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Abstract

Consider the Abelian sandpile measure on Zd, d ≥ 2, obtained as the L → ∞ limit
of the stationary distribution of the sandpile on [−L,L]d ∩Zd. When adding a grain
of sand at the origin, some region, called the avalanche cluster, topples during
stabilization. We prove bounds on the behaviour of various avalanche characteristics:
the probability that a given vertex topples, the radius of the toppled region, and the
number of vertices toppled. Our results yield rigorous inequalities for the relevant
critical exponents. In d = 2, we show that for any 1 ≤ k <∞, the last k waves of the
avalanche have an infinite volume limit, satisfying a power law upper bound on the
tail of the radius distribution.
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1 Introduction

The Abelian sandpile model is a particle system defined in terms of simple local
redistribution events, called topplings, which give rise to non-local dynamical events
called avalanches. The model has received a lot of attention in the theoretical physics
literature (see [9, 3]) due to its remarkable self-organized critical state, conjectured
to be characterized by power-law behavior of various quantities related to avalanches.
Starting with the seminal work of Dhar, much mathematical progress has been made
toward understanding this self-organized critical state. The surveys [33] and [14] collect
some of this. However, establishing power law behavior for many fundamental avalanche
characteristics on Zd appears difficult in general. The purpose of this paper is to
establish new rigorous inequalities, which in high dimensions come close to identifying
the correct tail behavior, for these quantities.

Given a finite set V ⊂ Zd, a sandpile on V is a collection of indistinguishable
particles, given by a map η : V → {0, 1, . . . }. We say that η is stable, if η(x) < 2d for
all x ∈ V . If η is unstable at x, that is η(x) ≥ 2d, we say that x is allowed to topple.
On toppling, x sends one particle along each edge incident with it, resulting in the new
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sandpile

η′(y) =


η(y)− 2d if y = x;

η(y) + 1 if y ∼ x, y ∈ V ;

η(y) otherwise.

(1.1)

Particles sent to vertices in Zd \ V are lost. It is well-known [8] that given any sandpile η,
carrying out all possible topplings in any sequence, results in a uniquely defined stable
sandpile η◦. The sandpile Markov chain on V is the Markov chain with state space
equal to the set of stable sandpiles on V , where at each time step a particle is added at a
uniformly chosen vertex of V , and the sandpile is stabilized, if necessary. The unique
stationary distribution [8] is denoted νV .

We will be interested in sandpiles on Zd, where “stable” and “toppling” are defined
the same way as for finite V . Athreya and Járai [2] proved that if V (L) = [−L,L]d ∩Zd,
d ≥ 2, then νL := νV (L) converges weakly, as L → ∞, to a limit measure ν, called the
sandpile measure. Let η : Zd → {0, . . . , 2d − 1} be a sample configuration from the
measure ν. Let us add a particle to η at the origin o, and let Av = Av(η) denote the
set of vertices that topple, called the avalanche cluster. The set of all topplings, with
multiplicity, is called the avalanche. In this paper we study various characteristics of
avalanches.

The concept of waves, introduced by Ivashkevich, Ktitarev and Priezzhev [13] in the
context of finite graphs, will play an important role. Waves provide a decomposition of
an avalanche into smaller sets of topplings: WL,1, . . . ,WL,N ⊂ V (L); see Section 2 for
precise definitions. In each wave, every vertex topples at most once, and the union of
the waves includes all topplings of the avalanche with the correct multiplicity. The paper
[13] analyzed the last waveWN,L in particular when d = 2.

Our first set of results concern the probability that a given vertex topples. Based
on an analysis of the last wave, we prove the following rigorous lower bounds on the
toppling probability.

Theorem 1.1.
(i) Let d = 2. Then

ν(z ∈ Av) ≥ |z|−3/4+o(1), as |z| → ∞.

(ii) Let d = 3. There exist constants ζ < 1/2 and c > 0 such that

ν(z ∈ Av) ≥ c |z|−2ζ−1, ∀z ∈ Z3.

(iii) Let d = 4. There exists a constant c > 0 such that

ν(z ∈ Av) ≥ c |z|−2 (log |z|)−1/3 , ∀z ∈ Z4.

In Theorem 1.1 (ii), ζ can be taken to be any value such that a random walk in Z3

of length n does not hit the loop-erasure of an independent random walk of length n

with probability ≥ c′n−ζ for some c′ > 0. We prefer to write the bound (ii) in this form
to emphasize the dependence on this exponent, whose value is of interest in the theory
of loop-erased walks. The exponent ζ is known to satisfy the bound ζ < 1/2; see [24,
Sections 10.3 and 11.5].

The rigorous upper bound ν(z ∈ Av) ≤ C|z|2−d, for some C = C(d), follows from
Dhar’s formula (see [15, Eqn. (3.5)]). In dimensions d ≥ 5, Járai, Redig and Saada
[16, Section 6.2] proved that ν(z ∈ Av) ≥ c|z|2−d, for some c = c(d), also based on
an analysis of the last wave. [16] introduced the critical exponent θ to quantify the
departure from Dhar’s formula, assuming that ν(z ∈ Av) ≈ |z|2−d−θ, as |z| → ∞. This
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means that θ = 0 when d ≥ 5. Our Theorem 1.1 shows that if θ exists in the sense that
lim log(ν(z ∈ Av))/ log(|z|) exists as |z| → ∞ (“logarithmic equivalence”), then

0 ≤ θ


≤ 3/4 when d = 2,

< 1 when d = 3,

= 0 when d = 4.

In particular, Theorem 1.1(iii) establishes that θ = 0 when d = 4, with at most a
logarithmic correction.

The reason behind the fact that θ = 0 for d ≥ 5 is that in these dimensions loop-erased
walk and independent simple random walk do not intersect with positive probability.
The difference in behavior when d ≥ 5 also shows up in our other results, and d = 4

is expected to be the upper critical dimension of the model, in the sense that critical
exponents are no longer expected to depend on dimension when d ≥ 5 [32]. We expect
that θ is positive in dimensions two and three, in analogy with other statistical physics
models below the upper critical dimension. However, it seems difficult to get rigorous
upper bounds improving on Dhar’s formula, since any such bound would have to control
all waves of the avalanche. For the last wave, we have a precise characterization in terms
of loop-erased walk; however, we lack a convenient description of the joint distribution
of all waves of the avalanche. For similar reasons, we do not expect the bounds coming
from last waves in low dimensions to be tight.

Our next set of results concern the radius of the toppled region. Let R = R(η) =

sup{|z| : z ∈ Av(η)} be the radius of the avalanche. As we explain below, some of the
following inequalities are easy consequences of Theorem 1.1, while some others follow
from known results on uniform spanning forests of Zd.

Theorem 1.2.
(i) Let d = 2. Then,

r−3/4+o(1) ≤ ν(R ≥ r), as r →∞.

(ii) Let d = 3. There are constants c > 0 and C such that with ζ as in Theorem 1.1 we
have

cr−(2ζ+1) ≤ ν(R ≥ r) ≤ Cr−1/6, ∀r ≥ 1.

(iii) Let d = 4. Then there exist constants c > 0 and C such that

cr−2 (log r)
−1/3 ≤ ν(R ≥ r) ≤ Cr−1/4, ∀r ≥ 1.

(iv) Let d ≥ 5. There is a constant c = c(d) > 0 such that

cr−2 ≤ ν(R ≥ r) ≤ r−2(log r)3+o(1), ∀r ≥ 1.

The lower bounds of Theorem 1.2 in dimensions 2, 3, and 4 follow from taking z = re1
in Theorem 1.1, where e1 = (1, 0, . . . , 0) ∈ Zd. In dimensions d ≥ 3, upper bounds can
be derived from results of Lyons, Morris and Schramm [25]. They analyzed, using the
“conductance martingale” of Morris [30], the wired uniform spanning forest measure
WSF on transient graphs, including Zd for d ≥ 3, as well as a related measure WSFo,
obtained by “wiring o to infinity”. See the book [26] for detailed background on wired
spanning forests. Let To denote the component of o under WSFo. The proof of [25,
Theorem 4.1] shows that for d ≥ 3,

WSFo(diam(To) > r) ≤ C(d)r−
1
2+

1
d . (1.2)
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The measure WSFo can be related to waves in sandpiles; in particular, this was used by
Járai and Redig [15] to show that when d ≥ 3, avalanches are finite ν-a.s. We derive the
upper bounds in Theorem 1.2(ii)–(iii) from (1.2).

Above the critical dimension, d ≥ 5, Priezzhev [32] gave heuristic arguments for the
mean-field behaviour ν(R ≥ r) ≈ r−2. Both the lower bound ν(R ≥ r) ≥ ν(re1 ∈ Av) and
the upper bound of (1.2) can be sharpened to establish this rigorously, in the sense of
logarithmic equivalence. On the other hand, Theorem 1.2(ii)–(iii) establishes that, if a
critical exponent α satisfying ν(R > r) ≈ r−α governs the tail of R in low dimensions,
then this α is different from the mean-field value 2.

We deduce the lower and upper bounds in Theorem 1.2(iv) from very general mass
transport arguments, stated in Theorem 1.3 below; see [26, Chapter 8] for background
on mass transport. While the main focus of this paper is sandpile models on Zd, we
believe this result may be useful on other graphs and for other models. The proof is
in Section 6.1, and is independent of the rest of the paper. Let G = (V,E) be a graph
and let Γ ⊂ Aut(G) be a transitive subgroup of the group of automorphisms of G, under
the topology of pointwise convergence. It is well known that every closed subgroup of
Aut(G) has a Borel measure which is invariant under the left multiplication by γ ∈ Γ. The
group Γ is called unimodular if this measure is also invariant under right multiplication.
In addition, we call the graph G unimodular if Aut(G) has some unimodular transitive
closed subgroup. In this setting the mass transport principle states that for o ∈ V (G)

and a non-negative function f : V × V → [0,∞], which is invariant under the diagonal
action of Γ, we have

∑
x∈V f(o, x) =

∑
x∈V f(x, o). Let d be a Γ-invariant metric on

V , and write diam(A;x) = sup{d(v, x) : v ∈ A}, and let diam(A) = diam(A; o). Write
Dx(r) = {y ∈ V : d(y, x) ≤ r}. We say that an infinite tree T has one end, if any two
infinite self-avoiding paths in T have a finite symmetric difference. Given x ∈ T , we
denote by pastx the set of vertices y ∈ T such that the unique infinite self-avoiding path
in T starting at y contains x. By a percolation on (V,E), we mean a probability measure
on subgraphs of (V,E). Given a percolation, we write Cx for the connected component
of x. When the percolation is supported on spanning forests, we write Tx for Cx.

Theorem 1.3. Let (V,E) be a graph with a transitive unimodular group of automor-
phisms Γ, and let o ∈ V be a fixed vertex. Let µ be a Γ-invariant percolation on (V,E).
(i) If µ is supported on spanning forests with one-ended components, then

µ
(
diam(pasto) > r

)
≥

∑
x∈V :r<d(x,o)≤2r

µ(o ∈ pastx)2

Eµ

[∣∣To ∩Do(4r)
∣∣1o∈pastx] .

(ii) We have

µ
(
diam(Co) > 4r

)
=

∑
x∈V :r<d(x,o)≤4r

µ(o ∈ Cx)Eµ

[
1diam(Cx;x)>4r

|Cx ∩Dx(4r) \Dx(r)|

∣∣∣∣o ∈ Cx

]
.

(iii) Suppose that WSFo(|To| <∞) = 1. Then

WSFo
(
diam(To) > 4r

)
=

∑
x∈V :r<d(x,o)≤4r

WSFx(o ∈ Tx)EWSFx

[
1diam(Tx;x)>4r

|Tx ∩Dx(4r) \Dx(r)|

∣∣∣∣o ∈ Tx

]
.

Regarding the upper bound in Theorem 1.2 (iv), Lyons, Morris and Schramm state
the result

WSF(diam(pasto) > r) ≤ r−2(log r)O(1); (1.3)

see [25, page 1710]. However, since a proof of (1.3) is not included in [25], and we
need a sharpening of (1.2) for our results, we deduce a diameter estimate for To under
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WSFo from Theorem 1.3(iii). (This implies (1.3) due to a stochastic comparison; see [25,
Lemma 3.2]). In order to deal with the fact that WSFo is not translation invariant, we
restrict attention to To, which is unimodular; see Section 6.1.

We do not have an upper bound on ν(R ≥ r) in d = 2, and it is an open problem
whether ν(R < ∞) = 1. It follows from Theorem 1.2(i) that EνR = ∞, when d = 2. It
may be of independent interest that a short proof of the weaker statement, that EνLR
diverges, can be given without reference to spanning trees or the burning bijection
described in Section 2.3. We state this as a separate result.

Proposition 1.4. If d = 2, then limL→∞EνLR =∞.

Our last set of results concern the number of topplings in the avalanche. Let S denote
the total number of topplings in the avalanche (that is, elements of Av are counted with
multiplicity). Recall that WN,L denotes the last wave in the finite graph VL. Based on
the fractal dimension of loop-erased walk and scaling assumptions, Ivashkevich, Ktitarev
and Priezzhev [13] derived the exponent νL(|WN,L| ≥ t) ≈ t−3/8, in the limit L → ∞.
We prove a rigorous lower bound with the same exponent, which we also extend to
higher dimensions. Above the critical dimension, d ≥ 5, we also have an upper bound on
the total number of topplings with an exponent which is independent of d. The upper
bounds of Theorem 1.2 on the radius in d = 3, 4 provide upper bounds on the size of the
avalanche cluster.

Since the size of the avalanche cluster could be measured in two different ways –
namely, via |Av| and via S – there are in principle two different possible critical exponents
τS′ and τS given (if they exist) by ν(|Av| > t) ≈ t−τS′ , ν(S > t) ≈ t−τS . As in the preceding
cases, our theorems give corresponding bounds on the possible values of τS , τS′ . These
bounds, as well as the best current bounds on the exponents θ and α described above,
are summarized in Table 1.

Theorem 1.5.
(i) Let d = 2. Then

t−3/8+o(1) ≤ ν(|Av| ≥ t), as t→∞.

(ii) Let d = 3. With ζ as in Theorem 1.1, and for some constants C and c > 0, we have

ct−(2ζ+1)/3 ≤ ν(|Av| ≥ t) ≤ Ct−1/18, ∀t ≥ 1.

Moreover, ν(S ≥ t) ≤ Ct−1/19, ∀t ≥ 1.
(iii) Let d = 4. There exists C and c > 0 such that

ct−1/2(log t)−5/6 ≤ ν(|Av| ≥ t) ≤ Ct−1/16, ∀t ≥ 1.

Moreover, ν(S ≥ t) ≤ Ct−1/17, ∀t ≥ 1.
(iv) Let d ≥ 5. There exist c = c(d) > 0 such that

ct−1/2 ≤ ν(|Av| ≥ t) ≤ ν(S ≥ t) ≤ t−2/5+o(1), ∀t ≥ 1.

We establish the lower bounds in dimensions d = 2, 3 by showing that once a vertex
at distance t1/d from o is in the last wave, at least ct other vertices in its neighbourhood
will also be in the last wave. In d = 4, ct is replaced by ct/ log t. Given this, parts (i)–(iii)
of Theorem 1.5 can be deduced from parts (i)–(iii) of Theorem 1.1. For the lower bound
in d ≥ 5, in Theorem 1.5(iv), we use the following analogue of Theorem 1.3(i). Write

To(r) = To ∩Do(r) and T̃o(r) =

{
x ∈ To(r) :

the path from o to x in
To stays inside Do(r)

}
.
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Toppling
probability

Radius
Avalanche

cluster size
Avalanche

size

ν(x ∈ Av)

≈ |x|2−d−θ
ν(R > r)

≈ r−α
ν(|Av| > t)

≈ t−τS′

ν(S > t)

≈ t−τS

d = 2 [0, 3/4] [0, 3/4] [0, 3/8] [0, 3/8]

d = 3 [0, 1) [1/6, 2) [1/18, 2/3) [1/19, 2/3)

d = 4 = 0 [1/4, 2] [1/16, 1/2] [1/17, 1/2]

d ≥ 5 = 0 = 2 [2/5, 1/2] [2/5, 1/2]

Table 1: The best known bounds on the critical exponents introduced in this introduction.
Bounds are expressed in interval form: e.g., 1/6 ≤ α < 2 when d = 3.

Theorem 1.6. Let (V,E) be a graph with a transitive unimodular group of automor-
phisms Γ. Let µ be a Γ-invariant percolation on (V,E) supported on spanning forests
with one-ended components. For all t, r ≥ 1 we have

µ
(
|pasto| > t

)
≥

∑
x:r<d(x,o)≤(3/2)r

µ
(
o ∈ pastx, |T̃o(r/2)| > t

)2
E
[
|To(4r)|1{o∈pastx}

] .

The proof of Theorem 1.6 is in Section 7.4 and does not rely on the rest of the paper.
We believe, as it has been argued by Priezzhev [32], that the exponent 1/2 is sharp in

Theorem 1.5(iv). But it seems challenging to establish a matching upper bound for S or
Av. The main difficulty lies in extracting useful information on the dependence between
the waves from the bijection with WSFo. Instead of such an approach, we control the
number of waves using our upper bound on the radius in Theorem 1.2(iv), which allows
us to use a union bound instead of estimating the dependence. This leads to the upper
bounds in Theorem 1.5(ii)–(iv).

All our results have analogues in large finite V (L), or indeed are derived therefrom.
Passing to the limit of Zd is not too difficult when d ≥ 3, due to the result of Járai and
Redig [15, Theorem 3.11] showing that ν(|S| <∞) = 1. When d = 2, this is not known.
We bypass this problem with a more technical argument, that we believe is of interest
in its own right. We show that for any 1 ≤ k < ∞, the last k-waves (when they exist)
have a finite limit as V (L) ↑ Zd. Recall that for η ∈ RL the waves occurring during the
stabilization of η + 1o are denoted WL,1, . . . ,WL,N . Waves can also be defined on Zd,
denotedW1,W2, . . . ; see Section 2.2. On Zd, the number of waves N may take the value
infinity.

Let ηN−k+1 denote a random configuration on V (L) with law νL(· |N ≥ k). Given a
configuration η on V (L) such that η(o) = 2d, letW(η) denote the set of sites that can be
toppled with every site toppling at most once. We extend this also to configurations ξ on
Zd such that ξ(o) ≥ 2d.

Theorem 1.7. Assume d = 2.
(i) For all k ≥ 1, the law of ηN−k+1 converges weakly to the law of a random configuration
ξk in Z2. Let ρk denote the law of ξk. The law ofWN−k+1 =W(ηN−k+1) converges to the
law ofW∗k :=W(ξk), that is a.s. finite under ρk.
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(ii) For all k ≥ 0 we have limL→∞ νL(N = k) = ν(N = k).
(iii) For every k ≥ 1, the joint law ofWL,1, . . . ,WL,k under νL(· |N = k), converges weakly,
as L→∞, to the law ofW1, . . . ,Wk under ν(· |N = k), and under this conditioning we
have ν-a.s. |W`| <∞, ` = 1, . . . , k.

See Section 5 for more detailed statements. Our argument in fact gives a power law
upper bound on the radii of the last k waves, and leads to the following extension of
Theorem 1.2(i). Let Rk = sup{|x| : x ∈ W∗k}.
Theorem 1.8. Assume d = 2.
(i) There are constants α1 > α2 > · · · > 0 and C1, C2, . . . such that

ρk(Rk > r) ≤ Ckr−αk , ∀r ≥ 1, ∀k ≥ 1.

(ii) We have
ν(R ≥ r, N ≤ k) ≤ Ckr−αk , ∀r ≥ 1.

We will also use Theorem 1.7 to prove the following theorem.

Theorem 1.9. Suppose d = 2. Then EνN =∞.

