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Abstract

We give the asymptotics of the tail of the distribution of the first exit time of the
isotropic α-stable Lévy process from the Lipschitz cone in Rd. We obtain the Yaglom
limit for the killed stable process in the cone. We construct and estimate entrance
laws for the process from the vertex into the cone. For the symmetric Cauchy process
and the positive half-line we give a spectral representation of the Yaglom limit.
Our approach relies on the scalings of the stable process and the cone, which allow us
to express the temporal asymptotics of the distribution of the process at infinity by
means of the spatial asymptotics of harmonic functions of the process at the vertex; on
the representation of the probability of survival of the process in the cone as a Green
potential; and on the approximate factorization of the heat kernel of the cone, which
secures compactness and yields a limiting (Yaglom) measure by means of Prokhorov’s
theorem.
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Yaglom limit for stable processes in cones

1 Introduction

Let 0 < α < 2, d = 1, 2, . . ., and let X = {Xt, t ≥ 0} be the isotropic α-stable Lévy
process in Rd. We denote by Px and Ex the probability and expectation for the process
starting from any x ∈ Rd, see Section 2 for details. Let Γ ⊂ Rd be an arbitrary Lipschitz
cone with vertex at the origin 0. We define

τΓ = inf{t > 0 : Xt /∈ Γ} , (1.1)

the time of the first exit of X from Γ. The following measure µ will be called the Yaglom
limit for X and Γ.

Theorem 1.1. There is a probability measure µ concentrated on Γ such that for every
Borel set A ⊂ Rd,

lim
t→∞

Px

(
Xt

t1/α
∈ A

∣∣τΓ > t

)
= µ(A) , x ∈ Γ . (1.2)

The above condition τΓ > t means that X stays, or survives, in Γ for time longer
than t. Theorem 1.1 asserts that, given its survival, Xt rescaled by t1/α has a limiting
distribution independent of the starting point. We note that rescaling is essential for the
limit to be nontrivial. The Yaglom limit µ corresponds with the idea of ’quasi-stationarity’,
as expressed by Bartlett [6]:

It still may happen that the time to extinction is so long that it is still of
more relevance to consider the effectively ultimate distribution (called a
quasi-stationary distribution) [...]

Namely, µ is a quasi-stationary distribution for (t+ 1)−1/αXt in the following sense.

Proposition 1.2. Let Pµ(·) =
∫

Γ
Py(·)µ(dy). For every Borel set A ⊂ Rd,

Pµ

(
Xt

(t+ 1)1/α
∈ A

∣∣τΓ > t

)
= µ(A) , t ≥ 0 . (1.3)

Note that Yt = (t+ 1)−1/αXt is a time-inhomogenous Markov process and under Pµ,
the law of Y0 is µ.

This is the first paper where the Yaglom limit is identified for the multi-dimensional
α-stable Lévy processes. For the one-dimensional self-similar processes, including the
symmetric α-stable Lévy process in the one-dimensional cone Γ = (0,∞), Yaglom limits
similar to (1.2), and also using rescaling, were given by Haas and Rivero [47]. Their
proofs rely on precise estimates for the tail distribution of exponential functionals of
non-increasing Lévy processes and are completely different from ours. As we will
see below, the Yaglom limit may be obtained from the asymptotics (i.e. limits) of the
survival probability Px(τΓ > t). We note that such asymptotics were studied for the
multi-dimensional Brownian motion by DeBlassie [40]. Bañuelos and Smits [5] gave the
asymptotics of the heat kernel of the cone in terms of the orthonormal eigenfunctions of
the Laplace-Beltrami operator on the cone’s spherical cap. Denisov and Wachtel [43]
derived a result similar to Theorem 1.1 for multidimensional random walks by using
coupling with the Brownian motion. The tail distribution of τΓ for the isotropic α-stable
Lévy process and wedges Γ ⊂ R2 was estimated by DeBlassie [41]. Bañuelos and Bogdan
[3] also provided estimates but not asymptotics for general cones in Rd. They used
the boundary Harnack principle (BHP), which turns out to be very useful also in our
situation, because it, in fact, yields the asymptotics of the survival probability Px(τΓ > 1)

for x→ 0, as we show below. These asymptotics are given in Theorem 3.1, and they lead
to Theorem 1.1, to sharp estimates for the density function of the Yaglom limit µ, and to
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Yaglom limit for stable processes in cones

the existence and estimates of laws of excursions of the stable process from the vertex
into the cone, which we give in Theorem 3.3.

Information on quasi-stationary (QS) distributions for time-homogeneous Markov
processes can be found in the classical works of Seneta and Vere-Jones [72], Tweedie [77],
Jacka and Roberts [50]. The bibliographic database of Pollet [70] gives detailed history
of QS distributions. In particular, Yaglom [79] was the first to explicitly identify QS
distributions for the subcritical Bienaymé-Galton-Watson branching process. Part of the
results on QS distributions concern Markov chains on positive integers with an absorbing
state at the origin [38, 44, 46, 72, 78, 82]. Other objects of study are the extinction
probabilities for continuous-time branching process and the Fleming-Viot process [1, 45,
65]. A separate topic is the one-dimensional Lévy processes exiting from the positive
half-line. Here the case of the Brownian motion with drift was resolved by Martinez and
San Martin [67], complementing the result for random walks obtained by Iglehart [48].
The case of jump Lévy processes was studied by E. Kyprianou [64], A. Kyprianou and
Palmowski [63] and Mandjes et al. [66]. These papers are based on the Wiener-Hopf
factorization and Tauberian theorems. They are intrinsically one-dimensional and they
do not use the boundary asymptotics of harmonic functions or rescaling to obtain the
limiting distribution. We also note in passing that these results relate to the behavior of
the one-dimensional Lévy processes and random walks conditioned to stay positive, for
which we refer the reader to Bertoin [10], Bertoin and Doney [9], and Chaumont and
Doney [33].

