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Abstract

We derive boundary arm exponents for SLE. These exponents were predicted by the
conformal field theory and KPZ relation. We provide a rigorous derivation. Further-
more, these exponents give the alternating half-plane arm exponents for the planar
critical Ising and FK-Ising models.
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1 Introduction

Schramm-Loewner evolution (SLE) was introduced by Oded Schramm [Sch00] as
the candidates for the scaling limits of interfaces in 2D critical lattice models. It is a
one-parameter family of random fractal curves in simply connected domains from one
boundary point to another boundary point, which is indexed by a positive real κ. Since
its introduction, it has been proved to be the limits of several lattice models: SLE2 is the
limit of Loop Erased Random Walk and SLE8 is the limit of the Peano curve of Uniform
Spanning Tree [LSW04], SLE3 is the limit of the interface in critical Ising model and
SLE16/3 is the limit of the interface in FK-Ising model [CDCH+14], SLE4 is the limit of
the level line of discrete Gaussian Free Field [SS09] and SLE6 is the limit of the interface
in critical Percolation [Smi01].

In the study of lattice models, arm exponents play an important role. Take percolation
for instance, Kesten has shown that [Kes87] in order to understand the behavior of
percolation near its critical point, it is sufficient to study what happens at the critical
point, and many results would follow from the existence and values of the arm exponents.
To be more precise, consider critical percolation with fixed mesh equal to 1, and for
n ≥ 2, consider the event En(z, r, R) that there exist n disjoint crossings of the annulus
Az(r,R) := {w ∈ C : r < |w − z| < R}, not all of the same color. People would like
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Boundary arm exponents for SLE

to understand the decaying of the probability of En(z, r, R) as R → ∞. It turns out
that this probability decays like a power in R, and the exponent is called plane arm
exponents. There are other related quantities, called half-plane arm exponents. In
this case, consider critical percolation in the upper-half plane H, and for n ≥ 1, x ∈ R,
define Hn(x, r,R) to be the event that there exist n disjoint crossings of the semi-annulus
A+
x (r,R) := {w ∈ H : r < |w − x| < R}. After the identification between SLE6 and

the limit of critical percolation on triangular lattice [Smi01], one could derive these
exponents via the corresponding arm exponents for SLE6 [SW01]:

P [En(z, r, R)] = R−αn+o(1), P [Hn(x, r,R)] = R−α
+
n+o(1), as R→∞,

where
αn := (n2 − 1)/12, α+

n := n(n+ 1)/6.

In this paper, we derive boundary arm exponents for SLEκ. It is explained in [SW01]
that combining the following three facts would imply the arm exponents for the discrete
model: (1) Identification between SLEκ and the limit of the interface in critical lattice
model; (2) The arm exponents of SLEκ; (3) Crossing probabilities enjoy (approximate)
multiplicativity property. For critical Ising and FK-Ising model on Z2 with Dobrushin
boundary conditions, the convergence to SLE3 and SLE16/3 respectively is derived in
[CS12, CDCH+14], and the multiplicativity is derived in [CDCH16]. Therefore, we could
derive the arm exponents for these two models. See more details in [Wu16b, Wu16a].

Moreover, the boundary arm exponents in this paper are consistent with the ones
predicted by KPZ relation [Dup03, Equations (11.42), (11.44)]. One of the major goals of
the conformal field theory and quantum gravity literature is to understand the scaling
exponents associated to random fractal curves. The picture of the arm events of SLE
around a boundary point can be viewed as a welding of several quantum wedges with
certain weight. Then, the Euclidean scaling exponent xL and the quantum scaling
exponent ∆L are expected to be related through the so-called KPZ formula [DS11]:

xL =
κ

4
∆2
L + (1− κ

4
)∆L.

The quantum scaling exponent ∆L is believed to be 2L/κ. Thus, the KPZ formula gives
xL = L(2L+ 4− κ)/(2κ). Our formula of α+

2n−1 in (1.1) is consistent with this prediction
xL with L = 2n and hence supports the KPZ relation in quantum gravity.

Now, we will give the definition of the crossing events and state our main results. Fix
κ > 4 and let η be an SLEκ in H from 0 to∞. Suppose that y ≤ 0 < ε ≤ x and let T be
the first time that η swallows the point x which is almost surely finite when κ > 4. We
first define the crossing event H2n−1 (resp. Ĥ2n) that η crosses between the ball B(x, ε)

and the half-infinite line (−∞, y) at least 2n− 1 times (resp. at least 2n times) for n ≥ 1.
To be precise with the definition, we need to introduce a sequence of stopping times.
Set τ0 = σ0 = 0. Let τ1 be the first time that η hits the ball B(x, ε) and let σ1 be the first
time after τ1 that η hits (−∞, y). For n ≥ 1, let τn be the first time after σn−1 that η
hits the connected component of ∂B(x, ε) \ η[0, σn−1] containing x+ ε and let σn be the
first time after τn that η hits (−∞, y). Define H2n−1(ε, x, y) to be the event that {τn < T}.
Define Ĥ2n(ε, x, y) to be the event that {σn < T}. In the definition of H2n−1(ε, x, y) and
Ĥ2n(ε, x, y), we are particular interested in the case when x is large. Roughly speaking,
the event H2n−1(ε, x, y) means that η makes at least (2n− 1) crossings between B(x, ε)

and (−∞, y). Imagine that η is the interface in the discrete model, then H2n−1(ε, x, y)

interprets the event that there are 2n− 1 arms going from B(x, ε) to far away place. The
event Ĥ2n(ε, x, y) means that η makes at least 2n crossings between B(x, ε) and (−∞, y).
Imagine that η is the interface in the discrete model, then Ĥ2n(ε, x, y) interprets the
event that there are 2n arms going from B(x, ε) to far away place. See Figure 1(a).
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Figure 1: The explanation of the definition of the crossing events. The gray part is the
ball B(x, ε).

Next, we define the crossing event H2n (resp. Ĥ2n+1) that η crosses between the
half-infinite line (−∞, y) and the ball B(x, ε) at least 2n times (resp. at least 2n+ 1 times)
for n ≥ 0. Set τ0 = σ0 = 0. Let σ1 be the first time that η hits (−∞, y) and τ1 be the
first time after σ1 that η hits the connected component of ∂B(x, ε) \ η[0, σ1] containing
x+ ε. For n ≥ 1, let σn be the first time after τn−1 that η hits (−∞, y) and τn be the first
time after σn that η hits the connected component of ∂B(x, ε) \ η[0, σn] containing x+ ε.
Define H2n(ε, x, y) to be the event that {τn < T}. Define Ĥ2n+1(ε, x, y) to be the event
that {σn+1 < T}. In the definition of H2n(ε, x, y) and Ĥ2n+1(ε, x, y). We are interested
in the case when x is of the same size as ε and y is large. Roughly speaking, the
event H2n(ε, x, y) means that η makes at least 2n crossings between (−∞, y) and B(x, ε).
Imagine that η is the interface in the discrete model, then H2n(ε, x, y) interprets the event
that there are 2n arms going from B(x, ε) to far away place. The event Ĥ2n+1(ε, x, y)

means that η makes at least 2n+ 1 crossings between (−∞, y) and B(x, ε). Imagine that
η is the interface in the discrete model, then Ĥ2n+1(ε, x, y) interprets the event that there
are 2n+ 1 arms going from B(x, ε) to far away place. See Figure 1(b).

Note that in the definition of H2n−1 and Ĥ2n, we start from τ1 and

H2n−1(ε, x, y) = {τ1 < σ1 < τ2 < · · · < τn < T},
Ĥ2n(ε, x, y) = {τ1 < σ1 < τ2 < · · · < τn < σn < T}.

In the definition of H2n and Ĥ2n+1, we start from σ1 and

H2n(ε, x, y) = {σ1 < τ1 < σ2 < · · · < τn < T},
Ĥ2n+1(ε, x, y) = {σ1 < τ1 < σ2 < · · · < τn < σn+1 < T}.

The two sequences of stopping times are defined in different ways. Readers may wonder
why we do not define the events using the same sequence of stopping times. We
realize that the definition using the same sequence of stopping times causes ambiguity.
Therefore, we decide to define these events in the above way. The advantages of the
current definition will become clear in the proofs.

We define the arm exponents as follows. Set α+
0 = 0. For n ≥ 1 and κ ∈ (0, 8), define

α+
2n−1 = n(4n+ 4− κ)/κ, α+

2n = n(4n+ 8− κ)/κ. (1.1)
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For n ≥ 1 and κ ≥ 8, define

α+
2n−1 = (n− 1)(4n+ κ− 8)/κ, α+

2n = n(4n+ κ− 8)/κ. (1.2)

Theorem 1.1. Fix κ > 4. The crossing events H2n−1(ε, x, y) and H2n(ε, x, y) are defined
as above. Then, for any y ≤ 0 < ε ≤ x and n ≥ 1, we have

P[H2n−1(ε, x, y)] �
(

x

x− y

)α+
2n−2 ( ε

x

)α+
2n−1

, (1.3)

P[H2n(ε, x, y)] �
(

x

x− y

)α+
2n ( ε

x

)α+
2n−1

, (1.4)

where the constants in � depend only on κ and n. In particular, fix some δ > 0, we have

P[H2n−1(ε, x, y)] � εα+
2n−1 , provided δ ≤ x ≤ 1/δ,−1/δ ≤ y ≤ 0,

P[H2n(ε, x, y)] � εα+
2n , provided ε ≤ x ≤ ε/δ,−1/δ ≤ y ≤ −δ,

where the constants in � depend only on κ, n and δ.

By a similar proof, we could obtain a similar result as Theorem 1.1 for SLEκ(ρ) curve
in the case that x coincides with the force point. The exponents and a complete proof can
be found in [Wu16b, Section 3], where the conditions are loosened so that the force point
may different from x. One may also study the arm exponents for κ ∈ (0, 4]. Whereas,
when κ ≤ 4, the SLE curve does not touch the boundary, thus the above definition of
the crossing events is not proper for κ ≤ 4. In Section 4, we have Theorem 4.4 for the
crossing events between a small circle and a half-infinite strip, where the arm exponents
are defined in the same way as in (1.1). The proof of Theorem 4.4 also works for SLEκ(ρ)

when x coincides with the force point.

Theorem 1.2. Fix κ ∈ (4, 8). Set α̂+
0 = 0. The crossing events Ĥ2n(ε, x, y) and Ĥ2n+1(ε, x,

y) are defined as above. For n ≥ 1, define

α̂+
2n−1 = n(4n+ κ− 8)/κ, α̂+

2n = n(4n+ κ− 4)/κ. (1.5)

Then, for y ≤ 0 < ε ≤ x and n ≥ 1, we have

P
[
Ĥ2n−1(ε, x, y)

]
�
(

x

x− y

)α̂+
2n−1 ( ε

x

)α̂+
2n−2

, (1.6)

P
[
Ĥ2n(ε, x, y)

]
�
(

x

x− y

)α̂+
2n−1 ( ε

x

)α̂+
2n

, (1.7)

where the constants in � depend only on κ and n. In particular, fix some δ > 0, we have

P
[
Ĥ2n−1(ε, x, y)

]
� εα̂+

2n−1 , provided ε ≤ x ≤ ε/δ,−1/δ ≤ y ≤ −δ,

P
[
Ĥ2n(ε, x, y)

]
� εα̂+

2n , provided δ ≤ x ≤ 1/δ,−1/δ ≤ y ≤ 0,

where the constants in � depend only on κ, n and δ.