This is a strengthening of the statement EνR = ∞, due to a simple comparison
proved in Lemma 2.3, and therefore also of Proposition 1.4.

Organization of the paper. In Section 2, we give definitions and background
on sandpiles, spanning trees, and random walks; we also prove Proposition 1.4. In
Section 2.2, we prove Theorem 1.1 modulo a technical argument required for the
two-dimensional case, which we defer to Section 5.

Sections 4, 5, and 6 are devoted to the various radius bounds above. In Section 4,
we prove Theorem 1.2 (i) – (iii). Section 5 contains additional arguments for the two-
dimensional case; here we prove Theorems 1.7, 1.8, and 1.9. In Section 6, we complete
the proof of Theorem 1.2 by proving the high-dimensional bounds (Theorem 1.2 (iv) and
Theorem 1.3).

Section 7 contains the proofs of the size bounds above: Theorems 1.5 and 1.6.

A note on constants. All our constants will be positive and finite, and they may
depend on the dimension d. Other dependence will always be indicated. Constants
denoted C and c may change from line to line; those with index (such as c1) stay the
same within the same proof.

2 Definitions and background

In this section, we provide definitions and collect useful facts about the basic objects
we use: toppling numbers, waves, spanning trees, bijections and Wilson’s algorithm.

2.1 Graphs and sandpiles

We will work with finite connected graphs of the form H = (U ∪ {s}, F ), where s

is a distinguished vertex, called the sink. We allow multiple edges, so in general H
is a multigraph, but we exclude loop-edges. If U = V is a finite subset of Zd, we let
GV = (V ∪ {s}, E) denote the wired subgraph induced by V — i.e., where all vertices
in Zd \ V are identified to the single vertex s, and loops at s are removed. Of prime
importance will be the standard exhaustion V (L) = [−L,L]d ∩ Zd, L ≥ 1; the wired
subgraph induced by V (L) will be denotedGL. In general, a subscript L will be shorthand
for subscript V (L). We write x ∼ y to denote that vertices x and y of a graph (understood
from context) are neighbours. Given a graph H = (U ∪ {s}, F ), we write degH(x) for the
degree of the vertex x ∈ U ∪ {s} in H. When V ⊂ Zd, we write degV (x) for the degree of
vertex x ∈ V in the subgraph of Zd induced by V .
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Given H = (U ∪ {s}, F ), the discrete Dirichlet Laplacian ∆H is given by

∆H(x, y) =

{
degH(x) if x = y;

−axy if x 6= y;
x, y ∈ U, (2.1)

where axy equals the number of edges connecting x and y. In particular, when V is a
finite subset of Zd, we have ∆V given by

∆V (x, y) =


2d if x = y;

−1 if x ∼ y;

0 otherwise,

x, y ∈ V. (2.2)

We denote the inverse matrix by gH = (∆H)−1, gV = (∆V )−1.
We write ∆ for the matrix defined as in (2.2), but with x, y ∈ Zd, and g = ∆−1 when

d ≥ 3. Up to a factor (2d)−1, these matrices are the Green function of simple random
walk. Namely, let (S(n))n≥0 denote a simple random walk in Zd, and let

σA = inf{n ≥ 0 : S(n) 6∈ A}.

Then 2d gV (·, ·) = GV (·, ·) and 2d g(·, ·) = G(·, ·), where we define

GV (x, y) := Ex

 ∑
0≤n<σV

1S(n)=y

 , x, y ∈ V ;

G(x, y) := Ex

 ∑
0≤n<∞

1S(n)=y

 , x, y ∈ Zd.

Whenever G appears with arguments, it refers to a Green function as defined above;
when it appears without arguments, it refers to graphs as in the notation introduced
previously.

Let us fix a finite connected graph H = (U ∪ {s}, F ). A sandpile on H is a function
η : U → {0, 1, 2, . . . }. We say that η is unstable at x ∈ U , if η(x) ≥ degH(x). In this case
x is allowed to topple, which means that x sends one particle along each edge incident
with it. Particles arriving at s are lost. Toppling x has the effect of subtracting row
∆H(x, ·) from η(·). It is a basic property of the model that if unstable vertices are toppled
in any order until there are no such vertices, the stable sandpile obtained is independent
of the order chosen (called the Abelian property) [8]. Hence for any sandpile η there
is a well-defined stabilization of η, denoted η◦. The sandpile Markov chain is defined
as follows. The state space is ΩH =

∏
x∈U{0, . . . ,degH(x) − 1}. Given that the current

state is η, a single step is defined by choosing a vertex X ∈ U uniformly at random, and
moving to state (η + 1X)◦. The maps ax : ΩH → ΩH defined by ax : η 7→ (η + 1x)◦, x ∈ U ,
are called the addition operators. It follows from the uniqueness of stabilization that
axay = ayax, x, y ∈ U . When it is necessary to emphasize the graph H on which the
operator ax is applied, we write ax,H for ax; we also use ax,L for ax,GL . We denote the
set of recurrent states of the sandpile Markov chain by RH . It is known that the unique
stationary distribution is given by the uniform distribution on RH [8], and that each
(restricted) map ax : RH → RH preserves this measure.

In the special case when the graph arises from a finite V ⊂ Zd, we denote the state
space by ΩV = {0, . . . , 2d− 1}V , and the set of recurrent states by RV .

Now, let η : Zd → {0, 1, 2, . . . } be a sandpile on Zd. If x is unstable in η, we define the
toppling of x using the matrix ∆, that is, η 7→ η(·)−∆(x, ·). Let us call a finite or infinite
sequence consisting of topplings of unstable vertices exhaustive, if any vertex that is
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unstable at some point, is toppled at a later time. It can be shown, similarly to the finite
graph case, that for all x ∈ Zd, x topples the same number of times (possibly infinity) in
any exhaustive sequence.

We write ei for the unit vector in the i-th positive coordinate direction, | · | for the
Euclidean norm, and ‖ · ‖ for the `∞ norm on Zd. We denote by o the origin in Zd, and
we let

Vx(n) = {y ∈ Zd : ‖y − x‖ ≤ n}; Bx(n) = {y ∈ Zd : |y − x| ≤ n} ,

and write V (n) = Vo(n) and B(n) = Bo(n).
Given A, B ⊂ Zd, we let dist(A,B) denote their Euclidean distance, and write

dist(x,B) when A = {x}. If A ⊂ Zd, we let ∂A = {x ∈ Zd \ A : dist(x,A) = 1}.
When considering A as a subset of GL, we will often use ∂A to denote the boundary
restricted to GL — that is, excluding from ∂A any x /∈ GL — the meaning will be clear in
context.

If z1, z2 are two elements of Rd, let ang(z1, z2) denote the angle between z1 and z2.
We will make use of the “little o” notation: an = na+o(1) if limn [ log an/ log n] = a.

2.2 Toppling numbers and waves

Given a sandpile η on a finite connected graph H = (U ∪ {s}, F ), we write n(x, y) =

n(x, y; η) for the toppling numbers, i.e., number of times y topples when stabilizing
η + 1x. A useful ordering of topplings, introduced by Ivashkevich, Ktitarev and Priezzhev
[13], for stabilizing η + 1x is in terms of waves, which we now define. If η + 1x is stable,
there are no waves. Otherwise, topple x and carry out any further topplings that are
possible without toppling x a second time. It is easy to verify that in doing so, every
vertex in U topples at most once. We writeW1,H =W1,H(x; η) for the set of sites toppled
so far; this is the first wave. If x is still unstable after the first wave, which happens if
and only if all neighbours of o are in W1,H , topple x a second time, and carry out any
further topplings that are possible without toppling x a third time. The set of vertices
that topple in doing so is denoted W2,H = W2,H(x; η); this is the second wave. We
define further waves analogously.

When the graph arises from a finite V ⊂ Zd, we writeW1,V ,W2,V , . . . for the waves.
We make similar definitions for sandpiles on Zd. On Zd, the toppling numbers n(x, y; η)

are possibly infinite. WavesW1,W2, . . . are defined analogously to the finite case, and
their number may be infinite. The following lemma is straightforward to verify.

Lemma 2.1.
(i) Let H = (U ∪ {s}, F ) be a connected finite graph. The number of waves containing y
equals n(x, y; η). In particular, the number of waves is N = N(x; η) := n(x, x; η).
(ii) In the case of Zd, the number of waves containing y equals n(x, y; η) (possibly infinite).
In particular, the number of waves is N = N(x; η) := n(x, x; η).

The next lemma gives the expected number of topplings in an avalanche.

Lemma 2.2 (Dhar’s formula [8]). Let H = (U ∪ {s}, F ) be finite. We have

EνHn(x, y) = gH(x, y), x, y ∈ U.

For cubes in Zd, we have the following deterministic comparison between n(o, o; η)

and the radius R(η).

Lemma 2.3.
(i) Let η be any sandpile configuration on Zd, d ≥ 1. Then

n(o, o; η) ≤ R(η) .

(ii) The same statement holds when η is a sandpile configuration in GL for any L ≥ 1.
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Proof. (i) In the proof below, it will be convenient to denote n[η] := n(o, o; η). We will also
use the notion of “restricted topplings”. For L > 0, let η|L denote the restriction of η to
V (L); the restricted toppling number nL[η] will denote the number of topplings occurring
at o in the stabilization of η|L + 1o on GL. Note that such a stabilization amounts to
taking the configuration η + 1o on Zd and toppling only sites x ∈ V (L) until all such x

are stabilized, neglecting any sites in Zd \ V (L) that may become unstable. In particular,
for any stable sandpile configuration η on Zd, n[η] ≥ nL[η] for any L.

Assume η and R < ∞ are as in the statement of the lemma. We claim that the
equality n[η] = nR[η] holds. Indeed, by the above observation, nR is exactly the number
of topplings at o required to stabilize only the sites of V (R), but by assumption these
are the only sites which need to be toppled to stabilize η + 1o in all of Zd. Therefore, it
suffices to show that nR[η] ≤ R.

For this, we will use a special “maximal” configuration φR from [11, Lemma 4.2]:

φR(x) =

{
2d− 1, x ∈ V (R)

2d− 2 otherwise.

Note that nR[η] ≤ nR[φR], since η|R ≤ φR pointwise. Moreover, nR[φR] ≤ n[φR]. It
is proven in [11, Lemma 4.2], and not difficult to see by computing each wave, that
n[φR] = R. This completes the proof of (i).

(ii) The above proof applies here as well, with only minor changes.

Proof of Proposition 1.4. By Dhar’s formula [8], we have

lim
L→∞

EνLn(o, o) = lim
L→∞

gVL(o, o) =∞, when d = 2.

By Lemma 2.3(ii), this implies limL→∞EνLR =∞.

Remark 2.4. We do not see a simple way to deduce the statement Eνn(o, o) =∞ from
the simpler statement that limL→∞EνLn(o, o) =∞, when d = 2. This requires ruling out
the possibility that EνLn(o, o) is dominated by rare events with many waves. Our proof
of Eνn(o, o) = ∞ in Theorem 1.9 will build on quite a few other results; in particular,
results from Section 5.

2.3 Spanning trees and the burning bijection

In 1990, Dhar [8] introduced a method for checking whether a particular stable
configuration η lies in RH , called the “burning algorithm”. Application of the burning
algorithm provides a bijection ϕ between RH and the set of all spanning trees of H, that
we denote by TH ; see [28]. We briefly describe this bijection here. In Section 2.5, we
give a version of it for “waves” which will be necessary in our analysis.

Recall that axy denotes the number of edges between vertices x and y.

Lemma 2.5 (Burning algorithm [8], [12, Lemma 4.1]). Let η be a stable sandpile on a
connected finite graph H = (U ∪ {s}, F ). At each x ∈ U , add axs grains of sand, and
stabilize. We have η ∈ RH if and only if each vertex in U topples exactly once.

Note that instead of adding sand as in the lemma, we may initiate the toppling process
by placing all

∑
x∈U axs = degH(s) grains at s, and toppling s first. Suppose we carry out

any possible topplings in parallel. We say that x burns at time k, if it is toppled in the
k-th parallel toppling step, where we regard s to have burnt at time 0.

The bijection is defined as follows. For each y ∈ U , fix an arbitrary ordering ≺y of
the edges adjacent to y. Given η ∈ RH , for each y ∈ U , we adjoin to the tree T an edge
connecting y to a neighbour burnt one time step before, chosen as follows. If Py is the

EJP 22 (2017), paper 85.
Page 11/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP111
http://www.imstat.org/ejp/


Inequalities for critical exponents in sandpiles

number of edges joining y to neighbours burnt before y, and Ay is the subset of such
edges leading to sites burnt one step before y, then the burning rule implies

η(y) = degH(y)− Py + i for some 0 ≤ i < |Ay| .

We add to T the i-th edge in Ay in the ordering ≺y.
The resulting graph T will be a spanning tree (the fact that it spans — i.e., that

every site topples in this procedure — is part of the content of Lemma 2.5), and we set
ϕ(η) = T . The map ϕ : RH → TH is usually referred to as the “burning bijection”, and the
toppling procedure used to construct ϕ will be referred to as the “burning procedure”.

2.4 Intermediate configurations

Now, we give a description of waves in terms of recurrent configurations on an
auxiliary graph, as introduced in [13]. As in the previous section, we describe this in an
arbitrary finite connected graph H = (U ∪ {s}, F ). Suppose we are interested in waves
started by the addition of a particle at a fixed vertex w ∈ U . Consider the graph H ′

obtained from H by adding the edge f ′ := {w, s}. For readability, we denote ∆ ′H := ∆H ′

and R ′H := RH ′ . Let a ′x = a ′x,H , x ∈ U denote the addition operators on H ′. We reserve
the notation η◦ for stabilization on the original graph H. When we need to emphasize
that addition is applied on the graph derived from H, we prefer the a ′x,H notation.

The burning algorithm (Lemma 2.5) implies that RH ⊂ R ′H . The following lemma
compares the sizes of these two sets.

Lemma 2.6. For any finite connected graph H = (U ∪ {s}, F ), and w ∈ U , we have
|R ′H | = (1 + gH(w,w))|RH |.

Proof. Let 1w,w denote the U × U matrix whose only non-zero entry is a 1 at (w,w). We
have

|R ′H | = det(∆ ′H) = det(∆H + 1w,w) = (1 + (∆H)−1(w,w)) det(∆H)

= (1 + gH(w,w)) |RH |.
(2.3)

The following immediate corollary will be useful in controlling avalanches. A version
of part (i) was proved in [15, Lemma 7.5].

Corollary 2.7. Consider the sequence (VL)L.
(i) Suppose d ≥ 3. There exists a constant C(d) such that |R ′L| ≤ C(d) |RL| for all L ≥ 1.
(ii) Suppose d = 2. There exists a constant C such that |R ′L| ≤ C logL |RL| for all L ≥ 2.

Proof. Both statements follow from Lemma 2.6, the equality gL(o, o) = (2d)−1GL(o, o),

and known properties of the Green function GL(o, o); see e.g. [24].

We now describe the interpretation of waves as elements of R ′H \ RH ; introduced in
[13]. Let η ∈ RH , and suppose that η + 1w is unstable at w in H, i.e. η(w) = degH(w)− 1.
Consider the waves occurring in stabilizing η + 1w in H. Recall that N = N(η) denotes
the number of waves. For 1 ≤ k ≤ N, let ηk = a ′wηk−1, where η0 = η. It is straightforward
to check that ηk is the configuration seen just before the k-th wave is carried out, and
awη = (a′w)N+1η. Note that the latter statement also holds, trivially, when η + 1w is
stable, in which case N = 0.

Definition 2.8. Let η ∈ RH be such that η + 1w is unstable at w. We call the sequence
α(η) := (η1, . . . , ηN ) the intermediate configurations corresponding to η.

We record here the characterization of R′H \ RH ; a similar statement was shown in
[16] for a continuous height model.
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Lemma 2.9. The collection {α(η) : η ∈ RH , η(w) = degH(w) − 1} forms a partition of
R′H \ RH .

Proof. Since ηk(w) = degH(w), k = 1, . . . , N , we have ηk ∈ R′H \ RH , k = 1, . . . , N . This
and the relation awη = (a′w)N+1η imply that α(η) has distinct entries (the order of a′w
is at least N + 1). By Dhar’s formula, the average number of waves per recurrent
configuration is gH(w,w), so gH(w,w)|RH | elements of R′H correspond to intermediate
configurations.

It is similarly easy to check that η ∈ R′H , accounting for another |RH | elements of
R′H . Comparing this with Lemma 2.6, we see that every element of R′H is either an
intermediate configuration or recurrent on H, completing the proof.

Given η∗ ∈ R′H \ RH , we denote by W(η∗) the set of vertices that topple in the
stabilization a′w,H(η∗). It is immediate from this definition that if α(η) = (η1, . . . , ηN ),
then W(ηk) is the k-th wave corresponding to η, i.e. Wk,H(w; η). Of particular interest
will be the last waveW(ηN ). The following corollary follows directly from the definitions.

Corollary 2.10. An intermediate configuration η∗ ∈ R′H \ RH is a last wave if and only
if there exists y ∼ w, y ∈ U ∪ {s}, such that y 6∈ W(η∗).

We will also need the following lemma.

Lemma 2.11. We have

1

degH(w)
|RH | ≤ |{η∗ ∈ R′H : η∗ is a last wave}| ≤ |RH |.

Proof. The upper bound is obvious. To see the lower bound, we assign to η ∈ RH the
last intermediate configuration in the stabilization of η + (degH(w)− η(w))1w. This map
is at most degH(w) to 1, proving the lower bound.

2.5 Bijection for intermediate configurations

We now specialize to the set-up where H = GV , V ⊂ Zd finite, o ∈ V . In this
section, we describe a version of the burning bijection on G′V , that will allow us to
control topplings occurring in a wave. To the best of our knowledge, such a bijection
was first introduced by Ivashkevich, Ktitarev and Priezzhev [13]. See also [32, 15, 16],
where it played a key role. For many of our results, the variant in [13] would suffice.
However, a more careful choice of the burning process will be needed in Section 5, so we
introduce here the version we need. Our burning process is similar to burning processes
introduced in [17] and [10].

Let η∗ ∈ R′V \RV . We define a pair of vertex-disjoint trees (To, Ts) = ϕ′(η∗), such that
To ∪ Ts spans GV . Send one grain of sand from s to o, resulting in 2d grains at o. We
sequentially topple vertices in the balls B(0) ∩ V,B(1) ∩ V,B(2) ∩ V, . . . , and build a tree
rooted at o, similarly to the usual burning bijection. The precise definitions of burnt and
unburnt sets are as follows. We let

Bt
(0)
0 = {o} Ut

(0)
0 = V ∪ {s} \ {o}

Bt
(0)
k = ∅, k ≥ 1, Ut

(0)
k = V ∪ {s} \ {o}, k ≥ 1.

For r ≥ 1, inductively, we set

Bt
(r)
0 = ∪`≥0Bt

(r−1)
` Ut

(r)
0 = V ∪ {s} \ Bt

(r)
0

Bt
(r)
k =

{
x ∈ B(r) ∩Ut

(r)
k−1 : η∗(x) ≥ deg

Ut
(r)
k−1

(x)
}

Ut
(r)
k = Ut

(r)
k−1 \ Bt

(r)
k , k ≥ 1.
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For each r ≥ 1 there exists a smallest index J = J(r) ≥ 1 such that Bt
(r)
J = ∅, and there

is a smallest index R ≥ 1 such that J(R + 1) = 1. Then Bt
(R+1)
0 = W(η∗) is the set of

vertices toppled in the wave represented by η∗.

