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Refined asymptotics for the composition of
cyclic urns
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Abstract

A cyclic urn is an urn model for balls of types 0, . . . ,m− 1. The urn starts at time zero
with an initial configuration. Then, in each time step, first a ball is drawn from the urn
uniformly and independently from the past. If its type is j, it is then returned to the
urn together with a new ball of type j + 1 mod m. The case m = 2 is the well-known
Friedman urn. The composition vector, i.e., the vector of the numbers of balls of
each type after n steps is, after normalization, known to be asymptotically normal for
2 ≤ m ≤ 6. For m ≥ 7 the normalized composition vector is known not to converge.
However, there is an almost sure approximation by a periodic random vector.

In the present paper the asymptotic fluctuations around this periodic random
vector are identified. We show that these fluctuations are asymptotically normal for
all 7 ≤ m ≤ 12. For m ≥ 13 we also find asymptotically normal fluctuations when
normalizing in a more refined way. These fluctuations are of maximal dimension
m− 1 only when 6 does not divide m. For m being a multiple of 6 the fluctuations are
supported by a two-dimensional subspace.
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1 Introduction and result

A cyclic urn is an urn model with a fixed number m ≥ 2 of possible colors of balls
which we call types 0, . . . ,m − 1. We assume that initially there is one ball of type 0.
In each step, we draw a ball from the urn, uniformly from within the balls in the urn
and independently of the history of the urn process. If its type is j ∈ {0, . . . ,m− 1} it is
placed back to the urn together with a new ball of type j + 1 mod m. These steps are
iterated.
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Refined asymptotics for the composition of cyclic urns

We denote by Rn = (Rn,0, . . . , Rn,m−1)t the (column) vector of the numbers of balls of
each type after n steps when starting with one ball of type 0. Hence, we have R0 = e0

where ej denotes the j-th unit vector in Rm, indexing the unit vectors by 0, . . . ,m−1. For
fixed m ≥ 2 we denote the m-th elementary root of unity by ω := exp( 2πi

m ). Furthermore,
we set

λk := <(ωk) = cos

(
2πk

m

)
, µk := =(ωk) = sin

(
2πk

m

)
,

vk :=
1

m

(
1, ω−k, ω−2k, . . . , ω−(m−1)k

)t
∈ Cm, 0 ≤ k ≤ m− 1. (1.1)

Note that v0 = 1
m1 := 1

m (1, 1, . . . , 1)t ∈ Rm.
The asymptotic distributional behavior of the sequence (Rn)n≥0 has been identified

in Janson [9, 10, 11], see also Pouyanne [18, 19] and, for the case m = 2, Freedman
[7]. Janson developed a limit theory for the compositions of rather general urn schemes.
For the cyclic urns he showed that the normalized composition vector Rn converges
in distribution towards a multivariate normal distribution for 2 ≤ m ≤ 6, whereas for
m ≥ 7 there is no convergence of a conventionally standardized version of the Rn due to
subtle periodicities. Further, for m ≥ 7, there exists a complex valued random variable
Ξ1 (depending on m) such that almost surely, as n→∞, we have

Rn − n+1
m 1

nλ1
− 2<

(
niµ1Ξ1v1

)
→ 0. (1.2)

We focus mainly on the periodic case m ≥ 7. In the present paper we study the
fluctuations of n−λ1(Rn − n+1

m 1) around the periodic sequence (2<(niµ1Ξ1v1))n≥0. We
call the differences in (1.2) residuals.

To formulate our results we denote by
d−→ convergence in distribution. Further,

N (0,M) denotes the centered normal distribution with covariance matrix M , where M
is a symmetric positive semi-definite matrix. For v ∈ Cm we write v∗ for the conjugate
transpose of v and for z ∈ C, z̄ denotes the complex conjugate of z. Furthermore, 6 | m
and 6 - m are short for 6 divides (resp. does not divide) m.

We distinguish the cases 6 | m and 6 - m as follows.

Theorem 1.1. Let m ≥ 2 with 6 - m and set r := b(m− 1)/6c. Then, there exist complex
valued random variables Ξ1, . . . ,Ξr such that, as n→∞, we have

1√
n

(
Rn − E[Rn]−

r∑
k=1

2<
(
nω

k

Ξkvk

))
d−→ N

(
0,Σ(m)

)
.

The covariance matrix Σ(m) has rank m− 1 and is given by

Σ(m) =

m−1∑
k=1

1

|2λk − 1|
vkv
∗
k.

When 6 | m then the normalization requires an additional
√

log n factor and the rank
of the covariance matrix is reduced to 2:

Theorem 1.2. Let m ≥ 2 with 6 | m and set r := b(m− 1)/6c. Then, there exist complex
valued random variables Ξ1, . . . ,Ξr such that, as n→∞, we have

1√
n log n

(
Rn − E[Rn]−

r∑
k=1

2<
(
nω

k

Ξkvk

))
d−→ N

(
0,Σ(m)

)
.

The covariance matrix Σ(m) has rank 2 and is given by

Σ(m) = vm/6v
∗
m/6 + v5m/6v

∗
5m/6.
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Refined asymptotics for the composition of cyclic urns

Note, that the sum
∑r
k=1 in Theorem 1.1 is empty for 2 ≤ m ≤ 5, also in Theorem

1.2 for m = 6. Hence, for 2 ≤ m ≤ 6 our theorems reduce to the central limit laws
of Janson [9, 10, 11]. For m ∈ {7, 8, 9, 10, 11} Theorem 1.1 shows that there is a direct
normalization of the residuals which implies a multivariate central limit law (CLT). The
case m = 12 also admits a multivariate CLT under a different scaling, see Theorem 1.2.
For m > 12 the residuals cannot directly be normalized to obtain convergence. However,
Theorems 1.1 and 1.2 describe refined residuals which satisfy a multivariate CLT for all
m > 12. These can be considered as asymptotic expansions of the random variables Rn.

The convergences in Theorems 1.1 and 1.2 also hold for all moments. For an expan-
sion of E[Rn] see (2.3).

We conjecture Theorems 1.1 and 1.2 as being prototypical for a phenomenon to occur
frequently in related random combinatorial structures. E.g., we expect similar behavior
for other urn models with analog almost sure random periodic behavior, see Janson
[10, Theorem 3.24], further for the size of random m-ary search trees, cf. [4], or for the
number of leaves in random d-dimensional (point) quadtrees [3]. (For the latter two
instances only the case of Theorem 1.1 is expected to occur.)

The remainder of the present paper contains a proof of Theorems 1.1 and 1.2. An
outline of the proof is given in Section 2, where also the occurrence of the contributions
<(nω

k

Ξkvk) in Theorems 1.1 and 1.2 is explained. Roughly, our proof combines a spectral
decomposition of the residuals and estimates of their mixed moments with a recursive
decomposition of the urn process and stochastic fixed-point arguments. In work in
progress of the first mentioned author of the present paper also an alternative route
via martingales is being explored. Within the details of the proofs of the present paper
we make mildly use of martingales. However, we could also work out the whole proof
without drawing back to any martingale which may provide a useful general technique
for related applications where no martingales are directly available.

The results of this paper were announced in the extended abstract [15].