On a general level our development depends on a compactness argument based on
recent sharp estimates of the heat kernel of cones and on a formula expressing the
survival probability Px(τΓ > t) as a Green potential. The latter allows us to obtain the
spatial asymptotics of the survival probability at the vertex of the cone Γ in terms of the
cone’s Martin kernel with the pole at infinity, and is a consequence of BHP. By scaling we
then obtain the asymptotics of the survival probability as t→∞. The construction allows
for the identification of the limiting boundary behavior of the heat kernel at the vertex of
the cone. Such asymptotics are completely new, and may be regarded as a culmination
of the study of the Dirichlet fractional Laplacian, which started with boundary estimates
and asymptotics of harmonic functions, developed into estimates and asymptotics of the
Green function, gave the Martin representation of harmonic functions, and resolved into
sharp estimates of the heat kernel. The development was initiated by Bogdan [18] and
Song and Wu [74] with proofs of BHP for the fractional Laplacian. Then Jakubowski
[52] gave sharp estimates of the Green function. Bogdan et al. [27] gave the boundary
limits of ratios of harmonic functions and Bogdan et al. [23] gave sharp estimates of
the Dirichlet heat kernel. Related works on the Dirichlet problem in cones are given
by DeBlassie [41], Kulczycki [57], Kulczycki and Burdzy [31], Méndez-Hernández [68],
Bogdan and Jakubowski [25], Michalik [69], Kulczycki and Siudeja [59], and Bogdan and
Grzywny [22]. For smooth domains we refer to the pioneering works by Kulczycki [56],
Song and Chen [36] and Kim et al. [53, 54]. Historically, the results for cones often
preceded and informed generalizations to Lipschitz and arbitrary open sets. We expect
similar generalizations for the asymptotics of heat kernels. The present paper only
resolves the asymptotics of the heat kernel of the fractional Laplacian in the Lipschitz
cone at the vertex, so there is much more work left to do.

The paper is organized as follows. In Section 2 we give basic notation and facts. In
Section 3 we present our main results, which complement Theorem 1.1 and Proposi-
tion 1.2. Most of the proofs are given in Section 4. In Section 5 we discuss in detail
the Cauchy process on the positive half-line and we give a spectral decomposition of its
Yaglom limit.
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2 Preliminaries

As defined in the introduction, X = {Xt, t > 0} is the isotropic α-stable Lévy process
on the Euclidean space Rd. The process is determined by the jump measure with the
density function

ν(y) =
2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|
|y|−d−α , y ∈ Rd , (2.1)

where 0 < α < 2, d = 1, 2, . . .. The coefficient in (2.1) is chosen so that∫
Rd

[1− cos(ξ · y)] ν(y)dy = |ξ|α , ξ ∈ Rd , (2.2)

for convenience. Here ξ · y is the Euclidean scalar product and |ξ| is the Euclidean norm.
We always assume in this paper that the considered sets, measures and functions are
Borel. The process X is Markovian with the following time-homogeneous transition
probability

Pt(x,A) =

∫
A

pt(x, y)dy , t > 0 , x ∈ Rd , A ⊂ Rd,

where pt(x, y) := pt(x − y) and pt is the smooth real-valued function on Rd with the
Fourier transform: ∫

Rd
pt(x)eix·ξ dx = e−t|ξ|

α

, ξ ∈ Rd . (2.3)

In particular, if α = 1, then X is a Cauchy process, and we have

pt(x) = Γ((d+ 1)/2)π−(d+1)/2 t(
|x|2 + t2)(d+1)/2

,

see [21, 75]. For every α ∈ (0, 2), the infinitesimal generator of X is the fractional
Laplacian,

∆α/2ϕ(x) = lim
ε↓0

∫
|y|>ε

[ϕ(x+ y)− ϕ(x)] ν(y)dy , x ∈ Rd , (2.4)

defined at least on smooth compactly supported functions φ ∈ C∞c (Rd), cf. [8, 19, 21, 30,
51, 71, 81, 60]. The following scaling property is a consequence of (2.3),

pt(x) = t−d/αp1(t−1/αx) , x ∈ Rd , t > 0 . (2.5)

Furthermore,

c−1

(
t

|x|d+α
∧ t−d/α

)
≤ pt(x) ≤ c

(
t

|x|d+α
∧ t−d/α

)
, x ∈ Rd , t > 0 , (2.6)

see [11, 24, 30] for the explicit constant c. Below we will use the notation f ≈ g when
functions f , g ≥ 0 are comparable i.e. their ratio is bounded between two positive
constants (uniformly on the whole domain of the functions). In particular we can rewrite
(2.6) as follows:

pt(x) ≈ t−d/α ∧ t

|x|d+α
, x ∈ Rd , t > 0 . (2.7)

We will also write lim f(x)/g(x) = 1 as f(x) ∼ g(x).
As stated, Γ denotes a generalized Lipschitz cone in Rd with vertex 0, that is, an

open Lipschitz set Γ ⊂ Rd such that 0 ∈ ∂Γ, and if y ∈ Γ and r > 0 then ry ∈ Γ.
Recall that an open set D ⊂ Rd is called Lipschitz if there exist R > 0 and Λ > 0 such
that for every Q ∈ ∂D, there exist a Lipschitz function φQ: Rd−1 → R with Lipschitz
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constant not greater than Λ and an orthonormal coordinate system CSQ such that if
y = (y1, . . . , yd−1, yd) in CSQ coordinates, then

D ∩B(Q,R) = {y : yd > φQ(y1, . . . , yd−1)} ∩B(Q,R) ,

where B(Q,R) = {z ∈ Rd : |z −Q| < R}, the Euclidean ball of radius R centered at Q.
We note that the trivial cones Γ = Rd and Γ = ∅ are excluded from our considerations
because we require 0 ∈ ∂Γ, and the Lipschitz condition excludes, e.g., Rd \ {0}. In
particular for d = 1, Γ is necessarily a half-line. We note that the cone Γ is characterized
by its intersection with the unit sphere Sd−1 = {x ∈ Rd : |x| = 1}.

