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Abstract

In this article, we study weighted particle representations for a class of stochastic
partial differential equations (SPDE) with Dirichlet boundary conditions. The loca-
tions and weights of the particles satisfy an infinite system of stochastic differential
equations. The locations are given by independent, stationary reflecting diffusions
in a bounded domain, and the weights evolve according to an infinite system of
stochastic differential equations driven by a common Gaussian white noise W which
is the stochastic input for the SPDE. The weights interact through V , the associated
weighted empirical measure, which gives the solution of the SPDE. When a particle
hits the boundary its weight jumps to a value given by a function of the location of
the particle on the boundary. This function determines the boundary condition for
the SPDE. We show existence and uniqueness of a solution of the infinite system
of stochastic differential equations giving the locations and weights of the particles
and derive two weak forms for the corresponding SPDE depending on the choice of
test functions. The weighted empirical measure V is the unique solution for each of
the nonlinear stochastic partial differential equations. The work is motivated by and
applied to the stochastic Allen-Cahn equation and extends the earlier of work of Kurtz
and Xiong in [14, 15].
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Particle representations for SPDEs with boundary conditions

1 Introduction

In the following, we study particle representations for a class of nonlinear stochastic
partial differential equations that includes the stochastic version of the Allen-Cahn
equation [1, 2] and that of the equation governing the stochastic quantization of Φ4

d

Euclidean quantum field theory with quartic interaction [19], that is, the equation

dv = ∆v +G(v)v +W, (1.1)

where G is a (possibly) nonlinear function1 and W is a space-time noise2. These particle
representations lead naturally to the solution of a weak version of a stochastic partial
differential equation similar to (1.1). See equation (1.6) below and Section 5.

The approach taken here has its roots in the study of the McKean-Vlasov problem
and its stochastic perturbation. In its simplest form, the problem begins with a finite
system of stochastic differential equations

Xn
i (t) = Xn

i (0) +

∫ t

0

σ(Xn
i (s), V

n(s))dBi(s) +

∫ t

0

c(Xn
i (s), V

n(s))ds, 1 ≤ i ≤ n, (1.2)

where the Xn
i take values in Rd, V n(t) is the empirical measure 1

n

∑n
i=1 δXn

i (t), and the
Bi are independent, standard Brownian motions in an appropriate Euclidean space. The
primary goal in this setting is to prove that the sequence of empirical measures V n

converges in distribution and to characterize the limit V as a measure valued process
which solves the following nonlinear partial differential equation, written in weak form,3

〈ϕ, V (t)〉 = 〈ϕ, V (0)〉+
∫ t

0

〈L(V (s))ϕ, V (s)〉ds, (1.3)

where ϕ : Rd 7→ R belongs to a suitably chosen class of Borel measurable functions and

〈ϕ, V (t)〉 =
∫
ϕdV (t) =

∫
ϕ(u)V (t, du).

In (1.3), we use a(x, ν) = σ(x, ν)σ(x, ν)T and L(ν) is the differential operator

L(ν)ϕ(x) =
1

2

∑
i,j

aij(x, ν)∂
2
xixj

ϕ(x) +
∑
i

ci(x, ν)∂xi
ϕ(x).

There are many approaches to this problem [8, 16, 18]. (See also the recent book [10].)
The approach in which we are interested, introduced in [13] and developed further in
[4, 11, 14], is simply to let the limit be given by the infinite system

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s), V (s))dBi(s) +

∫ t

0

c(Xi(s), V (s))ds, 1 ≤ i <∞. (1.4)

To make sense out of this system (in particular, the relationship of V to the Xi), note that
we can assume, without loss of generality, that the finite system {Xn

i } is exchangeable
(randomly permute the index i), so if one shows relative compactness of the sequence,
any limit point will be an infinite exchangeable sequence and we can require V (t) to be
the de Finetti measure for the sequence {Xi(t)}, that is,

V (t) = lim
m→∞

1

m

m∑
i=1

δXi(t),

1In the original work of Allen and Cahn (see [1, 2]), G(v) = 1− v2 for all v ∈ R whilst in the case of the Φ4
d

equation of Euclidean quantum field theory, G(v) = −v2 (d represents the state space dimension).
2A detailed description of the noise W is given below and in the Appendix.
3In (1.3) and thereafter, we use the notation 〈ϕ, µ〉 to express the integral of ϕ with respect to µ, that is,

〈ϕ, µ〉 =
∫
ϕ(x)µ(dx).
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Particle representations for SPDEs with boundary conditions

in the sense that 〈ϕ, V (t)〉 = limm→∞
1
m

∑m
i=1 ϕ(Xi(t)) for all bounded, measurable ϕ.

More precisely, V is a process with sample paths in CP(Rd)[0,∞). (See Lemma 4.4 of
[11].)

Note that while the Xn
i give a particle approximation of the solution of (1.3), the Xi

give a particle representation of the solution, that is, the de Finetti measure of {Xi(t)}
is the desired V (t).

In the following, we will make use of representations similar to those studied in [14].
They differ from those considered in the other papers mentioned as each particle is
given a weight Ai(t) and V is given by

V (t) = lim
m→∞

1

m

m∑
i=1

Ai(t)δXi(t).

The models in the current paper differ from those in [14] in two primary ways. First,
the Xi will be independent, stationary diffusion processes defined on a domain D ⊂ Rd

with reflecting boundary. The stationary distribution will be denoted by π. Second, we
will place boundary conditions on the solution. Essentially, if v(t, u) is an appropriately
defined solution to a stochastic partial differential equation of interest, we would like to
have

v(t, u) = g(u), u ∈ ∂D, t > 0. (1.5)

The precise sense in which the boundary conditions hold will be discussed later and will
depend on the conditions assumed.

Specifically, in the same vein as equation (1.3), we will consider a class of nonlinear
stochastic partial differential equations written in weak form

〈ϕ, V (t)〉 = 〈ϕ, V (0)〉+
∫ t

0

〈Lϕ, V (s)〉ds+
∫ t

0

〈G(v(s, ·), ·)ϕ, V (s)〉ds

+

∫ t

0

∫
D

ϕ(x)b(x)π(dx)ds+

∫
U×[0,t]

∫
D

ϕ(x)ρ(x, u)π(dx)W (du, ds), (1.6)

where D is a bounded, open, connected subset of Rd, for the moment the test functions
are ϕ ∈ C2

c (D) the twice continuously differentiable functions with compact support in
D,

Lϕ(x) =
1

2

∑
i,j

aij(x)∂
2
xixj

ϕ(x) +
∑
i

ci(x)∂xiϕ(x),

v(s, x) is the density of V (s) with respect to π, and 〈ϕ, V (0)〉 =
∫
ϕ(x)h(x)π(dx) for a

specified h. Note that if the solution V is adapted to a filtration {Ft}, then we can
assume that v is a progressively measurable process with values in L1(π). In particular,
the mapping (s, x, ω) → v(s, x, ω) is B[0,∞) × B(D) × ∨tFt measurable. (B(E) denotes
the Borel subsets of a metric space E.) The existence of a measurable version of the
process of densities follows by a monotone class argument. See Lemma A.1 for a similar
argument.

Throughout, we will assume that U is a complete, separable metric space, µ is a
σ-finite Borel measure on U, and ` is Lebesgue measure on [0,∞). W is Gaussian white
noise on U× [0,∞) with covariance measure µ× `, that is, W (C × [0, t]) has expectation
zero for all 0 ≤ t <∞ and C ∈ B(U) with µ(C) <∞, and E[W (C1 × [0, t])W (C2 × [0, s])=

t ∧ sµ(C1 ∩ C2). (See Appendix A.1.)
Formally, equation (1.6) is the weak form of

v(t, x) = v(0, x) +

∫ t

0

[L∗v(s, x) + v(s, x)G(v(s, x), x) + b(x)] ds+

∫
U×[0,t]

ρ(x, u)W (du, ds),

(1.7)
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Particle representations for SPDEs with boundary conditions

where L∗ is the formal adjoint of the operator L with respect to the inner product
〈ψ,ϕ〉π =

∫
D
ψ(x)ϕ(x)π(dx).

To obtain, for example, the stochastic Allen-Cahn equation (1.1), we can choose
L = ∆.

2 Basic conditions and statement of main theorems

With the results of [14] in mind, we are interested in solutions V of (1.6) that are
measures or perhaps signed measures. We emphasize here that we are talking about
a representation of the solution of the equation, not a limit or approximation theorem
(although these representations can be used to prove limit theorems). To obtain the
representation of V (t) we desire, we must identify both the locations Xi(t) and the
weights Ai(t). The sequence {(Xi(t), Ai(t))} is required to be exchangeable, so by de
Finetti’s theorem, for each t there will exist a random measure Ξ(t), which we will
refer to as the de Finetti measure for the sequence {(Xi(t), Ai(t))}, such that for each
bounded, measurable function ψ on D ×R,

〈ψ,Ξ(t)〉 = lim
m→∞

1

m

m∑
i=1

ψ(Xi(t), Ai(t)) =

∫
D×R

ψ(x, a)Ξ(t, dx, da).

Then, assuming E[|Ai(t)|] <∞, V (t) will be given by

〈ϕ, V (t)〉 = lim
m→∞

1

m

m∑
i=1

Ai(t)ϕ(Xi(t)) =

∫
D×R

aϕ(x)Ξ(t, dx, da). (2.1)

If the Ai(t) are nonnegative, then V (t) will be a measure, but we do not rule out the
possibility that the Ai(t) can be negative and V (t) a signed measure. The weights and
locations will be solutions of an infinite system of stochastic differential equations that
are coupled only through V and common noise terms.

We take the Xi to be independent, stationary solutions of the Skorohod equation

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s))dBi(s) +

∫ t

0

c(Xi(s))ds+

∫ t

0

η(Xi(s))dLi(s), i ≥ 1, (2.2)

where η(x) is a vector field defined on the boundary ∂D, and Li is a local time on ∂D
for Xi, that is, Li is a nondecreasing process that increases only when Xi is in ∂D. To
avoid some of the complexities of reflecting diffusions and focus on the new ideas in our
representation, we will assume the following condition throughout.

