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Abstract

For percolation on finite transitive graphs, Nachmias and Peres suggested a char-
acterization of the critical probability based on the logarithmic derivative of the
susceptibility. As a first test-case, we study their suggestion for the Erdős–Rényi
random graph Gn,p, and confirm that the logarithmic derivative has the desired prop-
erties: (i) its maximizer lies inside the critical window p = 1/n+ Θ(n−4/3), and (ii) the
inverse of its maximum value coincides with the Θ(n−4/3)–width of the critical window.
We also prove that the maximizer is not located at p = 1/n or p = 1/(n− 1), refuting a
speculation of Peres.
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1 Introduction

The percolation phase transition on finite graphs is one of the most intriguing and
striking phenomena at the intersection of mathematical physics, combinatorics, and
probability theory. The classical Erdős–Rényi random graph Gn,p is perhaps the most
carefully studied reference model: as the edge probability p increases past the ‘critical
probability’ pc = 1/n, the global structure changes radically, from only small components
to a single giant component plus small ones. More precisely, using the parametrization
p = 1/n+λnn

−4/3, and for simplicity assuming p = Θ(1/n), by the inspiring work of Erdős
and Rényi [11], Bollobás [4], Łuczak [28], and Aldous [3], we nowadays distinguish three
qualitatively different phases of Gn,p. In the subcritical phase λn → −∞, the r = Θ(1)
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On the critical probability in percolation

largest components C1, . . . , Cr are typically all of comparable size: |C1| ∼ |C2| ∼ · · · ∼
|Cr| = Θ(n2/3λ−2n log |λn|) = o(n2/3). In the supercritical phase λn → ∞, the largest
component typically dominates all other components: |C2| � |C1| = Θ(λnn

2/3). In the
critical window |λn| = O(1), the rescaled sizes |C1|/n2/3, |C2|/n2/3, · · · of the largest
components converge in distribution to non-degenerate random variables, i.e., they are
not concentrated.

In the language of mathematical physics, Gn,p interpreted as percolation on the
complete n-vertex graph is a mean-field model. Hence, we expect that the percolation
phase transition of many ‘high dimensional’ finite graphs is similar, with the hypercube
and various tori being examples of great interest (see, e.g., [2, 5, 18, 7, 8, 9, 16]). To fix
notation, we assume that G is a given transitive n-vertex graph, and we write Gp ⊆ G

for the binomial random subgraph where each edge is included independently with
probability p. As pointed out by Nachmias and Peres [30], in this general percolation
setting it is a challenging problem to find a good definition of the critical probability pc,
such that for a suitable critical window around pc, for example, the size of the largest
component is not concentrated.

The folklore average degree heuristic pc = 1/(degG(v)−1) is a natural first guess (the
graphG is assumed to be transitive and thus regular, so the choice of the vertex v does not
matter). For the hypercube with vertex set {0, 1}m, and thus degree m, Ajtai, Komlós and
Szemerédi [2] showed that there is a critical threshold (1 + o(1))/m; this was sharpened
by Bollobás, Kohayakawa, and Łuczak [5], who raised the question whether the critical
probability might be exactly 1/(m− 1). However, Borgs, Chayes, van der Hofstad, Slade
and Spencer [7, 8] and van der Hofstad and Nachmias [16, 17] have shown that there is
critical window of width Θ(n−1/3pc) = Θ(2−m/3/m) about a critical probability pc, which
by van der Hofstad and Slade [18] satisfies pc = 1/(m− 1) + 3.5m−3 +O(m−4); since the
width of the window is o(m−3), the value 1/(m− 1) is outside the critical window.

A more sophisticated suggestion for the critical probability was pioneered by Borgs,
Chayes, van der Hofstad, Slade and Spencer [7, 8] (and used for the hypercube result
just described). They essentially proposed to define pc = pc(G) as the unique solution to
the polynomial equation

χ
G(p) := Ep|C(v)| = n1/3, (1.1)

where the susceptibility χG(p) denotes the expected size of the component C(v) contain-
ing a fixed vertex v in Gp. (This is a widely studied key parameter in percolation theory
and random graph theory, see, e.g., [1, 13, 22, 26, 33, 34]. Since G is assumed to be
transitive, the choice of v does not matter.) The aforementioned technical definition is
guided by Erdős–Rényi mean-field type behaviour. Indeed, in the subcritical phase we
expect that C(v) closely mimics a subcritical branching process, which suggests that
typically |C1| ≈ (χG(p))2 up to logarithmic corrections (see, e.g., Section 1.2 in [15]
or Proposition 5.1 in [1]). Furthermore, in the supercritical phase we expect that the
largest component dominates all other components, which by transitivity suggests that
χ
G(p) ≈ Ep|C1|2/n. Assuming that inside the critical window we can observe subcritical

and supercritical features, it thus seems plausible that the critical probability should
roughly satisfy χG(p) ≈ Ep|C1|2/n ≈ χ

G(p)4/n, motivating the choice of equation (1.1).
Borgs et al. [7, 8] showed that (a minor variant of) the discussed definition is very
useful in combination with the so-called finite triangle condition: they recovered many
Erdős–Rényi features under such generic mean-field assumptions (see [16, 17] for some
more recent developments).

As pointed out by Peres [32], the suggestion of Borgs et al. [7, 8] builds the mean-
field scaling Θ(n1/3) into the definition of the critical probability. It would be desirable
to have a useful general definition that recovers this scaling for n-vertex mean-field
graphs G = Gn, rather than having separate definitions for each different scaling
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behaviour (or, in mathematical physics jargon, for each ‘universality class’). With this
aim in mind, Nachmias and Peres [30] suggested to define pc = pc(G) as the value of p
which maximizes the logarithmic derivative

d

dp
logχG(p) =

d
dpEp|C(v)|
Ep|C(v)|

. (1.2)

To motivate this definition, note that by the Margulis–Russo formula [29, 35] the deriva-
tive d

dpEp|C(v)| intuitively counts the expected (weighted) number of edges of Gp which
can affect the size of |C(v)|, see also Section 2. In other words, pc equals the probability
where the addition of a random edge has maximum relative impact on the component
size |C(v)|. Denoting the maximum value of (1.2) by M = M(G), Warnke [37] conjectured
that for mean-field graphs G the width of the critical window is of order Θ(1/M). This is
motivated by the fact that log(χG(p2)/χG(p1)) =

∫ p2
p1

d
dp logχG(p)dp 6 (p2 − p1)M entails

that the susceptibility satisfies χG(p2) = Θ(χG(p1)) for p2 − p1 = O(1/M).

1.1 Main results

In this paper we investigate, as a first test-case, the suggested definition of Nachmias
and Peres [30] for the Erdős–Rényi random graph Gn,p i.e., the case G = Kn (as proposed
by Peres [32]). Here our first main result confirms that their definition of the critical
probability pc has the desired properties, i.e., that for Gn,p = (Kn)p the logarithmic
derivative d

dp logχKn
(p) satisfies the following:

(i) its maximizer lies inside the critical window p = 1/n+O(n−4/3), and
(ii) the inverse of its maximum value coincides with the Θ(n−4/3)–width of the critical

window.

Theorem 1.1 (Maximizer of the logarithmic derivative for Gn,p). We have∣∣∣∣argmax
p∈(0,1)

d

dp
logχKn(p)− 1

n

∣∣∣∣ = O(n−4/3), (1.3)

max
p∈(0,1)

d

dp
logχKn(p) = Θ(n4/3). (1.4)

Remark 1.2. Theorem 1.3 shows that (1.3) remains valid with O(n−4/3) replaced
by Θ(n−4/3).

Having established the qualitative behaviour of the logarithmic derivative for Gn,p, it is
intriguing to investigate the finer scaling behaviour inside critical window. By symmetry
considerations it might be tempting to believe that p = 1/n or p = 1/(n− 1) could be the
maximizer of d

dp logχKn
(p), as speculated by Peres [32]. Our second main result refutes

this tantalizing belief, instead strengthening the general feeling that λ = 0 is no special
point inside the critical window of form p = 1/n+ λn−4/3.

Theorem 1.3 (Scaling inside the critical window of Gn,p). Given λ ∈ R, for p = 1/n+
(
λ+

o(1)
)
n−4/3 we have, as n→∞,

χ
Kn

(p)

n1/3
→ f(λ), (1.5)

d
dp logχKn(p)

n4/3
→ d

dλ
log f(λ) > 0, (1.6)

where the infinitely differentiable function f = f2 : R→ (0,∞) is defined in (3.1)–(3.4).
Moreover, if p = 1/n + λn−4/3, then the convergence in (1.5)–(1.6) is uniform for λ in
any compact interval [λ1, λ2] ⊂ R. Furthermore,

d2

dλ2
log f(0) 6= 0. (1.7)
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The definition of the function f appearing in Theorem 1.3 is quite involved, since
it intuitively needs to capture the contribution of components with arbitrary numbers
of cycles. It is easy to find asymptotics as λ → ±∞; we have f(λ) ∼ |λ|−1 as λ →
−∞ and f(λ) ∼ 4λ2 as λ → +∞; hence log f(λ) = − log |λ| + o(1) as λ → −∞ and
log f(λ) = 2 log λ + O(1) as λ → +∞; furthermore, d

dλ log f(λ) = O(1/|λ|) for all λ ∈ R,
see Appendix A for proofs. Theorem 1.3 also extends to convergence of higher derivatives,
see Appendix C.

It would be interesting to know whether the logarithmic derivative d
dλ log f(λ) has a

unique maximizer λ∗, and whether it is unimodal. Figure 1 below (which is obtained by
numerical integrations) suggests that this is the case, with λ∗ ≈ 1 (we conjecture λ∗ > 1

based on our limited precision numerical data).