It is worthwhile to spend some more words on the relation between α+
n and α̂+

n . In
fact, we can also define the crossing events Ĥn(ε, x, y) for κ ∈ [0, 4] and κ ≥ 8. When
κ ≤ 4, the SLE curve does not touch the boundary, thus the exponent α̂+

n coincides with
α+
n−1. When κ ≥ 8, the SLE curve is space-filling, thus the exponent α̂+

n coincides with
α+
n+1. Whereas, when κ ∈ (4, 8), the exponent α̂+

n is distinct from α+
n in general. In terms

of discrete model, both α+
n and α̂+

n interpret the boundary n-arm exponents, but their
boundary conditions are different.
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Relation to previous results. The formula of α+
n and αn for κ = 6 was obtained

in [LSW01, SW01]. The exponent α+
1 is related to the Hausdorff dimension of the

intersection of SLEκ with the real line which is 1 − α+
1 when κ > 4. This dimension

was obtained in [AS08]. The most important ingredients in proving Theorem 1.1 is the
Laplace transform of the derivatives of the conformal map in SLE evolution, which was
obtained in [Law15].

Taking κ = 3 in (1.1), one obtains the boundary arm exponents for the planar critical
Ising model. The detail can be found in [Wu16a] where the author derives the boundary
arm exponents in a more general setting as well as the interior arm exponents for the
Ising model. Taking κ = 16/3 in (1.1) and (1.5), one obtains the boundary arm exponents
for the planar critical FK-Ising model, see [Wu16b] where the author also derives the
interior arm exponents for the FK-Ising model.

Outline. In Section 2, we give preliminaries on Loewner chain and SLE processes. In
particular, we give technical estimates on the conformal map in Lemmas 2.1 and 2.2, and
we give technical estimates on SLE processes in Lemmas 2.4 and 2.5. These estimates
will be useful in later sections. In Section 3, we prove Theorems 1.1 and 1.2. In Section 4,
we prove a similar version of Theorem 1.1 for κ ≤ 4. The ideas in the proof is similar
to those in Section 3, since the SLE process does not hit the boundary for κ ≤ 4, the
statements and the technicalities in Section 4 are more complicated.

2 Preliminaries

Notations. We denote by f . g if f/g is bounded from above by universal finite
constants, by f & g if f/g is bounded from below by universal positive constants, and by
f � g if f . g and f & g.
For z ∈ C, y ∈ R, r > 0, set B(z, r) = {w ∈ C : |w − z| < r}, U = B(0, 1).
For two subsets A,B ⊂ C, set dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B}.
Let Ω be an open set and let V1, V2 be two sets such that V1 ∩ Ω 6= ∅ and V2 ∩ Ω 6= ∅. We
denote the extremal distance between V1 and V2 in Ω by dΩ(V1, V2), see [Ahl10, Section 4]
for the definition.

2.1 H-hull and Loewner chain

We call a compact subset K of H an H-hull if H \K is simply connected. Riemann’s
Mapping Theorem asserts that there exists a unique conformal map gK from H \K onto
H such that

lim
|z|→∞

|gK(z)− z| = 0.

We call such gK the conformal map from H \ K onto H normalized at ∞. The limit
hcap(K) := lim|z|→∞ z(gK(z)− z) exists and is called the half-plane capacity of K.

Lemma 2.1. Fix x > 0 and ε > 0. Let K be an H-hull and let gK be the conformal map
from H \K onto H normalized at ∞. Assume that x > max(K ∩ R). Denote by γ the
connected component of H ∩ (∂B(x, ε) \K) whose closure contains x+ ε. Then gK(γ) is
contained in the ball with center gK(x+ ε) and radius 3(gK(x+ 3ε)− gK(x+ ε)). Hence
gK(γ) is also contained in the ball with center gK(x+ 3ε) and radius 8εg′K(x+ 3ε).

Proof. [Wu16a, Lemma 2.1].

The following lemma is a direct consequence of Koebe 1/4 theorem.

Lemma 2.2. Fix z ∈ H and ε > 0. Let K be an H-hull and let gK be the conformal map
from H \K onto H normalized at∞. Assume that

dist(K, z) ≥ 16ε.
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Then gK(B(z, ε)) is contained in the ball with center gK(z) and radius 4ε|g′K(z)|.
A Loewner chain is a collection of H-hulls (Kt, t ≥ 0) associated with the family of

conformal maps (gt, t ≥ 0) obtained by solving the Loewner equation: for each z ∈ H,

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z, (2.1)

where (Wt, t ≥ 0) is a one-dimensional continuous function which we call the driving
function. Let Tz be the swallowing time of z defined as sup{t ≥ 0 : mins∈[0,t] |gs(z)−Ws| >
0}. Let Kt := {z ∈ H : Tz ≤ t}. Then gt is the unique conformal map from Ht := H\Kt

onto H normalized at∞.

Here we spend some words about the evolution of a point y ∈ R under gt. We assume
y ≤ 0, the case of y ≥ 0 can be analyzed similarly. There are two possibilities: if y is not
swallowed by Kt, then we define Yt = gt(y); if y is swallowed by Kt, then we define Yt to
the be image of the leftmost of point of Kt ∩R under gt. The process Yt is decreasing
in t, and it is uniquely characterized by the following equation:

Yt = y +

∫ t

0

2ds

Ys −Ws
, Yt ≤Wt, ∀t ≥ 0.

In this paper, we may write gt(y) for the process Yt. Consider two points x ≥ 0 ≥ y in R.
By the above fact, we have

gt(x) = x+

∫ t

0

2ds

gs(x)−Ws
, gt(y) = y +

∫ t

0

2ds

gs(y)−Ws
, gt(y) ≤Wt ≤ gt(x).

Therefore, the quantity gt(x)− gt(y) is increasing in t. We will use this fact in the paper
without reference.

2.2 SLE processes

An SLEκ is the random Loewner chain (Kt, t ≥ 0) driven by Wt =
√
κBt where

(Bt, t ≥ 0) is a standard one-dimensional Brownian motion. In [RS05], the authors prove
that (Kt, t ≥ 0) is almost surely generated by a continuous transient curve, i.e. there
almost surely exists a continuous curve η such that for each t ≥ 0, Ht is the unbounded
connected component of H\η[0, t] and that limt→∞ |η(t)| =∞.

We can define an SLEκ(ρL; ρR) process with two force points (xL;xR) where xL ≤ 0 ≤
xR. It is the Loewner chain driven by Wt which is the solution to the following systems
of SDEs:

dWt =
√
κdBt +

ρLdt

Wt − V Lt
+

ρRdt

Wt − V Rt
, W0 = 0;

dV Lt =
2dt

V Lt −Wt
, V L0 = xL; dV Rt =

2dt

V Rt −Wt
, V R0 = xR.

The solution exists up to the first time that W hits V L or V R. When ρL > −2 and
ρR > −2, the solution exists for all times t ≥ 0, and the corresponding Loewner chain is
almost surely generated by a continuous curve which is almost surely transient ([MS16,
Section 2]). There are two special values of ρ: κ/2− 2 and κ/2− 4. When ρR ≥ κ/2− 2,
then the curve never hits [xR,∞). When ρR ≤ κ/2− 4, then the curve will almost surely
accumulates at xR at finite time. See [Dub09, Lemma 15]. From Girsanov Theorem, it
follows that the law of an SLEκ(ρL; ρR) process can be constructed by reweighting the
law of an ordinary SLEκ.
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Lemma 2.3. Suppose xL < 0 < xR, define

Mt =g′t(x
L)ρ

L(ρL+4−κ)/(4κ)(Wt − gt(xL))ρ
L/κ × g′t(xR)ρ

R(ρR+4−κ)/(4κ)(gt(x
R)−Wt)

ρR/κ

× (gt(x
R)− gt(xL))ρ

LρR/(2κ).

Then M is a local martingale for SLEκ and the law of SLEκ weighted by M (up to the
first time that W hits one of the force points) is equal to the law of SLEκ(ρL; ρR) with
force points (xL;xR).

Proof. [SW05, Theorem 6].

Lemma 2.4. Fix κ > 0 and ν ≤ κ/2 − 4. Suppose y ≤ 0 < x. Let η be an SLEκ(ν) in H
from 0 to∞ with force point x. Since ν ≤ κ/2− 4, the curve η accumulates at the point
x at almost surely finite time which is denoted by T . Then we have, for λ ≤ 0,

E
[
(gT (x)− gT (y))

λ
]
� (x− y)λ,

where the constants in � depend only κ, ν and λ.

Proof. Since the quantity gt(x) − gt(y) is increasing in t, we have gT (x) − gT (y) ≥
(x − y). This implies the upper bound. We only need to show the lower bound. To
this end, we will compare η with SLEκ(ν) with force point x− y and show that the law
of (gT (x)− gT (y))/(x− y) is stochastically dominated by a random variable whose law
depends only κ, ν. By the scaling invariance of SLEκ(ν), we may assume x− y = 1.

Let η̃ be an SLEκ(ν) with force point 1, and define W̃ , g̃t, T̃ accordingly. Define Ṽt to
be the image of the leftmost point of η̃[0, t] ∩R under g̃t. Set

J̃t =
W̃t − Ṽt
g̃t(1)− Ṽt

.

Define the stopping time τ = inf{t : J̃t = −y}. Note that J̃0 = 0, J̃T̃ = 1 and J̃ is
continuous, we have that 0 ≤ τ ≤ T̃ . Given η̃[0, τ ], the process (η̃(t+ τ), 0 ≤ t ≤ T̃ − τ),
under the map

f(z) =
g̃τ (z)− W̃τ

g̃τ (1)− Ṽτ
,

has the same law as (η(t), 0 ≤ t ≤ T ) after a linear time-change. Therefore, given η̃[0, τ ],
we have

g̃T̃ (1)− ṼT̃
g̃τ (1)− Ṽτ

d
= gT (x)− gT (y).

Since g̃τ (1)− Ṽτ ≥ 1, we may conclude that the quantity (gT (x)− gT (y)) is stochastically
dominated from above by (g̃T̃ (1)− ṼT̃ ). To complete the proof, it is sufficient to show

Ẽ

[(
g̃T̃ (1)− ṼT̃

)λ]
& 1, (2.2)

where P̃ denotes the law of SLEκ(ν) with force point 1. Define the event

F̃ = {g̃T̃ (1)− ṼT̃ ≤ 4}.

It is clear that P̃[F̃ ] is strictly positive and depends only on κ and ν, thus

Ẽ

[(
g̃T̃ (1)− ṼT̃

)λ]
≥ 4λP̃[F̃ ].

This implies (2.2) and completes the proof.
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Lemma 2.5. Fix κ > 4 and ν ≥ κ/2 − 2. Suppose y < 0 < x, let η be an SLEκ(ν) with
force point x. For c > 0 small, define

σ = inf{t : η(t) ∈ (−∞, y]}, F = {dist(η[0, σ], x) ≥ cx}.