The first exit time from Γ, as defined in (1.1), yields the heat kernel pΓ
t (x, y) of the

cone,
pΓ
t (x, y) := pt(x, y)− Ex[τΓ < t; pt−τΓ(XτΓ , y)], x , y ∈ Rd, t > 0 , (2.8)

where Ex[τΓ < t; pt−τΓ(XτΓ , y)] =
∫

{τΓ<t}
pt−τΓ(XτΓ , y)dPx. For bounded or nonnegative

functions f we have

PΓ
t f(x) := Ex[f(XΓ

t )] = Ex[τΓ < t; f(Xt)] =

∫
Rd
f(y)pΓ

t (x, y)dy ,

cf. [37, Section 2]. We also note that

0 ≤ pΓ
t (x, y) = pΓ

t (y, x) ≤ pt(y − x) , (2.9)

and pΓ satisfies the Chapman-Kolmogorov equations:∫
pΓ
s (x, y)pΓ

t (y, z)dy = pΓ
t+s(x, z), s , t > 0 , x , z ∈ Rd , (2.10)

see, e.g., [19, 16, 34]. Since Γ is Lipschitz, by the exterior cone condition and Blumenthal
0-1 law, Px(τΓ = 0) = 0 if x ∈ Γc, in particular pΓ

t (x, y) = 0 whenever x or y are outside
of Γ. We note that

Px(τΓ > t) =

∫
Γ

pΓ
t (x, y)dy . (2.11)

According to (2.5) and the fact that t−1/αΓ = Γ, the following scaling property holds:

pΓ
t (x, y) = t−d/αpΓ

1 (t−1/αx, t−1/αy) , x , y ∈ Rd , t > 0 . (2.12)

By (2.11), a similar scaling holds for the survival probability:

Px(τΓ > t) = Pt−1/αx(τΓ > 1).

We define the Green function of Γ:

GΓ(x, y) =

∫ ∞
0

pΓ
t (x, y)dt, x , y ∈ Rd ,

and the Green operator:

GΓf(x) =

∫
Γ

GΓ(x, y)f(y) dy ,

for integrable or nonnegative functions f . By (2.10),

PΓ
t (GΓ(·, y)) (x) ≤ GΓ(x, y) , t > 0 , x , y ∈ Rd . (2.13)

We should note that GΓ is always locally integrable because Γ 6= R and Γ 6= R \ {0}, cf.
[17].
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Yaglom limit for stable processes in cones

For r ∈ (0,∞) we let Br = {|x| < r} and we define the truncated cone

Γr = Γ ∩Br .

By the strong Markov property, for t > 0 and x, y ∈ Rd,

pΓ
t (x, y) = pΓr

t (x, y) + Ex

[
τΓr < t; pΓ

t−τΓr (XτΓr
, y)
]
. (2.14)

Integrating the above identity against dt (see [27, eq. (15)]), we obtain

GΓ(x, y) = GΓr (x, y) + Ex
[
GΓ(XτΓr

, y)
]
. (2.15)

In particular, x → GΓ(x, y) is regular α-harmonic on Γr if |y| > r. We recall that a
function u : Rd → R is called regular harmonic with respect to X on an open set Γ ⊂ Rd
if

u(x) = Ex [τΓ <∞; u(XτΓ)] , x ∈ Γ ,

where we assume that the expectation is finite.
Two more facts are crucial in our development. First, if I ⊂ (0,∞) and A ⊂ Γ,

B ⊂ (Γ)c, then

Px[τΓ ∈ I, XτΓ− ∈ A, XτΓ ∈ B] =

∫
I

∫
B−y

∫
A

pΓ
u(x,dy)ν(z)dzdu . (2.16)

This identity is called the Ikeda-Watanabe formula [49], and gives the joint distribution
of (τΓ, XτΓ−, XτΓ), see also [4, Lemma 1], [15], [35, Appendix A], [42, VII.68] or [73,
Theorem 2.4].

Second, we use the following boundary Harnack principle (BHP) from Bogdan [18]:
There is a constant C = C(Γ, α) > 0 such that if r > 0 and functions u, v ≥ 0 are regular
harmonic in Γ2r with respect to X and vanish on Γc ∩B2r, then

u(x)v(y) ≤ Cu(y)v(x) , x , y ∈ Γr . (BHP)

Generalizations of (BHP) can be found in [27, 74] for the fractional Laplacian and in
[28, 53, 54] for more general jump Markov processes. Without essential loss of generality,
in what follows we assume that

1 := (0, . . . , 0, 1) ∈ Γ .