Figure 1: Plot of the functions log f(λ), d
dλ log f(λ) and d2

dλ2 log f(λ) for λ ∈ [−1.75, 3.75],
where f is as in Theorem 1.3. It provides some evidence for our belief that d

dλ log f(λ)

has a unique maximizer λ∗ ≈ 1.

The high-level structure of our proofs is as follows. For Theorem 1.1 our starting
point is the Margulis–Russo Formula, which allows us to write d

dp
χ
Kn(p) in terms of sums

involving the squared component sizes of Gn,p. Using ideas from random graph theory
we then estimate these sums, combining correlation inequalities and the ‘symmetry
rule’ (also called ‘discrete duality principle’) with results for the largest component
and the susceptibility of Gn,p, which eventually implies (1.3)–(1.4); see Section 2. For
Theorem 1.3 with p = 1/n +

(
λ + o(1)

)
n−4/3, our starting point is the well-known fact

that Xn,2 =
∑
j>1 |Cj |2/n4/3

d→ Wλ,2 for some random variable Wλ,2. Using techni-
cal arguments we then justify taking expectations and derivatives, which in view of
χ
Kn(p)/n1/3 = EpXn,2 eventually establishes (1.5)–(1.6) with f(λ) = EWλ,2; see Sec-

tion 3.1. For inequality (1.7) we show that f and its derivatives can be computed at λ = 0

by series expansions (exploiting recursive formulas for the area under a normalized
Brownian excursion). Since these series converge exponentially, we can then numerically
verify (1.7) by finite truncation; see Section 3.2.

1.2 Remarks on some other graphs and open problems

In the present paper we discuss only the Erdős–Rényi random graph Gn,p = (Kn)p,
i.e., percolation on the complete n-vertex graph. In particular, Theorem 1.1 shows that
the definition of the critical probability pc suggested by Nachmias and Peres [30, 32]
‘works’ in this case. It is an interesting open problem to establish analogous results for
other finite graphs.

For example, consider again the hypercube with vertex set {0, 1}m discussed above,
see [7, 8, 16, 17]. In the subcritical phase p = (1−ε)pc with ε3n→∞, [7, Proposition A.1]
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combined with [8, Theorem 1.3 and Theorem 1.5] show that d
dp
χ
G(p) ∼ m(χG(p))2 and

χ
G(p) ∼ ε−1, and thus

d

dp
logχG(p) ∼ mχG(p) = Θ(ε−1m) = o

(
n1/3m

)
.

In the supercritical phase p = (1 + ε)pc with ε3n → ∞ and ε = ε(n) → 0, we have
χG(p) ∼ 4ε2n according to [16, Theorem 1.1]; hence it is natural to conjecture that the
logarithmic derivative satisfies

d

dp
logχG(p) = p−1c

d

dε
logχG(p) ≈ 2

εpc
= Θ(ε−1m) = o

(
n1/3m

)
,

in the supercritical phase too, and, moreover, that the logarithmic derivative has a
maximum of order Θ(n1/3m) which is attained inside the critical window. Proving this,
however, remains a challenging problem.

Another important example would be random d-regular graphs with d = d(n)→∞.
Moreover, it would be conceptually very interesting to start with the maximizer

of (1.2) and then derive properties of the phase transition of Gp (rather than, as in this
paper, using known results for Gp to verify properties of the maximizer).

It also seems highly desirable to better understand the critical probability pc for
finite transitive graphs G which do not exhibit the mean-field behavior of the complete
graph Kn or the hypercube {0, 1}m. Here the perhaps simplest example is percolation
on the n-vertex cycle, n > 3, for which it is not difficult to check that there are three
different phases: (i) for 1−p = o(n−1) we typically have |C1| = n, (ii) for 1−p = ω(n−1) we
typically have |C1| = o(n), and (iii) for 1−p = Θ(n−1) the rescaled sizes |C1|/n, · · · , |Cr|/n
of the r = Θ(1) largest components are not concentrated. Hence the critical window is
parametrized by p = 1− λnn−1 with λn = Θ(1). For p ∈ (0, 1) it is routine to see that

Ep|C(v)| = 1 +
∑

16j<n

(pj + pn−j − pn) = 1 +
∑

16j<n

(2pj − pn),

d

dp
Ep|C(v)| =

∑
16j<n

(2jpj−1 − npn−1) =
∑

16j<n

2jpj−1(1− pn−j).

A short calculation shows that Ep|C(v)| = Θ(n1/3) implies p = 1−Θ(n−1/3). Furthermore,
d
dp logEp|C(v)| = Θ(n) for 1 − p = Θ(n−1), and d

dp logEp|C(v)| = Θ(min{(1 − p)n2, (1 −
p)−1}) = o(n) otherwise. For the critical probability pc of n-vertex cycles, it follows that
the mean-field definition of Borgs et al. fails (as expected, since cycles are not ‘high
dimensional’). By contrast, the definition based on the maximizer of the logarithmic
derivative of the susceptibility does correctly predict pc = 1−Θ(n−1) and the Θ(n−1)–
width of the critical window, supporting the hope that this definition might work beyond
the mean-field case.

1.3 Some notation

For emphasis, we will often use Pn,p and En,p for probability and expectation with
respect to Gn,p. We let Ci denote the components of Gn,p in order of decreasing sizes,
|C1| > |C2| > · · · (resolving ties by taking the component with the smallest vertex label

first, for definiteness). Finally, convergence in distribution is denoted
d→, and unspecified

limits are as n→∞.

2 Maximizer of the logarithmic derivative

In this section we prove Theorem 1.1. Our arguments combine the Margulis–Russo
formula with results and ideas from random graph theory. For mathematical convenience
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we shall work with the ‘rescaled’ susceptibility parameters

S(Gn,p) :=
∑
v∈[n]

|C(v)| =
∑
i

|Ci|2, (2.1)

where the component C(v) is with respect to Gn,p, as usual, and

Sn(p) := ES(Gn,p) = En,p

(∑
i

|Ci|2
)
. (2.2)

Recall that χKn
(p) = En,p|C(v)|, which is the same for every v ∈ [n] by symmetry, and

thus by (2.1)–(2.2)

Sn(p) = nχKn
(p), (2.3)

which implies

d

dp
logχKn

(p) =
d

dp
logSn(p). (2.4)

Theorem 2.1 (Bounds for the logarithmic derivative). There is a constant C > 0 such
that, for all n > 1 and p ∈ (0, 1),

d

dp
logSn(p) 6 C ·min

{
|p− 1/n|−1, n4/3

}
. (2.5)

Furthermore, for every λ ∈ R there is a constant Dλ > 0 such that, for all n > 2 and
p = 1/n+ λn−4/3 ∈ (0, 1),

d

dp
logSn(p) > Dλn

4/3. (2.6)

We now record the simple observation that Theorem 2.1 implies Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follows by inserting inequalities (2.5)–(2.6) into the
equation (2.4) above (in fact, in the lower bound (2.6) it suffices to consider, for example,
the special case λ = 0).

The remainder of this section is devoted to the proof of Theorem 2.1, and we start by
studying a combinatorial form of d

dpSn(p). Writing v ↔ w for the event that v and w are
connected (which trivially holds if v = w), note that S(G) =

∑
v,w∈V (G) 1{v↔w} and thus,

by taking the expectation, see (2.2),

Sn(p) =
∑

v,w∈[n]

Pn,p(v ↔ w). (2.7)

We now record the following simple monotonicity property, which is obvious from (2.7).

Lemma 2.2. If p 6 p′ and n 6 n′, then Sn(p) 6 Sn′(p
′).

We say that an edge e ∈ E(Kn) is pivotal for v ↔ w, if v ↔ w in Gn,p + e and v 6↔
w in Gn,p − e (i.e., in the possibly modified graphs where e is added and removed,
respectively). Recalling the form of (2.7), for p ∈ (0, 1) the Margulis–Russo Formula [29,
35] gives

d

dp
Sn(p) =

∑
v,w∈[n]

d

dp
Pn,p(v ↔ w) =

∑
v,w∈[n]

∑
e∈E(Kn)

Pn,p(e is pivotal for v ↔ w). (2.8)

Let Pe,v,w denote the event that (i) e 6∈ Gn,p and (ii) e is pivotal for v ↔ w. Since being
pivotal does not depend on the status of e, it follows that

d

dp
Sn(p) =

En,p
(∑

v,w∈[n]
∑
e∈E(Kn)

1Pe,v,w

)
1− p

. (2.9)
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An edge not present inGn,p is pivotal for v ↔ w if and only if one of its endpoints is in C(v)

and the other is in C(w) 6= C(v). Hence
∑
e∈E(Kn)

1Pe,v,w
= 1{C(v)6=C(w)}|C(v)||C(w)|.

Consequently,∑
v,w∈[n]

∑
e∈E(Kn)

1Pe,v,w
=
∑
v∈[n]

|C(v)|
∑

w 6∈C(v)

|C(w)| =
∑
i6=j

|Ci|2|Cj |2, (2.10)

and thus, by (2.9),

d

dp
Sn(p) =

En,p

(∑
v∈[n] |C(v)|

∑
w 6∈C(v) |C(w)|

)
1− p

=
En,p

(∑
i 6=j |Ci|2|Cj |2

)
1− p

, (2.11)

which eventually allows us to bring random graph theory into play.

2.1 Proof of Theorem 2.1: upper bound for the logarithmic derivative

In this subsection we prove the upper bound (2.5) from Theorem 2.1.
We shall use some more or less well-known results for the susceptibility and the size

of the largest component of Gn,p in near-critical cases, which we state as the following
theorem. (See, e.g., [7, 22, 26, 6] for similar or related results.)