We complete the burning process by sending asx grains of sand from s to x for each
x ∈ V , and follow the usual burning rule. That is, we set:

B̃t0 = ∪r≥0 ∪`≥0 Bt
(r)
` Ũt0 = V \ B̃t0

B̃tk =
{
x ∈ Ũtk−1 : η∗(x) ≥ deg

Ũtk−1
(x)
}

Ũtk = Ũtk−1 \ B̃tk, k ≥ 1.

We now define the bijection. If o 6= u ∈ V ∩ Bt
(R+1)
0 , then there exists a unique pair

(r, k) with r ≥ 1 and k ≥ 1 such that u ∈ Bt
(r)
k . Due to the definition of the burning rule,

there exists at least one y ∼ x such that y ∈ Bt
(r)
k−1. We select an edge that connects u

to one of these vertices, using the ordering ≺u, as in Section 2.3. Namely, if Pu is the
number of edges joining u to neighbours in ∪`<kBt

(r)
` , and Au is the subset of such edges

leading to vertices in Bt
(r)
k−1, then necessarily

η∗(u) = 2d− Pu + i for some 0 ≤ i < |Au| .

We add to To the i-th edge in Au in the ordering ≺u.

If u ∈ Ut
(R+1)
0 = Ũt0, there is a unique k ≥ 1 such that u ∈ B̃tk, and there exists at

least one y ∼ x with y ∈ B̃tk−1. We select an edge to one of these vertices, using the
ordering ≺u as before. Namely, if Pu is the number of edges joining u to neighbours in
∪`<kB̃t`, and Au is the subset of such edges leading to vertices in B̃tk−1, then necessarily

η∗(u) = 2d− Pu + i for some 0 ≤ i < |Au| .

We add to Ts the i-th edge in Au in the ordering ≺u. Let ϕ′(η∗) := (To, Ts) denote the two
components spanning forest obtained by the above construction. Let us write TV,o for
the set of all spanning forests of GV rooted at {s, o}.
Lemma 2.12.
(i) The map ϕ′ is a bijection between R′V \ RV and TV,o.
(ii) For any η∗ ∈ R′V \ RV , the vertex set of To(η∗) equalsW(η∗).
(iii) We have the following property:

If there is a path from o to a vertex x ∈ V in To = ϕ′(η∗) that
stays inside B(r), then starting from η∗+1o there is a sequence
of topplings in B(r) that topples x.

(2.4)

Proof. (i) Let η∗ 6= η̂∗ ∈ R′V \ RV . Tracing the burning process to the first time when
a vertex with η∗(x) 6= η̂∗(x) is encountered, we see that ϕ′ is injective on R′V \ RV . It
follows from the definitions that ϕ′(R′V \ RV ) is a subset of the set of spanning forests of
GV rooted at {o, s}. By the matrix-tree theorem applied to G′V , the number of spanning
forests of GV rooted at {o, s} equals det(∆′V )− det(∆V ). This also equals |R′V \ RV | [8],
so statement (i) follows.

(ii) The burning process that was used to define Bt
(R+1)
0 can be identified with

topplings in the wave corresponding to a′o,V (η∗). This implies that Bt
(R+1)
0 =W(η∗), and

this is the vertex set of To.

(iii) This again follows directly from the interpretation of the burning process in terms
of topplings in the wave.
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2.6 Random walk notation and basic facts

Many of our techniques require a detailed analysis of spanning trees via Wilson’s
algorithm. For this reason, we will often have to consider collections of simple random
walks (“SRW”) and loop-erased random walks (“LERW”) on (subsets of) Zd.

We will denote by Sx = (Sx(0), Sx(1), . . .) an infinite simple random walk on Zd

started at x, so that Sx(0) = x. We will suppress the subscript when the choice of x is
clear or when x = o. In general, Sx and Sy will be assumed independent when x 6= y.
When multiple independent walks from one site are necessary, we write Sx, S ′x (etc).

If A ⊂ Zd we define the standard stopping times

σA = inf{n ≥ 0 : Sx(n) /∈ A} ξA = inf{n ≥ 0 : Sx(n) ∈ A} , (2.5)

σA = inf{n ≥ 1 : Sx(n) /∈ A} ξA = inf{n ≥ 1 : Sx(n) ∈ A} . (2.6)

Note that we suppress any dependence of these stopping times on the starting point x;
when we write (for instance) Sx(ξA), we are referring to the location of Sx at its first
hitting time on A. When the starting vertex may be ambiguous, we use subscripts on the
symbol P; for instance,

Px(ξA < ξB) = P(Sx[0, ξA] ∩B = ∅) .

We will abbreviate σV (n) to σn, and write ξo for ξ{o}.
The trace of a walk Sx between two times a < b (where b can be infinite) will be

denoted
Sx[a, b] := {Sx(j) : a ≤ j ≤ b},

and similar notation will be used for other intervals–e.g., S(a, b) and so on. We will
sometimes abuse notation and treat Sx[a, b] as a sequence instead of an unordered set.

If A ⊂ Zd is a finite connected set and if x, y ∈ Zd, recall the Green function

GA(x, y) :=
∑

0≤j<σA

P(Sx(j) = y) . (2.7)

As before, GV (n) is abbreviated Gn. We will use the following standard asymptotics for
the Green function inside a large ball and the probability of hitting o before exiting a
large ball:

Theorem 2.13 (See [23], Prop. 1.5.9 and 1.6.7).
(i) If d = 2, we have uniformly in x ∈ B(n):

GB(n)(o, x) =
2

π
[log n− log |x|] +O

(
|x|−1 + 1/n

)
Px
(
ξo < σB(n)

)
=

1

log n

[
log n− log |x|+O

(
|x|−1 + 1/n

)]
.

(ii) For d ≥ 3, there exist c1 = c1(d), c2 = c2(d) > 0 such that, uniformly in n and x ∈ B(n):

GB(n)(o, x) = c1
[
|x|2−d − n2−d

]
+O

(
|x|1−d

)
Px
(
ξo < σB(n)

)
= c2

[
|x|2−d − n2−d

]
+O(|x|1−d) .

We also note the following simple observation about G. If K1 ⊂ K2 and x, y ∈ K1,

GK1
(x, y) ≤ GK2

(x, y). (2.8)

We will need the following result, usually called the Beurling estimate, which gives
an upper bound on the probability that a path in Z2 is not hit by SRW.
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Lemma 2.14 (Beurling estimate [19], [24, Section 6.8]). Consider Z2. There is a constant
C such that the following bound holds, uniformly in x, n, and lattice paths α connecting
o to ∂B(n):

Px(σB(n) < ξα) ≤ C
(
|x|
n

)1/2

.

Given a transient random walk Sx, we denote by LSx the loop-erasure of Sx, where
loops are erased in forward chronological order. A similar definition is made for
LSx[a, b] := L(Sx[a, b]), etc.; note that for a finite segment of a random walk, the loop
erasure can be defined even in the case that the walk is recurrent. See [24, Chapter 9]
and [23, Chapter 7] for background on LERW; in particular, for properties not detailed
below.

If A 3 x is a finite subset of Zd, let ŜAx denote a finite loop-erased random walk killed
at the boundary of A:

ŜAx = LSx[0, σA] .

We will also make use of infinite loop-erased random walks Ŝx on Zd. When d ≥ 3, the
definition

Ŝx := LSx
is unambiguous with probability 1, as noted in the last paragraph.

For d = 2, the loop-erasure of the infinite random walk Sx is not well-defined; in this
case, Ŝx is defined by taking limits. It is known (see [23, Section 7.4]) that for any finite
lattice path γ with |γ| = k,

lim
n→∞

P(ŜB(n)
x [0, k] = γ) =: P(Ŝx[0, k] = γ)

exists, and the extension of this to a measure on infinite paths gives a definition of
the distribution of Ŝx. The rate of convergence of ŜB(n)

x to Ŝx is well-controlled; see
Lemma 3.4 below. We will refer to all of the processes Ŝx, ŜAx as loop-erased random
walks or LERW. We will also assume as usual (unless stated otherwise) that a LERW is
independent of any other walks appearing in a given statement.

We define LERW stopping times ξ̂, σ̂ analogously to ξ and σ; for instance,

σ̂K = inf{n ≥ 0 : Ŝx(n) /∈ K} .

As before, we will use x as a subscript on P when considering stopping times to indicate
the starting point. When the LERW is finite (i.e., we are considering ŜAx ), we also will
use the superscript A on P, writing (for instance)

PAx
(
ξ̂K1

< ξ̂K2

)
to avoid confusing the set in which the LERW lives with the set it is hitting. When the
LERW is infinite, we omit superscripts altogether.

One result important for analyzing LERW is the following “Domain Markov Property”
(DMP). This roughly says that the terminal segment of a LERW can be built by starting a
SRW at the tip of the initial segment, conditioning it not to hit the initial segment, then
erasing loops.

Lemma 2.15 (Domain Markov Property; see [24, Chapter 11]). Let ŜKx be a loop-erased
walk in K, and let α be a finite path of length m such that

P
(
ŜKx [0,m] = α

)
> 0 .

Then for all paths β,

P
(
ŜKx [m, σ̂K ] = β

∣∣∣ ŜKx [0,m] = α
)

= P
(
LSα(m)[0, σK ] = β

∣∣∣σK < ξα

)
.
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Inequalities for critical exponents in sandpiles

Note that Lemma 2.15 is in fact much more general: it holds for infinite LERW (on
Zd for d ≥ 3) and finite LERW on graphs which are not necessarily subsets of Zd.

2.7 Wilson’s algorithm

Let H = (U ∪ {s}, F ) be a connected finite graph. Since νH is uniform on RH , the
bijection ϕ maps it to the uniform measure on spanning trees of H, which we denote by
µH . In this section, we collect basic facts about Wilson’s algorithm, that we will use to
analyze µH . For an in-depth introduction to uniform spanning trees (UST) see the book
[26].

We denote a sample from µH by TH . We will usually identify a spanning tree of H
with the set of edges it contains, so TH ⊂ F . Pemantle [31] proved that for x, y ∈ U ,
the path in TH between x and y is distributed as a LERW from x to y (i.e. as LSx[0, ξy]).
Wilson’s algorithm [35] provides a method for constructing the full UST (a sample from
µH) from LERWs.

Wilson’s algorithm. Let v1, . . . , vn be an enumeration of the vertices in U . We
construct a random sequence of tree subgraphs F0 ⊂ . . . ⊂ Fn. Let F0 have vertex set {s}
and empty edge set. If Fi−1 has been defined for some 1 ≤ i ≤ n, we let Svi be a simple
random walk on H started at vi, and let ξV (Fi−1) be the first hitting time of the vertex set
of Fi−1 by Svi . We set Fi = Fi−1 ∪ LSvi [0, ξV (Fi−1)]–that is, the edges in the loop-erasure
of Svi [0, ξV (Fi−1)] are added to Fi−1. The output of the algorithm is Fn. Wilson’s theorem
[35] implies that Fn is uniform, i.e. distributed as TH .

The measure µL := µGL is known as the UST in V (L) with the wired boundary
condition. For studying the L → ∞ limit of sandpiles on GL, as well as sandpiles on
Zd, it will be useful to consider the weak limit limL→∞ µL =: WSF, called the wired
spanning forest measure. Existence of the limit is implicit in [31]; see [26] for an
in-depth treatment. We denote a sample from WSF by T.

It is well known that WSF concentrates on spanning forests of Zd all whose com-
ponents are infinite. Pemantle [31] showed that for d ≤ 4, T is a tree WSF-a.s, while
for d ≥ 5, T has infinitely many connected components WSF-a.s. This dichotomy is
the underlying fact behind mean-field behaviour of the sandpile model for d ≥ 5; which
is reflected in some of our results and proofs. We write Tx for the component of T

containing x ∈ Zd.
It is possible to construct T more directly, using an appropriate extensions of Wilson’s

algorithm. Let v1, v2, . . . be an enumeration of Zd. When d ≥ 3, we set F1 = LSv1 [0,∞).
Then for i ≥ 2, we inductively define Fi = Fi−1 ∪ LSvi [0, ξV (Fi−1)], where the stopping
time may be finite or infinite. See [6, 26] for a proof that ∪i≥1Fi has the distribution of T
given by WSF. This is called Wilson’s method rooted at infinity.

When d = 2, a method analogous to that in finite volume can be used. We set
F1 = {v1}, and for i ≥ 2 we inductively define Fi = Fi−1 ∪ LSvi [0, ξV (Fi−1)]; see [6, 26].

It will be important for our proofs that WSF-a.s. each component of T has one end,
for all d ≥ 2. This means that any two infinite self-avoiding paths lying in the same
component of T have a finite symmetric difference. For 2 ≤ d ≤ 4 this was proved by
Pemantle [31]. For d ≥ 5 this was first shown by Benjamini, Lyons, Peres and Schramm
[6] (who generalized it to a much larger class of infinite graphs).

2.8 Wiring o to the boundary

Let µL,o be the uniform measure on TL,o. Under µL,o, we denote the components
containing o and s, respectively, by TL,o and TL,s, respectively.

Due to monotonicity, the weak limit limL→∞ µL,o =: WSFo exists; see [6, 26]. We
also use T to denote a sample from WSFo, and write Tx for its component containing
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x ∈ Zd. In particular, To is the component containing o under the measure WSFo. It
was shown by Lyons, Morris and Schramm [25] that for d ≥ 3 (and more generally under
a suitable isoperimetric condition), we have WSFo(|To| <∞) = 1, and also that this is
equivalent to the one-end property of WSF. Járai and Redig [15] used the finiteness of
To to show that ν(S <∞) = 1 when d ≥ 3.

3 Toppling probability bounds in low dimensions

In this section, we give a proof of our toppling probability lower bounds stated in
Theorem 1.1. These will follow from the following theorem, which gives a lower bound in
terms of a non-intersection probability between a loop-erased walk and a simple random
walk, and a random walk hitting probability. Our arguments also apply to d ≥ 5 with an
identical statement, however, this case is already known from [16, Section 6.2].

Recall that Sx and S′x are independent simple random walks from the site x.

Theorem 3.1. Assume 2 ≤ d ≤ 4. There is a constant c = c(d) > 0 such that, for all
z ∈ Zd we have

ν(z ∈ Av) ≥ cP
(
S′o[0, σ|z|] ∩ Ŝo(0, σ̂|z|] = ∅

)
P(z ∈ So[0,∞)) . (3.1)

Moreover, the right hand side of (3.1) is a lower bound on νL(z ∈ Av) for all L ≥ 4‖z‖.
In Sections 3.1–3.2, we state and prove preliminary results which are useful for

establishing Theorem 3.1, and in Section 3.3 we use these to prove the theorem. In
Section 3.3, we also give a corollary which will be useful for proofs of later theorems.

3.1 Preliminary setup

Our strategy for proving Theorem 3.1 will be to work in large finite volume V (L).
That is, given a particular z ∈ Zd, we will choose some L0 sufficiently large, so that the
probability νL(z ∈ Av) is close to the claimed value for all L ≥ L0. We will require L0 to
be on the order of some large multiple of ‖z‖.

The main idea of the proof is to show a lower bound for the probability that z is in
the last wave of the avalanche. By Corollary 2.10,

|{η ∈ RL : z ∈ Av}| ≥ |{η ∈ RL : η(o) = 2d− 1, z ∈ WN(η)}|
= |{η∗ ∈ R′L \ RL : z ∈ W(η∗), v /∈ W(η∗) for some v ∼ o}| .

Dividing by |RL|, using Lemma 2.11 and symmetry of V (L), for any fixed e ∼ o we get

νL(z ∈ Av) ≥ µL,o(z ∈ TL,o | v /∈ TL,o for some v ∼ o)
≥ (2d)−1 µL,o(z ∈ TL,o | e 6∈ TL,o)

(3.2)

uniformly in z, L.
We analyze the event

A(z, e) = {z ∈ TL,o, e 6∈ TL,o}.

Let us apply Wilson’s algorithm in the graph GL,o, starting with a walk Se from e, followed
by a walk Sz from z. This gives that for fixed e ∼ o, the occurrence of A(z, e) is equivalent
to a LERW from e to exit V (L) without hitting o, and a SRW from z to hit o before
hitting the LERW. We will bound the right-hand side of (3.2) from below by analyzing this
random walk event. By time reversal, we will be able to consider the SRW going from
o to z. The lower bound then contains two factors: the LERW and SRW avoiding each
other near o, and the SRW subsequently hitting z. This leads to the two probabilities in
Theorem 3.1.
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We begin by expressing the probability in (3.2) in terms of the random walk construc-
tion specified above (Lemma 3.2). We then lower bound the probability of the resulting
walk event by something amenable to analysis by walk intersection techniques that we
give in Section 3.2. Let π = LSe[0, σL].

Lemma 3.2.
(i) We have

µL,o(A(z, e)) = P
(
π ∩ Sz[0, ξo] = ∅, ξSzo < σSzL

)
. (3.3)

(ii) There are constants κ(d) > 0, d ≥ 2, such that as L→∞, we have

µL,o(e /∈ TL,o) = P
(
o /∈ Se[0, σV (L)]

)
∼

{
κ(2)(logL)−1 when d = 2;

κ(d) when d ≥ 3.
. (3.4)

Proof. Note that e /∈ TL,o if and only if Se exits V (L) before hitting o. This implies the
equality in (ii). The asymptotics in (ii) for d = 2 follow from Theorem 2.13.

Given that the event e /∈ TL,o has occurred, z will be in TL,o if and only if Sz hits o
before exiting V (L), and does so avoiding π. This implies statement (i).

In the sequel, we make use of the event Γz,L, defined as

Γz,L =
{
π ∩ Vz(‖z‖/10) = ∅, ξSoz < σSo4‖z‖, π ∩ So[0, ξz] = ∅

}
.

Lemma 3.3. For all L ≥ 100|z|, we have

P
(
π ∩ Sz[0, ξo] = ∅, ξSzo < σSzL

)
≥

{
cP(Γz,L) log |z|, d = 2 ,

(2d)−1P(Γz,L), d > 2 .
(3.5)

Proof. Using reversibility of the random walk, we can rewrite the probability in the left
hand side of (3.5) as follows:

P
(
π ∩ Sz[0, ξo] = ∅, ξSzo < σSzL

)
= E

(
P
(
π ∩ Sz[0, ξo] = ∅, ξSzo < σSzL

∣∣∣π))
= E

(
GV (L)\π(z, z)

GV (L)\π(o, o)
P
(
π ∩ So[0, ξz] = ∅, ξSoz < σSoL

∣∣∣π))
≥ E

(
1π∩Vz(‖z‖/10)=∅

GV (L)\π(z, z)

GV (L)\π(o, o)
P
(
π ∩ So[0, ξz] = ∅, ξSoz < σSoL

∣∣∣π)) .
(3.6)

In the presence of the indicator, (2.8) implies GV (L)\π(z, z) ≥ GVz(‖z‖/10)(z, z). Since
e ∈ π, we also have

GV (L)\π(o, o) ≤ GZd\{e}(o, o) ≤ 2d,

since after each visit to o, the random walk next hits e with probability (2d)−1. It follows
that the right-hand side of (3.6) is at least

(2d)−1GVz(‖z‖/10)(z, z)E
(
1π∩Vz(‖z‖/10)=∅P

(
π ∩ So[0, ξz] = ∅, ξSoz < σSoL

∣∣∣π))
≥ (2d)−1GVz(‖z‖/10)(z, z)P(Γz,L).

(3.7)

Using Theorem 2.13 and (2.8), we have

GVz(‖z‖/10)(z, z) ≥

{
c log |z| , d = 2,

1 , d > 2 ,

Inserting this estimates into (3.7) completes the proof.