Condition 2.1. a) D ⊂ Rd is bounded, open, connected, and has a C2 boundary.

b) σ, c, and η are continuous, σ is nondegenerate on D, and η(x) · nD(x) > 0, x ∈ ∂D,
where nD(x) is the unit inward normal at x.

c) For a standard Brownian motion B and X(0) ∈ D independent of B, the solution of

X(t) = X(0) +

∫ t

0

σ(X(s))dB(s) +

∫ t

0

c(X(s))ds+

∫ t

0

η(X(s))dL(s), (2.3)

is (weakly) unique for all initial distributions in P(D).

d) The Xi are independent solutions of (2.2) with independent standard Brownian
motions Bi and independent and identically distributed Xi(0) ∈ D. The distribution
π of Xi(0) is a stationary distribution for (2.3).
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Particle representations for SPDEs with boundary conditions

Remark 2.2. See [5] for conditions implying strong uniqueness for (2.3). Weak unique-
ness can be proved employing results from partial differential equations. (See, for
example, Theorem 8.1.5 in [6]. In the notation of that theorem, η(x) = −c(x).) Weak
uniqueness can also be obtained via submartingale problems. (See [20].) These ap-
proaches all require different conditions on D and the coefficients, so we simply assume
uniqueness.

Lemma 2.3. The equation (2.3) determines a strong Markov process, and the corre-
sponding semigroup defined by

T(t)ϕ(x) = E[ϕ(X(t))|X(0) = x]

satisfies

T(t) : Cb(D) → Cb(D). (2.4)

Proof. Let Xx denote the solution of (2.3) with Xx(0) = x. Continuity of the coefficients
and the assumption of uniqueness implies that the mapping x→ Xx is continuous in the
sense of convergence in distribution in CD[0,∞). The simplest way to see this continuity
is to first define the time change

τx(t) = inf{r; r + Lx(r) > t}.

Then setting λx(t) = Lx(τx(t)) and Y x(t) = Xx(τx(t)), we have

Y x(t) = x+

∫ t

0

σ(Y x(s))dB ◦ τx(s) +
∫ t

0

c(Y x(s))ds+

∫ t

0

η(Y x(s))dλx(s).

Since all the coefficients are continuous and τx(t) + λx(t) = t, τx and λx are Lipschitz
with constant 1, {Y x, x ∈ D} is relatively compact, and any limit point (Y x0 , τx0 , λx0) of
(Y x, τx, λx) with x→ x0 will satisfy

Y x0(t) = x0 +

∫ t

0

σ(Y x0(s))dB ◦ τx0(s) +

∫ t

0

c(Y x0(s))ds+

∫ t

0

η(Y x0(s))dλx0(s).

Since λx0 increases only when Y x0 ∈ ∂D, the assumptions on η ensure that τx0 is strictly
increasing (as are the τx). Letting γx0 denote the inverse of τx0 , Xx0 ≡ Y x0 ◦ γx0 , is
a solution of (2.3) with X(0) = x0, and by uniqueness, Xx ⇒ Xx0 as x → x0 giving
(2.4).

If ϕ ∈ C2
b (D), then by Itô’s formula,

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

∇ϕ(X(s))Tσ(X(s))dB(s) +

∫ t

0

Lϕ(X(s))ds (2.5)

+

∫ t

0

∇ϕ(X(s)) · η(X(s))dL(s),

where

Lϕ(x) =
1

2

∑
i,j

aij(x)∂
2
xixj

ϕ(x) +
∑
i

ci(x)∂xi
ϕ(x), (2.6)

with a(x) = σ(x)σ(x)T , where σT is the transpose of σ.

Lemma 2.4. The infinitesimal generator A for the semigroup {T(t)} is an extension of

{(ϕ,Lϕ) : ϕ ∈ C2
b (D), η(x) · ∇ϕ|∂D = 0}. (2.7)
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Particle representations for SPDEs with boundary conditions

Proof. The boundary condition and the martingale property of the stochastic integral
implies

T(t)ϕ(x)− ϕ(x)

t
=

1

t

∫ t

0

E[Lϕ(Xx(s))]ds. (2.8)

The continuity in distribution of x→ Xx and the continuity of Lϕ assure that if x→ x0
and t → 0, the right side of (2.8) converges to Lϕ(x0). The compactness of D then
assures that the convergence of the left side of (2.8) to Lϕ(x) is uniform in x.

Lemma 2.5. Let X,L be a solution of (2.3). Then for each t > 0,∫ t

0

1∂D(X(s))ds = 0 a.s., t ≥ 0,

and E[L(t)] <∞.

Remark 2.6. The result is a special case of Proposition 6.1 of [9]. We give a short proof
in our simpler setting.

Proof. We can obtain D as D = {x : ψD(x) > 0} where ψD is C2 on Rd and ∇ψD(x) =

ε(x)nD(x), x ∈ ∂D, where infx∈∂D ε(x) > 0. Observe that

ψD(X(t)) = ψD(X(0)) +

∫ t

0

∇ψD(X(s))Tσ(X(s))dB(s) +

∫ t

0

LψD(X(s))ds (2.9)

+

∫ t

0

∇ψD(X(s)) · η(X(s))dL(s).

Every term in (2.9) has finite expectation, except possibly the last, but then the last must
also. Since κ1 = infx∈∂D ∇ψD(x) · η(x) > 0, we have

E[L(t)] <
1

κ1
E[

∫ t

0

∇ψD(X(s)) · η(X(s))dL(s)] <∞.

Setting qε(z) =
∫ z

0

∫ y

0
1[0,ε](u)dudy,

qε(ψD(X(t))) = qε(ψD(X(0))) +

∫
0

q′ε(ψD(X(s)))∇ψD(X(s))Tσ(X(s))dB(s)

+

∫ t

0

q′ε(ψD(X(s)))LψD(X(s))ds (2.10)

+

∫ t

0

q′ε(ψD(X(s)))∇ψD(X(s)) · η(X(s))dL(s)

+

∫ t

0

1[0,ε](ψD(X(s)))∇ψD(X(s))Tσ(X(s))σT (X(s))∇ψ(X(s))ds.

Since κ2 = infx∈D ∇ψD(x)Tσ(x)σT (x)∇ψ(x) > 0,
∫ t

0
1∂D(X(s))ds is bounded by κ−1

2

times the last term on the right of (2.10). Since every term in (2.10) converges to zero
except, possibly, the last term, the last term also converges to zero giving the lemma.

Lemma 2.7. Let Xx be as in the proof of Lemma 2.3, and let γx = inf{t > 0 : Xx(t) ∈
∂D}. Then each x0 ∈ ∂D is regular in the sense that

lim
x→x0

E[γx] = 0 and lim
x→x0

E[|Xx(γx)− x0|] = 0.

In particular,
E[|Xx0(γx0)− x0|] = E[γx0 ] = 0.
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Proof. With reference to Section 6.2 of [7], a function wx0
∈ C2(D) is a barrier at x0 if

wx0
≥ 0, wx0

(x) = 0 only if x = x0, and Lwx0
(x) ≤ −1, and under Condition 2.1, a barrier

exists for each x0 ∈ ∂D. By Itô’s formula,

wx0
(Xx(t ∧ γx))− wx0

(x)−
∫ t∧γx

0

Lwx0
(Xx(s))ds.

Taking expectations and letting t→ ∞, we have

wx0(x) ≥ E[wx0(X(γx))] + E[γx].

Since limx→x0 wx0(x) = 0, the lemma follows.

Lemma 2.8. The Markov process corresponding to (2.3) has a stationary distribution
denoted by π, and the support of π isD.

Proof. The compactness of D and Lemma 2.3 imply existence of a stationary distribution
by Theorem 4.9.3 of [6]. To show that π charges every open set, first observe that
π(∂D) = 0, since the process spends zero real time in ∂D. Let PX

x be the distribution of
the solution X with X(0) = x. It then suffices to show that for any x ∈ D and any ball
B ⊂ D, PX

x (τB < τ∂D) > 0, where τB denotes the first hitting time of B and τ∂D denotes
the first hitting time of the boundary. By connectedness, we can find a differentiable
path P starting at x and ending at the center of the ball B without hitting the boundary.
Let ε = inf{|x − y| : x ∈ P, y ∈ ∂D}. Since σ is nondegenerate, by Girsanov’s theorem,
we can construct a distribution QX

x equivalent to PX
x such that under QX

x , with high
probability X stays within ε of P until τB.

Since we are assuming that the Xi are independent and stationary (obtained by
assuming that the Xi(0) are independent with distribution π), an immediate consequence
of our assumptions is that V (t) given by (2.1) will be absolutely continuous with respect
to π.

Lemma 2.9. The measure V (t) is absolutely continuous with respect to π.

Proof. The de Finetti measure for {(Ai(t), Xi(t))} is given by the regular conditional
distribution Ξ(t, da, dx) of (A1(t), X1(t)) given the tail σ-algebra T = ∩nσ((Ai(t), Xi(t)) :

i ≥ n). Then the measure V (t) can be written as

V (t, B) =

∫
R×D

1B(x)aΞ(t, da, dx).

But the D-marginal of Ξ(t, da, dx) is π, so there is a transition function V(t, x, da) satisfy-
ing

V (t, B) =

∫
B

∫
R

aV(t, x, da)π(dx),

and hence V (t) is absolutely continuous with respect to π.

Consequently, we can write

V (t, dx) = v(t, x)π(dx),

with

v(t, x) =

∫
R

aV(t, x, da). (2.11)

As noted above, we can assume that v is B[0,∞)× B(D)× ∨tFt-measurable.
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Particle representations for SPDEs with boundary conditions

To construct a particle representation for a solution of (1.6), we still need to define
our weights, Ai. Set τi(t) = 0 ∨ sup{s ≤ t : Xi(s) ∈ ∂D}, that is τi(t) is the most recent
time that Xi has been on the boundary, or if Xi has not hit the boundary by time t,
τi(t) = 0. Of course, τi(t) is not a stopping time; however, it is independent of W , so the
stochastic integral in the following equation is well-defined. We take Ai to satisfy

Ai(t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0} +

∫ t

τi(t)

b(Xi(s))ds (2.12)

+

∫ t

τi(t)

G(v(s,Xi(s)), Xi(s))Ai(s)ds+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du, ds),

where v(t, x) is the density with respect to π determined by (2.11).
As we will see in Section 5, Ai does not appear to be a semimartingale, but the

difficulties only occur when Xi is at the boundary. Consequently, we can define the
integrals in the following lemma directly as limits of Riemann-like sums.