Then there exists a constant c ∈ (0, 1) depending only on κ and ν such that, for λ ≤ 0,

E
[
(gσ(x)− gσ(y))

λ
1F

]
� (x− y)λ,

where the constants in � depend only on κ, ν and λ.

Proof. Since the quantity gt(x)− gt(y) is increasing in t, we have gσ(x)− gσ(y) ≥ (x− y).
This implies the upper bound. We only need to show the lower bound. We may assume
that x− y = 1. We first argue that

E
[
(gσ(x)− gσ(y))

λ
]
� (x− y)λ. (2.3)

The proof of (2.3) is similar to the proof of Lemma 2.4. Let η̃ be an SLEκ(ν) with force
point 0+. Define W̃ , g̃ accordingly and let σ̃ be the first time that η̃ hits (−∞,−1). Let Ṽt
be the evolution of the force point. Define

J̃t =
Ṽt − W̃t

Ṽt − g̃t(−1)
, τ := inf{t : J̃t = x}.

Given η̃[0, τ ], the process (η̃(t+ τ), 0 ≤ t ≤ σ̃ − τ̃) under the map

f(z) =
g̃τ (z)− W̃τ

Ṽτ − g̃τ (−1)

has the same law as (η(t), 0 ≤ t ≤ σ) after a linear time change. In particular,

Ṽσ̃ − g̃σ̃(−1)

Ṽτ − g̃τ (−1)

d
= gσ(x)− gσ(y).

Since Ṽτ − g̃τ (−1) ≥ 1, we know that (gσ(x) − gσ(y)) is stochastically dominated from
above by (Ṽσ̃ − g̃σ̃(−1)), thus

E
[
(gσ(x)− gσ(y))

λ
]
≥ Ẽ

[(
Ṽσ̃ − g̃σ̃(−1)

)λ]
� 1.

This implies (2.3). Next, we prove the conclusion. By the scaling invariance of SLEκ(ν)

process we know that the probability P[dist(η, x) < cx] only depends on c. We denote
this probability by p(c). Since ν ≥ κ/2− 2, we know that p(c)→ 0 as c→ 0. Therefore,
by (2.3), we have

1 � E
[
(gσ(x)− gσ(y))

λ
]
≤ E

[
(gσ(x)− gσ(y))

λ
1F

]
+ p(c).

This implies the conclusion.

3 Boundary arm exponents for κ > 4

We prove Theorems 1.1 and 1.2 in this section by induction on the number of arms.
Suppose η is an SLEκ inH from 0 to∞ and let τε be the first time that η hits the small ball
B(x, ε). Roughly speaking, when we go from j arms to j+1 arms, we have τε <∞ at first,
and at the time τε, the ball B(x, ε) become a ball with radius approximatelyg′τε(x)ε after
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the conformal map gτε , and thus we expect the relation: E[(g′τε(x)ε)α
+
j 1{τε<∞}] ≈ εα

+
j+1 .

However it is not easy to make the iteration precise. The difficulty is that the image of
the ball B(x, ε) under the conformal map gτε can have large radius with small chance.
To treat this difficulty, we need estimates on the Laplace transform of the derivative in
a more general setting. This is derived in Section 3.1. Then we prove the conclusion
by induction on the number of arms: in Section 3.2, we go from 2n − 1 to 2n, and in
Section 3.3, we go from 2n to 2n+ 1. Finally, we complete the proof in Section 3.4.

3.1 Estimate on the derivative

In this section, we give estimates on the Laplace transform on the derivatives of the
conformal map associated to SLE process, e.g. g′t(1). Similar estimates appeared before:
[Law15] or [ABV16, Proposition 3.1]. Our result—Proposition 3.1—is a generalization of
those estimates. The generalization is essential in the iteration when one derives the
boundary arm exponents, since the iteration procedure requires not only the estimates
on the expectation of g′t(1)λ but also the estimates on the expectation of the product of
the form

(gt(1)−Wt)
λ−bg′t(1)b,

where λ, b are some constants.

Proposition 3.1. Fix κ > 0 and let η be an SLEκ in H from 0 to∞. Let Ot be the image
of the rightmost point of Kt ∩ R under gt. Set Υt = (gt(1) − Ot)/g′t(1). For ε ∈ (0, 1),
define

τ̂ε = inf{t : Υt = ε}, T0 = inf{t : η(t) ∈ [1,∞)}.

For λ ≥ 0, define

u1(λ) =
1

κ
(4− κ/2) +

1

κ

√
4κλ+ (4− κ/2)2.

For b ∈ R, assume that

κλ− κu1(λ) + 8− 2κ < κb ≤ κλ+ κu1(λ). (3.1)

Then we have

E
[
(gτ̂ε(1)−Wτ̂ε)

λ−bg′τ̂ε(1)b1{τ̂ε<T0}
]
� εu1(λ)+λ−b, (3.2)

where the constants in � depend only on κ and λ, b.

Attention that, in Proposition 3.1, we use the stopping time τ̂ε instead of τε which
is defined to be the first time that η hits B(1, ε). Due to Koebe 1/4 thoerem, these two
times are very close:

τ4ε ≤ τ̂ε ≤ τε/4.

Due to technical reason, we only prove the conclusion in Proposition 3.1 for the time τ̂ε,
but this is sufficient for our purpose later in this section.

Lemma 3.2. Fix κ > 0 and ν ≤ κ/2− 4. Let η be an SLEκ(ν) in H from 0 to∞ with force
point 1. Denote by W the driving function, V the evolution of the force point. Let Ot
be the image of the rightmost point of Kt ∩R under gt. Set Υt = (gt(1)−Ot)/g′t(1) and
σ(s) = inf{t : Υt = e−2s}. Set Jt = (Vt−Ot)/(Vt−Wt). Let T0 = inf{t : η(t) ∈ [1,∞)}. We
have, for β > 0,

E
[
J−βσ(s)1{σ(s)<T0}

]
� 1, when 8 + 2ν + κβ < 2κ, (3.3)

where the constants in � depend only on κ, ν, β.

Proof. [Wu16a, Lemma 3.5].
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Proof of Proposition 3.1. Let Ot be the image of the rightmost point of η[0, t] ∩R under
gt. Define

Υt =
gt(1)−Ot
g′t(1)

, Jt =
gt(1)−Ot
gt(1)−Wt

.

Set
Mt = g′t(1)ν(ν+4−κ)/(4κ)(gt(1)−Wt)

ν/κ, where ν = −κu1(λ).

Then M is a local martingale for η, and from Lemma 2.3, the law of η weighted by M is
the law of SLEκ(ν) with force point 1. Set β = u1(λ) + λ− b. Then we have

Mt = (gt(1)−Wt)
λ−bg′t(1)bΥ−βt Jβt .

At time t = τ̂ε <∞, we have Υt = ε, thus

E
[
(gτ̂ε(1)−Wτ̂ε)

λ−bg′τ̂ε(1)b1{τ̂ε<T0}
]
� εβE∗

[(
J∗τ̂∗ε

)−β
1{τ̂∗ε <T∗0 }

]
� εβ ,

where P∗ is the law of SLEκ(ν) with force point x and η∗, J∗, τ̂∗ε , T
∗
0 are defined accord-

ingly, and the last relation is due to (3.3).

Remark 3.3. Fix κ > 0 and let η be an SLEκ. For x > ε > 0, let u1(λ) and b be as in
Proposition 3.1. By the scaling invariance of SLE, we have

E
[
(gτ̂ε(x)−Wτ̂ε)

λ−bg′τ̂ε(x)b1{τ̂ε<T0}
]
� x−u1(λ)εu1(λ)+λ−b, (3.4)

where the constants in � depend only on κ, and λ, b. Taking λ = b = 0, we have

P[τε <∞] � P[τ̂ε <∞] �
( ε
x

)α+
1

, where α+
1 = u1(0) = 0 ∨ (8/κ− 1).

This implies that (1.3) holds for n = 1.

3.2 From 2n− 1 to 2n

Lemma 3.4. Fix κ > 4 and let η be an SLEκ. For y < 0 < x, define

σ = inf{t : η(t) ∈ (−∞, y]}, T = inf{t : η(t) ∈ [x,∞)}, F = {dist(η[0, σ], x) ≥ cx},

where c is the constant decided in Lemma 2.5. For λ ≥ 0, define

u2(λ) =
1

κ
(κ/2− 2) +

1

κ

√
4κλ+ (κ/2− 2)2.

Then we have, for λ ≥ 0 and b ≤ u2(λ),

xu2(λ)(x− y)b−u2(λ) . E
[
g′σ(x)λ(gσ(x)−Wσ)b1{σ<T}∩F

]
≤ E

[
g′σ(x)λ(gσ(x)−Wσ)b1{σ<T}

]
. xu2(λ)(x− y)b−u2(λ),

where the constants in & and . depend only on κ and λ, b.

Proof. Define

Mt = g′t(x)ν(ν+4−κ)/(4κ)(gt(x)−Wt)
ν/κ, where ν = κu2(λ).

Then M is a local martingale for η and the law of η weighted by M is the law of SLEκ(ν)

with force point x. By the definition of u2, we can also write

Mt = g′t(x)λ(gt(x)−Wt)
u2(λ).
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Thus

E
[
g′σ(x)λ(gσ(x)−Wσ)b1{σ<T}

]
= M0E

∗
[
(g∗σ∗(x)− g∗σ∗(y))

b−u2(λ)
1{σ∗<T∗}

]
,

where P∗ denotes the law of SLEκ(ν) with force point x and η∗, g∗, σ∗ and T ∗ are defined
accordingly. Since ν ≥ κ/2− 2, the curve will never swallows x, thus T ∗ =∞. Note that
M0 = xu2(λ). Therefore, proving the conclusion boils down to showing

E∗
[
(g∗σ∗(x)− g∗σ∗(y))

b−u2(λ)
1F∗
]
& (x− y)b−u2(λ), where F ∗ = {dist(η∗[0, σ∗], x) ≥ cx};

(3.5)

E∗
[
(g∗σ∗(x)− g∗σ∗(y))

b−u2(λ)
]
. (x− y)b−u2(λ). (3.6)

Equation (3.5) is true by Lemma 2.5. Since the quantity (g∗t (x)− g∗t (y)) is increasing in t,
we have

(g∗σ∗(x)− g∗σ∗(y)) ≥ x− y.
Combining with the fact that b− u2(λ) ≤ 0, we obtain (3.6).

Remark 3.5. Taking λ = b = 0 in Lemma 3.4, we have

P[σ < T ] � xα̂+
1 , where α̂+

1 = u2(0) = 1− 4/κ.

This implies that (1.6) holds for n = 1.

Lemma 3.6. Assume the same notations as in Theorem 1.1. Suppose that (1.3) holds
for 2n− 1, then (1.4) holds for 2n.

Proof of Lemma 3.6, Upper Bound. Let η be an SLEκ and define

σ = inf{t : η(t) ∈ (−∞, y]}, T = inf{t : η(t) ∈ [x,∞)}.