EJP 22 (2017), paper 85.
Page 19/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP111
http://www.imstat.org/ejp/


Inequalities for critical exponents in sandpiles

3.2 SRW and LERW steering

In order to control the spanning tree event in (3.2), we need to give a lower bound
on the probability of the event Γz,L of Lemma 3.3. This will be achieved by “steering”
the two walks so that they become well separated as they reach distance of order ‖z‖,
which allows us to arrange that π avoids the box Vz(‖z‖/10), and it does not influence
very much the probability that So hits z. In Section 3.2.1 we collect results we need for a
single walk. In Section 3.2.2 we prove the required separation estimate. In Section 3.3
we prove a lower bound on P(Γz,L) and complete the proof of Theorem 3.1.

3.2.1 Estimates for a single walk

The first lemma we need, shown by Masson, holds for general d, and compares an infinite
LERW to a finite LERW, allowing us to control probabilities by restricting to finite balls.
Masson stated this in the case K ⊃ B(4n), however, his proof applies in the slightly more
general case we use here.

Lemma 3.4. [29, Corollary 4.5] Let d ≥ 2 be arbitrary. For any δ > 0, we have

P(Ŝo[0, σ̂n] = α) �δ P(ŜKo [0, σ̂n] = α),

for all α, all n ≥ 1/δ, and all K ⊃ V
(
(1 + δ)n

)
, where the constants implied by the �δ

notation only depend on δ and d.

We will need the following “Boundary Harnack inequality”, to control a LERW after
it has reached the boundary of a box. Estimates of this flavour were proved in [29,
Proposition 3.5], [34, Proposition 6.1.1], [4] and [5, Section 3]. The variant we need here
is a simplified version of [5, Lemma 3.8]. We define

Hn = {x ∈ Zd : x · e1 = n}, H+
n = {x ∈ Zd : x · e1 ≥ n}, H−n = {x ∈ Zd : x · e1 ≤ n} .

Lemma 3.5. There exists c(d) > 0 such that the following holds. Let π ⊂ V (n/2) and
x ∈ ∂V (n/2) ∩Hn/2. Let 1 ≤ m ≤ n/4, and L ≥ 4n. We have

Px
(
S(σVx(m)) ∈ Hn/2+m

∣∣σL < ξπ
)
≥ c(d)

m

n
.

Proof. Let π′ = π ∩ Vx(m). It is shown in [5, Section 3] that

Px
(
S(σVx(m)) ∈ Hn/2+m, σVx(m) < ξπ′

)
≥ 1

2d
Px
(
σVx(m) < ξπ′

)
.

This yields

Px
(
S(σVx(m)) ∈ Hn/2+m, σL < ξπ

)
≥ Px

(
S(σVx(m)) ∈ Hn/2+m, σVx(m) < ξπ′

)
min

w∈(∂Vx(m))∩Hn/2+m
Pw
(
σ2n < ξHn/2

)
min

z∈∂V (2n)
Pz
(
σL < ξπ

)
≥ 1

2d
Px
(
σVx(m) < ξπ′

)
c
m

n
max

z∈∂V (2n)
Pz
(
σL < ξπ

)
≥ c(m/n)

2d
Px
(
σV (2n) < ξπ

)
max

z∈∂V (2n)
Pz
(
σL < ξπ

)
≥ c(d)

m

n
Px
(
σL < ξπ

)
.

Here we used a gambler’s ruin estimate and the Harnack principle in the second
inequality.
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3.2.2 Separation lemma

Separation lemmas for a loop-erased walk and a simple random walk appeared in [29]
for d = 2 and in [34] for d = 3. We give here a unified proof that works for all d ≥ 2.
Let us write ŜL,o = LSo[0, σL]. Recall that S′x generally denotes a simple random walk

independent of the walk Sx. We define An = {ŜL,o(0, σ̂n] ∩ S′o[0, σn] = ∅}, n ≤ L. Let

Dn = min
{

dist
(
ŜL,o(σ̂n), S′o[0, σn]

)
, dist

(
ŜL,o[0, σ̂n], S′o(σn)

)}
.

Lemma 3.6 (Separation Lemma). Let d ≥ 2. There exists δ = δ(d) > 0 and c = c(d) > 0

such that for all 1 ≤ n ≤ L/4 we have

P(Dn ≥ δn |An) ≥ c.

In the proof of the separation lemma, a basic step is to show that given that non-
intersection occurred to distance n/2, there is small probability that separation at
distance n is bad.

Lemma 3.7. Let d ≥ 2. There exists a function r : (0, 1/2]→ (0,∞) with limδ→0 r(δ) = 0,
and for all δ ∈ (0, 1/2] there exists n0(δ) such that we have we have

P
(
An ∩ {Dn < δn}

∣∣An/2) ≤ r(δ), n ≥ n0(δ), 0 < δ ≤ 1/2.

Proof. We condition on π0 := ŜL,o[0, σ̂n/2] and S′o[0, σn/2], and denote x1 = ŜL,o(σ̂n/2),

x2 = ŜL,o(σ̂n), y1 = S′o(σn/2), y2 = S′o(σn). We distinguish two cases:
(a) S′o[σn/2, σn] visits Bx2(δn);

(b) ŜL,o[σ̂n/2, σ̂n] visits By2(δn).
We bound the probabilities of the two cases separately, showing that each is bounded by
a suitable r(δ).

Case (a). Let us further condition on x2. Since Brownian motion in the cube {u ∈ Rd :

‖u‖ ≤ 1} has continuous paths, and the path tends to its exit point, and the probability
of any given exit point is 0, there exists r1(δ), tending to 0, such that given any boundary
point w, the Brownian path intersects {u ∈ Rd : ‖u‖ ≤ 1, |u− w| ≤ 2δ} with probability
≤ r1(δ). Hence the required bound follows from the invariance principle.

Case (b). Let us condition on y2. Due to the Domain Markov Property (Lemma 2.15),
the path ŜL,o[σ̂n/2, σ̂L] has the law of L(X[0, σL]), where X has the law of Sx1 conditioned
on the event {σL < ξπ0

}. On the event in Case (b), the path X[σ3n/4, σL] has to visit
By2(δn). Conditioning on the point x′ = X(σ3n/4), the probability of this event is

P
(
X[σ3n/4, σL] ∩Bδn(y2) 6= ∅

∣∣X(σ3n/4) = x′
)

=
Px′
(
σL < ξπ0

, ξBy2 (δn) < σL
)

Px′
(
σL < ξπ0

) . (3.8)

When d ≥ 3, the right hand side is at most

Px′(ξBδn(y2) <∞)

Px′
(
ξBn/2(o) =∞

) ≤ Cδd−2.
When d = 2, consider

h(w) := Pw

(
σL < ξπ0 , ξBy2 (δn) < σL

)
and w∗ := argmax

w∈V (2n)\Vy2 (n/8)
h(w).

Using the Harnack principle, we have

h(w∗) ≤ Pw∗
(
ξBy2 (δn) < σ4n

)
max

v∈∂V (4n)
Pv (σL < ξπ0)

+ Pw∗
(
σ4n < ξπ0

∧ ξBy2 (δn)
)

max
w∈∂V (2n)

h(w)

≤ C (log 1/δ)−1 C Px′ (σL < ξπ0
) + c1 h(w∗),
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where c1 < 1. Therefore, we get

(1− c1)h(x′) ≤ (1− c1)h(w∗) ≤ C(log 1/δ)−1Px′ (σL < ξπ0) .

This completes the proof.

The next step is to show that given a “good” separation at distance n/2, the probability
that the paths can be “very well” separated at distance n is at least a constant. We
denote Gn := σ(ŜLo [0, σ̂n], S′o[0, σn]) the information about the paths up to the exit from
Vn.

Lemma 3.8. For any 0 < δ ≤ 1/2 there exists c(δ) > 0 and n1(δ) such that for all
n ≥ n1(δ) and L ≥ 4n the following hold.
(i) We have

P
(
An ∩

{
ŜLo (σ̂3n/4, σ̂n) ∈ H−−n/2, S

′
o(σ3n/4, σn) ∈ H+

n/2

} ∣∣∣Gn/2) ≥ c(δ) (3.9)

everywhere on the event An/2 ∩ {Dn/2 ≥ δn/2)}.
(ii) Moreover, we may further require the event ŜLo [σ̂2n, σ̂L] ∩ Vn = ∅ in (3.9).

Proof. We condition on π0 = ŜLo [0, σ̂n/2] and S′o[0, σn/2]. Let us write x1 = ŜLo (σ̂n/2) and
y1 = S′o(σn/2). Due to the conditioning in (3.9), we have |x1 − y1| ≥ δ(n/2). We write X

for a random walk starting at x1 conditioned on the event {σL < ξπ0
}, so that ŜLo [σ̂n/2, σ̂L]

has the law of LX[0, σL].
An application of Lemma 3.5 yields that with probability ≥ cδ, the process X exits

Vx1(δn/8) on the face furthest from V (n/2). Also, there is probability ≥ (2d)−1 that
S′o[σn/2,∞) exits Vy1(δn/8) on the face furthest from V (n/2). Using the Harnack principle
for X, and appropriate disjoint corridors of width of order δn for the LERW and the SRW,
respectively (see Figure 1 below), there is probability ≥ c(δ) that:
(a) S′o exits V (n) in Hn, with the appropriate portion in the required halfspace;
(b) X exits V (2n) in H−2n with X[σ3n/4, σ2n] ⊂ [−2n,−n/2]× [−3n/4, 3n/4]d−1;
(c) S′o[0, σn] ∩X[0, σn] = ∅.
In order to further ensure that LX first exits V (n) at a point in H−n, and that An occurs,
we show that for w ∈ ∂V (2n) we have

Pw

(
σXL < ξXV (n)

)
≥ c > 0. (3.10)

This is indeed sufficient, since the events in point (b) and (3.10) imply that the last visit
of X to ∂V (n) must occur at a point in H−n. In order to see (3.10), first note that the
statement is clear for d ≥ 3, since then

Pw
(
σL < ξV (n)

)
≥ Pw

(
ξV (n) =∞

)
≥ c ≥ cPw(σL < ξπ0

)
.

When d = 2, let w∗ := argmax
w∈∂V (2n)

Pw
(
σL < ξπ0

)
. Then we have

Pw∗
(
σL < ξπ0

)
≤ Pw∗

(
σL < ξV (n)

)
+ max
y∈∂V (n)

Py
(
σ2n < ξπ0

)
Pw∗

(
σL < ξπ0

)
.

The maximum over y is ≤ c2 < 1, which after rearranging gives

Pw∗
(
σL < ξπ0

)
≤ 1

1− c2
Pw∗

(
σL < ξV (n)

)
.

For other w ∈ ∂V (2n) we obtain the statement from the Harnack principle.
The construction we gave ensures both the event in (i) and (ii), and thus completes

the proof of the lemma.
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V (n)

V (n/2)

H3n/4

Figure 1: Depiction of the extension in disjoint corridors. Each walk is assumed to
exit Vn/2 at the center of one of the corridors, which are distance ∼ δn apart. Note
the placement of the corridors ensures that terminal segments of each walk remain in
appropriate half-spaces as in (3.9).

We are ready to prove the Separation Lemma. The argument we give is inspired by
[20].

Proof of Lemma 3.6. Let us write

f(n) = P
(
An
)

and g(n) = P
(
An ∩ {Dn ≥ δn}

)
.

Let δ > 0 that we will choose later. Let n ≥ max{n0(δ), n1(δ)}, where n0 and n1 are the
constants from Lemmas 3.7 and 3.8. Lemma 3.7 implies

f(n) = g(n) + f(n/2)P
(
An ∩ {Dn < δn}

∣∣An/2) ≤ g(n) + f(n/2) r(δ)

≤
k−1∑
`=0

r(δ)` g(n/2`) + r(δ)k f(n/2k).
(3.11)

Lemma 3.8 implies that on the event An/2` ∩ {Dn/2` ≥ δn/2`}, we can extend both the
loop-erased walk and the random walk to opposite faces of ∂V (n/2`−1), with probability
at least c(δ). A gambler’s ruin estimate then implies that, there is probability ≥ (c/2`)2

that the walks reach ∂V (n) without intersecting. This shows that g(n/2`) ≤ c(δ)22`g(n).
Substituting this into (3.11) yields

f(n) ≤ g(n)

[
1 + c(δ)

k−1∑
`=1

(4 r(δ))`

]
+ r(δ)k f(n/2k). (3.12)

Choose δ > 0 so that 4 r(δ) < 1/2, and the smallest k such that max{n0(δ0), n1(δ)} ≤ n/2k.
Then (3.12) implies f(n) ≤ C(δ) g(n).

3.2.3 Estimate on Γz,L

In this section, we prove a lower bound on the probability of the event Γz,L, which yields
a finite volume analogue of Theorem 3.1. In the following, let

EsL(n) := P
(
ŜLo (0, σ̂n] ∩ S′o[0, σn] = ∅

)
,

which is an (expectation of an) escape probability for the walk S′o.
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Lemma 3.9. Let d ≥ 2. There exists c = c(d) > 0 such that for any z ∈ Zd \ {o} and
L > 4‖z‖ we have

P
(
Γz,L

)
≥

{
cEsL(‖z‖)Po

(
ξ{z} < σ4‖z‖

)
if d ≥ 3;

c (logL)−1 EsL(‖z‖)Po
(
ξ{z} < σ4‖z‖

)
if d = 2.

(3.13)

Proof. We may assume that ‖z‖ is sufficiently large. Without loss of generality, we also
assume that the first coordinate of z is positive and has maximal absolute value among
all coordinates.

We first require the occurrence of the event

B(e) :=
{
π ∩ {o} = ∅

}
. (3.14)

We have

qL := P(B(e)) = Pe
(
σL < ξo

)
≥

{
c(logL)−1 when d = 2;

c when d ≥ 3.
(3.15)

Conditional on B(e), the law of π is the same as the law of ŜLo [1, σ̂L] conditional on
ŜLo (1) = e. Therefore, we will express properties of π conditional on the event B(e) in
terms of the properties of ŜLo [1, σ̂L] conditional on ŜLo (1) = e.

Let us require the occurrence of the event

A‖z‖/4 ∩
{
D‖z‖/4 ≥ δ‖z‖/4

}
, (3.16)

where δ = δ0 is the constant chosen in Lemma 3.6. According to that lemma, the event
in (3.16) has unconditional probability ≥ cEsL(‖z‖/4) ≥ cEsL(‖z‖). Due to Zd-symmetry,
the conditional probability of (3.16) given ŜL(1) = e is the same as the unconditional
probability.

Let us further require the event in Lemma 3.8 with n = ‖z‖/2, that is, that the
paths extend disjointly to opposite faces of V (‖z‖/2), with the random walk landing on
H‖z‖/2, and the LERW landing on H−‖z‖/2. According to Lemma 3.8, this happens with
conditional probability ≥ c. It follows from Lemma 3.8, that there is probability bounded
away from 0 that the LERW can be further extended to land on H−8‖z‖, in such a way
that π is contained in H−3‖z‖/8 ∪ V (4‖z‖)c. Since S′o(σ‖z‖/2) ∈ H‖z‖/2, the conditional

probability, given π and S′o[0, σ‖z‖/2] that S′o hits z before ξπ ∧ σ4‖z‖ is ≥ c |z|2−d when
d ≥ 3, and ≥ (log |z|)−1 when d = 2. Combining the estimates for each part of the
construction yields:

P
(
Γz,L

)
≥

{
cEsL(‖z‖) |z|2−d when d ≥ 3;

c (logL)−1 EsL(‖z‖) 1
log |z| when d = 2.

This completes the proof of the lemma when ‖z‖ is sufficiently large.

The following proposition summarizes the result of the finite L arguments we made
in Sections 3.1–3.2.

Proposition 3.10. Let d ≥ 2. For any z ∈ Zd and all L ≥ 4‖z‖ we have

νL(z ∈ Av) ≥ cEsL(‖z‖)GVz(‖z‖/10)(z, z)Po
(
ξz < σ4‖z‖

)
� Es‖z‖(‖z‖)Po(ξz <∞) .

(3.17)

Proof. Combining (3.2), Lemma 3.2, Lemma 3.3, and Lemma 3.9, we obtain the state-
ment in both d ≥ 3 and d = 2. Lemma 3.4 implies that EsL(‖z‖) is comparable
to Es4‖z‖(‖z‖). Masson [29, Lemma 5.1] showed that the latter is comparable to
Es‖z‖(‖z‖).
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3.3 Proof of Theorem 1.1

In passing to the limit L→∞, we use the following proposition. We prove only the
d ≥ 3 case here; the proof of the more technical d = 2 case is deferred to the end of
Section 5; see Lemma 5.10 there.

Proposition 3.11.
Assume d ≥ 2. Then we have ν(z ∈ Av) = limL→∞ νL(z ∈ Av).

Proof of Proposition 3.11, d ≥ 3 case. Due to [15, Theorem 3.11] we have ν(|Av| <∞) =

1. Therefore, given ε > 0, we can find |z| < M < ∞ such that ν(Av ⊂ V (M)) > 1 − ε.
Due to the weak convergence νL → ν, there exists M < L0 <∞ such that for all L ≥ L0

we have

|ν(z ∈ Av)− νL(z ∈ Av)| ≤ |ν(z ∈ Av)− ν(z ∈ Av, Av ⊂ V (M))|
+ |ν(z ∈ Av, Av ⊂ V (M))− νL(z ∈ Av, Av ⊂ V (M))|
+ |νL(z ∈ Av, Av ⊂ V (M))− νL(z ∈ Av)|

< 3ε.

This completes the proof.

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Lemma 3.4 implies that EsL(‖z‖) in Proposition 3.11 is compara-
ble to the avoidance probability in the theorem, so the statement follows using Proposi-
tion 3.11.

For later use we state here a corollary of the construction.

Corollary 3.12. Let d ≥ 2. There exists a constant c = c(d) > 0 such that the following
holds. For each z ∈ Zd and L ≥ 4‖z‖ and e ∼ o, with π denoting the path in TL,s
connecting e to s, we have

µL,o
(
z ∈ TL,o, π ∩ Vz(‖z‖/10) = ∅

∣∣ e /∈ TL,o
)

≥ cP
(
So[0, σ|z|] ∩ Ŝ′o(0, σ̂|z|] = ∅

)
Po
(
ξz <∞

)
.

We now turn to the proofs of the explicit bounds for 2 ≤ d ≤ 4.

3.3.1 Proof of Theorem 1.1 when d = 2

By Theorem 3.1, Theorem 1.1(i) will hold once we know

P
(
S′o[0, σn] ∩ Ŝ(0, σ̂n] = ∅

)
≥ n−3/4+o(1). (3.18)

The exponent 3/4 +o(1) was first proved by Kenyon [18], who stated it for simple random
walk in the half plane. A proof for more general walks was given by Masson, who derived
it from results on SLE2 [29, Theorem 5.7]. He established the analogue of (3.18) for a
SRW and a finite LERW – via [29, Lemma 5.1], where the intersection probabilities for
finite and infinite LERW are related. This implies Theorem 1.1(i).

3.3.2 Proof of Theorem 1.1 when d = 3

In this section, we complete the proof of the explicit lower bound in Theorem 1.1(ii)
by showing that P(S′o[0, σ(n)] ∩ Ŝo(0, σ̂(n)] = ∅) ≥ cn−2ζ (this suffices, by the previously
proven Theorem 3.1). Since Ŝo is the loop-erasure of S, it is enough to show

P
(
S′o[0, σ(n)] ∩ S(0,∞) = ∅

)
≥ cn−2ζ . (3.19)
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This is a simple adaptation of the results of [22]. Indeed, there exists a c1 > 0 such
that (uniformly in m)

P(S′o[0,m] ∩ S(0,∞) = ∅) ≥ c1m−ζ

by [22, discussion after (3)]. On the other hand, by [22, Lemma 4.7], there exists
C2, c2 > 0 such that (uniformly in a, n)

P(S′o[0, σn] ∩ S(0,∞) = ∅, σn > an2) ≤ C2 exp(−a/c2)n−2ζ .