Lemma 2.10. For ϕ in C2
c (D),

ϕ(Xi(t))Ai(t) = ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))dAi(s) (2.13)

+

∫ t

0

Ai(s)∇ϕ(Xi(s))
Tσ(Xi(s))dBi(s) +

∫ t

0

Lϕ(Xi(s))Ai(s)ds

= ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

ϕ(Xi(s))b(Xi(s))ds+

∫
U×[0,t]

ϕ(Xi(s))ρ(Xi(s), u)W (du× ds)

+

∫ t

0

Ai(s)∇ϕ(Xi(s))
Tσ(Xi(s))dBi(s) +

∫ t

0

Lϕ(Xi(s))Ai(s)ds,

where for partitions {ti} of [0, t],∫ t

0

ϕ(Xi(s))dAi(s) = lim
maxk |tk+1−tk|→0

∑
k

ϕ(Xi(tk))(Ai(tk+1)−Ai(tk)). (2.14)

Remark 2.11. Since ϕ vanishes in a neighborhood of the ∂D, the local time integral in
(2.5) does not appear in this identity.

Proof. The convergence of the limit in (2.14) follows by observing that formaxk |tk+1−tk|
sufficiently small, tk ≤ τi(s) ≤ tk+1 implies ϕ(Xi(tk)) = 0. We also note that by this
observation and the fact that the independence of Bi and W implies that the covariation
of the two stochastic integral terms is zero,

lim
maxk |tk+1−tk|→0

∑
k

(ϕ(Xi(tk+1))− ϕ(Xi(tk)))(Ai(tk+1)−Ai(tk)) = 0.

To see that the weights Ai determined by (2.12) should give a solution of (1.6), we
want to average (2.13). The next to the last term in the right side of (2.13) is a martingale,
and these martingales are orthogonal for different values of i. Consequently, they will
average to zero. Assuming exchangeability of {(Ai, Xi)}, which will follow from the
exchangeability of {(Ai(0), Xi)} provided we can show existence and uniqueness for the
system (2.12), averaging gives (1.6).
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Particle representations for SPDEs with boundary conditions

We also note that the weights, at least plausibly, capture the desired boundary
conditions. Intuitively, for x close to the boundary ∂D, the value of v(t, x) is determined
by the particles with locations Xi(t) close to the boundary, but if Xi(t) is close to
the boundary it should have recently hit the boundary and Ai(t) should be close to
g(Xi(τi(t))).

That intuition leads to the following interpretation of the boundary condition. Assume
that g is continuous, and let g : D ∪ ∂D 7→ R be a continuous function such that g|∂D = g.
For ε > 0, define

∂εD = {x ∈ D|dist(x, ∂D) < ε}.

Then, ∫
∂εD

|v(t, x)− g(x)|π(dx) = lim
n→∞

1

n

n∑
i=1

1∂εD(Xi(t)|v(t,Xi(t))− g(Xi(t))|.

Once we have existence for (2.12), it will follow from Lemma 3.2 that E[Ai(t)|W,Xi(t)] =

v(t,Xi(t)), and by the intuition and the continuity of g, if Xi(t) is close to the boundary,
we should have v(t,Xi(t)) ≈ g(Xi(t)) and

lim
m→∞

1

π(∂εD)

∫
∂εD

|v(t, x)− g(x)|π(dx) = 0. (2.15)

The intuition is made precise under regularity conditions on the time-reversal of the Xi.
See Lemma 4.7 for details.

Our first step will be to prove uniqueness for the system (2.12) under the following
condition which we assume throughout the paper.

Condition 2.12. The coefficients in (2.12) satisfy

1. g and h are bounded with sup norms ‖g‖ and ‖h‖.
2. K1 ≡ supx∈D |b(x)| <∞.

3. K2 ≡ supx∈D

∫
ρ(x, u)2µ(du) <∞.

4. K3 ≡ supv∈R,x∈D G(v, x) <∞.

5. L1 ≡ supv∈R,x∈D
|G(v,x)|
1+|v|2 <∞.

6. L2 ≡ supv1 6=v2∈R,x∈D
|G(v1,x)−G(v2,x)|

|v1−v2|(1+|v1|+|v2|) <∞.

Observe that Condition 2.12.4 does not imply that G has a lower bound, but only
an upper bound. For example, G(v, x) = 1− v2 gives the classical Allen-Cahn equation,
whilst G(v, x) = −v2 gives the Φ4

d equation.

Theorem 2.13. The solution of (2.12) with v(t, x) the density of V given by (2.1) exists
and is unique.

Proof. Uniqueness is proved in Section 3.1 and existence in Section 3.2.

Theorem 2.13 ensures the existence of a (signed) measure-valued process satisfying
(1.6) for ϕ ∈ C2

c (D). Unfortunately, even coupled with some interpretation of the
boundary condition, (1.6) with this space of test functions does not, in general, uniquely
determine a measure-valued process.4 Consequently, we need to enlarge the space of
test functions. We have two ways of doing that, first by taking the test functions to
be C2

0 (D), the space of twice continuously differentiable functions that vanish on the
boundary, Theorem 2.16, and second by taking the test functions to be D(A), the domain
of the generator for the semigroup {T(t)} corresponding to the Xi, Theorem 2.18.

We need to identify the space in which the solution will live.

4For example, consider Xi reflecting Brownian motion with differing directions of reflection but whose
stationary distribution is still normalized Lebesgue measure.
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Particle representations for SPDEs with boundary conditions

Definition 2.14. A process Z is compatible with a process Y if

E[f(Y )|FY,Z
t ] = E[f(Y )|FY

t ],

for all bounded, measurable f defined on the range of Y and all t.

Remark 2.15. If Y is a process with independent increments, then Z is compatible with
Y if Y (t+ ·)− Y (t) is independent of FY,Z

t . See [12], Lemma 2.4.

Let L(π) be the space of processes v compatible with W taking values in L1(π) such
that for each T > 0 and some εT > 0, v satisfies

sup
t≤T

E

[∫
D

eεT |v(t,x)|2π(dx)

]
<∞.

We prove the following theorem in Section 5.1.

Theorem 2.16. Consider the equation

〈ϕ(·, t), V (t)〉 = 〈ϕ(·, 0), h〉π +

∫ t

0

〈ϕ(·, s)G(v(s, ·), ·), V (s)〉ds

+

∫ t

0

∫
D

ϕ(x, s)b(x)π(dx)ds (2.16)

+

∫
U×[0,t]

∫
D

ϕ(x, s)ρ(x, u)π(dx)W (du× ds)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s), V (s)〉ds

+

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds,

where the test functions ϕ(x, t) are twice differentiable in x, differentiable in t, and
vanish on ∂D × [0,∞), π is the stationary distribution for the particle location process,
and β is the measure associated with the local time defined in Section 4.

Suppose D0 = {ϕ ∈ C2(D) : ϕ(x) = 0 and Lϕ(x) = 0, x ∈ ∂D} is a core for A0, the
generator of the semigroup {T0(t)} for the diffusion that absorbs at ∂D, that is, A0 is
the closure of {(ϕ,Lϕ) : ϕ ∈ D0}. Then V defined in (2.1) with {(Xi, Ai)} given by (2.2)
and (2.12) is the unique solution of (2.16) in L(π).
Remark 2.17. Theorem 8.1.4 of [6] gives conditions implying D0 is a core. Note that
any solution of (2.16) is a solution of (1.6).

Now we take the test functions to be D(A), the domain of the generator for the
semigroup {T(t)} corresponding to the location processes. More precisely, let T be the
collection of functions ϕ(x, t) for which there exists tϕ > 0 such that ϕ(t, x) = 0 for t ≥ tϕ,
ϕ is continuously differentiable in t, and ϕ(·, t) ∈ D(A), t ≥ 0, with Aϕ bounded and
continuous.

Let

γi(s) = inf{t > s : Xi(t) ∈ ∂D}, (2.17)

and note that 1{τi(t)=0} = 1{γi(0)>t}. Let P (dy, ds|x) be the conditional distribution of
(Xi(γi(0)), γi(0)) given Xi(0) = x, and let Pϕ(x) =

∫
ϕ(y, s)P (dy, ds|x). Let X∗ be the

reversed process and γ∗ be the first time that X∗ hits the boundary.

To simplify notation in the equation, we extend g to all of D by setting g(x) = h(x) for
x ∈ D. We do not require that this extension be continuous.

We prove the following theorem in Section 5.2.
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Theorem 2.18. For the equation

0 =

∫ ∞

0

〈(ϕ(·, s)− Pϕ(·, ·+ s))G(v(s, ·), ·), V (s)〉ds (2.18)

+

∫ ∞

0

∫
b(x)(ϕ(x, s)− Pϕ(x, ·+ s))π(dx)ds

+

∫
U×[0,∞)

∫
D

(ϕ(x, s)− Pϕ(x, ·+ s))ρ(x, u)π(dx)W (du× ds)

+

∫ ∞

0

〈Aϕ(·, s) + ∂ϕ(·, s), V (s)〉ds

−
∫ ∞

0

∫
D

E[g(X∗(γ∗ ∧ s))|X∗(0) = x](Aϕ(x, s) + ∂ϕ(x, s))π(dx)ds.

for all ϕ ∈ T , V defined in (2.1) with {(Xi, Ai)} given by (2.2) and (2.12) is the unique
solution of (2.18) in L(π).
Remark 2.19. The form of (2.18) may not be very intuitive; however, this equation and
(2.16) determine the same unique solution in L(π).

To see that the restriction of (2.18) to ϕ ∈ C2
c (D) gives (1.6), note first that for

ϕ ∈ C2
c (D), Pϕ = 0. To see that the last term in (2.18) is zero for ϕ ∈ C2

c (D), note
that u(x, s) = E[g(X∗(γ∗ ∧ s))|X∗(0) = x] should be a solution of the Dirichlet problem
(A∗

0 − ∂)u(x, s) = 0 on D × [0,∞) with boundary conditions u(x, 0) = h(x), x ∈ D, and
u(x, s) = g(x), s > 0, x ∈ ∂D.

3 Existence and uniqueness of the weighted particle system

In this section we prove a number of estimates for particle systems of the type we
consider in this paper, leading up to a proof of Theorem 2.13. The system of stochastic
differential equations (2.12) must be considered in conjunction with the existence of an
empirical distribution

V (t) = lim
n→∞

1

n

n∑
i=1

Ai(t)δXi(t)

required to have a density v(t, ·) with respect to π. It is by no means clear that a solution
satisfying all these constraints exists.