2 Explanation of the result and outline of the proof

In this section we set out our approach towards the proof of Theorems 1.1 and 1.2
and explain the occurrence of the summands <(nω

k

Ξkvk) and the normal fluctuation in
the theorems.

We first recall known asymptotic behavior and a spectral decomposition of Rn which
are used subsequently. Then we state a more refined result on certain projections of
residuals in Proposition 2.1 which directly implies Theorems 1.1 and 1.2. Finally, an
outline of the proof of Proposition 2.1 is given. Technical steps and estimates are then
carried out in Section 3. Throughout, we fix m ≥ 2.

For the cyclic urn with m colors we consider an initial configuration of one ball of
type 0 and write Rn for the composition vector after n steps. Its dynamics is summarized
in the m×m replacement matrix

A :=



0 1 0 · · 0 0

0 0 1 · · 0 0

0 0 0 · · · ·
· · · · · · ·
· · · · · 0 1

1 0 0 · · 0 0

 , (2.1)

where Aij indicates that after drawing a ball of type i it is placed back together with
Aij balls of type j for all 0 ≤ i, j ≤ m− 1. The canonical filtration is given by the σ-fields
Fn = σ(R0, . . . , Rn) for n ≥ 0. The dynamics of the urn process imply the well-known
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Refined asymptotics for the composition of cyclic urns

almost sure relation

E [Rn+1 | Fn] =

m−1∑
k=0

Rn,k
n+ 1

(Rn +Atek) =

(
Idm +

1

n+ 1
At
)
Rn, n ≥ 0. (2.2)

Here, Idm denotes the m×m identity matrix and At the transpose of A.
Note that v0 has the direction of the drift vector 1 in Theorems 1.1 and 1.2 and, for

m ≥ 7, the vector v1 determines the direction of the a.s. periodic fluctuations around the
drift. By diagonalizing the matrices on the right hand side of (2.2) one finds an exact
asymptotic expression for the mean of Rn, cf. [12, Lemma 6.7]. With

ξk :=
2

Γ(1 + ωk)
vk, 1 ≤ k ≤ r,

equation (2.2) implies the expansion, as n→∞,

E [Rn] =
n+ 1

m
1 +

r∑
k=1

<(niµkξk)nλk +

{
o(
√
n), if 6 - m,

O(
√
n), if 6 | m. (2.3)

It is also known that the variances and covariances of the numbers of balls of each color
are of the order n2λ1 when m ≥ 7, with appropriate periodic prefactors. This explains the
normalization n−λ1(Rn − n+1

m 1) in (1.2). The analysis of the asymptotic distribution as
stated in (1.2) has been carried out by different techniques (partly only in a weak sense),
by embedding into continuous time multitype branching processes, by (more direct) use
of martingale arguments, and by stochastic fixed-point arguments, see [10, 18, 12].

For our further analysis we use a spectral decomposition of the process (Rn)n≥0. This
also leads to an explanation of the terms and fluctuations appearing in Theorems 1.1
and 1.2, see the comments after the proof of Theorem 1.2 in the present section.

We denote by πk the orthogonal projection onto the eigenspace in Cm spanned by vk
for 0 ≤ k ≤ m− 1. Hence, we have

Rn = π0(Rn) +

dm/2e−1∑
k=1

(πk + πm−k)(Rn) + 1{m even}πm/2(Rn) =

m−1∑
k=0

uk(Rn)vk,

where u0, . . . , um−1 denotes the basis dual to v0, . . . , vm−1, as A is diagonizable. We
have deterministically π0(Rn) = n+1

m 1. For the other projections πk(Rn) one has similar
periodic behavior as for the composition vector Rn in (1.2), as long as λk >

1
2 . Commonly,

projections πk(Rn) are called large, if λk >
1
2 , since their magnitudes are larger than

√
n.

Projections πk with λk ≤ 1
2 are called small.

For large projections, i.e. for all k ≥ 1 with λk >
1
2 , we set

Xn,k :=
1√
n

 <(uk(Rn − E[Rn])− nωkΞk

)
=
(
uk(Rn − E[Rn])− nωkΞk

)  , n ≥ 1, (2.4)

with an appropriate complex valued random variable Ξk, defined as a martingale limit
in (3.2), Section 3.1. The behavior of the small projections πk(Rn) has already been
determined, see [10, 14]. For those k with λk <

1
2 we have for n ≥ 1

Xn,k :=
1√
n

(
<(uk(Rn − E[Rn]))

=(uk(Rn − E[Rn]))

)
d−→ N

(
0,

Id2

1− 2λk

)
. (2.5)

If m is even, then for n ≥ 1, Xn,m/2 := n−1/2um/2(Rn)
d−→ N (0, 1/3). For m = 2, the last

mentioned result has already been established by Freedman [7, Theorem 5.1].
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Figure 1: Plots of the eigenvalues of A for m = 12 (left picture) and m = 13 (right
picture). They correspond to contributions to Rn as follows: The eigenvalue λ0 = 1

corresponds to the deterministic drift. All other eigenvalues with λk >
1
2 correspond to

almost sure periodic contributions with normal fluctuations around the periodic vector.
The eigenvalues with λk ≤ 1

2 correspond to contributions which only consist of a normal
fluctuation. All normal fluctuations are of the same order if 6 - m. They compose an
overall fluctuation of rank m− 1, see Theorem 1.1. If 6 | m then the eigenspaces with
λk = 1

2 contribute normal fluctuations of larger orders which dominate the contributions
from all other eigenspaces. The overall fluctuations are then just the fluctuations from
the two eigenspaces m/6 and 5m/6 with λm/6 = λ5m/6 = 1

2 and of rank 2, see Theorem
1.2.

Finally, if 6 | m, there are two eigenvalues with real parts equal to 1
2 . Compared to the

other small components, the scaling of the associated projections requires an additional√
log n factor for convergence: For k ∈ {m/6, 5m/6} and n ≥ 1,

Xn,k :=
1√

n log n

(
<(uk(Rn − E[Rn]))

=(uk(Rn − E[Rn]))

)
d−→ N

(
0,

1

2
Id2

)
. (2.6)

We prove the convergence of the variances and covariances of all Xn,k in Section 3.1.
Set Xn,0 := u0(Rn − E[Rn]) = 0 and X0 := (0, . . . , 0)t.

To summarize, Xn,0, . . . , Xn,m−1 describe the normalized fluctuations along the pro-
jections. For each pair of complex conjugate eigenvalues, there is one Xn,k that captures
the behaviour of the corresponding real and imaginary part. Small projections are
known to be asymptotically normally distributed, see (2.5). As a main contribution of
the present paper we show that residuals of large projections as normalized in (2.4)
are also asymptotically normal. Moreover, fluctuations along different projections are
asymptotically independent:

Proposition 2.1. Assume that 6 | m. For the vector Zn := (Xn,1, . . . , Xn,m/2) ∈ Rm−1

defined for n ≥ 0 in (2.4)–(2.6) we have, as n→∞, that

Zn
d−→ N (0,Mm) ,

with

Mm :=
1

2
diag

(
Id2

|2λ1 − 1|
, . . . ,

Id2

|2λr − 1|
, Id2,

Id2

|2λr+2 − 1|
, . . . ,

Id2

|2λm/2−1 − 1|
,

2

3

)
. (2.7)
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In the case 6 - m Proposition 2.1 holds as well. The only difference is that there is no
k with λk = 1

2 and thus the matrix corresponding to Mm for the case 6 - m does not have
the block 1

2 Id2. If m is odd, also the last block 1
3 is not present.

Proposition 2.1 (and its version for 6 - m) directly imply Theorems 1.1 and 1.2:

Proof of Theorem 1.1. Note that 6 - m implies that there is no 0 ≤ k ≤ m− 1 with λk = 1
2 .

