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Abstract

This article studies vertex reinforced random walks that are non-backtracking (denoted
VRNBW), i.e. U-turns forbidden. With this last property and for a strong reinforcement,
the emergence of a path may occur with positive probability. These walks are thus
useful to model the path formation phenomenon, observed for example in ant colonies.
This study is carried out in two steps. First, a large class of reinforced random walks
is introduced and results on the asymptotic behavior of these processes are proved.
Second, these results are applied to VRNBWs on complete graphs and for reinforced
weights W (k) = kα, with α ≥ 1. It is proved that for α > 1 and 3 ≤ m < 3α−1

α−1
, the

walk localizes on m vertices with positive probability, each of these m vertices being
asymptotically equally visited. Moreover the localization on m > 3α−1

α−1
vertices is a.s.

impossible.
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1 Introduction

The contributions of this paper are twofold. First, results concerning the asymptotic
behavior of a large class of reinforced random walks (RRW) are proved. Second, we
present non-backtracking reinforced random walks, which can be useful to model the
path formation phenomenon.

Let G = (X , E) be a locally finite non-oriented graph, with X the set of its vertices
and E ⊂ {{i, j} : i, j ∈ X , i 6= j} the set of its non-oriented edges. We will suppose that
G is connected and has no loops or leaves. For {i, j} ∈ E , denote i ∼ j, and for i ∈ X ,
let N(i) := {j ∈ X : j ∼ i} be the neighborhood of i. Note that |N(i)| ≥ 2, for all i ∈ X .
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VRNBW: an example of path formation

A path of length L in G is a sequence of vertices i0i1 · · · iL−1iL such that i`−1 ∼ i`, for
all ` ∈ {1, . . . , L}, with i1, . . . , iL being L distinct vertices. We say that a walk (Xn)n≥0 in
G forms a path of length L ≥ 2 if there is a path i0i1 · · · iL−1iL and an integer N such
that XnXn+1 = i0i1 infinitely often and if for all n ≥ N such that XnXn+1 = i0i1 then
XnXn+1 · · ·Xn+L−1Xn+L = i0i1 · · · iL−1iL.

Such phenomena are observed in ant colonies. For some species, ants deposit
pheromones along their trajectories. The pheromone is a chemical substance which
attracts the ants of the same colony, and thus reinforces the sites visited by the ants.
Depending on the succession of these deposits, trails appear between important places
such as food sources and nest entries.

RRWs on graphs are natural to model such behavior : most visited vertices are
more likely to be visited again. They have already been used to study ant behavior
(see [9, 11, 19]). But as they are usually defined (see [4, 8, 12, 17, 18]), one can obtain a
localization phenomenon, i.e. only a finite number of points are visited infinitely often,
but no path formation is observed.

Therefore, additional rules are necessary for the emergence of a path. In this paper,
we choose to add a non-backtracking constraint : the walk cannot return immediately to
the vertex it comes from. Let X = (Xn)n≥0 be a non-backtracking random walk in G, i.e.
for n ≥ 0, Xn+1 ∼ Xn and for n ≥ 1, Xn+1 6= Xn−1. We suppose that this walk is vertex
reinforced : for n ≥ 0 and i ∈ X ,

P(Xn+1 = i|X0, · · · , Xn) =
W (Zn(i))∑

j∼Xn, j 6=Xn−1
W (Zn(j))

1i∼Xn1i 6=Xn−1
,

where Zn(i) is the number of times the walk X has visited i up to time n and W : N→ R∗+
is a reinforcement function. The walk X is called a vertex reinforced non-backtracking
random walk (VRNBW). Non-backtracking random walks have first been introduced in
Section 5.3 of [13], and named later non-backtracking random walks in [15].

A cycle of length L is a closed path i0i1 · · · iL−1iL (i.e. such that i0 = iL). The following
result shows that for a strong reinforcement, VRNBWs follow a cycle and thus form a
path with positive probability.

Proposition 1.1. Let C = i0i1 · · · iL be a cycle of length L ≥ 3 such that for all i ∈ C,
N(i) ∩ C contains exactly two vertices. Suppose also that W is a strong reinforcement
function, i.e.

∑∞
k=0

1
W (k) <∞. Then, when X0 = i0, the probability that for all k ≥ 0 and

` ∈ {1, . . . , L}, XkL+` = i` is positive.

Proof. For i ∈ X , let di := |N(i)| be the number of neighbors of i. It is straightforward to
check that

P
(
∀k ≥ 0,∀` ∈ {1, . . . , L}, XkL+` = i`

)
=

∞∏
k=1

L∏
`=1

(
W (k)

W (k) + a`

)
,

where a` = (di` − 2)W (0). Since
∑∞
k=0

1
W (k) <∞, this probability is positive.

The general study of RRWs (in order to obtain almost sure properties) is difficult.
Even without the non-backtracking constraint, almost sure localization on two vertices
could only be proved recently by C. Cotar and D. Thacker in [7] for vertex reinforced
random walks (VRRWs) on connected non-oriented graphs of bounded degree with a
reinforcement function W satisfying

∑∞
k=0

k
W (k) <∞.

Using stochastic algorithm techniques and more precisely results from [3], a more
complete study of VRRWs on complete graphs, with reinforcement function W (k) =

(1 + k)α, with α ≥ 1, could be done by R. Pemantle in [16] in the case α = 1, and by
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VRNBW: an example of path formation

M. Benaïm, O. Raimond and B. Schapira [4] in the case α > 1. The principle of these
methods is to prove that the evolution of the empirical occupation measure of the walk
is well approximated by an ordinary differential equation (ODE). To make that possible
some hypotheses are made so that for large times, the walk behaves almost as an
indecomposable Markov chain, whose mixing rate is uniformly bounded from below.

Because of the non-backtracking constraint, this last property fails for VRNBWs. To
overcome this difficulty, we set up a framework which extends the one introduced in
[3]. More precisely, we introduce a class of RRWs, which contains vertex and edge
reinforced random walks (eventually non-backtracking) on non-oriented graphs. In order
to introduce a dependence on the previously visited vertex, a walk in this class is defined
via a process on the set of edges. This was not necessary in [4]. Moreover at each time
step, what is reinforced is a function of the edge that has just been traversed. We prove
a result similar to Theorem 2.6 of [3] (approximation by an ODE), but under different
assumptions.

Applying these results, we study VRNBWs on the complete graph with N ≥ 4 vertices
and reinforcement function W (k) = (1 + k)α, α ≥ 1. Such VRNBWs are then equivalent
to urns with N colors, the two last chosen colors being forbidden. Note that, for a
complete graph, the only cycles as in Proposition 1.1 are cycles of length 3.

Let us now state our main result for VRNBWs. Denote by S ⊂ X the set of vertices
visited infinitely often by X. The non-backtracking assumption implies that |S| ≥ 3.

Theorem 1.2. Let X be a VRNBW with reinforcement function W (k) = (k + 1)α on a
complete graph of N vertices. For n ≥ 1, set vn := 1

n

∑n
k=1 δXk . Then, vn converges a.s.

towards the uniform probability measure on S and

1. when α = 1, S = X a.s.,

2. when α > 1, for m ∈ {3, · · · , N},

• P(|S| = m) > 0, if 3 ≤ m < 3α−1
α−1 ,

• P(|S| = m) = 0, if m > 3α−1
α−1 .

For VRRWs on complete graphs, very similar results (replacing 3α−1
α−1 by 2α−1

α−1 ) are
obtained in [4]. Theorem 1.2 implies that when α > 3, a.s. a cycle of length three is
formed. When α is sufficiently close to 1, there is a positive probability that localization
occurs on larger sets, which in this case means that no path is formed since on complete
graphs no paths of length L ≥ 4 can be formed (with the definition given above).

Proposition 1.1 shows that in more general graphs, VRNBWs form more elaborated
paths (of length larger than 3) with positive probability. M. Holmes and V. Kleptsyn have
pointed out to us that non-backtracking reinforced random walks may localize on more
complicated sets, in particular two cycles joined by one path (see [6]). In fact, it can be
seen (using the techniques developed in the present paper) that VRNBWs may localize
with positive probability towards such subgraphs, provided that : the path contains at
least two edges (or three vertices); the two cycles satisfy the conditions of Proposition
1.1; and there are no edges joining the two cycles. This, with Theorem 1.2, allows us to
write the following conjecture.

Conjecture 1.3. Let X be a VRNBW on a connected non-oriented finite graph, with
reinforcement function W (k) = (1 + k)α. Suppose that α > 3, then a.s. S is either a
cycle C as in Proposition 1.1 or is of the form C1 ∪ P ∪ C2, where C1 and C2 are two
cycles as in Proposition 1.1, joined by a path P = i0i1 · · · iL of length L ≥ 1, such that
P ∩ C1 = {i0}, P ∩ C2 = {iL} and there are no edges joining the two cycles.

To prove such a conjecture is a difficult task. Note that the ordered statistics method
used in [7] is not likely to be useful for VRNBWs.
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VRNBW: an example of path formation

The paper is organized as follows. The main notations of the paper are given in
Section 2. In Section 3, the class of RRWs, introduced in Section 3.1, is studied. The
main results are stated in Section 3.2 and their proofs are given in Sections 3.3 and 3.4.
In Section 4, the results of Section 3 are applied to VRNBWs on complete graphs, and
Theorem 1.2 is proved. In Sections 4.2, 4.3, 4.4 and 4.5, we verify that these VRNBWs
satisfy the hypotheses of Section 3. This is the most delicate part of this paper, where
we had to deal with the fact that the transition matrices of the walk may be very slowly
mixing. A Lyapunov function is defined in Section 4.6. The description of the set of
equilibriums, given in Sections 4.8, 4.9, 4.10.1 and 4.10.2 is also much more complicated
compared to the one done for VRRWs in [4].

2 Notations

Let A be a finite set, often identified with {1, . . . , N}, where N = |A|.
For a map f : A→ R, we denote min(f) = min{f(i) : i ∈ A} and max(f) = max{f(i) :

i ∈ A}. Denote by 1A the map on A, which is equal to one everywhere.
A map µ : A → R will be viewed as a (signed) measure on A and for B ⊂ A,

µ(B) =
∑
i∈B µ(i). For a measure µ on A and f : A → R, set µf =

∑
i∈A µ(i)f(i). A

probability measure on A is a measure µ such that µ(A) = 1 and µ(i) ≥ 0 for all i ∈ A.
The support of a probability measure µ, denoted Supp(µ), is the set of all i ∈ A such that
µ(i) > 0.

LetM1(A) denote the space of signed measures µ on A such that µ(A) = 1, which can
be viewed as a Euclidean space of dimension n := |A|−1, with associated Euclidean norm
denoted by ‖ · ‖ and scalar product 〈·, ·〉. The interior Γ̊ and boundary ∂Γ of a compact
subset Γ ofM1(A) are defined with respect to the Borel topology onM1(A). The gradient
at v ∈ Γ̊ of a differentiable map H : Γ→ R is the vector ∇H(v) :=

(
∂1H(v), · · · , ∂nH(v)

)
,

where ∂iH is the partial derivative of H with respect to its i-th coordinate of v.
We denote by ∆A the set of all probability measures on A. For m ≤ N , we denote

by ∆m
A the set of probability measures on A, whose support is a subset of A containing

exactly m points. For Σ ⊂ ∆A, let Σm be defined by

Σm = Σ ∩∆m
A . (2.1)

For i ∈ A, let δi ∈ ∆A be defined by δi(j) = δi,j , where δi,j = 1 if i = j and δi,j = 0 if i 6= j.
Let A and B be two finite sets and let T : A× B → R. For a measure µ on A, µT is

the measure on B defined by

µT (b) =
∑
a∈A

µ(a)T (a, b), for b ∈ B (2.2)

and for a map f : B → R, Tf : A→ R is the mapping defined by

Tf(a) =
∑
b∈B

T (a, b)f(b), for a ∈ A. (2.3)

For a ∈ A, T (a) is the measure on B defined by T (a)(C) = T (a,C) =
∑
b∈C T (a, b), for

C ⊂ B. Note that T (a)f = Tf(a).
For T : A×B → R and U : B×C → R with A, B and C three finite sets, TU : A×C →

R is defined by
TU(a, c) =

∑
b∈B

T (a, b)U(b, c), for (a, c) ∈ A× C.

Let A and B be two finite sets. A transition matrix from A to B is a map V : A×B →
[0, 1] such that V (a) ∈ ∆B for all a ∈ A. Then for a transition matrix V : A× B → [0, 1]

we have

V 1B = 1A. (2.4)
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VRNBW: an example of path formation

A Markov matrix on a finite set A is a transition matrix from A to A. We denote by

MA the set of all Markov matrices on A. For i, j ∈ A and P ∈ MA, denote i
P→ j when

P (i, j) > 0. The Markov matrix P is said indecomposable if there is a set R ⊂ A such that

for all i ∈ A and j ∈ R, there is a path (i1, ..., in) in A for which i
P→ i1

P→ · · · P→ in
P→ j.

The set R is called the recurrent class of P .
It is well known that an indecomposable Markov matrix P on a finite set has an unique

invariant probability measure π ∈ ∆A characterized by the relation πP = π. Moreover,
the generator −I + P : f 7→ −f + Pf has for kernel the set of constant functions on A
and its restriction to {f : A→ R : πf = 0} is an isomorphism. It then follows that I − P
admits a pseudo inverse Q characterized by{

Q1A = 0,

Q(I − P ) = (I − P )Q = I −Π,
(2.5)

where Π ∈ MA is defined by Π(i, j) = π(j), for i, j ∈ A. In other words, Π is the
orthogonal projection on R1A for the scalar product 〈f, g〉π =

∑
i∈A f(i)g(i)π(i). In

particular for all i ∈ A and f : A→ R

Πf(i) =
∑
j∈A

Π(i, j)f(j) =
∑
j∈A

π(j)f(j) = πf. (2.6)

Note that Q ∈ TMA, where TMA is the set of maps q : A × A → R, such that∑
j∈A q(i, j) = 0, for all i ∈ A.
Norms, denoted by ‖ · ‖, on the set of functions on A and onMA are defined by

‖f‖ = max
i∈A
|f(i)| and ‖P‖ = max

i,j∈A
|P (i, j)|. (2.7)

For r > 0 and f : A → R, we denote by B(f, r) = {g : A → R : ‖f − g‖ ≤ r} the closed
ball of radius r and centered at f for the norm ‖ · ‖.

If Q ∈ TMA and V is a transition matrix from A to B, then for all a ∈ A, QV (a) :

B → R is the measure on B defined by QV (a)f = QV f(a) for f : B → R. Note that
QV (a)(b) = QV (a, b).

3 A class of reinforced random walks

3.1 Definition

Let G = (X , E) be a finite non-oriented graph. To a non-oriented edge {i, j} ∈ E are
associated two oriented edges, (i, j) and (j, i). Let ~E be the set of oriented edges. Set
M =M~E , the set of Markov matrices on ~E . Let R be a finite set, called the reinforcement

set, and set d = |R|. Let V be a transition matrix from ~E to R, and P : ∆̊R → M be a
measurable mapping.

We study here discrete time random processes ((Xn, Pn, Vn))n≥0 defined on (Ω,F ,P),
a probability space equipped with a filtration (Fn)n≥0. These processes take their values
in X ×M×∆R, are adapted to (Fn)n≥0 and are such that for all n ≥ 1,

• (Xn, Pn, Vn) is Fn-measurable for each n ≥ 0,
• En := (Xn−1, Xn) ∈ ~E and Vn = V (En).
• The conditional law of En+1 with respect to Fn is Pn(En), i.e.