Choosing a sufficiently large (relative to c1, c2) and m = an2 completes the proof of
(3.19). From this Theorem 1.1(ii) follows.

3.3.3 Proof of Theorem 1.1 when d = 4

In four dimensions, the avoidance probability was determined by Lawler [21], who
showed that

Es(n) � (log n)−1/3.

This and Theorem 3.1 yield Theorem 1.1(iii).

4 Low-dimensional radius bounds

In this section we prove the radius bounds stated in Theorem 1.2(i)–(iii) for dimensions
2 ≤ d ≤ 4. We start with the lower bounds.

Proof of Theorem 1.2(i)–(iii), lower bounds. Observe that

ν (R ≥ r) ≥ ν(re1 ∈ Av) . (4.1)

Therefore, the claimed lower bounds follow immediately from Theorem 1.1(i)–(iii).

Proof of Theorem 1.2(ii)–(iii), upper bounds. Let us first consider a finite volume V (L).
Recall that for η ∈ RL we write α(η) = (η1, . . . , ηN ) for the waves in the stabilization
So(η + 1o). Let us extend the notation for the radius to waves and two-component
spanning trees in the natural way:

R(η∗) = sup{|z| : z ∈ W(η∗)}
R(To) = sup{|z| : z ∈ To}

Under the bijection of Section 2.5 these two notions coincide. We have∣∣{η ∈ RL : R(η) > r
}∣∣ =

∣∣{η ∈ RL : R(ηi) > r for some 1 ≤ i ≤ N(η)
}∣∣

≤
∣∣{η∗ ∈ R′L \ RL : R(η∗) > r

}∣∣.
Hence we get

νL
(
R > r

)
≤ |R

′
L \ RL|
|RL|

µL,o
(
R(TL,o) > r

)
= gL(o, o)µL,o

(
R(TL,o) > r

)
,

where the last equality uses Lemma 2.6.
Since {R > r} and {R(TL,o) > r} are both cylinder events, we can take the limit

L→∞ on both sides to get

ν
(
R > r

)
≤ C(d)WSFo

(
R(TL,o) > r

)
. (4.2)

Lyons, Morris and Schramm [25] proved that

WSFo
(
R(TL,o) > r

)
≤ C(d) r−βd , d ≥ 3,

with βd = 1
2 −

1
d . Inserting this into (4.2) yields the upper bounds C r−1/6 and C r−1/4 in

dimensions d = 3 and d = 4, respectively.
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5 The last k waves in 2D

In this section we prove that for any 1 ≤ k <∞, as L→∞, the last k waves on GL
(when they exist) have a weak limit. We introduce some notation for the last k waves.
Recall that for η ∈ RL, we denote by N = N(η) = nL(o, o) the number of times o topples
during the stabilization of η + 1o. Recall from Section 2.4, that given η ∈ RL, we write
α(η) = (η1, . . . , ηN ) for the set of intermediate configurations (right before each wave).
Let

ξL0 = ξL0 (η) := ao,Lη

and whenever N(η) ≥ k, define

ξLk = ξLk (η) := ηN−k+1.

Observe that when ξLk is defined, we have ξLk−1 = a′o,Lξ
L
k . Analogously to the finite graph

case, a′o,Z2 is the operator which adds a particle at the origin and stabilizes the resulting

configuration in the graph (Z2)′.

Theorem 5.1. Assume d = 2. We have:
(i) For every 1 ≤ k <∞ the limit bk = limL→∞ νL(N ≥ k) exists.
(ii) For every 1 ≤ k <∞, the law of ξLk under the measure νL(· |N ≥ k) converges weakly
to the law ρk of a configuration ξk.
(iii) The configuration ξk + 1o can be stabilized in (Z2)′ with finitely many topplings
ρk-a.s.
(iv) The transformation ξk 7→ a′o,Z2ξk is measure-preserving between bkρk and the restric-
tion of bk−1ρk−1 to the image. (Here b0 = 1, ρ0 := ν.)
(v) With ν-probability 1 on the event {N = k}, all k waves are finite, and we have
ν(N = k) = bk − bk+1.

Remark 5.2. It is not difficult to construct, for every 1 ≤ k < ∞, an explicit finite
configuration around o showing that lim infL→∞ νL(N = k) > 0.

Recall the bijection for intermediate configurations from Section 2.5. This bijection
was between η∗ ∈ R′L \ RL and the set of spanning forests of GL with two components
To = To(η∗) and Ts = Ts(η∗), where o ∈ To and s ∈ Ts. Recall the following property of
the bijection from Section 2.5, rephrased for the configurations ξLk .

If there is a path in To(ξ
L
k (η)) from o to a vertex x that stays

inside B(r), then starting from ξLk + 1o there is a sequence of
topplings in B(r) that topples x.

(5.1)

We write TL,o,k = To(ξ
L
k ) and TL,s,k = Ts(ξ

L
k ) for short. When x ∈ TL,o,k, we denote

πL,k(x) the unique self-avoiding path in TL,o,k from o to x.
Our control on the size of waves will be in terms of the following random variables.

RLin,k = sup{r ≥ 0 : B(r) ⊂ TL,o,k}, k ≥ 1;

RLout,k = inf{r ≥ 0 : TL,o,k ⊂ B(r)}, k ≥ 1;

PLk = inf
{
r ≥ 0 : πL,k(x) ⊂ B(r) for all x ∈ B

(
RLin,(k−1) + 1

)}
, k ≥ 2.

(5.2)

All quantities in (5.2) are defined to be 0 when N < k. The following lemma states a
basic inequality we will need.

Lemma 5.3. We have:
(i) RLin,1 = 0.
(ii) RLin,k ≤ PLk , k ≥ 2.
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Proof. (i) This follows directly from Corollary 2.11.
(ii) Write r = PLk for short, and assume for a proof by contradiction, that we had

RLin,k ≥ r+ 1. This implies that in the stabilization a′o,L(ξLk ) all vertices in B(r+ 1) topple,

and hence (ξLk−1)B(r) = (ξLk )B(r). Starting from the configuration ξLk−1 + 1o, let us topple
all sites in B(r) we can. The definition of PLk and property (5.1) imply that all vertices in
B(RLin,(k−1) + 1) topple. However, this contradicts the definition of RLin,(k−1).

In the following proposition we show that the in-radius of the k-th last wave is tight,
with a power law upper bound on the tail.

Proposition 5.4. There exist constants α′1 > α′2 > · · · > 0 and C1, C2, . . . such that

lim sup
L→∞

νL
(
RLin,k > r

)
≤ Ckr−α

′
k , ∀r ≥ 1, ∀k ≥ 1. (5.3)

In particular, for all 1 ≤ k <∞, the sequence {RLin,k}L≥1 is tight.

Proof. We prove the statement by induction on k. The case k = 1 holds trivially due to
Lemma 5.3(i). Assume k ≥ 2, and that (5.3) holds for k − 1. Let 1 ≤ r0 <∞ be fixed, and
find L0 = L0(r0) <∞ such that for L ≥ L0 we have

νL(RLin,(k−1) > r0) ≤ 2Ck−1r
−α′k−1

0 . (5.4)

It is sufficient to bound RLin,k when the event {RLin,(k−1) ≤ r0} occurs, and due to Lemma

5.3(ii), it is enough to bound PLk on this event. In what follows, we assume the event
{RLin,(k−1) ≤ r0}.

For ` ≥ 1 we are going to bound the probability that r02` < PLk ≤ r02`+1. Due
to Lemma 5.3(ii), this event implies that (TL,o,k,TL,s,k) belongs to the following event
E(x, r0, `) for some x ∈ ∂B(r0 + 1):

E(x, r0, `) =
{

(To, Ts) ∈ TL,o : x ∈ To, π(x) visits B(r02`)c and Ts ∩ ∂B(r02`+1) 6= ∅
}
,

where π(x) is the path in To from x to o. Therefore, using Corollary 2.7(ii), we have

νL

(
RLin,(k−1) ≤ r0, P

L
k > r02`0

)
≤
∑
`≥`0

∣∣{η ∈ RL : r02` < PLk (η) ≤ r02`+1}
∣∣

|RL|

≤ C (logL)
∑
`≥`0

∑
x∈∂B(r0+1)

µL,o(E(x, r0, `)).
(5.5)

We use Wilson’s algorithm to get an upper bound on the probability of E(x, r0, `). Let the
first random walk start at x. Let τ be the time of the last visit, before ξ{o}, to a vertex in
∂B(r02`). Let us condition on the path Sx[0, τ ]. Let γ = LSx[0, τ ], and let γ0 be the initial
segment of γ from x to the first visit of γ to ∂B(r02`). The walk

S′(m) = Sx(τ +m), m = 0, . . . , ξo − τ ;

is a simple random walk on Z2 conditioned on ξo < ξB(r02`)c . On the event E(x, r0, `), S′

cannot hit γ0, so we bound the probability that S′ hits B(r0 + 1) before γ0.
The walk S′ has to successively cross from ∂B(r02q) to B(r02q−1) for q = `− 1, . . . , 1.

During each crossing, it has a fixed constant probability of hitting γ0, since this holds for
simple random walk, and the Harnack principle [24] then implies it holds for S′. Hence
the probability that S′ reaches B(r0 + 1) before hitting γ0 is less than (1− c1)`−1 for some
0 < c1 < 1. This bounds from above the probability that x ∈ TL,o and π(x) visits B(r02`)c.
Assuming that this event occurs, we now bound the conditional probability that TL,s
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contains a vertex y ∈ ∂B(r02`+1). For this, continue Wilson’s algorithm with a walk Sy0
starting at any y0 ∈ ∂B

(
(r02`+1)4

)
, followed by walks starting at y1, . . . , yM , where the

latter is an enumeration of all vertices in ∂B(r02`+1). Let Fj denote the tree generated
by the walks Sx, Sy0 , . . . , Syj . Denote

Ej =
{
σ
Syj
L < ξ

Syj
Fj−1

}
, j = 0, 1, . . . ,M,

where F−1 := π(x). Then on the event {x ∈ TL,o, π(x) ∩B(r02`)c 6= ∅} we have

µL,o
(
TL,s ∩ ∂B(r02`+1) 6= ∅

∣∣F−1) ≤ M∑
j=0

E
(
P(Ej |Fj−1)1Ec0 . . .1Ecj−1

)
.

Application of Theorem 2.13(ii) yields that the j = 0 term is at most C log (r02`+1)4/ logL

when L > (r02`+1)4. For 1 ≤ j ≤ M , using Beurling’s estimate (Lemma 2.14), on the
event Ec0 ∩ . . . Ecj−1 we have

P(Ej |Fj−1) ≤ Pyj
(
σB((r02`+1)4) < ξF0

)
max

w∈∂B((r02`+1)4)
Pw (σL < ξo)

≤ C(r02`+1)−1 (log r02`+1)/ logL.

Since M ≤ Cr02`+1, putting the j = 0 and 1 ≤ j ≤M cases together we get that the sum
over 0 ≤ j ≤M is bounded by C (log r02`+1)/ logL. Together with the earlier bound on
π(x) leaving Bo(r02`) this gives

P
(
E(x, r0, `)

)
≤ C (log r02`+1)

(1− c1)`

logL
.

Substituting into (5.5), and summing over ` ≥ `0 implies, for L sufficiently large that

νL
(
RLin,(k−1) ≤ r0, P

L
k > r02`0

)
≤ Cr0(log r02`0) (1− c1)`0 . (5.6)

We apply (5.6) with 2`0 = rβ
′

0 , for some β′ > 0. The expressions in the right hand sides of
(5.6) and (5.4) are of equal order (up to logarithms), when

β′ = −(1 + α′k−1)
log 2

log(1− c1)
.

Since R(k)
in ≤ P (k), the bounds (5.4) and (5.6) imply, for all large enough L, that

νL(RLin,k > r1+β
′

0 ) ≤ νL(RLin,k−1 > r0)+νL(RLin,k−1 ≤ r0, P (k) > r1+β
′

0 ) ≤ Ck (log r0) r
−α′k−1

0 .

Hence we get (5.3) for k with a choice of 0 < α′k < α′k−1/(1 + β′).

We next prove that the out-radius of the k-th last wave is also tight, and satisfies a
power law upper bound. We are going to need the following lemma.

Lemma 5.5. There exist constants C such that the following holds. Let 1 ≤ r < r′ < L,
and let K ⊂ V (L)∪ {s} be a connected set of edges that contains a path connecting B(r)

to s. We have
µL,o(TL,o 6⊂ B(r′) |K ⊂ TL,s) ≤ C r3/2 (r′)−1/2.

Proof. Let us use Wilson’s algorithm in the contracted graph GL/K, that is, the edges in
K are already present at the start of the algorithm. We let walks start at {x1, . . . , xM} =

∂B(r). If TL,o 6⊂ B(r′), then at least one of these walks has to reach ∂B(r′) before hitting
K. Beurling’s estimate (Lemma 2.14) implies that for each xj , this has probability at
most C (r′/r)−1/2. Since M = O(r), the statement follows.

EJP 22 (2017), paper 85.
Page 29/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP111
http://www.imstat.org/ejp/


Inequalities for critical exponents in sandpiles

Proposition 5.6. There exist constants α1 > α2 > · · · > 0 and C1, C2, . . . such that

lim sup
L→∞

νL
(
RLout,k > r

)
≤ Ckr−αk , ∀r ≥ 1, ∀k ≥ 1. (5.7)

In particular, for all 1 ≤ k <∞ the sequence {RLout,k}L≥1 is tight.

Proof. Fix 1 ≤ k <∞, and 1 ≤ r0 <∞. From Proposition 5.4 we have that there exists
L0 = L0(r0) <∞ such that for all L ≥ L0 we have

νL(RLin,k > r0) ≤ 2Ck r
−α′k
0 (5.8)

Assume the event {RLin,k ≤ r0}, which implies that TL,s,k ∩ ∂B(r0) 6= ∅. We bound the

probability that RLout,k > r1+β0 , where the parameter β > 0 will be chosen at the end.
Similarly to (5.5), we have:

νL

(
RLin,k ≤ r0, RLout,k > r1+β0

)
≤ C (logL)

∑
x∈∂B(r0)

µL,o

(
x ∈ TL,s, TL,o 6⊂ B(r1+β0 )

)
.

(5.9)

Let K be the set of edges in TL,s on the path from x to s. Conditioning on the value
K = K, the right hand side of (5.9) equals

C (logL)
∑

x∈∂B(r0)

µL,o (x ∈ TL,s)
∑
K

µL,o (K = K |x ∈ TL,s) µL,o

(
To 6⊂ B(r1+β0 )

∣∣∣K = K
)
.

(5.10)

We have µL,o(x ∈ TL,s) ≤ C(log r0)/(logL). Applying Lemma 5.5 to the conditional
probability in (5.10) gives that the expression in (5.10) is at most

C (log r0) r
3/2
0 r

−(1+β)/2
0

∑
x∈∂B(r0)

∑
K

µL,o (K = K |x ∈ TL,s) = C (log r0) r
2−β/2
0 . (5.11)

Choose β so that 2− β/2 < −α′k, so that (5.11) together with (5.8) gives

νL(RLout,k > r1+β0 ) ≤ Ckr
−α′k
0 .

This implies the statement of the proposition with αk = α′k/(1 + β).

The next proposition shows that µL,o(A ⊂ TL,s, B ⊂ TL,o} for fixed finite fixed sets of
vertices A and B, satisfies a certain normalization as L→∞. Tightness of the in-radius
established in Proposition 5.4 will allow us to apply this proposition, and subsequently
prove Theorem 5.1. We introduce the notation qL := µL,o(e 6∈ TL,o), where e ∼ o. Due to
symmetry, qL does not depend on e. In fact, since qL is the escape probability of random
walk from o, we have qL = GL(o, o)−1. We remark that for the square grid, the quantity
GL(o, o) has an explicit formula:

GL(o, o) =

L∑
`=0

T ′L+1(2− cos θ`)

TL+1(2− cos θ`)
, (5.12)

where θ` = 2π(2` + 1)/(4L + 4), and TL+1 is the degree L + 1 Tchebyshev polynomial.
The formula (5.12) can be derived via contour integration. However, we will not need it,
and we omit the proof.

Proposition 5.7. Assume d = 2. Let A,B ⊂ Z2 be disjoint, non-empty finite sets, with
o ∈ B. Then the limit pA,B := limL→∞ q−1L µL,o(A ⊂ TL,s, B ⊂ TL,o) exists.
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We first need the following lemma. In its statement, a(x) is the potential kernel for
simple random walk on Z2; see [24].

Lemma 5.8. Fix x ∈ A.
(i) We have limL→∞ q−1L µL,o(x 6∈ TL,o) = a(x)

a(e) , where e ∼ o.
(ii) Conditional on x 6∈ TL,o, the law of the path from x to s has a weak limit, as L→∞.

Proof. (i) We use Wilson’s algorithm in the graph GL,o with a walk starting at x. Consid-
ering the limit of the bounded martingale {a(Sx(t ∧ σV (L) ∧ ξ{o}))}t≥0, and using Lemma
3.2 we have

q−1L µL,o(x 6∈ TL,o) =
P
(
o 6∈ Sx[0, σV (L)]

)
P
(
o 6∈ Se[0, σV (L)]

) =
a(x)(logL)−1 + o

(
(logL)−1

)
a(e)(logL)−1 + o

(
(logL)−1

) =
a(x)

a(e)
+ o(1).

(ii) Let Sh,Lx denote a random walk conditioned on the event {σL < ξo}, started from
x. The path in TL,s from x to s, conditional on x 6∈ TL,o has the law of LSh,Lx [0, σL]. As
L → ∞, Sh,Lx converges weakly to a transient process Shx (the h-transform of random
walk by the potential kernel a(·)). This implies that LSh,Lx [0, σL] converges weakly to
LShx [0,∞); see [24, Exercise 11.2].

Proof of Proposition 5.7. Let A = {x1, . . . , xp}, (p ≥ 1) and B = {o, w1, . . . , wq}, (q ≥ 0).
We use Wilson’s algorithm in the graph GL,o. We start with the vertex x1, followed
by the vertices x2, . . . , xp, followed by the vertices in B. For the rest of the vertices
we use an ordering such that their Euclidean norms form a non-decreasing sequence.
Due to Lemma 5.8(i), the probability that the first walk hits s before o is asymptotic to
qLa(x1)/a(e), as L→∞. Assuming this event happens, let πLx1

denote the loop-erasure
of the walk starting at x1, and write πx1 for its weak limit under the conditioning,
whose existence is guaranteed by Lemma 5.8(ii). The probability that the walks starting
in (A \ {x1}) ∪ B terminate before exiting a ball B(r) of large radius r goes to 1 as
r → ∞, and L > r, uniformly in the path πLx1

. Since these walks determine the event
{A ⊂ TL,s, B ⊂ TL,o}, statement (i) follows.

In the proof of Theorem 5.1 we are going to need the following quantitative bound
from [10] on the rate of convergence of νL to ν.

Theorem 5.9 (Theorem 4.1 of [10]). Let d = 2. There exist constants 0 < α < β and C
such that if E is any cylinder event depending only on the configuration in B(`), then

|νL(E)− ν(E)| ≤ C`βL−α.

Proof of Theorem 5.1. (i)–(ii) We showed in Proposition 5.6 that for any fixed 1 ≤ k <∞,
the sequence R(k)

out = R
(k)
L,out, L ≥ 1, is tight. Therefore, we have

lim
`→∞

lim sup
L→∞

νL(N ≥ k, WN−i+1 6⊂ B(`) for some 1 ≤ i ≤ k) = 0. (5.13)

We establish weak convergence of ξLk . Fix ε > 0, and let ` and L0 be such that for all
L ≥ L0 the probability appearing in (5.13) is ≤ ε. Let ζ ∈ R′B(`) be a configuration with
the following properties:

(a) (a′o,B(`))
j(ζ) ∈ R′B(`) \ RB(`) for j = 1, . . . , k − 1 and (a′o,B(`))

k(ζ) ∈ RB(`).