We obtain

1√
n

(
Rn − E[Rn]−

r∑
k=1

2<
(
nω

k

Ξkvk

))

=
1√
n

(
r∑

k=1

{
2<
([
uk(Rn − E[Rn])− nω

k

Ξk

]
vk

)}

+

dm/2e−1∑
k=r+1

2<(uk(Rn − E[Rn])vk) + 1{m even}um/2(Rn − E[Rn])vm/2


= 2Zn,1<(v1)− 2Zn,2=(v1) + · · ·+ 1{m even}Zn,m−1vm/2

d−→ N
(

0,Σ(m)
)
,

by Proposition 2.1 and the continuous mapping theorem, where Σ(m) is as in the state-
ment of Theorem 1.1. The image of Σ(m) in Rm is span{< (v1) ,= (v1) , . . . , vm/2}, if 2 | m,
and span{< (v1) ,= (v1) , . . . ,=

(
v(m−1)/2

)
} otherwise, hence the rank of Σ(m) is m− 1.

Proof of Theorem 1.2. Note that 6 | m implies that there is the pair λm/6 = λ5m/6 = 1
2 .

Rearranging terms as in the proof of Theorem 1.1 we obtain

1√
n log(n)

(
Rn − E[Rn]−

r∑
k=1

2<
(
nω

k

Ξkvk

))

=
1√

log(n)

m/2−1∑
k=1,k 6=m/6

2(Zn,2k−1<(vk)− Zn,2k=(vk))

+ 2(Zn,m/3−1<(vm/6)− Zn,m/3=(vm/6)) +
1√

log(n)
Zn,m−1vm/2

d−→ N
(

0,Σ(m)
)
,

by Proposition 2.1 and Slutsky’s Lemma, where Σ(m) is as in Theorem 1.2. Again, it is
immediate that the image of Σ(m) in Rm is span{<

(
vm/6

)
,=
(
vm/6

)
}, hence its rank is

2.

The proofs of Theorems 1.1 and 1.2 via Proposition 2.1 indicate the role of the
terms <(nω

k

Ξkvk) in the overall Gaussian fluctuation, see also Figure 1: All eigenspaces
with λk >

1
2 (excluding the deterministic drift for λk = 1) contribute two asymptotic

components: First, there is the almost sure periodic component

<(nω
k

Ξkvk) = nλk< (exp(iµk log n)Ξkvk)

of order nλk with a random periodic factor, periodic roughly in log n. Second, there is
a normal fluctuation (in distribution) of order

√
n. All eigenspaces with λk <

1
2 add a

contribution of order
√
n to the normal fluctuation which is the visible order within these

eigenspaces. For 6 | m, there are eigenvalues with λk = 1
2 and the normal fluctuation

is of order
√
n log n in the corresponding two eigenspaces. According to Proposition

2.1 all these fluctuations within the eigenspaces are asymptotically independent, which
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explains the overall asymptotic normal fluctuation. Since this normal fluctuation is of
order

√
n and

√
n log n, respectively, all the almost sure periodic contributions from the

eigenspaces with λk >
1
2 are visible as well.

To prove Proposition 2.1 we first derive moments and mixed moments in Section
3.1 needed for the normalization. In Section 3.2 a pointwise recursive equation for
the complex random variables Ξ1, . . . ,Ξr is obtained together with a recurrence for the
sequence (Rn)n≥0 which extends to a recurrence for the residuals in (1.2) as well as to
the residuals Zn of the projections of the Rn, see equation (3.7) in Section 3.2. Equation
(3.7) is then the starting point to show the convergence in Proposition 2.1. For this,
a stochastic fixed-point argument in the context of the contraction method within the
Zolotarev metric ζ3, see [17] for general reference, is used. Then, we draw back to an
approach to bound the Zolotarev distance and some estimates from [16] where a related,
but simpler, (univariate) problem was discussed.

3 Proof of Proposition 2.1

We start with estimates for the covariance matrix of the Zn appearing in Proposition
2.1 in section 3.1. In section 3.2 we derive the recurrence (3.7) for the Zn. The use of
the Zolotarev metric ζ3 requires a slightly modified version of recurrence (3.7). This
is explained in section 3.3, see in particular the quantities Nn in (3.11) which are
the modified versions of the Zn. Then in section 3.4 asymptotics for the coefficients
appearing in the recurrence (3.7) of Zn and Nn respectively are derived. Based on these
asymptotics finally in section 3.5 convergence of the Nn is shown within the Zolotarev
metric, which implies convergence in distribution of the Zn as stated in Proposition 2.1.

Recall that Proposition 2.1 assumes that 6 | m. As mentioned before, the analogu-
ous result for 6 - m is true and can be proved along the same lines by some minor
modifications.

3.1 Convergence of the covariance matrix

As indicated in Section 2, we study the centered process (Rn − E[Rn])n≥0 via its
spectral decomposition with respect to the orthogonal basis {vk : 0 ≤ k < m} of the
unitary vector space Cm, i.e.

Rn − E[Rn] =

m−1∑
k=0

πk (Rn − E[Rn]) =

m−1∑
k=0

uk (Rn − E[Rn]) vk,

where uk (w) := 1 ·w0 + ωk ·w1 + · · ·+ ω(m−1)k ·wm−1 for w ∈ Cm. The evolution (2.2) of
the process implies that for n ≥ 1, there is a complex normalization

Mk,n :=
Γ(n+ 1)

Γ(n+ 1 + ωk)
uk (Rn − E [Rn]) =

{
Γ(n+1)

Γ(n+1+ωk)
uk (Rn)− 1

Γ(1+ωk)
, k 6= m/2,

Γ(n+1)
Γ(n+1+ωk)

uk (Rn) , k = m/2,

(3.1)

that turns all the eigenspace coefficients, 0 ≤ k ≤ m − 1, into centered martingales.
We set Mk,0 := 0. Depending on λk, these martingales are known to exhibit two
different kinds of asymptotic behavior, see [10, 11, 18]: For all k ∈ {0, . . . ,m− 1} with
λk = <

(
ωk
)
> 1/2, there exists a complex valued random variable Ξk such that, as

n→∞, we have

Mk,n → Ξk almost surely, (3.2)
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where the convergence also holds in Lp for every p ≥ 1. Note that the Ξk in (3.2) are
identical with the Ξk in (2.4) and in Theorems 1.1 and 1.2. The Mk,n with λk = <

(
ωk
)
≤

1/2 are known to converge in distribution, after proper normalization, to normal limit
laws.

>From Section 3.2 on, our analysis will also require to start the cyclic urn process
with one ball of type j ∈ {0, . . . ,m − 1}. The corresponding composition vector R[j]

n is
obtained in distribution by the relation(

R[j]
n

)
n≥0

d
=
((
At
)j
Rn

)
n≥0

, 0 ≤ j ≤ m− 1, (3.3)

with the replacement matrix A from (2.1) and where
d
= denotes equality in distribution.