Theorem 2.3. (i) There is a constant D > 0 such that, for all n > 1, p ∈ [0, 1], and ε > 0,

Sn(p) 6 ε−1n if np 6 1− ε, (2.12)

Sn(p) 6 Dε2n2 if np 6 1 + ε and ε3n > 1. (2.13)

(ii) For any A > 0 there are constants a,B, n0 > 0 such that, for all n > n0, p ∈ [0, 1],
ε ∈ (0, A], and δ ∈ (0, 1/2] satisfying np = 1 + ε and δ2ε3n > B,

Pn,p
(∣∣|C1| − ρ(ε)n

∣∣ > δρ(ε)n
)
6 e−aδ

2ε3n, (2.14)

where ρ(ε) > 0 is the positive solution to 1− ρ(ε) = e−(1+ε)ρ(ε).

(iii) Furthermore, for any A > 0 there are constants δ ∈ (0, 1/2) and c > 0 such that, for
all ε ∈ (0, A],

0 <
(
1− (1− δ)ρ(ε)

)
· (1 + ε) 6 1− cε. (2.15)

Proof. The subcritical upper bound (2.12) for the susceptibility is simple and well-
known. The supercritical upper bound (2.13) is intuitively clear, since in the supercritical
range, the susceptibility ought to be dominated by En,p|C1|2 and |C1| is with high
probability Θ(nε) when np = 1 + ε. However, we are unaware of a reference which
contains a short proof of (2.13), and thus for completeness we give in Appendix B proofs
of both upper bounds (2.12)–(2.13) for the susceptibility.

The tail bound (2.14) follows from [6, Theorem 4, (10) and Remark 3].
The estimate (2.15) follows for small ε, say ε 6 ε0, from the fact that ρ(ε) = 2ε+ o(ε)

as ε → 0, and for ε ∈ [ε0, A] from the fact that (with ρ = ρ(ε)) (1 − ρ)(1 + ε) = −(1 −
ρ) log(1 − ρ)/ρ < 1 for ε > 0 together with the continuity of ρ(ε). (Cf. e.g. [22, Lemma
A.2].)

Corollary 2.4. There are constants n0, π0, b > 0 such that, for all n > n0 and p ∈ [0, 1]

satisfying np > π0, we have P(|C1| 6 n/2) 6 e−bn and Sn(p) > n2/8.

Proof. Choose ε such that ρ(ε) > 3/4 and let π0 := 1 + ε. Then the tail estimate (2.14)
and monotonicity yield Pn,p(|C1| 6 n/2) 6 Pn,π0/n(|C1| 6 n/2) 6 e−bn. The second
conclusion follows from Sn(p) > E|C1|2 > (n/2)2P(|C1| > n/2).

We next prove two convenient auxiliary estimates.
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Lemma 2.5. For all n > 1 and p ∈ [0, 1],

En,p

(∑
i 6=j

|Ci|2|Cj |2
)
6 Sn(p)2 =

(
En,p

(∑
i

|Ci|2
))2

, (2.16)

En,p

(∑
i,j

|Ci|2|Cj |2
)
6
(
Sn(p) + 3

[
n−1Sn(p)

]4) · Sn(p). (2.17)

Proof. We start with (2.16) and fix any vertex v ∈ [n]. Conditioning on the vertex set
of C(v) in Gn,p, the remaining graph with vertex set [n] \ C(v) has the same distribution
as Gn−|C(v)|,p (up to relabeling of the vertices). Since Sn−|C(v)|(p) 6 Sn(p) by Lemma 2.2,
using (2.1) it follows that

En,p

(
|C(v)|

∑
w 6∈C(v)

|C(w)|
∣∣∣ C(v)

)
= |C(v)| · Sn−|C(v)|(p) 6 |C(v)| · Sn(p). (2.18)

Taking the expectation and summing over all vertices v ∈ [n], we obtain, recalling (2.10)
and (2.1)–(2.2),

En,p

(∑
i 6=j

|Ci|2|Cj |2
)

= En,p

(∑
v∈[n]

|C(v)|
∑

w 6∈C(v)

|C(w)|
)

6 En,p
(∑
v∈[n]

|C(v)|
)
· Sn(p) = Sn(p)2,

(2.19)

which is (2.16).
For (2.17) we rely on the classical tree–graph inequalities [1, (5.3)–(5.4)] of Aizenman

and Newman from 1984 (see also [13, (6.85)–(6.96)] for a modern exposition). As noted
in [1, p. 123], their proofs apply directly to percolation on any finite transitive graph. For
any integer k > 1 and vertex v ∈ [n], these inequalities state (in our notation) that

En,p
(
|C(v)|k

)
6 (2k − 3)!! ·

(
En,p|C(v)|

)2k−1
. (2.20)

Recalling Sn(p) = nEn,p|C(v)|, see (2.3), by summing (2.20) with k = 3 over all ver-
tices v ∈ [n] we infer

En,p

(∑
i

|Ci|4
)

=
∑
v∈[n]

En,p
(
|C(v)|3

)
6 3 ·

[
n−1Sn(p)

]5 · n,
which together with (2.16) establishes (2.17).

Proof of (2.5) of Theorem 2.1. We shall distinguish five (somewhat overlapping) ranges
of np that will be treated separately. We begin by noting that (2.11) and (2.16) together
imply

d

dp
logSn(p) 6

Sn(p)

1− p
, (2.21)

which will be useful in the subcritical and critical cases.
Let π0 and b be as in Corollary 2.4 and pick A > max{π0, 2} such that exe−x/2 6 1/2

for x > A. Let a,B, c > 0 and δ ∈ (0, 1/2] be the constants given in Theorem 2.3(ii)–(iii).
We set Λ := max{(B/δ2)1/3, 1}, and henceforth assume that n is large enough whenever
necessary. (This is no loss of generality since (2.1)–(2.2) and (2.8) imply Sn(p) > n and
d
dpSn(p) 6 n4 while min{|p − 1/n|−1, n4/3} > 1 for every n > 1, and thus (2.5) trivially
holds for any fixed n if C is large enough.)

Case 1: np = 1− ε with ε3n > 1. By (2.12),

Sn(p) 6 ε−1n = |p− 1/n|−1. (2.22)
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On the critical probability in percolation

Since p 6 1/2 (for n > 2) and |p− 1/n|−1 6 n4/3, now (2.21) and (2.22) imply (2.5).

Case 2: |np − 1| 6 Λn−1/3. Noting that np 6 1 + ε with ε = Λn−1/3 and using the
supercritical upper bound (2.13) for Sn(p) it follows that

Sn(p) 6 Dε2n2 = DΛ2 · n4/3 6 DΛ3 · |p− 1/n|−1.

Since p 6 1/2 (for n > 4Λ, say), now (2.21) implies (2.5).

Case 3: np = 1 + ε with Λn−1/3 6 ε 6 A. This is a more difficult range. We shall be
guided by the so-called ‘symmetry rule’, which intuitively states the following: after
removing the largest component from the supercritical random graphGn,p with np = 1+ε,
the remaining graph resembles a subcritical random graph Gn′,p with suitable n′ and
n′p = 1− ε′, see [21, Section 5.6].

Let
α(ε) := (1− δ)ρ(ε), (2.23)

so that (n − α(ε)n) · p 6 1 − cε by (2.15). Using the subcritical estimate (2.12) of
Theorem 2.3, it follows that for D1 := c−1 we have

Sbn−α(ε)nc(p) 6 (cε)−1n = D1ε
−1n. (2.24)

Note that |C1| 6 α(ε)n is a decreasing event, and that S(Gn,p) =
∑
i |Ci|2 and thus

S(Gn,p)
2 =

∑
i,j |Ci|2|Cj |2 are increasing functions of the edge indicators. By Harris’s

inequality (a special case of the FKG-inequality), it follows that

E
(
1{|C1|6α(ε)n}

∑
i,j

|Ci|2|Cj |2
)
6 P

(
|C1| 6 α(ε)n

)
· E
(∑
i,j

|Ci|2|Cj |2
)
. (2.25)

Combining (2.25) with (2.23), the tail estimate (2.14) and the inequality (2.17), using
the upper bound (2.13) for Sn(p), it follows that

E
(
1{|C1|6α(ε)n}

∑
i,j

|Ci|2|Cj |2
)
6 e−aδ

2ε3n ·
(
Dε2n2 + 3

[
Dε2n

]4) · Sn(p) = O(ε−1n) · Sn(p),

(2.26)

where we used e−x(x+ x3) 6 2 for the last inequality (and that a, δ,D are constants).
Conditioning on (the vertex set of) the largest component C1 of Gn,p, the remaining

graph with vertex set [n] \ C1 has the same distribution as Gn−|C1|,p conditioned on the
event DC1

that all components have size at most |C1| and that there is no component of
size exactly |C1| with a smaller vertex label than C1. Similarly to (2.18), it follows that

E
(
|C1|2

∑
i>2

|Ci|2
∣∣∣ C1

)
= |C1|2 · E

(
S(Gn−|C1|,p)

∣∣ C1, DC1

)
. (2.27)

For any given C1, DC1 is a decreasing event for the random graph Gn−|C1|,p, while
S(Gn−|C1|,p) is an increasing function. Hence, as in (2.25), by Harris’s inequality, it
follows that

E
(
S(Gn−|C1|,p)

∣∣ C1, DC1

)
6 E

(
S(Gn−|C1|,p)

∣∣ C1

)
= Sn−|C1|(p). (2.28)

By (2.27)–(2.28) and the monotonicity of Lemma 2.2 together with (2.24), we infer

En,p

(
1{|C1|>α(ε)n}|C1|2

∑
i>2

|Ci|2
∣∣∣ C1

)
6 1{|C1|>α(ε)n}|C1|2Sn−|C1|(p)

6 Sbn−α(ε)nc(p) · |C1|2 6 D1ε
−1n|C1|2

(2.29)
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On the critical probability in percolation

and thus, by taking the expectation and using (2.2),

En,p

(
1{|C1|>α(ε)n}|C1|2

∑
i>2

|Ci|2
)
6 D1ε

−1nEn,p|C1|2 6 D1ε
−1nSn(p). (2.30)

Similarly to (2.27)–(2.30), by combining (2.17) with the upper bound (2.24) for
Sbn−α(ε)nc(p), we deduce

E
(
1{|C1|>α(ε)n}

∑
i,j>2

|Ci|2|Cj |2
)
6Ebn−α(ε)nc,p

(∑
i,j

|Ci|2|Cj |2
)

6
(
D1ε

−1n+ 3
[
D1ε

−1]4) ·Sbn−α(ε)nc(p) =O(ε−1n) · Sn(p),

(2.31)

where we used ε3n > Λ3 > 1 and Sbn−α(ε)nc(p) 6 Sn(p) (see Lemma 2.2) for the final
inequality.