P
(
En+1 = (i, j)|Fn

)
= Pn

(
En, (i, j)

)
, for all (i, j) ∈ ~E .

• Pn = P (vn), where vn ∈ ∆̊R is the reinforcement probability measure at time n
defined by

vn =
1

n+ d

(
1 +

n∑
k=1

Vk

)
. (3.1)
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VRNBW: an example of path formation

Note that vn ∈ ∆̊R for all n and that these conditions determine the conditional law of
((Xn, Pn, Vn))n≥0 with respect to F1.

When R = X and V is the transition matrix defined by

V ((i, j), k) = δj(k), for (i, j) ∈ ~E and k ∈ X ,

such walks are said to be vertex reinforced, the mapping P specifying how the walk is
reinforced. In this case, for each n, Vn = δXn and vn is the empirical occupation measure
of (Xk)k≤n.

Example 3.1. An example of vertex reinforced random walk is given by P : ∆̊X →M
defined by

P (v)
(
(i, j), (k, `)

)
=

W
(
v(`)

)∑
`′∼jW

(
v(`′)

)1j=k
with W : (0, 1]→ (0,∞) a continuous function.

When R = E and V is the transition matrix defined by

V ((i, j), {k, `}) = δ{i,j}({k, `}), for (i, j) ∈ ~E and {k, `} ∈ E ,

such walks are said to be edge reinforced, the mapping P specifying how the walk is
reinforced. In this case, for each n, Vn = δ{Xn−1,Xn} and vn is the empirical occupation
measure at time n of ({Xk−1, Xk})k≤n.

Example 3.2. An example of edge reinforced random walk is given by P : ∆̊X → M
defined by

P (v)
(
(i, j), (k, `)

)
=

W
(
v({j, `})

)∑
`′∼jW

(
v({j, `′})

)1j=k
with W : (0, 1]→ (0,∞) a continuous function.

These are rather usual examples, but our setup includes other reinforced processes,
by choosing different transition matrices V . For example, one can take R = {A : A ⊂ X}
and V ((i, j), A) = 1 if A = N(j) and V ((i, j), A) = 0 otherwise, then it is not the actual
visited vertex that is reinforced, but all of its neighbors.

In section 4, we will see how this setup also includes VRNBWs.

3.2 Main results of Section 3

A description of the asymptotic of (vn) with an ODE is given below in Theorem 3.8
under the following hypotheses.

Hypotheses 3.3. There is a compact convex subset Σ of ∆R such that

1. For all n ≥ 1, vn ∈ Σ̊.

2. The map P restricted to Σ∩∆̊R can be extended to a Lipschitz mapping P : Σ→M.

3. The matrix P (v) is indecomposable, for all v ∈ Σ̊.

Denote byMind the set of indecomposable Markov matrices on ~E .

Remark 3.4. The present paper is widely inspired by [3]. Our set-up is different and
permits to study a larger class of reinforced walks. Indeed, the probability measure Vn
does not necessarily belong to Σ, and in [3], the map v 7→ P (v) would be a continuous
mapping from Σ toMind. This is not the case here, P (v) may not be indecomposable
for all v ∈ ∂Σ. This gives an additional difficulty in the study of the random process
((Xn, Pn, Vn)).

Hypothesis 3.3-(3) permits us to define the following functions:
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VRNBW: an example of path formation

Definition 3.5. For v ∈ Σ̊,

• π(v) is the invariant probability measure of P (v);

• πV (v) is the probability measure on R defined by πV (v) := π(v)V ;

• Q(v) ∈ TM~E is the pseudo-inverse of I − P (v) (see (2.5)).

A consequence of Hypothesis 3.3-(2) is that π : Σ̊→ ∆~E and πV : Σ̊→ ∆R are locally
Lipschitz. For all n, set πn = π(vn) and πVn = πV (vn).

Example 3.6. If the walk is vertex reinforced, then πVn ∈ ∆X and

πVn (j) =
∑

i∈X :(i,j)∈~E

πn(i, j), for all i ∈ X .

If the walk is edge reinforced, then πVn ∈ ∆E and

πVn ({i, j}) = πn(i, j) + πn(j, i)− πn(i, i)1i=j , for all {i, j} ∈ E .

The following hypotheses will also be needed.

Hypotheses 3.7.

1. The map πV : Σ̊ → ∆R is continuously extendable to Σ and this extension is
Lipschitz.

2. For all e ∈ ~E , the map v 7→ Q(v)V (e) defined on Σ̊ is continuously extendable to Σ.

For u ∈ {0, 1}, set Tu∆R = {v : R→ R :
∑
r∈R v(r) = u}. Since Σ is convex and com-

pact, for all v ∈ T1∆R, there is a unique measure µ(v) in Σ such that µ(v) is the closest
measure to v in Σ. This defines µ : T1∆R → Σ which is Lipschitz retraction from T1∆R

onto Σ, i.e. µ is Lipschitz and its restriction to Σ is the identity map on Σ.
Let F : T1∆R → T0∆R be the vector field defined by

F (v) = −v + πV (µ(v)). (3.2)

Then F is Lipschitz (using Hypothesis 3.7-(1)) and induces a global flow Φ : R× T1∆R →
T1∆R, where for all v0 ∈ T1∆R, t 7→ Φt(v0) := Φ(t, v0) solves the ODE

∂tΦt(v0) = F (Φt(v0)), Φ(0, v0) = v0. (3.3)

A set A ⊂ Σ is called invariant if for all v0 ∈ A, Φ(R, v0) ⊂ A. A non empty compact
set A is an attracting set if there exists a neighbourhood U of A and a function t :

(0, ε0) → R+ with ε0 > 0 such that for all ε < ε0 and t ≥ t(ε), Φt(U) ⊂ Aε , where Aε

stands for the ε-neighbourhood of A. An invariant attracting set is called an attractor.
A set A is called attractor free if it is a closed invariant set such that there does not

exist any subset B of A, which is an attractor for ΦA, the flow Φ restricted to A, defined
by ΦAt (v) = Φt(v) for all t ≥ 0 and v ∈ A.

The limit set of (vn) is the set L = L((vn)) consisting of all points v = limk→∞ vnk for
some sequence nk →∞. Note that since vn ∈ Σ for all n, and since Σ is compact, then
necessarily, L ⊂ Σ. The following theorem is similar to Theorem 2.6 of [3].

Theorem 3.8. Assume that Hypotheses 3.3 and 3.7 are verified, then the limit set of
(vn) is an attractor free set for Φ, the flow induced by F .

In most examples of interest, Hypothesis 3.3 is easily verified. Hypothesis 3.7 may
be difficult to check. It should be noted that these hypotheses do not imply Hypotheses
2.1 and 2.2 of [3]. There are also situations where one can check Hypothesis 3.3, but
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VRNBW: an example of path formation

cannot hope to verify Hypotheses 2.1 and 2.2 of [3] (this is the case for VRNBWs studied
in section 4).

When there is a strict Lyapunov function for Φ, the set L can be described more
precisely. To this purpose we define what an equilibrium and a strict Lyapunov function
are.

Definition 3.9. An equilibrium for F is a point v∗ such that F (v∗) = 0. We denote by
Λ = {v∗ ∈ Σ : v∗ = πV (v∗)} the set of equilibriums for F in Σ.

Definition 3.10. A differentiable map H : Σ→ R is a strict Lyapunov function for Φ, if
〈∇H(v), F (v)〉 > 0, for all v ∈ Σ \ Λ.

The following theorem is a direct application of Proposition 3.27 of [2].

Theorem 3.11. If Hypotheses 3.3 and 3.7 hold, if there exists a strict Lyapunov function
H for Φ and if H(Λ) has an empty interior, then L is a connected subset of Λ and the
restriction of H to L is constant.

When |Λ| <∞, the connected subsets of Λ are singletons and we have the following
corollary.

Corollary 3.12. If Hypotheses 3.3 and 3.7 hold, if there exists a strict Lyapunov function
H for Φ and if Λ is a finite set, then v∞ := limn→∞ vn exists and v∞ ∈ Λ.

In Section 3.4 we will discuss about the convergence of vn towards an equilibrium
according to its stability. More precisely we will prove under some additional assumptions
the convergence of vn towards any stable equilibrium with positive probability and the
non-convergence of vn towards unstable equilibriums.

3.3 Proof of Theorem 3.8

Using the fact that (n+ d+ 1)vn+1− (n+ d)vn = V (En+1), we write the sequence (vn)

as a stochastic algorithm of step 1/(n+ d+ 1) :

vn+1 − vn =
1

n+ d+ 1

(
F (vn) + Un+1

)
, (3.4)

with Un+1 = V (En+1)− πV (vn).

To prove Theorem 3.8 we will use Proposition 5.1 in [3]. In the following lemma,
we restate this proposition in our setting (in Proposition 5.1 of [3], the corresponding
notations are τn :=

∑n
k=0

1
k+d ∼ log(n), m(t) := sup{k ≥ 0 : t ≥ τk} ∼ et and m(τn + T ) ∼

neT , for T > 0).

Lemma 3.13. Assume that for all T ∈ N∗,

lim
n→+∞

sup
n≤k≤nT

∥∥∥∥∥
k∑
q=n

Uq
q + d

∥∥∥∥∥ = 0, (3.5)

then the limit set of (vn) is attractor free for the dynamics induced by F .

Remark 3.14. Actually Proposition 5.1 of [3] states that L is an internally chain tran-
sitive set. But a set is internally chain transitive if and only if it is attractor free. This
result comes from the theory of asymptotic pseudo-trajectories. For more details, we
refer the reader to [2] and precisely to Section 3.3 for the definitions and to Lemma 3.5
and Proposition 3.20 for the equivalence.

Lemma 3.13 implies that Theorem 3.8 holds as soon as (3.5) holds for all T ∈ N∗.
Lemma 3.15. If Hypotheses 3.3 and 3.7 hold, then (3.5) is verified for all T ∈ N∗.

Proof. Along this proof, C is a non-random positive constant that may vary from lines
to lines. For all n, set Qn = Q(vn) and Πn = Π(vn) and recall that πn = π(vn) and
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VRNBW: an example of path formation

πVn = πV (vn). Recall that Q and π are defined in Definition 3.5 and Π is defined by
Π(i, j) = π(j), for i, j ∈ R. Remark that for all e ∈ ~E , ΠnV (e) = πnV = πVn by using (2.6).

Hypotheses 3.7 and the compactness of Σ imply that the maps v 7→ πV (v) and v 7→
Q(v)V (e) are uniformly continuous on Σ, for all e ∈ ~E . Thus, using that ‖vn+1−vn‖ ≤ C/n,
we have that,

‖QnV (En)‖ ≤ C , for n ≥ 1 (3.6)

lim
n→∞

{
‖(Qn+1 −Qn)V (En)‖+

∥∥πVn+1 − πVn
∥∥} = 0. (3.7)

Moreover, for n a positive integer, we have (using the definition of Qn)

Un+1 = (I −Πn)V (En+1) = (Qn − PnQn)V (En+1) = εn+1 + rn+1, (3.8)

where

εn+1 = QnV (En+1)− PnQnV (En), (3.9)

rn+1 = rn+1,1 + rn+1,2 + rn+1,3, (3.10)

with

rn+1,1 =

(
1− n+ d+ 1

n+ d

)
PnQnV (En),

rn+1,2 =
n+ d+ 1

n+ d
PnQnV (En)− Pn+1Qn+1V (En+1), (3.11)

rn+1,3 = Pn+1Qn+1V (En+1)− PnQnV (En+1).

For T ∈ N∗, n ∈ N∗ and 1 ≤ i ≤ 3, set

εn(T ) = sup
n≤k≤nT

∥∥∥∥∥
k∑
q=n

εq
q + d

∥∥∥∥∥ and rn,i(T ) = sup
n≤k≤nT

∥∥∥∥∥
k∑
q=n

rq,i
q + d

∥∥∥∥∥ .
Then (3.5) is verified as soon as almost surely, limn→∞ εn(T ) = 0 and limn→∞ rn,i(T ) = 0

for i ∈ {1, 2, 3}.
The sequence (εn+1) is a martingale difference. Indeed, for all n ∈ N∗,

E[QnV (En+1)|Fn] = PnQnV (En). (3.12)

And using (3.6) we have for all n ∈ N∗,

‖εn+1‖ ≤ ‖QnV (En+1)‖+ ‖Pn‖ ‖QnV (En)‖ ≤ 2C.

Moreover, applying Azuma’s inequality ([14], Theorem 6.7 and §6-(c)), we have for all
β > 0 and all positive integer n,

P(εn(T ) ≥ β) ≤ 2|R| exp

(
−β2

C
∑nT
q=n q

−2

)
.

Since
∑nT
q=n q

−2 ≤ nT × n−2 = Tn−1, we have
∑
nP(εn(T ) ≥ β) < ∞, and thus, with

Borel-Cantelli Lemma, we conclude that limn→∞ εn(T ) = 0 a.s.
Using (3.6), we have for n ∈ N∗

rn,1(T ) ≤ C

nT∑
q=n

q−2 ≤ CT

n
,

rn,2(T ) = sup
n≤k≤nT

∥∥∥∥Pn−1Qn−1V (En−1)

n+ d− 1
− PkQkV (Ek)

k + d

∥∥∥∥ ≤ 2C

n
.
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VRNBW: an example of path formation

Since PnQn = Qn − I + Πn (see (2.5)), for n ≥ 1,

rn+1,3 = (Qn+1 −Qn)V (En+1) + πVn+1 − πVn ,

which implies that

rn,3(T ) ≤ log(2T )
{
‖(Qn+1 −Qn)V (En)‖+

∥∥πVn+1 − πVn
∥∥} .

Therefore, by using (3.7), this proves that, for i ∈ {1, 2, 3}, limn→∞ rn,i(T ) = 0.

3.4 Stable and unstable equilibriums

To define the stability of an equilibrium, we assume the following hypothesis.

Hypothesis 3.16. The map πV : Σ→ ∆R is C1.

For v ∈ Σ, denote by DF (v) the differential of F at v, and, for u ∈ T0∆R, DuF (v) :=

DF (v)(u) ∈ T1∆R is the derivative of F at v in the direction u.

Definition 3.17. Let v∗ be an equilibrium. We say that v∗ is stable if all eigenvalues of
DF (v∗) have a negative real part and v∗ is unstable if there exists at least one eigenvalue
of DF (v∗) with a positive real part.

Remark 3.18. If v∗ is a stable equilibrium, then {v∗} is an attractor.

Definition 3.19. Let v∗ be an equilibrium. A stable (unstable) direction of v∗ is an
eigenvector of DF (v∗) associated to an eigenvalue with negative (positive) real part.

Remark 3.20. All eigenvectors of DF (v∗), with v∗ a stable equilibrium, are stable
directions and an unstable equilibrium always has at least one unstable direction.

3.4.1 Convergence towards stable equilibriums with positive probability

In this section, it is proved that a stable equilibrium v∗ just has to be attainable by (vn)

in order to have that vn converges towards v∗ with positive probability.

Definition 3.21. A point v∗ is said attainable by (vn), if for each ε > 0 and n0 ∈ N∗,

P(∃n ≥ n0, ‖vn − v∗‖ < ε) > 0.

The following theorem is a particular case of Theorem 7.3 of [5] (using Remark 3.18).

Theorem 3.22. Let v∗ be a stable equilibrium. If v∗ is attainable by (vn), then

P(vn → v∗) > 0.