First we explore the properties that a solution must have by replacing v by an
arbitrary, measurable L1(π)-valued stochastic process U that is independent of {Xi} and
compatible with W , (see Definition 2.14). In the current setting, compatibility means
that for each t > 0, σ(W (C × (t, t+ s]) : C ∈ B(U), µ(C) <∞, s > 0) is independent of

FU,W
t = σ(U(s),W (C × [0, s]) : 0 ≤ s ≤ t, C ∈ B(U), µ(C) <∞).

Define AU
i to be the solution of

AU
i (t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0} (3.1)

+

∫ t

τi(t)

G(U(s,Xi(s)), Xi(s))A
U
i (s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds).

Existence and uniqueness of the solution of (3.1) holds under modest assumptions on
the coefficients, in particular, under Condition 2.12.
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Lemma 3.1. Let

Hi(t) =

∫
U×[0,t]

ρ(Xi(s), u)W (du, ds).

Then Hi is a martingale with respect to the filtration {Hi
t} ≡ {FW

t ∨ σ(Xi)} and there
exists a standard Brownian motion Zi such that Zi is independent of Xi and

Hi(t) = Zi

(∫ t

0

ρ2(Xi(s), u)µ(du)

)
.

For all AU
i defined as in (3.1) and K1, K2, and K3 defined in Condition 2.12,

|AU
i (t)| ≤ (‖g‖ ∨ ‖h‖+K1(t− τi(t)) + sup

τi(t)≤r≤t

|Hi(t)−Hi(r)|)eK3(t−τi(t)) (3.2)

≤ (‖g‖ ∨ ‖h‖+K1t+ sup
0≤s≤t

|Hi(t)−Hi(s)|)eK3t ≡ Ai(t)

≤ (‖g‖ ∨ ‖h‖+K1t+ 2 sup
0≤s≤t

|Zi(sK2)|)eK3t ≡ Γi(t).

For each T > 0, there exists εT such that

E[eεT supt≤T |AU
i (t)|2 ] ≤ E[eεTΓi(T )2 ] <∞. (3.3)

Proof. Let A+
i (t) = AU

i (t) ∨ 0 and A−
i (t) = (−AU

i (t)) ∨ 0. Define

γ+i (t) = τi(t) ∨ sup{s < t : AU
i (s) < 0}.

If γ+i (t) = τi(t) < t, then AU
i (s) ≥ 0 for all s in (3.1); if 0 < γ+i (t) < t, AU

i (γ
+
i (t)) = 0 and

AU
i (t) =

∫ t

τi(t)

G(U(s,Xi(s)), Xi(s))A
U
i (s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds);

if γ+i (t) = t, A+
i (t) ≤ ‖g‖ ∨ ‖h‖. In any of these cases

A+
i (t) ≤ ‖g‖ ∨ ‖h‖+

∫ t

γ+
i (t)

K3A
+
i (s)ds+K1(t− γ+i (t)) + sup

γ+
i (t)≤s≤t

|Hi(t)−Hi(s)|,

so by Gronwall,

A+
i (t) ≤ (‖g‖ ∨ ‖h‖+K1(t− γ+i (t)) + sup

γ+
i (t)≤s≤t

|Hi(t)−Hi(s)|)eK3(t−γ+
i (t)).

Letting γ−i (t) = τi(t) ∨ sup{s < t : AU
i (s) > 0}, similar observations give

A−
i (t) ≤ ‖g‖ ∨ ‖h‖+

∫ t

γ−
i (t)

K3A
−
i (s)ds+K1(t− γ−i (t)) + sup

γ−
i (t)≤s≤t

|Hi(t)−Hi(s)|,

so we have a similar bound on A−
i . Together the bounds give the first two inequalities in

(3.2).
Hi is a continuous martingale with quadratic variation

∫ t

0

∫
ρ(Xi(s), u)

2µ(du)ds. De-
fine

γ(u) = inf{t :
∫ t

0

∫
ρ(Xi(s), u)

2µ(du)ds ≥ u},

and Zi(u) = Hi(γ(u)). Then Zi is a continuous martingale with respect to the filtration
{Hi

γ(u)} and [Zi]u = u, so Zi is a standard Brownian motion. Since σ(Xi) ⊂ Hi
0, Zi is

independent of Xi.
The first inequality in (3.3) follows by the monotonicity of Γi and the finiteness by

standard estimates on the distribution of the supremum of Brownian motion.
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The pairs {(AU
i , Xi)} will be exchangeable, so with reference to Lemma 2.9, we can

define ΦU(t, x) to be the density with respect to π of the signed measure determined by

〈ϕ,ΦU(t)〉 = lim
N→∞

1

N

N∑
i=1

AU
i (t)ϕ(Xi(t)). (3.4)

Lemma 3.2. Suppose that U is compatible with W and that (U,W ) is independent of
{Xi}. Then ΦU is compatible with W and for each i,

E[AU
i (t)|U,W,Xi(t)] = ΦU(t,Xi(t)). (3.5)

If, moreover, U is {FW
t }-adapted, then ΦU is {FW

t }-adapted.

Proof. It follows from (3.4) that ΦU(t) is measurable with respect to the shift invariant
sigma algebra of the stationary sequence (Xi, U,W ). Since the {Xi} sequence is i.i.d.
and independent of (U,W ), this sigma algebra is contained in the completion of the
sigma algebra generated by (U,W ). It then follows from the ergodic theorem that

〈ϕ,ΦU(t)〉 = E[AU
1 (t)ϕ(X1(t))|U,W ].

Since AU
i is {FXi,U,W

t }-adapted, Xi is {FXi
t }-adapted, and Xi and (U,W ) are indepen-

dent, we may replace conditioning by (U,W ) by conditioning by FU,W
t in the previous

expression, which shows the compatibility for ΦU in general and {FW
t }-adaptedness if

U is {FW
t }-adapted. By exchangeability,

E[AU
i (t)ϕ(Xi(t))F (U,W )] = E[

∫
ϕ(x)ΦU(t, x)π(dx)F (U,W )]

= E[ϕ(Xi(t))ΦU(t,Xi(t))F (U,W )],

where the second equality follows by the independence of Xi(t) and (U,W ). The lemma
then follows by the definition of conditional expectation.

We will restrict attention in the following results to the case where U is {FW
t }-adapted

to simplify the notation slightly. Analogues of these results hold for compatible U as well.
The next result shows existence of a version of the density ΦU(t, x) with the property
that t 7→ ΦU(t,Xi(t)) is well-behaved pathwise.

Lemma 3.3. Suppose that U is {FW
t }-adapted, and let GXi

t = σ(Xi(r) : r ≥ t). Then
there exists a version of ΦU(t, x) such that

ΦU(t,Xi(t)) = E[A
U
i (t)|W,Xi(t)] = E[A

U
i (t)|σ(W ) ∨ GXi

t ], (3.6)

where we interpret the right side as the optional projection, and for this version

E[ sup
0≤t≤T

|ΦU(t,Xi(t))|2] ≤ 4E[ sup
0≤t≤T

|AU
i (t)|2]. (3.7)

Moreover the identity (3.5) holds with t replaced by any nonnegative σ(W )-measur-
able random variable τ .

Proof. The first equality in (3.6) is just (3.5), and the second follows from the fact that Xi

is Markov. By Lemma A.1, there exists a Borel measurable function g on [0,∞)×Rd ×W
such that

g(t,Xi(t),W ) = E[AU
i (t)|σ(W ) ∨ GXi

t ].

It follows that g(t, x,W ) is a version of ΦU(t, x). (Note that an arbitrary version of
ΦU(t, x) may not have the measurability properties of g(t, x,W ).)

Corollary A.2, the properties of reverse martingales, and Doob’s inequality give (3.7),
and the last statement follows by the definition of the optional projection.
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With (3.5) in mind, given an exchangeable family {Ai} such that Ai is adapted to
{FXi

t ∨ FW }, define ΦAi ≡ AU
i taking U to be given by

U(t,Xi(t)) = E[Ai(t)|W,Xi(t)] = E[Ai(t)|σ(W ) ∨ GXi
t ]

in (3.1).

Lemma 3.4. Suppose that U is {FW
t }-adapted. Then for all T > 0 and p ≥ 1, there exists

a constant Cp,T so that for all t ≤ T

E[|ΦU(t,Xi(t))|p|GXi

T ] ≤ Cp,T

and

E[|AU
i (t)|p|G

Xi

T ] ≤ Cp,T .

Proof. Recall that we have the bound

|AU
i (t)| ≤

(
‖g‖ ∨ ‖h‖+K1t+ 2 sup

0≤r≤t
|
∫
U×(0,r]

ρ(Xi(s), u)W (du× ds)|

)
eK3t

and that

ΦU(t,Xi(t)) = E[A
U
i (t)|W,G

Xi
t ].

Notice that Jensen’s inequality gives

E[|ΦU(t,Xi(t))|p|GXi

T ] = E

[∣∣∣E[AU
i (t)|W,G

Xi
t ]
∣∣∣p∣∣∣∣GXi

T

]
≤ E

[
E
[
|AU

i (t)|p
∣∣∣W,GXi

t

] ∣∣∣GXi

T

]
and that t ≤ T implies GXi

T ⊂ GXi
t ∨ σ(W ). It follows that

E
[
E
[
|AU

i (t)|p
∣∣∣W,GXi

t

] ∣∣∣GXi

T

]
= E

[
|AU

i (t)|p
∣∣∣GXi

T

]
≤ E

[
Γp
i (t)| G

Xi

T

]
.

Fix S ∈ GXi

T with P (S) > 0, so that W is an {FW
t ∨ σ(Xi)}-martingale measure under

P (·|S). By the Burkholder-Davis-Gundy inequality, we find

E

[∣∣∣ sup
0≤r≤t

|
∫
U×(0,r]

ρ(Xi(s), u)W (du× ds)
∣∣∣p∣∣∣∣S

]

≤ CpE

[(∫ t

0

∫
U

ρ(Xi(s), u)
2µ(du)ds

) p
2 ∣∣∣S]

≤ Cp(K2t)
p
2 .

S was arbitrary, so the result follows.

Lemma 3.5. Suppose that U is {FW
t }-adapted. Then for each T ≥ 0, there exists εT > 0

such that
E
[
eεT supt≤T |ΦU(t,Xi(t))|2

]
<∞. (3.8)

Proof. As in Lemma 3.1, for each T > 0, there exists εT > 0 such that E[eεTΓi(T )2 ] <∞.
Recalling that

|ΦU(t,Xi(t))| = |E[AU
i (t)|σ(W ) ∨ GXi

t ]| ≤ E[Γi(T )|σ(W ) ∨ GXi
t ],
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Jensen’s and Doob’s inequalities give

E[eεT supt≤T |ΦU(t,Xi(t)|2 ] ≤ E[sup
t≤T

E[eεTΓi(T )2 |σ(W ) ∨ GXi
t ]]

≤ 4E[eεTΓi(T )2 ].