In view of (2.11), using p 6 1/2 (for n > 2(1 + A), say) our estimates (2.26), (2.30)
and (2.31) imply

d

dp
Sn(p) = O(ε−1n) · Sn(p),

which due to ε−1n = |p− 1/n|−1 and |p− 1/n|−1 6 n4/3/Λ yields (2.5) in this case too.

Case 4: A 6 np 6 n/2. In this range many technicalities from the previous case
simplify. By distinguishing the events |C1| 6 n/2 and n/2 < |C1| 6 n (in which case
|C2| 6 n− |C1| < n/2), using

∑
i |Ci| = n we infer∑

i 6=j

|Ci|2|Cj |2 6 1{|C1|6n/2}n
4 + 2n2

∑
i

1{|Ci|6n/2}|Ci|
2. (2.32)

As enpe−np/2 6 1/2 by the choice of A, standard component counting arguments from
random graph theory and Stirling’s formula (k! >

√
2πk(k/e)k) yield

E
(∑

i

1{|Ci|6n/2}|Ci|
2
)
6

∑
16k6n/2

k2 ·
(
n

k

)
kk−2pk−1(1− p)k(n−k)

6
∑
k>1

(knp)ke−knp/2

k! p
6

1

p

∑
k>1

(
enpe−np/2

)k
√

2πk
6

1

p
.

(2.33)

Since np > π0, by Corollary 2.4 we see that for large n we also have

E(1{|C1|6n/2}n
4) = P(|C1| 6 n/2) · n4 6 n4e−bn = O(1). (2.34)

Inserting (2.32)–(2.34) into (2.11) and using (1− p)−1 6 2 we obtain

d

dp
Sn(p) = O

(
n2p−1

)
. (2.35)

Since Sn(p) > n2/8 by Corollary 2.4, this yields d
dp logSn(p) = O(p−1), which estab-

lishes (2.5) because now p−1 6 |p− 1/n|−1 and p−1 = O(n) = O(n4/3).

Case 5: (log n)2 6 np < n. This is a less interesting range since with very high probability,
Gn,p is connected and thus

∑
i |Ci|2 = |C1|2 = n2. To obtain rigorous estimates, let E

denote the monotone increasing property of being 2-edge connected (after deleting any
edge the resulting graph remains connected). It is well-known that Pn,p(¬E) = o(1) holds
for Gn,p with, say, p > 2(log n)/n (see, e.g., [12]). Hence, setting q := 2(log n)/n and
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On the critical probability in percolation

N := bp/qc = Ω(log n), a standard multi-round exposure argument from random graph
theory yields

Pn,p(¬E) 6 Pn,1−(1−q)N (¬E) 6
[
Pn,q(¬E)

]N
6 n−ω(1).

(To clarify: in addition to monotonicity of E , the first inequality uses p′ := 1− (1− q)N 6
qN 6 p, and the second inequality exploits that Gn,p′ has the same distribution as the
union of N independent copies of Gn,q; see, e.g., [21, Section 1.1 and Theorem 1.24] for
related arguments.) Observe that if E holds, then no edge can be pivotal for the event
v ↔ w. Using (2.8) we infer

d

dp
Sn(p) 6 n4 · Pn,p(¬E) 6 n−ω(1),

which together with Sn(p) > 1 and |p− 1/n| > 1/n completes the proof of (2.5).

2.2 Proof of Theorem 2.1: lower bound for the logarithmic derivative

In this subsection we focus on the lower bound (2.6) in Theorem 2.1. Our proof strat-
egy is to consider the event that Gn,p contains two distinct components of size Θ(n2/3).

Lemma 2.6. Let L be the event that |C2| > n2/3, i.e., that Gn,p contains two distinct
components with at least n2/3 vertices each. For every λ ∈ R there exist constants
δλ, n0 > 0 such that, for all n > n0, if p = 1/n+ λn−4/3, then

Pn,p(L) > δλ. (2.36)

Proof. This follows immediately from [3, Corollary 2]. (See also [21, Theorem 5.20],
there stated for G(n,m).)

Proof of (2.6) of Theorem 2.1. As for the upper bound, we may assume that n is large
enough, since (2.6) trivially holds (if Dλ is chosen small enough) for every fixed n > 2

because Sn(p) and d
dpSn(p) are positive functions on (0, 1).

With L as in Lemma 2.6, we have∑
i6=j

|Ci|2|Cj |2 > 1L
(
n2/3

)4
,

and thus by (2.11) and (2.36)

d

dp
Sn(p) > En,p

(∑
i 6=j

|Ci|2|Cj |2
)
> Pn,p(L)n8/3 > δλ · n8/3. (2.37)

By (2.13) (with ε := max{1, λ}n−1/3) we also know that p = 1/n+ λn−4/3 implies Sn(p) 6
Cλn

4/3, establishing (2.6) with Dλ = δλ/Cλ for n sufficiently large.

Remark 2.7. Although we have stated (2.6) and Lemma 2.6 for a fixed λ, the results
hold uniformly for λ in any compact interval, i.e., we can take Dλ and δλ independent
of λ ∈ [−Λ,Λ] for any Λ > 0, provided we assume for example n > 2 max{1,Λ3} (to
guarantee that p ∈ (0, 1)). This follows from the more refined Theorem 1.3, but it can
also be seen from the simple proof above by noting that the result in [3, Corollary 2],
although stated for p = 1/n+ λn−4/3 for a fixed λ, also holds (by the same proof) more
generally for p = 1/n + (λ + o(1))n−4/3; it then follows from Lemma 3.3 below that
for λ ∈ [−Λ,Λ], Pn,n−1+λn−4/3(L) converges uniformly to a continuous positive function,
which yields a uniform lower bound in (2.36), and thus in (2.6).
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3 Scaling inside the critical window

In this section we prove Theorem 1.3. Our arguments exploit that inside the critical
window, the rescaled sizes of the largest components converge to some random variables
(as mentioned in the introduction).

Following [23], we define

Λ(λ)(x) := (2π)−1/2x−5/2e−F (x,λ)
∑
`>0

w`x
3`/2, (3.1)

where

F (x, λ) :=
(
(x− λ)3 + λ3

)
/6, (3.2)

and w`, ` > 0, are Wright’s constants [38], which as shown by Spencer [36] can be
expressed as

w` = E(B`ex)/`!, (3.3)

where the random variable Bex is the area under a normalized Brownian excursion, see
also the survey [19]. As shown in [23, Theorem 4.1], Λ(λ)(x) is the intensity of the point
process that by [3] describes asymptotically the sequence (|Ci|/n2/3)i>1, and we define
the corresponding moments

fk(λ) =

∫ ∞
0

xkΛ(λ)(x)dx, k > 2. (3.4)

As remarked in [23, after Corollary 4.2], Λ(λ)(x) decreases exponentially as x→∞, and
is Θ

(
x−5/2

)
as x → 0; hence the integral (3.4) converges so 0 < fk(λ) < ∞ for every

k > 2 and λ ∈ R.
By (3.2) we have ∂

∂λF (x, λ) = −x2/2 + λx and thus by (3.1) ∂
∂λΛ(λ)(x) =

(
x2

2 −
λx
)
Λ(λ)(x). Hence, by differentiating inside the integral in (3.4) (which is easily justified,

e.g. using dominated convergence), fk(λ) is differentiable and

d

dλ
fk(λ) =

∫ ∞
0

xk
∂Λ(λ)(x)

∂λ
dx =

∫ ∞
0

xk
(x2

2
− λx

)
Λ(λ)(x)dx =

1

2
fk+2(λ)− λfk+1(λ).

(3.5)
By induction, fk(λ) is infinitely differentiable for every k > 2.

Recall now (2.2), and note that (2.11) can be written as

d

dp
Sn(p) =

En,p
((∑

i |Ci|2
)2)

1− p
−
En,p

(∑
i |Ci|4

)
1− p

. (3.6)

To treat such sums, we first note the following fact, which is stated in [22, Theorem B1
and Remark B2] as an immediate consequence of results of Aldous [3] and Janson and
Spencer [23].

Lemma 3.1 ([3, 23, 22]). Let λ ∈ R and k ∈ N with k > 2. Then there exists a random
variable Wλ,k with

EWλ,k = fk(λ), (3.7)

such that for p = 1/n+ (λ+ o(1))n−4/3 we have∑
i |Ci|k

n2k/3
d→Wλ,k. (3.8)

In Section 3.1 we justify taking expectations, higher moments and derivatives in (3.8),
and use this to establish the convergence results (1.5)–(1.6) of Theorem 1.3 with f = f2.
(In Appendix C we extend this argument to higher derivatives.) Finally, in Section 3.2
we complete the proof of Theorem 1.3 by showing d log f2

dλ (0) 6= 0 numerically via a series
expansion (that converges exponentially).
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3.1 Proof of Theorem 1.3: convergence

In this subsection we prove the convergence results (1.5)–(1.6) of Theorem 1.3 using
the distributional convergence (3.8) from Lemma 3.1 and the following auxiliary result.