3.4.2 Non convergence towards an unstable equilibrium

Let v∗ ∈ Σ be an unstable equilibrium. Let f∗ be an unstable direction of v∗. Set
P∗ = P (v∗), Q∗ = Q(v∗) and π∗ = π(v∗). Set also R∗ = Supp(π∗), the support of π∗. For
(i, j) ∈ ~E , let Ai,j = {k ∈ X : P∗

(
(i, j), (j, k)

)
> 0} and Aj =

⋃
i : (i,j)∈R∗ Ai,j .

Remark 3.23. Let (E∗n) = ((X∗n−1, X
∗
n)) be a Markov chain of transition matrix P∗ and

of initial law π∗. Then Ai,j is the set of vertices that can be reached by X∗ in one step
coming from i and starting from j, and Aj is the set of vertices that can be reached by
X∗ in one step starting from j.

Let π1 and π2 be the marginals of π∗, i.e. for all i, j ∈ X ,

π1(i) =
∑

k:(i,k)∈~E

π∗(i, k) and π2(j) =
∑

k:(k,j)∈~E

π∗(k, j).

Denote by A the support of π1.
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VRNBW: an example of path formation

Lemma 3.24. We have π1 = π2 and R∗ = {(i, j) ∈ ~E : i ∈ A, j ∈ Ai}.

Proof. Let (E∗n) = ((X∗n−1, X
∗
n)) be a Markov chain of transition matrix given by P∗ and

of initial law π∗. We know that, for all n ≥ 1, the law of E∗n = (X∗n−1, X
∗
n) is π∗, hence the

law of X∗n−1 is π1 and the law of X∗n is π2. Thus π1 = π2.
Since π∗ = π∗P∗, then (j, k) ∈ R∗ if and only if there exists i ∈ X , such that

π∗(i, j)P∗((i, j), (j, k)) > 0. This is equivalent to the fact that there exists i ∈ X , such
that (i, j) ∈ R∗ and k ∈ Ai,j , i.e. k ∈ Aj .

Note finally that Aj is not empty if and only if j ∈ Supp(π2)
(

= Supp(π1)
)
.

Lemma 3.25. There exists m ≥ 0, such that for all e ∈ ~E ,

R∗ ⊂
m⋃
q=0

Supp
(
P q∗ (e)

)
. (3.13)

Proof. Since R∗ is the unique recurrent class of P∗ and |~E| <∞, there exists m ≥ 1 such
that for all e ∈ ~E and e′ ∈ R∗, there exists q ≤ m for which P q∗ (e, e′) > 0.

Hypotheses 3.26.

1. There exists r > 0, such that v 7→ Q(v)V (e) is Lipschitz on B(v∗, r) ∩ Σ, for all e ∈ ~E .

2. For all j ∈ A and k, k′ ∈ Aj , there exists i ∈ X such that (i, j) ∈ R∗ and k, k′ ∈ Ai,j .

3. There doesn’t exist any map g : A → R, such that

(i, j) 7→ V f∗(i, j)− g(i) + g(j) is constant on R∗.

This section is devoted to the proof of the following theorem.

Theorem 3.27. Let v∗ be an unstable equilibrium. If Hypotheses 3.3, 3.7 and 3.26 hold,
then

P(vn → v∗) = 0.

Proof. Along this proof, C will denote a non-random positive constant that may vary
from lines to lines. Equations (3.4) and (3.8) imply that

vn+1 − vn =
1

n+ d+ 1

(
F (vn) + εn+1 + rn+1

)
.

The expressions of εn+1, rn+1, rn+1,1, rn+1,2 and rn+1,3 are given by (3.9), (3.10) and
(3.11). We recall that E[εn+1|Fn] = 0 (see (3.12)). For n ∈ N, set

zn = vn −
1

n+ d

(
PnQnV (En)

)
.

Note that zn ∈ T1∆R. Indeed, using (2.4) and the definition of Qn (see (2.5))

PnQnV 1R(En) = PnQn1~E(En) = 0.

The sequence (zn) is a stochastic algorithm of step 1/(n+ d) : for all n,

zn+1 − zn =
1

n+ d+ 1

(
F (zn) + εn+1 + r̃n+1

)
,

where

r̃n+1 = F (vn)− F (zn) + rn+1,1 + rn+1,3.

By using (3.6), ‖zn − vn‖ ≤ C/n so that {zn → v∗} = {vn → v∗}. Thus, to prove
Theorem 3.27, we will apply Corollary 3.IV.15, p.126 in [10] to (zn) (this result is stated
in the Appendix A).
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Lemma 3.28. On {vn → v∗}, we have r̃n+1 = O
(

1
n

)
.

Proof. Hypothesis 3.7-(1) implies that F is Lipschitz on T1∆R. Thus we have that
‖F (vn)− F (zn)‖ ≤ C/n, for all n ≥ 1. We also have ‖rn+1,1‖ ≤ C/n (see (3.6)).

Let e ∈ ~E and n0 be an integer such that for all n ≥ n0, vn ∈ B(v∗, r) ∩ Σ, with r > 0

defined as in Hypothesis 3.26-(1). Let n ≥ n0, then using Hypothesis 3.26-(1), the map
v 7→ Q(v)V (e) is Lipschitz on B(v∗, r)∩Σ. Since |~E| <∞, the Lipschitz constants of these
mappings are uniformly bounded in e ∈ ~E , and (using also that PQ = Q− I + Π and that
πV is Lipschitz)

‖rn+1,3‖ =
∥∥(Q(vn+1)−Q(vn))V (En+1) + (πV (vn+1)− πV (vn))

∥∥ ≤ C/n.
Hence r̃n+1 = O

(
1
n

)
on {vn → v∗}.

The previous lemma directly implies that on {vn → v∗},
∑
n ‖r̃n+1‖2 <∞.

Letm be a positive integer such that (3.13) is verified. To achieve this proof, according
to Corollary 3.IV.15, p126 of [10], it remains to show that on {vn → v∗},

lim inf
n→∞

E

[
m∑
q=0

(εn+q+1f∗)
2

∣∣∣∣∣Fn
]
> 0. (3.14)

Let µ ∈ ∆~E and G : ~E → R. Define the variance Varµ(G) by

Varµ(G) = µG2 − (µG)2 (3.15)

=
1

2

∑
e,e′∈~E

µ(e)µ(e′)
(
G(e)−G(e′)

)2
. (3.16)

Set Pn = P (vn) and recall that the conditional law of En+1 with respect to Fn
is Pn(En). The conditional mean and variance with respect to Fn of QnV f∗(En) are
respectively PnQnV f∗(En) and E[(εn+1f∗)

2|Fn] = ϕvn(En), where

ϕv(e) = VarP (v)(e)(Q(v)V f∗),

for all v ∈ Σ and e ∈ ~E .

Lemma 3.29. For each e ∈ ~E , the map v 7→ ϕv(e) is Lipschitz on B(v∗, r) ∩ Σ.

Proof. Note that there is C < ∞ such that for all v, ‖Q(v)V f∗‖ ≤ C. The mapping
(µ,G) 7→ Varµ(G) is Lipschitz on ∆~E × {G : ~E → R : ‖G‖ ≤ C}. Moreover, for all e ∈ ~E ,
v 7→ P (v)(e) is Lipschitz on Σ and by using Hypothesis 3.26-(1), v 7→ Q(v)V f∗ is Lipschitz
on B(v∗, r) ∩ Σ. We conclude using the property that the composition of two Lipschitz
functions is Lipschitz.

Set ϕ∗ := ϕv∗ . By using several times Lemma 3.29, we now prove that for all
q ∈ {0, . . . ,m}, on the event {vn → v∗}, we have

E
[
(εn+q+1f∗)

2
∣∣Fn] = P q∗ϕ∗(En) +O

(
1

n
+ ‖vn − v∗‖

)
. (3.17)

We have for all q ∈ {0, . . . ,m},

E
[(
εn+q+1f∗

)2∣∣∣Fn] = E[ϕvn+q
(En+q)|Fn]

= E[ϕvn(En+q)|Fn] + E[
(
ϕvn+q

− ϕvn
)
(En+q)|Fn]. (3.18)
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Let r > 0 be defined as in Hypothesis 3.26-(1). Notice that {vn → v∗} ⊂
⋃
n′ Ωn′,r,

where Ωn′,r = {vn ∈ B(v∗, r/2) ∩ Σ,∀n ≥ n′}, for all n′ ∈ N∗. Let n1 be a positive integer
such that 2m

n1+d ≤ r/2. Then for all n ≥ n1,

sup
0≤q≤m

‖vn+q − vn‖ ≤ r/2.

Indeed, for all q ∈ {0, . . . ,m},

vn+q − vn =

(
n+ d

n+ d+ q
− 1

)
vn +

1

n+ d+ q

n+q∑
k=n+1

V (Ek).

Thus sup0≤q≤m ‖vn+q − vn‖ ≤ 2m
n+d ≤ r/2.

Fix n ≥ n1 and q ∈ {0, . . . ,m}. On Ωn1,r, we have vn ∈ B(v∗, r/2) and

E[
(
ϕvn+q

− ϕvn
)
(En+q)|Fn] = E[

(
ϕvn+q

− ϕvn
)
(En+q)1{vn∈B(v∗,r/2)}|Fn].

Since vn ∈ B(v∗, r/2) implies that vn+q ∈ B(v∗, r), using Lemma 3.29, we have that on
Ωn1,r, ∣∣E[

(
ϕvn+q

− ϕvn
)
(En+q)|Fn]

∣∣ ≤ C E[‖vn+q − vn‖ |Fn] ≤ C/n. (3.19)

Using again Lemma 3.29, on Ωn1,r,

E[ϕvn(En+q)|Fn] = E[ϕ∗(En+q)|Fn] +O(‖vn − v∗‖).

Moreover on Ωn1,r,

E[ϕ∗(En+q)|Fn] = E[E[ϕ∗(En+q)|Fn+q−1]|Fn]

= E[Pn+q−1ϕ∗(En+q−1)|Fn]

= E[P∗ϕ∗(En+q−1)|Fn] +O

(
1

n
+ ‖vn − v∗‖

)
,

where the fact that Pn+q−1(En+q−1) is the conditional law with respect to Fn+q−1 of
En+q is used for the second equality and the facts that

‖vn+q−1 − v∗‖ ≤ C/n+ ‖vn − v∗‖

and that P is Lipschitz on Σ are used for the third equality. Finally by repeating q times
the last computations, we have on Ωn1,r

E[ϕ∗(En+q)|Fn] = P q∗ϕ∗(En) +O

(
1

n
+ ‖vn − v∗‖

)
. (3.20)

Thus by using (3.18), (3.19) and (3.20), we obtain that (3.17) holds on Ωn1,r. Thus
(3.17) holds on {vn → v∗} ⊂

⋃
n′ Ωn′,r, which implies that on {vn → v∗},

E

[
m∑
q=0

(εn+q+1f∗)
2

∣∣∣∣∣Fn
]
≥ inf

e∈~E

(
m∑
q=0

P q∗ϕ∗(e)

)
+O

(
1

n
+ ‖vn − v∗‖

)
.

Thus on {vn → v∗},

lim inf
n→∞

E

[
m∑
q=0

(εn+q+1f∗)
2

∣∣∣∣∣Fn
]
≥ I∗ := inf

e∈~E

(
m∑
q=0

P q∗ϕ∗(e)

)
.
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We now prove that I∗ > 0. For this purpose, suppose that I∗ = 0. This implies that
ϕ∗(e

′) = 0, for all e′ ∈ R∗. Indeed, if I∗ = 0, there is e ∈ ~E , such that P q∗ϕ∗(e) = 0 for all
q ∈ {0, . . . ,m}. Thus ϕ∗(e′) = 0 for all e′ ∈

⋃m
q=0 Supp(P q∗ (e)), i.e. there is q ∈ {0, . . . ,m}

such that P q∗ (e, e′) > 0. Therefore, using Lemma 3.25, we have ϕ∗(e′) = 0 for all e′ ∈ R∗.
Set G = Q∗V f∗. Using (3.16), we have that for each (i, j) ∈ R∗, ϕ∗(i, j) = 0 implies

that k 7→ G(j, k) is constant on Ai,j . Therefore this with Hypothesis 3.26-(2) imply that
for each j ∈ A, there is a constant g(j) such that G(j, k) = g(j) for all k ∈ Aj .

On one hand, using (2.5),

(I − P∗)G(i, j) = V f∗(i, j)−Π∗V f∗,

where Π∗(e, e
′) = π∗(e

′), for all e, e′ ∈ ~E . Remark that Π∗V f∗ = πV (v∗)f∗ is a constant.
On the other hand,

(I − P∗)G(i, j) = g(i)−
∑
k∈Ai,j

P∗((i, j), (j, k))G(j, k)

= g(i)− g(j).

Hence we have proved that if I∗ = 0, then there exists a map g : A → R such that
V f∗(i, j) = πV (v∗)f∗ + g(i) − g(j) for all (i, j) ∈ R∗. This is impossible by Hypothesis
3.26-(3). Thus I∗ > 0 and P(vn → v∗) = 0.

4 Vertex reinforced non-backtracking random walks

4.1 Definitions

Let G = (X , E) be the complete graph with N ≥ 4 vertices. Recall that X = {1, . . . , N}
and E = {{i, j} : i, j ∈ X , i 6= j}. In this section, the reinforcement set R is the set of
vertices X and the walk is vertex reinforced. Set

Σ = {v ∈ ∆X : max(v) ≤ 1/3 + min(v)}.

Note that ∂Σ = {v ∈ ∆X : max(v) = 1/3 + min(v)} ∪ {v ∈ Σ : ∃i ∈ X , v(i) = 0}.
Remark 4.1. Measures in Σ3 (defined in (2.1)) are uniform on a subset of X containing
exactly three points. The support of any measure in Σ̊ contains at least four points, i.e.
Σ̊ ⊂ Σ \ Σ3.

Let V : ~E × X → R be the transition matrix from ~E to X defined by

V ((i, j), k) = δj(k) , for (i, j) ∈ ~E and k ∈ X . (4.1)

Set α ≥ 1 and let P : ∆̊X →M~E be the map defined by

P (v)
(
(i, j), (j′, k)

)
=

v(k)α∑
k′∈X\{i,j}

v(k′)α
1j=j′1i6=k, (4.2)

for all v ∈ Σ and (i, j), (j′, k) ∈ ~E . Let (Xn, Pn, Vn) be a process associated to V and P as
in Section 3. Then it is easy to check that X is a VRNBW associated to the reinforcement
function W (k) = (1 + k)α. Recall that Vn = δXn and Pn = P (vn), with vn the empirical
occupation measure of the vertices by Xn, defined by

vn =
1

n+N

(
1 +

n∑
k=1

δXk

)
. (4.3)
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In this section, we prove Theorem 1.2 stated in the introduction. Theorem 1.2 is a
consequence of Theorem 3.8, Corollary 3.12, Theorem 3.22, Theorem 3.27, Lemma 4.30
and Lemma 4.31. To apply Theorem 3.8 to VRNBWs, we verify Hypotheses 3.3 in
Sections 4.2 and 4.3 and Hypotheses 3.7 in Sections 4.4 and 4.5. To apply Corollary 3.12,
we prove in Section 4.6 that there exists a strict Lyapounov function and, in Sections 4.8,
4.9, 4.10.1 and 4.10.2 that there is a finite number of equilibriums. The stability of
the equilibriums is also discussed in these sections. Finally, applying Theorems 3.22
and 3.27, Theorem 1.2 is proved in Section 4.11.