3.1 Proof of uniqueness in Theorem 2.13

Truncations based on the moment estimates given above allow us to apply Gronwall’s
inequality to prove uniqueness for the system (2.12).

Let U1 and U2 satisfy |Uk(t,Xi(t))| ≤ E[Γi(t)|W,Xi(t)], k = 1, 2. Then there exists a
constant L3 > 0 such that

|AU1
i (t)−AU2

i (t)|

≤
∫ t

τi(t)

|G(U1(s,Xi(s)), Xi(s))A
U1
i (s)−G(U2(s,Xi(s)), Xi(s))A

U2
i (s)|ds

≤
∫ t

τi(t)

L1(1 + E[Γi(s)|W,Xi(s)]
2)|AU1

i (s)−AU2
i (s)|ds

+

∫ t

τi(t)

L2(1 + 2E[Γi(s)|W,Xi(s)]Γi(s))|U1(s,Xi(s))− U2(s,Xi(s))|ds

≤
∫ t

0

L1(1 + C2)|AU1
i (s)−AU2

i (s)|ds

+

∫ t

0

L2(1 + 2C2)|U1(s,Xi(s))− U2(s,Xi(s))|ds

+

∫ t

0

1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)ds.

Suppose Uk = ΦUk, k = 1, 2, that is, we have two solutions. Then conditioning both
sides of the above inequality on W and observing

E[|U1(s,Xi(s))− U2(s,Xi(s))||W ] ≤ E[|AU1
i (s)−AU2

i (s)||W ],

we have

E[|AU1
i (t)−AU2

i (t)||W ] ≤ e(L1+2L2)(1+C2)t

∫ t

0

E[1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}

×Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)|W ]ds.

Taking expectations of both sides and applying Hölder’s inequality,

E[|AU1
i (t)−AU2

i (t)|]

≤ e(L1+2L2)(1+C2)tL3

∫ t

0

(P{Γi(s) > C}1/3 + P{E[Γi(s)|W,Xi(s)] > C}1/3)

×E[Γi(s)
3]1/3E[(1 + E[Γi(s)|W,Xi(s)]

2)3]1/3ds

≤ e(L1+2L2)(1+C2)te−εTC2/32L3

∫ t

0

E[e
εT
3 Γi(s)

2

E[Γi(s)
3]1/3

×E[(1 + E[Γi(s)|W,Xi(s)]
2)3]1/3ds,

so for t < εT
3(L1+2L2)

, the right side goes to zero as C → ∞ implying U1 = U2 on [0, t]. The
same argument and induction extends uniqueness to any interval.
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3.2 Proof of existence in Theorem 2.13

The estimates of the previous section can be applied to give convergence of an
iterative sequence proving existence. For an exchangeable family {A(1)

i } with A
(1)
i

{FXi,W
t }-adapted and satisfying |A(1)

i (t)| ≤ Γi(t), recursively define A
(n+1)
i = ΦA

(n)
i . By

the estimates of the previous section, for n,m ≥ 1

|A(n+1)
i (t)−A

(n+m+1)
i (t)|

≤
∫ t

τi(t)

|G(E[A(n)
i (s)|W,Xi(s)], Xi(s))A

(n+1)
i (s)

−G(E[A(n+m)
i (s)|W,Xi(s)], Xi(s))A

(n+m+1)
i (s)|ds

≤
∫ t

τi(t)

L1(1 + E[Γi(s)|W,Xi(s)]
2)|A(n+1)

i (s)−A
(n+m+1)
i (s)|ds

+

∫ t

τi(t)

L2(1 + 2E[Γi(s)|W,Xi(s)]Γi(s))|E[A(n)
i (s)−A

(n+m)
i (s)|W,Xi(s)]|ds

≤
∫ t

0

L1(1 + C2)|A(n+1)
i (s)−A

(n+m+1)
i (s)|ds

+

∫ t

0

L2(1 + 2C2)|E[A(n)
i (s)−A

(n+m)
i (s)|W,Xi(s)]|ds

+

∫ t

0

1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)ds.

Setting

HC(t) = E[1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)|W ],

we have

E[sup
r≤t

|A(n+1)
i (r)−A

(n+m+1)
i (r)||W ]

≤
∫ t

0

L1(1 + C2)E[sup
r≤s

|A(n+1)
i (r)−A

(n+m+1)
i (r)||W ]ds

+

∫ t

0

L2(1 + 2C2)E[sup
r≤s

|A(n)
i (r)−A

(n+m)
i (r)||W ]ds

+

∫ t

0

HC(s)ds.

It follows that

lim sup
n→∞

sup
m≥1

E[sup
r≤t

|A(n)
i (r)−A

(n+m)
i (r)||W ] ≤ et(L1+2L2)(1+C2)

∫ t

0

HC(s)ds,

and as in the previous section, for t < εT
3(L1+2L2)

, the expectation of the right side goes to

zero as C goes to infinity. Consequently, the sequence {A(n)
i } is Cauchy on [0, T ] for any

fixed T < εT
3(L1+2L2)

. Then there exists Ai such that limn→∞E[supr≤t |A
(n)
i (r)−Ai(r)|] = 0

giving existence of a solution on the interval [0, T ]. The same argument gives existence
on [T/2, 3T/2] and uniqueness shows that these solutions coincide on [T/2, T ]. Using
induction, we deduce the global existence of the solution of (2.12).

4 Boundary behavior

In this section, we present two senses in which the particle representation satisfies
the boundary condition (1.5). These results depend on the boundary regularity of the
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stationary diffusions {Xi} run forward or backward in time. We begin with the result
coming from regularity of the forward process proved in Lemma 2.7, which leads to the
weak formulation of the stochastic PDE including the boundary condition in Theorem
2.16.

Let X satisfy (2.3), and assume X(0) has distribution π so that X is stationary. By
stationarity, for t ∈ R+, the process X(t+ ·) has the same distribution as X(·). Therefore

E

[∫ t

s

ϕ(X(r))dL(r)

]
= E

[∫ t−s

0

ϕ(X(r))dL(r)

]
.

For bounded and continuous ϕ, define

Q(t, ϕ) = E

[∫ t

0

ϕ(X(s))dL(s)

]
which, by the above discussion, satisfies Q(t + s, ϕ) = Q(t, ϕ) + Q(s, ϕ) and |Q(t, ϕ)| ≤
tC‖ϕ‖∞ for some constant C. Therefore, since Q is additive in its first coordinate, there
exists a constant Cϕ so that Q(t, ϕ) = tCϕ. Since Q is also linear in its second coordinate,
it then follows from the Riesz representation theorem that there exists a measure β on
∂D which satisfies

ϕ 7→ 1

t
E

[∫ t

0

ϕ(X(s))dL(s)

]
=

∫
∂D

ϕ(x)β(dx).

By considering test functions of product form which are step functions in time, we
can see that for sufficiently regular space-time functions ϕ, we have∫ t

0

∫
∂D

ϕ(x, s)β(dx)ds = E

[∫ t

0

ϕ(X(s), s)dL(s)

]
. (4.1)

Denote partial derivatives with respect to the time variable by ∂. Applying Ito’s lemma to
ϕ(X(t), t) for sufficiently smooth ϕ and taking expectations, we also have the following
relation between π and β:∫ t

0

∫
D

(∂ + L)ϕ(x, s)π(dx)ds =

∫ t

0

∫
∂D

∇ϕ(x, s) · η(x)β(dx)ds.

Before the next result, we recall some definitions from analysis. Given a set A ⊂ R and
a ∈ A, we say that a is an isolated point if there exists ε > 0 such that A∩(a−ε, a+ε) = {a}.
We say that a ∈ A is left-isolated if there exists ε > 0 such that A ∩ (a− ε, a) = ∅.
Lemma 4.1. Almost surely, the set {t ≥ 0 : X(t) ∈ ∂D} is a closed set with no isolated
points and the collection of left-isolated points of this set is countable.

The proof of Lemma 4.1 is the same as the proof of the analogous property for the
zero set of one dimensional Brownian motion and uses the results in Lemma 2.7. See,
for example, the proof of Theorem 2.28 in [17].

Lemma 4.2. Let τ(t) = 0 ∨ sup{s ≤ t : X(s) ∈ ∂D}. Then, almost surely,∫
{t:τ(t)6=t}

dL(s) =

∫
{t:τ(t−)6=t}

dL(s) = 0.

Proof. Local time is a continuous measure supported on the set {t ≥ 0 : X(t) ∈ ∂D} and
therefore assigns measure zero to the (countable) set of left isolated points of {t ≥ 0 :

X(t) ∈ ∂D}. If t0 ∈ {t ≥ 0 : X(t) ∈ ∂D} is not left-isolated, then t0 = τ(t0) = τ(t0−).

By (4.1) and Lemma 4.2, we have the following theorem.
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Theorem 4.3. Almost surely, for dLi almost every t, Ai(t) = Ai(t−) = g(Xi(t)) and
therefore

lim
n→∞

1

n

n∑
i=1

∫ t

0

Ai(s−)η(Xi(s)) · ∇ϕ(Xi(s), s)dLi(s)

= E

[∫ t

0

Ai(s−)η(Xi(s)) · ∇ϕ(Xi(s), s)dLi(s)|U,W
]

=

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds.

In the next section, we show how Theorem 4.3 leads to a weak formulation of the
stochastic partial differential equation with a broader class of test functions than those
considered above. We now turn to the form of the boundary condition mentioned in the
introduction at (2.15), which depends on regularity of the time-reversed process.

For each t and s ≤ t, define the time reversal of Xi by X∗
i,t(s) = Xi(t − s). For

notational convenience, when it is clear from context what the value of t is, we will
suppress the subscript and take the convention that X∗

i,t(s) ≡ X∗
i (s). Since Xi is

stationary, the time reversal X∗
i is a Markov process whose generator A∗ satisfies∫

D

gAfdπ =

∫
D

fA∗gdπ, f ∈ D(A).

Remark 4.4. If D is sufficiently smooth and A = ∆ with normally reflecting boundary
conditions, then π is proportional to Lebesgue measure, β is proportional to the surface
measure, and A∗ = A.