Theorem 3.2. Let A, λ ∈ R and k, q ∈ N with k > 2 and q > 1.

(i) There exists C = C(A, k, q) such that, for all n > 1 and p ∈ (0, 1) satisfying p 6
1/n+An−4/3,

0 6 En,p

((∑
i |Ci|k

n2k/3

)q)
6 C. (3.9)

(ii) For p = 1/n+ (λ+ o(1))n−4/3 we have

En,p

((∑
i |Ci|k

n2k/3

)q)
n→∞−−−−→ E

(
(Wλ,k)

q)
<∞, (3.10)

where the random variable Wλ,k is defined as in Lemma 3.1. Moreover, the limit in (3.10)
is a continuous function of λ, and if p = 1/n+ λn−4/3, then the convergence in (3.10) is
uniform for λ in any compact interval [λ1, λ2] ⊂ R.

Proof. We start with the uniform moment bound (3.9). Since
∑
i |Ci|k does not decrease

if any edge is added, the expectation is a monotone function of p; thus it suffices to
consider p = 1/n+An−4/3 with A > 1. As a warm-up, we first consider the special case
q = 2. Similarly to (2.10) we have(∑

i

|Ci|k
)
2

=
∑
v∈[n]

|C(v)|k−1
∑

w/∈C(v)

|C(w)|k−1 +
∑
v∈[n]

|C(v)|2k−1.

Mimicking the conditioning and monotonicity arguments leading to (2.16), see (2.18),
we infer that

En,p

((∑
i |Ci|k

n2k/3

)2)
6

(
En,p

∑
v∈[n] |C(v)|k−1

)2
n4k/3

+
En,p

∑
v∈[n] |C(v)|2k−1

n4k/3
.

Generalizing the above argument, for every integer q > 1 there is a positive constant Dk,q

such that

En,p

((∑
i |Ci|k

n2k/3

)q)
6 Dk,q

∑
16r6q

∑
j1+···jr=qk:

ji > k is multiple of k

∏
16i6r En,p

∑
v∈[n] |C(v)|ji−1

n2qk/3
.

(3.11)
By insertingEn,p|C(v)| = n−1Sn(p) into (2.20) with k = j−1, using (2.13) with ε = An−1/3

(so that ε2n = A2n1/3) and (−1)!! = 1 we infer existence of positive constants (Bj,A)j>2

such that, for j > 2,∑
v∈[n]

En,p|C(v)|j−1 6 n · (2j−5)!! ·
(
n−1Sn(p)

)2j−3
6 n ·Bj,An(2j−3)/3 = Bj,An

2j/3. (3.12)

Since ji > k > 2, inequality (3.12) applies to each factor in each product in (3.11),
so (3.9) follows for suitable C = C(A, k, q).

We next turn to (ii), and thus assume p = 1/n+ (λ+ o(1))n−4/3. For brevity we write

Xn,k :=

∑
i |Ci|k

n2k/3
. (3.13)

The upper bound (3.9), with 2q, say, shows that the random variables
(
(Xn,k)q

)
n>1

are uniformly integrable for fixed k > 2 and q > 1, see e.g. [14, Theorem 5.4.2].
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Since Xn,k
d→ Wλ,k by (3.8), and thus (Xn,k)q

d→ (Wλ,k)q by the continuous mapping
theorem [14, Theorem 5.10.4]), it thus follows that En,p((Xn,k)q)→ E((Wλ,k)q) <∞ as
n→∞, see [14, Theorem 5.5.9], which completes the proof of (3.10).

The final claims (concerning continuity and uniform convergence) now follow by the
elementary calculus result Lemma 3.3 below.

Lemma 3.3. Suppose that hn(λ) and h(λ) are real-valued functions on R such that if
λ ∈ R and λn = λ + o(1), then hn(λn) → h(λ) as n → ∞. Then h(λ) is continuous and
hn(λ)→ h(λ) uniformly for λ in any compact set.

Proof. First, suppose that h is discontinuous at some λ. Then there exist ε > 0 and a
sequence λk → λ such that |h(λk)−h(λ)| > ε for all k. Since hn(λk)→ h(λk), we may find
an increasing sequence nk such that |hnk

(λk)−h(λk)| < ε/2. Then |hnk
(λk)−h(λ)| > ε/2.

On the other hand, the assumption implies hnk
(λk)→ h(λ), a contradiction.

Similarly, assume that hn(λ) does not converge uniformly to h(λ) on the compact
set K. Then there exist ε > 0 and sequences nk →∞ and λk ∈ K such that |hnk

(λk)−
h(λk)| > ε. Since K is compact, we may select a subsequence such that, along this
subsequence, λk → λ for some λ. Then the assumption and the continuity of h just
shown imply that, along the subsequence, hnk

(λk) → h(λ) and h(λk) → h(λ), and thus
hnk

(λk)− h(λk)→ 0, a contradiction.

Remark 3.4. Lemma 3.3 is valid for functions on any metric space. (Also the ranges
of the functions may be in an arbitrary metric space.) Furthermore, the converse of
the lemma also holds (and is easy): if hn(λ)→ h(λ) uniformly on compact sets and h is
continuous, then hn(λn)→ h(λ) whenever λn → λ.

Proof of (1.5)–(1.6) of Theorem 1.3. Recall that χKn
(p) = Sn(p)/n by (2.3). Define Xn,k

as in (3.13). Using also (2.2), (3.10) and (3.7), we have

χ
Kn(p)

n1/3
=
Sn(p)

n4/3
= En,pXn,2

n→∞−−−−→ EWλ,2 = f2(λ) > 0, (3.14)

where f2(λ) > 0 follows from the definition (3.4). This proves (1.5).
Similarly, by (3.6), (3.10) and (3.7), we have

d
dp
χ
Kn

(p)

n5/3
=

d
dpSn(p)

n8/3
=
En,p(X

2
n,2)

1− p
− En,pXn,4

1− p
n→∞−−−−→ E(W 2

λ,2)−EWλ,4 =: g(λ). (3.15)

By Lemma 3.3, f2(λ) and g(λ) are continuous, and for p = 1/n + λn−4/3, the limits
hold uniformly on compact sets. Combining (3.14)–(3.15) we infer

d
dp logχKn(p)

n4/3
n→∞−−−−→ g(λ)

f2(λ)
,

and thus g(λ)/f2(λ) > 0 follows from (2.4) and (2.6).
It remains to prove that g(λ) = d

dλf2(λ) holds. To this end we fix λ1, λ2 ∈ R with
λ1 < λ2, and set pi = 1/n+ λin

−4/3. By (3.14) we have∫ p2

p1

d
dp
χ
Kn

(p)

n1/3
dp =

χ
Kn

(p2)

n1/3
−
χ
Kn

(p1)

n1/3
n→∞−−−−→ f2(λ2)− f2(λ1). (3.16)

On the other hand, by substituting p = 1/n+λn−4/3 we have by the uniform convergence
in (3.15) just shown (or by dominated convergence and (3.9)) that∫ p2

p1

d
dp
χ
Kn(p)

n1/3
dp =

∫ λ2

λ1

d
dp
χ
Kn(p)

∣∣
p=1/n+λn−4/3

n5/3
dλ

n→∞−−−−→
∫ λ2

λ1

g(λ) dλ. (3.17)

EJP 23 (2018), paper 1.
Page 14/25

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP52
http://www.imstat.org/ejp/


On the critical probability in percolation

It follows from (3.16)–(3.17) that f2(λ2) − f2(λ1) =
∫ λ2

λ1
g(λ) dλ. Since λ1 < λ2 were

arbitrary, and g(λ) is continuous, it follows that g(λ) = d
dλf2(λ) for all λ ∈ R, completing

the proof.

3.2 Proof of Theorem 1.3: explicit bounds for λ = 0

In this subsection we complete the proof of Theorem 1.3, and by the arguments of
Section 3.1 it remains to prove the following technical lemma.

Lemma 3.5. Define the function f2 as in (3.4). Then d2

dλ2 log f2(0) 6= 0.

Remark 3.6. The proof of Lemma 3.5 shows that d2

dλ2 log f2(0) ≈ 0.296833365232.

The idea is to give (in the special case λ = 0) rigorous numerical estimates for the
right hand side of

d2

dλ2
log f2(λ) =

f2(λ) d2

dλ2 f2(λ)−
(

d
dλf2(λ)

)2(
f2(λ)

)2 . (3.18)

The derivatives can be computed by (3.5). In the special case λ = 0 we obtain

d

dλ
f2(0) = 1

2f4(0), (3.19)

d2

dλ2
f2(0) = 1

4f6(0)− f3(0). (3.20)

Furthermore, by [23, Remark 6] we also have (in our notation) the identity f3(λ) =

2 + 2λf2(λ), so that f3(0) = 2. Hence (3.18) yields

d2

dλ2
log f2(0) =

f2(0)
(
f6(0)− 8

)
− f4(0)2

4f2(0)2
, (3.21)

and due to 0 < f2(λ) <∞ our task is reduced to showing that

f2(0)f6(0)− 8f2(0)− f4(0)2 6= 0. (3.22)

To evaluate the terms in (3.22), note that by Tonelli’s theorem, the function fk defined
in (3.4) can be written as

fk(λ) =
∑
`>0

(2π)−1/2w`

∫ ∞
0

xk+3`/2−5/2e−F (x,λ)dx. (3.23)

Since F (x, 0) = x3/6, see (3.2), we can in the case λ = 0 evaluate the integral in (3.23)
using the gamma function Γ(z) :=

∫∞
0
xz−1e−xdx. We define, using the substitution

y = x3/6,

Ik,` :=

∫ ∞
0

xk+3`/2−5/2e−F (x,0)dx =
1

3
· 6k/3+(`−1)/2 · Γ(k/3 + (`− 1)/2), (3.24)

and by (3.23) thus have
fk(0) =

∑
`>0

(2π)−1/2w`Ik,`. (3.25)

The plan is to truncate the infinite sum in (3.25) with the help of the following uniform
estimates.

