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On the strange domain of attraction to generalized
Dickman distributions for sums of independent

random variables
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Abstract

Let {Bk}∞k=1, {Xk}∞k=1 all be independent random variables. Assume that {Bk}∞k=1 are

{0, 1}-valued Bernoulli random variables satisfying Bk
dist
= Ber(pk), with

∑∞
k=1 pk =∞,

and assume that {Xk}∞k=1 satisfy Xk > 0 and µk ≡ EXk <∞. Let Mn =
∑n
k=1 pkµk,

assume that Mn →∞ and define the normalized sum of independent random variables

Wn = 1
Mn

∑n
k=1BkXk. We give a general condition under which Wn

dist→ c, for
some c ∈ [0, 1], and a general condition under which Wn converges weakly to a
distribution from a family of distributions that includes the generalized Dickman
distributions GD(θ), θ > 0. In particular, we obtain the following result, which reveals
a strange domain of attraction to generalized Dickman distributions. Assume that

limk→∞
Xk
µk

dist
= 1. Let Jµ, Jp be nonnegative integers, let cµ, cp > 0 and let

µn ∼ cµn
a0
∏Jµ
j=1(log

(j) n)aj , pn ∼ cp
(
nb0

∏Jp
j=1(log

(j) n)bj
)−1

, bJp 6= 0, where log(j)

denotes the jth iterate of the logarithm.

If
i. Jp ≤ Jµ;
ii. bj = 1, 0 ≤ j ≤ Jp;
iii. aj = 0, 0 ≤ j ≤ Jp − 1, and aJp > 0,

then limn→∞Wn
dist
= 1

θ
GD(θ), where θ =

cp
aJp

.

Otherwise, limn→∞Wn
dist
= δc, where c ∈ {0, 1} depends on the above parameters.

We also give an application to the statistics of the number of inversions in certain
random shuffling schemes.
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Strange domain of attraction to Dickman distributions

1 Introduction and statement of results

The Dickman function ρ1 is the unique function, continuous on (0,∞), and satisfying
the differential-delay equation

ρ1(x) = 0, x ≤ 0;

ρ1(x) = 1, x ∈ (0, 1];

xρ′1(x) + ρ1(x− 1) = 0, x > 1.

This function has an interesting role in number theory and probability, which we describe
briefly in the final section of the paper. With a little work, one can show that the Laplace
transform of ρ1 is given by

∫∞
0
ρ1(x)e−λxdx = exp(γ +

∫ 1

0
e−λx−1

x dx), where γ is Euler’s
constant. (See, for example, [6] or [9].) From this it follows that

∫∞
0
ρ1(x)dx = eγ , and

consequently, that e−γρ1 is a probability density on [0,∞). We will call this probability
distribution the Dickman distribution. We denote its density by p1(x) = e−γρ1(x), and
we denote by D1 a random variable distributed according to the Dickman distribution.
Differentiating the Laplace transform E exp(−λD1) = exp(

∫ 1

0
e−λx−1

x dx) of D1 at λ = 0

shows that ED1 = 1. This distribution decays very rapidly; indeed, it is not hard to show
that p1(x) ≤ e−γ

Γ(x+1) , x ≥ 0 [6].

In fact, for all θ > 0, exp(θ
∫ 1

0
e−λx−1

x dx) is the Laplace transform of a probability
distribution. (We will prove this directly; however, this fact follows from the theory of
infinitely divisible distributions, and shows that the distribution in question is infinitely
divisible.) This distribution has density pθ = e−θγ

Γ(θ) ρθ, where ρθ satisfies the differential-
delay equation

ρθ(x) = 0, x ≤ 0;

ρθ(x) = xθ−1, 0 < x ≤ 1;

xρ′θ(x) + (1− θ)ρθ(x) + θρθ(x− 1) = 0, x > 1.

(1.1)

We will call such distributions generalized Dickman distributions and denote them by
GD(θ). We denote by Dθ a random variable with the GD(θ) distribution. Differentiating
its Laplace transform at λ = 0 shows that EDθ = θ. It is not hard to show that
pθ(x) ≤ Cθ

Γ(x+1) , x ≥ 1, for an appropriate constant Cθ.
In fact, the scope of this paper leads us to consider a more general family of distri-

butions than the generalized Dickman distributions. Let X ≥ 0 be a random variable
satisfying EX ≤ 1. Then, as we shall see, for θ > 0, there exists a distribution whose
Laplace transform is exp

(
θ
∫ 1

0
E exp(−λxX )−1

x dx
)
. We will denote this distribution by

GD(X )(θ) and we denote a random variable with this distribution by D(X )
θ . (When X ≡ 1,

we revert to the previous notation for generalized Dickman distributions.) Differentiating
the Laplace transform at λ = 0 shows that ED(X )

θ = θEX .
It is known that the generalized Dickman distribution GD(θ) arises as the limiting

distribution of 1
n

∑n
k=1 kYk, where the {Yk}∞k=1 are independent random variables with Yk

distributed according to the Poisson distribution with parameter θ
k [1]. It is also known

that the Dickman distribution GD(1) arises as the limiting distribution of 1
n

∑n
k=1 kYk

as n → ∞, where the {Yk}∞k=1 are independent Bernoulli random variables satisfying
P (Yk = 1) = 1 − P (Yk = 0) = 1

k . Such behavior is in distinct contrast to the law of
large numbers behavior of a “well-behaved” sequence of independent random variables
{Zk}∞k=1 with finite first moments; namely, that 1

Mn

∑n
k=1 Zk converges in distribution to

1 as n→∞, where Mn =
∑n
k=1EZk.

The purpose of this paper is to understand when the law of large numbers fails and a
distribution from the family GD(X )(θ) arises in its stead. From the above examples, we see
that generalized Dickman distributions sometimes arise as limits of normalized sums from
a sequence {Vk}∞k=1 of independent random variables which are non-negative and satisfy
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Strange domain of attraction to Dickman distributions

the following three conditions: (i) limk→∞ P (Vk = 0) = 1, (ii) limk→∞
Vk|Vk>0

E(Vk|Vk>0)

dist
= 1 and

(iii)
∑∞
k=1EVk =∞. (In the above examples, kYk plays the role of Vk.) It turns out that

these three conditions are very far from sufficient for a generalized Dickman distribution
to arise. In fact, as we shall see in Theorem 1.2 below, such distributions arise only in a
strange sequence of very narrow windows of opportunity.