4.2 Hypotheses 3.3-(1)

We verify here that vn ∈ Σ̊ for n ≥ 0.

Lemma 4.2. For all n ≥ 0, we have max(vn) ≤ 1
3 ×

n+5
n+N .

Proof. Set i ∈ X . For all n ≥ 0, we have |{0 ≤ ` ≤ 2 : Xn+` = i}| ≤ 1. Thus,
if Zn(i) denotes the number of times the walk X visits i before time n, then for all
n ≥ 0, Zn+3(i) − Zn(i) ≤ 1. Therefore, for all n ≥ 0, Z3n(i) ≤ n, Z3n+1(i) ≤ n + 1 and
Z3n+2(i) ≤ n+ 1. Thus, for all n ≥ 0, max(Zn) ≤ (n+ 2)/3. The lemma follows from the
fact that max(vn) ≤ (1 + max(Zn))/(n+N).

A first consequence of this lemma is that the only possible limit points v of (vn) are
such that v(i) ≤ 1/3 for all i.

Proposition 4.3. vn ∈ Σ̊ for all n.

Proof. Note that vn ∈ Σ̊ if and only if max(vn) < 1/3 + min(vn) and min(vn) > 0. Lemma
4.2 and the fact that for all n ≥ 0, min(vn) ≥ 1/(n+N), imply that max(vn)−min(vn) ≤
1
3 ×

n+2
n+N which is lower than 1/3 since N ≥ 4.

4.3 Hypotheses 3.3-(2)-(3)

Since the denominator of (4.2) doesn’t vanish for all v ∈ Σ, the map P is C1 on Σ and
Hypothesis 3.3-(2) is verified. Hypothesis 3.3-(3) directly follows from the proposition
below, after remarking that Σ̊ ⊂ Σ \ Σ3.

Proposition 4.4. The matrix P (v) is indecomposable for all v ∈ Σ \ Σ3.

Proof. Let v ∈ Σ \ Σ3, then by Remark 4.1, the support of v contains at least four points.
We will prove that the matrix P (v) is indecomposable and that its recurrent class is

S = {(i, j) ∈ ~E : vi > 0, vj > 0}. Recall that G is complete, that (i, i) /∈ ~E and that e
P (v)→ e′

means that P (v)(e, e′) > 0. Let (i1, i2) ∈ ~E and (i3, i4) ∈ S.
Case 1: |{i1, i2, i3, i4}| = 4. Since i3 /∈ {i1, i2}, i4 /∈ {i2, i3},

(i1, i2)
P (v)→ (i2, i3)

P (v)→ (i3, i4).

Case 2: |{i1, i2, i3, i4}| = 3 and i2 6= i3. Since the support of v contains at least four
points, there exists i ∈ Supp(v) \ {i1, i2, i3, i4}. Thus

(i1, i2)
P (v)→ (i2, i)

P (v)→ (i, i3)
P (v)→ (i3, i4).

Case 3: |{i1, i2, i3, i4}| = 3 and i2 = i3. In this case, (i1, i2)
P (v)→ (i3, i4).

Case 4: |{i1, i2, i3, i4}| = 2. In this case {i1, i2} = {i3, i4}. Since the support of v
contains at least four points, there exist i, j ∈ Supp(v) \ {i1, i2} with i 6= j. Thus

(i1, i2)
P (v)→ (i2, i)

P (v)→ (i, j)
P (v)→ (j, i3)

P (v)→ (i3, i4).

Consequently P (v) is indecomposable for all v ∈ Σ \ Σ3.

EJP 23 (2018), paper 39.
Page 15/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP167
http://www.imstat.org/ejp/
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Remark 4.5. For v ∈ Σ3, the matrix P (v) is not indecomposable. Indeed, v is uniform
on exactly three different points {i1, i2, i3}. There are two irreducible classes R1 and R2,
with R1 = {(i1, i2), (i2, i3), (i3, i1)} and R2 = {(i2, i1), (i1, i3), (i3, i2)}, and we have

(i1, i2)
P (v)→ (i2, i3)

P (v)→ (i3, i1)
P (v)→ (i1, i2),

(i2, i1)
P (v)→ (i1, i3)

P (v)→ (i3, i2)
P (v)→ (i2, i1).

Thus R1 and R2 define two paths for the Markov chain associated to P (v), i.e. vertices
i1, i2 and i3 are visited infinitely often, in the same order.

4.4 The invariant probability measure of P (v)

From now on, for v ∈ Σ and i ∈ X , v(i) will be denoted simply by vi. There should
not be any confusion with vn ∈ Σ defined by (4.3). For i 6= j ∈ X , let Hi,j : Σ→ R∗+,
Hi : Σ→ R∗+ and H : Σ→ R∗+ be the maps, which to v ∈ Σ associate

Hi,j(v) =
∑

k/∈{i,j}

vαk , (4.4)

Hi(v) =
∑

j,k; i6=j 6=k 6=i

vαj v
α
k =

∑
j 6=i

vαj Hi,j(v), (4.5)

H(v) =
∑

i,j,k; i 6=j 6=k 6=i

vαi v
α
j v

α
k =

∑
i

vαi Hi(v). (4.6)

Recall that for v ∈ Σ \ Σ3, π(v) denotes the invariant probability measure of P (v) and
that πV (v) = π(v)V belongs to ∆X . For (i, j) ∈ ~E and k ∈ X , we use the notation πi,j(v)

and πVk (v) respectively for π(v)(i, j) and for πV (v)(k). The expression of these measures
is explicitly given in the following proposition.

Proposition 4.6. For all v ∈ Σ \ Σ3,

πi,j(v) =
vαi v

α
j Hi,j(v)

H(v)
, for (i, j) ∈ ~E ; (4.7)

πVk (v) =
vαkHk(v)

H(v)
, for k ∈ X . (4.8)

Moreover Hypothesis 3.7-(1) holds.

Proof. For v ∈ Σ\Σ3 and (i, j) ∈ ~E , set µ(i, j) =
vαi v

α
j Hi,j(v)

H(v) . Then µ ∈ ∆~E and is invariant

for P (v). Indeed,

µP (v)(i, j) =
∑

(i′,j′)∈~E

µ(i′, j′)P (v)
(
(i′, j′), (i, j)

)
=

∑
(i′,j′)∈~E

vαi′v
α
j′v

α
j

H(v)
1j′=i1i′ 6=j =

vαi v
α
j

H(v)

∑
i′ /∈{i,j}

vαi′ = µ(i, j).

The matrix P (v) being indecomposable, we have µ = π(v).
Recall that V ((i, j), k) = δj(k) for (i, j) ∈ ~E and k ∈ X . Hence for all k ∈ X ,

πVk (v) =
∑

(i,j)∈~E

πi,j(v)1j=k =
∑
i6=k

πi,k(v)

=
∑
i 6=k

vαi v
α
kHi,k(v)

H(v)
=
vαkHk(v)

H(v)
.

Since α ≥ 1 and since H(v) > 0, for all v ∈ Σ, it is straightforward to check that the map
πV verifies Hypothesis 3.7-(1).
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4.5 The pseudo-inverse of I − P (v)

In this section we prove that Hypothesis 3.7-(2) holds. Using Proposition 4.4, we
know that P (v) is indecomposable for all v ∈ Σ\Σ3. Since P is C1 on Σ, using the implicit
function theorem, one can prove (as in Lemma 5.1 in [1]) that, for e ∈ ~E , v 7→ Q(v)V (e)

is C1 on Σ \ Σ3. It remains to extend this mapping by continuity to Σ3, which is the
statement of the following proposition (by taking for all i ∈ X , g : ~E → R defined by
g(e) = V (e, i)).

Proposition 4.7. Let a : X → R and g : ~E → R be the map defined by g(i, j) = aj for all
(i, j) ∈ ~E . Then, the map v 7→ Q(v)g is continuously extendable to Σ3.

Proof. Since Σ3 is a finite set, it suffices to prove that, for all v0 ∈ Σ3, the limit of
Q(v)g as v ∈ Σ \ Σ3 goes to v0 exists, and by symmetry, to prove this only for v0 =

(1/3, 1/3, 1/3, 0, · · · , 0), the uniform probability measure on {1, 2, 3}.
By abuse of notation, the transpose WT of a vector W will be denoted by W . We use

the following vectorial notations for a function f : ~E → R
Xf

1 =
(
f(3, 1), f(1, 2), f(2, 3)

)
, Xf

2 =
(
f(2, 1), f(3, 2), f(1, 3)

)
,

Y f` =
(
f(1, `), f(2, `), f(3, `)

)
, Zf` =

(
f(`, 1), f(`, 2), f(`, 3)

)
,

T f` =
(
f(4, `), · · · , f(N, `)

)
, Uf` =

(
f(`, 4), · · · , f(`,N)

)
,

(4.9)

for ` ∈ {4, . . . , N} and with the convention f(`, `) = 0. The vectors Xf
1 and Xf

2 give f
for the edges starting from {1, 2, 3} and ending in {1, 2, 3}, Y f` gives f for the edges

starting from {1, 2, 3} and ending on `, Zf` gives f for the edges starting from ` and

ending in {1, 2, 3}, T f` gives f for the edges starting from {4, . . . , N} and ending on ` and

Uf` gives f for the edges starting from ` and ending in {4, . . . , N}. Note that when N = 4,

T f` = Uf` = 0. Vectors Xf
1 , Xf

2 , (Y f` )`≥4, (Zf` )`≥4 and (T f` )`≥4 are enough to describe f ,

but vectors (Uf` )`≥4 will be useful in the following.
A constant vector (λ, · · · , λ) will simply be denoted by λ. For ` ≥ 4, δ` denotes the

vector (δ`(4), · · · , δ`(N)), where δ`(`) = 1 and δ`(m) = 0 if m 6= `. Set h = (a1, a2, a3).
Then, for ` ∈ {4, . . . , N}, we have

Xg
1 = Xg

2 = Zg` = h,

Y g` = a`(1, 1, 1) = a`,

T g` = a`(1− δ`).
(4.10)

Set J =
(

0 1 0
0 0 1
1 0 0

)
. Then J2 =

(
0 0 1
1 0 0
0 1 0

)
and J3 = I. Set L1 = 1

3 (J + 2J2) and L2 =
1
3 (2J + J2). For x ∈ R3, set x = x1+x2+x3

3 . Proposition 4.7 is proved as soon as for all
` ∈ {4, . . . , N} 

lim
v→v0, v∈Σ\Σ3

XQ(v)g
q = −Lqh+ h, q ∈ {1, 2}

lim
v→v0, v∈Σ\Σ3

Y
Q(v)g
` = −h

4
+ a` −

3

4
h,

lim
v→v0, v∈Σ\Σ3

Z
Q(v)g
` =

h− h
2

,

lim
v→v0, v∈Σ\Σ3

T
Q(v)g
` = (a` − h)(1− δ`).

(4.11)

We now prove (4.11). Set εi = 1 − 3vi for i ∈ {1, 2, 3}, ε` = 3v` for ` ≥ 4 and

ε =
∑3
i=1 εi

(
=
∑
`≥4 ε`

)
. Remark that εi = O(ε) for all i ∈ X . Indeed, v` ≥ 0 implies

0 ≤ ε` ≤ ε for ` ≥ 4. Moreover, as ε goes to 0, vi is close to 1/3 for i ∈ {1, 2, 3} and
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v` is close to 0 for ` ≥ 4, thus max(v) = 1
3 (1 − mini∈{1,2,3} εi) and min(v) = 1

3 min`≥4 ε`.
Therefore since v ∈ Σ, for all small enough ε, mini∈{1,2,3} εi + min`≥4 ε` ≥ 0. Since

0 ≤ ε` ≤ ε for ` ≥ 4, this means that mini∈{1,2,3} εi ≥ −ε. Since ε =
∑3
i=1 εi, we have

ε ≥ max
i∈{1,2,3}

εi + 2 min
i∈{1,2,3}

εi ≥ max
i∈{1,2,3}

εi − 2ε.

Thus 3ε ≥ maxi∈{1,2,3} εi and εi = O(ε) for i ∈ {1, 2, 3}.
To lighten the notation, set X1 = X

Q(v)g
1 , X2 = X

Q(v)g
2 , Y` = Y

Q(v)g
` , Z` = Z

Q(v)g
` ,

T` = T
Q(v)g
` and U` = U

Q(v)g
` . Recall that Q(v)g is defined by{

(I − P (v))Q(v)g = (I −Π(v))g,

π(v)Q(v)g = 0.
(4.12)

To prove (4.11), we will give an estimate of Q(v)g as v goes to v0 (or equivalently as
ε→ 0). More precisely we will give estimates of X1, X2, Y`, Z` and T` as ε→ 0.

For all i, j, k ∈ X , such that |{i, j, k}| = 3, denote pi,j,k = P (v)((i, j), (j, k)). Remark
that pi,j,k = pj,i,k. When {i, j, k} = {1, 2, 3}, then pi,j,k only depends on k. We denote this
probability pk. Since (1− εk)−α = 1 +O(ε) as ε goes to 0, we have

pk =
(1− εk)α

(1− εk)α +
∑
`≥4 ε

α
`

=

(
1 +

∑
`≥4 ε

α
`

(1− εk)α

)−1

=

1 + (1 +O(ε))
∑
`≥4

εα`

−1

.

This implies the Taylor expansion of pk as ε goes to 0 :

pk = 1−
∑
`≥4

εα` +O(εα+1).

We also have the following Taylor expansions as ε goes to 0

pi,j,` = pj,i,` =
εα`

(1− εk)α +
∑
l≥4 ε

α
`

= εα` +O(εα+1),

pi,`,j = p`,i,j =
(1− εj)α

(1− εj)α + (1− εk)α +
∑

`′≥4,`′ 6=`

εα`′
=

1

2
+O(ε),

pi,`,m = p`,i,m =
εαm

(1− εj)α + (1− εk)α +
∑

`′≥4,`′ 6=`

εα`′
=

εαm
2

+O(εα+1),

p`,m,i = pm,`,i =
(1− εi)α

3∑
i′=1

(1− εi′)α +
∑

`′≥4, `′ /∈{`,m}

εα`′

=
1

3
+O(ε),

p`,m,n = pm,`,n =
εαn

3∑
i′=1

(1− εi′)α +
∑

`′≥4, `′ /∈{`,m}

εα`′

=
εαn
3

+O(εα+1),

for {i, j, k} = {1, 2, 3} and `, m, n ≥ 4, with |{`,m, n}| = 3.
Let L0 = 1

3 (I + J + J2) and let A1 and A2 be the matrices

A1 =

(
0 p2 0
0 0 p3
p1 0 0

)
and A2 =

(
0 0 p3
p1 0 0
0 p2 0

)
.

Remark that L0x = x for x ∈ R3. The following lemma gives Taylor expansions for
(I −A1)−1 and for (I −A2)−1.
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Lemma 4.8. If p1p2p3 6= 1, then I−A1 and I−A2 are invertible. Moreover, for q ∈ {1, 2}(∑
`≥4

εα`

)
(I −Aq)−1 = (1 +O(ε))L0 −

(∑
`≥4

εα`

)
Lq +O(εα+1) . (4.13)

Proof. Since the determinants of I−A1 and of I−A2 are both equal to 1− p1p2p3, I−A1

and I −A2 are both invertible when p1p2p3 6= 1. When it is the case, we have

(I −A1)−1 = (1− p1p2p3)−1

(
1 p2 p2p3

p1p3 1 p3
p1 p1p2 1

)

= (1− p1p2p3)−1

3L0 − 3
(∑
`≥4

εα`

)
L1 +O(εα+1)

 .