Lemma 3.7. For all k > 2 and ` > 1 we have Ik,`, w` > 0 and

Ik,` 6 2π1/2(3`)k/3−1
(3`

e

)`/2
· e2k

2/9`, (3.26)

w` 6 8π−1/2
√
`
( e

12`

)`/2
. (3.27)

EJP 23 (2018), paper 1.
Page 15/25

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP52
http://www.imstat.org/ejp/
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The upper bound (3.27) is off from the asymptotic value in [19, (52)] only by a
factor 8/3.

Proof. The lower bounds Ik,` > 0 and w` > 0 are trivial. Turning to upper bounds, we
start with Ik,`. We use the well-known Stirling-type estimate (see, e.g., [31, (5.6.1)])

1 6
Γ(m)√

2π/m(m/e)m
6 e1/12m. (3.28)

Inserting (3.28) into (3.24), it follows by a simple calculation that, using k > 2 and
1 + x 6 ex,

Ik,` 6
1

3
·

√
2π√

k/3 + (`− 1)/2
·
(2k + 3(`− 1)

e

)k/3+(`−1)/2
· e1/4k

6

√
4π

3
√
`
·
(3`

e

)k/3+(`−1)/2
·
(

1 +
2k − 3

3`

)k/3+`/2
· e1/4k.

6

√
4π

3
√
`
·
(3`

e

)k/3+(`−1)/2
· e1/4k+2k2/9`+k/3−1/2

6

√
4π√
3
· (3`)k/3−1 ·

(3`

e

)`/2
· e1/8+2k2/9`,

which due to
√

4/3e1/8 < 2 completes the proof of (3.26).
For w`, we combine (3.3) with a recurrence formula by Louchard [27] for the Brownian

excursion area, see [19, (4) and (5)]: in the recursion [19, (5)] all γi are positive by [19,
(4)], so the first term on the right hand side of [19, (5)] gives an upper bound, which
implies

w` =
1

`!
· E(B`ex) 6

1

`!
· 2

√
π

(36
√

2)`Γ((3`− 1)/2)
· 12`

6`− 1

Γ(3`+ 1/2)

Γ(`+ 1/2)
. (3.29)

Using `! = `Γ(`) and the estimate (3.28) four times, it follows by a simple (but slightly
tedious) calculation that

w` 6
1√
π`

( e

36
√

2`

)`
· 3`− 1

2
√
e

( 2e

3`− 1

)3`/2
· 12`

6`− 1

(3`+ 1/2

e

)3`( e

`+ 1/2

)`
e1/36`

6
3e1/36`√

πe
·
√
` ·
( e2

36
√

2`2

)`
· 23`/2

(
1 +

3/2

3`− 1

)3`/2
·
(3`

e

)3`/2(
1 +

1

6`

)3`/2
6

3e(1/36+9/8+3/12−1/2)
√
π

·
√
` ·
( e

12`

)`/2
6 8π−1/2

√
`
( e

12`

)`/2
,

completing the proof of (3.27).

Lemma 3.8. For every real s > 0 and integer `0 > 2s,∑
`>`0

`s2−` 6 5`s02−`0 .

Proof. Let a` := ls2−`. For ` > `0, we have

a`+1

a`
=
(

1 +
1

`

)s
2−1 6 es/`2−1 6 e1/22−1 <

5

6
.

Hence, a` 6 (5/6)`−`0a`0 and the result follows by summing a geometric series.

Corollary 3.9. For all integers k > 2 and `0 > 2k/3− 1,

0 6 fk(0)−
∑

06`6`0

(2π)−1/2w`Ik,` 6 11 e2k
2/9`03k/3`

k/3−1/2
0 2−`0 . (3.30)
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Proof. The lower bound in (3.30) is trivial by (3.23), (3.24) and Ik,`, w` > 0. Turning to
the upper bound, (3.26)–(3.27) yield

(2π)−1/2w`Ik,` 6
16√
2π
e2k

2/9`3k/3−1`k/3−1/22−`.

Lemma 3.8 thus gives∑
`>`0

(2π)−1/2w`Ik,` 6
80

3
√

2π
e2k

2/9`03k/3`
k/3−1/2
0 2−`0 ,

and the result follows.

The constants w` are easily computed by recursion, see, e.g., [19, (4)–(5) or (6)–(7)],
so the finite sum

∑
06`6`0

(2π)−1/2w`Ik,` can be computed numerically (with arbitrary
precision) for any `0 that is not too large. Together with the estimate in Corollary 3.9
of the remainder, which can be made arbitrarily small by choosing a suitable `0, this
enables us to compute fk(0) with arbitrary precision for any k > 2.

Proof of Lemma 3.5. Choosing `0 = 75, the right hand side of (3.30) is less than 10−17

for all 2 6 k 6 6, with room to spare. Proceeding as discussed above, we then obtain
(using Maple)

f2(0)
.
= 1.830470321422761, (3.31)

f4(0)
.
= 3.514851319980978, (3.32)

f6(0)
.
= 16.922562003970612, (3.33)

where
.
= means equality for all but the last digit (which might be off by one). Hence

f2(0)f6(0)− 8f2(0)− f4(0)2
.
= 3.9783051377505, (3.34)

which shows (3.22) and thus completes the proof of Lemma 3.5. Remark 3.6 follows by
inserting (3.34) and (3.31) into (3.21).

A Asymptotics of f(λ) as λ→ ±∞
In this appendix we prove the asymptotics of the function f(λ) = f2(λ) stated after

Theorem 1.3, and extend the results to fk(λ) for arbitrary k > 2.

Theorem A.1. Define fk : R → (0,∞) as in (3.4). For any fixed k > 2, fk(λ) has the
asymptotics

fk(λ) =
(2k − 5)!!

|λ|2k−3
(
1 +O(|λ|−3)

)
as λ→ −∞, (A.1)

fk(λ) = (2λ)k
(
1 + o(1)

)
, as λ→ +∞. (A.2)

Here, (2k−5)!! is the usual semifactorial, i.e., (2k−5)!! =
∏k−2
j=1 (2j−1), with (−1)!! = 1.

In particular, for f = f2, we have f(λ) ∼ |λ|−1 as λ → −∞ and f(λ) ∼ 4λ2 as λ → +∞,
as said in the introduction.

Proof. For λ < 0, we use results from [22]. The parametrization there is slightly different,
so we define, given λ < 0, first p := 1/n+λn−4/3 and then t := − log(1− p) = p+O(p2) =

n−1 + (λ + on(1))n−4/3, where on(1) denotes a quantity that tends to 0 as n → ∞ for
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fixed λ. Note that (for large n) t < 1/n and 1− nt = (|λ|+ on(1))n−1/3. By [22, Theorem
3.4], there exists a polynomial pk of degree 2k − 3 such that

En,p
∑
i

|Ci|k = npk

( 1

1− nt

)(
1 +O

( 1

n(1− nt)3
))

= npk
(
(|λ|−1 + on(1))n1/3

)(
1 +O

(
(|λ|+ on(1))−3

))
.

(A.3)

Letting ak be the leading coefficient of pk, so pk(x) ∼ akx
2k−3 as x → ∞, we obtain by

letting n→∞ in (A.3) and using (3.7) and (3.10),

fk(λ) = lim
n→∞

(
n−2k/3En,p

∑
i

|Ci|k
)

= ak|λ|−(2k−3)
(
1 +O

(
|λ|−3

))
. (A.4)

Note that this estimate holds uniformly in all λ < 0. Finally, we note that ak = (2k − 5)!!,
as remarked in [22, after (7.8)], and (A.1) follows.

For λ > 0, we use results from [23]. The idea is that as λ → +∞, we approach the
supercritical regime, where there is a single giant component C1 that dominates the
sum

∑
i |Ci|k, and that |C1| ≈ 2λ.

It is shown in [23, Lemma 9.5] that as λ→ +∞, the intensity Λ(λ)(x) is well approxi-
mated by the density function of the normal distribution N(2λ, 2λ−1) (except for small x),
and (A.2) follows easily by (3.4) and estimates as in the proof of [23, Lemma 9.5]; we
omit the details.

For λ→ −∞, we can combine Theorem A.1 with (3.5) and obtain d
dλf(λ) = |λ|−2

(
1 +

O(|λ|−3)
)
, and similarly for larger k. This extends by induction to higher derivatives; the

result shows that we can formally take any number of derivatives in (A.1) (keeping the
multiplicative error term O(|λ|−3)).

For λ→ +∞, the estimates for Λ(λ)(x) used in [23] are not precise enough to yield
as precise results for derivatives (note that in (3.5) we expect the leading terms of
fk+2(λ)/2 ∼ (2λ)k+2/2 and λfk+1 ∼ λ(2λ)k+1 to cancel); we conjecture that here too we
can take derivatives formally in (A.2), but we have not tried to prove it. (This would
require more precise estimates of Λ(λ)(x) and thus by (3.1) and (3.3) of

∑
`>0 w`x

3`/2 =

E exp
(
x3/2Bex

)
. Such estimates can possibly be derived from the asymptotic expansions

for the distribution of Bex in [20], but we leave this as an open problem.) We note only
that (1.6) and (2.5) imply d

dλ log f(λ) = O(min{|λ|−1, 1}) for all λ ∈ R.

