNG be the induced distribution
of {〈πNt , G〉 : t ∈ [0, T ]}. To prove that {PN} is tight, it is enough to show that {PNG } is
tight for all such G (cf. Proposition 1.7, Chapter 4 in [20]). We will in fact show sufficient
tightness estimates with respect to the uniform topology, stronger than the Skorohod
topology.

Proposition 4.7. The sequence {PNG } is tight with respect to the uniform topology: For
smooth G with compact support in Rn, the following holds.

1. For every ε > 0, there is a compact K ⊆ R such that supN P
N
(
〈πN0 , G〉 /∈ K

)
≤ ε.

2. For every ε > 0,

lim sup
δ→0+

lim sup
N→∞

PN
(

sup
|t−s|<δ

0≤s,t≤T

|〈πNt , G〉 − 〈πNs , G〉| > ε
)

= 0

Proof. To prove the first condition, it is enough to show that supN E
N [|〈πN0 , G〉|] is finite.

But, by Lemma 4.1,

EN |〈πN0 , G〉| ≤ ‖G‖
1

Nn
EµN

∑
|x|≤RN

η0(x) <∞.

To prove the second condition, for t > s, we may write

sup
|t−s|<δ

|〈πNt , G〉 − 〈πNs , G〉| (4.8)

≤ sup
|t−s|<δ

∫ t

s

∣∣N1∧αLN 〈πNr , G〉
∣∣dr + sup

|t−s|<δ

∣∣MN,G
t −MN,G

s

∣∣.
The second term on the right-side of (4.8) is bounded through the triangle inequality,
Doob’s inequality, and the quadratic variation estimate Lemma 4.6:

EN sup
|t−s|<δ

∣∣MN,G
t −MN,G

s

∣∣2 ≤ 4EN sup
0≤t≤T

(
MN,G
t

)2 ≤ 16EN 〈MN,G〉T = O
(
N−n

)
.

For the first term on the right-side of (4.8), as is done in the proof of Lemma 4.3, we
bound the integrand by (4.5). We now analyze the first term in (4.5); the other term is
similarly handled. Write the first term as I1 + I2, in terms of a parameter A, where

I1 = κ‖h‖∞
N1∧α

N

N∑
‖d‖=1

1

‖d‖n−1+α
‖∇G‖ 1

Nn

∑
|x|≤RN

ηr(x)1(ηr(x) ≤ A)

I2 = κ‖h‖∞
N1∧α

N

N∑
‖d‖=1

1

‖d‖n−1+α
‖∇G‖ 1

Nn

∑
|x|≤RN

ηr(x)1(ηr(x) > A).
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We may bound I1, as in the proof of Lemma 4.3, by I1 ≤ [CG/K
′](2R+ 1)nA. Corre-

spondingly, sup|t−s|<δ
∫ t
s
I1dr ≤ δ[CG/K ′](2R+ 1)nA, which vanishes as δ ↓ 0.

For the term I2, we use the following approach. For each δ, partition [0, T ] into
n = dT/δe intervals [ti, ti+1] for i = 0, 1, . . . , n− 1, of length T/n. Then,

sup
|t−s|<δ

∫ t

s

I2dr ≤ 3 max
i

∫ ti+1

ti

I2dr.

It follows that

PN
(

sup
|t−s|<δ

∫ t

s

I2dr > ε
)
≤
∑
i

PN
(∫ ti+1

ti

I2dr > ε/3

)
≤ 3

ε

∫ T

0

EN [I2]dr.

Since the sum (N1∧α/N)
∑

1≤‖d‖≤N ‖d‖−(n−1+α) is bounded (cf. (4.6)), by Lemma 4.2,

we have that limA↑∞ limN↑∞EN [I2] = 0, to finish the proof.

5 Proof outline: hydrodynamic limits when α < 1

We outline the proof of Theorem 3.1, refering to ‘1 and 2-block’ estimates later proved
in Section 6.

Step 1. First, by Doob’s inequality and the quadratic variation bound Lemma 4.6, for
ε0 > 0,

lim sup
N→∞

PN
(

sup
0≤t≤T

∣∣MN,G
t

∣∣ > ε0

)
≤ 4

ε20
lim sup
N→∞

EN
(
MN,G
T

)2
= 0.

As G has compact support, we may choose t < T large enough so that Gt, and hence
〈πNt , Gt〉 vanishes. Therefore, for such t,

lim sup
N→∞

PN
(∣∣∣〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds+

∫ t

0

NαLN 〈πNs , Gs〉ds
∣∣∣ > ε0

)
= 0.

Step 2. Next, in order for 〈πN0 , G0〉+
∫ t

0
〈πNs , ∂sGs〉ds+

∫ t
0
NαLN 〈πNs , Gs〉ds to look like

the weak formulation of a hydrodynamic equation, we will replace
∫ t

0
NαLN 〈πNs , Gs〉ds

by appropriate terms. Noting the generator expression near (4.1),∫ t

0

NαLN 〈πNs , Gs〉ds =

∫ t

0

Nα

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
ghd(ηs(x))

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds.

We now truncate the sum over d to when ‖d‖ is at least εN and at most DN . By Lemma
4.4, as ghd(η(x)) ≤ κ‖h‖∞η(x) (cf. (2.3)), the excess vanishes, where ε ↓ 0 and D ↑ ∞,
after N ↑ ∞. Therefore, after limits on N , ε and D are taken in order,

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds

+

∫ t

0

Nα

Nn

∑
x∈Zn

DN∑
‖d‖=εN

1

‖d‖n+α
ghd(ηs(x))

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds

vanishes in probability. Here, and elsewhere, we write εN and DN for dεNe and bDNc.
We remark that one may link D to ε by specifying D = ε−1 in what follows. We have

chosen however to separate the parameters to highlight their roles. We also comment
that the truncations on d are of use to bound quantities such as ∇α,dGs(x/N) in Step 3c,
and others in the proofs of the 1 and 2-block estimates later quoted in Step 3.
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Step 3a. We will now like to replace the nonlinear terms ‘ghd(ηs(x))’ by functions of the
empirical measure πNs .

The first replacement involves substituting ghd(ηs(x)), with its average over l-blocks:
(ghd)

l(ηs(x)), where l diverges after N diverges, but before the limits on ε and then D.
By a discrete integration-by-parts, smoothness and compact support of G, the error
introduced is of the expected order

κ‖h‖∞‖∇G‖
lNα−1

Nn
EN

∫ t

0

DN∑
‖d‖=εN

1

‖d‖n+α

∑
|x|≤(R+D)N

ηs(x)ds,

which vanishes, noting Lemma 4.1.
Therefore, we have, as N ↑ ∞, l ↑ ∞, ε ↓ 0 and D ↑ ∞, that

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds

+

∫ t

0

Nα

Nn

∑
x∈Zn

DN∑
‖d‖=εN

1

‖d‖n+α
(ghd)

l
(
ηs(x))

)[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds

vanishes in probability.

Step 3b. Next, we perform what is usually called the ‘1-block’ replacement. Recall the
functions Φ and Ψ in (2.2). We would like to replace (ghd)

l(ηs(x)) by Φ(ηls(x))Ψ(ηls(x+d)),
the ‘averaged’ function of the local mass density. That is, we wish to show

lim sup
l→∞

lim sup
N→∞

EN
∫ t

0

Nα

Nn

DN∑
‖d‖=εN

1

‖d‖n+α

∣∣∣ ∑
x∈Zn

H1
x,d,l(ηs)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]∣∣∣ds = 0

where H1
x,d,l(η) = (ghd(η(x)))l − Φ(ηl(x))Ψ(ηl(x + d)). By discrete integration-by-parts

and bounding G(x/N) by 1(|x| ≤ RN)‖G‖, it will be enough to show that

EN
∫ t

0

Nα

Nn

DN∑
‖d‖=εN

1

‖d‖n+α

∑
|x|≤(R+D)N

∣∣H1
x,d,l(ηs)

∣∣ds and

EN
∫ t

0

Nα

Nn

DN∑
‖d‖=εN

1

‖d‖n+α

∑
|x|≤(R+D)N

∣∣τ−dH1
x,d,l(ηs)

∣∣ds
both vanish as N ↑ ∞ and then l ↑ ∞ for fixed ε,D. This is proved as a consequence of
Proposition 6.1 in Subsection 6.1.

After this 1-block replacement, we have

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds+

∫ t

0

1

N2n

∑
x∈Z

DN∑
‖d‖=εN

Φ
(
ηls(x)

)
Ψ
(
ηls(x+ d)

)
∇α,dGs

( x
N

)
ds

vanishes in probability as in order N ↑ ∞, l ↑ ∞, ε ↓ 0 and D ↑ ∞, where

∇α,dGs(x/N) = ‖(d/N)‖−n−α
[
Gs
(
(x+ d)/N

)
−Gs

(
x/N

)]
.

Step 3c. The final estimate is the so-called ‘2-blocks’ replacement, where ηls(x) is replaced
by ηε

′N
s (x) in terms of a parameter ε′. We will write ε′N instead of bε′Nc throughout.
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That is, we will like to show for fixed ε and D, as in order N ↑ ∞, ε′ ↓ 0 and l ↑ ∞, that

EN
∫ t

0

1

N2n

∑
x∈Zn

DN∑
‖d‖=εN

∣∣Φ(ηls(x))Ψ(ηls(x+ d))

−Φ(ηε
′N
s (x))Ψ(ηε

′N
s (x+ d))

∣∣∣∣∇α,dGs( x
N

)∣∣ds
vanishes.

We observe that ∇α,dGs
(
x
N

)
is zero, unless −(R+D)N ≤ x ≤ RN , in which case it

is bounded. Also, as Φ is Lipschitz and Ψ is bounded by ‖h‖∞, we have∣∣Φ(ηls(x))Ψ(ηls(x+ d))− Φ(ηε
′N
s (x))Ψ(ηε

′N
s (x+ d))

∣∣ ≤ H2
x,d,l,ε′N (ηs)

where H2
x,d,l,ε′N (η) = κ‖h‖∞|ηl(x) − ηε′N (x)| + Φ(ηl(x))|Ψ(ηl(x + d)) − Ψ(ηε

′N (x + d))|.
Then, to show the 2-blocks replacement, it will enough to show, for fixed ε,D that

lim
l↑∞

lim
ε′↓0

lim
N↑∞

EN
∫ t

0

1

Nn

DN∑
‖d‖=εN

1

Nn

∑
|x|≤(R+D)N

H2
x,d,l,ε′N (ηs)ds = 0.

This is a consequence of Proposition 6.3 in Subsection 6.2.

We now observe that an ε′N -block is macroscopically small, and may written in terms
of πNs as follows:

ηε
′N
s (x) =

(
2ε′N

2ε′N + 1

)n
〈πNs , ιε′(· − x/N)〉

where ιε′ = (2ε′)−n1([−ε′, ε′]n). Hence, after the 2-blocks replacement, we have ‘closed
the equation’, that is

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds

+

∫ t

0

1

Nn

∑
x∈Zn

1

Nn

DN∑
‖d‖=εN

Φ
(〈
πNs , ιε′(· −

x

N
)
〉)

Ψ
(〈
πNs , ιε′(· −

x+ d

N
)
〉)
∇α,dGs

( x
N

)
ds

vanishes in probability as N ↑ ∞ and ε′ ↓ 0, for fixed ε,D.

Step 4. We may replace the Riemann sums with integrals limited by ε and D. As Φ,Ψ

are Lipschitz and Ψ is bounded (cf. (2.3)), and as ∇α,dGs is smooth, the error accrued is
of expected order N−(n+1)

∫ t
0
EN

∑
|x|≤(R+D)N ηs(x)ds, which vanishes, as N ↑ ∞, D ↑ ∞

and ε ↓ 0, by Lemma 4.1.

Further, we may then replace the limits in the integrals by 0 and ∞, respectively.
The error of this replacement, comparing to Riemann sums, vanishes by Lemma 4.4, as
N ↑ ∞, ε′ ↓ 0, D ↑ ∞ and ε ↓ 0.

For v ∈ Rn, define Ψv(f(u)) = Ψ(f(u + v)), and recall ∇α,vGs(u) = ‖v‖−n−α
[
Gs(u +

v)−Gs(u)
]
. Hence, we obtain that

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds

+

∫ t

0

∫
Rn

∫
[0,∞)n

Φ
(
〈πNs , ιε′(· − u)〉

)
Ψv

(
〈πNs , ιε′(· − u)〉

)
∇α,vGs(u)dvduds

converges to zero in probability as N ↑ ∞ and ε′ ↓ 0.
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Step 5. Now, according to Proposition 4.7, the measures {PNG } are tight, with respect
to uniform topology. Let {Nk} be a subsequence where the measures converge to a limit
point P ∗. The function of π,

〈π0, G0〉+

∫ t

0

〈πs, ∂sGs〉ds+

∫ t

0

∫
Rn

∫
[0,∞)n

ΦΨv

(
〈πNs , ιε′(· − u)〉

)
∇α,vGs(u)dvduds,

is continuous for each ε′ > 0. Then, letting Nk ↑ ∞, we recover that

lim
ε′↓0

P ∗
(∣∣∣〈π0, G0〉+

∫ t

0

〈πs, ∂sGs〉ds

+

∫ t

0

∫
Rn

∫
[0,∞)n

ΦΨv

(
〈πs, ιε′(· − u)〉

)
∇α,vGs(u)dvduds

∣∣∣ > ε0

)
= 0.

Step 6. Now, we claim that P ∗ is supported on on measures πs that are absolutely
continuous with respect to Lebesgue measure, and so πs = ρ(s, u)du for an L1

loc function
ρ(s, u). Indeed, this follows, under condition FEM, with the same proof given for zero-
range processes on pages 73-75 of [20]. We also have 〈π0, G0〉 = 〈ρ0, G0〉 from our initial
conditions. Hence, 〈πs, ιε′(· − u)〉 = (2ε′)−n

∫
[−ε′,ε′]n ρ(s, u+ v)dv. Note also that P ∗-a.s.

lim sup
ε′→0

∣∣∣ 1

(2ε′)n

∫
[−ε′,ε′]n

ρ(s, u+ v)dv − ρ(s, u)
∣∣∣ = 0 u-a.e. and in L1

loc.

By properties of Φ,Ψ, we have

|ΦΨv(〈πs, ιε′(· − u)〉)− ΦΨv(ρ(s, u))|
≤ κ‖ψ‖∞|〈πs, ιε′(· − u)〉 − ρ(s, u)|+ κρ(s, u)|Ψv(〈πs, ιε′(· − u)〉)−Ψv(ρ(s, u))|.

As Ψ is bounded, the second term on the right-side is bounded by 2κ‖ψ‖∞ρ(s, u). Note
also that supw∈Rn EP∗

∫ t
0
|〈πs,1(| · −w| ≤ R)〉ds = supw∈Rn EP∗

∫ t
0

∫
|u−w|≤R ρ(s, u)duds <

∞ by Lemma 4.1 and lower semi-continuity in π of the associated mapping. Then, as G
has compact support, by the L1

loc convergence, and use of dominated convergence, we
have, with respect to each limit point P ∗, a.s.∫

Rn
ρ0(u)G0(u)du+

∫ ∞
0

∫
Rn
ρ(s, u)∂sGs(u)〉ds

+

∫ t

0

∫
Rn

∫
[0,∞)n

ΦΨv (ρ(s, u))∇α,vGs(u)dvduds = 0.

Since G has compact support in [0, T ) with respect to time, we may replace t by T .
In other words, every limit point P ∗ is supported on absolutely continuous measures,

πs = ρ(s, u)du, whose densities ρ(s, u) are weak solutions of the hydrodynamic equation.
This concludes the proof of Theorem 3.1.

6 1-block and 2-block estimates

We discuss the 1 and 2 block estimates when α < 1, and also a 1-block estimate when
α > 1 in the next three subsections.

6.1 1-block estimate: α < 1

We now prove the 1-block replacement used in Section 5. As a comment, in Step 3,
due to the long range setting, we use a somewhat nonstandard estimate.
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Proposition 6.1 (1-block estimate). When α < 1, we have

lim sup
l→∞

lim sup
N→∞

EN
∫ t

0

DN∑
‖d‖=εN

Nα

‖d‖n+α

1

Nn

∑
|x|≤RN

∣∣H1
x,d,l(ηs)

∣∣ ds = 0

where H1
x,d,l(η) = (ghd)

l(η(x)))− Φ
(
ηl(x)

)
Ψ
(
ηl(x+ d)

)
Proof. The proof goes through a few steps.