Since p1p2p3 = 1− 3
(∑

`≥4 ε
α
`

)
+O(εα+1)), we have

(1− p1p2p3)−1 =
1

3

(∑
`≥4

εα`

)−1[
1 +O(ε)

]
.

This implies (4.13) when q = 1. We prove (4.13) when q = 2 by the same way.

The following lemma gives the Taylor expansion of π(v) as ε goes to 0.

Lemma 4.9. For i 6= j ∈ {1, 2, 3}, and ` 6= m ∈ {4 . . . , N},

πi,j(v) =
1

6
− 1

3

∑
`≥4

εα` +O(εα+1),

πi,`(v) = π`,i(v) =
εα`
3

+O(εα+1),

π`,m(v) = O(εα+1).

Proof. Recall that for i 6= j, πi,j(v) =
vαi v

α
j

∑
k/∈{i,j} v

α
k

H(v)
, where

H(v) = 6
∑
i<j<k

vαi v
α
j v

α
k =

6

33α

(
3∏
i=1

(1− εi)α +O(εα)

)
=

6

33α
+O(ε).

Thus for i, j, k such that {i, j, k} = {1, 2, 3}

πi,j(v) =
(1− εi)α(1− εj)α

(
(1− εk)α +

∑
`≥4 ε

α
`

)
6
(∏3

i′=1(1− εi′)α
) (

1 + 3
∑
`≥4 ε

α
` +O(εα+1)

)
=

1

6

(
1 +

∑
`≥4 ε

α
`

(1− εk)α

)
× 1

1 + 3
∑
`≥4 ε

α
` +O(εα+1)

=
1

6

1 +
∑
`≥4 ε

α
` +O(εα+1)

1 + 3
∑
`≥4 ε

α
` +O(εα+1)

=
1

6
− 1

3

∑
`≥4

εα` +O(εα+1) .

For i, j, k such that {i, j, k} = {1, 2, 3} and for `,m ≥ 4 with ` 6= m, we have

πi,`(v) = π`,i(v) =
(1− εi)αεα`

(
(1− εj)α + (1− εk)α +

∑
`′≥4,`′ 6=` ε

α
`′

)
6
(∏3

i′=1(1− εi′)α
)(

1 + 3
∑
`′≥4 ε

α
`′ +O(εα+1)

)
=

εα`
3

+O(εα+1)
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and

π`,m(v) =

εα` ε
α
m

 3∑
i′=1

(1− εi′)α +
∑

`′≥4, `′ /∈{`,m}

εα`′


6
(∏3

i′=1(1− εαi′)
) (

1 + 3
∑
`′≥4 ε

α
`′ +O(εα+1)

) = O(ε2α) = O(εα+1).

The previous lemma permits to give a Taylor expansion for π(v)g :

π(v)g =
∑

(i,j)∈~E

πi,j(v)g(i, j)

=

3∑
i,j=1
i6=j

1

6
− 1

3

∑
`≥4

εα`

 aj +

3∑
i=1

∑
`≥4

εα`
3

(
ai + a`

)
+O(εα+1)

= (1 +O(ε))h+
∑
`≥4

εα` a` +O(εα+1).

Let us first prove (4.11) in the case h = 0. Denoting 〈εα, a〉 =
∑
`≥4 ε

α
` a`, we have

π(v)g = 〈εα, a〉+O(εα+1).

Let us now express P (v)Q(v)g in function of Q(v)g and using Notations (4.9) and the
equation

P (v)Q(v)g(i, j) =
∑

k/∈{i,j}

pi,j,kQ(v)g(j, k), for i 6= j ∈ X .

Let i, j, k be such that {i, j, k} = {1, 2, 3} and `,m ≥ 4, with ` 6= m. Since

P (v)Q(v)g(i, j) = pkQ(v)g(i, j) +
∑
`′≥4

pi,j,`′Q(v)g(j, `′),

using the Taylor expansion of pk and
(
pi,j,`′

)
`′≥4

, we have

X
P (v)Q(v)g
1 = A1X1 +

∑
`′≥4

(
εα`′ +O(εα+1)

)
Y`′ ,

X
P (v)Q(v)g
2 = A2X2 +

∑
`′≥4

(
εα`′ +O(εα+1)

)
Y`′ .

Since

P (v)Q(v)g(i, `) = pi,`,jQ(v)g(`, j) + pi,`,kQ(v)g(`, k) +
∑

m′≥4,m′ 6=`

pi,`,m′Q(v)g(`,m′),

using the Taylor expansion of pi,`,j , pi,`,k and
(
pi,`,m′

)
m′≥4,m′ 6=`, we have

Y
P (v)Q(v)g
` = (1 +O(ε))

(
J + J2

2

)
Z` +O(εα)U`.

Since

P (v)Q(v)g(`, i) = p`,i,jQ(v)g(i, j) + p`,i,kQ(v)g(i, k) +
∑

m′≥4,m′ 6=`

p`,i,m′Q(v)g(i,m′),

using the Taylor expansion of p`,i,j , p`,i,k and
(
p`,i,m′

)
m′≥4,m′ 6=`, we have

Z
P (v)Q(v)g
` =

(
1 +O(ε))

(
JX1 + J2X2

2

)
+O(εα)

∑
m′≥4,m′ 6=`

Ym′ .
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Since

P (v)Q(v)g(m, `) = pm,`,iQ(v)g(`, i) + pm,`,jQ(v)g(`, j)

+ pm,`,kQ(v)g(`, k) +
∑

n≥4, n/∈{`,m}

pm,`,nQ(v)g(`, n),

using the Taylor expansion of pm,`,n for n /∈ {`,m}, we have

T
P (v)Q(v)g
` =

(
1 +O(ε)

)
Z` +O(εα)U`.

Using the previous expansions and the expression of g given by (4.10), the system
(4.12) implies that

(I −Aq)Xq = h− 〈εα, a〉1 +
∑
`′≥4

εα` Y`′ +O(εα+1), q ∈ {1, 2},

Y` = a` − 〈εα, a〉1 + (1 +O(ε))

(
J + J2

2

)
Z` +O(εα)U` +O(εα+1),

Z` = h− 〈εα, a〉1 + (1 +O(ε))

(
JX1 + J2X2

2

)
+O(εα)

∑
m≥4,m6=`

Ym +O(εα+1),

T` = a` − 〈εα, a〉1 + (1 +O(ε))Z` +O(εα)U` +O(εα+1),

for ` ≥ 4. Recall the definition of ‖·‖ given by (2.7) and set ‖X‖ = sup{‖X1‖ , ‖X2‖}. We
then have for all ` ≥ 4,

Z` = h+
JX1 + J2X2

2
+O(ε(1 + ‖X‖+ ‖Y ‖)).

Remarking that J1 = J21 = 1, we have

T` = a`(1− δ`) +
X1 +X2

2
+O(ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)). (4.14)

Remarking that (J + J2)h = −h, we also have

Y` = −h
2

+ a` +

(
I + J2

4

)
X1 +

(
I + J

4

)
X2 +O(ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)).

Using Lemma 4.8, remarking that L0J = L0J
2 = L0, that L0b = b for b ∈ R3 and recalling

that h = 0, we have

X1 = (I −A1)−1

h+

∑
`≥4

εα`

(I + J2

4
X1 +

I + J

4
X2 −

h

2

)

+O
(
ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)

)
= −L1h+

X1 +X2

2
+O

(
ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)

)
. (4.15)

and likewise

X2 = −L2h+
X1 +X2

2
+O

(
ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)

)
. (4.16)

Remarking that JL1 + J2L2 = I + L0, (4.15) and (4.16) implies

Z` =
h

2
+
X1 +X2

2
+O(ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)). (4.17)
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Remarking that

(I + J2)L1 + (I + J)L2 =
5

2
L0 −

I

2

and using L0h = h = 0, (4.15) and (4.16) implies

Y` = −h
4

+ a` +
X1 +X2

2
+O(ε(1 + ‖X‖+ ‖Y ‖+ ‖U‖)). (4.18)

An immediate consequence of (4.14), (4.17) and (4.18) is that

‖Y ‖ = O
(
1 + ‖X‖

)
,

‖Z‖ = O
(
1 + ‖X‖

)
,

‖T‖ = ‖U‖ = O
(
1 + ‖X‖

)
.

Since π(v)f = 0, Lemma 4.9 implies that

X1 +X2

2

1− 2
∑
`′≥4

εα`′

+
∑
`′≥4

εα`′
(
Y`′ + Z`′

)
= O

(
εα+1(1 + ‖X‖)

)
.

Thus

X1 +X2

2
= O

(
εα(1 + ‖X‖)

)
. (4.19)

Using (4.15),(4.16) and (4.19), we get ‖X‖ = O(1) and thus that for q ∈ {1, 2} and ` ≥ 4,

Xq = −Lqh+O(ε),

Y` = −h
4

+ a` +O(ε),

Z` =
h

2
+O(ε),

T` = a`(1− δ`) +O(ε).

Suppose now that h 6= 0. Set g0 = g − h. Then since Q(v)1 = 0, Q(v)g = Q(v)g0 and
limv→v0 Q(v)g = limv→v0 Q(v)g0. Note that

Xg0
1 = Xg0

2 = Zg0` = h− h,
Y g0` = a` − h,
T g0` = (a` − h)(1− δ`),

(4.20)

for ` ∈ {4, . . . , N}. Thus (4.11) holds.

Recall that Tu∆X = {v : X → R :
∑
i∈X vi = u}, for u ∈ {0, 1}. Since Hypotheses 3.3

and 3.7 hold, the vector field F : T1∆X → T0∆X , defined by (3.2) induces a flow Φ for
the differential equation v̇ = F (v). Moreover Theorem 3.8 holds and the limit set of (vn)

is attractor free for Φ.

4.6 A strict Lyapunov function

Proposition 4.10. The map H : Σ→ R∗+, defined by (4.6) is a strict Lyapunov function
for Φ.
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Proof. The map H is C1 on Σ. For v ∈ Σ, set h(v) : X → R such that for i ∈ X ,
hi(v) = vα−1

i Hi(v). Then for v ∈ Σ, H(v) =
∑
i v
α
i Hi(v) =

∑
i vihi(v) = vh(v).

For i, j ∈ X , with i 6= j, the maps Hi,j , Hi and H are defined on Σ. But we will
consider here that they are respectively defined on RN by (4.4), (4.5) and (4.6). For
i, j ∈ X , we have

∂iHj(v) =

{
0, if i = j,

2αvα−1
i Hi,j(v), if i 6= j

(4.21)

and

∂iH(v) =
∑
j 6=i

vαj ∂iHj(v) + αvα−1
i Hi(v),

= 3αvα−1
i Hi(v). (4.22)

Thus (using (4.8))

〈∇H(v), πV (v)− v〉 = 3α

(∑
i

v2α−1
i (Hi(v))2

H(v)
−
∑
i

vαi Hi(v)

)
,

=
3α

H(v)

[
vh2(v)−

(
vh(v)

)2]
,

which is positive for all v ∈ Σ \ Λ. This proves that H is a strict Lyapunov function for
Φ.

Hypotheses 3.3 and 3.7 hold and there is a strict Lyapunov function for Φ. Thus by
applying Theorem 3.11 and Corollary 3.12, if H(Λ) has an empty interior, the limit set of
(vn) is a connected subset of Λ and if Λ is a finite set, then v∞ := limn→∞ vn exists and
v∞ ∈ Λ.

4.7 The vector field F and its differential.

The vector field F : Σ→ T0∆X defined in (3.2) can be written:

Fk(v) = −vk +
vαkHk(v)

H(v)
, for k ∈ X . (4.23)

The derivative of F at v ∈ Σ is a linear map DF (v) : T0∆X → T0∆X . Note that the
dimension of T0∆X is N − 1. Set ei ∈ ∆X , such that ei(j) = δi,j , for all i, j ∈ X . Then
ei − ej ∈ T0∆X and ei − v ∈ T0∆X , for all i, j ∈ X .

Lemma 4.11. For v ∈ Σ and u ∈ T0∆X , we have DuF (v) =
∑
i,j ui∂iFj(v)ej , where

∂iFj(v) =


−1 + α

vα−1
i Hi(v)

H(v) − 3αvi

(
vα−1
i Hi(v)

H(v)

)2

, when i = j,

vj

(
2α

vα−1
i vα−1

j Hi,j(v)

H(v) − 3α
vα−1
i Hi(v)

H(v)

vα−1
j Hj(v)

H(v)

)
, when i 6= j.

Proof. To calculate DuF (v), for u ∈ T0∆X , it is convenient to view F as a map defined on
RN by (4.23), and F (v) =

∑
j Fj(v)ej . Thus if u ∈ T0∆X , DuF (v) =

∑
i ui∂iF (v). Since

∂iHj(v) =

{
0, when i = j,

2αvα−1
i Hi,j(v), when i 6= j,

∂iH(v) = 3αvα−1
i Hi(v),

we get the expression of ∂iFj(v).
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4.8 Equilibriums of F when α = 1 and their stability.

Proposition 4.12. When α = 1, the equilibriums of F are the uniform probability
measures on subsets of X containing at least three vertices. Moreover, the only stable
equilibrium is the uniform probability measure on X , and any other equilibrium is
unstable.

Proof. Note that v is an equilibrium if and only if for all i ∈ Supp(v), Hi(v) = H(v). Let
v ∈ Σ be uniform on A ⊂ X . Set m = |A| ≥ 3. Then it is straightforward to check that,
for i ∈ A, Hi(v) = (m− 1)(m− 2)m−2 = H(v). Thus v is an equilibrium.

Let v be an equilibrium. Then for all i ∈ Supp(v) and j ∈ Supp(v), Hi(v) = Hj(v). For
i 6= j,

Hi(v)−Hj(v) = 2(vj − vi)
∑

k/∈{i,j}

vk.

Thus, since |Supp(v)| ≥ 3, Hi(v) = Hj(v) implies that vi = vj . This proves that v is
uniform.

Applying Lemma 4.11 with α = 1, we get that when v is an equilibrium, for
i ∈ Supp(v),

∂iFj(v) =

{
−3vi , if j = i,

vj

(
2
Hi,j(v)
H(v) − 3

)
, if j 6= i.

and for i /∈ Supp(v),

∂iFj(v) =

{
−1 + Hi(v)

H(v) , if j = i,
vj
H(v) (2Hi,j(v)− 3Hi(v)) , if j 6= i.

Since v is uniform on its support, denoting m = |Supp(v)|, vi = 1/m for all i ∈ Supp(v)

and

Hi,j(v) =


(m− 2)m−1, for i, j ∈ Supp(v) with i 6= j,

(m− 1)m−1, for i ∈ Supp(v) and j /∈ Supp(v),

1, for i, j /∈ Supp(v) with i 6= j,

Hi(v) =

{
(m− 1)(m− 2)m−2, for i ∈ Supp(v),

(m− 1)m−1, for i /∈ Supp(v),

H(v) = (m− 1)(m− 2)m−2.

Thus for i ∈ Supp(v),

∂iF (v) = −3viei +
∑
j 6=i

vj

(
2
Hi,j(v)

H(v)
− 3

)
ej ,

= −3viei −
m− 3

m− 1

∑
j 6=i

vjej ,

= −m− 3

m− 1
v − 2

m− 1
ei

and for i /∈ Supp(v),

∂iF (v) =

(
−1 +

Hi(v)

H(v)

)
ei +

∑
j∈Supp(v)

vj
H(v)

(
2Hi,j(v)− 3Hi(v)

)
ej ,

=
2

m− 2
ei −

m

m− 2
v.