By [3, Theorem 3.2], there is a unique nonnegative function M on Rd, called the Martin
kernel with the pole at infinity for Γ, such that M(1) = 1, M = 0 on Γc and for every
r > 0, M is regular harmonic with respect to X on Γr. The function is locally bounded
on Rd and homogeneous of degree β = β(Γ, α), that is,

M(x) = |x|βM(x/|x|) , x 6= 0 . (2.17)

Furthermore, 0 < β < α. The exponent β is decreasing in Γ and it delicately depends on
the geometry of Γ. When Γ is a right-circular cone, a rather explicit estimate for M is
available [69, Theorem 3.13], expressed in terms of β. More information on β for narrow
right-circular cones is given in [29]. As we shall see below, using (BHP) and M we can
capture the boundary asymptotics of harmonic functions and some Green potentials.
Following [3] we consider the Kelvin transformation K of M :

K(x) = |x|α−dM(x/|x|2) = |x|α−d−βK(x/|x|) , x 6= 0 , (2.18)
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Yaglom limit for stable processes in cones

see also Bogdan and Żak [17] for a general discussion of the Kelvin transform. The
function K is called the Martin kernel at 0 for Γ. Clearly, K(1) = 1 and K = 0 on Γc. By
[3, Theorem 3.4],

K(x) = Ex [τB <∞; K(XτB )] , x ∈ Rd ,

for every open set B ⊂ Γ with dist (0, B) > 0. In particular K is α-harmonic in Γ. We
note that

K(y) = lim
Γ3x→0

GΓ(x, y)

GΓ(x,1)
, y ∈ Rd \ {0} . (2.19)

This follows from the uniqueness of K in [3, Theorem 3.4] and from [27, (77)] for MD(x, 0)

therein with D = Γ. By Kelvin transform,

M(y) = lim
Γ3x,|x|→∞

GΓ(x, y)

GΓ(x,1)
, y ∈ Rd ,

see [27, (81)] and (2.18); see also [69, Theorem 3.13] for the special case of the right-
circular cones. We note in passing that the existence of the limit (2.19) is due to the
phenomenon of oscillation-reduction for ratios of harmonic functions, which is essentially
a consequence of (BHP). The oscillation-reduction argument is given for Lipschitz open
sets in [3, Lemma 16]. It is detailed in [27, Theorem 3.2] for cones at the vertex and in
[27, Lemma 8] for arbitrary open sets. More general Lévy processes are studied by Kim
et al. [55], and Markov processes are considered by Juszczyszyn and Kwaśnicki [62].
The reader may also consult [7, Lemma 4.2] to see oscillation-reduction in the much
simpler case when the process has no jumps. It is fair to remark that the behavior of
harmonic functions at infinity usually requires a specialized approach [54, Lemma 4.7
and Theorem 4.9] but for our isotropic α-stable Lévy process it reduces to the behavior
at the origin thanks to the Kelvin transform [17], see also Kwaśnicki [61, Corollary 3].

3 Full picture

Theorem 1.1 and Proposition 1.2 are manifestations of phenomena which we present
below in this section.

By (BHP), a finite positive limit

C0 = lim
Γ3x→0

GΓ(x,1)/M(x) (3.1)

exists. We denote

κΓ(z) =

∫
Γc
ν(z − y)dy , (3.2)

where ν is a jump measure defined in (2.1), and we define

C1 = C0

∫
Γ

∫
Γ

K(y)pΓ
1 (y, z)κΓ(z)dzdy . (3.3)

Theorem 3.1. We have 0 < C1 <∞ and

lim
Γ3x→0

Px(τΓ > 1)

M(x)
= C1 . (3.4)

Here is a reformulation using the scaling property (2.17) of X and β-homogeneity
(2.5) of M .

Corollary 3.2. If t > 0, x ∈ Γ and t−1/αx→ 0, then

Px(τΓ > t) ∼ C1M(x)t−β/α . (3.5)
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We note in passing that Corollary 3.2 refines Lemma 4.2 of Bañuelos and Bogdan [3].
The proofs of Theorem 3.1 and the following results of this section are mostly deferred to
Section 4, to allow for a streamlined presentation. The next theorem is the main result
of the paper.

Theorem 3.3. The following limit exists,

nt(y) = lim
Γ3x→0

pΓ
t (x, y)

Px(τΓ > 1)
, (t, y) ∈ (0,∞)× Γ . (3.6)

It is a finite strictly positive jointly continuous function of t and y, and for 0 < s, t <∞,
y ∈ Γ,

nt(y) = t−(d+β)/αn1(t−1/αy) , (3.7)

n1(y) ≈ Py(τΓ > 1)

(1 + |y|)d+α
, (3.8)

nt+s(y) =

∫
Γ

nt(z)p
Γ
s (z, y)dz . (3.9)

We will see in the proofs of Theorem 3.3 and 1.1 that n1 is the density for the Yaglom
limit µ with respect to the Lebesgue measure:

µ(A) =

∫
A

n1(z) dz , A ⊂ Γ . (3.10)

In view of (3.9), nt(y)dy defines an entrance law of excursions from 0 into Γ, cf. Rivero
and Haas [47], Blumenthal [14, page 104] and Bañuelos et al. [2].

We note that Yano [80] studies excursions of symmetric Lévy processes into R \ {0},
a situation not discusses in this paper. We however note that in our situation∫

Γ

nt(x)dx = t−β/α, t > 0 ,

which nicely corresponds with [80, Example 1.1], because β = α− 1 for Γ = R \ {0} and
α ∈ (1, 2), see [3].

Example 3.4. If d = 1, Γ is the half-line (0,∞), then M(x) = xα/2 for x > 0 [3, Exam-
ple 3.2]. By [23, Theorem 2],

Px(τΓ > 1) ≈ xα/2 ∧ 1, x > 0.

By (3.8),
n1(x) ≈ xα/2 ∧ x−d−α, x > 0.

Therefore by (3.7),

nt(x) ≈ (xα/2t−1−1/α) ∧ (x−1−αt1/2), t, x > 0. (3.11)

The first expression gives the minimum if xα ≤ t (small space), and the second – if xα > t

(short time). Estimates of nt(x) for half-spaces in Rd may be obtained in a similar way.