We stop the curve at time σ. Let η̃ be the image of η[σ,∞) under the centered conformal
map f := gσ −Wσ. Then η̃ is an SLEκ. Define H̃2n−1 for η̃.

Given η[0, σ] with σ < T , consider the event H2n(ε, x, y). Denote by γ the connected
component of B(x, ε) \ η[0, σ] whose boundary contains x + ε. We wish to control the
image of (−∞, y] and the image of γ under f . We have the following observations.

• At time σ, we have Wσ = gσ(y), thus f(y) = 0.

• By Lemma 2.1, we know that f(γ) is contained in the ball with center f(x+ 3ε) and
radius 8εf ′(x+ 3ε).

Combining these two facts, we know that, given η[0, σ] with σ < T , the event H2n(ε, x, y)

implies the event H̃2n−1(8εf ′(x + 3ε), f(x + 3ε), 0). If f(x + 3ε) ≥ 8εf ′(x + 3ε), by the
assumption hypothesis, we have

P[H2n(ε, x, y) | η[0, σ], σ < T ] .

(
εg′σ(x+ 3ε)

gσ(x+ 3ε)−Wσ

)α+
2n−1

.

If f(x+ 3ε) ≤ 8εf ′(x+ 3ε), the above upper bound is trivially true. Therefore, the above
upper bound always holds. Then

P[H2n(ε, x, y)] . εα
+
2n−1E

[
g′σ(x+ 3ε)α

+
2n−1(gσ(x+ 3ε)−Wσ)−α

+
2n−11{σ<T}

]
.

To apply Lemma 3.4, we only need to note that T is the first time that η swallows x which
happens before the first time that η swallows x+ 3ε. Note further that

u2(α+
2n−1) = α+

2n − α+
2n−1. (3.7)
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Thus, by Lemma 3.4, we have

P[H2n(ε, x, y)] . εα
+
2n−1xα

+
2n−α+

2n−1(x− y)−α
+
2n =

(
x

x− y

)α+
2n ( ε

x

)α+
2n−1

.

This completes the proof of the upper bound.

Proof of Lemma 3.6, Lower Bound. Let η be an SLEκ and assume the same notations
as in the proof of the upper bound. Define Fε = {dist(η[0, σ], x) ≥ cε}, where c is the
constant decided in Lemma 2.5. Note that the event Fε defined here is different from the
event F = {dist(η[0, σ], x) ≥ cx} defined in Lemma 2.5, and we find F ⊂ Fε when ε ≤ x.
We stop the curve at time σ. Let η̃ be the image of η[σ,∞) under the centered comformal
map f := gσ −Wσ. Then η̃ is an SLEκ. Define H̃2n−1 for η̃.

Given η[0, σ] with {σ < T}∩Fε, consider the event H2n(ε, x, y). We wish to control the
image of (−∞, y] and the image of ∂B(x, ε) under f . We have the following observations.

• At time σ, we have Wσ = gσ(y), thus f(y) = 0.

• On the event Fε, by Koebe 1/4 Theorem, we know that f(B(x, ε)) contains the ball
with center f(x) and radius cf ′(x)ε/4.

Combining these two facts, we know that, given η[0, σ] with {σ < T} ∩ Fε, the event
H2n(ε, x, y) contains the event H̃2n−1(f ′(x)cε/4, f(x), 0). By the assumption hypothesis,
we have

P[H2n(ε, x, y) | η[0, σ], {σ < T} ∩ Fε] &
(

εg′σ(x)

gσ(x)−Wσ

)α+
2n−1

.

Therefore,

P[H2n(ε, x, y)] & εα
+
2n−1E

[
g′σ(x)α

+
2n−1(gσ(x)−Wσ)−α

+
2n−11{σ<T}∩Fε

]
.

To apply Lemma 3.4, we only need to note that x ≥ ε and F ⊂ Fε. By (3.7) and Lemma
3.4, we have

P[H2n(ε, x, y)] & εα
+
2n−1xα

+
2n−α+

2n−1(x− y)−α
+
2n =

(
x

x− y

)α+
2n ( ε

x

)α+
2n−1

.

This completes the proof of the lower bound.

3.3 From 2n to 2n+ 1

Lemma 3.7. Assume the same notations as in Theorem 1.1. Suppose that (1.4) holds
for 2n with n ≥ 1, then (1.3) holds for 2n+ 1.

Proof of Lemma 3.7, Upper Bound. If ε ≤ x ≤ 64ε, by the assumption hypothesis we
have

P[H2n+1(ε, x, y)] ≤ P[H2n(ε, x, y)] .

(
x

x− y

)α+
2n

,

which gives the upper bound in (1.3) for 2n+ 1.
In the following, we assume that x > 64ε. Let η be an SLEκ. Define T to be the first

time that η swallows x. For ε > 0, let τε be the first time that η hits B(x, ε). Define Ot to
be the image of the rightmost point of η[0, t] ∩R under gt. Define

τ̂ε = inf{t :
gt(x)−Ot
g′t(x)

= ε}.
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We stop the curve at time τ̂64ε. Let η̃ be the image of η[τ̂64ε,∞) under the centered
conformal map f := gτ̂64ε −Wτ̂64ε . Then η̃ is an SLEκ. Define the event H̃2n for η̃.

Given η[0, τ̂64ε], consider the event H2n+1(ε, x, y). We wish to control the image of the
ball B(x, ε) and the image of the half-infinite line (−∞, y) under f . We have the following
observations.

• By Koebe 1/4 theorem, we know that τ̂64ε ≤ τ16ε. Combining with Lemma 2.2, we
know that f(B(x, ε)) is contained in the ball B(f(x), 4f ′(x)ε).

• At time τ̂64ε, there are two possibilities for the image of y under f : if y is not
swallowed by η[0, τ̂64ε], then f(y) = gτ̂64ε(y)−Wτ̂64ε is the image of y under f ; if y is
swallowed by η[0, τ̂64ε], then the image of y under f is the image of leftmost point of
η[0, τ̂64ε]∩R under f , in this case, we still write f(y) = gτ̂64ε(y)−Wτ̂64ε as explained
in Section 2.

Combining these two facts, we know that, given η[0, τ̂64ε], H2n+1(ε, x, y) implies
H̃2n(4f ′(x)ε, f(x), f(y)). By the assumption hypothesis, we have

P [H2n+1(ε, x, y) | η[0, τ̂64ε], τ̂64ε < T ] .

(
gτ̂64ε(x)−Wτ̂64ε

gτ̂64ε(x)− gτ̂64ε(y)

)α+
2n
(

g′τ̂64ε(x)ε

gτ̂64ε(x)−Wτ̂64ε

)α+
2n−1

.

For fixed x and y, the quantity gt(x)− gt(y) is increasing in t, thus gt(x)− gt(y) ≥ x− y.
Plugging in the above inequality, we have

P [H2n+1(ε, x, y)] . (x−y)−α
+
2nεα

+
2n−1E

[
(gτ̂64ε(x)−Wτ̂64ε)

α+
2n−α+

2n−1g′τ̂64ε(x)α
+
2n−11{τ̂64ε<T}

]
.

By Proposition 3.1 and (3.4), we have

P [H2n+1(ε, x, y)] . (x− y)−α
+
2nεα

+
2n−1x−u1(α+

2n)εu1(α+
2n)+α+

2n−α+
2n−1 .

Note that
α+

2n+1 = u1(α+
2n) + α+

2n. (3.8)

Therefore

P [H2n+1(ε, x, y)] .

(
x

x− y

)α+
2n ( ε

x

)α+
2n+1

which completes the proof.

Proof of Lemma 3.7, Lower Bound. Let η be an SLEκ. Define T to be the first time that
η swallows x. For ε > 0, let τε be the first time that η hits B(x, ε). We stop the curve at
time τε. Let η̃ be the image of η[τε,∞) under the centered conformal map f := gτε −Wτε .
Then η̃ is an SLEκ. Define the event H̃2n for η̃.

Given η[0, τε], consider the event H2n+1(ε, x, y). We wish to control the image of the
ball B(x, ε) and the image of the half-infinite line (−∞, y) under f . We have the following
observations.

• Applying Koebe 1/4 Theorem to f , we know that f(B(x, ε)) contains the ball
B(f(x), f ′(x)ε/4).

• At time τε, we have f(y) = gτε(y)−Wτε . Recall that if y is swallowed by η[0, τε], then
f(y) should be understood as the image of the leftmost point of η[0, τε] ∩R under f .

Combining these two facts, we know that, given η[0, τε], the event H2n+1(ε, x, y) contains
H̃2n(f ′(x)ε/4, f(x), f(y)). By the assumption hypothesis, we have

P [H2n+1(ε, x, y) | η[0, τε], τε < T ] &

(
gτε(x)−Wτε

gτε(x)− gτε(y)

)α+
2n
(

g′τε(x)ε

gτε(x)−Wτε

)α+
2n−1

. (3.9)
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For t ≥ 0, let Ot the image of the rightmost point of η[0, t] ∩R under gt. Set

Υt =
gt(x)−Ot
g′t(x)

, Jt =
gt(x)−Ot
gt(x)−Wt

.

Define

Mt = g′t(x)ν(ν+4−κ)/(4κ)(gt(x)−Wt)
ν/κ, where ν = κ(α+

2n − α+
2n+1) ≤ κ/2− 4.

Then M is a local martinagle and the law of η weighted by M becomes the law of SLEκ(ν)

with force point x. By (3.8), we have

ν(ν + 4− κ)/(4κ) = α+
2n+1.

The local martingale M can be written as

Mt = g′t(x)α
+
2n+1(gt(x)−Wt)

α+
2n−α+

2n+1

= g′t(x)α
+
2n−1(gt(x)−Wt)

α+
2n−α+

2n−1Υ
α+

2n−1−α
+
2n+1

t J
α+

2n+1−α
+
2n−1

t .

At time t = τε < T , by Koebe 1/4 Theorem, we have Υt � ε. Since Jt ≤ 1, we have

Mτεε
α+

2n+1−α
+
2n−1 . g′τε(x)α

+
2n−1(gτε(x)−Wτε)

α+
2n−α+

2n−1 .

Combining with (3.9) and M0 = xα
+
2n−α+

2n+1 , we have

P[H2n+1(ε, x, y)] & εα
+
2n+1xα

+
2n−α+

2n+1E∗
[
(g∗τ∗ε (x)− g∗τ∗ε (y))−α

+
2n1{τ∗ε <T∗}

]
,

where P∗ denotes the law of SLEκ(ν) with force point x and g∗, τ∗ε , T
∗ are defined for η∗

whose law is P∗ accordingly. Since ν ≤ κ/2− 4, the curve accumulates at the point x at
almost surely finite time T ∗, thus {τ∗ε < T ∗} always holds. To complete the proof, it is
sufficient to show

E∗
[(
g∗τ∗ε (x)− g∗τ∗ε (y)

)−α+
2n

]
& (x− y)−α

+
2n . (3.10)

Since the quantity g∗t (x)− g∗t (y) is increasing t, we know that

x− y ≤ g∗τ∗ε (x)− g∗τ∗ε (y) ≤ g∗T∗(x)− g∗T∗(y).