Step 1. We first introduce a truncation. As both |h|, |Ψ| ≤ ‖h‖∞, and both g,Φ are
Lipschitz, we can bound H1

x,d,l ≤ 2κ‖h‖∞ηl(x). Since lim supN↑∞
∑DN
‖d‖=εN N

α/‖d‖n+α <

∞, we can introduce the indicator function 1(ηls(x) ≤ A) into the integrand in the display
by Lemma 4.2.

Once again, by Lemma 4.2, as |H1
x,d,l(ηs)|1(ηl(x) ≤ A) is bounded in terms of A, and

again the sum
∑DN
‖d‖=εN N

α/‖d‖n+α is uniformly bounded in N , we can introduce the

indicator function 1(ηl(x+ d) ≤ A) in the integrand.
It will be enough to show, for each A, as N ↑ ∞ and l ↑ ∞, that the following vanishes,

EN
∫ t

0

DN∑
‖d‖=εN

Nα

‖d‖n+α

1

Nn

∑
|x|≤RN

∣∣H1
x,d,l(ηs)

∣∣1(ηls(x) ∨ ηls(x+ d) ≤ A)ds.

Step 2. Recall the density f̄Nt in Subsection 4.1. The expected value above equals

t

∫ DN∑
‖d‖=εN

Nα

‖d‖n+α

1

Nn

∑
|x|≤RN

∣∣H1
x,d,l(η)

∣∣1(ηl(x) ∨ ηl(x+ d) ≤ A)f̄Nt (η)νρ∗(dη).

Given the Dirichlet bound on f̄Nt in (4.3) of order Nn/Nα, we need only show that

sup
D(f)≤C0N

n

Nα

∫ DN∑
‖d‖=εN

Nα

‖d‖n+α

1

Nn

∑
|x|≤RN

∣∣H1
x,d,l(η)

∣∣1(ηl(x) ∨ ηl(x+ d) ≤ A)f(η)νρ∗(dη)

vanishes as N ↑ ∞ and l ↑ ∞.
Let fR,N (η) = 1

(2RN+1)n

∑
|x|≤RN τxf(η). By translation-invariance of νρ, the above

display equals

sup
D(f)≤C0N

n

Nα

∫ DN∑
‖d‖=εN

Nα

‖d‖n+α

(2RN + 1)n

Nn
)
∣∣H1

0,d,l(η)
∣∣1(ηl(0) ∨ ηl(d) ≤ A)fR,N (η)νρ∗(dη).

Step 3. At this stage, there is a trick that is not part of the standard 1-block argument
because, in H1

0,d,l, we in fact have 2 l-blocks, about 0 and d. Let ξ and ζ be configurations
on [−l, l]n that equal η and τdη, respectively, on [−l, l]n. Define

H1
l (ξ, ζ) :=

1

(2l + 1)n

∑
|y|≤l

g(ξ(y)h(ζ(y))− Φ(ξl(0))Ψ(ζl(0)).

Let ν1
ρ∗(dξ, dζ) be the product measure on pairs of configurations (ξ, ζ) induced by νρ∗ ,

and let f̄l,d(ξ, ζ) be the conditional expectation of fR,N (η) given configurations η that
equal ξ on [−l, l]n and ζ on [−l + d, l + d]n. Define now

f̄N,l,ε,D =
( DN∑
‖d‖=εN

Nα

‖d‖n+α
f̄l,d

)/ DN∑
‖d‖=εN

Nα

‖d‖n+α
.
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Given (2RN + 1)n/Nn ≤ (2R+ 1)n and
∑DN
‖d‖=εN N

α/‖d‖n+α is bounded in terms of ε
and D, it will be sufficient to show that

lim sup
l↑∞

lim sup
N↑∞

sup
D(f)≤C0N

n

Nα

∫ ∣∣H1
l (ξ, ζ)

∣∣1(ξl(0) ∨ ζl(0) ≤ A)f̄N,l,ε,D(ξ, ζ)ν1
ρ∗(dξ, dζ) = 0.

Step 4. Let Dx,y
1 (f) = Dx,y(f) and Dx,y

2 (f) = Dx,y(τdf) be the bond Dirichlet forms
with respect to configurations ξ and ζ respectively. Define now a new Dirichlet form,

D2
l (f) :=

∑
|y|≤l

(
D0,y

1 (f) +D0,y
2 (f)

)
.

In Lemma 6.2 below, we prove the following bound D2
l (f̄N,l,ε,D) ≤ C1/N

α. Therefore, it
will be enough to show

lim sup
l↑∞

lim sup
N↑∞

sup
D2
l (f)≤ C1

Nα

∫ ∣∣H1
l (ξ, ζ)

∣∣1(ξl(0) ∨ ζl(0) ≤ A)f(ξ, ζ)ν1
ρ∗(dξ, dζ) = 0. (6.1)

Because of the truncation, 1(ξl(0) ∨ ζl(0) ≤ A), we may restrict the supremum to
sub-probability densities f supported on a finite set of configurations (ξ, ζ) satisfying
ξl(0) ∨ ζl(0) ≤ A. As the mass ν1

ρ∗(ξ, ζ) is bounded below uniformly by a constant
C(n, l) > 0 for these finite number of configurations, we have the uniform bound for the
sub-probability density, f(ξ, ζ) ≤ C−1(l), on its domain. Hence, from any sequence of
such densities, one can extract a subsequence which converges pointwise. See Chapter
5 in [20] for another approach.

The supremum in (6.1), for each N and l, is attained at some density denoted fN,l.
As N ↑ ∞, any convergent subsequence of {fN,l} approaches a function f∞. Since
D2
l (fN,l) ≤ C1/N

α, by Fatou’s lemma, the Dirichlet form of f∞ vanishes, D2
l (f∞) = 0.

Therefore, after N ↑ ∞, the supremum is bounded by

sup
D2
l (f)=0

∫ ∣∣H1
l (ξ, ζ)

∣∣1(ξl(0) ∨ ζl(0) ≤ A)f(ξ, ζ)ν1
ρ∗(dξ, dζ).

Step 5. If D2
l (f) = 0, then f is a constant, namely f = Cj1,j2 along the hyperplanes

H2
j1,j2 =

{
(ξ, ζ) :

∑
|y|≤l

ξ(y) = j1,
∑
|y|≤l

ζ(y) = j2

}
,

where j1, j2 = 0, 1, ..., (2l + 1)nA. Because f is a sub-probability density, the constants
Cj1,j2 are nonnegative and

∑
Cj1,j2ν

1
ρ∗
(
H2
j1,j2

)
≤ 1. Therefore, the last expression can

be written as a supremum over all possible weighted averages of the integral over
hyperplanes:

sup∑
cj1,j2≤1

(2l+1)nA∑
j1,j2=0

cj1,j2

∫
H2
j1,j2

∣∣H1
l (ξ, ζ)

∣∣νl,j1,j2(dξ, dζ),

where νl,j1,j2 is the canonical product measure ν1
ρ∗ conditioned to H2

j1,j2
, no longer

depending on ρ∗.
In particular, it will be enough to show that

lim sup
l↑∞

sup
0≤j1,j2≤(2l+1)nA

∫ ∣∣H1
l (ξ, ζ)

∣∣νl,j1,j2(dξ, dζ) = 0.

Step 6. We try to make the integrand independent of l. To simplify expressions, we
assume now that l is such that (2l+ 1)n = q(2k+ 1)n, that is, an l-block is partitioned into
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k-blocks. When l is not in this form, the following argument may be straightforwardly
adapted with more notation. Let B1, .., Bq denote the k-blocks. Then,

H1
l (ξ, ζ) =

1

q

q∑
i=1

1

(2k + 1)n

∑
y∈Bi

(
g(ξ(y)h(ζ(y)))− Φ(ξl(0))Ψ(ζl(0))

)
Under νl,j1,j2 , the distribution of

∑
y∈Bi(g(ξ(y))h(ζ(y))−Φ(ξl(0)Ψ(ζl(0)))/(2k+1)n doesn’t

depend on i. Therefore, noting ξl(0) = j1
(2l+1)n and ζl(0) = j1

(2l+1)n , we can bound the
previous supremum by

sup
0≤j1,j2≤(2l+1)nA

∫ ∣∣∣ 1

(2k + 1)n

∑
|y|≤k

g(ξ(y))h(ζ(y))

−Φ
( j1

(2l + 1)n
)
Ψ
( j2

(2l + 1)n
)∣∣∣νl,j1,j2(dξ, dζ).

We can then take the limit as l ↑ ∞, that is, as q ↑ ∞ to obtain, by a local central limit
theorem or equivalence of ensembles estimate as in Corollary 1.7 in Appendix 2 [20],
the expression

sup
0≤ρ1,ρ2≤A

∫ ∣∣ 1

(2k + 1)n

∑
|y|≤k

g(ξ(y))h(ζ(y))− Φ(ρ1)Ψ(ρ2)
∣∣(νρ1 × νρ2)(dξ, dζ).

But, this quantity, say using a Chebychev bound, vanishes uniformly for 0 ≤ ρ ≤ A as
k ↑ ∞ by the law of large numbers, since Φ(ρ1)Ψ(ρ2) = Eνρ1×νρ2 [g(ξ(0))h(ζ(0))].

As a remark, this last step is rather interesting. Normally, the usual 1-block estimate
ends by showing that an average of a function of the ξ(y) converges to its expected value.
Here, in the α < 1 case, we end up with term that looks like a covariance.

We now show a bound on D2
l (f̄N,l,ε,D) =

∑
|y|≤l

(
D0,y

1 (f̄N,l,ε,D) +D0,y
2 (f̄N,l,ε,D)

)
.

Lemma 6.2. Let f be a density such that D(f) ≤ C0N
n

Nα . Then, D2
l (f̄N,l,ε,D) ≤ C1/N

α

where C1 = 2C0/R
n.

Proof. By the convexity of the Dirichlet form, for i = 1, 2,

D0,y
i (f̄N,l,ε,D) ≤ 1

DN∑
‖d‖=εN

Nα

‖d‖n+α

DN∑
‖d‖=εN

Nα

‖d‖n+α
D0,y
i (f̄l,d).

Moreover, D0,y
1 (f̄l,d) ≤ D0,y(fR,N ) and D0,y

2 (f̄l,d) ≤ Dd,y+d(fR,N ). It follows D2
l (f̄N,l,ε,D)

is less than

1
DN∑
‖d‖=εN

Nα

‖d‖n+α

DN∑
‖d‖=εN

Nα

‖d‖n+α

1

(2RN + 1)n

∑
|x|≤RN

∑
|y|≤l

(
D0,y(τxf) +Dd,y+d(τxf)

)
.

Noting D0,y(τxf) = Dx,y+x(f), the last display is bounded by

(2RN + 1)−n

DN∑
‖d‖=εN

Nα

‖d‖n+α

DN∑
‖d‖=εN

Nα

‖d‖n+α

∑
|y|≤l
|x|≤RN

(
Dx,y+x(f) +Dd+x,y+d+x(f)

)
.

EJP 23 (2018), paper 130.
Page 23/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

Note, for each l, N and R, that
∑
|y|≤l
|x|≤RN

Dx,y+x(f) + Dd+x,y+d+x(f) ≤ 4D(f), as each

bond is counted at most four times. Hence, we may bound the last display further by

4D(f)

(2RN + 1)n
≤ 4

(2RN + 1)n
C0N

n

Nα
≤ C1

Nα

where C1 = 2C0/R
n.

6.2 2-blocks estimate: α < 1

The proof of the 2-blocks estimate is similar to the preceding 1-block estimate, so we
will give only a brief overview of the key differences.

Proposition 6.3 (2-blocks estimate). When α < 1, we have

lim sup
l→∞

lim sup
ε′→0

lim sup
N→∞

EN

∫ t

0

1

Nn

DN∑
‖d‖=εN

1

Nn

∑
|x|≤(R+D)N

H2
x,d,l,ε′N (ηs)ds

 = 0,

where

H2
x,d,l,ε′N (η) = κ‖h‖∞

∣∣ηl(x)− ηε
′N (x)

∣∣+ Φ(ηl(x))
∣∣Ψ(ηl(x+ d))−Ψ(ηε

′N (x+ d))
∣∣

Proof. The proof uses several steps.

Step 1. Analogous to the 1-block proof, we introduce a truncation. We can bound
the second term of H2

x,d,l,ε′N (η) as Φ(ηl(x))|Ψ(ηl(x+ d))−Ψ(ηε
′N (x+ d))| ≤ 2κ‖h‖∞ηl(x),

since Ψ(·) ≤ ‖h‖∞ and Φ is Lipschitz. Given that
∑DN
‖d‖=εN N

−n remains bounded as

N ↑ ∞, we can introduce the indicator function 1(ηls(x) ≤ A) onto the second term of
H2
x,d,l,ε′N (η) by Lemma 4.2. Since Ψ is Lipschitz, the truncated second term is less than

κ1Φ(A)
∣∣ηl(x+ d)− ηε′N (x+ d)

∣∣. The proposition will follow if we show, as N ↑ ∞, ε′ ↓ 0

and l ↑ ∞, that

EN
∫ t

0

1

Nn

DN∑
‖d‖=εN

1

Nn

∑
|x|≤(R+D)N

|ηls(x∗)− ηε
′N
s (x∗)|ds = 0,

for both x∗ = x and x∗ = x+ d.
As in the standard 2-blocks estimate, we will replace an ε′N block, ηε

′N
s , by an average

of l-blocks, ηls. Specifically, we will replace ηε
′N
s (x∗) by

1

(2ε′N + 1)n

∑
2l<|y|≤ε′N

ηls(x
∗ + y).

The expected error introduced is of order EN
∫ t

0
N−2n

∑
|x|≤R′ ηs(x)ds, for some R′,

which vanishes by say Lemma 4.1.
By bounding the ‘average’ over y by a supremum, it will be enough to show that

sup
2l<|y|≤ε′N

EN
∫ t

0

1

Nn

DN∑
‖d‖=εN

1

Nn

∑
|x|≤(R+D)N

∣∣ηls(x∗)− ηls(x∗ + y)
∣∣ds

vanishes.

Step 2. From here, the proof of the 2-blocks estimates proceeds in the same way
as for the 1-block estimate. We can write the expected value in terms of f̄Nt and then
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majorize by a factor t times

sup
2l<|y|≤ε′N

sup
D(f)≤C0N

n

Nα

∫
1

Nn

DN∑
‖d‖=εN

1

Nn

∑
|x|≤(R+D)N

∣∣ηl(x∗)− ηl(x∗ + y)
∣∣ f(η)νρ∗(dη).

Suppose x∗ = x + d. As νρ∗ is translation invariant, we may replace x + d by x and

f(η) by τ−df(η). Now, τ−df(η) and therefore N−n
∑DN
‖d‖=εN τ−df , by convexity, satisfy the

same entropy and Dirichlet form bounds as f . Hence, without loss of generality, we may
assume x∗ = x in the sequel.

In this case,
∑DN
‖d‖=εN N

−n can then be pulled out, bounded above by a constant. It
will be enough to show that

sup
2l<|y|≤ε′N

sup
D(f)≤C0N

n

Nα

∫
1

Nn

∑
|x|≤(R+D)N

∣∣ηl(x)− ηl(x+ y)
∣∣ f(η)νρ∗(dη)

which looks like the standard 2-blocks estimate, say in Chapter 5 of [20].

Step 3. We may introduce the indicator function 1(ηl(x) ∨ ηl(x + y) ≤ A) to the
integrand by Lemma 4.2. By translation-invariance of νρ∗ , we can shift the summand
by τ−x. Recall the averaged density fR+D,N , introduced in Step 2 in Subsection 6.1.
Multiplying and dividing by (2(R+D)N + 1)n and noting that the factor (2(R+D)N +

1)n/Nn is bounded, by convexity of the Dirichlet form, it will be enough to show the
following vanishes, as N ↑ ∞ and ε′ ↓ 0:

sup
2l<|y|≤ε′N

sup
D(f)≤C0N

n

Nα

∫ ∣∣ηl(0)− ηl(y)
∣∣1(ηl(0) ∨ ηl(y) ≤ A)fR+D,N (η)νρ∗(dη).

Step 4. Let ξ1 and ξ2 be configurations on [−l, l]n, equal to η and τyη, respectively. Let
ν2
ρ∗(dξ1, dξ2) be the associated induced measure with respect to νρ∗ . Let also f̄l,y(ξ1, ξ2)

be the conditional expectation of fR+D,N (η) given configurations η that equal ξ1 on
[−l, l]n and ξ2 on [−l + y, l + y]n. The last display in Step 3 equals

sup
2l<|y|≤ε′N

sup
D(f)≤C0N

n

Nα

∫ ∣∣ξl1(0)− ξl2(0)
∣∣1(ξl1(0) ∨ ξl2(0) ≤ A)f̄l,y(ξ1, ξ2)ν2

ρ∗(dξ1, dξ2).