In light of the above discussion, we will consider the following setting. Let {Bk}∞k=1,
{Xk}∞k=1 be mutually independent sequences of independent random variables. Assume
that {Bk}∞k=1 are Bernoulli random variables satisfying:

P (Bk = 1) = 1− P (Bk = 0) = pk ∈ [0, 1), (1.2)

and assume that {Xk}∞k=1 satisfy:

Xk > 0, µk ≡ EXk <∞. (1.3)

Let

Mn =

n∑
k=1

pkµk, (1.4)

and define

Wn =
1

Mn

n∑
k=1

BkXk. (1.5)

We will be interested in the limiting behavior of Wn. In order to avoid trivialities, we will
assume that

lim
n→∞

Mn =∞ and
∞∑
k=1

pk =∞, (1.6)

since otherwise
∑∞
n=1BkXk is almost surely finite.

Note that for the example brought with the Pois( θk )-distribution, we have pk = 1−e− θk ,
Xk is distributed according to kYk|{Yk > 0}, where Yk has the Pois( θk ) distribution,
µk = θ

1−e−
θ
k

and Mn = nθ. And for the example with the Ber( 1
k )-distribution, we have

pk = 1
k , Xk = k deterministically, µk = k and Mn = n. In the first of these two examples,

Xk
µk

dist→ 1, and in the second one, Xkµk
dist
= 1 for all k.

Our first theorem gives a general condition for Wn
dist→ c (which is the law of large

numbers if c = 1), and a general condition for convergence to a limiting distribution
from the family of distributions GD(X )(θ). Using this theorem, we can prove our second
theorem, which reveals the strange domain of attraction to generalized Dickman dis-
tributions. (Of course, we are using the term “domain of attraction” not in its classical
sense, since our sequence of random variables, although independent, are not identically
distributed.) Let δc denote the degenerate distribution at c.

Theorem 1.1. Let Wn be as in (1.5), where {Bk}∞k=1, {Xk}∞k=1 and Mn are as in (1.2)-
(1.4) and (1.6).

i. Assume that {Xkµk }
∞
k=1 is uniformly integrable (which occurs automatically if

limk→∞
Xk
µk

dist
= 1).

a. Assume also that

lim
n→∞

max1≤k≤n µk
Mn

= 0. (1.7)

Then

lim
n→∞

Wn
dist
= 1.
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Strange domain of attraction to Dickman distributions

b. Assume also that there exists a sequence {Kn}∞n=1 such that

lim
n→∞

n∑
k=Kn+1

pk = 0, (1.8)

and

lim
n→∞

max1≤k≤Kn µk
Mn

= 0. (1.9)

If

c ≡ lim
n→∞

MKn

Mn
exists, (1.10)

then

lim
n→∞

Wn
dist
= c.

If (1.10) does not hold, then the distributions of {Wn}∞n=1 form a tight sequence whose
set of accumulation points is {δc : c ∈ A}, where A denotes the set of accumulation
points of the sequence {MKn

Mn
}∞n=1.

ii. Assume that there exists a random variable X such that

lim
k→∞

Xk

µk

dist
= X . (1.11)

Assume also that {µk}∞k=1 is increasing, that limk→∞ pk = 0 and that there exist θ, L ∈
(0,∞) such that

lim
k→∞

pkµk
µk+1 − µk

= θ, lim
k→∞

µk
Mk

= L. (1.12)

Then

lim
n→∞

Wn
dist
= LD(X )(θ),

where D(X )(θ) is a random variable with the GD(X )(θ) distribution.

Remark 1. In (1.12), necessarily L ≤ 1
θ . Indeed, if {pk}∞k=1 and {µk}∞k=1 satisfy the

conditions of part (ii), and we choose Xk = µk, then Wn
dist→ LDθ. Since EWn = 1 and

EDθ = θ, it follows from Fatou’s lemma that L ≤ 1
θ . In most cases of interest, one has

L = 1
θ .

Remark 2. By Fatou’s lemma, the random variable X in part (ii) must satisfy EX ≤ 1.

Remark 3. The uniform integrability of {Xkµk }
∞
k=1 in part (i) occurs automatically if

limk→∞
Xk
µk

dist
= 1, because if a sequence {Yk}∞k=1 of random variables satisfies Yk

dist→ Y ,
and E|Yk| <∞, then E|Yk| → E|Y | is equivalent to uniform integrability.

Remark 4. In the case that Xk = µk, or more generally, if EX2
k ≤ Cµ2

k, for all k and
some C > 0, then

V ar(Wn) ≤
C
∑N
k=1 pkµ

2
k

M2
n

= C

∑n
k=1 pkµ

2
k

(
∑n
k=1 pkµk)2

≤ C
sup1≤k≤n µk

Mn
.

Thus, in this case part (i-a) follows directly from the second moment method.

Using Theorem 1.1, we can prove the following theorem that exhibits the strange
domain of attraction to generalized Dickman distributions. Let log(j) denote the jth
iterate of the logarithm, and make the convention

∏0
j=1 = 1.
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Strange domain of attraction to Dickman distributions

Theorem 1.2. Let Wn be as in (1.5), where {Bk}∞k=1, {Xk}∞k=1 and Mn are as in (1.2)-

(1.4). Assume also that limk→∞
Xk
µk

dist
= 1. Let Jµ, Jp be nonnegative integers, let cµ, cp > 0

and define

µ(x) = cµx
a0

Jµ∏
j=1

(log(j) x)aj ,

p(x) = cp
(
xb0

Jp∏
j=1

(log(j) x)bj
)−1

,

with bJp 6= 0. Assume that

µk ∼ µ(k), pk ∼ p(k);

µk+1 − µk ∼ µ′(k).