Some of the other objects we study can also be expressed in terms of n. Namely we
have

K(y) = lim
Γ3x→0

GΓ(x, y)

Px(τΓ > 1)

Px(τΓ > 1)

M(x)

M(x)

GΓ(x,1)

=
C1

C0
lim

Γ3x→0

∫ ∞
0

pΓ
t (x, y)

Px(τΓ > 1)
dt

=
C1

C0

∫ ∞
0

nt(y)dt .

(3.12)
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Therefore,
C0

C1
=

∫ ∞
0

nt(1)dt (3.13)

may be interpreted as occupation time density at 1 for the excursions from the vertex
into Γ.

We note in passing that the spatial asymptotics of the heat kernel at infinity was
given in the works of Blumenthal and Getoor [11, 12] (see also [39]), who showed that
pt(x) ∼ tν(x) as t|x|−α → 0. More results of this type for unimodal Lévy processes can
be found in recent works of Tomasz Grzywny et al., including [39], however, the above
papers only concern Γ = Rd.

Our approach to Theorem 3.3 depends on three properties. First, the scaling (2.5)
yields

Px

(
τΓ > t,

Xt

t1/α
∈ A

)
= Pt−1/αx (τΓ > 1, X1 ∈ A) (3.14)

and
Px (τΓ > t) = Pt−1/αx (τΓ > 1) . (3.15)

Then the Ikeda-Watanabe formula (2.16) gives the representation

Px(τΓ > 1) = GΓP
Γ
1 κΓ(x) . (3.16)

Recall that κΓ(x) may be considered as the killing intensity because it is the intensity of
jumps of X from x to Γc. Similarly, PΓ

1 κΓ(x) may be interpreted as the intensity of killing
precisely one unit of time from now.

To actually prove the existence of nt in (3.6), we use the asymptotics of Green
potentials at the vertex 0.

Lemma 3.5. If f is a measurable function bounded on Γ1 and GΓ|f |(1) < ∞, then∫
Γ
K(y)|f(y)|dy <∞ and

lim
Γ3x→0

GΓf(x)

M(x)
= C0

∫
Γ

K(y)f(y)dy . (3.17)

4 Proofs

4.1 Proof of Lemma 3.5

If GΓ|f |(x) < ∞ for some x ∈ Γ, then by [20, Lemma 5.1], GΓ|f |(x) < ∞ for almost
all x ∈ Rd. Let 0 < δ < 1. Choose x1 ∈ Γδ/2 so that GΓ|f |(x1) <∞. By (BHP),

GΓ(x, y)

GΓ(x,1)
≤ c1

GΓ(x1, y)

GΓ(x1,1)
, x , y ∈ Γ , |x| < δ/2 , |y| ≥ δ (4.1)

for some constant c1. By (2.19), (4.1), and Fatou’s lemma we see that the right-hand side
of (3.17) is finite. Observe that we also have∫

Γ\Γδ
GΓ(x1, y)|f(y)|dy ≤

∫
Γ

GΓ(x1, y)|f(y)|dy <∞ . (4.2)

By (2.19), (4.1), (4.2) and the dominated convergence theorem,

lim
Γ3x→0

∫
Γ\Γδ

GΓ(x, y)

GΓ(x,1)
f(y)dy =

∫
Γ\Γδ

K(y)f(y)dy . (4.3)

Next we consider the integral over Γδ. By our assumptions on f , a change of variables,
and the scaling property GΓ(δx, δy) = δ−d+αGΓ(x, y) we can conclude that for some
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Yaglom limit for stable processes in cones

constant c2,∫
Γδ

GΓ(x, y)|f(y)|dy ≤ c2δd
∫

Γ1

GΓ(x, δz)dz = c2δ
α

∫
Γ1

GΓ(δ−1x, z)dz , x ∈ Γδ . (4.4)

Now, by (BHP), for some contant c3,

GΓ(v, y)

M(y)
≤ c3

GΓ(v,1)

M(1)
= c3GΓ(v,1), v ∈ Γ \ Γ2 , y ∈ Γ1 . (4.5)

Indeed, by the symmetry of GΓ, the regular harmonicity of y 7→ GΓ(v, y) on Γ1 follows
from (2.15). Furthermore, the continuity of α-harmonic functions allows us to use
y = 1 ∈ ∂Γ1 in the inequality (4.5). By (2.15) and (4.5) we have

GΓ(x, y) =GΓ2
(x, y) + Ex

[
GΓ(XτΓ2

, y)
]
≤ GΓ2

(x, y) + c3Ex
[
GΓ(XτΓ2

,1)
]
M(y)

≤GΓ2
(x, y) + c3GΓ(x,1)M(y) , x , y ∈ Γ1 . (4.6)

By identities (4.4), (4.6) and the local boundedness of M , we have∫
Γδ

GΓ(x, y)|f(y)|dy ≤ c2δα
∫

Γ1

GΓ2
(δ−1x, z)dz + c2c3δ

αGΓ(δ−1x,1) (4.7)

for every x ∈ Γδ. Let

c4 = inf
z∈Γ1

∫
Γ\Γ2

ν(z − w)dw .

Clearly, c4 > 0. By the Ikeda–Watanabe formula (2.16) and (BHP), for x ∈ Γδ,∫
Γ1

GΓ2(δ−1x, z)dz ≤c−1
4

∫
Γ\Γ2

∫
Γ1

GΓ2(δ−1x, z)
Ad,α

|w − z|d+α
dzdw

≤c−1
4 Pδ−1x

(
XτΓ2

∈ Γ
)

≤c5GΓ(δ−1x,1) .