EJP 23 (2018), paper 39.
Page 24/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP167
http://www.imstat.org/ejp/


VRNBW: an example of path formation

Therefore for i, j ∈ Supp(v), we have

Dei−ejF (v) = − 2

m− 1
(ei − ej)

and for i /∈ Supp(v), simple computations give

Dei−vF (v) =
2

m− 2
(ei − v).

Hence, the dimension of T0∆X being N − 1, the spectrum of DF (v) : T0∆X → T0∆X
is completely described : −2/(m− 1) is an eigenvalue of multiplicity m− 1 and 2/(m− 2)

is an eigenvalue of multiplicity N −m. When m = N , i.e. when v is uniform on X ,
−2/(m− 1) < 0 is the only eigenvalue of DF (v) and v is stable. Whereas when m < N ,
2/(m− 2) > 0 is an eigenvalue and v is unstable.

4.9 Equilibriums of F when α > 1.

Note that v ∈ Σ is an equilibrium if and only if for all i ∈ Supp(v), vα−1
i Hi(v) = H(v).

Proposition 4.13. Uniform probability measures on subsets of X containing at least
three vertices are equilibriums for F .

Proof. Let v be a uniform probability measure on a subset A of X , with m := |A| ≥ 3.
Then, for i ∈ A, vi = m−1 and vα−1

i Hi(v) = m(m − 1)(m − 2)m−3α = H(v) and v is an
equilibrium.

When α > 1, the set Λ is not explicitly described. However, it is possible to state
some properties. To this end, we introduce some notations.

Definition 4.14.

• For 1 ≤ m ≤ N , denote by µm the uniform probability measure on {1, . . . ,m}.
• For 1 ≤ k < m ≤ N , let Σk,m be the set of all pµk + (1 − p)µm ∈ Σ, such that
p ∈ (0, 1) and p/k + (1− p)/m ≤ 1/3.

• For 1 ≤ k < ` < m ≤ N , let Σk,`,m be the set of all p1µk + p2µ` + p3µm ∈ Σ, such
that pi > 0,

∑
i pi = 1 and p1/k + p2/`+ p3/m ≤ 1/3.

• Let ~Σ be the set of all v ∈ Σ such that 1/3 ≥ v1 ≥ v2 ≥ · · · ≥ vN .

Note that Σk,m ⊂ ~Σ and Σk,`,m ⊂ ~Σ, for all 1 ≤ k < ` < m ≤ N .

Remark 4.15. If v ∈ Λ is an equilibrium and σ is a permutation of {1, . . . , N}, then
v ◦ σ := (vσ(1), · · · , vσ(N)) is also an equilibrium. Hence, if v ∈ Λ, then there is a

permutation σ such that v ◦ σ ∈ Λ ∩ ~Σ.

Proposition 4.16. If v ∈ ~Σ is an equilibrium of F , then either

• v = µm, for some 3 ≤ m ≤ N ,

• or v ∈ Σk,m, for some 1 ≤ k < m ≤ N , and m ≥ 4,

• or v ∈ Σ2,3,m ∪ ∪m−2
k=1 Σ1,k+1,m, for some 1 ≤ k < m ≤ N , and m ≥ 4.

This proposition is a consequence of Lemmas 4.17 and 4.18. In the following it will
be convenient to set β := α−1

α ∈ (0, 1).

Lemma 4.17. Let v ∈ Λ. Then |{vi : i ∈ X , vi > 0}| ∈ {1, 2, 3}. Moreover |Supp(v)| ≥ 3,
and if |Supp(v)| = 3, then v is uniform on Supp(v).
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Proof. Let v ∈ Λ. Then for all i ∈ Supp(v), vα−1
i Hi(v) = H(v).

Set c1 =
∑
j v

α
j and c2 =

∑
j,k:j 6=k v

α
j v

α
k . Then, for all i,

Hi(v) = c2 − 2vαi (c1 − vαi ).

Thus, for all i, vα−1
i Hi(v) = f(vαi ) where

f(x) = xβ
[
2x2 − 2c1x+ c2

]
.

We have
f ′(x) = xβ−1

[
2(2 + β)x2 − 2(1 + β)c1x+ βc2

]
.

Set ∆ = (1 + β)2c21 − 2β(2 + β)c2. Then, when ∆ ≤ 0, f is increasing. And, when ∆ > 0,

setting x± = (1+β)c1±
√

∆
2(2+β) , f is increasing on [0, x−], decreasing on [x−, x+] and increasing

on [x+,∞).
For H > 0, set `(H) := |{x ≥ 0 : f(x) = H}|. Then, when ∆ ≤ 0, `(H) = 1. When

∆ > 0, `(H) = 1 if H 6∈ [f(x+), f(x−)], `(H) = 2 if H ∈ {f(x+), f(x−)} and `(H) = 3 if
f(x+) < H < f(x−).

Now since for all i such that vi > 0, we have f(vαi ) = H(v), this proves that |{vi :

i ∈ X , vi > 0}| ∈ {1, 2, 3}. Since v ∈ Σ, then |Supp(v)| ≥ 3. It is straightforward to
check that if |Supp(v)| = 3, then v is uniform on Supp(v) (since v ∈ Σ, max(v) ≤ 1/3 and∑
i vi = 1).

Lemma 4.18. Let v ∈ ~Σ be an equilibrium such that |{vi : i ∈ X , vi > 0}| = 3 and
|Supp(v)| = m ≥ 4. Then v ∈ Σ2,3,m ∪ ∪m−2

k=1 Σ1,k+1,m.

Proof. Suppose there is an equilibrium v ∈ Σk,`,m. Using the notation of the proof
of Lemma 4.17, we have that ∆ > 0 and f(x+) < H(v) < f(x−). Thus, there is
x1 > x2 > x3 such that f(x1) = f(x2) = f(x3) = H(v). Note that x1 > x+ and x2 > x−
so that x1 + x2 > 1+β

2+β c1. For j ∈ {1, 2, 3}, set kj = |{i : vαi = xj}|. Then k = k1,
` = k1 + k2 and m = k1 + k2 + k3. We also have that c1 > k1x1 + k2x2. Therefore,
(2 + β)(x1 + x2) > (1 + β)(k1x1 + k2x2). If k1 ≥ 2 and k2 ≥ 2, this implies that (2 + β)(x1 +

x2) > 2(1 + β)(x1 + x2). This is a contradiction. Suppose that k1 ≥ 3 and k2 = 1, then we
get (2+β)(x1 +x2) > (1+β)(3x1 +x2) > 2(1+β)(x1 +x2), which is again a contradiction.
This proves the lemma.

4.10 Stability of the equilibriums of F when α > 1

Recall that β = α−1
α . Our objective in the following sections is to prove the following

proposition.

Proposition 4.19. Suppose α > 1. Then Λ is a finite set. Moreover, if v ∈ Λ, setting
m := |Supp(v)| and βm := 2

m−1 , we have that

1. v is stable if and only if v is uniform and β < βm;

2. v is unstable if and only if v is not uniform or if β > βm.

Note that β < βm if and only if m < 3α−1
α−1 . This proposition is a consequence of

Lemmas 4.17, 4.18, Propositions 4.21, 4.23, 4.24 and 4.27.
The following lemma provides useful properties in order to study the stability of an

equilibrium. For v ∈ Σ and i ∈ X , we will use the convention Hi,i(v) = 0.

Lemma 4.20. Let v be an equilibrium. Then DF (v) is a self-adjoint operator on RN with
respect to the inner product 〈·, ·〉v defined by 〈x, y〉v =

∑
i∈X : vi>0 xiyi/vi+

∑
i∈X : vi=0 xiyi.

In particular, setting I(v) := {i : vi = 0},
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(i) DF (v) is diagonalisable and its eigenvalues are all real.

(ii) −1 is an eigenvalue with eigenspace containing v and {ei : i ∈ I(v)}.

(iii) The vector space E := {u ∈ RN :
∑
k uk = 0 and ui = 0 for all i ∈ I(v)} is stable for

DF (v) and orthogonal to the vector space spanned by v and {ei : vi = 0} for the
inner product 〈·, ·〉v.

(iv) The trace of DF (v) restricted to E is equal to m(α− 1)− (3α− 1), where m = |{i :

vi > 0}|.

Moreover, for all i, j ∈ Supp(v),

Dei−ejF (v) =
(
α− 1

)
(ei − ej) +

2α

H(v)

∑
k∈X

vαk
(
vα−1
i Hi,k(v)− vα−1

j Hj,k(v)
)
ek. (4.24)

Proof. Let v be an equilibrium. We use Lemma 4.11. Note first that if vi = 0 or if vj = 0,
then ∂iFj(v) = −δi,j . Since v is an equilibrium, when vi > 0, we have vα−1

i Hi(v) = H(v)

and thus

∂iFj(v) =

{
α− 1− 3αvi, if j = i,

vj

(
2αvα−1

i vα−1
j

Hi,j(v)
H(v) − 3α

)
, if j 6= i,

which implies that if vi > 0,

∂iF (v) = (α− 1− 3αvi)ei +
∑
j 6=i

vj

(
2αvα−1

i vα−1
j

Hi,j(v)

H(v)
− 3α

)
ej ,

= (α− 1)ei − 3αv +
2α

H(v)

∑
j

vα−1
i vαj Hi,j(v)ej

and thus (4.24) follows.
Set ai,j =

∂iFj(v)
vj

if vj > 0 and ai,j = −δi,j if vj = 0. Then A = (ai,j) is a symmetric

matrix. Let 〈·, ·〉v be the inner product on RN defined by 〈x, y〉v =
∑
i∈X : vi>0 xiyi/vi +∑

i∈X : vi=0 xiyi. Then 〈DxF (v), y〉v =
∑
i,j ai,jxiyj , and DF (v) is self-adjoint with respect

to this inner product. It is thus diagonalisable with real eigenvalues.
When vi = 0, DeiF (v) = −ei. We also have that

DvF (v) = (α− 1)v − 3αv +
2α

H(v)

∑
k

∑
j

vαj v
α
kHj,k(v)ej ,

= −v − 2αv + 2α
∑
j

vαj Hj(v)

H(v)
ej = −v.

This proves (ii). To prove (iii), note that for u ∈ E,

DuF (v) = (α− 1)u+
2α

H(v)

∑
i,j

uiv
α−1
i vαj Hi,jej

and thus 〈DuF (v), u〉v = (α − 1)〈u, u〉v + 2α
H(v)

∑
k

(∑
i 6=k uiv

α
i

)2
vαk > 0, implying that

E is stable. One also obtains that 〈DuF (v), v〉v = 〈DuF (v), ei〉v = 0, for all i ∈ I(v).
This proves (iii). To prove (iv), we have that for v an equilibrium, Trace(DF (v)) =∑

i ∂iFi(v) = m(α− 1)− 3α− (N −m) and we get (iv) since the trace of DF (v) restricted
to E is Trace(DF (v)) + (N −m+ 1) (using that N −m+ 1 is the dimension of the vector
space spanned by v and {ei : vi = 0}).
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Proposition 4.21. When α > 1, a uniform probability measure on a subset of X con-
taining m ≥ 3 vertices is stable if and only if m < 3α−1

α−1 and is unstable if and only if

m > 3α−1
α−1 .

Proof. Let v be a uniform measure on a subset of X containing m ≥ 3 vertices. Suppose
that α > 1. We have

Hi,j(v) = (m− 2)m−α, for i, j ∈ Supp(v) with i 6= j,

H(v) = m(m− 1)(m− 2)m−3α.

Using (4.24), for i, j ∈ Supp(v),

Dei−ejF (v) =

(
−1 + α

(
m− 3

m− 1

))
(ei − ej)

and, using Lemma 4.20, this completes the description of the spectrum of DF (v) : −1 is

an eigenvalue of multiplicity N −m+ 1 and −1 +α
(
m−3
m−1

)
is an eigenvalue of multiplicity

m− 1. Hence the proposition is proved.

Remark 4.22. When α > 1, uniform probability measures on subsets of X containing
exactly three vertices are always stable equilibriums.

Proposition 4.23. If v is an equilibrium such that m := |{i : vi > 0}| > 3α−1
α−1 , then v is

unstable.

Proof. It is a simple consequence of (iv) of Lemma 4.20. If m > 3α−1
α−1 , then the trace

of DF (v) restricted to E is positive (E defined in (iii) of Lemma 4.20). Thus there is a
positive eigenvalue and v is unstable.

4.10.1 Equilibriums in Σk,m and their stability

In this section, k, m and α are given such that 1 ≤ k < m ≤ N and m ≥ 4. We set
` = m− k, β = α−1

α and βm = 2
m−1 .

Proposition 4.24. There is a finite number of equilibriums in Σk,m, and all these equi-
libriums are unstable. More precisely,

(i) If k ∈ {1, 2}, then

• if β ≤ βm, there is no equilibrium in Σk,m,
• if β > βm, there is exactly one equilibrium in Σk,m.

(ii) If 3 ≤ k < m/2, then there is βk,m ∈ (βm, 1) such that

• if β ≤ βm or if β = βk,m, there is exactly one equilibrium in Σk,m,
• if βm < β < βk,m, there are exactly two equilibriums in Σk,m,
• if β > βk,m, there is no equilibrium in Σk,m.

(iii) If m/2 ≤ k < m, then

• if β < βm, there is exactly one equilibrium in Σk,m,
• if β ≥ βm, there is no equilibrium in Σk,m.

Proof. For v ∈ Σk,m, set c = vm and a = v1/vm. Note that a > 1, ac ≤ 1
3 and c = (ka+`)−1.

Then Fi(v) = F1(v) for 1 ≤ i ≤ k, Fi(v) = Fm(v) for k + 1 ≤ i ≤ m and Fi(v) = 0 for
i ≥ m+ 1, and

F1(v) = −ac+ aαK1K
−1,

Fm(v) = −c+K2K
−1,
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where

K1 = c−2αH1(v) = (k − 1)(k − 2)a2α + 2`(k − 1)aα + `(`− 1),

K2 = c−2αHm(v) = k(k − 1)a2α + 2k(`− 1)aα + (`− 1)(`− 2),

K = c−3αH(v) = kaαK1 + `K2. (4.25)

Set u := m
` (µk−µm). Then ui = k−1 for 1 ≤ i ≤ k, ui = −`−1 for k+ 1 ≤ i ≤ m and ui = 0

for i ≥ n+ 1. Then, using c = (ka+ `)−1 and (4.25),

F (v) =
k`ac

K
[aα−1K1 −K2]u. (4.26)

Set x = aα − 1. Then, K1 = (m− 1)(m− 2)B(x) and K2 = (m− 1)(m− 2)A(x) with

A(x) = 1 + 2a1x+ a1a2x
2,

B(x) = 1 + 2b1x+ b1b2x
2,

where
a1 = k

m−1 , a2 = k−1
m−2 ,

b1 = k−1
m−1 , b2 = k−2

m−2 .

Let φ be the function defined by φ(x) = log(A(x))−log(B(x))
log(1+x) . Then

F (v) = g(a)[(1 + x)β−φ(x) − 1]u, (4.27)

with g(a) = k`acK2

K . Note that g is C1 and positive on (0,∞).

The function φ is studied in the following lemma.