Similar to the identity (3.3), the corresponding martingales M [j]
k,n satisfy

M
[j+1]
k,n

d
= ωkM

[j]
k,n,

with convention M [m]
k,n := M

[0]
k,n.

Our subsequent analysis requires asymptotics of moments and of correlations be-
tween the uk(Rn). Exploiting the dynamics of the urn in (2.2), elementary calculations
imply that:

Lemma 3.1. For k ∈ {0, . . . ,m− 1}, we have

E [uk (Rn)] =

m−1∑
t=0

ωktE [Rn,t] =

{
Γ(n+1+ωk)

Γ(n+1)Γ(1+ωk)
, k 6= m/2,

0, k = m/2.

For k, ` ∈ {0, . . . ,m− 1},

E [uk (Rn)u` (Rn)]

=

n∏
s=1

(
s+ ωk + ω`

s

)
+

n∑
s=1

ωk+`

s

s−1∏
t=1

(
t+ ωk+`

t

) n∏
t=s+1

(
t+ ωk + ω`

t

)
. (3.4)

Proof. The first two identities immediately follow from (2.2). For (3.4), let k, ` ∈
{0, . . . ,m− 1} and n ≥ 1 and note that, almost surely,

E [uk(Rn)u`(Rn)|Fn−1] =

(
1 +

ωk + ω`

n

)
uk(Rn−1)u`(Rn−1) +

ωk+`

n
uk+`(Rn−1).

Here, we use the abbreviation uk+`(Rn−1) := u(k+`) mod m(Rn−1).

Remark 1. From (3.4) we see that all E[|uk(Rn)|2] with λk < 1/2 are of linear order, all
E[|uk(Rn)|2] with λk = 1/2 are of order n log n and all E[|uk(Rn)|2] with λk > 1/2 have
order n2λk . To make this more visible from (3.4), we make some case distinctions.

We first consider the real cases k = ` = 0 and k = ` = m/2 for 2 | m:

E
[
|u0(Rn)|2

]
= (n+ 1)2

and, if 2 | m,

E
[
|um/2(Rn)|2

]
=
n+ 1

3
.

Now, ωk + ω` = −1 only if 3 | m and {k, `} = {m/3, 2m/3}. In this case,

E
[
|um/3(Rn)|2

]
=

1

n

n∑
t=1

t =
n+ 1

2
.
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Refined asymptotics for the composition of cyclic urns

On the other hand, ωk+` = ωk + ω` only if 6 | m and {k, `} = {m/6, 5m/6}. In this case,
ωk + ω` = 1 and

E
[
|um/6(Rn)|2

]
= (n+ 1)

n+1∑
t=1

1

t
∼ n log n.

Thirdly, ωk + ω` = 0 if and only if 2 | m and ` = k +m/2 mod m, so in this case

E [uk(Rn)u`(Rn)] =

{
0, if {k, l} = {0,m/2},

Γ(n+1+ωk+`)
Γ(n+1)Γ(1+ωk+`)

, else.

Finally, ωk+` = −1 if λk = −λ` and µk = µ` and then,

E [uk(Rn)u`(Rn)] =
ωk + ω`

1 + ωk + ω`

n∏
s=1

(
1 +

ωk + ω`

s

)
∼ ωk + ω`

Γ(2 + ωk + ω`)
nω

k+ω` .

In all other cases,

E [uk(Rn)u`(Rn)] =
1

ωk+` − ωk − ω`

(
Γ(n+ 1 + ωk+`)

Γ(n+ 1)Γ(ωk+`)
− Γ(n+ 1 + ωk + ω`)

Γ(n+ 1)Γ(ωk + ω`)

)
.

Remark 2. From (3.4) we obtain the mixed moments of the corresponding real and
imaginary parts via the identities

E [<(uk(Rn))<(u`(Rn))] =
1

2
< (E [uk(Rn)u`(Rn)] + E [uk(Rn)um−`(Rn)]) ,

E [=(uk(Rn))=(u`(Rn))] =
1

2
< (E [uk(Rn)um−`(Rn)]− E [uk(Rn)u`(Rn)]) ,

E [<(uk(Rn))=(u`(Rn))] =
1

2
= (E [uk(Rn)u`(Rn)] + E [um−k(Rn)u`(Rn)]) .

From Lemma 3.1 we obtain the order of magnitude of the L2-distance of the residuals
of the martingales (Mk,n)n≥0 with λk >

1
2 . This is needed for the proper normalization of

these residuals.

Lemma 3.2. For k ≥ 1 such that 1/2 < λk < 1 and Ξk as in (3.2), as n→∞,

E
[
|Mk,n − Ξk|2

]
∼ 1

2λk − 1
n1−2λk

and

E
[
(Mk,n − Ξk)

2
]
∼ 1

(1− 2ω−k)Γ(2ωk)
n−1.

In particular,

E
[
< (Mk,n − Ξk)

2
]
∼ 1

2

1

2λk − 1
n1−2λk ,

E
[
= (Mk,n − Ξk)

2
]
∼ 1

2

1

2λk − 1
n1−2λk ,

E [< (Mk,n − Ξk)= (Mk,n − Ξk)] ∼ 1

2
=
(

1

(1− 2ω−k)Γ(2ωk)

)
n−1.
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Refined asymptotics for the composition of cyclic urns

Proof. We show the claim for E
[
|Mk,n − Ξk|2

]
in an exemplary way. Here, we decompose

E
[
|Mk,n − Ξk|2

]
=

∞∑
z=n

E
[
|Mk,z −Mk,z+1|2

]
=

∞∑
z=n

∣∣∣∣ Γ(z + 2)

Γ(z + 2 + ωk)

∣∣∣∣2E
[∣∣∣∣uk(Rz+1 −Rz)−

ωk

z + 1
uk(Rz)

∣∣∣∣2
]

=

∞∑
z=n

∣∣∣∣ Γ(z + 2)

Γ(z + 2 + ωk)

∣∣∣∣2(E [|uk(Rz+1 −Rz)|2
]
− 1

(z + 1)2
E
[
|uk(Rz)|2

])

=

∞∑
z=n

∣∣∣∣ Γ(z + 2)

Γ(z + 2 + ωk)

∣∣∣∣2(1 +
1

1− 2λk

1

(z + 1)2

(
Γ(z + 1 + 2λk)

Γ(z + 1)Γ(2λk)
− z − 1

))

∼
∞∑
z=n

z−2λk ∼ 1

2λk − 1
n1−2λk

as n→∞.

The preceding calculations imply that the covariance matrix of Zn, see Proposition
2.1, converges as n→∞. Its limit is given by Mm defined in (2.7).

3.2 Embedding and recursions

In this section we briefly explain how to derive an almost sure recurrence for the
sequence (Rn)n≥0 which then extends to the projections. These recursive representations
transfer to the martingale limits Ξk and thus also to the components of Zn.