Combining with Lemma 2.4, we obtain (3.10) and complete the proof.

3.4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Combining Remark 3.3 and Lemmas 3.7 and 3.6 implies the
conclusion.

Proof of Theorem 1.2. We have the following observations.

• By Remark 3.5, we know that (1.6) holds for n = 1.

• By the same arguments in Section 3.3, we could prove that, assume (1.6) holds for
2n− 1 with n ≥ 1, then (1.7) holds for 2n where (3.8) should be replaced by

α̂+
2n = u1(α̂+

2n−1) + α̂+
2n−1.

• By the same arguments in Section 3.2, we could prove that, assume (1.7) holds for
2n with n ≥ 1, then (1.6) holds for 2n+ 1 where (3.7) should be replaced by

α̂+
2n+1 = u2(α̂+

2n) + α̂+
2n.

Combining these three facts, we obtain the conclusion.
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4 Boundary arm exponents for κ ≤ 4

4.1 Definitions and statements

In this section, we assume κ ∈ (0, 4], let η be a chordal SLEκ curve, and let gt be
the corresponding Loewner maps. Since η does not hit the boundary other than its end
points, Hn and Ĥn defined in Section 1 are empty sets. So we need to modify their
definitions.

For y ∈ R and r > 0, we define half strips:

L−y;r = {z ∈ H : =z ≤ r;<z ≤ y}, L+
y;r = {z ∈ H : =z ≤ r;<z ≥ y};

and write L±y = L±y;π.

A crosscut in a domain D is an open simple curve in D, whose end points approach
boundary points of D. Suppose S is a relatively closed subset of H such that ∂S ∩H is a
crosscut of H. Then we use ∂+

HS (resp. ∂−HS) to denote the curve ∂S ∩H oriented so that
S lies to the left (resp. right) of the curve. For example, ∂−HL

−
y;r is from y to∞; and for

x ∈ R, ∂+
HB(x, r) is from x− r to x+ r.

Let ξj : [0, Tj ] → C, j = −1, 1, and η : [0, T ) → C be three continuous curves. For
j = −1, 1, define increasing functions Rj(t) = max({0}∪ {s ∈ [0, Tj ] : ξj(s) ∈ η([0, t])}) for
t ∈ [0, T ). Let τ0 = 0. After τn is defined for some n ≥ 0, we define τn+1 = inf{t ≥ τn :

η(t) ∈ ξ(−1)n+1((R(−1)n+1(τn), T(−1)n+1))}, where we set inf ∅ = ∞ by convention, and if
any τn0 =∞, then τn =∞ for all n ≥ n0.

Definition 4.1. If τn0
< ∞ for some n0 ∈ N, then we say that η makes (at least) n0

well-oriented (ξ−1, ξ1)-crossings.

Remark 4.2. The above name comes from the fact that the orientation-preserving
reparametrizations of ξ1, ξ−1, η do not affect the event.

Definition 4.3. Let x > y, x > 0, and ε > 0. Let η be an SLEκ in H from 0 to
∞. Define Hπ

2n−1(ε, x, y) to be the event that η makes at least (2n − 1) well-oriented
(∂+
HB(x, ε), ∂−HL

−
y )-crossings. Define Hπ

2n(ε, x, y) to be the event that η makes at least 2n

well-oriented (∂−HL
−
y , ∂

+
HB(x, ε))-crossings. Note that in either event, the last visit that

counts is at the half circle ∂+
HB(x, ε).

The theorem below is our main theorem for κ ≤ 4. The function φ will be defined
later in (4.7), and φ(k) is the k times iteration of φ. The following estimate is useful to
have a sense of φ(k):

φ(k)(x) ≥ x

2
, if x ≥ 6k + 3. (4.1)

Theorem 4.4. Let α+
2n and α+

2n−1 be defined by (1.1). We have the following facts.

(i) If (ε, x, y) satisfy 25n−4ε < φ(2n−2)(x− y), then

P
[
Hπ

2n−1(ε, x, y)
]
.

xα
+
2n−2−α

+
2n−1εα

+
2n−1∏n−1

j=1 φ
(2n−2j−1)(x− y)α

+
2j−α

+
2j−2

. (4.2)

If (ε, x, y) satisfy 25n−1ε < φ(2n−1)(x− y), and ε ≤ x, then

P [Hπ
2n(ε, x, y)] .

xα
+
2n−α+

2n−1εα
+
2n−1∏n

j=1 φ
(2n−2j)(x− y)α

+
2j−α

+
2j−2

. (4.3)

Here the implicit constants depend only on κ, n.
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(ii) For any R > 0 and n ∈ N, there is a constant Cn,R depending only on κ, n,R such
that

P
[
Hπ

2n−1(ε, x, y)
]
≥ C2n−1,Rx

α+
2n−2−α

+
2n−1εα

+
2n−1 , provided ε < x, and ε < x− y ≤ R,

(4.4)

P [Hπ
2n(ε, x, y)] ≥ C2n,Rx

α+
2n−α+

2n−1εα
+
2n−1 , provided ε < x ≤ x− y ≤ R. (4.5)

Remark 4.5. Using (4.1), we see that, if x− y ≥ 12n and 25nε < x− y, then

P
[
Hπ

2n−1(ε, x, y)
]
.

(
x

x− y

)α+
2n−2 ( ε

x

)α+
2n−1

and

P[Hπ
2n(ε, x, y)] .

(
x

x− y

)α+
2n ( ε

x

)α+
2n−1

.

So we get the same upper bound as in the case κ > 4.

4.2 Comparison principle for well-oriented crossings

Let D be a simply connected domain. We say that η : [0, T )→ D is a non-self-crossing
curve in D if η(0) ∈ ∂D, and for any t0 ≥ 0, there is a unique connected component Dt0 of
D \ η[0, t0] such that η(t0 + ·) is the image of a continuous curve in U under a continuous
map from U onto Dt0 , which is an extension of a conformal map from U onto Dt0 . For
example, an SLE curve is almost surely a non-self-crossing curve.

η

η(τ2)

ξ1 ξ̂1 ξ−1ξ̂−1

η(τ̂1)

η(τ1)
η(τ̂2)

η(τ̂3)
η(τ̂4)

η(τ̂5)

I

Figure 2: The figure illustrates the definition of well-oriented crossings as well as the
conditions of Lemma 4.6. The curve η totally makes 2 well-oriented (ξ−1, ξ1)-crossings
and 5 well-oriented (ξ̂−1, ξ̂1)-crossings. The times τj , 1 ≤ j ≤ 2, and τ̂j , 1 ≤ j ≤ 5, are
indicated in the figure.

Lemma 4.6 (Comparison Principle). Let D be a simply connected domain, and η be a
non-self-crossing curve in D. Let ξj , ξ̂j : (0, 1)→ D, j = −1, 1, be crosscuts of D. Let (τn)

and Rj(t), j = −1, 1 be as in the definition of oriented crossings for η and (ξ−1, ξ1). Let
(τ̂n) and R̂j(t), j = −1, 1, be the corresponding quantities for η and (ξ̂−1, ξ̂1). Assume the
following. See Figure 2.

(i) For j = −1, 1, ξ̂j disconnects ξj from both ξ−j and ξ̂−j in D; the distance between
ξ̂−1 and ξ̂1 is positive; and ξ̂−1 disconnects ξ−1 from η(0) in D. Here we allow the
possibility that ξ̂j touches ξj , or η(0) ∈ ξ̂−1.
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(ii) If ηt0 = ξ̂(−1)n+1(R̂(−1)n+1(τn)) or ξ̂(−1)n+1(1) for some t0 ≥ τn, then for any ε > 0,

there is t1 ∈ [t0, t0 + ε) such that η(t1) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn), 1)).

(iii) There is a closed boundary (prime end) arc I of D with end points ξ1(1) and ξ−1(1)

such that ξ̂j(1) ∈ I, j = −1, 1, and η ∩ I = ∅.
If η makes n0 well-oriented (ξ−1, ξ1)-crossings, then it also makes n0 well-oriented
(ξ̂−1, ξ̂1)-crossings.

Remark 4.7. The assumption that η is non-self-crossing forces η(τn + ·) to stay in the
closure of the remaining domain Dτn . We need assumption (iii) to prevent η(τn + ·) to
sneak into the region bounded by the crosscut ξ̂(−1)n+1((R̂(−1)n+1(τn), 1)) of Dτn through
one of its endpoints without hitting the crosscut. This assumption is certainly satisfied if
η is an SLE curve.

Proof. Suppose η makes n0 well-oriented (ξ−1, ξ1)-crossings. Then τn0
< ∞. We will

show that τ̂n ≤ τn for 0 ≤ n ≤ n0. Especially, the inequality τ̂n0
<∞ is what we need.

First, we have τ0 = τ̂0 = R̂−1(0) = 0. From assumptions (i) and (ii), we have

τ̂1 = inf{t ≥ 0 : η(t) ∈ ξ̂−1((0, 1))} ≤ inf{t ≥ 0 : η(t) ∈ ξ−1((0, 1))} = τ1.

Suppose we have proved that τ̂n ≤ τn for some n ∈ {1, . . . , n0−1}. Then η(τn) ∈ ξ(−1)n ,
and for every ε > 0, there is t ∈ [τn+1, τn+1 +ε) such that η(t) ∈ ξ(−1)n+1((R(−1)n+1(τn), 1)).
Let Dτn be the connected component of D \ η([0, τn]) such that η[τn,∞) ⊂ Dτn . Then
ξ(−1)n+1((R(−1)n+1(τn), 1)) is a crosscut of Dτn since it belongs to D \ η([0, τn]) and is

visited by η after τn. From assumption (iii) we know that ξ̂(−1)n+1((R̂(−1)n+1(τn), 1))

is also a crosscut of Dτn . Since Dτn is simply connected, this crosscut disconnects
ξ(−1)n+1((R(−1)n+1(τn), 1)) from ητn in Dτ̂n . From assumption (ii), we have

inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn), 1))}
≤ inf{t ≥ τn : η(t) ∈ ξ(−1)n+1((R̂(−1)n+1(τn), 1))} = τn+1.

Since τ̂n ≤ τn and R̂(−1)n+1(t) is increasing, we get R̂(−1)n+1(τ̂n) ≤ R̂(−1)n+1(τn), and so

τ̂n+1 = inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τ̂n), 1))}
≤ inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn), 1))} ≤ τn+1.

By induction, we conclude that τ̂n ≤ τn for all 0 ≤ n ≤ n0, as desired.

Remark 4.8. The lemma also holds if we do not assume that ξ−1 and ξ̂−1 are crosscuts
of D, but assume that they are the same curve in D.