Define the hitting time of the boundary for the reversed process by σi = inf{s :

X∗
i (s) ∈ ∂D}, so if the reversal is from time t, σi = t − τi(t). Showing that (2.15) is

satisfied will depend on the following condition.

Condition 4.5. The boundary ∂D is regular for X∗
i in the sense that for each δ > 0 and

x ∈ ∂D,
lim

y∈D→x
P (σi > δ|X∗

i (0) = y) = 0, (4.2)

and
lim

y∈D→x
E [|X∗

i (σi)− x| ∧ 1|X∗
i (0) = y] = 0. (4.3)

Remark 4.6. Condition 4.5 is difficult to verify in general. A natural sufficient condition
for Condition 4.5 to hold is that the time-reversal is again a regular diffusion; see [3]
for results in this direction. The motivating examples discussed in the introduction all
have L = ∆ and are naturally considered with respect to π proportional to the Lebesgue
measure, β proportional to the surface measure of ∂D, and reflection along the unit
normal vector of ∂D. For sufficiently smooth D, these cases correspond to choosing Xi

distributed as normally reflecting Brownian motion, which is reversible, as in Remark
4.4. For these cases, the desired regularity is then standard.

Proposition 4.7. Suppose that Condition 4.5 is satisfied. With reference to Lemma 3.1,
assume U is a {FW

t }-adapted, L1(π)-valued process and satisfies

U(t,Xi(t)) ≤ E[Γi(t)|W,Xi(t)], t ≥ 0.

Let g be any continuous function on D with g|∂D = g. Then for any t > 0,

lim
ε→0

∫
∂ε(D)

|ΦU(t, x)− g(x)|π(dx)
π(∂ε(D))

= 0

in L1(P ).
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Proof. By Lemma 3.5 and Jensen’s inequality, we have

E

[
π(∂ε(D))−1

∫
∂ε(D)

|ΦU(t, x)− g(x)|π(dx)

]
≤ E

[
|AU

i (t)− g(Xi(t))|
∣∣Xi(t) ∈ ∂ε(D)

]
.

Recalling the definition of AU
i (t), we have

|AU
i (t)− g(Xi(t))| ≤ |g(Xi(τi(t)))− g(Xi(t))|1{τi(t)>0} + 2‖h‖∞ ∨ ‖g‖∞1{τi(t)=0}

+

∫ t

τi(t)

|G(U(s,Xi(s), Xi(s))A
U
i (s)|ds (4.4)

+
∣∣∣ ∫

D×(τi(t),t]

ρ(Xi(s), u)W (du, ds)
∣∣∣.

Next, observe that

E
[
|g(Xi(τi(t)))− g(Xi(t))|1{τi(t)>0}

∣∣∣Xi(t) ∈ ∂ε(D)
]

= E
[
|g(X∗

i (σi))− g(X∗
i (0))|1{σi<t}

∣∣∣X∗
i (0) ∈ ∂ε(D)

]
≤ sup

x∈∂εK
E
[
|g(X∗

i (σi))− g(x)|1{σi<t}

∣∣∣X∗
i (0) = x

]
.

Since D is bounded under Condition 2.1, D is compact. Then there exists x0 ∈ ∂D and
xn → x0 so that

lim sup
ε→0

sup
x∈∂ε(D)

E
[
|g(X∗

i (σi))− g(x)|1{σi<t}

∣∣∣X∗
i (0) = x

]
= lim

n→∞
E
[
|g(X∗

i (σi))− g(xn)|1{σi<t}

∣∣∣X∗
i (0) = xn

]
.

Continuity of g and (4.3) imply that the limit is zero. A similar argument and (4.2) show
that P (τi(t) = 0|Xi(t) ∈ ∂ε(D)) tends to zero, so that the conditional expectations of the
first two terms on the right of (4.4) go to zero. Next, we recall that

|G(U(s,Xi(s), Xi(s))A
U
i (s)| ≤ L1

(
1 + |U(s,Xi(s))|2

)
|AU

i (s)|.

By the Cauchy-Schwarz inequality,

E

[∫ t

τi(t)

|G(U(s,Xi(s), Xi(s))A
U
i (s)|ds

∣∣∣Xi(t) ∈ ∂ε(D)

]

≤ L1E [t− τi(t)|Xi(t) ∈ ∂ε(D)]
1
2 E

[∫ t

0

(
1 + |U(s,Xi(s))|2

)2 |AU
i (s)|2ds|Xi(t) ∈ ∂ε(D)

] 1
2

.

The second factor in this inequality is uniformly bounded by Lemma 3.4, and

E [t− τi(t)|Xi(t) ∈ ∂ε(D)]
1
2

= E [σi ∧ t|X∗
i (0) ∈ ∂ε(D)]

1
2 ,

which tends to zero by 4.2. Notice that W remains white noise when conditioned on Xi.
Using Itô’s isometry and the fact that the L2 norm dominates the L1 norm, we have

E

[∣∣∣ ∫
U×(τi(t),r]

ρ(Xi(s), u)W (du× ds)
∣∣∣|Xi(t) ∈ ∂ε(D)

]

≤ E

[∫
U×(τi(t),r]

ρ2(Xi(s), u)duds|Xi(t) ∈ ∂ε(D)

] 1
2

≤ K2E [t− τi(t)|Xi(t) ∈ ∂ε(D)]
1
2 .

As above, the last expression tends to zero by (4.2).
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5 Weak equations with boundary terms

At least in general, uniqueness will not hold for the weak-form stochastic partial
differential equation (1.6) using test functions with compact support in D. Consequently,
to obtain an equation that has a unique solution, we must enlarge the class of test
functions. We do this in two different ways, obtaining two formally different weak-form
stochastic differential equations; however, for both equations, we give conditions under
which the process given by the particle representation constructed above is the unique
solution. The first extension, which gives the simplest form for the stochastic partial
differential equation, is obtained by taking the test functions to be C2

0 (D), the space
of twice continuously differentiable functions that vanish on the boundary. The second
extension is obtained by taking the test functions to be D(A), the domain of the generator
of the semigroup corresponding to the reflecting diffusion giving the particle locations.
In this section, we prove Theorems 2.16 and 2.18.

5.1 Proof of Theorem 2.16

In this subsection, we apply the results of Section 4 to enlarge the class of test
functions in the definition of the equation (1.6) to all ϕ in C2

0 (D), the class of C2-functions
that vanish on ∂D. More precisely, we consider test functions of the form ϕ(x, s) which
are twice continuously differentiable in x, continuously differentiable in s, and vanish on
∂D × [0,∞). To simplify notation, extend g to all of D by setting g(x) = h(x) for x ∈ D.
We assume that g is continuous on the boundary, but none of the calculations below
require this extension to be continuous.

5.1.1 Derivation of (2.16)

We begin by showing that the process V we have constructed solves (2.16). Define

Zi(t) = −g(Xi(t)) +

∫ t

0

G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

b(Xi(s))ds+

∫
U×[0,t]

ρ(Xi(s), u)W (du× ds).

Then

Ai(t) = g(Xi(t)) + Zi(t)− Zi(τi(t)) = Yi(t)− Zi(τi(t)), (5.1)

and note that Yi is a semimartingale.
Since Ai, or more precisely, Zi ◦ τi, does not appear to be a semimartingale, we derive

a version of Itô’s formula for Aiϕ ◦Xi from scratch. Specifically, we consider the limit of
the telescoping sum

ϕ(Xi(t), t)Ai(t) = ϕ(Xi(0), 0)Ai(0) (5.2)

+
∑
k

(ϕ(Xi(tk+1), tk+1)Ai(tk+1)− ϕ(Xi(tk), tk)Ai(tk))

= ϕ(Xi(0), 0)Ai(0) +
∑

Ai(tk)(ϕ(Xi(tk+1), tk+1)− ϕ(Xi(tk), tk))

+
∑

ϕ(Xi(tk+1), tk+1)(Ai(tk+1)−Ai(tk))

as the mesh size of the partition {tk, 0 ≤ k ≤ m} goes to zero. Since Xi is a semimartin-
gale, ϕ ◦Xi is a semimartingale and the second term on the right converges to the usual
semimartingale integral. Since (5.2) is an identity, the second sum must also converge.
To distinguish limits of expressions of this form from the usual semimartingale integral,
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we will write∫ t

0

ϕ(Xi(s), s)d
+Ai(s) = lim

max(tk+1−tk)→0

∑
ϕ(Xi(tk+1), tk+1)(Ai(tk+1)−Ai(tk)),

where the {tk} are partitions of [0, t]. Note that this integral differs from the usual
semimartingale integral in that we evaluate the integrand at the right end point of the
interval (tk, tk+1] rather than the left. Of course the d+-integral is still bilinear, so we
have ∫ t

0

ϕ(Xi(s), s)d
+Ai(s) =

∫ t

0

ϕ(Xi(s), s)d
+Yi(s)−

∫ t

0

ϕ(Xi(s), s)d
+Zi(τi(s)).

Observing that the covariation of ϕ ◦ Xi and Yi is zero, applying semimartingale
integral results, we get limits for everything in (5.2) but

−
∑

ϕ(Xi(tk+1), tk+1)(Zi(τi(tk+1))− Zi(τi(tk))).

Note that the summands are zero unless τi(tk+1) > τi(tk) which means Xi(t) ∈ ∂D for
some t ∈ [tk, tk+1]. Breaking this expression into pieces, we have

−
∑

ϕ(Xi(tk+1), tk+1)(Zi(τi(tk+1))− Zi(τi(tk)))

=
∑

ϕ(Xi(tk+1), tk+1)(g(Xi(τi(tk+1)))− g(Xi(τi(tk)))

−
∑

ϕ(Xi(tk+1), tk+1)

∫ τi(tk+1)

τi(tk)

G(v(s,Xi(s)), Xi(s))Ai(s)ds

−
∑

ϕ(Xi(tk+1), tk+1)

∫ τi(tk+1)

τi(tk)

b(Xi(s))ds

−
∑

ϕ(Xi(tk+1), tk+1)

∫
U×(τi(tk),τi(tk+1)]

ρ(Xi(s), u)W (du× ds),

and it is clear that the last three sums on the right converge to zero. It is not immediately
clear that the first sum converges to zero, but it does.

Lemma 5.1. The integral
∫ t

0
ϕ(Xi(s), s)d

+g(Xi(τ(s))) = 0 for all t ≥ 0.