Assume that the exponents {aj}
Jµ
j=0, {bj}

Jp
j=0 have been chosen so that (1.6) holds. If

i. Jp ≤ Jµ;

ii. bj = 1, 0 ≤ j ≤ Jp;
iii. aj = 0, 0 ≤ j ≤ Jp − 1, and aJp > 0,

(1.13)

then

lim
n→∞

Wn
dist
=

1

θ
Dθ, with θ =

cp
aJp

,

where Dθ is a random variable with the GD(θ) distribution.

Otherwise, limn→∞Wn
dist
= c, where c ∈ {0, 1}. To determine c, let

κµ = min{0 ≤ j ≤ Jµ : aj 6= 0} and κp = min{0 ≤ j ≤ Jp : bj 6= 1}. (1.14)

If {0 ≤ j ≤ Jµ : aj 6= 0} is not empty, aκµ > 0 and either {0 ≤ j ≤ Jp : bj 6= 1} is empty
and κµ < Jp, or {0 ≤ j ≤ Jp : bj 6= 1} is not empty and κµ < κp, then c = 0; otherwise,
c = 1.

Remark 1. Note that if one chooses µk = µ(k) and pk = p(k), then the condition
µk+1 − µk ∼ µ′(k) is always satisfied.

Remark 2. Theorem 1.2 shows that to obtain a generalized Dickman distribution,
{pk}∞k=1 in particular must be set in a very restricted fashion. For some intuition regard-
ing this phenomenon, take the situation where Xk = µk, and consider the sequence
{σ2(Wn)}∞n=1 of variances. This sequence converges to 0 in the cases where Wn con-
verges to 1, converges to∞ in the cases where Wn converges to 0, and converges to a
positive number in the cases where Wn converges to a generalized Dickman distribution.

We now state explicitly what Theorem 1.2 yields in the cases Jp = 0, 1.

Jp = 0. We have

pn ∼
cp
nb0

, b0 > 0, µn ∼ cµna0
Jµ∏
j=1

(log(j) n)aj .

In order that (1.6) hold, we require b0 ≤ 1. We also require either: a0 − b0 > −1; or
a0 − b0 = −1 and a1 > −1; or a0 − b0 = a1 = −1 and a2 > −1; etc.
If b0 = 1 and a0 > 0, then

lim
n→∞

Wn
dist
=

1

θ
Dθ, where θ =

cp
a0
.

Otherwise, limn→∞Wn
dist
= 1.
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Strange domain of attraction to Dickman distributions

Jp = 1. We have

pn ∼
cp

nb0(log n)b1
, b1 6= 0, µn ∼ cµna0

Jµ∏
j=1

(log(j) n)aj .

In order that (1.6) hold, we require either b0 = 0 and b1 > 0, or 0 < b0 < 1, or b0 = 1

and b1 ≤ 1. We also require either: a0 − b0 > −1; or a0 − b0 = −1 and a1 − b1 > −1; or
a0 − b0 = a1 − b1 = −1 and a2 > −1; etc.
If Jµ ≥ 1, b0 = b1 = 1, a0 = 0 and a1 > 0, then

lim
n→∞

Wn
dist
=

1

θ
Dθ, where θ =

cp
a1
.

If b0 = 1 and a0 > 0, then limn→∞Wn
dist
= 0.

Otherwise, limn→∞Wn
dist
= 1.

Remark. In [3] and [8], where the GD(1) distribution arises, one has Jp = 1 with Jµ = 1,
b0 = b1 = 1, a0 = 0, a1 = 1, cp = cµ = 1.

The organization of the rest of the paper is as follows. In section 2 we use Theorems
1.1 and 1.2 to investigate a question raised in [5] concerning the statistics of the number
of inversions in certain random shuffling schemes. In sections 3 and 4 respectively we
prove Theorems 1.1 and 1.2. In section 5 we prove a couple basic facts about generalized
Dickman distributions. In particular, we provide a rather probabilistic proof that the
distribution whose Laplace transform is given by exp(θ

∫ 1

0
e−λx−1

x dx) possesses a density
pθ of the form pθ = cθρθ, where ρθ satisfies (1.1). We also give a reference for the formula
cθ = e−θγ

Γ(θ) . Finally, in section 6, we offer a little historical background concerning the
Dickman function ρ1 and its connection to number theory and probability.

2 An application to random permutations

We consider a setup that appeared in [5], and which in the terminology of this paper
can be described as follows. For each k ∈ N, let Ek ⊂ {1, . . . , k− 1}. Let Xk be uniformly

distributed on Ek, and let Bk
dist
= Ber( |Ek|k ). So

µk =
1

|Ek|
∑
l∈Ek

l, pk =
|Ek|
k
.

Define

In =

n∑
k=1

BkXk.

We allow Ek = ∅, in which case Bk = 0 and Xk is not defined. In such a case, we define
BkXk = 0 and µk = 0. We always have E1 = ∅.

Consider first the case that Ek = {1, . . . , k − 1}. Then B1X1 = 0 and for 2 ≤ k ≤ n,
BkXk is uniformly distributed over {0, 1 . . . , k − 1}. In this case, In has the distribution
of the number of inversions in a uniformly random permutation from Sn. (The authors in
[5] have a typo and wrote Ek = {1, . . . , k} instead.) To see this, consider the following
shuffling procedure for n cards, numbered from 1 to n. The cards are to be inserted in
a row, one by one, in order of their numbers. At step one, card number 1 is set down.
The number of inversions created by this step is zero, which is given by B1X1. At step
k, for k ∈ {2, . . . , n}, card number k is randomly inserted in the current row of cards,
numbered 1 to k − 1. Thus, for any j ∈ {0, 1, . . . , k − 1}, card number k has probability 1

k
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Strange domain of attraction to Dickman distributions

of being placed in the position with j cards to its right (and k − 1− j cards to its left), in
which case this step will have created j new inversions, and this is represented by BkXk.
It is clear from the construction that the random variables {BkXk}nk=1 are independent.
Thus, In indeed gives the number of inversions in a uniformly random permutation from
Sn. It is well-known that the law of large numbers and the central limit theorem hold
for In in this case. (In particular, using the above representation, a direction calculation
shows that EIn = n(n−1)

4 and that Var(In) = O(n3); thus the law of large numbers follows
from the second moment method.)