(b) In the stabilization (a′o,B(`))
k(ζ) none of the boundary vertices of B(`) topple;

In other words, ζ is an intermediate configuration in B(`), corresponding to a k-th
last wave such that all of the last k waves stay inside B(`). We first show that

lim
L→∞

νL
(
(ξLk )B(`) = ζ

∣∣N ≥ k)
exists for any ζ satisfying (a)–(c).
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First observe that the properties of ζ imply that for any η∗ ∈ R′L \ RL, if (η∗)B(`) = ζ

then η∗ is an intermediate configuration, in the graph GL, corresponding to a k-th last
wave, and the last k waves all stay in B(`). In particular, using that the k-th last wave
stays inside B(`), property (5.1) of the bijection implies that ζ determines a unique pair
(A0, B0), with A0 ∪B0 = B(`), such that whenever η∗ ∈ R′L \RL and η∗|B(`) = ζ, then we
have V (To(η∗)) = B0. Therefore, using Lemma 2.6 we can write

νL
(
N ≥ k, ξLk |B(`) = ζ

)
=

∣∣{η∗ ∈ R′L \ RL : η∗|B(`) = ζ}
∣∣∣∣RL∣∣

= gL(o, o) νL,o
(
η∗ : η∗|B(`) = ζ

)
.

(5.14)

For any η∗ appearing in the right hand side of (5.14), let η = η∗|VL\B0
. Due to the burning

process, the conditional distribution of η, given the event {η∗|B0 = ζ|B0 , V (To(η∗)) = B0},
equals that of a recurrent sandpile in the subgraph GB0

L of GL induced by the set of
vertices V (L) ∪ {s} \ B0 (i.e. with closed boundary condition at B0). Hence the last
expression in (5.14) equals

q−1L νL,o
(
η∗ : η∗|B0

= ζB0
, V (To(η∗)) = B0

)
ν
G
B0
L

(
η : η|A0

= ζ|A0

)
. (5.15)

Since the wired spanning forest in the subgraph of Z2 induced by Z2 \B0 is one-ended,
we can apply [17, Theorem 3] to deduce that the last factor in (5.15) has a limit as
L→∞. The first factor equals

1

|TB0
|
q−1L µL,o (V (TL,o) = B0) , (5.16)

where |TB0
| is the number of spanning trees in the graph induced by B0. Due to

Proposition 5.7, the product of the second and third factors in (5.16) approaches pA0,B0
,

as L→∞. This implies the existence of the limit

lim
L→∞

νL
(
N ≥ k, (ξLk )|B(`) = ζ

)
=: ck(ζ).

Summing over all ζ satisfying (a)–(c), and using the choice of ` made after (5.13), we get∣∣∣∣lim sup
L→∞

νL(N ≥ k)− lim inf
L→∞

νL(N ≥ k)

∣∣∣∣ ≤ ε.
But since the left hand side does not depend on `, we have that the limit limL→∞ νL(N ≥
k) =: bk exists, proving statement (i). It follows that

lim
L→∞

νL
(
(ξLk )B(`) = ζ

∣∣N ≥ k) =
ck(ζ)

bk
=: ρk

(
ξk : (ξk)|B(`) = ζ

)
.

Statement (ii) follows immediately from this.
(iii) Observe that the proof of parts (i)–(ii) shows that up to a set of measure 0, the

support of ρk can be partitioned into a countable disjoint union of cylinder sets, such
that on each element of the partition, the stabilization (a′o,Z2)k(ξk) takes place within a
finite set B(`).

(iv) The countable partition into cylinder sets has the further property that the map
ξk 7→ a′o,Z2(ξk) is measure preserving on each cylinder set of the partition. Hence the
claim follows.

(v) Let ε > 0 be fixed. Let NB(`) denote the number of times o topples if all topplings
in B(`) are carried out, but no site in B(`)c is allowed to topple. Due to the ν-a.s.
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convergence NB(`) ↑ N , there exists 1 ≤ ` <∞ such that ν({N = k}∆{NB(`) = k}) < ε,
where ∆ denotes symmetric difference. Let

F`,k = {NB(`) = k and some boundary vertex of B(`) topples}.

Since {N = k} ∩ F c`,k is a cylinder event, we have

ν(N = k) ≥ ν(N = k, F c`,k) = lim
L→∞

νL(N = k, F c`,k) ≥ lim
L→∞

νL(N = k)− ε(`, k),

where ε(`, k) → 0 as ` → ∞, due to (5.13). It follows that bk − bk+1 = limL→∞ νL(N =

k) ≤ ν(N = k).
For an inequality in the other direction, we write:

ν(N = k) ≤ ν(N = k, F c`,k) + ν(F`,k) = ν(NB(`) = k, F c`,k) + ν(F`,k)

= lim
L→∞

νL(NB(`) = k, F c`,k) + lim
L→∞

νL(F`,k)

≤ lim
L→∞

νL(N = k) + lim sup
L→∞

νL(N > k, F`,k) + lim
L→∞

νL(N = k, F`,k).

Due to (5.13), the third term on the right hand side is at most ε(`, k) → 0 as ` → ∞.
Therefore, it is enough to show that

lim
`→∞

lim sup
L→∞

νL (N > k, F`,k) = 0. (5.17)

We fix 0 < δ < α/β (where α, β are the constants from Theorem 5.9). Let r(i) = Lδ/ρ
i

,
i = 0, . . . , k, where the constant 1 < ρ < ∞ will be chosen later. Recall we denote by
η1, . . . , ηk ∈ R′L \ RL the first k waves corresponding to η ∈ RL. We define the events

H(i) =

{
the i-th waveW(ηi) does not topple any vertices
in B(r(i)) after it has reached ∂B(r(i− 1))

}
, i = 1, . . . , k.

Recalling property (5.1) of the bijection, an argument similar to the one made in Proposi-
tion 5.4 yields

νL(H(i)c) ≤ C (logL) r(i− 1)−1/4r(i)9/4 ≤ C (logL)L2δρ−i L−δρ
−i(ρ−1)/4. (5.18)

We choose ρ > 9, so that the right hand side of (5.18) goes to 0 as L→∞. Therefore, in
order to prove (5.17), it is enough to bound

νL (N > k, F`,k, H(1) ∩ · · · ∩H(k)) ≤ νL
(
N > k, NB(`) = k, H(1) ∩ · · · ∩H(k)

)
. (5.19)

Suppose now that we are given a configuration η ∈ RL. Let us carry out the first
wave up to ∂B(r(0)), that is, stop the first wave when a vertex of B(r(0))c would need to
be toppled, if any. Then carry out the second wave up to ∂B(r(1)), the third wave up to
∂B(r(2)), etc. Let F ′ denote the event that during the k-th “partial wave” defined this
way, all neighbours of the origin topple. The event in the right hand side of (5.19) implies
the event F ′. This is because the event {N > k}, in the presence of H(1) ∩ · · · ∩H(k),
implies that the origin can be toppled a k + 1-st time after the first k partial waves.

Observe that F ′ is measurable with respect to the pile inside B(r(0)), and r(0) = Lδ.
Hence, using Theorem 5.9, and ν({N = k}∆{NB(`) = k}) ≤ ε, the right hand side of
(5.19) is at most

νL
(
F ′, NB(`) = k

)
≤ ν

(
F ′, NB(`) = k

)
+ CLδβL−α ≤ ν(F ′, N = k) + ε+ CL−α+βδ

= ε+ CL−α+βδ,

where the last equality follows from the fact that F ′ ⊂ {N > k}. Due to the choice of δ,
the second term goes to 0, as L→∞. Since ε is arbitrary, we obtain statement (v) of the
Theorem.
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We can now complete the proof of Theorem 1.7.

Proof of Theorem 1.7. (i) This follows immediately from Theorem 5.1(ii)–(iii).
(ii) This follows from Theorem 5.1(i),(v).
(iii) This follows from Theorem 5.1(ii),(v), since on the event {N = k} we can approxi-

mate by cylinder events on which no vertex topples outside a fixed ball.

The following lemma completes the proof of the d = 2 case of Proposition 3.11.

Lemma 5.10. We have

ν(z ∈ Av) = lim
L→∞

νL(z ∈ Av).

Proof. For a sufficiently large number k = k(z), we have the deterministic implication

N > k ⇒ z ∈ Av,

both in Z2, and in VL for L sufficiently large. With such k, we have

ν(z ∈ Av) = ν(N ≥ k + 1) +

k∑
`=1

ν(N = `, z ∈ Av)

= lim
L→∞

νL(N ≥ k + 1) +

k∑
`=1

lim
L→∞

νL(N = `, z ∈ Av) = lim
L→∞

νL(z ∈ Av).

In the second equality, we applied Theorem 5.1(v) to the first term. In the second term,
a.s. finiteness of the last ` waves allows us to approximate {N = `, z ∈ Av} by a cylinder
event, and the equality follows.

Proof of Theorem 1.8. (i) The bound follows immediately from the Proposition 5.6.
(ii) Since on the event {N ≤ k} we have R ≤ max{R1, . . . , Rk}, this also follows

Proposition 5.6.

We now prove Theorem 1.9. The idea of the argument is that, if f(x) := Eνn(o, x)

were finite, then by invariance of ν under ao, f would have to be a bounded harmonic
function, hence constant. This is in contradiction with the structure of the avalanche.
We first give two short lemmas on which this argument will be based.

Lemma 5.11. Assuming ν(N <∞) = 1, we have ν(R <∞) = 1.

Proof. This follows easily from Theorem 1.8.

Let ao denote the operation on stable sandpiles on Z2 which maps η to (η + 1o)
◦ if

a finite stabilization is possible (i.e., if S < ∞). Then the preceding lemma implies if
ν(N < ∞) = 1, there exists a set Ω with ν(Ω) = 1 such that ao is defined on Ω. Given
such an Ω, the next lemma shows that, similarly to νL, the infinite-volume measure ν is
invariant under ao.

Lemma 5.12. Assuming ν(N < ∞) = 1, ν is invariant under ao. That is, for any
ν-integrable function f , ∫

f(aoη) ν(dη) =

∫
f(η) ν(dη) .

Proof. The argument of [15, Prop. 3.14] carries over exactly. There a similar statement
is proved in the case d ≥ 3, but the argument requires only almost sure finiteness of
avalanches.
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Proof of Theorem 1.9. If ν(N =∞) > 0, there is nothing to prove. We thus assume that
ν(N <∞) = 1. We first note that, under this assumption, the infinite-volume addition
operators are well-defined, since n(o, x) ≤ n(o, o).

The invariance statement above makes possible a version of the argument underlying
Dhar’s formula (Lemma 2.2). Assume for the sake of contradiction that EνN < ∞. In
particular, 0 ≤ En(o, x) ≤ En(o, o) <∞ for all x ∈ Z2. Since N <∞, Lemma 5.11 above
shows we can (almost surely) write

(η + 1o)
◦ = η + 1o −

∑
z∈Z2

n(o, z)∆(z, ·) ,

where the sum above has finitely many nonzero terms and ∆ is the graph Laplacian on
Z2. In particular, taking expectations and using the invariance above (which implies
Eνη(x) = Eν(η + 1o)

◦(x) for all x) gives∑
z∈Z2

Eνn(o, z)∆(z, x) = 1o(x) for all x ∈ Z2 . (5.20)

In other words, (5.20) says that f(x) = Eνn(o, x) is harmonic away from o and has
Laplacian 1 at o. Since f is bounded, recurrence of random walk implies that f is
constant. Since n(o, x) ≤ n(o, o) for all x, we have ν(n(o, x) = n(o, o) for all x ∈ Z2) = 1.
However, if all vertices topple, the avalanche is infinite, a contradiction.

6 High-dimensional radius bounds

In this section we prove the bounds for the radius of the avalanche for d ≥ 5. We
prove Theorem 1.3 in Section 6.1. We use the results of Section 6.1 in Sections 6.2 and
6.3 to prove the lower and upper bounds on the radius.

6.1 Radius bounds on transitive unimodular graphs

See [26, Chapter 8] for background on unimodularity and mass transport.

Proof of Theorem 1.3. (i) We denote Ax(a, b) = Dx(b) \ Dx(a). Consider the following
mass transport. When diam(pastx) > r, let x send unit mass distributed equally among
all vertices y ∈ pastx ∩ Ax(r, 2r). Let us write sent(x) and get(x), respectively, for the
amount sent and received by x, respectively. Then E[sent(o)] = µ

(
diam(pasto) > r

)
. On

the other hand, using Jensen’s inequality, we have

E[get(o)] =
∑

x∈Ao(r,2r)

µ
(
o ∈ pastx

)
E

[
1

|pastx ∩Ax(r, 2r)|

∣∣∣∣ o ∈ pastx

]

≥
∑

x∈Ao(r,2r)

µ
(
o ∈ pastx

)2
E

[∣∣pastx ∩Ax(r, 2r)
∣∣1o∈pastx] .

Since pastx ∩Ax(r, 2r) ⊂ To ∩Do(4r), the statement follows.
(ii) When diam(Cx) > 4r, let x send unit mass distributed equally among vertices

y ∈ Cx ∩Ax(r, 4r). Then E[sent(o)] = µ
(
diam(Co) > 4r

)
. On the other hand,

E[get(o)] =
∑

x∈Ao(r,4r)

µ
(
o ∈ Cx

)
E

[
1diam(Cx;x)>4r

|Cx ∩Ax(r, 4r)|

∣∣∣∣ o ∈ Cx

]
.

and the statement follows.
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(iii) Although WSFo is not automorphism invariant, essentially the same mass trans-
port can be used as in (ii), due to the fact that the rooted random network (To, o) is
unimodular, in the sense of [7, 1]. Let T ⊂ V be a finite tree, and x, y ∈ T . Define the
function

f(T, x, y) =

{
1y∈T |T ∩Ax(r, 4r)|−1 when diam(T ;x) > 4r;

0 otherwise.

Let x send the following mass to y:

F (x, y) =
∑
T3x,y

WSFx(Tx = T ) f(T, x, y).

Let γ ∈ Γ. It is clear that f(γT, γx, γy) = f(T, x, y), and shifting Wilson’s algorithm by
γ shows that WSFx(Tx = T ) = WSFγx(Tγx = γT ). Therefore, F is invariant under the
diagonal action of Γ, and hence

WSFo(diam(To) > 4r) =
∑
x∈V

F (o, x) =
∑
x∈V

F (x, o)

=
∑

x∈Ao(r,4r)

∑
T3x,o

diam(T ;x)>4r

WSFx(Tx = T )

|T ∩Ax(r, 4r)|
.

(6.1)

This yields the statement.

Remark 6.1. Part (iii) of Theorem 1.3 can also be deduced from part (ii) via the following
limiting procedure, the details of which we omit. (This construction was our initial
approach to the radius upper bound.) Let ω ⊂ V be independent site percolation on V
with density 0 < p � 1. Conditional on ω, let WSFω denote the measure on spanning
forests of (V,E) where each vertex in ω is “wired to infinity”, in analogy with WSFo.
The measure obtained by averaging WSFω over ω is automorphism invariant. When
x ∈ ω, let x send or not send mass according to the same rule as in part (ii), otherwise
let x send no mass. Now let p ↓ 0. Conditional on o ∈ ω we have WSFω ⇒WSFo, and
the mass transport in part (iii) can be recovered in this limit.

6.2 Radius lower bound when d ≥ 5

We prove the lower bound using the result of the previous section.

Proof of Theorem 1.2(iv), lower bound. We begin with some terminology. As in [25], let
the ‘past of a vertex x’ in a spanning tree T of GL, be the union of the connected
components of T \ {x}, which do not contain s. We denote this object by pastx(T ). Using
the characterization of last waves from Section 2.4 and the bijection for intermediate
configurations from Lemma 2.12 we have the following observation:∣∣{η ∈ RL : R(η) > r

}∣∣ ≥ ∣∣{(To, Ts) ∈ TL,o : R(To) > r, e /∈ To for some e ∼ o
}∣∣. (6.2)

Now, consider the map Ψ : TL → TL,o, which modifies a spanning tree T by deleting the
unique edge {o, e} such that e is in the future of o and {o, e} belongs to T . The following
properties of the map Ψ are immediate.

Lemma 6.2. Let U ⊂ TL. Then |Ψ(U)| ≤ |U | ≤ 2d |Ψ(U)|.
We use the lemma with U = {T ∈ TL : R(pasto(T )) > r}, for which we have

Ψ(U) ⊂
{

(To, Ts) ∈ TL,o : R(To) > r, e /∈ To for some e ∼ o
}
.
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Therefore equation (6.2) gives that∣∣{η ∈ RL : R(η) > r
}∣∣

|RL|
≥ |Ψ(U)|
|RL|

≥ 1

2d

|U |
|RL|

≥ 1

2d

∣∣{T ∈ TL : R(pasto(T )) > r
}∣∣

|TL|
.

This equation holds for any fixed r, and all L. Using the observation that for fixed r the
events at both ends are cylinder events, and taking the limit as L↗∞, we have,

ν
(
R > r

)
≥ 1

2d
WSF

(
R(pasto(T)) > r

)
. (6.3)

The proof is completed by applying Theorem 1.3(i). Using the fact that in dimensions
d ≥ 5 there is probability at least c that two independent simple random walks starting
at x do not intersect, we deduce that WSF(x ∈ pasto) ≥ c|x|2−d. On the other hand,
Wilson’s algorithm gives

E
[
|To ∩Bo(4r)|1o∈pastx

]
≤

∑
y∈Bo(4r)

∑
v∈Zd

[
G(o, v)G(y, v)G(v, x) +G(o, x)G(x, v)G(y, v)

]
≤ C r6−d.

Therefore, Theorem 1.3(i) implies WSF(R(pasto) > r) ≥ cr−2.

6.3 Radius upper bound when d ≥ 5

In this section we prove the upper bound in Theorem 1.2(iv). Taking d to be `∞
distance, Theorem 1.3(iii) yields

WSFo(diam(To) > 4r)

=
∑

x∈Zd:r<‖x‖∞≤4r

WSFx(o ∈ Tx)EWSFx

[
1diam(Tx;x)>4r

|Tx ∩ Vx(4r) \ Vx(r)|

∣∣∣∣x ∈ To

]

≤ C r2−d
∑

x∈Zd:r<‖x‖∞≤4r

EWSFx

[
1diam(Tx;x)>4r

|Bx|

∣∣∣∣x ∈ To

]
,

(6.4)

where we wrote Bx = Tx ∩ Vx(4r) \ Vx(r), and used WSFx(o ∈ Tx) ≤ G(o, x) ≤ C r2−d.
We show that for δ > 0 there exists C1 = C1(δ) such that the expectation in the right
hand side is bounded above by C1 (log r)3+δ r−4. This implies the required upper bound
on the tail of the diameter. We are going to use the following theorem of [5] on the lower
tail of the volume of WSF components. Given D ⊂ Zd, write WSFDc for the wired
spanning forest measure on the contracted graph Zd/Dc.

Theorem 6.3. [5] Let x, y ∈ Zd be such that ‖y− x‖∞ = 4r. Let D ⊂ Zd be such y ∈ ∂D,
and Vx(4r) ⊂ D. Let x ↔ y denote the event that in WSFDc the path from x to Dc

reaches Dc via an edge incident to y. There exist constants C, c > 0 independent of D
and r, such that for all λ > 0 we have

WSFDc
(
|Tx ∩ Vx(2r) \ Vx(r)| < λr4

∣∣∣x↔ y
)
≤ C exp(−cλ−1/3).