4.3 Estimates on half strips

Given a nonempty H-hull K, Let aK = min(K ∩ R) and bK = max(K ∩ R). Let
Kdoub = K ∪ [aK , bK ] ∪ {z : z ∈ K}. By Schwarz reflection principle, gK extends to a
conformal map from C \ Kdoub onto C \ [cK , dK ] for some cK < dK ∈ R, and satisfies
gK(z) = gK(z). From [Zha08, (5.1)] we know that there is a positive measure µK
supported by [cK , dK ] with total mass |µK | = hcap(K) such that,

fK(z)− z =

∫ −1

z − xdµK(x), z ∈ C \ [cK , dK ]. (4.6)

For x0 ∈ R and r > 0, let B
+

(x0, r) denote the special H-hull B(x0, r)∩H. If an H-hull

K is contained in B
+

(x0, r), then hcap(K) ≤ hcap(B
+

(x0, r)) = r2 by the monotonicity
of half-plane capacity, and [cK , dK ] ⊂ [c

B
+

(x0,r)
, d
B

+
(x0,r)

] = [x0 − 2r, x0 + 2r] by [Zha08,
Lemma 5.3].

EJP 22 (2017), paper 89.
Page 17/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP110
http://www.imstat.org/ejp/


Boundary arm exponents for SLE

Lemma 4.9. Let x0, y ∈ R and R, r > 0. Suppose K is an H-hull and K ⊂ B
+

x0,R.
Then the unbounded connected component of gK(L−y;r \ K) contains L−y′;r′ for y′ =

min{x0 − 2R− 2R2

r , y − r
2} and r′ = r/2.

Proof. Let z ∈ L−y′;r′ . Since <z ≤ x0 − 2R − 2R2

r and [cK , dK ] ⊂ [x0 − 2R, x0 + 2R], we

have |z − x| ≥ 2R2

r for any x ∈ [cK , dK ]. From (4.6) and |µK | = hcap(K) ≤ R2, we get
|fK(z) − z| ≤ r

2 . Since <z ≤ y′ ≤ y − r
2 , we get <fK(z) ≤ y. Since 0 < =z ≤ r′ = r/2,

we get 0 < =fK(z) ≤ r (fK maps H into H). Thus, we conclude that fK(L−y′;r′) ⊂ L−y;r.

Since fK(L−y′;r′) is an unbounded domain contained in H \K, and gK = f−1
K , we get the

conclusion.

Now L−y;r is not an H-hull since it is not bounded. But we will still find a conformal
map from H onto H \ L−y;r. By scaling and translation, it suffices to consider L−0 = L−0;π.

We will use the map f(0,i](z) =
√
z2 − 1 for the half open line segment (0, i], and the map

f
B

+
(0,1)

for the unit semi-disc. Recall that f−1

B
+

(0,1)
(z) = g

B
+

(0,1)
(z) = z + 1

z .

Lemma 4.10. Let fL−0
(z) = f(0,i](z)+log(f

B
+

(0,1)
(2z)), where the branch of log is chosen

so that it maps H onto {0 < =z < π}. Then fL−0
maps H conformally onto H \ L−0 , and

satisfies fL−0
(z) = z + log(2z) +O(1/z) as z →∞, and fL−0

(1) = 0, fL−0
(−1) = πi.

Proof. We observe that z 7→ log(f
B

+
(0,1)

(2z)) is a conformal map from H onto L+
0 , which

takes 1 and −1 to 0 and πi respectively; and f(0,i] is a conformal map from H onto
H \ (0, i], which takes both 1 and −1 to 0. So the fL−0

defined by the lemma satisfies

fL−0
(1) = 0,fL−0

(−1) = πi. As z →∞, f(0,i](z) = z+O(1/z) and f
B

+
(0,1)

(2z) = 2z+O(1/z).

So log(f
B

+
(0,1)

(2z)) = log(2z) + O(1/z2) as z → ∞. Thus, fL−0
(z) = z + log(2z) + O(1/z)

as z →∞.
It remains to show that fL−0

maps H conformally onto H \ L−0 . It is easy to see

that fL−0
maps (1,∞) into (0,∞). By Schwarz-Christoffel transformation, it suffices

to show that f ′
L−0

(z) =
√

z+1
z−1 . Let g(z) = g

B
+

(0,1)
(z)/2 = z

2 + 1
2z and f = g−1. Then

log(f
B

+
(0,1)

(2z)) = log(f(z)). We find that
√
g(z)2 − 1 = z

2 − 1
2z and g′(z) = 1

2 − 1
2z2 .

So
√
g(z)2 − 1 = zg′(z) = f(g(z))

f ′(g(z)) , which implies that f ′(w)
f(w) =

√
1

w2−1 . From this we

get d
dz log(f

B
+

(0,1)
(2z)) = f ′(z)

f(z) = 1√
z2−1

. Since f ′(0,i](z) = z√
z2−1

, we have f ′
L−0

(z) =

z√
z2−1

+ 1√
z2−1

=
√

z+1
z−1 , as desired.

Define fL−y (z) = fL−0
(z − y) + y, which maps H conformally onto H \ L−y , and let

gL−y = f−1

L−y
. We will use hm(z,D;V ) to denote the harmonic measure of V in a domain D

seen from z, i.e., the probability that a planar Brownian motion started from z ∈ D hits
V before ∂D \ V .

Lemma 4.11. For any y,m ∈ R, and any boundary arc I ⊂ ∂(H\L−y ), we have limh→∞ h ·
hm(m+ ih,H \ L−y ; I) = |gL−y (I)|/π, where | · | is the Lebesgue measure on R.

Proof. From conformal invariance of the harmonic measure, we have

hm(m+ ih,H \ L−y ; I) = hm(gL−y (m+ ih),H; gL−y (I).

Since |fL−y (z)− z|/|z| → 0 as |z| → ∞, we get |gL−y (z)− z|/|z| → 0 as |z| → ∞. From this
we get

lim
h→∞

hm(gL−y (m+ ih),H; gL−y (I))/ hm(m+ ih,H; gL−y (I)) = 1.

Since limh→∞ h · hm(m+ ih,H; gL−y (I)) = |gL−y (I)|/π, the proof is now finished.
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We will use hm(∞,H \ L−y ; I) to denote limh→∞ π · h · hm(m + ih,H \ L−y ; I), which
equals |gL−y (I)| by the above lemma. For example, we have hm(∞,H \L−y ; [y, y+ iπ]) = 2,
and

hm(∞,H \ L−y ; [y, y′]) = gL−y (y′)− gL−y (y) = gL−0
(y′ − y)− 1, y′ ≥ y.

Note that x 7→ fL−0
(gL−0

(x)− 2) is a homeomorphism from [fL−0
(3),∞) onto [0,∞). Now

we define

φ(x) =

{
fL−0

(gL−0
(x)− 2), if x ≥ fL−0 (3);

0, if x ≤ fL−0 (3).
(4.7)

Lemma 4.12. Let x0, y0 ∈ R. Let K be an H-hull such that x0 > bK = max(K ∩R). Let
γ denote the unbounded component of ∂L−y0 \ (R ∪K). If x0 − y0 > fL−0

(3), then there is

y1 ∈ R such that gK(γ) ⊂ L−y1 and gK(x0)− y1 ≥ φ(x0 − y0).

Proof. Let L be the unbounded component of L−y0 \ K. Let y1 = sup<(gK(γ)). From

(4.6) we see that gK = f−1
K decreases the imaginary part of points in H. So we have

gK(γ) ⊂ L−y1 .

Let x1 = gK(x0). First, we prove that x1 > y1. Choose z1 ∈ gK(γ) such that y1 = <z1.
Suppose x1 ≤ y1. Then z1 6∈ R for otherwise z1 is the image of γ ∩ ∂K under gK , which
must lie to the left of the image of x0. Let γv denote the vertical open line segment
(y1, z1). It disconnects x1 from∞ in H \ gK(L). Thus, fK(γv) is a crosscut in H \ (K ∪ L),
which connects fK(z1) ∈ γ with fK(y1) ≥ x0, and separates x0 = fK(x1) from ∞ in
H \ (K ∪ L). Then for big h > 0,

hm(ih,H \ (K ∪ L); fK(γv)) = hm(ih,H \ L; fK(γv)) ≥ hm(ih,H \ L−y0 ; fK(γv))

≥ hm(ih,H \ L−y0 ; [y0, x0]). (4.8)

Here the equality holds because fK(γv) disconnects K from∞ in H \ L (here we use the
fact that L is the unbounded component of L−y0 \K); the first inequality holds because
H\L−y0 ⊂ H\L; and the second inequality holds because fK(γv) disconnects [y0, x0] from
∞ in H \ L−y0 .

From conformal invariance of harmonic measure, H \ gK(L) ⊃ H \ L−y1 , and γv ⊂
[y1, y1 + iπ], we have

hm(ih,H \ (K ∪ L); fK(γv)) = hm(gK(ih),H \ gK(L); γv)

≤ hm(gK(ih),H \ L−y1 ; [y1, y1 + iπ]).

Thus,

hm(ih,H \ L−y0 ; [y0, x0]) ≤ hm(gK(ih),H \ L−y1 ; [y1, y1 + iπ]).

Combining the above inequalities with (4.8) and letting h→∞, we get

hm(∞,H \ L−y0 ; [y0, x0]) ≤ hm(∞,H \ L−y1 ; [y1, y1 + iπ]).

Then we get gL−0
(x0 − y0) − 1 ≤ 2, which contradicts that x0 − y0 > fL−0

(3). Thus,

gK(x0) = x1 > y1.
Finally, since fK([y1, z1] ∪ [y1, x1]) disconnects K from ∞ in H \ L, and disconnects

[y0, x0] from∞ in H \ L−y0 , we get

hm(∞,H \ L−y0 ; [y0, x0]) ≤ hm(∞,H \ L−y1 ; [y1, y1 + iπ] ∪ [y1, x1]),

which implies that gL−0
(x0 − y0)− 1 ≤ 2 + gL−0

(x1 − y1)− 1. So the proof is finished.
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Let Kt, 0 ≤ t ≤ t0, be chordal Loewner hulls driven by Wt, 0 ≤ t ≤ t0. Recall that
every Kt is an H-hull with hcap(Kt) = 2t. From (2.1) it is easy to see that

sup{<z : z ∈ Kt0} ≤ max{Wt : 0 ≤ t ≤ t0}, sup{=z : z ∈ Kt0} ≤
√

4t0. (4.9)

From [LSW01, Theorem 2.6] and [Zha08, Lemma 5.3], we know that

Wt ∈ [cKt0 , dKt0 ], 0 ≤ t ≤ t0. (4.10)

Lemma 4.13. Let R = L−y ∩ L+
x for some x < y ∈ R. Then cR ≥ x− 2.

Proof. Let m = (x+ y)/2. Then R is symmetric w.r.t. {<z = m}. So gR(m+ iπ) = m. By
conformal invariance and comparison principle of harmonic measures, for any h > π, we
get

h · hm(gR(m+ ih),H; [gR(x+ iπ),m]) = h · hm(m+ ih,H \R; [x+ iπ,m+ iπ])

≤ h · hm(m+ ih, {=z > π}; [x+ iπ,m+ iπ])

= h · hm(m+ i(h− π),H; [x,m]).

Letting h→∞, we get m− gR(x+ iπ) ≤ m− x, and so gR(x+ iπ) ≥ x. Similarly,

h · hm(gR(m+ ih),H; [gR(x), gR(x+ iπ)]) = h · hm(m+ ih,H \R; [x, x+ iπ])

≤ h · hm(m+ ih,H \ L+
x ; [x, x+ iπ]).