We embed the cyclic urn process into a random binary search tree generated by
a sequence (Un)n≥1 of i.i.d. random variables, where U := U1 is uniformly distributed
on [0, 1]. The random binary search tree starts with one external node at time 0, the
so-called root. At time n = 1, the first key U is inserted in this external node, turning
it into an internal node. The occupied node then grows two external nodes attached
along a left and right branch. We successively insert the following keys, where each key
traverses the internal nodes starting at the root, which is occupied by U . Whenever the
key traversing is less than the occupying key at a node it moves on to the left child of
that node, otherwise to its right child. The first external node visited is occupied by the
key, turning it into an internal node with two new external nodes attached. It is easy
to see that in each step one of the external nodes is chosen uniformly at random (and
independently of the previous choices) and replaced by one internal node with two new
external nodes attached. See, e.g., Mahmoud [13], for a detailed description of random
binary search trees.

The cyclic urn is embedded into the evolution of the random binary search tree by
labeling its external nodes by the types of the balls. The initial external node is labeled
by type 0. Whenever an external node of type j ∈ {0, . . . ,m − 1} is replaced by an
internal node then its new left external node is labeled j (corresponding to returning the
chosen ball of type j to the urn) and its new right external node is labeled (j+ 1) mod m

(corresponding to the addition of a new ball of type (j + 1) mod m to the urn). A related
embedding was exploited in [12, Section 6.3], see also [2]. Note that the binary search
tree starting with one external node labeled 0 decomposes into its left and right subtree
starting with external nodes of types 0 and 1, respectively. The size (number of internal
nodes) In of the left subtree is uniformly distributed on {0, . . . , n− 1} and, conditional on
U = u, u ∈ (0, 1), it is binomial Bn−1,u distributed. This implies, with Jn := n − 1 − In,
the recurrence

R[0]
n = R

[0],(0)
In

+R
[1],(1)
Jn

= R
[0],(0)
In

+AtR[0],(1)
Jn

, n ≥ 1, (3.5)
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Refined asymptotics for the composition of cyclic urns

where the sequences (R
[0],(0)
n )n≥0 and (R

[1],(1)
n )n≥0 denote the composition vectors of

the cyclic urns given by the evolutions of the left and right subtrees of the root of the
binary search tree (upper indices [0] and [1] denoting the initial type, upper indices
(0) and (1) denoting left and right subtree). They are independent of In. We have set

(R
[0],(1)
n )n≥0 := (AR[1],(1)

n )n≥0, and note that due to identity (3.3), (R
[0],(1)
n )n≥0 is a cyclic

urn process started with one ball of type 0 at time 0. Now, applying the transformation
and scaling (3.1) which turn Rn into Mk,n to the left and right hand side of (3.5), letting
n → ∞ and using the convergence in (3.2) yields the following almost sure recursive
equation for the Ξk:

Proposition 3.3. For all k ≥ 1 with λk >
1
2 there exist random variables Ξ

(0)
k , Ξ

(1)
k such

that

Ξk = Uω
k

Ξ
(0)
k + ωk(1− U)ω

k

Ξ
(1)
k + gk(U), (3.6)

U,Ξ
(0)
k , Ξ

(1)
k are independent, U is uniformly distributed on [0, 1] and Ξ

(0)
k and Ξ

(1)
k have

the same distribution as Ξk. Here,

gk(u) :=
1

Γ(1 + ωk)

(
uω

k

+ ωk(1− u)ω
k

− 1
)
.

Here and subsequently, we make no use of the fact that the martingale limits Ξk
can also be written explicitly as deterministic functions of the limit of the random
binary search tree when interpreting the evolution of the random binary search tree
as a transient Markov chain and its limit as a random variable in the Markov chain’s
Doob-Martin boundary, see [6, 8]. Following this path the Ξk become a deterministic
function of (Un)n≥1 and from this representation the self-similarity relation (3.6) can be
read off as well. See [1] for a related explicit construction.

Returning to Zn, we see that

Zn = σ−1
In
σnZ

(0)
In

+ σ−1
Jn
σnDZ(1)

Jn
+ σnFn, n ≥ 1, (3.7)

where σ0 := σ1 := Idm−1 and σk := 1√
k

diag
(

1, . . . , 1, 1√
log k

, 1√
log k

, 1, . . . , 1
)

for k ≥ 2,

where the additional factor of
√

log k is needed for the eigenspace m/6 (recall that
λm/6 = 1

2 ), the (m− 1)× (m− 1) matrix D is composed of rotation matrices

D =



cos
(

2π
m

)
− sin

(
2π
m

)
sin
(

2π
m

)
cos
(

2π
m

)
. . .

cos
(

2π(m/2−1)
m

)
− sin

(
2π(m/2−1)

m

)
sin
(

2π(m/2−1)
m

)
cos
(

2π(m/2−1)
m

)
−1


and the error term Fn is made up of three components: Setting

Gk,n(`) :=
Γ(`+ 1 + ωk)

Γ(`+ 1)Γ(1 + ωk)
+ωk

Γ((n− 1− `) + 1 + ωk)

Γ((n− 1− `) + 1)Γ(1 + ωk)
− Γ(n+ 1 + ωk)

Γ(n+ 1)Γ(1 + ωk)
(3.8)

EJP 23 (2018), paper 117.
Page 11/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP243
http://www.imstat.org/ejp/


Refined asymptotics for the composition of cyclic urns

for ` ∈ {0, . . . , n− 1}, we have Fn = F
(1)
n + F

(2)
n , where

F (1)
n :=



< (G1,n(In))

= (G1,n(In))
...

< (Gr,n(In))

= (Gr,n(In))

< (Gr+1,n(In))

= (Gr+1,n(In))
...
0


−



< (nωg1(U))

= (nωg1(U))
...

<
(
nω

r

gr(U)
)

=
(
nω

r

gr(U)
)

0...
0


,

and F (2)
n is given by the sum

<
(

(Iωn − (nU)ω) Ξ
(0)
1 + (Jωn − (n(1− U))ω)ωΞ

(1)
1

)
=
(

(Iωn − (nU)ω) Ξ
(0)
1 + (Jωn − (n(1− U))ω)ωΞ

(1)
1

)
...

<
((
Iω

r

n − (nU)ω
r)

Ξ
(0)
r +

(
Jω

r

n − (n(1− U))ω
r)
ωrΞ

(1)
r

)
=
((
Iω

r

n − (nU)ω
r)

Ξ
(0)
r +

(
Jω

r

n − (n(1− U))ω
r)
ωrΞ

(1)
r

)
0...
0


.

Note that DMmDt = Mm.

3.3 The Zolotarev metric

In the last subsection, we prepared a proof of Proposition 2.1 that is based on the
contraction method. To be more precise, weak convergence in Proposition 2.1 is shown
by (the stronger) convergence within the Zolotarev metric. The Zolotarev metric has
been studied systematically in the context of distributional recurrences in [17]. We only
give the definitions of the relevant quantities and properties here.

For x ∈ Rd, we denote by ‖x‖ the standard Euclidean norm of x, and for B ∈ Rd×d,
‖B‖op denotes the corresponding operator norm. For random variables X and p ≥ 1, we
denote by ‖X‖p the Lp-norm of X.

For two Rd valued random variables X and Y we set

ζ3(X,Y ) := sup
f∈F3

|E[f(X)− f(Y )]|,

where

F3 :=
{
f ∈ C2(Rd,R) : ‖D2f(x)−D2f(y)‖op ≤ ‖x− y‖, x, y ∈ Rd

}
.