Consider now the general case that Ek ⊂ {1, . . . , k − 1}. Then In gives the number
of inversions in a random permutation created by a shuffling procedure in the same
spirit as the above one. At step k, with probability 1− |Ek|k , card number k is inserted at
the right end of the row, thereby creating no new inversions, and for each j ∈ Ek, with
probability 1

k it is inserted in the position with j cards to its right, thereby creating j

new inversions.
In particular, as a warmup consider the cases Ek = {1} and Ek = {k − 1}, 2 ≤ k ≤ n.

In each of these two cases, at step k, 2 ≤ k ≤ n, card number k is inserted at the right
end of the row with probability 1− 1

k . In the first case, with probability 1
k card number

k is inserted immediately to the left of the right most card, thereby creating one new
inversion, while in the second case, with probability 1

k card number k is inserted at

the left end of the row, thereby creating k − 1 new inversions. In both cases Xn
µn

dist
= 1

for all n, and in both cases, pk = 1
k . In the first case, µk = 1 while in the second case,

µk = k − 1. Thus, in the first case, Mn =
∑n
k=1 pkµk ∼ log n, and in the second case,

Mn ∼ n. Therefore, it follows from Theorem 1.1 or 1.2 that in the first case In
logn converge

in distribution to 1, while in the second case, Inn converges in distribution to GD(1).
The authors of [5] ask which choices of {Ek}∞k=1 lead to the Dickman distribution and

which choices lead to the central limit theorem. Of course, the law of large numbers
is a prerequisite for the central limit theorem. The following theorem gives sufficient
conditions for the law of large numbers to hold and sufficient conditions for convergence
to a distribution from the family GD(X )(θ). In order to avoid trivialities, we need to
assume that (1.6) holds. Recalling that µk = 0 when |Ek| = 0, and that µk ≥ 1 otherwise,
note that

Mn = EIn =

∞∑
k=1

|Ek|
k
µk ≥

∞∑
k=1

|Ek|
k

=

∞∑
k=1

pk.

Thus, in the present context the requirement (1.6) is

∞∑
k=1

|Ek|
k

=∞, (2.1)

which holds in particular if Ek 6= ∅ for all sufficiently large k.

Theorem 2.1. Assume that (2.1) holds.
i. Assume that at least one of the following conditions holds:

a. limk→∞ |Ek| =∞ and {max1≤k≤n µk∑n
k=1

µk
k

}∞n=1 is bounded;

b. limn→∞
max1≤k≤n µk∑n

k=1

µk
k

= 0.

Then In
EIn

dist→ 1.

ii. Assume that |Ek| = N ≥ 1, for all large k, and that Xk
µk

dist→ X . Also assume that

µk ∼ µ(k) and µk+1 − µk ∼ µ′(k), where µ(x) = cµx
a0
∏Jµ
j=1(log(j) x)aj , with a0 > 0.

Then In
EIn

dist→ 1
θD

(X )
θ , with θ = N

a0
, where D(X )

θ is a random variable with the GD(X )(θ)

distribution.
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Remark 1. The condition on {µk} in part (i-a) is just a very weak regularity requirement
on its growth rate (recall that 1 ≤ µk < k − 1). The condition in part (i-b) is fulfilled if
µk ∼ µ(k) and µk+1 − µk ∼ µ′(k), where µ(x) = cµ

∏Jµ
j=1(log(j) x)aj with Jµ ≥ 0.

Remark 2. Note that the random variable X in part (ii) takes on no more than N distinct
values.

Proof. Assume first that the condition in part (i-a) holds. We claim that since
{max1≤k≤n µk∑n

k=1

µk
k

}∞n=1 is bounded, there exists a sequence of positive integers {γn}∞n=1 satis-

fying limn→∞ γn =∞ and such that {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is also bounded. Indeed, assume

to the contrary that the above sum is unbounded for all such choices of {γn}∞n=1. Then
necessarily, {µn}∞n=1 is unbounded. (Indeed, since by assumption |Ek| ≥ 1 for suffi-
ciently large k, the same is true for µk, and thus, choosing, for example, γn = [n

1
2 ], it

follows that for sufficiently large n,
∑n
k=γn+1

µk
k ≥

∑n
k=γn+1

1
k ∼

1
2 log n. Thus {µn}∞n=1

must be unbounded if {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is unbounded.) Also, since µk < k, we have∑n
k=1

µk
k < γn+

∑n
k=γn+1

µk
k , and it follows from the boundedness of {max1≤k≤n µk∑n

k=1

µk
k

}∞n=1 and

the unboundedness of {max1≤k≤n µk∑n
k=γn

µk
k

}∞n=1 that the unbounded sequence {max1≤k≤n µk}∞n=1

has the property that {max1≤k≤n µk
γn

}∞n=1 is bounded for all sequences {γn}∞n=1 satisfying
limn→∞ γn =∞, which is impossible.

Now let {γn}∞n=1 be a sequence such that limn→∞ γn = ∞ and {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is

bounded. Since

Mn =

n∑
k=1

|Ek|
k
µk ≥ ( min

k>γn
|Ek|)

n∑
k=γn

µk
k

and {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is bounded, it follows from the first condition in (i-a) that (1.7)

holds.
Now assume that the condition in part (i-b) holds. Since Mn ≥

∑n
k=1

µk
k , it follows

again that (1.7) holds.
Thus, assuming either (i-a) or (i-b), it follows from part (i-a) of Theorem 1.1 that

In
EIn

dist→ 1.

Now assume that the condition in part (ii) holds. Then pk = N
k , for large k, and

µk ∼ cµka0
∏Jµ
j=1(log(j) k)aj , with a0 > 0. Thus,

Mn =

n∑
k=1

|Ek|
k
µk ∼

Ncµ
a0

na0
Jµ∏
j=1

(log(j) n)aj ,

and limk→∞
µk
Mk

= a0
N . Also, if the condition in part (ii) holds, then

µk+1 − µk ∼ a0cµk
a0−1

∏Jµ
j=1(log(j) k)aj . Thus, limk→∞

pkµk
µk+1−µk = N

a0
. We conclude from

part (ii) of Theorem 1.1 that In
EIn

dist→ 1
θGD(X )(θ), where θ = N

a0
.