Lemma 4.25. We have limx→0+ φ(x) = βm, and

• If k ∈ {1, 2}, then φ is increasing, with φ′(x) > 0 for all x ∈ (0,∞), and limx→∞ φ(x) =

1.

• If k ≥ 3, then limx→∞ φ(x) = 0 and there is x1 ≥ 0 such that φ′(x) > 0 for all
x ∈ (0, x1) and φ′(x) < 0 for all x > x1. Moreover, if k < m/2, then x1 > 0 and if
k ≥ m/2, then x1 = 0.

The proof of this lemma is given in the appendix B.

Since v is an equilibrium if and only if φ(x) = β, Lemma 4.25 easily implies (i), (ii)
and (iii), taking in (iii), βk,m = max{φ(x) : x > 0}. Since Proposition 4.23 states that
equilibriums are unstable when β > βm, it thus remains to prove that for 3 ≤ k ≤ m and
β ≤ βm, the equilibrium in Σk,m is unstable.

So, we suppose 3 ≤ k ≤ m and β ≤ βm. In this case, φ′(x) < 0 for all x > x1 and
φ(x) > βm for all x ∈ (0, x1], thus there is a unique x∗ > 0 such that φ(x∗) = β. Set
a∗ = (x∗ + 1)

1
α , then v(a∗) is the equilibrium in Σk,m. Note that dv(a)

da = k`c2u and thus
that DuF (v(a)) = 1

k`c2
d
daF (v(a)). We have,

d

da
F (v(a∗)) = −αaα−1

∗ g(a∗)φ
′(x∗) log(1 + x∗)u.

Therefore, there is λ∗ > 0 such that DuF (v(a∗)) = λ∗u, and v(a∗) is an unstable equilib-
rium.
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4.10.2 Equilibriums in Σ2,3,m ∪ ∪m−2
k=1 Σ1,k+1,m and their stability

In this section, k, m and α are given such that 1 ≤ k ≤ m − 2 ≤ N and m ≥ 4. We
set ` = m − k − 1, β = α−1

α and βm = 2
m−1 . When we say that v ∈ Σ belongs, up to a

permutation of the indices, to a subset A of Σ, we mean that there is a permutation σ
such that v ◦ σ ∈ A.

Define the mapping (a, b) 7→ v(a, b) ∈ Σ by v1(a, b) = ac, vi(a, b) = bc for 2 ≤ i ≤ k + 1

and vi(a, b) = c for k + 2 ≤ i ≤ m and vi(a, b) = 0 for m + 1 ≤ i ≤ N , and where
c = (a + kb + `)−1. Note that, if c < bc < ac ≤ 1

3 , then v(a, b) ∈ Σ1,k+1,m and if
c < ac < bc ≤ 1

3 , then (up to a permutation of the indices) v(a, b) ∈ Σk,k+1,m. Denote by
Ek,m the set of all v ∈ Σ such that v = v(a, b) for some a > 1 and b > 1 with a 6= b (note
that for a > 1, v(a, a) ∈ Σk+1,m and v(a, 1) ∈ Σ1,m and that for b > 1, up to a permutation
of indices, v(1, b) ∈ Σk,m).

For v = v(a, b) ∈ Ek,m, we have Fi(v) = F2(v) for 2 ≤ i ≤ k + 1, Fi(v) = Fm(v) for
k + 2 ≤ i ≤ m and Fi(v) = 0 for m+ 1 ≤ i ≤ N , and

F1(v) = −ac+ aαK1K
−1,

F2(v) = −bc+ bαK2K
−1,

Fm(v) = −c+K3K
−1,

where K1 = c−2αH1(v), K2 = c−2αH2(v), K3 = c−2αHm(v) and K = c−3αH(v). We have

K1 = k(k − 1)b2α + 2k`bα + `(`− 1),

K2 = (k − 1)(k − 2)b2α + 2(k − 1)`bα + `(`− 1) + 2aα[(k − 1)bα + `],

K3 = k(k − 1)b2α + 2k(`− 1)bα + (`− 1)(`− 2) + 2aα[kbα + (`− 1)],

K = aαK1 + kbαK2 + `K3.

Then, v(a, b) ∈ Ek,m ∪ Σk+1,m is an equilibrium if and only if aα−1K1 = bα−1K2 = K3.
Set x = aα and y = bα. Then,


K1 = P1(y),

K2 = P2(y) + 2x[(k − 1)y + `],

K3 = P3(y) + 2x[ky + (`− 1)],

(4.28)

where

P1(y) = k(k − 1)y2 + 2k`y + `(`− 1),

P2(y) = (k − 1)(k − 2)y2 + 2(k − 1)`y + `(`− 1),

P3(y) = k(k − 1)y2 + 2k(`− 1)y + (`− 1)(`− 2).

Note that

K3 −K1 = 2(x− 1)[ky + (`− 1)], (4.29)

K3 −K2 = 2(y − 1)[x+ (k − 1)y + (`− 1)], (4.30)

K2 −K1 = 2(x− y)[(k − 1)y + `] (4.31)

and that v := v(a, b) is an equilibrium if and only if xβK1 = yβK2 = K3.

Lemma 4.26. The mapping fβ : (1,∞) → [0, β] defined by fβ(x) = xβ−1
x−1 is strictly

decreasing with limx→1 fβ(x) = β and limx→∞ fβ(x) = 0.

Proof. For x > 1, f ′β(x) = u(x)
(x−1)2 with u(x) = −(1 − β)xβ − βxβ−1 + 1. We have u′(x) =

−β(1− β)xβ−2(x− 1) < 0, and therefore u(x) < u(1) = 0. This proves that fβ is strictly
decreasing.
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Proposition 4.27.

(i) If β > βm, then there is a finite number of equilibriums in Ek,m.

(ii) If β ≤ βm, then there is no equilibrium in Ek,m.

Proof of Proposition 4.27-(i). Fix k ≥ 1 and suppose β > βm. Note that v(a, b) ∈ Ek,m ∪
Σk+1,m is an equilibrium if and only if x = f−1

β ◦ h1(y) = h2(y), where h1(y) = 2[ky+(`−1)]
P1(y)

and

h2(y) =
P3(y)− yβP2(y)

2g(y)
,

where g(y) = (k − 1)yβ+1 + `yβ − ky − (` − 1). Note that h1 : [0,∞) → R is decreasing,
with h1(1) = βm and limy→∞ h1(y) = 0, and h2(y) is defined for all y such that g(y) 6= 0.

Suppose that v(a, b) is an equilibrium not isolated in the set of equilibriums in
Ek,m ∪ Σk+1,m. Then, there is a sequence (ai, bi) converging to (a, b), such that v(ai, bi)

is an equilibrium. Set ti = bαi − y (with y = bα), then ti converges to 0 and h1(y + ti) =

fβ ◦ h2(y + ti) for all i. Note that y > 1 and y + ti > 1

Note that for all i, h1(y + ti) = h1(bαi ) < h1(1) = βm < β and h2(y + ti) = aαi > 1. The
functions t 7→ h1(y + t) and t 7→ fβ ◦ h2(y + t) are both expandable in power series, with
radius of convergence respectively r1 and r2. Note that r1 = y and that

r2 = inf{|t| : h2(y + t) = 1 or g(y + t) = 0 or |t| = y)}.

Since g(1) = 0, we have r2 ≤ y − 1. Since h1(y + ti) = fβ ◦ h2(y + ti) for all i, the two
power series coincide, and we have that h1(y + t) = fβ ◦ h2(y + t) for all t ∈ (−r2, r2).
This implies that there is y′ ∈ {y − r2, y + r2} such that g(y′) = 0 and h1(y′) = 0 or such
that h2(y′) = 0 and h1(y′) = β. Since y′ ≥ 1, we have 0 < h1(y′) < βm, this leads to a
contradiction. This shows that every equilibrium in Ek,m ∪ Σk+1,m is isolated.

It can be checked that lim supy→1+

f−1
β ◦h1(y)

h2(y) < 0 and lim supy→∞
f−1
β ◦h1(y)

h2(y) < 0. Thus
the set of equilibrium in Ek,m ∪Σk+1,m is included in a compact subset of Ek,m ∪Σk+1,m.
This permits to conclude that there is only a finite number of equilibriums in Ek,m ∪
Σk+1,m.

Proof of Proposition 4.27-(ii).
Case k = 1: In this case, m = ` + 2 and ` ≥ 2. Suppose that v(a, b) ∈ E1,m is an

equilibrium. Then, using (4.28), we have K1 = `[2y + `− 1] and K2 = `[2x+ `− 1].
Now, using (4.29), xβK1 = K3 is equivalent to fβ(x) = f(y) := 2[y+`−1]

`[2y+`−1] . Then f is

decreasing, with f(1) = 2
`+1 = βm and limy→∞ f(y) = 1

` . Therefore, if β ≤ 1
` , there is no

equilibrium in E1,m.

If `−1 ≤ β ≤ βm, let x0 > 1 be such that fβ(x0) = `−1 and define ψ : [1, x0)→ [1,∞) by
ψ = f−1 ◦ fβ. Note that ψ is increasing, with ψ(1) = f−1(β) ≥ 1 and limx→x0

ψ(x) =∞.
We have that xβK1 = K3 is equivalent to y = ψ(x) and 1 < x < x0. We also have that
yβK2 = K3 is equivalent to x = ψ(y) and 1 < y < x0.

Note that v(a, a) is an equilibrium in Σ2,m if and only if ψ(x) = x and 1 < x := aα < x0.
Proposition 4.24 shows that when β ≤ βm, there is no equilibrium in Σ2,m. Thus, ψ(x) 6= x

for all x ∈ (1, x0) and, since ψ(1) ≥ 1 and limx→x0
ψ(x)/x =∞, we have ψ(x) > x for all

x ∈ (1, x0). Now, if v(a, b) ∈ E1,m is an equilibrium, then y = ψ(x) > x = ψ(y) > y, which
is a contradiction.

Case k = 2: Note that m = ` + 3 and ` ≥ 1. Suppose that v(a, b) ∈ E2,m is an
equilibrium. Then, since k = 2, we have K1 = G(y, y) and K2 = G(x, y), where

G(x, y) = 2xy + 2`(x+ y) + `(`− 1).
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Note also that, using (4.29) and (4.30), we have K3 − K1 = 2(x − 1)[2y + ` − 1] and
K3 −K2 = 2(y − 1)[x+ y + `− 1]. Therefore, xβK1 = K3 is equivalent to fβ(x) = Φ(y, y)

and yβK2 = K3 is equivalent to fβ(y) = Φ(x, y), where

Φ(x, y) =
2[x+ y + `− 1]

2xy + 2`(x+ y) + `(`− 1)
.

Note that Φ(x, y) = Φ(y, x) and that x 7→ Φ(x, y) is decreasing, with Φ(1, y) = 2(y+`)
(`+1)(2y+`)

and limx→∞Φ(x, y) = 1
y+` . This implies that y 7→ Φ(y, y) is also decreasing, with Φ(1, 1) =

2
`+2 = βm and limy→∞Φ(y, y) = 0.

Note that if for x > 1, we have Φ(x, x) = fβ(x), then v(a, a) (with a = x
1
α ), which (up to

a permutation of indices) belongs to Σ3,m, is an equilibrium. Proposition 4.24 states that
there is exactly one such equilibrium when β < βm or when β = βm and m > 6, and that
there is no such equilibrium when β = βm and m ≤ 6. Since limx→∞Φ(x, x)/fβ(x) = 0,
when β ≤ βm, there is x∗ ≥ 1 (with x∗ = 1 only when β = βm and m ≤ 6) such that
Φ(x, x) > fβ(x) if x < x∗ and Φ(x, x) < fβ(x) if x > x∗.

Note that if for y > 1, we have Φ(1, y) = fβ(y), then v(1, y
1
α ) is an equilibrium, which

(up to a permutation of indices) belongs to Σ2,m. Proposition 4.24 states that there is no
such equilibrium when β ≤ βm. This implies that for all y > 1, Φ(1, y) > fβ(y).

A first consequence of these facts is that there is an increasing continuous function
ψ1 : [1,∞)→ [1,∞), such that if fβ(x) = Φ(y, y) then y = ψ1(x). Using that ψ1(x∗) = x∗,
that ψ1 is increasing and that y 7→ Φ(y, y) is decreasing we have that : if x ∈ (1, x∗), then
Φ(x, x) > fβ(x) = Φ(ψ1(x), ψ1(x)) and x < ψ1(x) < x∗; if x > x∗, then Φ(x, x) < fβ(x) =

Φ(ψ1(x), ψ1(x)) and x∗ < ψ1(x) < x.
A second consequence is that for all y ≥ 1 such that (y+ `)−1 < fβ(y) ≤ Φ(1, y), there

is a unique x = ψ2(y) ≥ 1 such that fβ(y) = Φ(x, y). Moreover, ψ2(y) > y if 1 < y < x∗
and ψ2(y) < y if y > x∗.

Therefore, if v(a, b) ∈ E2,m is an equilibrium, then ψ1(x) = y, ψ2(y) = x and x 6= y. If
1 < x < x∗, then y = ψ1(x) ∈ (x, x∗) and thus x = ψ2(y) > y, which is a contradiction. If
x > x∗, then y = ψ1(x) ∈ (x∗, x) and thus x = ψ2(y) < y, which is again a contradiction.

Case k ≥ 3: By Lemma 4.18, we have that if v ∈ Ek,m is an equilibrium, then v ∈
Σ1,k+1,m. Recall that m = k + `+ 1 and that βm = 2

m−1 = 2
k+` . Let v = v(a, b) ∈ Σ1,k+1,m.

Set again x = aα and y = bα. Then x > y > 1. If v is an equilibrium, then xβK1 = yβK2.
Using (4.31), we thus have

xβ − yβ

x− y
=

2yβ [(k − 1)y + `]

K1
.

When x > y, xβ−yβ
x−y = fβ(x/y)yβ−1 < βyβ−1 and we thus have f(y) := 2y[(k−1)y+`]

P1(y) < β.

Now, y 7→ f(y) is increasing on [1,∞), with f(1) = 2
k+` = βm ≥ β, which gives a

contradiction.

4.11 Proof of Theorem 1.2

In the previous sections, we have shown that there is a Lyapounov function, that
there is a finite number of equilibriums and characterized the stable equilibriums (see
Proposition 4.19). Therefore, to prove Theorem 1.2, we will apply Corollary 3.12,
Theorem 3.22 and Theorem 3.27.

4.11.1 Convergence towards stable equilibriums

Proposition 4.28. Uniform probability measures on subsets of X containing m ≥ 3

vertices are attainable.
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Proof. Let v be a uniform measure on A ⊂ X with m := |A| ≥ 3. To prove that v is
attainable, we remark that with positive probability, the walk X remains in A and visits
the m vertices of A uniformly and always in the same order. Let us write this more
precisely.

Without loss of generality, we suppose that A = {1, . . . ,m}. Let (xn)n∈N be a sequence
of vertices, such that for all integer n ≥ 1 and all vertex i ∈ {1, . . . ,m}, xnm+i = i. Denote
Ωn = {∀q ≤ nm,Xq = xq}, the event, where during the nm + 1 first steps X stays on
{1, . . . ,m} and visits the m vertices always in the order (1, 2, · · · ,m, 1, · · · ). Note that for
all n ≥ 1, P(Ωn) > 0. Indeed,

P(Ωn) = P (v0)(X0, 1)

n−1∏
q=0

m−1∏
i=1

P (vmq+i)(i, i+ 1)

n−1∏
q=1

P (vmq)(i, 1).