We call a pair (X,Y ) ζ3-compatible if the expectation and the covariance matrix of X
and Y coincide and if both ‖X‖3, ‖Y ‖3 < ∞. This implies that ζ3(X,Y ) < ∞. A basic
property is that ζ3 is (3,+)-ideal, i.e.,

ζ3(X + Z, Y + Z) ≤ ζ3(X,Y ), ζ3(cX, cY ) = c3ζ3(X,Y )

for random vectors X,Y, Z, where Z is independent of X,Y and c > 0. For a linear
transformation A of Rd, we have

ζ3(AX,AY ) ≤ ‖A‖3opζ3(X,Y ). (3.9)
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Refined asymptotics for the composition of cyclic urns

The following lemma will be used in the proof of Proposition 2.1 and can be proved
similarly to Lemma 2.1 in [16].

Lemma 3.4. Let V1, V2,W1,W2 be random variables in Rd such that (V1, V2) and (V1 +

W1, V2 +W2) are ζ3−compatible. Then we have

ζ3(V1 +W1, V2 +W2) ≤ ζ3(V1, V2) +

2∑
i=1

(
‖Vi‖23‖Wi‖3 +

‖Vi‖3‖Wi‖23
2

+
‖Wi‖33

2

)
.

In order to work with the Zolotarev metric later, it is necessary to adjust the co-
variance matrix of Zn. I.e., we need to work with a sequence of random vectors that
is sufficiently close to (Zn)n≥0 and has fixed covariance matrix Mm to guarantee the
finiteness of the corresponding Zolotarev distances ζ3.

As noted in section 3.1, the covariance matrices (Cov(Zn))n≥0 converge component-
wise to Mm, and Mm is invertible. Thus, there exists n0 ∈ N such that for all n ≥ n0,
Cov(Zn) is invertible. Defining

Σn := 1{n<n0}Idm + 1{n≥n0}M
1/2
m Cov(Zn)−1/2, (3.10)

Σn is invertible for all n ≥ 0 and we see that ΣnZn has covariance matrix Mm for all
n ≥ n0. We now set

Nn := ΣnZn = A(0)
n N

(0)
In

+A(1)
n N

(1)
Jn

+ bn, (3.11)

where the right hand side is a recursive decomposition of Nn with coefficients

A(0)
n := Σnσnσ

−1
In

Σ−1
In
, A(1)

n := Σnσnσ
−1
Jn
DΣ−1

Jn
, bn := Σnσn

(
F (1)
n + F (2)

n

)
.

3.4 Preparatory lemmata

In this section we collect some technical lemmata needed in the proof of Proposition
2.1 in the next section. We first look at the asymptotics of the coefficients arising in
recursion (3.11).

Lemma 3.5. For all 1 ≤ p <∞, as n→∞,∥∥∥A(0)
n −

√
U · Idm−1

∥∥∥
p
→ 0 and

∥∥∥A(1)
n −

√
1− U · D

∥∥∥
p
→ 0.

Proof. We first check almost sure convergence. Both
√
In/n,

√
(In log In)/(n log n) →√

U and
√
Jn/n,

√
(Jn log Jn)/(n log n)→

√
1− U a.s. as n→∞. Also, because In →∞

a.s. as n → ∞, both Σn,Σ
−1
In
→ Idm−1. The claim now follows for all 1 ≤ p < ∞ by an

application of the dominated convergence theorem.

Lemma 3.6. Let k ∈ {1, . . . , r}. As n→∞,∥∥∥∥∥
(
In
n

)ωk
− Uω

k

∥∥∥∥∥
3

= O
(
n−λk/2

)
.

Proof. The triangle inequality implies∥∥∥∥∥
(
In
n

)ωk
− Uω

k

∥∥∥∥∥
3

≤

∥∥∥∥∥
(
In
n

)λk
− Uλk

∥∥∥∥∥
3

+ µk

∥∥∥∥∥
(
In
n

)λk
log

(
In
nU

)∥∥∥∥∥
3

. (3.12)
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We start by considering the first summand in the latter display. Denoting by Bn−1,U a
mixed binomial distribution with parameters n− 1 and U , we see that∥∥∥∥∥

(
In
n

)λk
− Uλk

∥∥∥∥∥
3

≤
∥∥∥∥(Inn

)
− U

∥∥∥∥λk
3

= E

[
E

[∣∣∣∣Bn−1,U

n
− U

∣∣∣∣3 |U
]]λk

3

since In, conditional on U = u, has the Bn−1,u distribution. Using the Marcinkiewickz–
Zygmund inequality, there exists a constant C independent of u ∈ [0, 1] such that

E
[
|Bn−1,u − (n− 1)u|3

]
≤ Cn 3

2 .

This implies
∥∥∥( Inn )λk − Uλk∥∥∥

3
= O

(
n−λk/2

)
. For the analysis of the second summand in

(3.12), we also condition on U and write∥∥∥∥∥
(
In
n

)λk
log

(
In
nU

)∥∥∥∥∥
3

3

=

∫ 1

0

E

∣∣∣∣∣
(
Bn−1,u

n

)λk
log

(
Bn−1,u

nu

)∣∣∣∣∣
3
 du

We divide the integral into two parts. For this purpose, define Eu := {Bn−1,u ≥ un
e }.

Chernoff’s inequality implies that for 0 ≤ t < u(n− 1)

P (Bn−1,u − u(n− 1) < −t) ≤ exp(−t2/(2u(n− 1))),

so the complement Ecu of Eu satisfies P(Ecu) ≤ exp(−C0un) for some constant C0 > 0.
We further denote by hλk : [0,∞) → R the function hλk(x) := xλk log(x) (convention:
0 · log 0 := 0). Then supx∈[0,1] |hλk(x)| = 1

λke
< 2

e < 1. We can now bound the expectation
on Ecu in the following way:

E

∣∣∣∣∣
(
Bn−1,u

n

)λk
log

(
Bn−1,u

nu

)∣∣∣∣∣
3

1Ecu

 =

∫
Ecu

u3λk

∣∣∣∣hλk (Bn−1,u

un

)∣∣∣∣3 dP
≤ u3λk exp (−C0un) .

On Eu, we apply the mean value theorem to h1

(
(1 + y)λk

)
−h1

(
1λk
)
) with y =

Bn−1,u−nu
nu .

Note that (min{1, 1 + y},max{1, 1 + y}) ⊂ [ 1
e ,

1
u ] on Eu and that |h′1| is nonnegative and

increasing on this interval. Thus,

E

∣∣∣∣∣
(
Bn−1,u

n

)λk
log

(
Bn−1,u

nu

)∣∣∣∣∣
3

1Eu


=

∫
Eu

(
1

λk

)3

u3λk

∣∣∣∣∣h1

((
1 +

Bn−1,u − nu
nu

)λk)
− h1

(
1λk
)∣∣∣∣∣

3

dP

≤
∫

Eu

(
1

λk

)3

u3λk

(
sup

v∈[ 1e ,
1
u ]

|h′1(v)|

)3 ∣∣∣∣∣
(

1 +
Bn−1,u − nu

nu

)λk
− 1λk

∣∣∣∣∣
3

dP

≤
∫

Eu

(
1

λk

)3

u3λk

(
h′1

(
1

u

))3 ∣∣∣∣Bn−1,u − nu
nu

∣∣∣∣3λk dP
≤
(

1

λk

)3

n−3λk(1− log(u))3E
[
| − u+Bn−1,u − (n− 1)u|3

]λk
≤ Ck

(1− log(u))3

n3λk/2
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for some constant Ck > 0. Combining these estimates, we obtain∥∥∥∥∥
(
In
n

)λk
log

(
In
nU

)∥∥∥∥∥
3

3

≤
∫ 1

0

(
u3λk exp (−C0un) + Ck

(1− log(u))3

n3λk/2

)
du

= O

(
1

n3λk/2

)
as n→∞. This implies the assertion.