With Dw,z
1 (f) = Dw,z(f) and Dw,z

2 (f) = Dw,z(τyf), we now introduce a Dirichlet form,

D∗l (f) =
∑
|x|≤l

(
D0,x

1 (f) +D0,x
2 (f)

)
+

D∗(f)

psym(y)
, where (6.2)

D∗(f)/psym(y) := Eνρ∗
[
g(η(0))h(η(y))(

√
f(η0,y)−

√
f(η))2

]
(6.3)

is a Dirichlet form on the bond between the centers of the l-blocks involved. Note, with
the convention 0/0 = 1 when psym(y) = 0, we have D∗(f)/psym(y) = D0,y(f)/psym(y) =

Dy,0(f)/psym(y). Importantly, a zero form D∗l (f) = 0 implies that f is invariant to particle
motion within each l-block and also motion between the centers. In this case, f takes a
constant value along each of the hyperplanes

H2
j =

{
(ξ1, ξ2) :

∑
|y|≤l

(ξ1(y) + ξ2(y)) = j
}

for j = 0, 1, ..., 2(2l + 1)nA.
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In Lemma 6.4 at the end of the Subsection, for 2l < |y| ≤ ε′N , we prove the bound
D∗l (f̄l,y) ≤ C2N

−α +C3(ε′)α. Therefore, it will be enough to show the following vanishes:

sup
D∗l (f)≤ C2

Nα+C3(ε′)α

∫ ∣∣ξl1(0)− ξl2(0)
∣∣1(ξl1(0) ∨ ξl2(0) ≤ A)f(ξ1, ξ2)ν2

ρ∗(dξ1, dξ2).

As in the 1-block proof, as particle numbers are bounded, we may take limits, as
N ↑ ∞ and ε′ ↓ 0, to restrict the supremum above to densities f such that D∗l (f) = 0.

Step 5. Hence, at this stage, f equals a constant Cj along each hyperplane H2
j for

j ≤ 2(2l + 1)nA. Because f is a probability density, these constants Cj are non-negative
and

∑
j Cjν

2
ρ∗(H

2
j ) = 1. Therefore, we need only show

sup
0≤j≤2(2l+1)nA

∫ ∣∣ξl1(0)− ξl2(0)
∣∣ ν2,l,j(dξ1, dξ2)

vanishes, where ν2,l,j is the canonical measure on configurations (ξ1, ξ2) which distributes
j particles among the two l-blocks.

However, both the expectations under ν2,l,j of ξl1(0) and ξl2(0) equal j
2(2l+1)n . Hence,

adding and subtracting j
2(2l+1)n inside the absolute value, it will be enough to control

Varν2,l,j (ξli(0)) ≤ CEν2,l,j [l−n(ξ̄1(0))2 + 2ξ̄1(0)ξ̄1(e1)], ξ̄(x) = ξ(x)− j/[2(2l + 1)n] and e1 =

(1, 0, . . . , 0). By the equivalence of ensembles as used in Step 6 of Proposition 6.1, noting
νj/[2(2l+1)n] is a product measure with identical marginals, the variance vanishes as
l ↑ ∞.

6.2.1 Moving particle lemma

We now prove the following bound on D∗l,y(f̄l,y). Part of the strategy is inspired by [19]
where a similar ‘moving particle’ estimate was proved. The development here is simpler
and more general than that which was used in [19].

Recall that p is supported on y such that y > 0, that is when y 6= 0 and yi ≥ 0 for
1 ≤ i ≤ n (cf. (2.1)). Then, psym(y) =

(
p(y) + p(−y)

)
/2 is supported on y such that y > 0

or y < 0. We note if the dimension n = 1, then psym is supported on all y 6= 0.

Lemma 6.4. Suppose 2l < |y| ≤ ε′N and D(f) ≤ C0N
n

Nα . Then, with respect to constants
C2 = C2(R,D, n) and C3 = (R,D, n), we have

D∗l (f̄l,y) ≤ C2

Nα
+ C3(ε′)α.

Proof. Recall the definition of D∗l in (6.2). First, by the same argument as in Lemma 6.2,
the sum ∑

|x|≤l

(
D0,x

1 (f̄l,y) +D0,x
2 (f̄l,y)

)
≤ C2/N

α, where C2 = C0/(R+D)n.

Therefore, we need to control the form D∗(f̄l,y)/psym(y), which reflects motion from
0 to y = (y1, . . . , yn) 6= 0. If y is such that neither y > 0 or y < 0, we may split y into
its positive and negative parts, y = y+ − y−, where both y+, y− > 0; note also that
y− y+ = −y− < 0. Straightforwardly, for such a y, noting the definition of D∗ in (6.3), by
properties of the invariant measure νρ∗ and the inequality (u+ v)2 ≤ 2(u2 + v2), we have

D∗(f̄l,y)

psym(y)
≤ 2

D0,y+(f̄l,y)

psym(y+)
+ 2

Dy+,y(f̄l,y)

psym(−y−)
.
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In the following, analysis of the Dirichlet forms on the right-side of the above display are
similar and lead to the same bound. Without loss of generality, we will assume now that
y is positive, y > 0.

By convexity of the Dirichlet form,

D∗(f̄l,y)

psym(y)
≤ D0,y(f (R+D)N )

psym(y)
≤ 1

(2(R+D)N + 1)n

∑
|z|≤(R+D)N

Dz,z+y(f)

psym(y)
. (6.4)

We now split the term Dz,z+y(f)/psym(y), reflecting a displacement by y, into jumps,
one displacing by k = (k1, . . . , kn) where

0 ≤ ki, |k| ≤ |y|, and 0 6= k 6= y,

and one displacing by y − k. If psym were supported on all y 6= 0 (the case when n = 1),
or if y − k > 0 for all k (the case when y = (|y|, . . . , |y|)), then these two jumps would
suffice. If y − k is not positive, then we split y − k into its positive and negative parts,
making three jumps.

When y − k > 0, noting convention 0/0 = 1, we may unravel the quantity,

Dz+k+(y−k)+,z+y(f)/psym(−(y − k)−) = Dz+y,z+y(f)/psym(0)

= Eνρ∗ [g(η(z + y))h(η(z + y))(
√
f(η)−

√
f(η))2] = 0.

Then, considering the cases of either 2 or 3 jumps together, by Jensen’s inequality, and
(u+ v + w)2 ≤ 3(u2 + v2 + w2), we have

Dz,z+y(f)

psym(y)
≤ 3

Dz,z+k(f)

psym(k)
+ 3

Dz+k,z+k+(y−k)+(f)

psym((y − k)+)
+ 3

Dz+k+(y−k)+,z+y(f)

psym(−(y − k)−)
. (6.5)

Define |y|n = (|y|, · · · , |y|) for y ∈ Zn. Then, combining (6.4) and (6.5), we have

D∗(f̄l,y)/psym(y) ≤ 1

(2(R+D)N + 1)n

×
∑

|z|≤(R+D)N

3
(Dz,z+k(f)

psym(k)
+
Dz+k,z+k+(y−k)+(f)

psym((y − k)+)
+
Dz+k+(y−k)+,z+y(f)

psym(−(y − k)−)

)
,

which is less than

3

((R+D)N)npsym(|y|n)

∑
z′−z=k,(y−k)+or −(y−k)−

Dz,z′(f), (6.6)

after noting for |k| ≤ |y| that min{psym(k), psym((y − k)+), psym(−(y − k)−)} ≥ psym(|y|n).
Let now

ak =
∑

z′−z=k,(y−k)+ or −(y−k)−

Dz,z′(f) and b =
((R+D)N)npsym(|y|n)

3
.

Then, (6.6) is rewritten as
bD∗(f̄l,y)/psym(y) ≤ ak. (6.7)

When ak is summed over all k such that 0 ≤ ki, |k| ≤ |y|, and 0 6= k 6= y, each bond is
counted at most three times. Denoting

∑′
k the sum over such k, we have

′∑
k

ak ≤ 3D(f). (6.8)
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In particular, from (6.7) and (6.8), we have

[D∗(f̄l,y)/psym(y)]

′∑
k

b ≤ 3D(f).

But,
′∑
k

bk ≥ 3−1(R+DN)n
[
p(|y|n)/2

][
(|y|+ 1)n − 2

]
.

Hence, we have

D∗(f̄l,y)

psym(y)
≤ 3D(f)∑′

k b
≤ 18D(f)/((R+D)N)n

(|y|+ 1)n − 2)p(|y|n)
≤ 18C0

(R+D)nNα

‖|y|n‖n+α

(|y|+ 1)n − 2
.

As ‖|y|n‖ scales like |y|, and |y| ≤ ε′N , we have ‖|y|n‖n+α/[(|y|+ 1)n − 2] = O((ε′N)α).
Therefore,

D∗(f̄l,y)

psym(y)
≤

O
(
(ε′N)α

)
(R+D)nNα

≤ C3(ε′)α,

in terms of a constant C3 = C3(R,D, n).

6.3 1-block estimate: α > 1

The proof of the 1-block estimate, when α > 1, is similar to that when α < 1, but with
fewer complications. The argument is also similar to that in the standard finite-range
setting in [20]. For completeness, we summarize the proof.

Proposition 6.5 (1-block estimate). When α > 1, for each d ∈ Zn,

lim sup
l→∞

lim sup
N→∞

EN
∫ t

0

1

Nn

∑
|x|≤RN

∣∣(ghd)l(ηs(x))− ΦΨ(ηls(x))
∣∣ds = 0.

Proof. Following the proof of Proposition 6.1, for α < 1, we may introduce the indicator
function 1(ηls(x) ∨ ηls(x+ d) ≤ A), and bound the expectation in the display by

sup
D(f)≤C0N

n

N

∫ ∣∣(ghd)l(η(0))− ΦΨ(ηl(0))
∣∣1(ηl(0) ∨ ηl(d) ≤ A)fR,N (η)νρ∗(dη). (6.9)

Let νl,dρ∗ (dξ) be the induced distribution of configurations ξ equal to η on [−l, l]n ∪ d+

[−l, l]n. Let f̄l,d(ξ) be the conditional expectation of fR,N (η) given configurations η that
equal ξ on [−l, l]n ∪ d+ [−l, l]n. Introduce a Dirichlet form,

Dl,d(f) =
∑

y∈[−l,l]n∪d+[−l,l]n
D0,y(f).

In Lemma 6.6 below, when D(f) = O(Nn−1), we show that Dl,d(f̄l,d) ≤ C1/N .

Therefore, we can replace the supremum in (6.9) by that over densities f such that
Dl,d(f) ≤ C1/N . As the truncation enforces a finite configuration space, after N ↑ ∞,
the supremum may be further replaced by Dl,d(f) = 0. In this case, f will be a constant
Cj ≥ 0 on hyperplanes of the form

Hj =
{
ξ :

∑
y∈[−l,l]n∪d+[−l,l]n

ξ(y) = j
}
.

EJP 23 (2018), paper 130.
Page 28/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

As |[−l, l]n ∪ d + [−l, l]n|−1
∑
y∈[−l,l]n∪d+[−l,l]n ξ(y) ≤ ξl(0) + ξl(d) ≤ 2A, the index j ≤

2A|[−l, l]n ∪ d + [−l, l]n|. Moreover, as
∑
j Cjν

l,d
ρ∗ (Hj) ≤ 1, we may bound (6.9) by a

supremum over hyperplanes:

sup
j

∫ ∣∣(ghd)l(ξ(0))− ΦΨ(ξl(0))
∣∣νl,d,j(dξ),

where νl,d,j is the canonical measure supported on the hyperplane Hj .
As before, in the proof of Proposition 6.1, we can partition [−l, l]n into k-blocks

assuming (2l + 1)n = q(2k + 1)n for simplicity. Let B1, .., Bq be the q number of k-blocks.
Then,

(ghd)
l(ξ(0))− ΦΨ(ξl(0)) =

1

q

q∑
i=1

1

(2k + 1)n

∑
y∈Bi

(
g(ξ(y))h(ξ(y + d)))− ΦΨ(ξl(0))

)
.

Under the measure νl,d,j , the distributions of
∑
y∈Bi

(
g(ξ(y))h(ξ(y + d)))−ΦΨ(ξl(0))

)
do

not depend on i. Therefore, it is enough to show

lim sup
k→∞

lim sup
l→∞

sup
j
Eνl,d,j

∣∣(ghd)k(ξ(0))− ΦΨ(ξl(0))
∣∣.

Now, we would like to replace ΦΨ(ξl(0)) by ΦΨ(ρ), where ρ = j/|[−l, l]n ∪ d+ [−l, l]n|,
for each j ≤ 2A as l ↑ ∞. This holds because [−l, l]n and d+ [−l, l]n will have sufficient
overlap for large l. To make this precise, bound |ΦΨ(ξl(0)) − ΦΨ(ρ)| ≤ C(A)|ξl(0) − ρ|
since Φ,Ψ are Lipschitz and ξl(0) ≤ 2A. As d is fixed, the number of sites outside the
overlap is of order O(ln−1). Then, because of the truncation of particle numbers, for
each A, we have ξl(0) = ρ+O(l−1).

Therefore, we only need to show supj Eνl,d,j
∣∣(ghd)k(ξ(0))−ΦΨ(ρ)

∣∣ goes to zero as l and
then k go to infinity where ρ = j/|[−l, l]n ∪ d+ [−l, l]n|. By an equivalence of ensembles
estimate, as in Step 6 of Proposition 6.1, we need only show Eνρ |(ghd)k(ξ(0))− ΦΨ(ρ)|
vanishes uniformly over bounded ρ as k ↑ ∞. But, as νρ is a product measure with
identical marginals, the variables {ghd(ξ(k)) − ΦΨ(ρ) : |k| ≤ l} are exchangeable such
that mean Eνρ [ghd(ξ(0))] = ΦΨ(ρ). Hence, the desired convergence follows by a law of
large numbers.

We now prove the bound on Dl,d(f̄l,d). Although the argument is similar to a finite-
range setting estimate in [20], as it is short, we include it for convenience of the reader.

Lemma 6.6. Suppose D(f) ≤ C0N
n

N . Then, Dl,d(f̄l,D) ≤ C1

N .

Proof. By convexity of the Dirichlet form,

Dl,d(f̄l,d) =
∑

y∈[−l,l]n∪d+[−l,l]n
D0,y
l,d (f̄l,d) ≤

∑
y∈[−l,l]n∪d+[−l,l]n

D0,y(fR,N )

which is less than ∑
y∈[−l,l]n∪d+[−l,l]n

1

(2RN + 1)n

∑
|x|≤RN

D0,y(τxf)

≤ 1

(2RN + 1)n

∑
y∈[−l,l]n∪d+[−l,l]n

|x|≤RN

Dx,y+x(f).

As bonds may be repeated twice in the sum in the last expression, we may bound by
twice the full Dirichlet form, and obtain as desired Dl,d(f̄l,d) ≤ 2

(2RN+1)nD(f) ≤ C1/N ,

where C1 = 2C0/R
n.
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7 Proof outline: hydrodynamic limits when α > 1

When α > 1, as the expected jump size
∑
d dp(d) is finite, one expects in Euler scale

to recover a similar hydrodynamic equation as when the jumps have finite range. The
strategy employed here is to follow the scheme of arguments in [24] and Chapter 8 in
[20] for finite-range processes.

However, in the long-range setting, several important steps are different. In particular,
we have worked to remove reliance on ‘attractiveness’, a monotonicity condition on
the rates, although it is still used in two, albeit, important places, namely to bound
the hydrodynamic density as an L∞ object in Step 1 below, and to show the ‘Ordering’
Lemma 9.3, which is used to prove a so-called measure weak entropy formulation. On the
other hand, the proof includes new arguments to bound uniformly the ‘mass difference
from ρ∗’ in the system (Theorem 7.4), and to handle the ‘initial boundary layer’ estimate
(Theorem 7.5), needed to apply a form of DiPerna’s uniqueness characterization.

The first step in the argument is to use a 1-block replacement estimate. Here, we do
not rely on ‘attractiveness’ as in [24], but the ‘entropy’ method. Part of the reason for
this choice, as discussed in Subsection 3.1, is that, when 1 < α < 2, it is not clear how to
use the ‘L1-initial density’ method in [24]. However, an artifact of using the ‘entropy’
method is that we need to start from initial profiles ρ0, which are close to ρ∗ at large
distances.

Since a ‘2-blocks’ estimate is not available in the general asymmetric model, as also
in [24] and Chapter 8 of [20], we use the concept of Young measures and DiPerna’s
characterization of measure-valued weak entropy solutions of the hydrodynamic equation
to finish.