Since G is a complete graph and vn(i) > 0 for all n ≥ 1 and i ∈ {1, . . . ,m}, we have
P (vn)(i, j) > 0, for all n ≥ 1 and all i, j ∈ {1, . . . ,m}, such that i 6= j.

On the event Ωn, it holds that

‖vnm − v‖ = max

(∣∣∣∣ n+ 1

N + nm
− 1

m

∣∣∣∣ , 1

N + nm

)
≤ N

m2n
.

Thus for all ε > 0 and n0 ∈ N, there exits n1 ≥ n0/m, such that on Ωn1 , ‖vn1m − v‖ < ε.
Therefore, P(∃n ≥ n0, ‖vn − v‖ < ε) ≥ P(Ωn1

) > 0.

Theorem 3.22 implies the following statements: when α = 1, vn has a positive proba-
bility to converge towards the uniform probability measure on X (see Proposition 4.12).
When α > 1, vn has a positive probability to converge towards a uniform probability
measure on a set containing less than 3α−1

α−1 vertices (see Proposition 4.21).

4.11.2 Localization on the supports of stable equilibrium

Following [4], we prove that for v a stable equilibrium, on the event {limn→∞ vn = v},
the walk Xn localizes almost surely on Supp(v), i.e. the set of infinitely often visited
vertices by Xn is Supp(v).

Proposition 4.29. Let v be a stable equilibrium, then on the event {limn→∞ vn = v},
the set X \ Supp(v) is visited almost surely only finitely many times.

This proposition is a consequence of the two following lemmas:

Lemma 4.30. There exists ν > 0 such that, a.s. on the event {limn→∞ vn = v},

lim
n→∞

nν ‖vn − v‖ = 0.

Lemma 4.31. For any I ⊆ X and ν ∈ (0, 1), a.s. on the event

Eν := { lim
n→∞

vn(i)nν = 0,∀i ∈ I},

the set I is visited only finitely many times.

We do not give the proofs of the two previous lemmas here. They can be proved
following the lines of the proofs of Lemma 3.13 and Lemma 3.14 of [4]. In the proof of
Lemma 4.30, the random sequence zn to be used is defined in the proof of Theorem 3.27.
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4.11.3 Non convergence towards an unstable equilibrium

Let v∗ be an unstable equilibrium. Then, due to Proposition 4.21, v∗ 6∈ Σ3. In this section,
it is shown that a.s., vn does not converge towards v∗.

Let f∗ an unstable direction of v∗. Recall that Mind is the set of indecomposable
Markov matrices on ~E . Since P : Σ \ Σ3 →Mind is C1, we have that v 7→ Q(v)V is well
defined and C1 on Σ \ Σ3 and thus Hypothesis 3.26-(1) holds for v∗.

Recall the definitions of A, Ai, Ai,j and R∗ given in Section 3.4.2, that π1 and π2

denote the marginals of π(v∗) and that, v∗ being an equilibrium, πV (v∗) = v∗.

Remark 4.32. The graph G being complete, the way P (v∗) has been defined and the
fact that πV (v∗) = v∗ 6∈ Σ3 imply that A = Supp(v∗), Ai,j = A \ {i, j}, R∗ = {(i, j) ∈
A×A : i 6= j} and Ai = A \ {i}, for all (i, j) ∈ ~E .

By using Remark 4.32 and the fact that |Supp(v∗)| ≥ 4, Hypothesis 3.26-(2) holds.

Lemma 4.33. Hypothesis 3.26-(3) holds.

Proof. Suppose that there exist a constant C and a map g : A → R such that

V f∗(i, j) = C + g(i)− g(j), for all (i, j) ∈ R∗.

Calculate for (i, j) ∈ R∗,

V f∗(i, j) =
∑
k

V ((i, j), k)f∗(k) =
∑
k

δj(k)f∗(k) = f∗(j).

Thus for all (i, j) ∈ A×A with i 6= j, f∗(j) = C+g(i)−g(j). This implies that g is constant
on A and thus that f∗ is constant. Since f∗ ∈ T0∆X ,

∑
i∈X f∗(i) = 0. Therefore f∗(i) = 0

for all i ∈ A, which is impossible.

This last lemma ends the proof of Theorem 1.2. Indeed, Hypotheses 3.26 are satisfied
and Theorem 3.27 can be applied.

A Corollary 3.IV.15 of [10]

Let z∗ ∈ Rd and F : Rd → Rd be a vector field on Rd. Suppose that F (z∗) = 0

and that there is Ω a neighborhood of z∗ such that F is differentiable on Ω and that
z 7→ DF (z) is Lipschitz on Ω. Denote respectively by K+ and K− the vector spaces of
unstable directions and non-unstable directions of DF (z∗). For ε ∈ Rd, denote by ε(r) the
projection of ε onto K+, parallel to K−.

Corollary 3.IV.15 in [10] Let (zn)n≥0 be a stochastic algorithm with values in Rd,
adapted to a filtration (Fn)n≥0, such that, for n ≥ 0

zn+1 − zn = γnF (zn) + cn[εn+1 + rn+1], (A.1)

with (γn)n≥0 and (cn)n≥0 two deterministic sequences such that

γn = O(cn),
∑
n≥0

γn =∞ and
∑
n≥0

c2n <∞

and such that cn+1/cn and γn+1/γn converge to 1 as n→∞.
Denote by Γ(z∗) the event {zn → z∗}. We suppose that there is a > 2 such that, a.s.

on Γ(z∗), ∑
n≥0

‖rn‖2 <∞, sup
n≥0

E[‖εn+1‖a|Fn] <∞ and E[εn+1|Fn] = 0.
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We also suppose that there is p ≥ 1 such that a.s. on Γ(z∗),

lim inf
n→∞

E

 p∑
j=1

‖ε(r)n+j‖
2

∣∣∣∣∣∣Fn
 > 0. (A.2)

Then P(zn → z∗) = 0.

B Proof of Lemma 4.25

It is easy to check that limx→0+ φ(x) = βm and that limx→∞ φ(x) =

{
1 if k ∈ {1, 2}
0 if k ≥ 3

.

Case k = 1: In this case, φ(x) = log(1+βmx)
log(1+x) . We have

φ′(x) =
βmψ(x)

(1 + x)(1 + βmx)(log(1 + x))2
,

where ψ(x) := (1+x)log(1 + x)− 1+βmx
βm

log(1+βmx). We have ψ′(x) = log(1 + x)− log(1+

βmx) and ψ(0) = 0. Since βm ≤ 2/3 < 1, φ is increasing.
Preliminary for case k ≥ 2: Suppose now k ≥ 2. Set s = (m−2)−1 and t = (k−1)−1.

Then 0 < s ≤ t ≤ 1. Set Φ(y) = φ(y/b1). Then

Φ(y) =
logP (y)− logQ(y)

log(1 + λy)
, (B.1)

where λ = (s−1 + 1)t = 1/b1 and

P (y) = 1 + 2(1 + t)y + (1 + t)(1 + s)y2,

Q(y) = 1 + 2y + (1− t)(1 + s)y2.

Set u(y) = logP (y)− logQ(y). Since 0 ≤ s ≤ t ≤ 1, u(y) > 0 for all y > 0. Moreover

Φ′(y) =
v(y)

(1 + λy)(log(1 + λy))2
,

where v(y) = (1 + λy) log(1 + λy)u′(y)− λu(y). Note that

v′(y) = log(1 + λy)[(1 + λy)u′]′(y).

Therefore v′(y) > 0 if and only if d
dy

[
(1 + λy)u′(y)

]−1
< 0. Set

R(y) = 1 + 2(1 + s)y + (1 + s)(1 + t)y2.

Then u′(y) = 2t RPQ (y) and thus v′(y) > 0 if and only if q(y) < 0, where

q(y) = (1 + λy)2 d

dy

PQ(y)

(1 + λy)R(y)
.

Set P0 = P −R and Q0 = R−Q, then

P0(y) = 2(t− s)y ,
Q0(y) = 2sy + 2(1 + s)ty2 = 2sy(1 + λy).

Since PQ = PR− PQ0 = PR−RQ0 − P0Q0, we get q(y) = q1(y)− q2(y), where

q1(y) = (1 + λy)2 d

dy

(P −Q0)(y)

(1 + λy)
,

q2(y) = (1 + λy)2 d

dy

P0Q0(y)

(1 + λy)R(y)
.
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Computing q1 and q2 gives :

q1(y) = (2− t/s)(1− s) + (1− t)(1 + s)y(2 + λy),

q2(y) = 8(t− s)s× 1 + (1 + s)y

R2(y)
× y(1 + λy)2.

Case k = 2: In this case, we have t = 1 and s ≤ 1/2. Therefore, q1(y) = (2− 1/s)(1−
s) ≤ 0. Since q2(y) > 0, we get q(y) < 0. This shows that v′(y) > 0 for all y > 0. Since
v(0) = 0, v(y) > 0 for all y > 0 and therefore Φ (and hence φ) is increasing on (0,∞).

Case k ≥ 3: We now suppose k ≥ 3.

Lemma B.1. For all 0 < s < t ≤ 1/2, q is a strictly convex function on (0,∞).

This lemma is proved at the end of this section.
We have that q′1(0) = 2(1 − t)(1 + s), q′2(0) = 8(t − s)s, and thus q′(0) = 2(1 − t)(1 +

s) − 8(t − s)s. Since 0 < s < t ≤ 1/2, q′(0) > 0 and q is increasing on R+. Note that
q(0) = (2− t/s)(1− s).

When k ≥ m/2, then s ≥ t/2 and q(0) ≥ 0. We thus have q(y) > 0 for all y > 0 and as
a consequence v′(y) < 0 for all y > 0. Since v(0) = 0, this proves that Φ′(y) < 0 for all
y > 0. And Lemma 4.25 is proved in this case.

When k < m/2, then s < t/2 and q(0) < 0. Since q is convex and since limy→∞ q(y) =

+∞, there is y0 such that q(y) < 0 if y < y0 and q(y) > 0 if y > y0. Thus v is increasing
on (0, y0) and decreasing on (y0,∞). Since v(0) = 0 and limy→∞ v(y) < 0, there exists
y1 > y0 such that v(y) > 0 on (0, y1) and v(y) < 0 on (y1,∞). And Lemma 4.25 is also
proved in this case.

Proof of Lemma B.1. Firstly, we have for all y > 0,

q′′1 (y) = 2(1− t)(1 + s)2(t/s) > 0.

We now upperbound q′′2 (y) for all y > 0. Set z = (1 + s)y, c = t/s, d = (1 + t)/(1 + s),
D(z) = 1 + 2z + dz2 and

Q(z) =
z(1 + z)(1 + cz)2

D2(z)
.

Then q2(y) = 8(t−s)s
1+s × Q((1 + s)y) and q′′2 (y) = 8(t − s)s(1 + s)Q′′(z). Set L(z) =

4(t − s)s2(1 + s)−1Q′′(z)D4(z). Then q′′2 (y) < q′′1 (y) for all y > 0 as soon as L(z) <

t(1− t)D4(z) for all z ≥ 0. Computing Q′′(z), we get that L is a polynomial of degree 5 :
L(z) =

∑5
i=0 `iz

i, with

`0 = 8s(t− s)(2t− 3s)/(1 + s),

`1 = 8(t− s)(3t2 − (2− 3t)st− (6 + 8t)s2)/(1 + s)2,

`2 = 16t(t− s)(3t− (8 + 5t)s)/(1 + s)2,

`3 = −16(t− s)(4t3 + 4st(2 + t+ t2)− s2(3− 2t− t2))/(1 + s)3,

`4 = −8(t− s)(6t2 + 10t3 + 2st(1− t+ 2t2)− s2(3− 2t− t2))/(1 + s)3,

`5 = −8t(t+ 1)(t− s)(3t− 2s+ 2st− t2)/(1 + s)3.

Using 0 < s ≤ t ≤ 1/2, it is easy to check that `3 ≤ 0, `4 ≤ 0 and `5 ≤ 0. Since
2− 3t ≥ 0, we thus get

L(z) ≤ 8s(t− s)(2t− 3s)

(1 + s)
+

24t2(t− s)
(1 + s)2

(z + 2z2),

≤ 24t2(t− s)
(1 + s)2

(
s(2t− 3s)(1 + s)

3t2
+ z + 2z2

)
.
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Set d(t, u) := 1+t
1+tu , h1(t, u) := 1−u

(1+tu)2 and h2(t, u) := u(2−3u)(1+tu)
3 . Thus, setting also

u = s/t ∈ (0, 1],

L(z) ≤ 24t3h1(t, u)
(
h2(t, u) + z + 2z2

)
.

In the following, d(t, u), h1(t, u) and h2(t, u) will simply be denoted by d, h1 and h2.
For all z > 0,

D4(z) > 1 + 8z + (4d+ 24)z2.

Thus, if for all z ≥ 0,

1 + 8z + (4d+ 24)z2 ≥ 12h1(h2 + z + 2z2), (B.2)

then for all z > 0,

D4(z) > 12h1(h2 + z + 2z2).

Let us now prove that (B.2) holds for all z ≥ 0. Note that this is equivalent to show that
for all z ≥ 0,

(1− 12h1h2) + 4(2− 3h1)z + 4(d+ 6− 6h1)z2 ≥ 0. (B.3)

Note that 12h1h2 ≤ 1 (since (1−12h1h2)(t, u) ≥ (1−12h1h2)(0, u) = 1−8u+20u2−12u3 > 0

for all u ∈ [0, 1]). Thus (B.3) is satisfied for all z ≥ 0 as soon as 2− 3h1 ≥ 0 or as soon as
(2− 3h1)2 ≤ (1− 12h1h2)(d+ 6− 6h1).

If u ≥ ut := 2
(√

3
√

3 + 8t+ 8t2 + 3 + 4t
)−1

, then 2− 3h1 ≥ 0 and (B.2) is satisfied.
Suppose now that u < ut. Then (2− 3h1)2 ≤ (1− 12h1h2)(d + 6 − 6h1) if and only if

G(t, u) ≥ 0, where

G(t, u) :=
(
(1− 12h1h2)(d+ 6− 6h1)− (2− 3h1)2

)
× (1 + tu)4,

= 4u− 37u2 + 108u3 − 72u4

+ t(1 + 15u− 104u2 + 220u3 − 48u4 − 72u5)

+ t2(3u+ 5u2 − 118u3 + 356u4 − 228u5)

+ t3(3u2 + u3 − 28u4 + 108u5 − 72u6)

+ t4u3(1 + 2u).

Using the fact that ut ≤ 1/3, we have, for any u < ut,

G(t, u) ≥ u(4− 37u+ 108u2 − 72u3)

+ t(1 + 15u− 104u2 + 196u3)

+ t2u(3 + 5u− 118u2 + 280u3)

+ t3u2(3 + u− 28u2 + 84u3)

+ t4u3(1 + 2u).

We check that each of the 5 terms lowerbounding G(t, u) are positive for all u ∈ (0, 1/3].
We have thus proved that (2− 3h1)2 ≤ (1− 12h1h2)(d+ 6− 6h1) for all u ∈ [0, ut]. And as
a consequence that (B.2) holds for all z ≥ 0.

We can now show that q is strictly convex. Inequality (B.2) implies that L(z) <

2t3D4(z). In order to show that q′′2 < q′′1 , it just remains to remark that 2t3 ≤ t(1− t) for
all t ≤ 1/2. Therefore q is strictly convex.
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