Lemma 3.7. As n→∞, we have

‖bn‖3 −→ 0.

Proof. By the triangle inequality,

‖bn‖3 ≤ ‖Σn‖op

2∑
j=1

∥∥∥σnF (j)
n

∥∥∥
3
.

We have (In, U,Ξ
(0)
k )

d
= (Jn, 1 − U,Ξ(1)

k ) with Ξ
(0)
k independent of (In, U). The triangle

inequality implies

∥∥∥σnF (2)
n

∥∥∥
3
≤ 4√

n

r∑
k=1

nλk
∥∥∥Ξ

(0)
k

∥∥∥
3

∥∥∥∥∥
(
In
n

)ωk
− Uω

k

∥∥∥∥∥
3

=
4√
n

r∑
k=1

O
(
nλk/2

)
= o(1)

by Lemma (3.6). Also, for n→∞,

∥∥∥σnF (1)
n

∥∥∥
3
≤ 2√

n

(
r∑

k=1

∥∥∥Gk,n(In)− nω
k

gk(U)
∥∥∥

3

+
1√

log(n)
‖Gr+1,n(In)‖3 +

m/2−1∑
k=r+2

‖Gk,n(In)‖3


≤ 2√

n

(
r∑

k=1

2

Γ(1 + ωk)
nλk

∥∥∥∥∥
(
In
n

)ωk
− Uω

k

∥∥∥∥∥
3

+
1√

log(n)
‖Gr+1,n(In)‖3 +

m/2−1∑
k=r+2

‖Gk,n(In)‖3

+ o(1)

= o(1)

as before. Now, the sequence (‖Σn‖op)n≥0 is convergent and thus bounded, which
implies the claim.

Finally, we use recursion (3.11) for Nn to show that the sequence (‖Nn‖3)n≥0 is
bounded.

Lemma 3.8. As n→∞, we have

‖Nn‖3 = O(1).
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Refined asymptotics for the composition of cyclic urns

Proof. Recall that the composition vector Rn takes only finitely many values, the random
variables Ξk have finite absolute moments of arbitrary order, see (3.2), and ‖Σn‖op → 1.
Hence, we have ‖Nn‖3 <∞ for all n ≥ 0.

Recursion (3.11) implies that

‖Nn‖ ≤ Y(0) + Y(1) + ‖bn‖,

where Y(0) :=
∥∥∥A(0)

n

∥∥∥
op

∥∥∥N (0)
In

∥∥∥ and Y(1) :=
∥∥∥A(1)

n

∥∥∥
op

∥∥∥N (1)
Jn

∥∥∥. For all n ≥ 0,

E
[
‖Nn‖3

]
≤ E

[(
Y(0)

)3
]

+ E

[(
Y(1)

)3
]

+ E
[
‖bn‖3

]
+ 3E

[(
Y(0)

)2

Y(1)

]
+ 3E

[(
Y(1)

)2

Y(0)

]
+ 3E

[(
Y(0)

)2

‖bn‖
]

+ 3E
[
Y(0)‖bn‖2

]
+ 3E

[(
Y(1)

)2

‖bn‖
]

+ 3E
[
Y(1)‖bn‖2

]
+ 6E

[
Y(0)Y(1)‖bn‖

]
. (3.13)

Set

βn := 1 ∨ max
0≤k≤n

E
[
‖Nk‖3

]
.

By Lemma 3.7, E
[
‖bn‖3

]
→ 0 as n→∞. Also,

E

[(
Y(j)

)3
]

= E

[∥∥∥A(j)
n

∥∥∥3

op

n−1∑
k=0

1{In=k}E
[
‖Nk‖3

]]
≤ E

[∥∥∥A(j)
n

∥∥∥3

op

]
βn−1

for j = 0, 1.

To bound the summand E
[(
Y(0)

)2 Y(1)
]
, note that

∥∥∥A(0)
n

∥∥∥
op

and
∥∥∥A(1)

n

∥∥∥
op

are uniformly

bounded in n. This implies that after conditioning on In, there is a constant D > 0 such
that

E

[(
Y(0)

)2

Y(1)

]
≤ DE

[
n−1∑
k=0

1{In=k}E
[
‖Nk‖2

]
E [‖Nn−1−k‖]

]

≤ D
(

max
0≤k≤n−1

‖Nk‖22
)(

max
0≤k≤n−1

‖Nk‖1
)
.

Now, by construction, Cov(Nn) = Mm for all n ≥ n0, so max0≤k≤n−1 ‖Nk‖22 < K for some

K > 0 and hence E
[(
Y(0)

)2 Y(1)
]

= O(1). The same applies to E
[(
Y(1)

)2 Y(0)
]
.

All other summands in (3.13) can be bounded using Hölder’s inequality. Combining
all these bounds leads to the estimate

E
[
‖Nn‖3

]
≤
(
E

[∥∥∥A(0)
n

∥∥∥3

op
+
∥∥∥A(1)

n

∥∥∥3

op

]
+ o(1)

)
βn−1 + O(1).

The asymptotics in Lemma 3.5 further imply

E
[
‖Nn‖3

]
≤
(
E
[
U3/2 + (1− U)3/2

]
+ o(1)

)
βn−1 + O(1) =

(
4

5
+ o(1)

)
βn−1 + O(1).

Since βn ≥ 1, there exist J ∈ N and a constant 0 < E < ∞ such that for all n ≥ J ,
E
[
‖Nn‖3

]
≤ (9/10)βn−1 + E. Induction on n gives that for all n ≥ 0, E

[
‖Nn‖3

]
≤

max{βJ , 10E}.
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3.5 Proof of Proposition 2.1

Proof of Proposition 2.1. Proposition 2.1 claims the convergence Zn
d−→ N , as n→∞,

where N ∼ N (0,Mm). In order to establish this convergence, the key point is to show
that

ζ3(Nn,N ) −→ 0 as n→∞.

This is sufficient, as the difference Zn −Nn tends to 0 in probability and convergence in
the Zolotarev metric implies weak convergence of probability measures on Rm−1.

Recall that Nn satisfies (3.11) and that N (0,Mm) is a solution to the distributional
recursion

N d
=
√
UN (0) +

√
1− UDN (1),

where N (0),N (1) and U are independent, U is uniform on [0, 1] and N (0) and N (1) have
the same distribution as N .

First, we use recursion (3.11) for Nn to define hybrid random variables that link Nn
to N (0,Mm) as follows: Let N (0) and N (1) be defined on the same probability space as
(Un)n≥1, independent with distribution N (0,Mm) and also independent of (Un)n≥1. We
ignore the error term bn in (3.11) and set

Qn := A(0)
n

(
1{In<n0}N

(0)
In

+ 1{In≥n0}N
(0)
)

+A(1)
n

(
1{Jn<n0}N

(1)
Jn

+ 1{Jn≥n0}N
(1)
)

for n ≥ 1, while Q0 := N0. Qn does not necessarily have covariance matrix Mm. However,
In/n converges to the uniform random variable U almost surely. Together with Lemma
3.5, we obtain

Cov(Qn)→Mm.