Proof. Let γi(t) = inf{s ≥ t : Xi(s) ∈ ∂D}. “Summing by parts,”

m−1∑
k=0

ϕ(Xi(tk+1), tk+1)(g(Xi(τi(tk+1)))− g(Xi(τi(tk)))

= −
m−1∑
k=0

(ϕ(Xi(tk+1), tk+1)− ϕ(Xi(tk), tk))g(Xi(τi(tk))

+ϕ(Xi(t), t)g(Xi(τi(t))− ϕ(X(0), 0)g(X(0))

→ −
∫ t

0

g(Xi(τi(s−)))dϕ(Xi(s), s)

+ϕ(Xi(t), t)g(Xi(τi(t)))− ϕ(Xi(0), 0)g(Xi(0))

= −
∫ t

γi(0)

g(Xi(τi(s−)))dϕ(Xi(s), s) + ϕ(Xi(t), t)g(Xi(τi(t))),

where the last equality follows from the fact that τi(s) = 0 for s < γi(0) and ϕ(Xi(γi(0)), 0)

= 0. For each n, define

Un(s) =

∞∑
k=0

g(Xi(γi(
k

n
)))1[γi(

k
n ),γi(

k+1
n ))(s).
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Since ϕ(Xi(γi(t), γi(t)) = 0,∫ t

γi(0)
g(Xi(γi(

k
n )))1[γi(

k
n ),γi(

k+1
n ))dϕ(Xi(s), s)

=

{
g(γi(

k
n ))ϕ(Xi(t), t) γi(

k
n ) ≤ t < γi(

k+1
n )

0 otherwise
,

and we have ∫ t

γi(0)

Un(s−)dϕ(Xi(s), s) = Un(t)ϕ(Xi(t), t).

If γi(
k
n ) < γi(

k+1
n ), then k

n ≤ γi(
k
n ) <

k+1
n , and if γi(

k
n ) ≤ s < γi(

k+1
n ), then γi(

k
n ) ≤

τi(
k
n ) <

k+1
n . Consequently, limn→∞ Un(s) = g(Xi(τi(s))) and

g(Xi(τi(t)))ϕ(Xi(t), t) = lim
n→∞

∫ t

γi(0)

Un(s−)dϕ(Xi(s), s) =

∫ t

γi(0)

g(τi(s−))dϕ(Xi(s), s)

proving the lemma.

Defining

Mϕ,i(t) =

∫ t

0

∇ϕ(Xi(s), s)
Tσ(Xi(s))dBi(s),

we have

ϕ(Xi(t), t)Ai(t) = ϕ(Xi(0), 0)Ai(0) +

∫ t

0

ϕ(Xi(s), s)d
+Ai(s)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Ai(s)(Lϕ(Xi(s), s) + ∂ϕ(Xi(s), s))ds

+

∫ t

0

Ai(s−)∇ϕ(Xi(s), s) · η(Xi(s))dLi(s)

= ϕ(Xi(0), 0)g(Xi(0)) +

∫ t

0

Ai(s)ϕ(Xi(s), s)G(v(s,Xi(s)), Xi(s))ds

+

∫ t

0

ϕ(Xi(s), s)b(Xi(s))ds

+

∫
U×[0,t]

ϕ(Xi(s), s)ρ(Xi(s), u)W (du× ds)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Ai(s)(Lϕ(Xi(s), s) + ∂ϕ(Xi(s), s))ds

+

∫ t

0

Ai(s−)∇ϕ(Xi(s), s) · η(Xi(s))dLi(s).

Applying Theorem 4.3, the averaged identity becomes (2.16).

5.1.2 Proof of uniqueness in Theorem 2.16

Fix any U ∈ L(π). We begin by proving uniqueness for the equation linearized by
replacing V in G by U , that is, we want to solve

〈ϕ(·, t), V (t)〉 = 〈ϕ(·, 0), h〉π +

∫ t

0

〈ϕ(·, s)G(U(s, ·), ·), V (s)〉ds

+

∫ t

0

∫
D

ϕ(x, s)b(x)π(dx)ds (5.3)
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+

∫
U×[0,t]

∫
D

ϕ(x, s)ρ(x, u)π(dx)W (du× ds)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s), V (s)〉ds

+

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds.

We will refer to this equation as the linearized equation with input U .
Suppose there are two solutions V1 and V2 of (5.3), and let δV = V1 − V2. Then by

linearity,

〈ϕ(·, t), δV (t)〉 =

∫ t

0

〈ϕ(·, s)G(U(s, ·), ·), δV (s)〉ds (5.4)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s), δV (s)〉ds.

The assumption that A0 is the closure of {(ϕ,Lϕ) : ϕ ∈ D0} implies that we can extend
this identity to functions ϕ which are differentiable in time and satisfy ϕ(·, s) ∈ D(A0)

with A0ϕ and ∂ϕ bounded and continuous. We denote by T0 the semigroup generated by
A0. Then for ψ ∈ D(A0) and ϕ(x, s) = rε(s)T

0(t−s)ψ(x), where 0 ≤ rε ≤ 1 is continuously
differentiable, rε(s) = 0 for s ≥ t and rε(s) = 1, for s ≤ t− ε, (5.4) becomes

0 =

∫ t

0

〈rε(s)T0(t− s)ψG(U(s, ·), ·), δV (s)〉ds+
∫ t

0

〈∂rε(s)T0(t− s)ψ, δV (s)〉. (5.5)

Assuming rε(s) → 1[0,t)(s) appropriately, the second term on the right of (5.5) converges
to 〈ψ, δV (t)〉 and hence

〈ψ, δV (t)〉 = −
∫ t

0

〈T0(t− s)ψ(·)G(U(s, ·), ·), δV (s)〉ds.

With reference to Condition 2.12, taking the supremum over ψ ∈ D(A0) with |ψ| ≤ 1,∫
D

|δv(t, x)|π(dx) ≤
∫ t

0

∫
D

|G(U(s, x), x)||δv(s, x)|π(dx)ds

≤
∫ t

0

L1

∫
D

(1 + |U(s, x)|2)|δv(s, x)|π(dx)ds

≤
∫ t

0

L1(1 + C2)

∫
D

|δv(s, x)|π(dx)ds

+

∫ t

0

L1

∫
D

1{|U(s,x)|≥C}(1 + |U(s, x|2)|δv(s, x)|π(dx)ds.

Taking expectations of both sides and applying the Hölder inequality, we have∫
D

E[|δv(t, x)|]π(dx)

≤
∫ t

0

L1(1 + C2)

∫
D

E[|δv(s, x)|]π(dx)ds

+

∫ t

0

L1

(∫
D

P{|U(s, x)| ≥ C}π(dx)
)1/3

×
(∫

D

E[(1 + |U(s, x|2)3]π(dx)
)1/3(∫

D

|δv(s, x)|3π(dx)
)1/3

ds
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≤
∫ t

0

L1(1 + C2)

∫
D

E[|δv(s, x)|]π(dx)ds

+e−εTC2/3

∫ t

0

L1

(∫
D

E[eεT |U(s,x)|2 ]π(dx)

)1/3

×
(∫

D

E[(1 + |U(s, x|2)3]π(dx)
)1/3(∫

D

|δv(s, x)|3π(dx)
)1/3

ds,

for t ≤ T . As in the proof of Theorem 2.13, Gronwall’s inequality implies δv(t, ·) = 0

for t ≤ T ∧ εT
6L1

, that is, t < T satisfying limC→∞(2L1(1 + C2)t − εTC
2/3 = −∞. But

local uniqueness implies global uniqueness, so we have uniqueness for the linearized
equation.

To complete the proof, we follow an argument used in the proof of Theorem 3.5 of
[14]. Let V be the solution constructed in Section 3, and let U be another solution of
(2.16) in L(π). Taking this U as the input in (3.1), we can construct a particle system
with weights AU

i and let ΦU be given by (3.4). Recall that ΦU ∈ L(π). Averaging, we see
that ΦU satisfies

〈ϕ(·, t),ΦU(t)〉 = 〈ϕ(·, 0), h〉π +

∫ t

0

〈ϕ(·, s)G(U(s, ·), ·),ΦU(s)〉ds

+

∫ t

0

∫
D

ϕ(x, s)b(x)π(dx)ds

+

∫
U×[0,t]

∫
D

ϕ(x, s)ρ(x, u)π(dx)W (du× ds)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s),ΦU(s)〉ds

+

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds,

that is, ΦU satisfies the linearized equation with input U . But solutions of the linearized
equation are unique, and since U is a solution of the nonlinear equation, it is also a
solution of the linearized equation with input U and by uniqueness, we have ΦU = U . But
that means U has a particle representation which solves the same system of equations
as the particle representation for V , and hence Theorem 2.13 implies that U = V .

5.2 Proof of Theorem 2.18

In this subsection, we take the set of test functions to be D(A), the domain of the
generator for the semigroup corresponding to the location processes. More precisely,
we take ϕ(x, t) that are continuously differentiable in t with ϕ(x, t) = 0 for t > tϕ, and
ϕ(·, t) ∈ D(A), t ≥ 0, so that Aϕ is bounded and continuous. As above, we extend g to all
of D by setting g(x) = h(x) for x ∈ D. Let

γi(s) = inf{t > s : Xi(t) ∈ ∂D}, (5.6)

and note that 1{τi(t)=0} = 1{γi(0)>t}. Let P (dy, ds|x) be the conditional distribution of
(Xi(γi(0)), γi(0)) given Xi(0) = x, and let Pϕ(x) =

∫
ϕ(y, s)P (dy, ds|x). Let X∗ be the

reversed process and γ∗ be the first time that X∗ hits the boundary.