B Simple bounds for the susceptibility

In this appendix we give complete proofs of (2.12)–(2.13), which we restate as the
theorem below. (The bounds are sharp up to constant factors when np = 1∓ ε, ε = O(1)

and ε3n > 1.)

Theorem B.1. (i) For all n > 1, p ∈ [0, 1], and ε > 0 satisfying np 6 1− ε,

En,p|C(v)| 6 ε−1. (B.1)

(ii) There is a constant D > 0 such that, for all n > 1, p ∈ [0, 1], and ε > 0 satisfying
np 6 1 + ε,

En,p|C(v)| 6 Dmax{ε2n, n1/3}. (B.2)

Part (i) is easy and well-known, and included for completeness. For part (ii), we do
not know any reference with a short proof; the bound is proved in [7] as a special case of
a more general and involved result. We give here a more direct argument which adapts
recent ideas from percolation theory [24, 16] to the simpler Gn,p case.
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We start by recalling some well-known branching processes results (we include proofs
for completeness). Let Xn,p denote a Galton–Watson branching process with Bin(n, p)

offspring distribution, starting with a single individual, and let |Xn,p| be its total size. We
define Xλ and |Xλ| analogously, with Bin(n, p) replaced by Po(λ).

Lemma B.2. (i) For all n > 1, p ∈ [0, 1] and λ > −n log(1 − p), |Xλ| stochastically
dominates |Xn,p|.

(ii) There exists a constant C > 0 such that, for all λ > 0 and k > 1, we have

P(k 6 |Xλ| 6∞) 6 C
(
max{λ− 1, 0}+ k−1/2

)
. (B.3)

Proof. (i): To prove that |Xλ| stochastically dominates |Xn,p|, it suffices to show that
Po(−n log(1− p)) stochastically dominates Bin(n, p). Taking n independent couplings, it
thus is enough to prove that X ∼ Po(− log(1− p)) stochastically dominates Y ∼ Bin(1, p).
This is immediate since P(X = 0) = 1 − p = P(Y = 0), P(X > 1) = p = P(Y = 1) and
P(Y > 2) = 0.

(ii): Let (ξi)i>1 be a sequence of independent random variables with Po(λ) distribution.
For all k > 1, using the classical Otter–Dwass formula [10] and Stirling’s formula
(k! >

√
2πk(k/e)k) we infer

P(|Xλ| = k) =
P(ξ1 + · · ·+ ξk = k − 1)

k
=
P(Po(kλ) = k − 1)

k

=
e−λk

kλ

(λk)k

k!
6

(λe1−λ)k√
2πk3/2λ

6
e√

2πk3/2
,

where the last inequality follows by noting λe1−λ 6 1 and thus (λe1−λ)k 6 λe1−λ 6 eλ.
Summing this inequality, we see that there is a constant C such that

P(k 6 |Xλ| <∞) 6 Ck−1/2. (B.4)

It is easy to see that ρ := P(|Xλ| = ∞) satisfies 1− ρ = E(1− ρ)Po(λ) = e−λρ. Using
Taylor series we infer λρ = − log(1−ρ) > ρ+ρ2/2, so that either ρ = 0 or 0 < ρ 6 2(λ−1),
which together with (B.4) completes the proof of (B.3).

Given a graph H, we write CH(v) for the component containing the vertex v in H, and
dH(v, w) for the length of the shortest path between v and w in H (setting dH(v, w) =∞
if there is no such path). Define BH(v, r) = {w ∈ V (H) : dH(v, w) 6 r} and ∂BH(v, r) =

{w ∈ V (H) : dH(v, w) = r}.
Lemma B.3. There is a constant C > 0 such that, for all n > 1, p ∈ [0, 1], and ε > 0

satisfying np 6 1 + ε and εn > 1, the following holds for all 1 6 r 6 dε−1e:

Γ(r) := max
G⊆Kn

max
v∈V (G)

P(∂BGp
(v, r) 6= ∅) 6 Cr−1. (B.5)

Our proof adapts arguments from [24]; for more general and involved results see [24,
25, 16].

Proof of Lemma B.3. Assuming C > 9, note that for ε > 1/9 inequality (B.5) holds
trivially for all 1 6 r 6 dε−1e. It thus suffices to consider the case ε 6 1/9. Let
λ := −n log(1 − p). Note that p 6 (1 + ε)/n 6 2ε < 1/2 and thus λ 6 np(1 + p) 6 1 + 4ε.
Let k0 > 1 satisfy 3k0−1 6 dε−1e < 3k0 .

It is well-known and easy to see that for any subgraph G ⊆ Kn, |CGp(v)| 6 |CGn,p(v)|
is stochastically dominated by |Xn,p|. By Lemma B.2 it follows that there exists a constant
B > 0 such that, for all 1 6 K 6 9k0 ,

max
G⊆Kn

max
v∈V (G)

P(|CGp
(v)|>K)6P(|Xn,p|>K)6P(|Xλ|>K)6P(|X1+4ε|>K)6BK−1/2.

(B.6)

EJP 23 (2018), paper 1.
Page 19/25

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP52
http://www.imstat.org/ejp/


On the critical probability in percolation

Mimicking [24, Section 3.2], we now show by induction on k ∈ N that D := (33 +B)3

satisfies
Γ(3k) 6 D3−k for all 0 6 k 6 k0, (B.7)

which readily implies (B.5) with C = 3D (for any 1 6 r 6 dε−1e there is 1 6 k 6 k0 with
3k−1 6 r < 3k, so Γ(r) 6 Γ(3k−1) 6 3Dr−1 follows). The base case k = 0 holds trivially
since since Γ(1) 6 1 6 D.

For the induction step, let 1 6 k 6 k0 and assume that (B.7) holds for k − 1. Fix
G ⊆ Kn and v ∈ V (G). Set δ := D−4/3 6 1. Then, by (B.6) we see that

P
(
∂BGp

(v, 3k
)
6= ∅) 6 P

(
∂BGp

(v, 3k) 6= ∅ and |CGp
(v)| < δ9k

)
+Bδ−1/23−k. (B.8)

By the pigeonhole principle, if ∂BGp(v, 3k) 6= ∅ and |CGp(v)| < δ9k, then at least one
level j with 3k−1 6 j 6 2 · 3k−1 satisfies 0 < |∂BGp(v, j)| 6 δ3k+1; let J denote the
smallest such level. (If no such j exists, let J :=∞.) Note that, for any given non-empty
sets of vertices W ⊆ [n] and ∂W ⊆ W , using a breadth-first-search neighbourhood
exploration algorithm, we can determine whether BGp(v, J) = W and ∂BGp(v, J) = ∂W

by testing the status (in Gp) only of edges with at least one endpoint in W \ ∂W .
Furthermore, if this event holds, then this determines J and J <∞. Consequently, if H
is the induced subgraph of G with vertex set [n] \ (W \ ∂W ), then after conditioning on
BGp

(v, J) = W and ∂BGp
(v, J) = ∂W , the remaining random graph Gp ∩H has the same

distribution as the unconditional random graph Hp. Furthermore, by construction, the
shortest path in Gp from ∂W to ∂BGp

(v, 3k) contains only edges in H, so ∂BGp
(v, 3k) 6= ∅

implies the existence of a vertex w ∈ ∂W with ∂BGp∩H(w, 3k − J) 6= ∅. Combining
|∂BGp

(v, J)| 6 δ3k+1 and 3k − J > 3k−1 with H ⊆ G ⊆ Kn and ∂W ⊆ V (H), it follows
that

P
(
∂BGp

(v, 3k) 6= ∅ | BGp
(v, J) = W, ∂BGp

(v, J) = ∂W
)
6
∑
w∈∂W

P
(
∂BHp

(w, 3k−1) 6= ∅
)

6 δ3k+1 · Γ(3k−1).

(B.9)

Since the bound in (B.9) does not depend on W and ∂W , it follows that

P
(
∂BGp(v, 3k) 6= ∅ | J <∞

)
6 δ3k+1Γ(3k−1).

Consequently, using the induction hypothesis (and recalling that J > 3k−1),

P
(
∂BGp

(v, 3k) 6= ∅ and |CGp
(v)| < δ9k

)
6 P

(
∂BGp

(v, 3k) 6= ∅ and J <∞
)

6 δ3k+1Γ(3k−1) · P(J <∞)

6 δ3k+1Γ(3k−1) · P
(
∂BGp

(v, 3k−1) 6= ∅
)

6 δ3k+1Γ(3k−1)2 6 δ3k+1(D31−k)2.

(B.10)

After inserting (B.10) into (B.8), by recalling δ = D−4/3 and D = (33 +B)3 we infer

P
(
∂BGp

(v, 3k) 6= ∅
)
6
(
33δD2 +Bδ−1/2

)
3−k = (33 +B)D2/33−k = D3−k,

completing the proof of the induction step (since G ⊆ Kn and v ∈ V (G) were arbitrary).

Proof of Theorem B.1. (i): Since |Xn,p| stochastically dominates |C(v)|, using np 6 1− ε
we infer

E|C(v)| 6 E|Xn,p| =
∑
j>0

(np)j = (1− np)−1 6 ε−1.
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(ii): Suppose first that ε 6 1 and ε3n > 1 (the upper bound ε 6 1 conveniently
ensures εdε−1e 6 2). We set r := dε−1e, and proceed by a case distinction similar to [16,
Lemma 2.3]. Observe that

En,p|C(v)| =
∑
w∈[n]

Pn,p(w ∈ C(v)) =
∑
w∈[n]

[
P(dGn,p(v, w) 6 2r)+P(2r < dGn,p(v, w) <∞)

]
.