In terms of the process ηt, define a collection of Young measures as

πN,lt (du, dλ) =
1

Nn

∑
x∈Zn

δ x
N

(du)δηlt(x)(dλ).

Integration with respect to πN,lt against test functions is as follows:

〈πN,lt , H(t, u, λ)〉 =
1

Nn

∑
x∈Zn

H
(
t,
x

N
, ηlt(x)

)
Denote by {QN,l} the induced measures for the process {πN,lt : t ∈ [0, T ]}.

Let M+(Rn × [0,∞)) be the set of positive Radon measures on Rn × [0,∞). Define
L∞([0, T ],M+(Rn × [0,∞))) to be the space of functions π : t ∈ [0, T ] → πt ∈ M+(Rn ×
[0,∞)) such that 〈πt, F 〉 is essentially bounded in time for every continuous function F
with compact support in Rn× [0,∞). The topology on L∞([0, T ],M+(Rn× [0,∞))) is such
that elements π and π̄ are close if they give similar values upon integrating against a
dense collection of test functions over space, λ, and time, that is if∫ T

0

〈πs(du, dλ), F (u, λ)〉H(s)ds ∼
∫ T

0

〈π̄s(du, dλ), F (u, λ)〉H(s)ds.

More precisely, the distance between π and π̄ is

dMV (π, π̄) =
∑
k≥1

1

2k
d
(
〈π, Fk〉, 〈π̄, Fk〉

)
1 + d

(
〈π, Fk〉, 〈π̄, Fk〉

) ,
where {Fk}k≥1 is a dense sequence in the space of compactly supported functions in
Rn × [0,∞), with respect to the uniform topology. Here,

d(f, g) =
∑
k≥1

1

2k

∣∣ ∫ T
0
dthk(t)g(t)−

∫ T
0
dthk(t)f(t)

∣∣
1 +

∣∣ ∫ T
0
dthk(t)g(t)−

∫ T
0
dthk(t)f(t)

∣∣ ,
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where {hk}k≥1 is a dense sequence of functions in L1[0, T ] (cf. p. 200 in [20]).
Note now that πN,lt ∈ L∞([0, T ],M+(Rn × [0,∞))), and accordingly {QN,l} are mea-

sures on L∞([0, T ],M+(Rn × [0,∞))). The general strategy, as in [24], is to characterize
limit points Q∗ of {QN,l} in terms of unique ‘measure weak’ solutions to the hydrody-
namic equation.

At this point, we remark that functions F (s, u, λ) = G(s, u)f(λ) where f is not com-
pactly supported, but bounded |f(λ)| ≤ Cλ for all large λ, will have use in later develop-
ment. Although such functions are not part of the topology on L∞([0, T ],M+(Rn×[0,∞))),
we establish in Subsection 7.1, for a subsequence {QN ′,l′} converging to Q∗, that

lim
l′→∞

lim
N ′→∞

QN
′,l′
(∣∣ ∫ T

0

〈πN
′,l′

s , G(s, u)f(λ)〉ds
∣∣ > ε0

)
= 0 for all ε0 > 0

⇐⇒ Q∗
(∣∣ ∫ T

0

〈πs, G(s, u)f(λ)〉ds
∣∣ > ε0

)
= 0 for all ε0 > 0. (7.1)

We now define the notion of ‘measure weak’ solution. Consider the weak formulation
of the differential equation in terms of a weak solution ρ(s, u). The measure weak formu-
lation is obtained by replacing ρ(s, u) where ever it appears by λ and then integrating
against the measure ρ(s, u, dλ) with respect to λ. So, f(ρ(s, u)) becomes

∫
f(λ)ρ(s, u, dλ).

If ρ(s, u, dλ) is a solution of the resulting equation, it is called a measure weak solution.
For example, ∫

Rn
G0(u)

∫
R

λρ(0, u, dλ)du+

∫ ∞
0

∫
Rn
∂sGs(u)

∫
R

λρ(s, u, dλ)duds

+γα

∫ ∞
0

∫
Rn

∫
R

∂1(n)Gs(u)ΦΨ(λ)ρ(s, u, dλ)duds = 0

is the measure weak formulation of nonnegative solutions of the hydrodynamic equation
∂tρ+ γα∂1(n)Φ(ρ)Ψ(ρ) = 0.

We recall now part of Kruz̆kov’s entropy condition (3.3) on a weak solution of the
hydrodynamic equation: For each c ∈ R,

∂t|ρ− c|+ γα∂1(n)[sgn(ρ− c)(ΦΨ(ρ)− ΦΨ(c))] ≤ 0.

It is known that there is a unique bounded weak solution of the hydrodynamic equation
which satisfies Kruz̆kov’s entropy condition, with bounded initial data w0 (cf. [21], [10],
[15]). The corresponding measure weak formulation is given by∫

Rn
G0(u)

∫
R

|λ− c|ρ(0, u, dλ)du+

∫ ∞
0

∫
Rn
∂sGs (u)

∫
R

|λ− c|ρ(s, u, dλ)duds

+γα

∫ ∞
0

∫
Rn
∂1(n)Gs (u)

∫
R

q(λ, c)ρ(s, u, dλ)duds ≥ 0 (7.2)

where q(λ, c) = sgn(λ− c)(ΦΨ(λ)− ΦΨ(c)) and G is a nonnegative test function. We will
say that ρ(t, u, dλ) is a measure weak entropy solution, or satisfies the entropy condition
‘measure weakly’, if it is a measure weak solution of the hydrodynamic equation that
measure weakly satisfies the entropy condition.

We are now ready to state DiPerna’s uniqueness theorem (cf. Theorem 4.2 in [11])
for such measure weak solutions.

Theorem 7.1. Suppose w(t, u, dλ)du is a measure weak entropy solution of

∂tw + υ · ∇Q(w) = 0.

Here, Q ∈ C1, υ ∈ Rn, and initial condition w(0, u, dλ) = δw0(u), where w0 is bounded and
integrable. Suppose also that the following three conditions are satisfied:
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1. Bounded support and probability measure: The support of w(t, u, dλ) is bounded in
the interval A = [a, b], for some a, b ∈ R, uniformly in (t, u) ∈ [0, T ]×Rn. Also, for
each (t, u), w(t, u, dλ) is a probability measure.

2. Initial condition:

lim inf
t→0

1

t

∫ t

0

∫
Rn

∫
A

|λ− w0(u)|w(s, u, dλ)duds = 0

3. Ess sup mass condition:

ess supt

∫
Rn

∫
A

|λ|w(t, u, dλ)du <∞.

Then, w(t, u, dλ) is the Dirac measure supported on the unique, bounded entropy solution
w(t, u) of ∂tw+υ ·∇Q(w) = 0, with initial condition w0(u), that is, w(t, u, dλ) = δw(t,u)(dλ).

Given this preamble, we now begin the main part of the proof of Theorem 3.2.

Step 1. First, we claim that the measures {QN,l} are tight. This follows the same
proof as given in Lemma 1.2, Chapter 8 in [20]. Next, as N ↑ ∞ subsequentially, we
may obtain a weak limit Ql, and as l ↑ ∞ subsequentially, we obtain a limit point Q∗. We
claim that Q∗ is supported on measures in the form π(s, du, dλ) = ρ(s, u, dλ)du, which
are absolutely continuous in u. This also follows the same proof as given for item 1, p.
201 of [20].

Also, by the law of large numbers and our initial conditions, we have 〈πN,l0 , F (u, λ)〉 →∫
Rn
F (u, ρ0(u))du in probability as N ↑ ∞ and l ↑ ∞, and so the identification ρ(0, u, dλ) =

δρ0(u)(λ) a.e. u.
In addition, ρ(s, u, dλ) is supported in a bounded interval, uniformly in s, u: If M0 <∞,

that is h(m) = 0 for some m, then there can be at most M0 particles per site in the
process. In particular, ηls(x) ≤ M0 for all x, s, l, and so 0 ≤ ρ(s, u, dλ) ≤ M0 for all s, u,
without using ‘attractiveness’. On the other hand, if h(m) > 0 for all m, by the ‘basic
coupling’ proof, using ‘attractiveness’, and that the measures {µN} are ‘stochastically
bounded’ by νρ# where ρ# = ‖ρ0‖∞, as given for item (ii) in the proof of Theorem 1.1
of Chapter 8, p. 201-203 in [20], we obtain ρ(s, u, dλ) is supported in [0, ρ#] (cf. related
comments, on the ‘basic coupling’, at the beginning of Section 9).

We also assert that ρ(s, u, dλ) are probability measures,
∫∞

0
ρ(s, u, dλ) = 1 for s, u.

Indeed, for measurable B ⊂ Rn, πN,ls (B, [0,∞)) is nonrandom, and converges as N and
l ↑ ∞ to the Lebesgue measure m(B). The assertion follows from, say (7.1), and the
limit, ∫ T

0

f(s)πN,ls (B, [0,∞))ds =

∫ T

0

f(s)ds · 1

Nn

∑
x∈Zn

1B
( x
N

)
→
∫ T

0

f(s)

∫
B

∫ ∞
0

ρ(s, u, dλ)duds = m(B)

∫ T

0

f(s)ds.

Step 2. We will show Q∗ a.s. that the density ρ(t, u, dλ) satisfies the following four
conditions:

Theorem 7.2. ρ is a measure weak solution of ∂tρ+ γα∂1(n)ΦΨ(ρ) = 0.

Theorem 7.3. The entropy condition holds measure weakly for any c ∈ R:

∂t|ρ− c|+ γα∂1(n)[sgn(ρ− c)(ΦΨ(ρ)− ΦΨ(c))] ≤ 0.
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Theorem 7.4. We have that

ess supt

∫
Rn

∫ ∞
0

|λ− ρ∗|ρ(t, u, dλ)du ≤
∫
Rn
|ρ0(u)− ρ∗|du <∞.

Theorem 7.5. The initial condition holds,

lim inf
t→0

1

t

∫ t

0

∫
Rn

∫ ∞
0

|λ− ρ0(u)|ρ(s, u, dλ)duds = 0.

We prove Theorems 7.2, 7.3, 7.4, 7.5, in Subsections 8, 10, 11, and 12, respectively

Step 3. Although our initial condition, as ρ0(u) = ρ∗ for |u| large, is not integrable,
the function ρ̂0(u) = ρ0(u) − ρ∗, is also bounded, and belongs to L1(Rn). By consid-
ering ρ∗-shifted solutions, we will see that the items in Steps 1 and 2 allow to use
DiPerna’s Theorem 7.1 to characterize the limit points Q∗. First, we note the following
equivalences.

Equivalence of weak entropy solutions. Define ρ̂(t, u) = ρ(t, u) − ρ∗ and ΦΨρ∗(x) =

ΦΨ(x+ ρ∗). Note as ΦΨ ∈ C1 that also ΦΨρ∗ ∈ C1 on its domain. We observe that ρ(t, u)

is a weak entropy solution of ∂tρ + γα∂1(n)[ΦΨ(ρ)] = 0 if and only if ρ̂(t, u) is a weak
entropy solution of ∂tρ̂+ γα∂1(n)[ΦΨρ∗(ρ̂)] = 0.

Equivalence of measure weak entropy solutions. Similarly, define ρ̂(t, u, dλ) through
ρ̂(t, u, F ) = ρ(t, u, F + ρ∗) for any measurable set F . Observe, for a function f , that∫ b

a

f(λ)ρ(t, u, dλ) =

∫ b−ρ∗

a−ρ∗
fρ∗(λ)ρ̂(t, u, dλ)

where fρ∗(λ) = f(λ + ρ∗). Note that ρ(t, u, dλ) is a probability measure exactly when
ρ̂(t, u, dλ) is a probability measure. Also, ρ(t, u, dλ) has bounded support in λ exactly
when ρ̂(t, u, dλ) has bounded support in λ.

Hence, ρ(t, u, dλ) is a measure weak entropy solution of ∂tρ + γα∂1(n)[ΦΨ(ρ)] = 0,
satisfying the initial condition ρ0(u) if and only if ρ̂(t, u, dλ) is a measure weak entropy
solution of ∂tρ̂+ γα∂1(n)[ΦΨρ∗(ρ̂)] = 0, satisfying the initial condition ρ̂0(u) = ρ0(u)− ρ∗,
that is, if the following holds:

1. Measure weakly ∂tρ̂+ γα∂1(n)ΦΨρ∗(ρ̂) = 0.

2. Entropy condition holds measure weakly, for c ∈ R,

∂t|ρ̂− c|+ γα∂1(n)[sgn(ρ̂− c)(ΦΨρ∗(ρ̂)− ΦΨρ∗(c))] ≤ 0.

3. L1 mass bound holds,

ess supt≥0

∫
Rn

∫ ∞
−ρ∗
|λ|ρ̂(t, u, dλ)du <∞.

4. Initial boundary layer holds,

lim
t↓0

1

t

∫ t

0

∫
Rn

∫ ∞
−ρ∗
|λ− ρ̂0(u)|ρ̂(s, u, dλ)duds = 0.

Step 4. If now ρ(t, u, dλ) satisfies Theorems 7.2, 7.3, 7.4, and 7.5 in Step 2, then
ρ̂(t, u, dλ) will satisfy the equivalent item versions (1),(2),(3), and (4) in Step 3.

Note also ρ̂ is supported in the bounded interval A = [−ρ∗, ‖ρ0‖∞ − ρ∗] uniformly in
(t, u), as in Step 1 we showed ρ is supported in [0, ‖ρ0‖∞].
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Then, by Theorem 7.1, we conclude ρ̂(t, u, dλ) = δρ̂(t,u)(dλ), where ρ̂(t, u) is the unique
bounded weak entropy solution ρ̂(t, u) of ∂tρ̂+ γα∂1(n)ΦΨρ∗(ρ̂) = 0 with initial condition
ρ̂0(u). It then follows that ρ(t, u, dλ) = δρ(t,u), where ρ(t, u) is the unique bounded entropy
solution of ∂tρ+ γα∂1(n)ΦΨ(ρ) = 0 with initial condition ρ0(u).

Hence, all limit points Q∗ of {QN,l} are the same, uniquely characterized in terms of
the weak entropy solution of the hydrodynamic equation, Q∗ = δρ(t,u).

Step 5. We now relate the limit points {Q∗} to the limit points of {PN}, and thereby
prove Theorem 3.2. We have shown, for test functions f(s)G(u) that

Q∗
(∣∣∣∣∫ t

0

∫
Rn

∫ ∞
0

f(s)G(u)λρ(s, u, dλ)duds−
∫ t

0

∫
Rn
f(s)G(u)ρ(s, u)ds

∣∣∣∣ > ε0

)
= 0

for all ε0 > 0. Then, as QN,l on a subsequence converges to Q∗, by (7.1),

lim sup
l→∞

lim sup
N→∞

QN,l
(∣∣∣∣∫ t

0

f(s)〈πN,ls , G(u)λ〉ds−
∫ t

0

∫
Rn
f(s)G(u)ρ(s, u)ds

∣∣∣∣ > ε0

)
= 0,

or in other words,

lim sup
l→∞

lim sup
N→∞

PN

(∣∣∣ ∫ t

0

1

Nn

∑
x∈Zn

f(s)G
( x
N

)
ηls(x)ds

−
∫ t

0

∫
Rn
f(s)G(u)ρ(s, u)ds

∣∣∣ > ε0

)
= 0.

By discrete integration-by-parts, smoothness and compact support of G, we may
replace ηls(x) by ηs(x) with expected error of order

EN
∫ t

0

C(l)N−(n+1)
∑

|x|≤R′N

ηs(x)ds,

which vanishes, as N ↑ ∞ for fixed l, by say Lemma 4.1.

Therefore,

lim sup
N→∞

PN
(∣∣∣∣∫ t

0

f(s)〈πNs , G〉ds−
∫ t

0

∫
Rn
f(s)G(u)ρ(s, u)ds

∣∣∣∣ > ε0

)
= 0.

Now, by the assumption FEM, limit points of {PN} are supported on absolutely continu-
ous measures πs = ρ̄(s, u)du; this observation, made in Step 6 in Section 5 for the case
α < 1, also directly applies when α > 1. Then, as π 7→

∫ t
0
f(s)〈πNs , G〉ds is continuous, for

every limit point P ∗, we have

P ∗
(∣∣∣∣∫ t

0

∫
Rn
f(s)G(u)ρ̄(s, u)duds−

∫ t

0

∫
Rn
f(s)G(u)ρ(s, u)ds

∣∣∣∣ > ε0

)
= 0.