Again by (BHP) we have

GΓ(δ−1x,1) ≈M(δ−1x) = δ−βM(x) ≈ δ−βGΓ(x,1)

for x ∈ Γδ/2. In view of (4.7),∫
Γδ

GΓ(x, y)

GΓ(x,1)
|f(y)|dy ≤ c6δα−β , x ∈ Γδ/2 (4.8)

for some constant c6. From (4.3), Fatou’s lemma and (4.8) it follows that∫
Γ\Γδ

K(y)f(y)dy ≤ lim inf
Γ3x→0

GΓf(x)

GΓ(x,1)
≤ lim sup

Γ3x→0

GΓf(x)

GΓ(x,1)
≤
∫

Γ\Γδ
K(y)f(y)dy + c6δ

α−β .

Taking the limit in the above identity as δ → 0 and using the fact that α > β, we establish
that

lim
Γ3x→0

GΓf(x)

GΓ(x,1)
=

∫
Γ

K(y)f(y)dy . (4.9)

We then apply (3.1), which completes the proof. 2

EJP 23 (2018), paper 11.
Page 10/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP133
http://www.imstat.org/ejp/


Yaglom limit for stable processes in cones

4.2 Proof of (3.16)

We observe that by the Lipschitz condition and Sztonyk [76, Theorem 1] we have
Px (XτΓ ∈ ∂Γ) = 0 for every x ∈ Γ. Thus,

Px (XτΓ− = XτΓ) = 0 . (4.10)

Now for x ∈ Γc we have τΓ = 0 Px-a.s. and (3.16) holds true. To prove (3.16) for x ∈ Γ,
observe that by (2.16) and (4.10),

Px(τΓ > 1) =

∫ ∞
1

∫
Γ

pΓ
s (x, z)κΓ(z)dzds

=

∫ ∞
0

∫
Γ

∫
Γ

pΓ
s (x,w)pΓ

1 (w, z)dw κΓ(z)dzds

=GΓP
Γ
1 κΓ(x) .

2

4.3 Proof of Theorem 3.1

We will prove that f(x) = PΓ
1 κΓ(x) satisfies the assumptions of Lemma 3.5, i.e.

GΓ|f |(1) <∞ and f is bounded on Γ1. Then (3.4) follows from the representation (3.16)
and the identity (3.17). By the proof of (3.16), GΓP

Γ
1 κΓ(1) ≤ 1. It suffices to prove

PΓ
1 κΓ(x) ≈ Px(τΓ > 1) for x ∈ Γ1 , (4.11)

which clearly gives boundedness of PΓ
1 κΓ. If |x| ≤ 1, then by (2.7),

p1(x, y) ≈ 1 ∧ |x− y|−d−α ≈ (1 + |y|)−d−α . (4.12)

Furthermore, by [22] or [23, Theorem 2], the following approximate factorization holds,

pΓ
1 (x, y) ≈ Px(τΓ > 1)Py(τΓ > 1)p1(x, y) , x , y ∈ Γ . (4.13)

Thus,

PΓ
1 κΓ(x) ≈ Px(τΓ > 1)

∫
Γ

Py(τΓ > 1) (1 + |y|)−d−α κΓ(y)dy, x ∈ Γ1 . (4.14)

By [56] we have GΓ(x,w) > 0 for all x,w ∈ Γ. Since GΓP
Γ
1 κΓ(1) <∞, we have that PΓ

1 κΓ

is finite almost everywhere, in particular the integral in (4.14) is finite. This finishes the
proof of (4.11). 2

As we noted, Corollary 3.2 is a reformulation of Theorem 3.1 using (2.17) and (2.5).

4.4 Proof of Theorem 3.3

Consider the family of measures

µx(A) =

∫
A
pΓ

1 (x, y)dy

Px(τΓ > 1)
, x ∈ Γ , A ⊂ Rd . (4.15)

We start by proving that the family {µx : x ∈ Γ1} is tight. Indeed, by (4.13) and (4.12)
we can bound their densities by a fixed integrable function:

pΓ
1 (x, y)

Px(τΓ > 1)
≈ Py(τΓ > 1)(1 + |y|)−d−α , x ∈ Γ1 , y ∈ Rd . (4.16)
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Yaglom limit for stable processes in cones

We will prove now that the measures µx converge weakly to a probability measure µ
on Γ as Γ 3 x→ 0:

µx ⇒ µ as Γ 3 x→ 0 . (4.17)

To prove (4.17), we consider an arbitrary sequence {xn} such that Γ1 3 xn → 0. By the
tightness of the family of measures {µx : x ∈ Γ1} there exists a subsequence {xnk} such
that µxnk converge weakly to a probability measure µ as k →∞.

Let φ ∈ C∞c (Γ) and uφ = −∆α/2φ. The function uφ is bounded and continuous and
GΓuφ(x) = φ(x) for x ∈ Rd, see [26, Eq. (19)] and [27, Eq. (11)] for more details.
Furthermore, if dist (x, sup φ) ≥ 1, then for some constants c7, c8,∣∣∣∆α/2φ(x)

∣∣∣ =

∣∣∣∣∫
Rd
φ(y)ν(y − x)dy

∣∣∣∣ ≤ c7 ∫
Rd
|φ(y)| (1 + |x|)−d−α dy ≤ c8

(
1 ∧ |x|−d−α

)
.