Letting h → ∞, and using Lemma 4.11 (applied to right half strips) and (gR(m +

ih) − (m + ih))/h → 1 as h → ∞, we get gR(x + iπ) − gR(x) ≤ 2. Thus, cR = gR(x) ≥
gR(x+ iπ)− 2 ≥ x− 2.

Lemma 4.14. Let t0 = π2/4. We have Kt0 ∩ L−y 6= ∅ if y > min{Wt : 0 ≤ t ≤ t0}+ 2.

Proof. Let l = min{Wt : 0 ≤ t ≤ t0} and r = max{Wt : 0 ≤ t ≤ t0}. From (4.9), we know
that Kt0 ⊂ L−r . Suppose Kt0 ∩ L−y = ∅ for some y > l + 2. Then Kt0 ⊂ R := L+

y ∩ L−r .
From [Zha08, Lemma 5.3], we get [cKt0 , dKt0 ] ⊂ [cR, dR]. From the above lemma, we get
cKt0 ≥ cR ≥ y − 2 > l, which contradicts (4.10). So the proof is finished.

The above lemma means that, if min{Wt : 0 ≤ t ≤ π2/4} < y−2, and if (Wt) generates

a chordal Loewner curve η, then η visits L−y before π2

4 .

4.4 Estimate on the derivative

Proposition 4.15. Assume the same setup as that in Proposition 3.1 except that (3.1) is
replaced by

4b ≥ (λ− b)(κλ− κb+ 4− κ). (4.11)

Let τε be the first time that |η(t)− 1| ≤ ε. Then we have

E
[
(gτε(1)−Wτε)

λ−bg′τε(1)b1{τε<T0}
]
� εu1(λ)+λ−b, (4.12)

where the constants in � depend only on κ, λ, b.

Proof. Let Xt = (gt(1)−Wt)
λ−bg′t(1)b1{t<T0} and β = u1(λ) + λ− b. First, (4.11) implies

(3.1) and β ≥ 0. By Proposition 3.1, we have

E
[
Xτ̂(ε)1{τ̂(ε)<T0}

]
� εβ .

From (4.11), we straightforwardly check that Xt is a super martingale using Itô’s formula.
In fact, if the equality in (4.11) holds, then Xt agrees with the local martingale in Lemma
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2.3 with ρL = 0, xR = 1, and ρR = κ(λ− b). Also note that g′t(1) is decreasing. Thus, from
τ̂ε ≤ τε, we get

E
[
Xτ(ε)1{τ(ε)<T0}

]
≤ E

[
Xτ̂(ε)1{τ̂(ε)<T0}

]
� εβ .

To prove the reverse inequality, we follow the proof of Proposition 3.1 to get

E
[
Xτ(ε)1{τ̂(ε)<T0}

]
� εβE∗[J−βτε ] ≥ εβ ,

using Υτε � ε, 0 < Jt ≤ 1 and β ≥ 0.

4.5 Proof of Theorem 4.4

Proof of Theorem 4.4. From Remark 3.3, we have (4.2) and (4.4) for n = 1.
From 2n− 1 to 2n: Suppose (4.2) and (4.4) hold. Let σ be the hitting time at L−y .
upper bound. If y ≥ 0, then we use the estimate

P[Hπ
2n(ε, x, y)] ≤ P[Hπ

2n−1(ε, x, y)]

.
xα

+
2n−2−α

+
2n−1εα

+
2n−1∏n−1

j=1 φ
(2n−2j−1)(x− y)α

+
2j−α

+
2j−2

≤ xα
+
2n−α+

2n−1εα
+
2n−1∏n

j=1 φ
(2n−2j)(x− y)α

+
2j−α

+
2j−2

,

where the last inequality follows from φ(2n−2j−1)(x − y) ≥ φ(2n−2j)(x − y), x ≥ x − y =

φ(0)(x− y), and α+
2j ≥ α+

2j−2. So we get (4.3).

If y < 0, then η(σ) ∈ ∂−HL−y , and the righthand side of η[0, σ] disconnects the union
of [<η(σ), 0] and the righthand side of the line segment [<η(σ), η(σ)] in H \ [<η(σ), η(σ)].
From the comparison principal and conformal invariance of harmonic measure, we get

hm(∞,H \ η[0, σ]; RHS of η[0, σ]) ≥ hm(∞,H \ (η[0, σ] ∪ [<η(σ), η(σ)]); RHS of η[0, σ])

≥ hm(∞,H \ [<η(σ), η(σ)]; [<η(σ), 0]

∪ RHS of [<η(σ), η(σ)]).

Since <η(σ) ≤ y, we get
gσ(x)−Wσ ≥ x− y. (4.13)

The following local martingale is similar to the one used in the proof of Lemma 3.4 (recall
(3.7)):

Mt = |gt(x+ 3ε)−Wt|α
+
2n−α+

2n−1g′t(x+ 3ε)α
+
2n−1 .

The law of η weighted by Mt/M0 is SLE(κ; ν) with force point at x + 3ε, where ν =

κ(α+
2n − α+

2n−1). Let E∗ denote the expectation w.r.t. this SLE(κ; ν) process. Let ε1 =

4(gσ(x + 3ε) − gσ(x + ε)), x1 = gσ(x + 3ε), and y1 = sup{<gσ(z) : z ∈ ∂σHL−y }, where we
use ∂σHL

−
y to denote the remaining part of ∂−HL

−
y at time σ in the positive direction, i.e.,

the unbounded component of ∂−HL
−
y \ η[0, σ]. Then gσ(∂σHL

−
y ) ⊂ L−y1 . From Lemma 2.1,

the gσ-image of the remaining part of ∂+
HB(x, ε) at time σ in the positive direction (which

touches x+ ε), denoted by ∂σHB(x, ε) is enclosed by ∂+
HB(x1, ε1). From (4.13), we get

ε1 ≤ 8ε ≤ 25n−1ε ≤ φ(2n−1)(x− y) ≤ x− y ≤ x1 −Wσ.

This means that ∂+
HB(x1, ε1) disconnects Wσ from gσ(∂σHB(x, ε)). From Lemma 4.12, we

have x1 − y1 ≥ φ(x− y) ≥ 24ε > ε1. So we may apply Lemma 4.6 and use DMP of SLE to
get

P[Hπ
2n(ε, x, y)|η[0, σ]] ≤ Hπ

2n−1(ε1, x1 −Wσ, y1 −Wσ).
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We assumed that (ε, x, y) satisfy 25n−1ε < φ(2n−1)(x− y). Since g′σ ≤ 1 on R \Kσ, we have
ε1 ≤ 8ε. So we get

25n−4ε1 ≤ 25n−1ε < φ(2n−1)(x− y) ≤ φ(2n−2)(x1 − y1).

This means that (ε1, x1−Wσ, y1−Wσ) satisfy the conditions for (4.2). From the induction
hypothesis, we get

P[Hπ
2n−1(ε1, x1 −Wσ, y1 −Wσ)]

. fn(x1 − y1)(x1 −Wσ)α
+
2n−2−α

+
2n−1ε

α+
2n−1

1

≤ fn(x1 − y1)(gσ(x+ 3ε)−Wσ)α
+
2n−2−α

+
2n−1(g′σ(x+ 3ε)ε)α

+
2n−1 ,

where fn(x1 − y1) is the factor coming from the denominator of (4.2), and the last
inequality follows from 0 < gσ(x + 3ε) − gσ(x + ε) ≤ gσ(x + 3ε) − Vσ ≤ 3g′σ(x + 3ε)ε and
α+

2n−1, α
+
2n−1 ≥ 0. So we get

P[Hπ
2n(ε, x, y)] = E[P[Hπ

2n(ε, x, y)|η[0, σ]]]

≤ E[Hπ
2n−1(ε1, x1 −Wσ, y1 −Wσ)]

. fn(x1 − y1)εα
+
2n−1E[(gσ(x+ 3ε)−Wσ)α

+
2n−2−α

+
2n−1 · g′σ(x+ 3ε)α

+
2n−1 ]

≤ fn ◦ φ(x− y)εα
+
2n−1M0E

∗[(gσ(x+ 3ε)−Wσ)α
+
2n−2−α

+
2n ]

≤ fn ◦ φ(x− y)(x− y)α
+
2n−2−α

+
2n(x+ 3ε)α

+
2n−α+

2n−1εα
+
2n−1 ,

where in the second last inequality we used x1 − y1 ≥ φ(x− y), and in the last inequality
we used α+

2n−2 ≤ α+
2n−1 and (4.13). Since ε ≤ x, we get (4.3).

Lower bound. We use the local martingale (similar to the one above):

Mt = g′t(x)α
+
2n−1 |gt(x)−Wt|α

+
2n−α+

2n−1 .

The law of η weighted by Mt/M0 is SLE(κ; ν) with force point at x, where ν = κ(α+
2n −

α+
2n−1). Let E∗ and P∗ denote the expectation and probability w.r.t. this SLE(κ; ν) process.

Fix R > 1 > δ > 0 and suppose x − y ≤ R. In the proof below, we use C to denote
a positive constant, which depends only on κ, n,R, δ, and may change values between
lines. Let F (δ) denote the event that η[0, σ] ⊂ B(0, 1

δ ), η does not swallows x at σ, and
dist(η[0, σ], x) ≥ δx. Suppose F (δ) occurs. From Lemma 4.9, the image of the unbounded
connected component of L−y \η[0, σ] under gσ contains L−y1;π2

for y1 := min{y− π
2 ,− 2

δ− 2
πδ2 }.

Assume that ε ≤ δx
2 . From Koebe’s distortion theorem, the gσ-image of ∂+

HB(x, ε) encloses
∂+
HB(x1, ε1), where x1 = gσ(x) and ε1 = 4

9g
′
σ(x)ε. Let x2 = 2(x1 −Wσ), y2 = 2(y1 −Wσ),

and ε2 = 2ε1. From DMP and scaling property of SLE and Lemma 4.6, we get

P[Hπ
2n(ε, x, y)|η[0, σ], F (δ)] ≥ Hπ

2n−1(ε2, x2, y2), if ε ≤ δx/2.

From [Law05, (3.12)], we get |x1 − x| ≤ 3
δ . So we have

x1 − y1 ≤ max{x− y +
3

δ
+
π

2
, x+

2

δ
+

2

πδ2
} ≤ R+

5

δ2
. (4.14)

Let R2 = 2(R + 5
δ2 ). Then x2 − y2 ≤ R2, and R2 depends only on R and δ. From the

induction hypothesis, on the event F (δ), we have

P[Hπ
2n−1(ε2, x2, y2)] ≥ Cxα

+
2n−2−α

+
2n−1

2 ε
α+

2n−1

2 = Cg′σ(x)α
+
2n−1(gσ(x)−Wσ)α

+
2n−2−α

+
2n−1εα

+
2n−1 .
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Thus, if ε ≤ δx/2, then

P[Hπ
2n(ε, x, y)] ≥ E[P[Hπ

2n(ε, x, y)|η[0, σ], F (δ)]]

≥ E[1F (δ)H
π
2n−1(ε2, x2, y2)]

≥ Cεα+
2n−1E[1F (δ)g

′
σ(x)α

+
2n−1(gσ(x)−Wσ)α

+
2n−2−α

+
2n−1 ]

= Cεα
+
2n−1M0E

∗[1F (δ)(gσ(x)−Wσ)α
+
2n−2−α

+
2n ]

≥ Cxα+
2n−α+

2n−1εα
+
2n−1P∗[F (δ)],

where we used gσ(x)−Wσ ≤ x1 − y1 ≤ R+ 5
δ2 in the last inequality.