5.2.1 Derivation of (2.18)

For ϕ satisfying the conditions stated above,

Mϕ,i(t) = ϕ(Xi(t), t)−
∫ t

0

(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s)ds
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is a {FW,Xi

t }-martingale. As before, consider

ϕ(Xi(t), t)Ai(t) = ϕ(Xi(0), 0)Ai(0) (5.7)

+
∑
k

(ϕ(Xi(tk+1), tk+1)Ai(tk+1)− ϕ(Xi(tk), tk)Ai(tk))

= ϕ(Xi(0), 0)Ai(0) +
∑

Ai(tk)(ϕ(Xi(tk+1), tk+1)− ϕ(Xi(tk), tk))

+
∑

ϕ(Xi(tk+1), tk+1)(Ai(tk+1)−Ai(tk))

as the mesh size of the partition {tk, 0 ≤ k ≤ m} goes to zero. SinceMϕ,i is a martingale,
ϕ ◦ Xi is a semimartingale and the second term on the right converges to the usual
semimartingale integral. We must evaluate∫ t

0

ϕ(Xi(s), s)d
+Ai(s),

Breaking Ai into its components, the difficulty is again

−
∑

ϕ(Xi(tk+1), tk+1)(Zi(τi(tk+1))− Zi(τi(tk))),

but the limit is different. Breaking this expression into pieces, we have

−
∑

ϕ(Xi(tk+1), tk+1)(Zi(τi(tk+1))− Zi(τi(tk)))

=
∑

ϕ(Xi(tk+1), tk+1)(g(Xi(τi(tk+1)))− g(Xi(τi(tk)))

−
∑

ϕ(Xi(tk+1), tk+1)

∫ τi(tk+1)

τi(tk)

G(v(s,Xi(s)), Xi(s))Ai(s)ds

−
∑

ϕ(Xi(tk+1), tk+1)

∫ τi(tk+1)

τi(tk)

b(Xi(s))ds

−
∑

ϕ(Xi(tk+1), tk+1)

∫
U×(τi(tk),τi(tk+1)]

ρ(Xi(s), u)W (du× ds).

Summing by parts, we can write the first expression on the right as

m−1∑
k=0

ϕ(Xi(tk+1), tk+1)(g(Xi(τi(tk+1)))− g(Xi(τi(tk)))

= −
m−1∑
k=0

(ϕ(Xi(tk+1), tk+1)− ϕ(Xi(tk), tk))g(Xi(τi(tk))

+ϕ(Xi(t), t)g(Xi(τi(t))− ϕ(X(0), 0)g(X(0))

→ −
∫ t

0

g(Xi(τi(s−)))dMϕ,i(s)−
∫ t

0

g(Xi(τi(s)))(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s)ds

+ϕ(Xi(t), t)g(Xi(τi(t)))− ϕ(Xi(0), 0)g(Xi(0)).

For the remaining three terms, a summand is nonzero only if τi(tk+1) 6= τi(tk) which
implies that Xi hits the boundary between tk and tk+1. If the mesh size is small, by
continuity, Xi(tk+1) must be close to Xi(τ(tk+1)). Let Ei(t) be the set of complete
excursions from the boundary in the interval [0, t]. Then the last three terms converge to

−
∑

(α,β]∈Ei(t)

ϕ(Xi(β), β)

∫ β

α

G(v(s,Xi(s)), Xi(s))Ai(s)ds
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−
∑

(α,β]∈Ei(t)

ϕ(Xi(β), β)

∫ β

α

b(Xi(s))ds

−
∑

(α,β]∈Ei(t)

ϕ(Xi(β), β)

∫
U×(α,β]

ρ(Xi(s), u)W (du× ds).

Note that for γi given by (5.6) and s ∈ (α, β), γi(s) = β, so we can write

−
∫ ∞

0

ϕ(Xi(s), s)d
+Zi(τi(s))

= −
∫ ∞

0

g(Xi(τi(s−)))dMϕ,i(s)−
∫ ∞

0

g(Xi(τi(s)))(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s))ds

−ϕ(Xi(0), 0)g(Xi(0))−
∫ ∞

0

ϕ(Xi(γi(s)), γi(s))G(v(s,Xi(s)), Xi(s))Ai(s)ds

−
∫ ∞

0

ϕ(Xi(γi(s)), γi(s))b(Xi(s))ds

−
∫
U×(0,∞)

ϕ(Xi(γi(s)), γi(s))ρ(Xi(s), u)W (du× ds),

and we have

ϕ(Xi(t), t)Ai(t) = ϕ(Xi(0), 0)Ai(0) +

∫ t

0

ϕ(Xi(s), s)d
+Ai(s)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s))Ai(s)ds

= ϕ(Xi(0), 0)g(Xi(0)) +

∫ t

0

ϕ(Xi(s), s)G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

ϕ(Xi(s), s)b(Xi(s))ds

+

∫
U×[0,t]

ϕ(Xi(s), s)ρ(Xi(s), u)W (du× ds)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s))Ai(s)ds

−
∫ t

0

ϕ(Xi(s), s)d
+Zi(τi(s))

=

∫ t

0

(ϕ(Xi(s), s)− 1{γi(s)≤t}ϕ(Xi(γi(s))), γi(s)))G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

(ϕ(Xi(s), s)− 1{γi(s)≤t}ϕ(Xi(γi(s))), γi(s)))b(Xi(s))ds

+

∫
U×[0,t]

(ϕ(Xi(s), s)− 1{γi(s)≤t}ϕ(Xi(γi(s))), γi(s)))ρ(Xi(s), u)W (du× ds)

+

∫ t

0

(Ai(s)− g(Xi(τi(s))))dMϕ,i(s)

+

∫ t

0

(Aϕ(Xi(s), s) + ∂ϕ(Xi(s), s))(Ai(s)− g(Xi(τi(s))))ds

+ϕ(Xi(t), t)g(Xi(τi(t)))

Recalling that ϕ is nonzero only on a finite time interval and letting t = ∞, averaging
gives (2.18).
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5.2.2 Proof of uniqueness in Theorem 2.18

The proof of uniqueness is essentially the same as the corresponding proof for Theorem
2.16.

A Appendix

A.1 Gaussian white noise

Let µ be a σ-finite Borel measure on a complete, separable metric space (U, d),
and let ` be Lebesgue measure on [0,∞). Define A(U) = {A ∈ B(U) : µ(A) < ∞}
and A(U × [0,∞) = {C ∈ B(U × [0,∞)) : µ × `(C) < ∞} with A(U × [0, t]) defined
similarly. Then W = {W (C) : C ∈ A(U × [0,∞))} is space-time Gaussian white noise
with covariance measure µ if the W (C) are jointly Gaussian, with E[W (C)] = 0 and
E[W (C1)W (C2)] = µ × `(C1 ∩ C2). In particular, for each A ∈ A(U), W (A × [0, t]) is
Gaussian with E[W (A× [0, t])] = 0 and V ar(W (A× [0, t])) = µ(A)t, that is, W (A× [0, ·])
is a Brownian motion with parameter µ(A), and

E[W (A× [0, t])W (B × [0, s])] = µ(A ∩B)t ∧ s.

It follows that for disjoint Ci satisfying
∑∞

i=1 µ× `(Ci) <∞,

W (∪∞
i Ci) =

∞∑
i=1

W (Ci)

almost surely, but the exceptional event of probability zero, will in general depend on
the sequence {Ci}, that is, while W acts in some ways like a signed measure, it is not a
random signed measure.

Define the filtration {FW
t } by

FW
t = σ(W (C) : C ∈ A(U× [0, t]).

For i = 1, . . . ,m, let Ai ∈ A(U) and let ξi be a process adapted to {FW
t } satisfying

E[
∫ t

0
ξi(s)

2ds] <∞ for each t > 0. Define

Y (u, t) =

m∑
i=1

1Ai(u)ξi(t)

and

Z(t) =

∫
U×[0,t]

Y (u, s)W (du× ds) =

m∑
i=1

∫ t

0

ξi(s)dW (Ai × [0, s]).

Then, from properties of the Itô integral,

E[Z(t)] = 0 [Z]t =

∫ t

0

∫
U

Y 2(u, s)µ(du)ds

E[Z2(t)] = E[[Z]t] =

∫ t

0

∫
U

E[Y 2(u, s)]µ(du)ds.

By this last identity, the integral can be extended to all measurable processes Y that
are adapted to {FW

t } in the sense that Y restricted to [0, t] × U is B([0, t]) × B(U) ×
FW

t -measurable and satisfy

E[

∫ t

0

∫
U

Y 2(u, s)µ(du)ds] <∞, t > 0.

By a truncation argument, the integral can be extended to adapted Y satisfying∫ t

0

∫
U

Y 2(u, s)µ(du)ds <∞ a.s., t > 0.
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Note that under this last extension, the integral is a locally square integrable martingale
with

[Z]t =

∫ t

0

∫
U

Y 2(u, s)µ(du)ds.

A.2 Measurability of density process

Lemma A.1. Let E andW be complete separable metric spaces, let X be a stationary
Markov process in E with no fixed points of discontinuity, and let W be a W-valued
random variable that is independent of X. Let f : [0,∞)×DE [0,∞)×W→ R be bounded
and Borel measurable and be nonanticipating in the sense that

f(t, x, w) = f(t, x(· ∧ t−), w), (t, x, w) ∈ [0,∞)×DE [0,∞)×W.

Letting {GX
t } denote the reverse filtration, GX

t = σ(X(s−), s ≥ t), there exists a Borel
measurable g : [0,∞)× E ×W→ R such that {g(t,X(t−),W ), t ≥ 0} gives the optional
projection of {f(t,X,W ), t ≥ 0}, that is, for each reverse stopping time τ , ({τ ≥ t} ∈
σ(W ) ∨ GX

t , t ≥ 0),

E[f(τ,X,W )|σ(W ) ∨ GX
τ ] = g(τ,X(τ−),W ). (A.1)

Proof. Let R be the collection of bounded, Borel measurable functions f for which the
assumptions and conclusions of the lemma hold. Then R is closed under bounded,
pointwise limits of increasing functions and under uniform convergence.

For 0 ≤ t1 < · · · < tm, fi ∈ B([0,∞)× E), f0 ∈ B(W), let

f(t, x, w) = f0(t, w)
∏

fi(t, x(ti ∧ t−)) ∈ R. (A.2)

Then letting {T ∗(t)} denote the semigroup for the time-reversed process, g can be
expressed in terms of {T ∗(t)} and the fi. For example, if m = 2,

g(t, x(t−), w) = f0(t, w)T
∗(t− t2 ∧ t)[f2T ∗(t2 ∧ t− t1 ∧ t)f1](x(t−)).

Let H0 be the collection of functions of the form (A.2). Then by the appropriate
version of the monotone class theorem (for example, Corollary 4.4 in the Appendix of
[6]), R contains all bounded functions that are σ(H0) measurable, that is all bounded
measurable functions such that f(t, x, w) = f(t, x(· ∧ t−), w).

Corollary A.2. For each T > 0,

E[ sup
0≤s≤T

f(s,X,W )|σ(W ) ∨ GX
t ] ≥ g(t,X(t−),W ) ∀t ∈ [0, T ] a.s. (A.3)

Proof. The uniqueness of the optional projection up to indistinguishability ensures that
if Z1(t) ≤ Z2(t) for all t with probability one, then the optional projection of Z1 is less
than or equal to the optional projection of Z2 for all t with probability one.
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