We use Theorem 6.3 to establish the following regularity estimate. Fix a positive
constant δ > 0. Let us call Tx bad, if diam(Tx) > 4r, but |Tx ∩ Vx(2r) \ Vx(r)| <
(log r)−3−δ r4. We show the following lemma.

Lemma 6.4. Let x ∈ Vo(4r) \ Vo(r). We have

WSFx(Tx is bad) ≤ C exp(−c(log r)1+δ/3).
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Proof. If diam(Tx) > 4r, then there exists y with ‖y − x‖∞ = 4r such that y ∈ Tx.
Therefore,

WSFx(Tx is bad) ≤
∑

y:‖y−x‖∞=4r

WSFx(y ∈ Tx)WSFx(Tx is bad | y ∈ Tx).

The term WSFx(y ∈ Tx) ≤ C r2−d, and there are O(rd−1) terms. On the other hand, we
have WSFx(Tx = T | y ∈ Tx) = WSFy(Tx = T |x ∈ Ty). This follows from the fact that
LERW from y to x has the same distribution as LERW from x to y, and hence we can use
these walks in the first step of Wilson’s algorithm on the two sides. See [24, Corollary
11.2.2] for “reversibility” of LERW. Hence Theorem 6.3 with D = Zd \ {y} implies that

WSFx(Tx is bad | y ∈ Tx) = WSFy(Tx is bad |x ∈ Ty) ≤ C exp(−c (log r)1+δ/3).

The statement of the lemma follows.

Lemma 6.5. We have

EWSFx

[
1diam(Tx;x)>4r

|Bx|

∣∣∣∣∣ o ∈ Tx

]
≤ C (log r)3+δ

r4
.

Proof. When Tx is bad, we use that |Bx| ≥ 1, and hence due to Lemma 6.4 we have

EWSFx

[
1diam(Tx;x)>4r 1Tx is bad

|Bx|

∣∣∣∣∣ o ∈ Tx

]
≤WSFx(Tx is bad, o ∈ Tx)C rd−2

≤WSFx(Tx is bad)C rd−2

≤ C exp(−c(log r)1+δ/3)rd−2 = o(r−4).

Therefore it is enough to consider the contribution when Tx is not bad. When this occurs,
we have |Bx| ≥ (log r)−3−δr4, and hence

EWSFx

[
1diam(Tx;x)>4r 1Tx is not bad

|Bx|

∣∣∣∣∣ o ∈ Tx

]
≤ (log r)3+δ

r4
.

This proves the claim.

We can now complete the proof of the upper bound in Theorem 1.2(iv). Lemma 6.5
implies that the right hand side of (6.4) is at most

C rd r2−d (log r)3+δ r−4 = C (log r)3+δ r−2.

This completes the proof.

7 Bounds on the size

We now prove Theorem 1.5. Sections 7.1, 7.2 and 7.3 consider low dimensions, and
Sections 7.4, 7.5 and 7.6 the case d ≥ 5.

7.1 Upper bounds on the size when d = 3, 4

Proof of Theorem 1.5(ii)–(iii), upper bounds. The claimed upper bounds on ν(|Av| ≥ t)

follow immediately from Theorem 1.2, via the trivial estimate ν(|Av| ≥ t) ≤ ν(R >

c(d) t1/d). In order to obtain an upper bound on the tail of S, fix some k ≥ 1. Recalling
that N denotes the number of waves, we have

ν(S > t) = ν(S > t, N > k) + ν(S > t, N ≤ k). (7.1)
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Recalling that d ≥ 3, we can upper bound the first term in the expression above by

ν(N > k) ≤ EνN k−1 ≤ C k−1.

Next, writing Sj for the size of the j-th wave, if S > t and N ≤ k, then we have Sj > t/k

for some 1 ≤ j ≤ N . Hence,

ν(S > t) ≤ C k−1 + ν(Sj > t/k, for some j ≤ N)

≤ C k−1 + C ν(R > c(d)(t/k)1/d).

Due to Theorem 1.2(ii)–(iii), we get the bounds:

ν(S > t) ≤

{
C k−1 + C t−1/18 k1/18 when d = 3;

C k−1 + C t−1/16 k1/16 when d = 4.

Optimizing the choice of k yields:

ν(S > t) ≤

{
C t−1/19 when d = 3;

C t−1/17 when d = 4.

7.2 Lower bounds on the size when 2 ≤ d ≤ 4

We fix z = r e1, where r = t1/d, and write u = ‖z‖/10. Recall that in the course of the
proof of Lemma 3.3 in Section 3, we showed that for L ≥ 100 ‖z‖, and e a neighbour of
the origin, and with π = LSe[0, σL], we have

P
(
π ∩ Vz(u) = ∅, ξSzo < ξS

z

π

)
≥

{
cP(Γz,L) log |z| when d = 2;

(2d)−1P(Γz,L) when d = 3, 4.
(7.2)

Let us write Fz,L for the event in the left hand side of (7.2). Our goal will be to show that
conditional on the event Fz,L (when z is in the last wave), a large number of vertices
in Vz(u) are also in the last wave, with probability bounded away from 0. We will use a
second moment argument to prove this, that is based on Proposition 7.1 below.

Let u′ = (1 − ε)u, where we are going to choose 0 < ε < 1/4 later. Consider the
following partial cycle popping in GL, defined in three stages; see [35] and [26] for
background on cycle popping. In the first stage, reveal the LERW π started at e and
ending at s. In the second stage, reveal a LERW started at z, ending on hitting π ∪ {o}.
In the third stage, pop all cycles that are entirely contained in Vz(u) that can be popped.
Condition on the event Fz,L, that is measurable with respect to the result of the first two
stages. Let π′ = LSz[0, ξo], and let π′(u′) be the portion of π′ from z to the first exit from
Vz(u

′). Let

I(x) = {stage three reveals a path from x to π′ ∩ Vz(u)}, x ∈ Vz(u/2).

For each x ∈ Vz(u/2) for which I(x) occurs, let p(x) ∈ π′ ∩ Vz(u) be the point where the
revealed path first meets π′ ∩ Vz(u). For technical reasons (that are only required for
our argument when d = 4), we also define:

J(x) =
{
ξ
Sp(x)
π′(u′) < σ

Sp(x)
Vz(u)

}
.

Let
Y = Yu,ε =

∑
x∈Vz(u/2)

1I(x) 1J(x).

The following proposition states bounds on the first and second moments of Y .
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Proposition 7.1.
There exist 0 < ε < 1/4, c1 > 0 and C such that the following hold.
(i) When d = 2, we have

E(Yu,ε |Fz,L) ≥ c1 u2 and E(Y 2
u,ε |Fz,L) ≤ C u4.

(ii) When d = 3, we have

E(Yu,ε |Fz,L) ≥ c1 u3 and E(Y 2
u,ε |Fz,L) ≤ C u6.

(iii) When d = 4, we have

E(Yu,ε |Fz,L) ≥ c1 u4 (log u)−1 and E(Y 2
u,ε |Fz,L) ≤ C u8 (log u)−2.

Proof of Theorem 1.5(i)–(iii); lower bounds; assuming Proposition 7.1.
Since on the event Fz,L, we have π′ ⊂ TL,o, we have |TL,o| ≥ Y . Hence for any t′ > 0 we
have

νL(|Av| ≥ t′) ≥ (2d)−1
µL,o(z ∈ TL,o, e 6∈ TL,o, |TL,o| ≥ t′)

µL,o(e 6∈ TL,o)

≥ (2d)−1
P(Fz,L)

Pe(σL < ξo)
P(Y ≥ t′ |Fz,L).

(7.3)

Let us set t′ = (1/2) c1 u
2 in d = 2; t′ = (1/2) c1 u

3 in d = 3, and t′ = (1/2) c1 u
4 (log u)−1

in d = 4. The Paley-Zygmund inequality implies that

P(Y ≥ t′ |Fz,L) ≥ 1

4

c21
C
. (7.4)

Letting L→∞, we obtain the required lower bounds from (7.3), (7.4), (7.2), Lemma 3.9,
and the dimension-dependent estimates in Sections 3.3.1–3.3.3.

Proof of Proposition 7.1(i),(ii).
The upper bounds are immediate from Yu,ε ≤ |Vz(u/2)|.

For the lower bounds, using the strong Markov property of Sx at time ξπ′ , when Sx is
at the point p(x), we have

P(I(x) ∩ J(x) |Fz,L) = Px
(
ξπ′ ≤ ξπ′(u′) < σVz(u)

)
= Px

(
ξπ′(u′) < σVz(u)

)
.

Let π′′ := LSz[0, σVz(u)], and let π′′(u′) be the portion of π′′ up to its first exit from Vz(u
′).

Due to Lemma 3.4, there exists c2 = c2(ε), such that the distribution of π′(u′) is bounded
below by c2 times the distribution of π′′(u′). This implies

Px
(
ξπ′(u′) < σVz(u)

)
≥ c2Px

(
ξπ′′(u′) < σVz(u)

)
. (7.5)

We lower bound the probability in the right hand side of (7.5) separately in d = 2, 3.
When d = 2, we have

Px
(
ξπ′′(u′) < σVz(u)

)
≥ Px (Sx completes a loop around z before exiting Vz(u

′)) ≥ c

with some constant c > 0. This follows from the invariance principle; see for example
[24, Exercise 3.4]. Summing over x ∈ Vz(u/2) yields the required lower bound.

When d = 3, we have

Px
(
ξπ′′(u′) < σVz(u)

)
≥ Px

(
ξπ′′ < σVz(u)

)
− Px

(
σVz(u′) ≤ ξπ′′\π′′(u′) < σVz(u)

)
. (7.6)
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A result of Lyons, Peres and Schramm [27, Lemma 1.2] states that for two independent
copies of the same transient Markov chain, the probability for one path to intersect the
loop-erasure of the other is at least a universal constant c3 > 0 times the probability
that the Markov chain paths themselves intersect. Applying this to the random walks
Sz[0, σVz(u)] and Sx[0, σVz(u)], we have

Px
(
ξπ′′ < σVz(u)

)
≥ c3P

(
Sx[0, σVz(u)] ∩ Sz[0, σVz(u)] 6= ∅

)
. (7.7)

The right hand side in (7.7) is bounded below by a constant c3 > 0, independent of u. This
can be seen by arguments due to Lawler; by adapting the proof of [23, Theorem 3.3.2].

It remains to bound the negative term in (7.6). For this we write

Px
(
σVz(u′) ≤ ξπ′′\π′′(u′) < σVz(u)

)
≤ P

(
Sx[σVz(u′), σVz(u)] ∩ Sz[σVz(u′), σVz(u)] 6= ∅

)
. (7.8)

Consider independent Brownian motions, starting at x/u and z/u. Since the paths are
continuous, and with probability 1 they exit the cube (z/u) + [−1, 1]3 at different points,
the invariance principle implies that the probability in the right hand side of (7.8) goes
to 0 uniformly in u ≥ (1/ε), as ε→ 0. Therefore, we can fix ε > 0 such that the right hand
side of (7.8) is at most c3/2, uniformly in u. With such a choice of ε, the first moment is
bounded below by c u3.

7.3 Proof of the moment bounds in d = 4

7.3.1 Proof of the first moment bounds

We begin with the first moment lower bound – that is, the lower bound in Proposi-
tion 7.1(iii). The line of reasoning leading to (7.6) and (7.7) above holds also for d = 4,
and we take these as our starting point. We next establish an appropriate analogue of
the constant lower bound given above for (7.6). We restrict to x /∈ Vz(u/4) for simplicity.

Lemma 7.2. There is a c > 0 such that, uniformly in z and x ∈ Vz(u/2) \ Vz(u/4),

P
(
Sx[0, σVz(u)] ∩ Sz[0, σVz(u)] 6= ∅

)
≥ c/ log u .

Proof. Fix such an x, and consider the number of intersections

Jx :=

σVz(u)∑
k=0

σVz(u)∑
`=0

1Sx(k)=Sz(`) . (7.9)

Taking expectations and using Theorem 2.13 gives a c > 0 such that EJx ≥ c.
On the other hand, EJ2

x is of order at most log u. By a computation similar to [23,
Theorem 3.3.2; lower bounds], we have

EJ2
x ≤ 2

∑
y1, y2∈Vz(u)

[
G(x, y1)G(z, y1)G(y1, y2)2 +G(x, y1)G(z, y2)G(y1, y2)2

]
.

Each term above gives a contribution of order log u; we discuss in detail only the first
term. By summing first over y2 and using Theorem 2.13(ii) (taking the n→∞ limit in
this theorem), we get an upper bound of order

log u
∑

y1∈Vz(u)

G(x, y1)G(z, y1) .

For each y1, either |x − y1| or |z − y1| is at least u/8 since |x − z| is at least u/4. Thus
either G(x, y1) or G(z, y1) is at most Cu−2. Summing the other factor over y1 gives a
factor of order u2, giving the required upper bound.

Using the second moment method and noting that Sx and Sz intersect if Jx > 0

completes the proof.
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It remains to control the negative term of (7.6). This will be accomplished using the
following lemma:

Lemma 7.3. There exists a constant C3 > 0 such that, uniformly in 0 < ε < 1/2 and u

large (how large depends on ε), and uniformly in y ∈ Vz(u) \ Vz(u′),

P
(
Sy[0, σVz(u)] ∩ Sz[0, σVz(u)] 6= ∅

)
≤ C3ε/ log u .

Proof of Proposition 7.1(iii), lower bound; assuming Lemma 7.3. Note that

Px
(
σVz(u′) ≤ ξπ′′ < σVz(u)

)
≤ P

(
Sx[σVz(u′), σVz(u)] ∩ Sz[0, σVz(u)] 6= ∅

)
(7.10)

≤ sup
y∈∂Vz(u′)

P
(
Sy[0, σVz(u)] ∩ Sz[0, σVz(u)] 6= ∅

)
.

The above, combined with Lemma 7.3, allows the choice of an appropriately small ε to
give a uniform lower bound of cu4/ log u for the right-hand side of (7.6), completing the
proof of the first moment of Prop. 7.1(iii).

We turn to the proof of Lemma 7.3, which is an adaptation of the proof of [23,
Theorem 3.3.2; d = 4 upper bound]. Let u′′ = (1 + ε)u. To avoid complications introduced
by intersections near the boundary, consider the extended number of intersections

J ′x :=

σVx(u′′)∑
k=0

σVz(u′′)∑
`=0

1Sx(k)=Sz(`) , x ∈ Vz(u) .

Lemma 7.4. There is C such that, uniformly in ε < 1/2 and z, and in x ∈ Vz(u) \ Vz(u′),
we have

EJ ′x ≤ C ε .

Proof. We have

EJ ′x ≤
∑

y∈Vz(u′′)

G(z, y)GVz(u′′)(x, y)

=
∑

y∈Vx(u/10)

G(z, y)GVz(u′′)(x, y) +
∑

y∈Vz(u′′)\Vx(u/10)

G(z, y)GVz(u′′)(x, y) . (7.11)

Let y ∈ Vz(u′′), and write ‖x− y‖ = r. A gambler’s ruin estimate yields

GVz(u′′)(x, y) ≤ Px
(
σVx(r/2) < σVz(u′′)

)
sup

a∈Vx(r/2)
G(a, y) ≤ C min

{εu
r
, 1
}
r−2. (7.12)

Consider the first term of (7.11). Using ‖z − y‖ ≥ u/2 and (7.12), this term is at most

C

u2

 εu∑
r=1

(
r3 · 1

r2

)
+

u/10∑
r=εu

εu

r
· r3 · 1

r2

 ≤ Cε ,
The second term, using (7.12) again, is bounded by C (εu/u3)

∑
y∈Vz(u′′)G(y, z) ≤ Cε.

Recall the definition of Jx from (7.9). We show that, conditional on {Jx > 0}, the
expectation of J ′x is at least c log u. This gives the desired upper bound for P(Jx > 0).

Lemma 7.5. We can find r > 0 such that, uniformly in 0 < ε < 1/2, u such that εu > u1/2,
and x ∈ ∂Vz(u′) such that x is at least distance u/10 from all but one face of Vz(u), we
have

E[J ′x | Jx > 0] ≥ r log u . (7.13)
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Proof. We follow a similar argument to the proofs of [24, Proposition 10.1.1] and [23,
Theorem 3.3.2; d = 4 upper bound]. On {Jx > 0}, there is a lexicographically first
intersection in Vz(u). Specifically, we can define `1 := inf{j : Sx(j) ∈ Sz[0, σVz(u)]∩Vz(u)}
and `2 := inf{j : Sz(j) = Sx(`1)} and note that each `i is smaller than σVz(u). Using the
strong Markov property of Sx at time `1, conditionally on Sz[0, σVz(u)] and Sx[0, `1] the
expected value of J ′x is bounded below by

E
[
J ′x | Sz[0, σVz(u)], Sx[0, `1]

]
≥
σSz
Vz(u′′)∑
i=`2

GVz(u′′)(Sz(`2), Sz(i))

≥ c
σVz(

√
u)∑

i=0

G(z, Sz(i))
d
= c

σV (
√
u)∑

i=0

G(o, So(i)) .

Here we have used the fact that GVz(u′′)(a, Sz(`2)) ≥ cG(a, Sz(`2)) for a ∈ VSz(`2)(u1/2)

along with translation invariance, and
d
= denotes equality in distribution.

The conclusion of Lemma 7.5 follows immediately from the above, using the following
proposition (along with an a priori power law lower bound for P(Jx > 0)):

Proposition 7.6 ([24, Lemma 10.1.2]). For every α > 0, there exist c, r such that for all
n sufficiently large,

P

σn−1∑
j=0

G(o, So(j)) ≤ r log n

 ≤ cn−α .
Proof of Lemma 7.3. Comparing Lemma 7.5, and Lemma 7.4, the claim nearly follows,
except that y ∈ ∂Vz(u′) in (7.10) may be closer than distance u/10 to more than one face
of Vz(u). However, for such y we can replace Vz(u) by a larger box V ′ ⊃ Vz(u), whose
diameter is still of order u, in such a way that y is at distance εu from the boundary of V ′,
and y is bounded away from the corners of V ′. Since in V ′ the intersection probability is
larger than in Vz(u), the claim follows.

The above completes the proof of the lower bound in Proposition 7.1(iii).

7.3.2 Proof of the second moment bounds

Here we prove the second moment bound in Proposition 7.1 (iii). We first introduce
some notation. We will work with dyadic cubes

∏4
i=1[ai2

k, (ai + 1)2k) ∩ Z4, where
a1, a2, a3, a4 ∈ Z, and k ≥ 1. We say that such a cube is of scale k. If Q is dyadic cube,
we denote by Q′, respectively, Q′′, the cubes that are concentric with Q and have twice,
respectively, four times, the side-length. Given v ∈ Z4, we denote by Q(v; k) the unique
dyadic cube of scale k containing v.

The following inequality recasts the statement of Lemma 7.3. Let Q be a dyadic cube
of scale k, p ∈ Q, q ∈ Q′′, such that dist∞(q, ∂Q′′) = ε2k. There is a constant C such that

P (Sq[0, σQ′′ ] ∩ Sp[0,∞) 6= ∅) ≤ C ε

k
. (7.14)

Fix x, y ∈ Bz(u/2) and assume that I(x) ∩ J(x) ∩ I(y) ∩ J(y) occurs. We distinguish the
following two cases:

(I) the paths from x and y to π′ do not meet;

(II) the paths from x and y to π′ meet at a vertex q(x, y) 6∈ π′.
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In Case (I), using that the events J(x) and J(y) occur, let v, w ∈ π′(u′), respectively, be
the points where Sp(x) and Sp(y), respectively, first hit π′(u′). (Note that v and w may
coincide.) It follows that

P(Case (I)) ≤ P
(
∃v, w ∈ π′(u′) : ξSxv < σSxVz(u), ξ

Sy
w < σ

Sy
Vz(u)

)
.