But, as tightness of {PNG }was shown with respect to the uniform topology (Proposition
4.7), the limit

∫
Rn
G(u)ρ̄(s, u)du is continuous function in time s. One also has that∫

Rn
G(u)ρ(s, u)du is continuous in s (cf. Theorem 2.1 [7]). Therefore,

∫
Rn
G(u)ρ̄(s, u)du =∫

Rn
G(u)ρ(s, u)du for all times s.

We conclude all limit points P ∗ are the same, that is, supported on absolutely contin-
uous measures πt = ρ(t, u)du whose density is the unique weak entropy solution of the
hydrodynamic equation, and so Theorem 3.2 follows.
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7.1 Proof of (7.1)

We first note, for all large A and λ, by the bound |f(λ)| ≤ Cλ and compact support of
G,

EN,l
∫ t

0

〈πN,ls , |Gs(u)||f(λ)|1(λ > A)〉ds

= EN
∫ t

0

1

Nn

∑
x∈Zn

|Gs
( x
N

)
||f(ηls(x))|1(ηls(x) > A)ds

≤ CG,fEN
∫ t

0

1

Nn

∑
|x|≤RN

ηls(x)1(ηls(x) > A)ds = CG,fE
N,l

∫ t

0

〈πN,ls , λ1(λ > A)〉ds.

Then, by Lemma 4.2 and that π 7→
∫ t

0
〈πs, λ1(λ ≥ A)〉ds is a lower semi-continuous

function, we have

0 = lim sup
A→∞

lim sup
l→∞

lim sup
N→∞

EN,l
∫ t

0

〈πN,ls , λ1(λ > A)〉ds ≥ lim sup
A→∞

EQ∗

∫ t

0

〈πs, λ1(λ > A)〉ds.

In particular, as π 7→
∫ t

0
〈πs, |Gs(u)||f(λ)|1(λ ≥ A)〉ds is also lower semi-continuous,

lim sup
A→∞

lim sup
l→∞

lim sup
N→∞

EN,l
∫ t

0

〈πN,ls , |Gs(u)||f(λ)|1(λ > A)〉ds

= lim sup
A→∞

EQ∗

∫ t

0

〈πs, |Gs(u)||f(λ)|1(λ > A)〉ds = 0. (7.3)

We now argue the left to right equivalence. In the left-side of (7.1), by (7.3), we may
introduce the indicator function 1(λ ≤ A). Then, as π 7→

∫ t
0
〈πs, Gs(u)f(λ)1(λ ≤ A)〉ds is

continuous, we have

lim sup
A→∞

lim
l′→∞

lim
N ′→∞

QN
′,l′
(∣∣ ∫ t

0

〈πN
′,l′

s , Gs(u)f(λ)1(λ ≤ A)〉
∣∣ > ε0

)
= lim sup

A→∞
Q∗
(∣∣ ∫ t

0

〈πs, Gs(u)f(λ)1(λ ≤ A)〉ds
∣∣ > ε0

)
= 0.

The right-side of (7.1) follows now by (7.3) applied again.
The right to left equivalence in (7.1) follows by similar steps in reverse, given now

Q∗
(∣∣ ∫ t

0
〈πs, Gs(u)f(λ)〉ds

∣∣ ≥ ε0
)

= 0 for all ε0. Here, without loss of generality we have
replaced ‘>’ by ‘≥’ to maintain the correct bounds implied by weak convergence.

8 Measure weak solutions: Proof of Theorem 7.2

The argument follows some of the initial reasoning given for the proof of Theorem
3.1, in the α < 1 case, relying however on the 1-block estimate Lemma 6.5.

Step 1. The same estimate as in Step 1 in Section 5, with respect to the martingale
MN,G
t , gives that

lim sup
N→∞

PN
(∣∣〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds+

∫ t

0

NLN 〈πNs , Gs〉ds
∣∣ > ε0

)
= 0.

Here, we recall from (4.1),∫ t

0

NLN 〈πNs , Gs〉ds =

∫ t

0

N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
ghd(ηs(x))

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds.
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Step 2. We would like to replace Gs
(
x+d
N

)
− Gs

(
x
N

)
by ∇Gs( xN ) · d/N . To this

aim, noting ghd(ηs(x)) ≤ κ‖h‖∞ηs(x), by Lemma 4.5, we may truncate the sum on d

to ‖d‖ ≤ εN , in terms of a parameter ε which will vanish after N diverges. Next, as
|Gs

(
x+d
N

)
−Gs

(
x
N

)
−∇Gs

(
x
N

)
· dN | ≤ ‖∇

2Gs‖1(|x| < (R+ ε)N)‖ dN ‖
2, we have

∫ t

0

N

Nn

∑
x∈Zn

εN∑
‖d‖=1

1

‖d‖n+α
ghd(ηs(x))

∣∣∣Gs(x+ d

N

)
−Gs

( x
N

)
−∇Gs

( x
N

)
· d
N

∣∣∣ds
≤ κ‖h‖∞‖∇2G‖

N

εN∑
‖d‖=1

‖d‖2

‖d‖n+α

∫ t

0

1

Nn

∑
|x|≤(R+ε)N

ηs(x) ≤ εCG,α
Nn

∑
|x|≤(R+ε)N

ηs(x)ds,

which vanishes in expected value, noting Lemma 4.1, as N ↑ ∞ and ε ↓ 0. Therefore,

〈πN0 , G0〉+

∫ t

0

〈πNs , ∂sGs〉ds

+

∫ t

0

1

Nn

∑
x∈Zn

εN∑
‖d‖=1

1

‖d‖n−1+α
ghd(ηs(x))∇Gs

( x
N

)
· d

‖d‖
ds (8.1)

converges to zero in probability as N ↑ ∞ and ε ↓ 0.
Moreover, with similar reasoning, we may further replace the sum on d to a truncated

sum over ‖d‖ ≤ D, where D will diverge after N . Indeed, as ghd(η) ≤ κ‖h‖∞η(x), the
error in such a replacement is of order

∫ t
0
N−n

∑
|x|≤RN ηs(x)ds ×

∑
‖d‖≥D ‖d‖−n+1−α.

Since the sum on d is of order D1−α, the expected error, by Lemma 4.1, as N ↑ ∞ and
D ↑ ∞ vanishes.

Step 3a. Now, by the method of Step 3a in Section 5 for the α < 1 case, we substitute
ghd(ηs(x)) with (ghd)

l(ηs(x)) where l will go to infinity after N but before D. We will also
replace ηs(x) by ηls(x) in the first and second terms in (8.1). Hence,

1

Nn

∑
x∈Zn

ηl0(x)G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

ηls(x)∂sGs

( x
N

)
ds

+

∫ t

0

1

Nn

∑
x∈Zn

D∑
‖d‖=1

1

‖d‖n−1+α
(ghd)

l(ηs(x))∇Gs
( x
N

)
· d

‖d‖
ds

converges to zero in probability as these limits in order are taken.

Step 3b. We now replace (ghd)
l(ηs(x)) by Φ(ηls(x))Ψ(ηls(x)) for 1 ≤ ‖d‖ ≤ D, using the

1-block estimate Proposition 6.5 and
∑D
‖d‖=1 ‖d‖−(n−1+α) <∞. After this replacement,

we will have shown

1

Nn

∑
x∈Zn

ηl0(x)G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

ηls(x)∂sGs
( x
N

)
ds

+

∫ t

0

1

Nn

∑
x∈Zn

ΦΨ(ηls(x))

D∑
‖d‖=1

d

‖d‖n+α
· ∇Gs

( x
N

)
ds

vanishes in probability as N ↑ ∞ and then l ↑ ∞ for fixed D.
By ΦΨ(η(x)) ≤ κ‖h‖∞η(x), compact support of G, and Lemma 4.1, we can further

replace
∑D
‖d‖=1 d/‖d‖n+α with γα1(n) =

∑∞
d=1 d/‖d‖n+α, where 1(n) is the unit vector in

the direction 〈1, 1, . . . , 1〉, the error vanishing in probability as N ↑ ∞, l ↑ ∞ and then
D ↑ ∞.
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Step 3c. Now, in terms of the Young measures πN,lt defined in Section 7, we have

〈πN,l0 , G0(u)λ〉+

∫ t

0

〈πN,ls , ∂sGs(u)λ〉ds− γα
∫ t

0

〈πN,ls , ∂1(n)Gs(u)ΦΨ(λ)〉ds

vanishes in probability as N ↑ ∞ and l ↑ ∞.

Step 4. Consider a limit point Q∗ of the measures {QN,l} governing πN,lt . Recall
that we observed in Step 1 in Section 7 that Q∗ is supported on πs = π(s, du, dλ) =

ρ(s, u, dλ)du, ρ(0, u, dλ) = δρ0(u), and also 〈πN,l0 , G0(u)λ〉 converges to
∫
G0(u)ρ0(u)du.

Then, on a subsequence as N ↑ ∞ and l ↑ ∞, we conclude, noting (7.1) and ΦΨ(λ) ≤
Cλ, that a.s. Q∗,∫

Rn
G0(u)

∫ ∞
0

λρ(0, u, dλ)du+

∫ ∞
0

∫
Rn
∂sGs(u)

∫ ∞
0

λρ(s, u, dλ)duds

+γα

∫ ∞
0

∫
Rn

∫ ∞
0

∂1(n)Gs(u)ΦΨ(λ)ρ(s, u, dλ)duds = 0.

Here, we replaced the limit t with∞, noting that G has compact support in [0, T )×Rn.
Hence, ρ(s, u, dλ) is a measure-weak solution of the hydrodynamic equation.

9 A coupled process

We introduce the basic coupling for misanthrope processes. Let P̃N denote the
distribution of the coupled process (ηt, ξt) with generator L̃, given by its action on test
functions,

L̃f(η, ξ) =
∑
x,y

p(y − x) minx,y(f(ηx,y, ξx,y)− f(η, ξ))

+
∑
x,y

p(y − x)(b(η(x), η(y))−minx,y)(f(ηx,y, ξ)− f(η, ξ))

+
∑
x,y

p(y − x)(b(ξ(x), ξ(y))−minx,y)(f(η, ξx,y)− f(η, ξ)),

where minx,y = min{b(η(x), η(y)), b(ξ(x), ξ(y))}. From the form of the generator, it follows
that the marginals are themselves misanthrope processes.

Suppose now that the process is ‘attractive’, that is when b(n,m) = g(n)h(m), with g
increasing and h decreasing in particle numbers. Then, if ηs(x) ≤ ξs(x) for all x ∈ Zn, at
any later time t ≥ s, we still have the same ordering. This observation is the crux of the
proof of the ‘L∞’ bound in [20], referred to in Step 1 in Section 7. This is the first of the
two ways where ‘attractiveness’ is used in the proof of Theorem 3.2.

We will use the following teminology. For any set Λ ⊆ Zn, we write η ≥ ξ on Λ if
η(x) ≥ ξ(x) for all x ∈ Λ, and we write η > ξ on Λ if η ≥ ξ on Λ and η(x) > ξ(x) for at
least one x ∈ Λ. If η ≥ ξ or ξ ≥ η on Λ, we say that η and ξ are ordered on Λ. Otherwise,
we say that η and ξ are unordered on Λ.

Let UΛ(η, ξ) = 1(η and ξ are not ordered on Λ). Let Ux,d(η, ξ) = U{x,x+d}(η, ξ). We also
define

Ox,d(η, ξ) =


1 if η > ξ on {x, x+ d}
−1 if ξ > η on {x, x+ d}
0 otherwise

Define the coupled empirical measure by

π̃Nt =
1

Nn

∑
x∈Zn

|ηt(x)− ξt(x)|δx/N .
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We now introduce martingales which will be useful in the sequel. The first two are the
coupled versions of MN,G

t and the associated ‘variance’ martingale: For test functions G
on the coupled space, define the martingale,

M̃N,G
t = 〈π̃Nt , Gt〉 − 〈π̃N0 , G0〉 −

∫ t

0

〈π̃Ns , ∂sGs〉+NL̃N 〈π̃Ns , Gs〉ds.

With respect to the quadratic variation,

〈M̃N,G〉t =

∫ t

0

NL̃N [(〈π̃Ns , Gs〉)2]− 2N〈π̃Ns , Gs〉L̃N 〈π̃Ns , Gs〉ds,

the process (M̃N,G
t )2 − 〈M̃N,G〉t is also a martingale. We may compute

NL̃N 〈π̃Ns , Gs〉 (9.1)

=
N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))− ghd(ξs(x))Ox,d(ηs, ξs)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
− N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))− ghd(ξs(x))U±x,d(ηs, ξs)

[
Gs
(x+ d

N

)
+Gs

( x
N

)]
,

where

U±x,d(ηs, ξs) =


1 if ηs(x) > ξs(x) and ηs(x+ d) < ξs(x+ d)

−1 if ηs(x) < ξs(x) and ηs(x+ d) > ξs(x+ d)

0 otherwise.

Note that Ux,d(ηs, ξs) = |U±x,d(ηs, ξs)|. That there is a sum of G’s in the last line of the
computation is because ηs and ξs are not ordered.

When the process is ‘attractive’, we have

(ghd(ηs(x))− ghd(ξs(x))U±x,d(ηs, ξs) = |ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs).

In this case, the second line of the generator computation (9.1) simplifies to

− N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)

[
Gs
(x+ d

N

)
+Gs

( x
N

)]
. (9.2)

We remark that this is the second of two places where the ‘attractiveness’ condition is
explicitly used, featuring in the proof of the ‘Ordering Lemma’, stated later.

Lemma 9.1. When α > 1 and G is nonnegative,

NL̃N 〈π̃Ns , Gs〉

≤ N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))− ghd(ξs(x))Ox,d(ηs, ξs)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
.

Proof. The bound follows because in (9.2) all the terms are nonnegative.

In the next two results, we will start the coupled process (ηs, ξs) from an arbitrary
initial distribution µ̃N whose marginals are µN and νc, for a 0 ≤ c ≤M0 if M0 <∞, and
c ≥ 0 if otherwise. The coupled process measure is denoted by P̃N and the associated
expectation is given by ẼN .
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For the quadratic variation, 〈M̃N,G〉t, a straightforward computation gives that

NL̃N [(〈π̃Ns , Gs〉)2]− 2N〈π̃Ns , Gs〉L̃N 〈π̃Ns , Gs〉

=
N

N2n

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))−min{ghd(ηs(x)), ghd(ξs(x))})×

[
(Gs(

x+ d

N
)−Gs(

x

N
))Ox,d(ηs, ξs)− (Gs(

x+ d

N
) +Gs(

x

N
))U±x,d(ηs, ξs)

]2
+

N

N2n

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ξs(x))−min{ghd(ηs(x)), ghd(ξs(x))})×

[
(Gs(

x+ d

N
)−Gs(

x

N
))Ox,d(ξs, ηs)− (Gs(

x+ d

N
) +Gs(

x

N
))U±x,d(ηs, ξs)

]2
.

Lemma 9.2. When α > 1, we have

ẼN |〈M̃N,G〉t| ≤
C(G, t)

Nn

+
16‖G‖2N

Nn
ẼN

∫ t

0

1

Nn

∑
|x|≤RN
|x+d|≤RN

∞∑
‖d‖=1

1

‖d‖n+α
|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)ds.

Proof. In the expression for the quadratic variation, we may bound factors (ghd(ηs(x))−
min{ghd(ηs(x)), ghd(ξs(x))}) by |ghd(ηs(x)) − ghd(ξs(x)|. Also, we note |Ox,d| ≤ 1 and
(U±x,d)

2 = Ux,d. Using the inequality (a−b)2 ≤ 2(a2 +b2), we have that NL̃N [(〈π̃Ns , Gs〉)2]−
2N〈π̃Ns , Gs〉L̃N 〈π̃Ns , Gs〉 is bounded above by∫ t

0

4
N

N2n

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
|ghd(ηs(x))− ghd(ξs(x)| ×

[(
Gs
(x+ d

N

)
−Gs

( x
N

))2
+
(
Gs
(x+ d

N

)
+Gs

( x
N

))2
Ux,d(ηs, ξs)

]
ds,

which we split as A1 +A2, the term A1 involving
(
Gs
(
x+d
N

)
−Gs

(
x
N

))2
and A2 involving

the other squared quantity.
Since, ghd(η(x)) ≤ κ‖h‖∞η(x) by (2.3), we observe that |ghd(ηs(x)) − ghd(ξs(x))| ≤

2‖h‖∞κ(ηs(x) + ξs(x)). Hence, A1 ≤ A11 + A12, where A11 and A12 involve each only
the η· and ξ· process respectively. By the proof of Lemma 4.6, starting from (4.7),
ẼNA11 ≤ KGt/N

n. A similar bound and argument holds when ξs(x) is present as
νc is invariant, and therefore ξs ∼ νc and ẼN

∑
a≤|x|≤b ξs(x) = c(bn − an). Hence,

ẼNA1 ≤ C(G, t)/Nn.
The remaining part ẼNA2, since the the sum of the G’s squared is bounded by

4‖G‖2
[
1(|x| ≤ RN) + 1(|x+ d| ≤ RN)

]
, is majorized by

16‖G‖2 N
Nn

ẼN
∫ t

0

1

Nn

∑
|x|≤RN
|x+d|≤RN

∞∑
‖d‖=1

1

‖d‖n+α
|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)ds.