By (2.7), |uφ(x)| ≤ c9p1(x, 0). Then,

PΓ
1 |uφ|(x) ≤ c9p2(x) , (4.18)

for some constant c9 and for every x ∈ Γ,

GΓP
Γ
1 |uφ|(x) ≤

∫
Rd

∫
Rd
GΓ(x, y)p1(y, z)|uφ(z)|dzdy ≤ c9

∫
Rd
GΓ(x, y)p2(y, 0)dy <∞ ,

see [27, Eq. (74)]. By Fubini’s theorem,

GΓP
Γ
1 uφ(x) = PΓ

1 GΓuφ(x) = PΓ
1 φ(x) . (4.19)

It follows from Lemma 3.5 and (4.18) that

lim
Γ3x→0

PΓ
1 φ(x)

M(x)
= lim

Γ3x→0

GΓP
Γ
1 uφ(x)

M(x)
= C0

∫
Γ

K(y)PΓ
1 uφ(y)dy .

Denoting µx(φ) =
∫

Γ
φ(y) µx(dy) and applying Theorem 3.1 we get a finite limit

lim
Γ3x→0

µx(φ) = lim
Γ3x→0

PΓ
1 φ(x)

Px(τΓ > 1)
=

∫
Γ
K(y)PΓ

1 uφ(y)dy∫
Γ
K(y)PΓ

1 κΓ(y)dy
.

In particular, µ(φ) = limk→∞ µxnk (φ) does not depend on the choice of the subsequence
{xnk}. Thus, µx weakly converges to this µ as Γ 3 x→ 0.

We are now in a position to prove that n1 is the density of the Yaglom limit µ appearing
in (4.17) and that nt is well-defined. By the Chapman-Kolmogorov equation applied to
φy(·) = pΓ

1 (·, y) ∈ C0(Rd),

pΓ
2 (x, y) =

∫
Γ

pΓ
1 (x, z)pΓ

1 (z, y)dz = PΓ
1 φy(x) , x , y ∈ Γ . (4.20)

Thus, for all y ∈ Γ,

pΓ
2 (x, y)

Px(τΓ > 1)
=

PΓ
1 φy(x)

Px(τΓ > 1)
= µx(φy)→ µ(φy) <∞ , (4.21)

as Γ 3 x → 0, see Theorem 3.1 and (4.17). This proves the existence of the limit nt
defined in (3.6) for t = 2. Using the existence of this limit, the scaling property and
Corollary 3.2 we can conclude now that for any (t, y) ∈ (0,∞) × Γ the following holds
true

nt(y) = lim
Γ3x→0

pΓ
t (x, y)

Px(τΓ > 1)

=(t/2)−d/α lim
Γ3x→0

pΓ
2

(
(t/2)−1/αx, (t/2)−1/αy

)
P(t/2)−1/αx(τΓ > 1)

lim
Γ3x→0

Px(τΓ > t/2)

Px(τΓ > 1)

=(t/2)−(d+β)/αn2((t/2)−1/αy) .

(4.22)
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This proves the existence of the limit nt(y) for general t > 0, and the equation (3.7).
By (4.16) we get (3.8). By the weak convergence (4.17), and by (4.16) along with the
dominated convergence theorem, we get that for every bounded continuous function φ
on Γ we have

µ(φ) = lim
Γ3x→0

∫
Γ

pΓ
1 (x, y)

Px (τΓ > 1)
φ(y)dy =

∫
Γ

n1(y)φ(y)dy .

This proves (3.10). Note that (3.9) follows directly from the Chapman-Kolmogorov
equation and the dominated convergence theorem:

nt+s(y) = lim
Γ3x→0

∫
Γ

pΓ
t (x, z)

Px(τΓ > 1)
pΓ
s (z, y)dz = PΓ

s nt(y) .

To end the proof we show that nt(y) is jointly continuous on (0,∞) × Γ. Indeed,
pΓ

1 (z, y)/pΓ
1 (z, y1) ≈ 1 for z ∈ Γ, if y, y1 ∈ Γ are close to each other. The continuity

of n2(y) follows from the dominated convergence theorem and the continuity of pΓ
1 . The

joint continuity of nt(y) follows from the scaling property. 2

4.5 Relatively uniform convergence

Lemma 4.1. If 0 ≤ c−1fn ≤ fm ≤ cfn for all m,n, and f = lim fn, then lim
∫
fndη =∫

fdη.

This is true because if the integral
∫
fdη is finite, then the dominated convergence

theorem applies.

4.6 Proof of Theorem 1.1

By the scaling property of Xt we have

Px

(
Xt

t1/α
∈ A|τΓ > t

)
=
Px
(
τΓ > t, Xt

t1/α
∈ A

)
Px(τΓ > t)

=
Pt−1/αx (τΓ > 1, X1 ∈ A)

Pt−1/αx(τΓ > 1)

=

∫
A
pΓ

1 (t−1/αx, y)dy

Pt−1/αx(τΓ > 1)
, x ∈ Γ , t > 0 .

By Theorem 3.3 and (4.16), pΓ
1 (t−1/αx, y)/Pt−1/αx(τΓ > 1) converges relatively uni-

formly to n1(y) as t → ∞, in the sense of the condition in Lemma 4.1. Therefore,
Px
(
Xt
t1/α
∈ A|τΓ > t

)
→
∫
A
η1(y)dy = µ(A). 2

4.7 Proof of Proposition 1.2

Recall that by (3.10) we have µ(dz) = n1(z) dz. By using (3.9) and (3.7), for A ⊂ Rd
we get

Pµ

(
Xt

(t+ 1)1/α
∈ A, τΓ > t

)
=

∫
Γ

∫
(t+1)1/αA

n1(x)pΓ
t (x, y)dydx

=

∫
(t+1)1/αA

nt+1(y)dy

=

∫
(t+1)1/αA

(t+ 1)−(d+β)/αn1

(
(t+ 1)−1/αy

)
dy

=(t+ 1)−β/α
∫
A

n1(y)dy = (t+ 1)−β/αµ(A) .