Due to Lemma 3.4, there exists C1 = C1(ε), such that the distribution of π′(u′) is bounded
above by C1 times the distribution of π′′(u′). Therefore, we have

P(Case (I)) ≤ C1P
(
∃v, w ∈ π′′(u′) : ξSxv < σSxVz(u), ξ

Sy
w < σ

Sy
Vz(u)

)
.

In Case (II), we let v = q(x, y), and noting p(x) = p(y), let w be the point where Sp(x) first
hits π′(u′). Again bounding above by π′′(u′), it follows that

P(Case (II)) ≤ C1P
(
∃w ∈ π′′(u′), v ∈ Vz(u) : ξSxv < ξSxw < σSxVz(u), ξ

Sy
v < σ

Sy
Vz(u)

)
.

We bound the probabilities of Cases (I) and (II) separately. The idea of the bound is not
to sum over v and w, but rather, sum over the choice of suitable dyadic cubes that v and
w fall into, and use the bound (7.14) for the probability of random walk intersections.
Throughout, we write K for the integer such that 2K−1 < u ≤ 2K .

Case (I). We may assume without loss of generality that the walk Sz generating π′′

hits v before w, as the other case follows by a symmetric argument. For convenience,
we assume that ‖z − v‖, ‖v − w‖, ‖x− v‖, ‖y − w‖ are all at least 32. At the end of the
proof we comment on how to handle the remaining configurations of points. We define
the following dyadic scales and cubes:

kv := max
{
k ≥ 1 : 2k+4 ≤ min{‖v − z‖∞, ‖v − w‖∞, ‖v − x‖∞}

}
kw := max

{
k ≥ 1 : 2k+4 ≤ min{‖w − v‖∞, ‖w − y‖∞}

}
kvw := max

{
k ≥ 1 : 2k+4 ≤ ‖v − w‖∞

}
Q(v) := Q(v; kv) Q(w) = Q(w; kw).

We also let

kz := max
{
k ≥ 1 : 2k+4 ≤ ‖z − v‖∞

}
kx := max

{
k ≥ 1 : 2k+4 ≤ ‖x− v‖∞

}
ky := max

{
k ≥ 1 : 2k+4 ≤ ‖y − w‖∞

}
.

(7.15)

A sketch of the argument is as follows: the walks Sz and Sx both have to hit Q′(v), and
then they intersect at a point of Q(v). Following the intersection, the walk Sz has to
hit Q′(w), and so does the walk Sy. These two walks then intersect at a point of Q(w).
Breaking up the paths into pieces, the various hitting and intersection events will give
us the estimate:

C

(
2kv
)2

(2kz )
2

(
2kv
)2

(2kx)
2

1

log 2kv

(
2kw
)2

‖w − v‖2∞

(
2kw
)2

(2ky )
2

1

log 2kw
. (7.16)

We need to sum this estimate over the choices of x and y, and the choices of the boxes
Q(v) and Q(w). In the summation we will need to distinguish a number of sub-cases
according to the relative sizes of the scales kv, kw, kz, kx, ky.

We first establish the bound in (7.16). This is provided by the following lemma.

Lemma 7.7. (Probability bound for Case (I)) Let R1 and R2 be dyadic boxes of scales
k1 and k2, and let x, y ∈ Bz(u/2) be points such that:
(i) R′′1 and R′′2 are disjoint;
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(ii) dist(z,R′′1 ),dist(x,R′′1 ) ≥ 2k1 ;
(iii) dist(y,R′′2 ) ≥ 2k2 .
Define k′x, k

′
y, k
′
z by the formulas (7.15) where Q(v) and Q(w) are replaced by R1 and R2,

respectively. Then

P [∃v ∈ R1, ∃w ∈ R2 s.t. Case (I)]

≤ C
(
2k1
)2

(2k
′
z )

2

(
2k1
)2

(2k
′
x)

2

1

k1

(
2k2
)2

dist∞(R1, R2)2

(
2k2
)2(

2k
′
y
)2 1

k2
.

(7.17)

Proof. We need to be careful about the event when the walk Sz first hits R′1, leaves R′′1
and returns, before intersecting the path of Sx. The following definitions take care of
this possibility by introducing the variables `1 and `2 that count crossings from ∂R′′1 to
∂R′1 and from ∂R′′2 to ∂R′2, respectively. The definitions are somewhat tedious to write
down; however, estimating the resulting probabilities is then straightforward using the
strong Markov property. Given `1, `2 ≥ 0, let

T`1 = inf{n ≥ ξSzR′1 : Sz[ξR′1 , n] has made at least `1 crossings from ∂R′′1 to R′1}

σ`1,R′′1 = inf{n ≥ T`1 : Sz(n) 6∈ R′′1}
ξ`1,R′2 = inf{n ≥ σ`1,R′′1 : Sz ∈ R′2}
T`1,`2 = inf{n ≥ ξ`1,R′2 : Sz[ξ`1,R′2 , n] has made at least `2 crossings from ∂R′′2 to R′2}

σ`1,`2,R′′2 = inf{n ≥ T`1,`2 : Sz(n) 6∈ R′′2}.

On the event in the left hand side of (7.17), the following events occur for some integers
`1, `2 ≥ 0:

(i) ξSzR′1
<∞ (v) ξS

z

`1,R′2
<∞

(ii) ξSxR1
<∞ (vi) ξ

Sy
R2

<∞
(iii) T`1 <∞ (vii) T`1,`2 <∞
(iv) Sz[T`1 , σ`1,R′′1 ] ∩ Sx[ξR1

,∞) 6= ∅ (viii) Sz[T`1,`2 , σ`1,`2,R′′2 ] ∩ Sy[ξR2
,∞) 6= ∅

We bound the probability that (i)–(viii) occur, with each estimate conditional on the
previous ones. The probability of (i)–(ii) is bounded by C (2k1/2k

′
z )2 (2k1/2k

′
x)2, since d = 4.

Using the strong Markov property of Sz at times ξR
′
1 , T1, . . . , T`1−1, we have that (iii)

occurs with conditional probability ≤ c`11 with some 0 < c1 < 1. Since Sz(T`1) ∈ ∂R′1 and
Sx(ξR1) ∈ ∂R′′1 are at distance of order 2k1 from each other, the conditional probability
of (iv) is bounded by C/(log 2k1) = C ′/k1. The probability of (v)-(vi) is bounded by
C (2k2/dist∞(R1, R2))2 (2k2/2k

′
y )2. The probability of (vii) is bounded by c`21 . Finally, the

probability of (viii) is bounded by C/k2, again due to (7.14). Multiplying the bounds and
summing over 1 ≤ `1, `2 <∞ yields the lemma.

We continue with the bound for Case (I). We break up Case (I) into the following
sub-cases (that partially overlap, but together cover all possibilities):

(I-1) kv < kz, kx and kw < ky; (I-4) kv = kz ≤ kx and kw = ky;

(I-2) kv < kz, kx and kw = ky; (I-5) kv = kx ≤ kz and kw < ky;

(I-3) kv = kz ≤ kx and kw < ky; (I-6) kv = kx ≤ kz and kw = ky.

Fixing the scales kv, kw, kz, kx, ky, we bound the number of choices of x, y and the dyadic
boxes containing v and w in each case separately, and apply Lemma 7.7. Then we sum
over the scales allowed in each sub-case. A depiction of case (I-1) may be found in
Figure 2.
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z
v

w

x

y

Figure 2: Depiction of sub-case (I-1). The walk Sz is depicted as a solid line; walks from
x and y are dashed. Sx and Sz intersect at v, which is surrounded by boxes Q(v), Q′(v),
and Q′′(v). Walks Sz and Sy intersect at w (boxes not shown). Note that in this case, the
factor limiting the size of Q(v) is the proximity of the vertex w. After intersection, Sz
terminates upon intersecting the sink s (i.e., the boundary of the large square).

Sub-case (I-1). The number of choices for Q(v) is of order 24kz/24kv . The number of
choices for x is of order 24kx . Given Q(v), the number of choices for Q(w) is O(1) (note
that kw = kv), and the number of choices for y is of order 24ky . Mutiplying these bound
together, and applying Lemma 7.7 to Sub-case (I-1), we get the estimate:

24kz

24kv
24kx 24ky

22kv

22kz
22kv

22kx
1

kv

22kv

22kv
22kv

22ky
1

kv
= 22kz 22kx 22ky

22kv

k2v
.

Summing this bound for fixed kv over kx, ky, kz such that kv < kx, ky, kz ≤ K, and then
over 1 ≤ kv ≤ K, we get

K∑
kv=1

(
22K

)3 22kv

k2v
≤ C

(
2K
)8

K2
= C

u8

(log u)2
.

Sub-case (I-2). The number of choices for Q(v) is of order 24kz/24kv . The number of
choices for x is of order 24kx . Given Q(v), the number of choices for Q(w) is of order
24kv/24kw , and the number of choices for y is of order 24kw . Lemma 7.7 now gives:

24kz

24kv
24kx

24kv

24kw
24kw

22kv

22kz
22kv

22kx
1

kv

22kw

22kv
1

kw
= 22kz 22kx

22kv

kv

22kw

kw
.

We sum over kv < kx, kz ≤ K for fixed 1 ≤ kw ≤ kv, then over 1 ≤ kw ≤ kv ≤ K. This
yields Cu8/(log u)2 and completes the estimate in Sub-case (I-2).

The other four sub-cases are handled similarly, and we only state the number of
choices, the probability estimate, and the range of summations over the scales.
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Choices Probability Summed over

I-3 24kx 24ky
22kv

22kx

1

kv

22kw

22ky

1

kw

kx such that kx ≥ kv;
ky such that ky > kw; and
kv, kw such that 1 ≤ kv ≤ kw ≤ K

I-4 24kx
24kvw

24kw
24kw

22kv

22kx

1

kv

22kw

22kvw

1

kw

kx such that kx ≥ kv;
kvw such that kvw ≥ kw; and
kv, kw such that 1 ≤ kv, kw ≤ K

I-5
24kz

24kv
24kv 24ky

22kv

22kz

1

kv

22kw

22ky

1

kw

kz such that kz ≥ kv;
ky such that ky > kw; and
kv, kw such that 1 ≤ kv ≤ kw ≤ K

I-6
24kz

24kv
24kv

24kvw

24kw
24kw

22kv

22kz

1

kv

22kw

22kvw

1

kw

kz such that kz ≥ kv;
kvw such that kvw ≥ kw; and
kv, kw such that 1 ≤ kv, kw ≤ K

Case (II). We will use notation similar to Case (I), but with somewhat different
meaning. Let

kv := max
{
k ≥ 1 : 2k+4 ≤ min{‖v − x‖∞, ‖v − y‖∞, ‖v − w‖∞}

}
kw := max

{
k ≥ 1 : 2k+4 ≤ min{‖w − v‖∞, ‖w − z‖∞}

}
kvw := max

{
k ≥ 1 : 2k+4 ≤ ‖v − w‖∞

}
Q(v) := Q(v; kv) Q(w) = Q(w; kw).

We also let

kz := max
{
k ≥ 1 : 2k+4 ≤ ‖z − w‖∞

}
kx := max

{
k ≥ 1 : 2k+4 ≤ ‖x− v‖∞

}
ky := max

{
k ≥ 1 : 2k+4 ≤ ‖y − v‖∞

}
.

(7.18)

The following lemma provides the probability bound in Case (II), and is proved similarly
to Lemma 7.7.

Lemma 7.8. (Probability bound for Case (II)) Let R1 and R2 be dyadic boxes of
scales k1 and k2, and let x, y ∈ Bz(u/2) be points such that:
(i) R′′1 and R′′2 are disjoint;
(ii) dist(x,R′′1 ),dist(y,R′′1 ) ≥ 2k1 ;
(iii) dist(z,R′′2 ) ≥ 2k2 .
Define k′x, k

′
y, k
′
z by the formulas (7.18) where Q(v) and Q(w) are replaced by R1 and R2,

respectively. Then

P [∃v ∈ R1, ∃w ∈ R2 s.t. Case (II)] ≤ C
(
2k1
)2

(2k
′
x)

2

(
2k1
)2(

2k
′
y
)2 1

k1

(
2k2
)2

dist∞(R1, R2)2

(
2k2
)2

(2k
′
z )

2

1

k2
.

(7.19)

We now list the sub-cases to be considered. These are:

(II-1) kv < kx, ky and kw < kz; (II-3) kv = kx ≤ ky and kw < kz;

(II-2) kv < kx, ky and kw = kz; (II-4) kv = kx ≤ ky and kw = kz.

Interchanging the roles of x and y in (II-3) and (II-4) yields the remaining configurations
not covered.
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Choices Probability Summed over

II-1
24kz

24kv
24kx 24ky

22kv

22kx

22kv

22ky

1

kv

22kv

22kz

1

kv

kx, ky, kz > kv for fixed kv;
and then over 1 ≤ kv ≤ K

II-2 24kx 24ky
22kv

22kx

22kv

22ky

1

kv

22kw

22kv

1

kw

kx, ky > kv for fixed kv, kw;
and then over 1 ≤ kw ≤ kv ≤ K

II-3
24kz

24kw

24kw

24kv
24kv 24ky

22kv

22ky

1

kv

22kw

22kz

1

kw

ky > kv and kz > kw for
fixed kv, kw; and then
over 1 ≤ kv ≤ kw ≤ K

II-4
24kvw

24kv
24kv 24ky

22kv

22ky

1

kv

22kw

22kvw

1

kw

ky > kv and kvw > kw for
fixed kv, kw; and then
over 1 ≤ kv, kw ≤ K

This completes the analysis of Case (II).

It remains to comment on configurations where one of the `∞ distances is < 32. In
these cases, we can replace the box Q(v) and/or Q(w) by the point v and/or w itself, and
omit the random variables T`1 , etc. The combinatorial bounds, as well as the probability
bounds still hold with kv = 1 and/or kw = 1, and this completes the proof of the upper
bound in Proposition 7.1 (iii).

7.4 The size of the past in invariant forests

Proof of Theorem 1.6. Recall that Ax(a, b) = Dx(b) \Dx(a). When |pastx ∩Dx(2r)| > t,
let x send mass 1 distributed equally among the vertices z ∈ pastx ∩Ax(r, (3/2)r). Then
E[sent(o)] ≤ µ

(
|pasto| > t

)
. On the other hand, using Jensen’s inequality, we have

E[get(o)] ≥
∑

x∈Ao(r,(3/2)r)

E

[
1{o∈pastx}1|pastx∩Dx(2r)|>t

|pastx ∩Ax(r, (3/2)r)|

]

≥
∑

x∈Ao(r,(3/2)r)

E

[
1{o∈pastx}1|T̃o(r/2)|>t

|To(4r)|

]

≥
∑

x∈Ao(r,(3/2)r)

µ
(
o ∈ pastx, |T̃o(r/2)| > t

)
E
[
|To(4r)|

∣∣∣ o ∈ pastx, |T̃o(r/2)| > t
]

≥
∑

x∈Ao(r,(3/2)r)

µ
(
o ∈ pastx, |T̃o(r/2)| > t

)2
E
[
|To(4r)|1{o∈pastx}

] .

(7.20)

This completes the proof.

7.5 Lower bounds: d ≥ 5

We now apply Theorem 1.6 to the measure WSF.

Proof of Theorem 1.5(iv); lower bound. Let t = δ r4, where δ > 0 will be chosen in course
of the proof. Wilson’s algorithm yields:

E
[
|To(4r)|1{o∈pastx}

]
≤

∑
y∈Bo(4r)

∑
u∈Zd

[
WSF(o ∈ pastu, u ∈ pastx, y ∈ pastu)

+ WSF(o ∈ pastx, x ∈ pastu, y ∈ pastu)
]
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≤
∑

y∈Bo(4r)

∑
u∈Zd

[
G(o, u)G(u, x)G(y, u) +G(o, x)G(x, u)G(y, u)

]
≤ Cr6−d. (7.21)

Write futurex = {y ∈ Zd : x ∈ pasty}. Using Cauchy-Schwarz we have∑
x∈Ao(r,(3/2)r)

WSF(o ∈ pastx, |T̃o(r/2)| > t)2

≥ cr−d
 ∑
x∈Ao(r,(3/2)r)

WSF(o ∈ pastx, |T̃o(r/2)| > t)

2

= c r−dE
[
|futureo ∩Ao(r, (3/2)r)|1|T̃0(r/2)|>t

]2
.

(7.22)

We have E
[
|T̃o(r/2)|

]
≥ c r4, due to a result of Pemantle [31, Lemma 3.1], and using

Wilson’s algorithm, we have

E
[
|T̃o(r/2)|2

]
≤

∑
u,y,w∈Bo(r/2)

G(o, w)G(w, u)G(w, y) ≤ C r8.

This yields WSF(|T̃o(r/2)| > t) ≥ c1 > 0 for some c1 > 0 and sufficiently small δ. Fix such
δ. We get a lower bound on |futureo ∩Ao(r, (3/2)r)| by considering the number of loop-
free points of the random walk So generating the path from o to∞. A result of Lawler
says that with probability 1, the fraction of loop-free points is asymptotically a positive
constant in d ≥ 5; see [23, Section 7.7]. Therefore, we can find ε > 0 small enough,
such that WSF(|futureo ∩Ao(r, (3/2)r)| ≥ εr2) ≥ 1− c1/2. With these choices of δ and ε,
the right hand side of (7.22) is at least r−d ((c1/2) ε r2)2 = c2 r

4−d. Substituting this and
(7.21) into the bound given by Theorem 1.6 we obtain WSF

(
|pasto| ≥ t

)
≥ c r−2 = c′t−1/2.

As in Section 6.2, we have

ν(|Av| > t) ≥ 1

2d
WSF(|pasto| > t),

and the claim of the theorem follows.

7.6 Upper bounds: d ≥ 5

Unlike the case of the radius, an upper bound on the size of waves does not yield
directly an upper bound on the size of the avalanche. However, we can still get a power
law upper bound, that we prove in this section.

Proof of theorem 1.5(iv); upper bound. Fix some k ≥ 1. Recalling that N denotes the
number of waves, we have

ν(S > t) = ν(S > t, N > k) + ν(S > t, N ≤ k). (7.23)

From Lemma 2.3 we have N ≤ R, and we can upper bound the first term in the
expression above by ν(R > k). Next, writing Sj for the size of the j-th wave, if S > t and
N ≤ k, then we have Sj > t/k for some 1 ≤ j ≤ N . Hence,

ν(S > t) ≤ ν(R > k) + ν(Sj > t/k, for some j ≤ N)

≤ CWSFo(diam(To) > k) + CWSFo(|To| > t/k)

≤ k−2+o(1) + CWSFo(|To| > t/k), (7.24)

where we used Theorem 1.2(iv) for the first term. We now control the second term on
the right in equation (7.24).

EJP 22 (2017), paper 85.
Page 49/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP111
http://www.imstat.org/ejp/


Inequalities for critical exponents in sandpiles

Lemma 7.9. WSFo(|To| > t) ≤ t−1/2+o(1).

Proof. We note that an application of Theorem 1.2(iv) yields

WSFo(|To| > t) ≤WSFo(diam(To) > t1/4) + WSFo(|B(t1/4) ∩ To| > t)

≤ (t1/4)−2+o(1) + WSFo(|B(t1/4) ∩ To| > t). (7.25)

Due to Wilson’s algorithm, we have WSFo(x ∈ To) ≤ C |x|2−d, and hence we have

WSFo(|B(t1/4) ∩ To| > t) ≤ EWSFo |B(t1/4) ∩ To|
t

≤ C (t1/4)2

t
= C t−1/2.

Using the above lemma and optimizing the number of waves k in (7.24), we get
ν(S > t) ≤ t−2/5+o(1), thereby completing the proof of the upper bound in Theorem
1.5(iv).
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