This finishes the proof.

We now state an ‘Ordering Lemma’ which, in essence, tells us that ηt and ξt are
ordered on average, even if they are not initially ordered. This result is analogous to
those in the finite-range setting, Lemma 3.3 in [24] and Lemma 2.2 on p. 209 of [20].
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Lemma 9.3 (Ordering Lemma). For α > 1 and a, b ∈ Rn,

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
x∈[a,b]N
x+d∈[a,b]N

∞∑
‖d‖=1

1

‖d‖n+α
|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)ds = 0

where [a, b]N = [aN, bN ] and [a, b] =
∏n
j=1[aj , bj ] denotes the n-dimensional hyper-

rectangle with diagonal extending from a to b.
We also have, for all d with ‖d‖ ≥ 1, that

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

Ux,d(ηs, ξs)ds = 0.

We postpone the proof the ‘Ordering Lemma’ to the Appendix. In this proof, the
second statement will be seen to follow from the first, along with an induction argument.

10 Entropy condition: Proof of Theorem 7.3

We note, as specified in the definition of the measure weak entropy condition, the
test functions G in this section are nonnegative.

Step 1. Since ρ ≥ 0 a.e. (cf. Step 1 of Section 7), it is enough to prove Theorem
7.3 when c ≥ 0. When the max occupation number M0 < ∞, it is enough to consider
0 ≤ c ≤M0.

Suppose we may show, for ε0 > 0 and t ≤ T , that

lim inf
l→∞

lim inf
N→∞

PN
( 1

Nn

∑
x∈Zn

∣∣ρ0(x/N)− c
∣∣G0

( x
N

)
(10.1)

+

∫ t

0

1

Nn

∑
x∈Zn

∣∣ηls(x)− c
∣∣∂sGs( x

N

)
ds

+γα

∫ t

0

1

Nn

∑
x∈Zn

sgn(ηls(x)− c)
(
ΦΨ(ηls(x))− ΦΨ(c)

)
∂1(n)Gs

( x
N

)
ds ≥ −ε0

)
= 1.

In terms of Young measures and QN,l, (10.1) is written

lim inf
l→∞

lim inf
N→∞

QN,l
( 1

Nn

∑
x∈Zn

∣∣ρ0(x/N)− c
∣∣G0

( x
N

)
+

∫ t

0

〈πN,ls , ∂sGs(u)|λ− c|〉ds

+γα

∫ t

0

〈πN,ls , ∂1(n)Gs(u)q(λ, c)ds ≥ −ε0
)

= 1,

where q(λ, c) = sgn(λ− c)(ΦΨ(λ)− ΦΨ(c)).
In this case, the desired measure weak formulation of the entropy condition would

follow: By tightness of {QN,l}, let Q∗ be a limit point. Such a Q∗ is supported on
absolutely continuous measures πs = ρ(s, u, dλ)du and ρ(0, u, dλ) = δρ0(u) (cf. Step 1
of Section 7). Then, noting the form of q, as ΦΨ(λ) ≤ κ‖h‖∞λ (cf. (2.3)), by the weak
convergence statement (7.1), we would have Q∗ a.s. that∫

Rn
G0(u)|ρ0(u)− c|du+

∫ ∞
0

∫
Rn
∂sGs(u)

∫ ∞
0

|λ− c|ρ(s, u, dλ)duds

+γα

∫ ∞
0

∫
Rn
∂1(n)Gs(u)

∫ ∞
0

q(λ, c)ρ(s, u, dλ)duds ≥ 0.

Step 2. To begin to establish (10.1), consider a coupled process (ηt, ξt) where the
initial distribution is such that ξ0 is the invariant measure νc with density c. We will
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specify the form of the coupled initial distribution at the beginning of Subsection 10.1,
and show there a coupled version of the microscopic entropy inequality: For ε > 0, and
t ≤ T , we have

lim inf
l→∞

lim inf
N→∞

P̃N
( 1

Nn

∑
x∈Zn

∣∣ρ0(x/N)− c
∣∣G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

∣∣ηls(x)− ξls(x)
∣∣∂sGs( x

N

)
ds+ γα

∫ t

0

1

Nn

∑
x∈Zn

sgn(ηls(x)− ξls(x))

×
(
ΦΨ(ηls(x))− ΦΨ(ξls(x))

)
∂1(n)Gs

( x
N

)
ds ≥ −ε0

)
= 1. (10.2)

Step 3. We now show how the microscopic entropy inequality (10.1) can be deduced
from the coupled microscopic entropy inequality (10.2). It is enough to show that the
following terms vanish as N and then l go to infinity:

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

∣∣∣∣ηls(x)− ξls(x)
∣∣− ∣∣ηls(x)− c

∣∣∣∣ds
and ẼN

∫ t

0

1

Nn

∑
|x|≤RN

∣∣q(ηls(x), ξls(x))− q(ηls(x), c)
∣∣ds. (10.3)

To analyze the second term, we note, as Ψ is bounded by ‖h‖∞ and Φ is Lipschitz, that
|q(ηls(x), ξls(x))− q(ηls(x), c)| = O

(
ηls(x) + ξls(x) + c

)
. Thus, we can introduce the indicator

function 1(ηls(x)∨ ξls(x) ≤ A), the error vanishing, as N ↑ ∞, l ↑ ∞ and A ↑ ∞, by Lemma
4.2 and that ξ· ∼ νc. Also, now note that q(z, w) is uniformly continuous on [−A,A]2.

On the other hand, for the first term, by the triangle inequality, ||ηls(x) − ξls(x)| −
|ηls(x)− c|| ≤ |ξls(x)− c|.

Hence, the terms in (10.3) will vanish, if we show that

lim sup
l↑∞

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

|ξls(x))− c|ds = 0.

But, since the state ξs has distribution νc, it follows that

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

|ξls(x))− c|ds ≤ (2R+ 1)nt · Eνc
∣∣ξl0(0)− c

∣∣,
which vanishes by the law of large numbers as l ↑ ∞.

10.1 Proof of (10.2)

We proceed in some steps, recalling estimates in Section 9. First, we specify the initial
coupled distribution in Step 2 above: We will take µ̃N as a product measure over x ∈ Zn
with x-marginal given by µ̃N (η0(x) ≥ ξ0(x)) = 1 if ρ0(x/N) ≥ c and µ̃N (η0(x) ≤ ξ0(x)) = 1

if ρ(x/N) ≤ c. Such a coupled initial measure may be constructed (cf. Section II.2 in
[23]) as the x-marginals of µN and νc are stochastically ordered, that is the marginal of
µN , Θρ0(x/N), is stochasically more or less than then the marginal of νc, Θc, if ρ0(x/N) is

more or less than c respectively. Then, P̃N is the coupled process measure starting from
µ̃N .

Step 1. By Lemma 9.2 and the Ordering Lemma 9.3, the expected value ẼN 〈M̃N,G〉t
vanishes as N ↑ ∞. Hence, for ε0 > 0, lim

N→∞
P̃N
(
− M̃N,G

t ≥ −ε0
)

= 1.
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Since G has compact support in [0, T )×Rn, we have 〈π̃Nt , Gt〉 = 0 for t ≥ T , and so

−M̃N,G
t = 〈π̃N0 , G0〉+

∫ t

0

〈π̃Ns , ∂sGs〉+NL̃N 〈π̃Ns , Gs〉ds.

It follows, as G is nonnegative, from the bound in Lemma 9.1, that

lim
N↑∞

P̃N
( 1

Nn

∑
x∈Zn

∣∣η0(x)− ξ0(x)
∣∣G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

|ηs(x)− ξs(x)|∂sGs
( x
N

)
ds

+

∫ t

0

N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)

×
[
Gs
(x+ d

N

)
−Gs

( x
N

)]
ds ≥ −ε0

)
= 1.

We now replace the second integral in the last display by one with a nicer form. We
make substitutions following the same reasoning as in Step 2 of Section 8, the estimates
for the ξ· process easier as ξ· ∼ νc. First, we limit the sum over d to when ‖d‖ is at most
εN , where N ↑ ∞ and then ε ↓ 0. Next,

[
Gs
(
x+d
N

)
−Gs

(
x
N

)]
is replaced by ∇Gs

(
x
N

)
· dN .

Finally, the sum over d is replaced by that when ‖d‖ is at most D, which tends to infinity
after N diverges. After this replacement, we have with probability tending to 1, as N ↑ ∞
and D ↑ ∞, that

1

Nn

∑
x∈Zn

∣∣η0(x)− ξ0(x)
∣∣G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

|ηs(x)− ξs(x)|∂sGs(
x

N
)ds

+

∫ t

0

1

Nn

∑
x∈Zn

D∑
‖d‖=1

1

‖d‖n−1+α
(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)

×∇Gs
( x
N

)
· d

‖d‖
ds ≥ −ε0.

Step 2. As in Step 3a in Section 5, we may substitute l-averages for |ηs(x) − ξs(x)|
and (ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs), where l diverges after N but before D, through
a discrete integration-by-parts, the smoothness and compact support of G, as well as the
particle bound Lemma 4.1, and with respect to the ξ· process that ξ· ∼ νc. Then, we have

1

Nn

∑
x∈Zn

|η0(x)− ξ0(x)|G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

|ηs(x)− ξs(x)|l∂sGs
( x
N

)
ds

+

∫ t

0

1

Nn

∑
x∈Zn

D∑
‖d‖=1

1

‖d‖n−1+α

[
(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)

]l
×∇Gs

( x
N

)
· d

‖d‖
ds ≥ −ε0 (10.4)

with high probability as N, l, and D go to infinity.

Step 3a. We now begin to perform a ‘1-block’ replacement in the last display, which will
allow us to access the Young measure formulation.

It is only here that we leverage the full form of the initial coupled distribution in
order to treat the first term on the left-side of (10.4). Let A1 and A2 be the set of sites x
in Zn where ρ0(x/N) ≥ c and ρ0(x/N) < c respectively. Write, using the coupling, noting
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that G is nonnegative, that

1

Nn

∑
x∈Zn

|η0(x)− ξ0(x)|G0

( x
N

)
=

1

Nn

2∑
j=1

∑
x∈Aj
|x|≤RN

|η0(x)− ξ0(x)|G0

( x
N

)
=

2∑
j=1

∣∣ 1

Nn

∑
x∈Aj
|x|≤RN

[
η0(x)− ξ0(x)

]
G0

( x
N

)∣∣.
We now add and subtract ρ0(x/N)− c inside the square bracket. Noting the compact

support of G, we observe

ẼN |
1

Nn

∑
x∈Aj
|x|≤RN

[
η0(x)− ρ0(x/N)

)
]G0

( x
N

)
|2 ≤ ‖G‖

N2n

∑
x∈Aj
|x|≤RN

Varνρ0(x/N)
(η(x)) = O(N−n).

A similar argument, using that ξ0 has distribution νc, works for the difference between
ξ0(x)−c. Hence, with high probability as N ↑ ∞, we may bound above 1

Nn

∑
x∈Zn |η0(x)−

ξ0(x)|G0

(
x
N

)
by

1

Nn

2∑
j=1

∣∣ ∑
x∈Aj

(
ρ0(x/N)− c

)
G0

( x
N

)∣∣ ≤ 1

Nn

∑
x∈Zn

|ρ0(x/N)− c|G0

( x
N

)
.

Step 3b. Now, we will replace |ηs(x)− ξs(x)|l by |ηls(x)− ξls(x)| in the the first integral,
and [(ghd(ηs(x)) − ghd(ξs(x)))Ox,d(ηs, ξs)]

l by (ΦΨ(ηls(x)) − ΦΨ(ξls(x)))sgn(ηls(x) − ξls(x))

in the second integral of (10.4).
Indeed, by the compact support of ∂sG and ∇G, and

∑∞
‖d‖=1 ‖d‖−(n−1+α) <∞, it will

be enough to show that the expected integral over time of the quantities,

S1 =
1

Nn

∑
|x|≤RN

∣∣|ηs(x)− ξs(x)|l − |ηls(x)− ξls(x)|
∣∣ and

S2 =
1

Nn

∑
|x|≤RN

∣∣[(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)]
l

−(ΦΨ(ηls(x))− ΦΨ(ξls(x))sgn(ηls(x)− ξls(x))
∣∣,

vanish in expectation as N and then l go to infinity, for each ‖d‖ ≤ D.
Divide now each of the sums above into two parts, Si = S1

i + S2
i , where S1

i is the
part where ηs and ξs are ordered on x + [−(l + D), l + D]n, and S2

i is the part where
they are not. When ηs and ξs are ordered on the set x + [−(l + D), l + D]n, we have
|ηs(x)− ξs(x)|l = |ηls(x)− ξls(x)|, and∣∣[(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)]

l − (ΦΨ(ηls(x))− ΦΨ(ξls(x))sgn(ηls(x)− ξls(x))
∣∣

≤
∣∣(ghd)l(ηs(x))− ΦΨ(ηls(x))

∣∣+
∣∣(ghd)l(ξs(x))− ΦΨ(ξls(x))

∣∣.
Therefore, the sum S1

1 vanishes. But, by the 1-block estimate Proposition 6.5, we have

lim sup
l→∞

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

∣∣(ghd)l(ηs(x))− ΦΨ(ηls(x))
∣∣ds = 0,

and its counterpart with η· replaced by ξ· ∼ νc also vanishes. Hence, the expectation of
the time integral of S1

2 vanishes in the limit as N ↑ ∞ and l ↑ ∞.
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Step 3c. When ηs and ξs are not ordered on x + [−(l + D), l + D]n, as h,Ψ ≤ ‖h‖∞ are
bounded, and g,Φ are Lipschitz, we have

L1 =
∣∣|ηs(x)− ξs(x)|l − |ηls(x)− ξls(x)|

∣∣,
L2 =

∣∣[(ghd(ηs(x))− ghd(ξs(x)))Ox,d(ηs, ξs)]
l

− (ΦΨ(ηls(x))− ΦΨ(ξls(x)))sgn(ηls(x)− ξls(x))
∣∣

are both bounded by a constant times (ηls(x) + ξls(x)). Therefore, we may introduce the
indicator function 1(ηls(x) ∨ ξls(x) ≤ A) when taking expectations, the error vanishing as
N ↑ ∞ and l ↑ ∞ by Lemma 4.2, and that ξ· ∼ νc.

Once this indicator is introduced, both terms L1, L2 are bounded by a constant C =

C(A), which allows further to introduce the indicator function 1(ηls(x+d)∨ξls(x+d) ≤ A),
say by Lemma 4.2 and that ξ· ∼ νc, the error vanishing as N ↑ ∞, l ↑ ∞ and A ↑ ∞.

Now, for k = 1, 2, we have

Lk1(ηls(x) ∨ ξls(x) ≤ A)1(ηls(x+ d) ∨ ξls(x+ d) ≤ A)Ux+[−(l+D),l+D]n(ηs, ξs)

≤ CUx+[−(l+D),l+D]n(ηs, ξs).

Therefore, to complete the 1-block replacement, it is enough to show, for fixed l, that

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

Ux+[−(l+D),l+D]n(ηs, ξs)ds = 0. (10.5)

Step 3d. Recall that UΛ(η, ξ) indicates when η and ξ are not ordered on Λ, and also that
Ux,d(η, ξ) = U{x,x+d}(η, ξ). We then have the bound,

Ux+[−(l+D),l+D]n(ηs, ξs) ≤
∑

|y|≤l+D

∑
|d|≤2(l+D)

Ux+y,d(ηs, ξs),

from which it follows for each l that∑
|x|≤RN

Ux+[−(l+D),l+D]n(ηs, ξs) ≤
∑

|y|≤l+D

∑
|d|≤2(l+D)

∑
|x|≤R+N

Ux,d(ηs, ξs),

for large enough N where R+ > R. However, by the Ordering Lemma 9.3, we have for
each l and d that ẼN

∫ t
0

1
Nn

∑
|x|≤R+N Ux,d(ηs, ξs)ds vanishes as N ↑ ∞. Hence, (10.5)

holds. and the 1-block replacement follows.