In order to ensure finiteness of the Zolotarev metric, the covariance matrix of Qn
has to be adjusted. However, as N (0) and N (1) are independent of (Un)n≥1 and have
independent components, Cov(Qn) has full rank for all n > n0. This implies that we
can find a deterministic sequence of matrices (Bn)n≥0 with Cov(BnQn) = Mm for all
n > n0 and Bn → Idm−1 componentwise and in operator norm as n → ∞. We write
Bn = Idm−1 +Kn with (Kn)n≥0 tending to the all zero matrix componentwise.

Hence, with N as before, each pair of Nn, (Idm−1 +Kn)Qn and N is ζ3-compatible
for n > n0 and the triangle inequality implies

ζ3(Nn,N ) ≤ ζ3(Nn, (Idm−1 +Kn)Qn) + ζ3((Idm−1 +Kn)Qn,N ), (3.14)

which is finite for all n > n0.
First we show that ζ3((Idm−1 +Kn)Qn,N ) = o(1) by use of an upper bound of ζ3 by

the minimal L3-metric `3. The minimal L3-metric `3 is given by

`3(X,Y ) := `3(L(X),L(Y )) := inf{‖X ′ − Y ′‖3 : L(X) = L(X ′),L(Y ) = L(Y ′)}, (3.15)

for all random vectors X, Y with ‖X‖3, ‖Y ‖3 <∞. For a ζ3-compatible pair (X,Y ), we
have the inequality, see [5, Lemma 5.7],

ζ3(X,Y ) ≤
(
‖X‖23 + ‖Y ‖23

)
`3(X,Y ).

As supn≥0 ‖Qn‖3 <∞ by Lemma 3.5 and the properties of the Gaussian distribution, also
‖(Idm−1 +Kn)Qn)‖3 is uniformly bounded in n. So there exists a finite constant C > 0
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with

ζ3((Idm−1 +Kn)Qn,N ) ≤ C`3((Idm−1 +Kn)Qn,N )

for all n > n0. In order to upper bound the latter `3-distance, recall that the random
vectors N and

√
UN (0) +

√
1− UDN (1) are identically distributed. Thus for n ≥ n0,

ζ3((Idm−1 +Kn)Qn,N ) ≤ C`3((Idm−1 +Kn)Qn,N )

≤ C
∥∥∥((Idm−1 +Kn)A(0)

n 1{In≥n0} −
√
U Idm−1

)
N (0)

+
(

(Idm−1 +Kn)A(1)
n 1{Jn≥n0} −

√
1− UD

)
N (1)

∥∥∥
3

+ C
∥∥∥(Idm−1 +Kn)A(0)

n 1{In<n0}N
(0)
In

+ (Idm−1 +Kn)A(1)
n 1{Jn<n0}N

(1)
Jn

∥∥∥
3

≤ C
(∥∥∥(Idm−1 +Kn)A(0)

n 1{In≥n0} −
√
U Idm−1

∥∥∥
3

∥∥∥N (0)
∥∥∥

3

+
∥∥∥(Idm−1 +Kn)A(1)

n 1{Jn≥n0} −
√

1− UD
∥∥∥

3

∥∥∥N (1)
∥∥∥

3

)
+ C

∥∥∥(Idm−1 +Kn)A(0)
n 1{In<n0}N

(0)
In

+ (Idm−1 +Kn)A(1)
n 1{Jn<n0}N

(1)
Jn

∥∥∥
3

n→∞−→ 0.

To bound the first summand in (3.14), we split Nn into two parts and consider the
vector

Φn := A(0)
n N

(0)
In

+A(1)
n N

(1)
Jn
, n ≥ 1,

with Φ0 := N0 such that Nn = Φn + bn. An application of Lemma 3.4 to the sums
Nn = Φn + bn and (Idm−1 +Kn)Qn = Qn +KnQn gives for n > n0 that

ζ3(Nn, (Idm−1 +Kn)Qn) ≤ ζ3(Φn, Qn) + ‖Φn‖23‖bn‖3 +
1

2
‖Φn‖3‖bn‖23 +

1

2
‖bn‖33

+

(
‖Kn‖op +

1

2
‖Kn‖2op +

1

2
‖Kn‖3op

)
‖Qn‖33.

By construction, ‖Kn‖op → 0 and by Lemma 3.7, ‖bn‖3 → 0. Also, by Lemma 3.8,
supn≥0 ‖Φn‖3 <∞ and supn≥0 ‖Qn‖3 <∞, this yields that, as n→∞,

ζ3(Nn, (Idm−1 +Kn)Qn) ≤ ζ3(Φn, Qn) + o(1).

The previous estimates and (3.14) imply that, as n→∞,

ζ3(Nn,N ) ≤ ζ3 (Φn, Qn) + o(1). (3.16)

Let ∆(n) := ζ3(Nn,N ), which is finite for n ≥ n0. Note that ζ3 (Φn, Qn) is finite for
n ≥ 0. In the expectations defining the Zolotarev distance, we condition on the value
of In. With (N

[0]
0 , . . . , N

[0]
n−1),(N [1]

0 , . . . , N
[1]
n−1) i.i.d. with distribution L(N0, . . . , Nn−1) we

make use of independence and the fact that ζ3 is (3,+)-ideal and satisfies (3.9) to get,
for n > 2n0,
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ζ3 (Φn, Qn) ≤ 1

n

n0−1∑
k=0

ζ3

(
Σnσnσn−1−kDΣ−1

n−1−kN
[1]
n−1−k,Σnσnσn−1−kDΣ−1

n−1−kN
(1)
)

+
1

n

n−1∑
k=n−n0

ζ3

(
ΣnσnσkΣ−1

k N
[0]
k ,ΣnσnσkΣ−1

k N
(0)
)

+
1

n

n−n0−1∑
k=n0

ζ3

(
Σnσnσ

−1
k Σ−1

k N
[0]
k + Σnσnσn−1−kDΣ−1

n−1−kN
[1]
n−1−k,

Σnσnσ
−1
k Σ−1

k N
(0) + Σnσnσ

−1
n−1−kDΣ−1

n−1−kN
(1)
)

≤ 2

n

n−1∑
k=n−n0

‖σnσ−1
k ‖

3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[0]
k ,N (0)

)

+
2

n

n−n0∑
k=n0

‖σnσ−1
k ‖

3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[0]
k ,N (0)

)

=
2

n

n−1∑
k=n0

‖σnσ−1
k ‖

3
op‖Σn‖3op‖Σ−1

k ‖
3
opζ3

(
N

[0]
k ,N (0)

)
.

Note that ‖σnσ−1
In
‖3op =

(
In
n

)3/2
in both cases 6 | m and 6 - m. Hence, for 6 | m and

n > 2n0,

∆(n) ≤ 2E

[(
In
n

)3/2

‖Σn‖3op‖Σ−1
In
‖3op∆(In)1{In≥n0}

]
+ o(1).

Now a standard argument shows that ζ3(Nn,N )→ 0 as n→∞, see [16], for example.
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