In particular, Pµ (τΓ > t) = (t+ 1)−β/α, which ends the proof. 2
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5 Symmetric Cauchy process on half-line

Let d = α = 1 and Γ = (0,∞). Then Xt is the symmetric Cauchy process on R and

τΓ = inf{t ≥ 0 : Xt < 0} ,

which is sometimes called the ruin time. For this particular situation we can add specific
spectral information on the Yaglom limit µ. Following [58], for x > 0, we let

r(x) =

√
2

2π

∫ ∞
0

t

(1 + t2)5/4
exp

(
1

π

∫ t

0

log s

1 + s2
ds

)
e−txdt (5.1)

and
ψ(x) = sin

(
x+

π

8

)
− r(x) . (5.2)

Theorem 5.1. If Xt is the symmetric Cauchy process on R and Γ = (0,∞), then µ has
the density function

n1(y) = lim
x→0+

pΓ
1 (x, y)

Px(τΓ > 1)
=

√
π

2

∫ ∞
0

λ1/2ψ(λy)e−λdλ , y > 0 . (5.3)

Proof. By [3, Example 3.2 and 3.4], we have

M(x) = (x ∨ 0)
1/2

, K(x) = (x ∨ 0)
−1/2

, x ∈ R .

The Green function GΓ(x, y) is given by the well-known Riesz’s formula:

GΓ(x, y) =
1

π
arcsin

√
4xy

(x− y)2
, x , y > 0 ; (5.4)

see [13] or [32, Theorem 3.3] with m = 0. Thus the constant C0 defined in (3.1) is given
by

C0 = lim
x→0+

GΓ(x, 1)

M(x)
=

2

π
. (5.5)

For t > 0 we define

ξ(t) =
1

π

t

(1 + t2)5/4
exp

(
− 1

π

∫ t

0

log s

1 + s2
ds

)
.

Note that
∫∞

0
log s/(1 + s2)ds = 0. Thus

ξ(t) ∼ 1

π
t−3/2 as t→∞ . (5.6)

It follows from [58, Theorem 5] and the line following that theorem that

Px(τΓ ∈ dt) =
1

t
ξ

(
t

x

)
dt . (5.7)

Therefore

Px (τΓ > 1) =

∫ ∞
1

1

t
ξ

(
t

x

)
dt =

∫ ∞
x−1

ξ(t)

t
dt ∼ 2

π
x1/2 =

2

π
M(x) (5.8)

as x→ 0+ and hence C1 = C0, where C1 is defined in (3.3).
By [58, (5.7)] we have that 0 ≤ r(x) ≤ r(0) = sin(π/8) and |ψ(x)| ≤ 2 for x ≥ 0, where

r(x) and ψ(x) are defined in (5.1) and (5.2), respectively. Further, by [58, Theorem 2]
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the function ψλ(x) = ψ(λx) is an eigenfunction of the semigroup PΓ
t acting on C(Γ), with

the eigenvalue e−λt. Thus

pΓ
t (x, y) =

2

π

∫ ∞
0

ψλ(x)ψλ(y)e−λtdλ ; (5.9)

see [58, (7.4)]. Note that

r′(x) = −
√

2

2π

∫ ∞
0

t2

(1 + t2)5/4
exp

(
1

π

∫ t

0

log s

1 + s2
ds

)
e−txdt .

Since

−
∫ t

0

log s

1 + s2
ds =

∫ ∞
t

log s

1 + s2
ds

is positive for all t > 0 and it is regularly varying at∞ of index −1, the following estimates
hold for x > 0: ∫ 1

0

t2

(1 + t2)5/4
exp

(
1

π

∫ t

0

log s

1 + s2
ds

)
e−txdt ≤ 1 ,

∣∣∣∣∫ ∞
1

t2

(1 + t2)5/4
exp

(
1

π

∫ t

0

log s

1 + s2
ds

)
e−txdt−

∫ ∞
1

t−1/2e−txdt

∣∣∣∣
≤
∫ ∞

1

∣∣∣∣ t2

(1 + t2)5/4
− t−1/2

∣∣∣∣dt+

∫ ∞
1

t−1/2

∣∣∣∣1− exp

(
1

π

∫ t

0

log s

1 + s2
ds

)∣∣∣∣dt
≤1 +

1

π

∫ ∞
1

t−1/2

∫ ∞
t

log s

1 + s2
dsdt <∞

and ∣∣∣∣∫ ∞
1

t−1/2e−txdt−
√
πx−1/2

∣∣∣∣ ≤ ∫ 1

0

t−1/2e−txdt ≤ 2 .

Thus there exists a constant c10 > 0 such that for x > 0,∣∣∣∣∣r(x)− r(0)−
√

2

π
x1/2

∣∣∣∣∣ ≤
∫ x

0

∣∣∣∣r′(s) +
1√
2π
s−1/2

∣∣∣∣ ds ≤ c10x (5.10)

and ∣∣∣∣∣ψ(x)−
√

2

π
x1/2

∣∣∣∣∣ ≤ ∣∣∣sin(x+
π

8

)
− sin

π

8

∣∣∣+

∣∣∣∣∣r(x)− r(0)−
√

2

π
x1/2

∣∣∣∣∣ ≤ c10x . (5.11)

The inequality (5.11) with x being replaced by λx and the identity (5.9) imply that∣∣∣∣∣pΓ
1 (x, y)− 2

π

√
2

π
x1/2

∫ ∞
0

λ1/2ψ(λy)e−λdλ

∣∣∣∣∣ ≤ c10x

∫ ∞
0

λ|ψ(λy)|e−λdλ . (5.12)

The identity (5.3) now follows from (5.8) and (5.12). Since we have (3.10), the proof is
complete.
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