(B.11)
Since |BXn,p

(v, r)| stochastically dominates |BGn,p
(v, r)|, using np 6 1 + ε and ε 6 1 we

deduce ∑
w∈[n]

P
(
dGn,p(v, w) 6 2r

)
= E|BGn,p(v, 2r)| 6 E|BXn,p(v, 2r)|

6
∑

06j62r

(1 + ε)j 6 ε−1(1 + ε)2r+1 6 ε−1e5.
(B.12)

Note that 2r < dGn,p(v, w) < ∞ implies BGn,p(v, r) ∩ BGn,p(w, r) = ∅ and ∂BGn,p(v, r),

∂BGn,p(w, r) 6= ∅. By conditioning on BGn,p(v, r), and letting H := Gn,p \ BGn,p(v, r), it
follows that, similarly to (B.9),

P
(
2r < dGn,p

(v, w) <∞ | BGn,p
(v, r)

)
6 P(∂BH(w, r) 6= ∅)1{∂BGn,p (v,r) 6=∅}

6 Γ(r)1{∂BGn,p (v,r)6=∅}

and consequently by taking the expectation and using Lemma B.3,

P
(
2r < dGn,p

(v, w) <∞
)
6 Γ(r) ·P

(
∂BGn,p

(v, r) 6= ∅
)
6 Γ(r)2 6 (Cr−1)2 6 C2ε2. (B.13)

By (B.11)–(B.13), and ε3n > 1, there thus is a constant D = D(C) such that

En,p|C(v)| 6 e5ε−1 + C2ε2n 6 Dε2n. (B.14)

This proves (B.2) when ε 6 1 and ε3n > 1. When ε > 1, the bound in (B.2) holds
trivially (since |C(v)| 6 n), assuming as we may D > 1.

In the remaining case ε3n < 1, we observe that np 6 1 + ε 6 1 + n−1/3. Hence (B.14)
with ε := n−1/3 implies En,p|C(v)| 6 Dn1/3, completing the proof of (B.2).

C Higher derivatives of the susceptibility

In this appendix we extend the method of proof from Section 3.1 to higher derivatives,
using arguments from [22]. The key fact is that, extending (3.15), any mixed moment
of Xn,k defined in (3.13), k > 2, has a derivative that can be expressed as a linear combi-
nation of such moments, and thus by induction the same holds for higher derivatives
as well. We illustrate the general method by some examples, leaving the details in the
general case to the reader. For notational convenience, we write

Dn,p := n−4/3(1− p) d

dp
.

Note that Dn,p = n−4/3 d
dt for the parametrization p = 1− e−t used in [22]. Note also that

the factor 1− p, which is needed in the exact formulas below, disappear asymptotically,
since p = o(1), and that apart from this factor, Dn,p = d

dλ for our usual parametrization
p = n−1 + λn−4/3.

First, consider Dn,p

(
En,p(Xn,k)

)
for an arbitrary k > 2. As noted in [22, (3.1)],

if v 6↔ w, then adding the edge vw to the graph increases
∑
i |Ci|k by

∆vw

(∑
i

|Ci|k
)

:= (|C(v)|+|C(w)|)k−|C(v)|k−|C(w)|k =

k−1∑
`=1

(
k

`

)
|C(v)|`|C(w)|k−`. (C.1)
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(And, trivially, the change ∆vw(
∑
i |Ci|k) = 0 if v ↔ w.) Recalling Xn,k = n−2k/3

∑
i |Ci|k,

see (3.13), it follows by a modification of the argument leading to (2.11) that (similar
to [13, Theorem 2.32]), with a factor 1

2 because each edge is counted twice,

Dn,p

(
En,p(Xn,k)

)
= 1

2n
−2(k+2)/3

∑
v,w∈[n]

En,p

(
1{vw 6∈Gn,p}∆vw

(∑
i

|Ci|k
))

= 1
2n
−2(k+2)/3En,p

k−1∑
`=1

(
k

`

)∑
i 6=j

|Ci|`+1|Cj |k−`+1


= 1

2

k−1∑
`=1

(
k

`

)
En,p

(
Xn,`+1Xn,k−`+1

)
− (2k−1 − 1)En,p(Xn,k+2).

(C.2)

Theorem 3.2(ii) extends to mixed moments, because the convergence (3.8) holds jointly
for different k > 2 (by the same proof), and the uniform moment bound (3.9) extends
to mixed moments by Hölder’s inequality. Thus we obtain from (C.2), if p = 1/n+

(
λ+

o(1)
)
n−4/3,

Dn,p

(
En,p(Xn,k)

)
→ 1

2

k−1∑
`=1

(
k

`

)
E
(
Wλ,`+1Wλ,k−`+1

)
− (2k−1 − 1)E(Wλ,k+2). (C.3)

The special case k = 2 is given above in (3.15).
For higher moments, we give for notational convenience just one example of the

method. Adding an edge vw with v 6↔ w increases Xn,2 = n−4/3
∑
i |Ci|2 by ∆(Xn,2) =

2n−4/3|C(v)||C(w)|, see (C.1), and thus increases X2
n,2 by

∆
(
X2
n,2

)
=
(
Xn,2 + ∆Xn,2

)2 −X2
n,2 = 2Xn,2∆Xn,2 + (∆Xn,2)2

= 4n−4/3Xn,2|C(v)||C(w)|+ 4n−8/3|C(v)|2|C(w)|2,
(C.4)

leading to

Dn,p

(
En,p

(
X2
n,2

))
= 1

2En,p

(
4n−8/3Xn,2

∑
i6=j

|Ci|2|Cj |2 + 4n−12/3
∑
i 6=j

|Ci|3|Cj |3
)

= 2En,p
(
Xn,2

(
X2
n,2 −Xn,4

))
+ 2En,p

(
X2
n,3 −Xn,6

)
= 2En,p

(
X3
n,2

)
− 2En,p

(
Xn,4Xn,2

)
+ 2En,p

(
X2
n,3

)
− 2En,p

(
Xn,6

)
.

(C.5)

This together with the cases k = 2 and k = 4 of (C.2) yield, after simplifications,

(Dn,p)2
(
En,p

(
Xn,2

))
= Dn,p

(
En,p

(
X2
n,2

)
− En,p

(
Xn,4

))
= 2En,p

(
X3
n,2

)
− 6En,p

(
Xn,4Xn,2

)
− En,p

(
X2
n,3

)
+ 5En,p

(
Xn,6

)
(C.6)

and thus we obtain, if p = 1/n+
(
λ+ o(1)

)
n−4/3,

(Dn,p)2
(
En,p

(
Xn,2

))
→ 2E

(
W 3
λ,2

)
− 6E

(
Wλ,4Wλ,2

)
− E

(
W 2
λ,3

)
+ 5E

(
Wλ,6

)
. (C.7)

The general case is similar. In particular, this leads to the following extension of
Theorem 1.3.

Theorem C.1. Define the infinitely differentiable function f = f2 : R→ (0,∞) as in (3.4).
Given λ ∈ R, for p = 1/n+

(
λ+ o(1)

)
n−4/3 we have, as n→∞, for every fixed m,

n−(4m+1)/3 dm

dpm
χ
Kn

(p)→ dm

dλm
f(λ), (m > 0), (C.8)

n−4m/3
dm

dpm
logχKn

(p)→ dm

dλm
log f(λ) (m > 1). (C.9)
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Moreover, if p = 1/n + λn−4/3, then the convergence is uniform for λ in any compact
set [λ1, λ2] ⊂ R.

Proof. For p = 1/n+
(
λ+ o(1)

)
n−4/3, the argument above shows that for every m > 0,

(Dn,p)m
(
En,p

(
Xn,2

))
→ gm(λ) (C.10)

for some function gm(λ), with

g0(λ) = f(λ). (C.11)

Recalling the definition of Dn,p, using (C.10), the product rule, and induction, it is easy
to see that for every m > 0 there are constants cj,m ∈ R with cm,m = 1 such that

(Dn,p)m
(
En,p

(
Xn,2

))
=

∑
06j6m

cj,m(1− p)jn−4m/3 dj

dpj

(
En,p

(
Xn,2

))
. (C.12)

Combining (C.10) and (C.12) with p = o(1), by another induction on m > 0 we now infer

n−4m/3
dm

dpm

(
En,p

(
Xn,2

))
→ gm(λ), (C.13)

since in (C.12) any summand with j < m is O(n−4m/3 · n4j/3) = o(1) by the induction
hypothesis.

We now change parametrization and define hn(λ) := En,p
(
Xn,2

)
for p = 1/n+ λn−4/3,

so that (C.13) translates into

dm

dλm
hn(λ) = n−4m/3

dm

dpm
hn(λ)→ gm(λ). (C.14)

Lemma 3.3 shows that gm(λ) is continuous, and that (C.14) holds uniformly for λ in any
compact set. Hence we can integrate, as in (3.16)–(3.17), and obtain gm(λ2)− gm(λ1) =∫ λ2

λ1
gm+1(λ) dλ whenever λ1 < λ2, and thus gm+1(λ) = d

dλgm(λ). By induction and (C.11),
we infer, for every m > 0,

gm(λ) =
dm

dλm
g0(λ) =

dm

dλm
f(λ). (C.15)

By (C.14) and (C.15),

dm

dλm
hn(λ)→ gm(λ) =

dm

dλm
f(λ), m > 0, (C.16)

and thus also, by expanding the derivatives of the logarithms on both sides and applying
(C.16) to each term,

dm

dλm
log hn(λ)→ dm

dλm
log f(λ), m > 1. (C.17)

Moreover, the convergence in (C.16) and (C.17) is uniform on any compact set. Conse-
quently, (C.16)–(C.17) hold also with hn(λn) on the left-hand side, for any sequence λn →
λ, see Remark 3.4. The result (C.8)–(C.9) now follows for any p = 1/n+

(
λ+ o(1)

)
n−4/3

by taking λn := n4/3(p− 1/n) = λ+ o(1).
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