3 Proof of Theorem 1.1

Since EWn = 1, for all n, the distributions of {Wn}∞n=1 are tight. Thus, since the
random variables are nonnegative, it suffices to show that their Laplace transforms
E exp(−λWn) converge under the conditions of part (i) to exp(−λc), for the specified

value of c, and under the conditions of part (ii) to exp(θ
∫ 1

0
Ee−LλxX−1

x dx), which is the
Laplace transform of LD(X )(θ).

Proof of part (i). Note that part (i-a) is the particular case of part (i-b) in which one can
choose Kn = n, and then (1.10) holds with c = 1. Thus, it suffices to consider part (i-b).
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Strange domain of attraction to Dickman distributions

We have for λ > 0,

E exp(−λWn) =

=

n∏
k=1

E exp(− λ

Mn
BkXk) =

n∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
=

Kn∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

)) n∏
k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
.

(3.1)

Since
n∏

k=Kn+1

(1− pk) ≤
n∏

k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤ 1,

it follows from assumption (1.8) that

lim
n→∞

n∏
k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
= 1. (3.2)

Applying the mean value theorem to E exp(− λ
Mn

Xk) as a function of λ, and recalling
that µk = EXk, we have

λ

Mn
EXk exp(− λ

Mn
Xk) ≤ 1− E exp(− λ

Mn
Xk) ≤ λ µk

Mn
. (3.3)

The assumption that {Xkµk }
∞
k=1 is uniformly integrable means that

limN→∞ sup1≤k<∞E(Xkµk 1Xk
µk
>N

) = 0. Thus, in light of (1.9) and the uniform integrability

assumption, it follows that for all ε > 0, there exists an nε such that

λ

Mn
EXk exp(− λ

Mn
Xk) = λ

µk
Mn

E
Xk

µk
exp(−λ µk

Mn

Xk

µk
) ≥ (1− ε)λ µk

Mn
,

1 ≤ k ≤ Kn, n ≥ nε.
(3.4)

Thus, (3.3) and (3.4) yield

(1− ε)λ µk
Mn
≤ 1− E exp(− λ

Mn
Xk) ≤ λ µk

Mn
, 1 ≤ k ≤ Kn, n ≥ nε. (3.5)

Since for any ε > 0, there exists an xε > 0 such that −(1 + ε)x ≤ log(1 − x) ≤ −x, for
0 < x < xε, it follows from (3.5) and (1.9) that there exists an n′ε such that

− (1 + ε)λpk
µk
Mn
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤ −(1− ε)λpk

µk
Mn

,

1 ≤ k ≤ Kn, n ≥ n′ε.
(3.6)

From (3.6) we have

− (1 + ε)λ

∑Kn
k=kε

pkµk

Mn
≤ log

Kn∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− (1− ε)λ
∑Kn
k=kε

pkµk

Mn
, n ≥ n′ε.

(3.7)

If

c ≡ lim
n→∞

MKn

Mn
= lim
n→∞

∑Kn
k=1 pkµk
Mn

(3.8)
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exists, then from (3.1), (3.2), (3.7) and (3.8), along with the fact that ε > 0 is arbitrary,
we conclude that

lim
n→∞

E exp(−λWn) = exp(−λc),

which proves that limn→∞Wn
dist
= c. The rest of the results in part (i-b), concerning

accumulation points, follow in the same manner.

Proof of part (ii). From (3.1), we have

logE exp(−λWn) =

n∑
k=1

log
(

1− pk
(
1− E exp(− λ

Mn
Xk)

))
. (3.9)

Since by assumption limk→∞ pk = 0, for any ε > 0 there exists a kε such that

− (1 + ε)pk
(
1− E exp(− λ

Mn
Xk)

)
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− pk
(
1− E exp(− λ

Mn
Xk)

)
, k ≥ kε.

(3.10)

We now show that for any ε > 0 there exists a k′ε such that

(1− ε)E exp(−λ µk
Mn
X ) ≤ E exp(− λ

Mn
Xk) ≤ (1 + ε)E exp(−λ µk

Mn
X ), k ≥ k′ε. (3.11)

By assumption (1.12) and the assumption that {µn}∞n=1 is increasing, there exists a C

such that µk
Mn
≤ C, for 1 ≤ k ≤ n and n ≥ 1. By assumption, Xkµk

dist→ X . Without loss of
generality, we assume that all of these random variables are defined on the same space
and that Xk

µk
→ X a.s. For δ > 0, let

Ak;δ = {sup
l≥k
|Xl

µl
−X| ≤ δ}.

Then Ak;δ is increasing in k and limk→∞ P (Ak;δ) = 1. We have∫
Ack;δ

exp(− λ

Mn
Xk)dP ≤ P (Ack;δ), (3.12)

and

exp(−λCδ)
∫
Ak;δ

exp(−λ µk
Mn
X )dP ≤

∫
Ak;δ

exp(−λ µk
Mn

Xk

µk
)dP ≤

exp(λCδ)

∫
Ak;δ

exp(−λ µk
Mn
X )dP.

(3.13)

Now (3.11) follows from (3.12) and (3.13).
Letting k

′′

ε = max(kε, k
′
ε), it follows from (3.10) and (3.11) that

− (1 + ε)pk

(
1− (1− ε)E exp(−λ µk

Mn
X )
)
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− pk
(

1− (1 + ε)E exp(−λ µk
Mn
X )
)
, k ≥ k

′′

ε .
(3.14)

From (3.9) and (3.14) we have

−
n∑

k=k′′ε

pk(1 + ε)
(

1− (1− ε)E exp(−λ µk
Mn
X )
)

+ o(1) ≤ logE exp(−λWn) ≤

−
n∑

k=k′′ε

pk

(
1− (1 + ε)E exp(−λ µk

Mn
X )
)
, as n→∞.

(3.15)

EJP 23 (2018), paper 3.
Page 10/17

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP126
http://www.imstat.org/ejp/


Strange domain of attraction to Dickman distributions

Define x
(n)
k = µk

Mn
, k
′′

ε ≤ k ≤ n, and ∆
(n)
k = x

(n)
k+1 − x

(n)
k = µk+1−µk

Mn
, k
′′

ε ≤ k ≤ n − 1.
Then we have

n∑
k=k′′ε

pk

(
1− (1± ε)E exp(−λ µk

Mn
X )
)

=

n∑
k=k′′ε

1− (1± ε)E exp(−λx(n)
k X )

x
(n)
k

∆
(n)
k

(
pk

µk
µk+1 − µk

)
.