In particular, we have

1

Nn

∑
x∈Zn

∣∣ρ0(x/N)− c
∣∣G0

( x
N

)
+

∫ t

0

1

Nn

∑
x∈Zn

|ηls(x)− ξls(x)|∂sGs
( x
N

)
ds

+

∫ t

0

1

Nn

∑
x∈Zn

D∑
‖d‖=1

1

‖d‖n−1+α
(ΦΨ(ηls(x))− ΦΨ(ξls(x)))

×sgn(ηls(x)− ξls(x))∇Gs
( x
N

)
· d

‖d‖
ds ≥ −ε0 (10.6)

with high probability as N, l, and D go to infinity. To recover (10.2) from (10.6), we may
group together the terms involving d, and remove the bound ‖d‖ ≤ D, by appealing to the
argument in Step 3a in Subsection 8. Then, the sum on d is replaced by γα∂1(n)Gs(

x
N ).
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11 L1 mass bound: proof of Theorem 7.4

We leverage the weak formulation of the entropy condition (7.2).

Step 1. Consider a test function in form G(s, u) = H(s)G(u) for G nonnegative,
and c = ρ∗. Define VG(s) =

∫
Rn

∫∞
0
G(u)|λ − ρ∗|ρ(s, u, dλ)du. By the ‘Mass Bounding’

Lemma 11.1 shown below, VG is finite. Moreover, by the measure weak entropy condition
inequality (Theorem 7.3),

−
∫ ∞

0

∂sH(s)VG(s)ds

≤ H(0)VG(0) + γα

∫ ∞
0

H(s)

∫
Rn

∫ ∞
0

∂1(n)G (u) q(λ, ρ∗)ρ(s, u, dλ)duds,

where we recall q(λ, c) = sgn(λ− c)(ΦΨ(λ)− ΦΨ(c)). Since Φ,Ψ are Lipschitz, and also
Ψ ≤ ‖h‖∞, we have |q(λ, c)| ≤ |(Φ(λ)− Φ(c))Ψ(λ) + Φ(c)(Ψ(λ)−Ψ(c))| ≤ C|λ− c| where
the constant depends on c. Hence, |q(λ, ρ∗)| ≤ C|λ− ρ∗|. Then,

−
∫ ∞

0

∂sH(s)VG(s)ds ≤ H(0)VG(0) + γαC(ρ∗)

∫ ∞
0

|H(s)|V|∂1(n)G|(s)ds.

The idea now will be to choose G and H, approximating the constant 1 and an
indicator of a time point t, so that the right-hand side is well bounded. This will be done
through an iteration scheme in the next step.

Step 2. We now define a sequence of test functions {Hi} on R. With respect to
0 ≤ t < T and 0 ≤ δ ≤ T − t, let H0(s) = 1 up to s = t − δ, then decreasing to 0 by
s = t + δ. We may do this in such a way that −∂sH0(s) is positive on (t − δ, t + δ) and
weakly approaches a delta function at t. For instance, we can take −∂sH0(s) as the
linear interpolation between (t − δ, 0), (t − δ + γ, L), (t + δ − γ, L) and (t + δ, 0) where
L = (2δ − γ)−1 for γ < δ/2.

For each i ≥ 1, define Hi+1(s) =
∫ t+δ
s

Hi(u)du. Therefore, each Hi(s) is nonnegative,
vanishing for s > t+ δ. We then have −∂sHi+1(s) = |Hi(s)|. Note also Hi(0) ≤ (t+ δ)i/i!.

Define Gi(u) = 1 on [−(i+ 1)R, (i+ 1)R]n, decreasing to zero within [−(i+ 2)R, (i+

2)R]n, so that |∂1(n)Gi(u)| ≤ 2/R. Then, |∂1(n)Gi(u)| ≤ (2/R)Gi+1(u). Here, the limit of
these functions, G∞(u) ≡ 1.

With respect to H = Hi and G = Gi, we have∫ ∞
0

−∂sHi(s)VGi(s)ds ≤ Hi(0)VGi(0) +
2γαC(ρ∗)

R

∫ ∞
0

−∂sHi+1(s)VGi+1(s)ds.

Step 3. Iterating the above inequality k times, starting with i = 0, gives

−
∫ ∞

0

∂sH0(s)VG0
(s)ds ≤

k−1∑
i=0

(2γαC

R

)i
Hi(0)VGi(0) +

(2γαC

R

)k ∫ ∞
0

−∂sHk(s)VGk(s)ds.

Since VGk(s) ≤ ess sup0≤t≤TVGk(t), VGi(0) ≤ VG∞(0), and Hi(0) ≤ (t+δ)i/i!, we obtain

−
∫ ∞

0

∂sH0(s)VG0
(s)ds ≤

k−1∑
i=0

(2γαCT/R)i

i!
VG∞(0)

+
(2γαCT/R)k

k!
ess sup0≤t≤TVGk(t). (11.1)

Step 4. Choose now k = n+ 2. Note that VG0
↑ VG∞ as R ↑ ∞. Then, the supremum

over 0 < γ < δ/2, 0 < δ ≤ T − t and 0 ≤ t < T of the left-side of (11.1), Q∗ a.s., increases

EJP 23 (2018), paper 130.
Page 45/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

by monotone convergence as R ↑ ∞ to

sup
0<γ<δ/2

sup
0<δ≤T−t

sup
0≤t<T

∫ ∞
0

−∂sH0(s)VG∞(s)ds.

To capture the limit of the right-side, note

VG∞(0) =

∫
Rn

∫ ∞
0

|λ− ρ∗|ρ(0, u, dλ)du =

∫
Rn
|ρ0(u)− ρ∗|du <∞.

Then, the first term on the right-side of (11.1) converges to VG∞(0) as R ↑ ∞.
However, by the ‘Mass Bounding’ Lemma 11.1, we have EQ∗ess sup0≤t≤TVGn+2

(t) =

O(Rn), and so

(2γαCT/R)n+2

(n+ 2)!
EQ∗

[
ess sup0≤t≤TVGn+2(t)

]
= O(R−2).

Hence, Q∗ a.s., by Borel-Cantelli lemma, as R ↑ ∞, the second term on the right-side of
(11.1) vanishes.

Step 5. Therefore, we have

sup
0<γ<δ/2

sup
0<δ≤T−t

sup
0≤t<T

∫ ∞
0

−∂sH0(s)VG∞(s)ds ≤ VG∞(0),

with respect to a Q∗ probability 1 set. Moreover, on this set, as −∂sH0 is positive on
(t− δ, t+ δ), we have that VG∞ is locally integrable on [0, T ]. Also, by Fatou’s lemma, for
each t and small enough δ > 0, we have

1

2δ

∫ t+δ

t−δ
VG∞(s)ds ≤ lim inf

γ↓0

∫ ∞
0

−∂sH0(s)VG∞(s)ds ≤ VG∞(0).

In fact, for each Lebesgue point t of VG∞ , as δ ↓ 0, we have VG∞(t) ≤ VG∞(0). We
conclude, as Lebesgue points are dense, that Q∗ a.s.

ess supt

∫
Rn

∫ ∞
0

|λ− ρ∗|ρ(t, u, dλ)du ≤ VG∞(0),

finishing the argument.

11.1 Mass bounding lemma

The following result bounds the mass in finite regions.

Lemma 11.1. LetG be a nonnegative function with support in [−R,R]n such that |G| ≤ 1.
For every limit point Q∗ and c ∈ R, we have

EQ∗
[
ess sup0≤t≤T

∫
Rn
G(u)

∫ ∞
0

|λ− c|ρ(t, u, dλ)du
]

= O(Rn).

Proof. First we bound |λ − c| by λ + |c|. Since ρ(t, u, dλ) is a probability measure, we
have

∫
Rn
G(u)

∫∞
0
|c|ρ(t, u, dλ)du = O(Rn). Therefore, we only need to prove

EQ∗
[
ess sup0≤t≤T

∫
Rn
G(u)

∫ ∞
0

λρ(t, u, dλ)du
]

= O(Rn). (11.2)

To this end, for RN ≥ l, note

〈πN,lt , G(u)λ〉 ≤ 1

Nn

∑
|x|≤RN

ηlt(x) ≤ 1

Nn

∑
|x|≤2RN

ηt(x) ≤ 〈πNt , G1〉,

EJP 23 (2018), paper 130.
Page 46/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

where G1 equals 1 on [−2R, 2R]n, and decreases to zero within [−3R, 3R]n. By the
definition of the martingale MN,G1

t , we have

EN sup
0≤t≤T

〈πN,lt , G1〉 ≤ EN 〈πN0 , G1〉+ EN
∫ T

0

|NLN 〈πNs , G1〉|ds+ EN sup
0≤t≤T

|MN,G1

t |.

By our initial conditions, EN 〈πN0 , G1〉 ≤ (4R + 1)n‖ρ0‖∞, and by Lemma 4.3, we have

EN
∫ T

0
|NLN 〈πNs , G1〉|ds = O(Rn), independent of N and l. Also, by Doob’s inequality

and Lemma 4.6, EN sup0≤t≤T |M
N,G1

t | ≤ 4EN 〈MN,G1〉T = O(N−n). Therefore, for all
large N , we have

EN,less sup0≤t≤T 〈π
N,l
t , G(u)λ〉 = O(Rn).

Finally, as ess sup0≤t≤T 〈π
N,l
t , G(u)λ〉 is a lower semi-continuous function of πN,l, we

may take subsequential limits as N, l ↑ ∞, for which QN,l ⇒ Q∗, to obtain (11.2).

12 Initial conditions: proof of Theorem 7.5

The strategy is to approximate the initial density ρ0 in compact sets via the weak
form of the entropy inequality.

Step 1. Since ρ0 is a continuous function that equals a constant ρ∗ outside of a
compact set [−R,R]n, it is uniformly continuous. Fix a δ = (δ0, . . . , δ0) with 0 < δ0 < 1.
Consider a regular division of Rn into countably many overlapping hyper-rectangles
[ai − δ, bi + δ] =

∏n
j=1[ai,j − δ0, bi,j + δ0] such that ∪∞i=1[ai − δ, bi + δ] = Rn, and the [ai, bi]

are disjoint. Finitely many of these hyper-rectangles cover [−R,R]n. The parameter δ
may be chosen so that ρ0 varies at most ε > 0 on each hyper-rectangle.

For each hyper-rectangle, we construct a nonnegative smooth bump function, Gi(u),
that is 1 on [ai, bi] and decreases to 0 outside of [ai − δ, bi + δ]. The {Gi} may be
constructed such that

∑∞
i=1Gi(u) = 1 for all u ∈ Rn, and maxi ‖∂1(1)Gi‖∞ is bounded.

We also choose constants ci = min{ρ0(u) : u ∈ [ai − δ, bi + δ] so that 0 ≤ ρ0(u)− ci ≤ ε for
all u ∈ [ai − δ, bi + δ]}. By the triangle inequality,

|λ− ρ0(u)| ≤ |λ− ci|+ |ρ0(u)− ci| ≤ |λ− ci| − |ρ0(u)− ci|+ 2ε

on any hyper-rectangle that intersects [−R,R]n; on the other hyper-rectangles, as
ρ0 = ρ∗, we have |λ− ρ0(u)| = |λ− ci| − |ρ0(u)− ci|.

Note that (2R)n is the volume of [−R,R]n, ρ(s, u, dλ) is a probability measure (cf.
Step 1 in Section 7), and |λ − ci| − |ρ0 − ci| = |λ − ci| ≥ 0 for all but finitely many
hyper-rectangles. Then, a Fubini-Tonelli theorem may be applied, so that

EQ∗
[1

t

∫ t

0

∫
Rn

∫ ∞
0

|λ− ρ0(u)|ρ(s, u, dλ)duds
]

≤ EQ∗
[1

t

∫ t

0

∞∑
i=1

∫
Rn
Gi(u)

∫ ∞
0

(|λ− ci| − |ρ0(u)− ci|)ρ(s, u, dλ)duds
]

+ 2ε(2R)n

=

∞∑
i=1

EQ∗
[1

t

∫ t

0

∫
Rn
Gi(u)

∫ ∞
0

(|λ− ci| − |ρ0(u)− ci|)ρ(s, u, dλ)duds
]

+ 2ε(2R)n.

Step 2. Suppose, for all i, that

lim sup
t↓0

EQ∗
∣∣∣1
t

∫ t

0

∫
Rn
Gi(u)

∫ ∞
0

(|λ− ci| − |ρ0(u)− ci|)ρ(s, u, dλ)duds
∣∣∣ = 0, (12.1)

and

∞∑
i=1

sup
0<t<T

EQ∗
∣∣∣1
t

∫ t

0

∫
Rn
Gi(u)

∫ ∞
0

(|λ− ci| − |ρ0(u)− ci|)ρ(s, u, dλ)duds
∣∣∣ <∞.
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Then, by Fatou-Lebesgue lemma , we would have

EQ∗
[

lim inf
t↓0

1

t

∫ t

0

∫
Rn

∫ ∞
0

|λ− ρ0(u)|ρ(s, u, dλ)duds
]

≤ lim inf
t↓0

EQ∗
1

t

∫ t

0

∫
Rn

∫ ∞
0

|λ− ρ0(u)|ρ(s, u, dλ)duds ≤ 2ε(2R)n,

from which Theorem 7.5 would follow as ε > 0 is arbitrary.

Step 3. To finish the proof, we establish (12.1). As discussed in Step 1 in Section 7,
with respect to Q∗, initially ρ(0, u, dλ) = δρ0(u), and ρ(s, u, dλ) is a probability measure.
Then, with respect to a test function G(s, u) = H(s)G(u) with G nonnegative, we have
H(0)

∫
Rn
G(u)

∫∞
0
|ρ0(u) − c|ρ(s, u, dλ)du = H(0)

∫
Rn

∫∞
0
G(u)|λ − c|ρ(0, u, dλ)du. Hence,

we can write the measure weak formulation of the entropy condition (7.2) as∫ ∞
0

∂sH(s)

∫
Rn
G(u)

∫ ∞
0

(|λ− c| − |ρ0(u)− c|)ρ(s, u, dλ)duds

+γα

∫ ∞
0

H(s)

∫
Rn

∫ ∞
0

∂1(n)G (u) q(λ, c)ρ(s, u, dλ)duds ≥ 0,

recalling q(λ, c) = sgn(λ − c)(ΦΨ(λ) − ΦΨ(c)). As in Step 1 of Section 11, we have
|q(λ, c)| ≤ C2|λ − c| where the constant C2 depends on ‖ρ0‖∞. Therefore, putting the
first term on the other side of the inequality,

−
∫ ∞

0

∂sH(s)

∫
Rn
G(u)

∫ ∞
0

(|λ− c| − |ρ0(u)− c|)ρ(s, u, dλ)duds

≤ γαC2

∫ t

0

|H(s)|
∫
Rn

∫ ∞
0

|∂1(n)G (u) ||λ− c|ρ(s, u, dλ)duds. (12.2)

Step 4. Recall, that EQ∗ess sup0≤t≤T
∫
Rn

∫∞
0
G(u)|λ−c|ρ(t, u, dλ)du <∞, by the ‘Mass

Bounding Lemma’ 11.1, for all nonnegative G’s with compact support. Consider, with
respect to a small δ > 0, a smooth H such that ∂sH(s) = −t−1 for 0 ≤ s ≤ t− δ, linearly
interpolates from (t− δ,−t−1) to (t, 0), and vanishes for s ≥ t. Taking H(0) = 1− δ/(2t),
we have that H vanishes for s ≥ t.

By taking a supremum over time, noting |H(s)| ≤ 1, the right-side of the inequality
(12.2) is bounded by γαC2t ess sup0≤s≤T

∫
Rn

∫∞
0
|∂1(n)G (u) ||λ− c|ρ(s, u, dλ)du. However,

the left-side, by dominated convergence, converges, as δ ↓ 0, to

1

t

∫ t

0

∫
Rn
G(u)

∫ ∞
0

(|λ− c| − |ρ0(u)− c|)ρ(s, u, dλ)duds.

We obtain

1

t

∫ t

0

∫
Rn
G(u)

∫ ∞
0

(|λ− c| − |ρ0(u)− c|)ρ(s, u, dλ)duds

≤ γαC2t ess sup0≤s≤T

∫
Rn

∫ ∞
0

|∂1(n)G (u) ||λ− c|ρ(s, u, dλ)du.

As |∂1(n)G| is compactly supported, noting the ‘Mass Bounding Lemma’ 11.1 again,
the expected value of the right-side of the above display vanishes as t goes to zero.
Therefore, the first line of (12.1) holds.