We now find some δ, C ∈ (0, 1) depending only on κ, n,R such that P∗[F (δ)] ≥ C.
After choosing that δ, the constants C we had earlier also depend only on κ, n,R. Let
η be a chordal SLE(κ, ν) curve started from 0 with force point x, and let W be the
driving function. Since ν ≥ (κ2 − 2) ∨ 0 and x > 0, Wt is stochastically bounded above
by
√
κBt, η never swallows x, and dist(η[0,∞), x) > 0. Let EW denote the event that

min{Wt : 0 ≤ t ≤ π2/4} < −R − 2 and max{Wt : 0 ≤ t ≤ π2/4} ≤ R, and let EB
denote a similar event with

√
κBt in place of Wt. Then the probability of EW is bounded

below by the probability of EB, which is bounded below by some C1 > 0 depending
only on κ,R. When EW occurs, from Lemmas 4.9 and 4.14, we get σ ≤ π2/4 and
η[0, σ] ⊂ [y,R]× [0, π] ⊂ B(0, 1

δ1
) for δ1 = 1

R+π . By the scaling property of SLE(κ, ν) curve,
we see that dist(η[0,∞), x)/x is a positive random variable, whose distribution depends
only on κ, n (but not on x). So there is δ2 > 0 depending only on κ, n,R such that the
probability that dist(η[0,∞), x) ≤ δ2x is at most C1/2. Let δ = δ1 ∧ δ2 and C = C1/2. Then

P∗[F (δ)] ≥ C. For such δ, if ε ≤ δx/2, then P[Hπ
2n(ε, x, y)] ≥ Cxα

+
2n−α+

2n−1εα
+
2n−1 . Finally,

if ε ≥ δx/2, then by comparison principle, we have

P[Hπ
2n(ε, x, y)] ≥ P[Hπ

2n(δx/2, x, y)] ≥ Cxα+
2n ≥ Cxα+

2n−α+
2n−1εα

+
2n−1 ,

where we used ε ≤ x and α+
2n−1 ≥ 0 in the last inequality. So we get (4.5) as long as

ε ≤ x.
From 2n to 2n+ 1. Suppose (4.3) and (4.5) hold. We use the local martingale

Mt = g′t(x)α
+
2n+1(gt(x)−Wt)

α+
2n−α+

2n+1

= g′t(x)α
+
2n−1(gt(x)−Wt)

α+
2n−α+

2n−1Υ
α+

2n−1−α
+
2n+1

t J
α+

2n+1−α
+
2n−1

t ,

which is similar to the one used in the proof of Proposition 3.1 (recall (3.8)). The law of η
weighted by Mt/M0 is SLE(κ; ν) with force point at x, where ν = κ(α+

2n − α+
2n+1). Let E∗

and P∗ denote the expectation and probability w.r.t. this SLE(κ; ν) process. Let τr be the
hitting time at ∂+

HB(x, r) for any r > 0. Recall that Υτr � r.
Upper bound. First, suppose 6ε ≥ x. Then we use the estimate

P[Hπ
2n+1(ε, x, y)] ≤ P[Hπ

2n(ε, x, y)]

.
xα

+
2n−α+

2n−1εα
+
2n−1∏n

j=1 φ
(2n−2j)(x− y)α

+
2j−α

+
2j−2

.
xα

+
2n−α+

2n+1εα
+
2n+1∏n

j=1 φ
(2n−2j−1)(x− y)α

+
2j−α

+
2j−2

,

where we used α+
2j ≥ α+

2j−2, φ(2n−2j)(x−y) ≤ φ(2n−2j−1)(x−y), α+
2n+1 ≥ α+

2n−1, and ε & x.
So we get (4.2).

Now suppose 6ε < x. Let σ = τ6ε. Then ησ ∈ ∂+
HB(x, 6ε). Let ε1 = g′σ(x)ε/(1 − 1/6)2,

x1 = gσ(x), y1 = sup{<gσ(z) : z ∈ ∂σHL
−
y }, where ∂σHL

−
y is the unbounded connected

EJP 22 (2017), paper 89.
Page 23/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP110
http://www.imstat.org/ejp/


Boundary arm exponents for SLE

component of ∂−HL
−
y \ η[0, σ]. Then gσ(∂σHL

−
y ) ⊂ L−y1 because gσ decreases the imaginary

part. From Koebe’s distortion theorem, the image of ∂+
HB(x, ε) under gσ is enclosed by

∂+
HB(x1, ε1).

Since the semicircle ∂+
HB(x, 6ε) disconnects the union of [0, x) and the righthand side

of η[0, σ) from∞ in H \ η[0, σ], by the conformal invariance and comparison principle for
harmonic measure, we have

hm(∞,H; [x− 12ε, x+ 12ε]) = hm(∞,H, ∂+
HB(x, 6ε))

≥ hm(∞,H \ η[0, σ]; ∂+
HB(x, 6ε))

≥ hm(∞,H \ η[0, σ]; [0, x] ∪ RHS of η[0, σ])

= hm(∞,H; [Wσ, x1]).

Thus, x1 −Wσ ≤ 24ε. Since x1 − y1 ≥ φ(x − y) ≥ φ(2n)(x − y) ≥ 25nε > 24ε, we get
y1 −Wσ < 0. This means that ∂−HL

−
y1 disconnects Wσ from gσ(∂σHL

−
y ). Besides, since

g′σ(x) ∈ (0, 1), we have x1 − y1 > ε1. So we may apply Lemma 4.6 and use DMP of SLE to
get

P[Hπ
2n+1(ε, x, y)|η[0, σ]] ≤ Hπ

2n(ε1, x1 −Wσ, y1 −Wσ).

We assumed that (ε, x, y) satisfy 25nε < φ(2n)(x− y). Since g′σ ≤ 1 on R \Kσ, we have
ε1 ≤ 4ε. Thus,

25n−2ε1 ≤ 25nε < φ(2n)(x− y) ≤ φ(2n−1)(x1 − y1).

From Koebe’s 1/4 theorem, we get x1 −Wσ ≥ 6g′σ(x)ε/4 ≥ g′σ(x)ε/(1− 1/6)2 = ε1. This
means that (ε1, x1 −Wσ, y1 −Wσ) satisfy the conditions for (4.3). From the induction
hypothesis, we get

P[Hπ
2n(ε1, x1 −Wσ, y1 −Wσ)] . fn(x1 − y1)(x1 −Wσ)α

+
2n−α+

2n−1ε
α+

2n−1

1

� fn(x1 − y1)εα
+
2n−1(gσ(x)−Wσ)α

+
2n−α+

2n−1g′σ(x)α
+
2n−1 ,

where fn(x1 − y1) is the factor coming from the denominator of (4.3). Thus,

P[Hπ
2n+1(ε, x, y)] = E[P[Hπ

2n+1(ε, x, y)|η[0, σ]]]

≤ E[Hπ
2n(ε1, x1 −Wσ, y1 −Wσ)]

. fn(x1 − y1)εα
+
2n−1E[(gσ(x)−Wσ)α

+
2n−α+

2n−1g′σ(x)α
+
2n−1 ]

. fn ◦ φ(x− y)εα
+
2n−1xα

+
2n−α+

2n−1εu1(α+
2n)+α+

2n−α+
2n−1

= fn ◦ φ(x− y)xα
+
2n−α+

2n−1εα
+
2n+1

where we used Proposition 4.15, the scaling invariance of SLE, and ((3.8)). Then we get
(4.2) for 2n+ 1.

Lower bound. We fix R, δ > 0 and suppose x − y ≤ R. In the proof below, we use C
to denote a positive constant, which depends only on κ, n,R, δ, and may change values
between lines. Let σ = τε. From Koebe’s 1/4 theorem, the gσ-image of ∂+

HB(x, ε) encloses
∂+
HB(x1, ε1), where x1 = gσ(x) and ε1 = g′σ(x)ε/4. Let F (δ) denote the event that σ <∞,
x is not swallowed at σ, and η[0, σ] ⊂ B(0, 1

δ ). Suppose F (δ) occurs. From Lemma 4.9,
the image of the unbounded connected component of L−y \ η[0, σ] under gσ contains L−y1;π2

for y1 := min{y− π
2 ,− 2

δ − 2
πδ2 }. Let x2 = 2(x1−Wσ), y2 = 2(y1−Wσ), and ε2 = 2ε1. From

DMP and scaling property of SLE and Lemma 4.6, we get

P[Hπ
2n+1(ε, x, y)|η[0, σ], F (δ)] ≥ Hπ

2n(ε2, x2, y2).
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Using the same argument as around (4.14), we get x2 − y2 ≤ R2 := 2(R+ 5
δ2 ). From the

induction hypothesis, on the event F (δ), we have

P[Hπ
2n(ε2, x2, y2)] ≥ Cxα

+
2n−α+

2n−1

2 ε
α+

2n−1

2 = Cg′σ(x)α
+
2n−1(gσ(x)−Wσ)α

+
2n−α+

2n−1εα
+
2n−1 .

Thus,

P[Hπ
2n+1(ε, x, y)] ≥ E[P[Hπ

2n+1(ε, x, y)|η[0, σ], F (δ)]] (4.15)

≥ E[1F (δ)H
π
2n(ε2, x2, y2)]

≥ Cεα+
2n−1E[1F (δ)g

′
σ(x)α

+
2n−1(gσ(x)−Wσ)α

+
2n−α+

2n−1 ]

= Cεα
+
2n−1M0E

∗[1F (δ)J
α+

2n−1−α
+
2n+1

σ Υ
α+

2n+1−α
+
2n−1

σ ] (4.16)

≥ Cxα+
2n−α+

2n−1εα
+
2n−1P∗[F (δ)], (4.17)

where in the last inequality we used Υσ � ε, Jσ ∈ (0, 1], and α+
2n−1 − α+

2n+1 ≤ 0.
We now find some δ, C > 0 depending only on κ, n,R such that P∗[F (δ)] ≥ C. After

choosing that δ, the constants C we had earlier also depend only on κ, n,R. Let η be a
chordal SLE(κ, ν) curve started from 0 with force point x. Since ν ≤ κ/2− 4, the curve η
goes all the way to x in finite time, and so is bounded. Moreover, η does not swallow x

before it reaches x. By scaling property, diam(η)/x is a bounded random variable, whose
distribution depends only on κ, n. Thus, there are constants δ1, C > 0 depending only
on κ, n, such that P∗[F (δ1/x)] ≥ C. Then we let δ = δ1/R. Since x ≤ x− y ≤ R, we have
F (δ1/x) ⊂ F (δ). Using such δ and applying (4.17), we get (4.4) for 2n+ 1.
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