(3.16)

By assumption, {µk}∞k=1 is increasing; thus {x(n)
k }nk=k′′ε

is a partition of [
µ
k
′′
ε

Mn
, µnMn

]. By

assumption, limn→∞
µ
k
′′
ε

Mn
= 0 and limn→∞

µn
Mn

= L. We now show that the mesh,

maxk′′ε ≤k≤n−1 ∆
(n)
k , of the partition converges to 0 as n→∞. Let ∆

(n)
jn

=maxk′′ε ≤k≤n−1 ∆
(n)
k ,

where k
′′

ε ≤ jn ≤ n. Without loss of generality, assume either that {jn} is bounded or

that limn→∞ jn = ∞. In the former case it is clear that maxk′′ε ≤k≤n−1 ∆
(n)
k = ∆

(n)
jn

=
µjn+1−µjn

Mn

n→∞→ 0. Now consider the latter case. From assumption (1.12) and the

assumption that limk→∞ pk = 0, it follows that limn→∞
µn+1−µn

Mn
= 0. Then we have

max
k′′ε ≤k≤n−1

∆
(n)
k = ∆

(n)
jn

=
µjn+1 − µjn

Mn
=
µjn+1 − µjn

Mjn

Mjn

Mn
≤ µjn+1 − µjn

Mjn

n→∞→ 0.

Finally, we note that from (1.12) we have limk→∞ pk
µk

µk+1−µk = θ. In light of these facts,
along with (3.15), (3.16) and the fact that ε > 0 is arbitrary, it follows that

lim
n→∞

logE exp(−λWn) = θ

∫ L

0

E exp(−λxX )− 1

x
dx = θ

∫ 1

0

E exp(−λLxX )− 1

x
dx,

(3.17)
�

4 Proof of Theorem 1.2

We will assume that Jp, Jµ ≥ 1 so that we can use a uniform notation, leaving it to
the reader to verify that the proof also goes through if Jp or Jµ is equal to zero.

First assume that (1.13) holds. Then by the assumptions in the theorem,

1 ≤ Jp ≤ Jµ;

µk ∼ cµ
Jµ∏
j=Jp

(log(j) k)aj , aJp > 0;

pk ∼ cp
(
j

Jp∏
j=1

log(j) k
)−1

;

µk+1 − µk ∼ cµaJP
(log(JP ) k)aJp−1

j
∏Jp−1
j=1 log(j) k

Jµ∏
j=Jp+1

(log(j) k)aj .

Thus,

Mn =

n∑
k=1

pkµk ∼ cµcp
(log(Jp) n)aJp

aJp

Jµ∏
j=Jp+1

(log(j) n)aj .

Consequently,

lim
k→∞

µk
Mk

=
aJp
cp

and lim
k→∞

pkµk
µk+1 − µk

=
cp
aJp

. (4.1)
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Strange domain of attraction to Dickman distributions

Thus, from part (ii) of Theorem 1.1 it follows that limn→∞Wn
dist
= 1

θDθ, where θ =
cp
aJp

.

Now assume that (1.13) does not hold. We need to show that {Kn}∞n=1 can be defined
so that (1.8) and (1.9) hold, and so that (1.10) holds with c ∈ {0, 1}. We also have to show
when c = 0 and when c = 1. Recall the definitions in (1.14). If {0 ≤ j ≤ Jµ : aj 6= 0} is
empty, or if it is not empty and aκµ < 0, then {µk}∞k=1 is bounded. Therefore, (1.8) and

(1.9) hold with Kn = n and it follows from part (i-a) of Theorem 1.1 that limn→∞Wn
dist
= 1.

Thus, from now on we assume that {0 ≤ j ≤ Jµ : aj 6= 0} is not empty and that aκµ > 0.
In order to use uniform notation, we will assume that κµ > 0, leaving the reader to verify
that the proof goes through if κµ = 0. Thus, we have

µk ∼
Jµ∏
j=κµ

(log(j) k)aj , κµ ≥ 1, aκµ > 0. (4.2)

In order to simplify notation, for the rest of this proof, we will let Ll(k) denote a
positive constant multiplied by a product of powers (possibly of varying sign) of iterated
logarithms log(j) k, where the smallest j is strictly larger than l. The exact form of this
expression may vary from line to line. Sometimes we will need to distinguish between
two such expressions in the same formula, in which case we will use the notation
L(1)
l (k),L(2)

l (k). Thus, we rewrite (4.2) as

µk ∼ (log(κµ) k)aκµLκµ(k), κµ ≥ 1, aκµ > 0. (4.3)

If {0 ≤ j ≤ Jp : bj 6= 1} is empty, then the second condition in (1.13) is fulfilled and
we have

pk ∼ cp
(
j

Jp∏
j=1

log(j) k
)−1

. (4.4)

Since we are assuming that (1.13) does not hold, at least one of the other two conditions
in (1.13) must fail. This forces κµ 6= Jp. (Recall that we are assuming that {0 ≤ j ≤ Jµ :

aj 6= 0} is not empty and that aκµ > 0.)
Consider first the case that κµ > Jp. Then from (4.3) and (4.4) we have

Mn =

n∑
k=1

pkµk ∼ (log(Jp+1) n)(log(κµ) n)aκµLκµ(n), where κµ ≥ Jp + 1. (4.5)

From (4.3) and (4.5) it follows that (1.8) and (1.9) hold by choosing Kn = n. Thus, from

part (i-a) of Theorem 1.1, limn→∞Wn
dist
= 1.