To obtain the second line of (12.1), instead of bounding the right-side of (12.2) by a
supremum, bound it by increasing the time integration to [0, T ]. Then, we have

sup
0<t<T

∣∣∣1
t

∫ t

0

∫
Rn
Gi(u)

∫ ∞
0

(
|λ− ci| − |ρ0(u)− ci|

)
ρ(s, u, dλ)duds

∣∣∣
≤ γαC2

∫ T

0

∫
Rn

∫ ∞
0

|∂1(n)Gi (u) ||λ− ci|ρ(s, u, dλ)duds.
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For only finitely many i does ci differ from ρ∗ and |ρ0(u)− ci| > 0. Also, by the comment
in the previous paragraph, for each i, the expected value of the right-side of the above
display is bounded. Note now, by the regular division, that the support of each ∂1(n)Gi is
overlapped by the support of at most an uniformly bounded number, in terms of the cover-
ing, of other {∂1(n)Gj}. Note also, from construction, that ∂1(n)Gj is uniformly bounded

in j. Also, from Theorem 7.4, we have that EQ∗
[ ∫ T

0

∫
Rn

∫∞
0
|λ − ρ∗|ρ(s, u, dλ)duds

]
≤

T
∫
Rn
|ρ0(u)−ρ∗|du <∞. Hence, summability in (12.1) follows, and the proof of Theorem

7.5 is complete.

In passing, we remark that this proof, making use of the weak formulation of the
entropy condition, seems new and more direct than proofs in [24] and [20] which
introduce types of particle couplings in the finite-range setting, without going to the
continuum equation. We note, in the PhD thesis [27], an alternate argument for the first
line of (12.1) through a simpler and different particle coupling will be found.

A Proof of the ordering Lemma 9.3

Step 1. We now show the first part of the lemma. Let Gs(u) be a nonnegative smooth
function that is 1 on hyper-rectangle [a, b] =

∏n
j=1[aj , bj ] and decreases to 0 outside of

[a− δ, b+ δ] =
∏n
j=1[aj − δj , bj + δj ] where δ = (δ1, . . . , δn) with δi > 0 and ‖δ‖ < 1.

Then, noting the computation of NL̃N 〈π̃Ns , Gs〉 in (9.1) and (9.2), we have

N

Nn

∞∑
‖d‖=1

1

‖d‖n+α

∑
x∈[a,b]N
x+d∈[a,b]N

|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)

≤ N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ghd(ηs(x))− ghd(ξs(x))Ox,d(ηs, ξs)

[
Gs
(x+ d

N

)
−Gs

( x
N

)]
−NL̃N 〈π̃Ns , Gs〉 =: J1 −NL̃N 〈π̃Ns , Gs〉.

Step 2. Note, the expression |ghd(ηs(x))− ghd(ξs(x)| ≤ κ‖h‖∞(ηs(x) + ξs(x)) by (2.3),
and |Ox,d(ηs, ξs)| ≤ 1. Hence,

J1 ≤ κ‖h‖∞
N

Nn

∑
x∈Zn

∞∑
‖d‖=1

1

‖d‖n+α
(ηs(x) + ξs(x))

∣∣Gs(x+ d

N

)
−Gs

( x
N

)∣∣.
We now split the sum over d into two parts, namely when ‖d‖ ≤ N and ‖d‖ > N ,

and write J1 = J11 + J12 accordingly. When ‖d‖ ≤ N , we bound |Gs
(
x+d
N

)
−Gs

(
x
N

)
| ≤

‖∇G‖ · ‖d‖/N1(x ∈ [(a− δ − 1)N, (b+ δ + 1)N ]). Then,

J11 ≤ κ‖h‖∞
N∑
‖d‖=1

1

‖d‖n−1+α
‖∇G‖ 1

Nn

′∑
(ηs(x) + ξs(x))

where
∑′ refers to a sum over O(Nn) values of x. By Lemma 4.1, and that the ξs process

starts in the invariant measure νc, we have ẼN
∑′

(ηs(x)+ξs(x)) ≤ 2K0N
n say. Therefore,

ẼNJ11 ≤ C̃1 := κ‖h‖∞
∑∞
‖d‖=1

1
‖d‖n−1+α ‖∇G‖2K0, finite when α > 1.

On the other hand, when ‖d‖ > N , we have |Gs
(
x+d
N

)
−Gs

(
x
N

)
| ≤ 1(x ∈ [(a−δ)N, (b+

δ)N ] ∪ x+ d ∈ [(a− δ)N, (b+ δ)N ]). Then, in terms of a sum
∑′′ over O(Nn) sites,

J12 ≤ κ‖h‖∞
∑
‖d‖>N

1

‖d‖n−1+α

1

‖d‖Nn−1

′′∑
(ηs(x) + ξs(x)).
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As ‖d‖ ≥ N , we have ẼN
[

1
‖d‖Nn−1

∑′′
(ηs(x) + ξs(x))

]
≤ 2K ′0 say, uniformly in d, by

Lemma 4.1 and that ξ· ∼ νc. Then, ẼNJ12 ≤ C̃2 := κ‖h‖∞
∞∑
‖d‖=1

1
‖d‖n−1+α 2K ′0.

Step 3. It follows that ẼNJ1 ≤ C̃ = C̃1 + C̃2. Therefore,

1

Nn
ẼN

∫ t

0

∞∑
‖d‖=1

1

‖d‖n+α

∑
x∈[a,b]N
x+d∈[a,b]N

|ghd(ηs(x))− ghd(ξs(x)|Ux,d(ηs, ξs)ds

≤ tC̃

N
− ẼN

∫ t

0

L̃N 〈π̃Ns , Gs〉ds. (A.1)

Consider the mean-zero martingale M̃N,G
t where Gs(u) = G(u) ≥ 0 for s ≤ t, vanish-

ing before time T . As ∂sG = 0 for s ≤ t, and 〈π̃Nt , G〉 ≥ 0, we have

−
∫ t

0

NL̃N 〈π̃Ns , Gs〉ds ≤ M̃
N,G
t + 〈π̃N0 , G0〉.

Therefore, (A.1) is bounded by

tC̃

N
+

1

Nn+1
ẼN

∑
x∈[a−δ,b+δ]N

(η0(x) + ξ0(x)).

As the expectation is of order O(Nn) by Lemma 4.1 and that ξ· ∼ νc, the last display
vanishes as N ↑ ∞. This completes the proof of the first part of Lemma 9.3.

Step 4. We now show the second part of Lemma 9.3. In general, ghd(ηs(x))−ghd(ξs(x))

may not vanish, and so the first part is not coercive. To work around this issue, we would
like to introduce the indicator function 1(ηs(x) ∨ ξs(x) ∨ ηs(x+ d) ∨ ξs(x+ d) < A) into
the associated expectation. This is justified if we show that

lim
A↑∞

lim
N↑∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

Ux,d(ηs, ξs)1(ηs(x) ∨ ξs(x) ∨ ηs(x+ d) ∨ ξs(x+ d) > A)ds = 0.

The expectation above is bounded by the sum of EN
∫ t

0
1
Nn

∑
|x|≤RN 1(ηs(x) > A)ds, and

three other expectations containing the indicator functions 1(ξs(x) > A), 1(ηs(x+d) > A),
and 1(ξs(x+ d) > A)).

By the entropy inequality (4.4), the first expectation is bounded by

1

γNn

(
O(Nn) logEνρ∗

[
eγ1(η(0)>A)

]
+ CNn

)
.

After N and A go to infinity, the limit is C/γ which vanishes as γ ↑ ∞. The other three
terms are similarly analyzed, using ξ· ∼ νc when ξ· is involved.

Therefore, it will be enough to prove, for each A, that

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

Ux,d(ηs, ξs)1(ηs(x) ∨ ξs(x) ∨ ηs(x+ d) ∨ ξs(x+ d) < A)ds = 0.

Step 5. Let Ix,dm1,m2,k1,k2
(η, ξ) = 1(η(x) = m1, ξ(x) = m2, η(x + d) = k1, ξ(x + d) = k2).

Then,

Ux,d(η, ξ)1(η(x) ∨ ξ(x) ∨ η(x+ d) ∨ ξ(x+ d) < A) ≤
∑̃

Ix,dm1,m2,k1,k2
(η, ξ)

EJP 23 (2018), paper 130.
Page 50/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP237
http://www.imstat.org/ejp/


Hydrodynamics for long-range asymmetric systems

where the sum
∑̃

is over all m1,m2, k1, k2 less than A such that η and ξ will be not
ordered on the sites x and x+ d. Since this is a finite sum, it will be enough to prove that

lim sup
N→∞

ẼN
∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1,m2,k1,k2
(ηs, ξs)ds = 0, (A.2)

for each m1,m2, k1, k2 indexed in
∑̃

.

From the ‘proven first part’, that is that (A.1) vanishes, we note if g(m1)h(k1) 6=
g(m2)h(k2) then (A.2) holds.

Recall M0 = min{k : h(k) = 0} is the maximum possible number of particles at a site,
with the convention that M0 = ∞ if h(k) is never zero. If k1 or k2 is greater than M0,
then Ix,dm1,m2,k1,k2

(ηs, ξs) identically vanishes, and (A.2) holds trivially.

We note (A.2) holds also if k1 or k2 equal M0 <∞: Indeed, without loss of generality,
suppose M0 = k1 > k2. Then, as the sites are unordered, 0 ≤ m1 < m2. It follows that
g(m2) 6= 0 6= h(k2). So, as h(k1) = 0, we have g(m1)h(k1) = 0 6= g(m2)h(k2). Then, by our
earlier comment, the ‘proven first part’ applies, and (A.2) holds.

Similarly, (A.2) holds if m1 or m2 equal 0: Indeed, without loss of generality, suppose
0 = m1 < m2. Then, k1 > k2. It follows that g(m2) 6= 0 = g(m1). If h(k2) = 0, then k2 ≥
M0 and we have already shown (A.2). If h(k2) 6= 0, then g(m1)h(k1) = 0 6= g(m2)h(k2),
and (A.2) holds by the ‘proven first part’.

Step 6. We now establish (A.2) by induction for all other cases. Without loss of
generality, suppose m1 < m2 and k1 > k2. Assume for our induction step that (A.2) holds
for a fixed m1 ≥ 0 and for all m2 > m1 and for all k1, k2 such that k1 > k2. Our base case,
when m1 = 0, has already been shown. Suppose that we can show

lim sup
N→∞

1

‖d‖n+α
C(m1,m2, k1, k2)ẼN

∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1+1,m2+1,k1−1,k2−1(ηs, ξs)ds

≤ lim sup
A→∞

lim sup
N→∞

8Aκ‖h‖∞
∞∑

‖d′‖=1

1

‖d′‖n+α
ẼN

∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1,m2,k1,k2
(ηs, ξs)ds, (A.3)

where

C(m1,m2, k1, k2) := min
{
g(m1 + 1)h(k1 − 1), g(m2 + 1)h(k2 − 1)

}
.

Then, by the induction assumption, we would have

lim sup
N→∞

1

‖d‖n+α
C(m1,m2, k1, k2)ẼN

∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1+1,m2+1,k1−1,k2−1(ηs, ξs)ds = 0.

Now, by assumption, g(a + 1) > 0 for a ≥ 0, and min{h(k1 − 1), h(k2 − 1)} > 0 if both
k1 − 1, k2 − 1 < M0. Hence, C(m1,m2, k1, k2) > 0 and the expectation in the above
display vanishes as N ↑ ∞ for all m2 + 1 > m1 + 1 and for all k1 − 1, k2 − 1 such that
k1 − 1 > k2 − 1 provided that k1 − 1 < M0. However, we have already shown that the
expectation vanishes if either k1 − 1 or k2 − 1 ≥M0.

Thus, the induction step and therefore the second part of Lemma 9.3 would be
proved.

Step 7. To show (A.3), we recall miny,y+d′ = min{ghd′(η(y)), ghd′(ξ(y))} and write
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L̃Ix,dm1,m2,k1,k2
(η, ξ) equal to

∑
y∈Zn

∞∑
‖d′‖=1

1

‖d′‖n+α
miny,y+d′

(
Ix,dm1,m2,k1,k2

(ηy,y+d′ , ξy,y+d′)− Ix,dm1,m2,k1,k2
(η, ξ)

)
+
∑
y∈Zn

∞∑
‖d′‖=1

1

‖d′‖n+α
(ghd′(η(y))−miny,y+d′)

×
(
Ix,dm1,m2,k1,k2

(ηy,y+d′ , ξ)− Ix,dm1,m2,k1,k2
(η, ξ)

)
+
∑
y∈Zn

∞∑
‖d′‖=1

1

‖d′‖n+α
(ghd′(ξ(y))−miny,y+d′)

×
(
Ix,dm1,m2,k1,k2

(η, ξy,y+d′)− Ix,dm1,m2,k1,k2
(η, ξ)

)
.

All of the terms above vanish except those when y = x, y = x + d, y + d′ = x,
and y + d′ = x + d. In making a bound, of the positive terms, we shall keep the term
Ix,dm1,m2,k1,k2

(ηy,y+d′ , ξy,y+d′) = Ix,dm1+1,m2+1,k1−1,k2−1(η, ξ) when y = x and d′ = d. For the
negative terms, we shall double count the terms where y = x and d′ = d. Note also that
the total aggregate rate for all the negative terms is |ghd′(η(y))− ghd′(ξ(y)|. Therefore,

L̃Ix,dm1,m2,k1,k2
(η, ξ) ≥ 1

‖d‖n+α
minx,x+d I

x,d
m1+1,m2+1,k1−1,k2−1(η, ξ)

−
∞∑

‖d′‖=1

1

‖d′‖n+α

∑
y=x,x+d,

x−d′,x+d−d′

|ghd′(η(y))− ghd′(ξ(y)|Ix,dm1,m2,k1,k2
(η, ξ).

Note that in the above display, minx,x+d = min{g(m1 + 1)h(k1 − 1), g(m2 + 1)h(k2 −
1)} = C(m1,m2, k1, k2). In the ‘negative’ terms, we bound |ghd′(η(y)) − ghd′(ξ(y)| ≤
κ‖h‖∞(η(y) + ξ(y)) (cf. (2.3)), and split into terms involving only η and only ξ. We may
introduce indicator functions 1(η(y) ≤ A) and 1(η(y) > A) onto the ‘η’ terms and ‘ξ’ terms.
Items η(y)1(η(y) ≤ A) ≤ A and also Ix,dm1,m2,k1,k2

(η, ξ)η(y)1(η(y) > A) ≤ η(y)1(η(y) > A),
with similar bounds for the items with ξ.

We thus obtain, moving the negative terms to the other side of the inequality,

1

‖d‖n+α
C(m1,m2, k1, k2)ẼN

∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1+1,m2+1,k1−1,k2−1(ηs, ξs)ds

≤ S1 + S2 + S3 where

S1 = ẼN
∫ t

0

1

Nn

∑
|x|≤RN

L̃Ix,dm1,m2,k1,k2
(ηs, ξs)ds,

S2 = 8Aκ‖h‖∞
∞∑

‖d′‖=1

1

‖d′‖n+α
ẼN

∫ t

0

1

Nn

∑
|x|≤RN

Ix,dm1,m2,k1,k2
(ηs, ξs)ds and

S3 = κ‖h‖∞
∞∑

‖d′‖=1

1

‖d′‖n+α

×
∫ t

0

ẼN
1

Nn

∑
|x|≤RN

∑
y=x,x+d,

x−d′,x+d−d′

(
ηs(y)1(ηs(y) > A) + ξs(y)1(ξs(y) > A)

)
ds.

We now show the first and third terms vanish as N,A ↑ to finish, the term S2 being
what we would like to keep. By Lemma 4.2 and that ξ· ∼ νc, noting

∑
‖d′‖≥1 ‖d′‖−(n+α) <
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∞, the term S3 goes to zero. For the term S1, consider the mean-zero martingale
M̃x,d
m1,m2,k1,k2

(t) = Ix,dm1,m2,k1,k2
(ηt, ξt)− Ix,dm1,m2,k1,k2

(η0, ξ0)−
∫ t

0
NL̃Ix,dm1,m2,k1,k2

(ηs, ξs)ds. As

0 ≤ Ix,d· ≤ 1, it follows that∫ t

0

1

Nn

∑
|x|≤RN

L̃Ix,dm1,m2,k1,k2
(ηs, ξs)ds ≤

1

Nn

∑
|x|≤RN

1

N

(
1− M̃x,d

m1,m2,k1,k2
(t)
)
.

Hence, the expected value S1 ≤ C(R)/N → 0, as N ↑ ∞, completing the proof of
(A.3).
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