Now consider the case κµ < Jp. Then from (4.3) and (4.4) we have

Mn =

n∑
k=1

pkµk ∼ (log(κµ) n)aκµLκµ(n), where κµ ≤ Jp − 1, (4.6)

and for any Kn satisfying Kn →∞ and Kn ≤ n, we have

n∑
k=Kn

pk ∼ cp
(

log(Jp+1) n− log(Jp+1)Kn

)
= cp log

log(Jp) n

log(Jp)Kn

. (4.7)

From (4.3) and (4.6) we have

µKn
Mn

∼
( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

, κµ ≤ Jp − 1, aκµ > 0;

MKn

Mn
∼
( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

, κµ ≤ Jp − 1, aκµ > 0;

(4.8)
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As we explain in some detail below, since κµ < Jp, we can choose {Kn}∞n=1 so that

lim
n→∞

log(Jp)Kn

log(Jp) n
= 1 and lim

n→∞

( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

= 0. (4.9)

From (4.3) and (4.7)-(4.9), we conclude that {Kn} can be defined so that (1.8) and (1.9)

hold, and so that (1.10) holds with c = 0. This proves that limn→∞Wn
dist
= 0.

To explain (4.9), note that
L(1)
κµ

(Kn)

L(2)
κµ (n)

≤ (log(κµ+1) n)A, for some A > 0 and all large n.

(Recall that the powers of the iterated logarithms in L(2)
kµ

can be negative.) Thus, in place

of the second limit in (4.9), it suffices to show that δn ≡
(

log(κµ)Kn
log(κµ) n

)aκµ
(log(κµ+1) n)A

n→∞→
0. We have

log(κµ)Kn = (δn)
1

aκµ (log(κµ+1) n)
− A
aκµ log(κµ) n;

thus,
log(κµ+1)Kn

log(κµ+1) n
=

log δn

aκµ log(κµ+1) n
− A log(κµ+2) n

aκµ log(κµ+1) n
+ 1. (4.10)

Defining Kn by choosing δn = (log(κµ+1) n)−1, it follows from (4.10) and the fact that
Jp ≥ κµ + 1 that the two equalities in (4.9) hold.

We now consider the case that {0 ≤ j ≤ Jp : bj 6= 1} is not empty. Then in order to
fulfill the second condition in (1.6), we have bκp < 1. We write

pk ∼ cp
(
j

κp−1∏
j=1

log(j) k
)−1(

log(κp) k
)−bκp ( Jp∏

j=κp+1

log(j) k
)−bj

. (4.11)

From (4.3) and (4.11) it follows that Mn =
∑n
k=1 pkµk satisfies

Mn ∼


(log(κµ) n)aκµ Lκµ(n), κµ < κp;

(log(κp) n)aκp−bκp+1 Lκp(n), κµ = κp;

(log(κp) n)1−bκp Lκp(n), κµ > κp,

(4.12)

and from (4.11) it follows that for any Kn satisfying Kn →∞ and Kn ≤ n,

n∑
k=Kn

pk ∼

cp
1− bκp

[(
log(κp) n

)1−bκp ( Jp∏
j=κp+1

log(j) n
)−bj − ( log(κp)Kn

)1−bκp ( Jp∏
j=κp+1

log(j)Kn

)−bj]
.

(4.13)
From (4.3) and (4.12) we have

µKn
Mn

∼



(
log(κµ)Kn
log(κµ) n

)aκµ L(1)
κµ

(Kn)

L(2)
κµ (n)

, κµ < κp;(
log(κp)Kn)

aκp

(log(κp) n
)aκp−bκp+1

L(1)
κp

(Kn)

L(2)
κp (n)

, κµ = κp;(
log(κµ)Kn

)aκµ(
log(κp) n

)1−bκp L(1)
κµ

(Kn)

L(2)
κp (n)

, κµ > κp.

(4.14)

It is immediate (4.3) and (4.14) that if κµ ≥ κp, then (1.8) and (1.9) hold by choosing
Kn = n. (For the case κµ = κp, recall that bκp ∈ (0, 1).) Thus, from part (i-a) of Theorem

1.1, limn→∞Wn
dist
= 1.
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Now consider the case κµ < κp. For simplicity, we will assume that the higher order
iterated logarithmic terms do not appear; that is, we will assume from (4.12)-(4.14) that

n∑
k=Kn

pk ∼
cp

1− bκp

[(
log(κp) n

)1−bκp − ( log(κp)Kn

)1−bκp ];
µKn
Mn

∼
( log(κµ)Kn

log(κµ) n

)aκµ ;

MKn

Mn
∼
( log(κµ)Kn

log(κµ) n

)aκµ .
(4.15)

The additional logarithmic terms can be dealt with similarly to the way they were dealt
with for (4.9), as explained in the paragraph following (4.9). Applying the mean value
theorem to the function x1−bκp , we obtain

(
log(κp) n

)1−bκp − ( log(κp)Kn

)1−bκp =
(1− bκp) log(κp) n

Kn

(log(κp) n∗)bκp
, (4.16)

where n∗ ∈ (Kn, n). Since κµ < κp, we can choose Kn →∞ such that limn→∞
log(κµ)Kn
log(κµ) n

=

0, but limn→∞ log(κp) Kn
n = 1. For such a choice of {Kn}, it follows from (4.3), (4.15) and

(4.16) that (1.8) and (1.9) hold, and that (1.10) holds with c = 0; thus, limn→∞Wn
dist
= 0.

�

5 Basic facts concerning generalized Dickman distributions

The proof of Theorem 1.1 showed in particular that exp(θ
∫ 1

0
e−λx−1

x dx) is the Laplace
transform of a probability distribution, which we have denoted by GD(θ).

Proposition 5.1. Let Dθ ∼GD(θ). Then

Dθ
dist
= U

1
θ (Dθ + 1), (5.1)

where U is distributed according to the uniform distribution on [0, 1], and U and Dθ on
the right hand side above are independent.

Remark 1. From (5.1) it is immediate that

Dθ
dist
= U

1
θ

1 + (U1U2)
1
θ + (U1U2U3)

1
θ + · · · ,

where {Un}∞n=1 are IID random variables distributed according to the uniform distribution
on [0, 1].

Remark 2. Our proof of the proposition is rather probabilistic; a more analytic proof
can be found in [7].

Proof. The proof of Theorem 1.1 showed in particular that if we let Xk = µk = k and
pk = θ

k , in which case Mn =
∑n
k=1 pkµk = θn, then

Ŵn ≡ θWn =
1

n

n∑
k=1

kBk
dist→ Dθ, (5.2)

where Dθ
dist∼ GD(θ). Let

J+
n = max{k ≤ n : Bk 6= 0},
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with max ∅ ≡ 0. We write

Ŵn ≡
1

n

n∑
n=1

kBk =
J+
n − 1

n

( 1

J+
n − 1

J+
n −1∑
k=1

kBk

)
+
J+
n

n
, (5.3)

where the first of the two summands on the right hand side above is interpreted as equal
to 0 if J+

n ≤ 1. We have

P (
J+
n

n
≤ x) =

n∏
k=[xn+1]

(1− θ

k
) ∼ xθ, x ∈ (0, 1). (5.4)

Also, by the independence of {Bk}∞k=1, we have

1

J+
n − 1

J+
n −1∑
k=1

kBk | {J+
n = k0}

dist
=

1

k0 − 1

k0−1∑
k=1

kBk = Ŵk0−1, k0 ≥ 2. (5.5)

Letting n → ∞ in (5.3) and using (5.2), (5.4) and (5.5), we conclude that (5.1) holds,

where U is distributed according to the uniform distribution on [0, 1], Dθ
dist∼ GD(θ) and

U and Dθ on the right hand side are independent.

Proposition 5.2. The GD(θ) distribution has a density function pθ satisfying pθ = cθρθ,
for some cθ > 0, where ρθ satisfies (1.1).

Remark. For a derivation of the formula cθ = e−θγ

Γ(θ) , see [1].

Proof. Let Fθ(x) = P (Dθ ≤ x) denote the distribution function for the GD(θ) distribution.
Then from (5.1) we have

Fθ(x) = P (Dθ ≤ x) = P (U
1
θ (Dθ + 1) ≤ x) =

∫ 1

0

P (Dθ + 1 ≤ xy− 1
θ )dy =∫ 1

0

Fθ(xy
− 1
θ − 1)dy.

(5.6)

For x > 0, making the change of variables, v = xy−
1
θ − 1, we can rewrite (5.6) as

Fθ(x) = θxθ
∫ ∞
x−1

FDθ (v)(1 + v)−1−θdv, x > 0. (5.7)

From (5.7) and the fact that Fθ(x) = 0, for x ≤ 0, it follows that Fθ is continuous on R.
Also, since Fθ(x) = 0, for x ≤ 0, we have∫ ∞

x−1

FDθ (v)(1 + v)−1−θdv =

∫ ∞
0

FDθ (v)(1 + v)−1−θdv, x ≤ 1.

Consequently, it follows from (5.7) that Fθ(x) = Cθx
θ, for x ∈ [0, 1], where Cθ =

θ
∫∞

0
FDθ (v)(1 + v)−1−θdv. From this and (5.7) it follows that F is differentiable on

(0, 1) and on (1,∞), and that, letting pθ = F ′θ,

pθ = cθx
θ−1, 0 < x < 1, cθ = θ2

∫ ∞
0

FDθ (v)(1 + v)−1−θdv, (5.8)

and

pθ(x) = θ2xθ−1

∫ ∞
x−1

FDθ (v)(1 + v)−1−θdv − θx−1Fθ(x− 1) =

θ

x
(Fθ(x)− Fθ(x− 1)), x > 1.

(5.9)
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From (5.9), it follows that pθ is differentiable on x > 1, and that (xpθ(x))′ = θ
(
pθ(x) −

pθ(x− 1)
)
, for x > 1, or equivalently,

xp′θ(x) + (1− θ)pθ(x) + θpθ(x− 1) = 0, x > 1. (5.10)

From (5.8) and (5.10) we conclude that pθ(x) = cθρθ, where ρθ satisfies (1.1). Integrating
by parts in the formula for cθ in (5.8) shows that

cθ = θ

∫ ∞
0

(1 + v)−θpθ(v)dv = θE(1 +Dθ)
−θ.

6 The Dickman function in number theory and probability

The Dickman function ρ ≡ ρ1 arises in probabilistic number theory in the context
of so-called smooth numbers; that is, numbers all of whose prime divisors are “small.”
Let Ψ(x, y) denote the number of positive integers less than or equal to x with no prime
divisors greater than y. Numbers with no prime divisors greater than y are called
y-smooth numbers. Then for s ≥ 1, Ψ(N,N

1
s ) ∼ Nρ(s), as N →∞. This result was first

proved by Dickman in 1930 [4], whence the name of the function, with later refinements
by de Bruijn [2]. See also [6] or [9]. Let [n] = {1, . . . , n} and let p+(n) denote the largest

prime divisor of n. Then Dickman’s result states that the random variable log p+(j)
logn , j ∈ [n],

on the probability space [n] with the uniform distribution converges in distribution as
n → ∞ to the distribution whose distribution function is ρ( 1

x ), x ∈ [0, 1], and whose

density is −ρ
′( 1
x )

x2 =
ρ( 1
x−1)

x , x ∈ [0, 1]. It is easy to see that an equivalent statement of

Dickman’s result is that the random variable log p+(j)
log j , j ∈ [n], on the probability space

[n] with the uniform distribution converges in distribution as n→∞ to the distribution
whose distribution function is ρ( 1

x ), x ∈ [0, 1], We note that the length of the longest cycle
of a uniformly random permutation of [n], normalized by dividing by n, also converges to
a limiting distribution whose distribution function is ρ( 1

x ). If instead of using the uniform
measure on Sn, the set of permutations of [n], one uses the Ewens sampling distribution
on Sn, obtained by giving each permutation σ ∈ Sn the probability proportional to θC(σ),
where C(σ) denotes the number of cycles in σ, then the length of the longest cycle of
such a random permutation of [n], normalized by dividing by n, converges to a limiting
distribution whose distribution function is ρθ(

1
x ), x ∈ [0, 1]. This distribution is also the

distribution of the first coordinate of the Poisson-Dirichlet distribution PD(θ) (see [1]).
The examples in the above paragraph lead to limiting distributions where the Dickman

function arises as a distribution function, not as a density as is the case with the GD(θ)

distributions discussed in this paper. The GD(θ) distribution arises as a normalized limit
in the context of certain natural probability measures that one can place on N; see [3],
[8].
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