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Abstract

We go ahead with the study initiated in [7] about a heat-equation model with non-
linear perturbation driven by a space-time fractional noise. Using general results from
Hairer’s theory of regularity structures, the analysis reduces to the construction of a
so-called K-rough path (above the noise), a notion we introduce here as a compromise
between regularity structures formalism and rough paths theory. The exhibition of
such a K-rough path at order three allows us to cover the whole roughness domain
that extends up to the standard space-time white noise situation. We also provide a
representation of this abstract K-rough path in terms of Skorohod stochastic integrals.
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1 Introduction

The aim of this paper is to go a few steps further into the analysis of the SPDE model
introduced in [7], namely the equation

(0:Y)(t,x) = (O2Y)(t,z) + F(x,Y (t,2)) (8,0.B)(t,x) , Y(0,2) = ¥(x), t € [0,T], z € R,

(1.1)
where F' : RxR — R is a quite general vector field, ¥ is a continuous function, and 9;0, B
stands for a space-time fractional noise. To be more specific, B is here a fractional sheet
with Hurst indexes Hi, Hs, that is a centered Gaussian field with covariance function
given by the formula

1
E[B(s,z)B(t,y)] = Ru, (s,t)Ru,(z,y) , where Ry(s,t) := §~{|s|2H + [t2H — |t —sPH) .

At this point, let us recall that the whole difficulty raised by this equation (at least
when H; # %) lies in the fact that B is not a martingale process, which rules out the
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A fractional K-rough path

possibility to study this model within the classical SPDE framework of [6] or [19]. It is
then natural to turn to pathwise methods, and in fact, this equation provides us with
an interesting example to test the flexibility of the theory of regularity structures - RS
in the sequel - recently introduced by M. Hairer in [11]. The machinery has already
proved to be a very powerful tool to study stochastic parabolic dynamics, as a flourishing
literature can easily testify. To mention but a few applications, we can quote for instance
[2, 1,13, 14, 15]. Let us also report the recent study [16] where a fractional-in-time (but
white-in-space) noise is considered, within a KPZ model.

In this context, our objective behind the study of (1.1) is actually manifold:

e RS theory is essentially built upon a sophisticated extension of concepts from Lyons’
rough paths (RP) theory. However, based on the introductory paper [11], the fundamental
analogies between RP and RS theories may not be obvious to a non-initiated reader.
Therefore, and in the continuity of [7], we here propose to somehow go one step back
into the formulation, by highlighting the role of an object whose definition and properties
look very much like those of a classical rough path: the so-called K-rough path (see
Definition 2.7). Of course, as the RS-expert reader will soon realize, restricting the
analysis to this sole concept of a K-rough path reduces the possible scope of application
of RS results, in comparison with the general abstract formalism settled in [11]. In brief,
K-rough paths are specifically designed for the dynamics of (1.1), and their definition
must be reshaped when turning to other models such as KPZ or ®3 equations. This being
said, we think, or at least we hope, that this more straightforward presentation may help
the reader to catch the very “rough-path” essence of RS theory, on a non-trivial SPDE
example.

e Still focusing on the notion of a K-rough path, the analysis will give us the oppor-
tunity to recall how the technical tools used to study rough paths (Holder topologies,
Garsia-Rodemich-Rumsey lemma,...) extend to the parabolic framework. We will also see
that the renormalization procedures, one of the main achievements of RS theory, can be
very conveniently expressed in this setting.

e In [7], the above ideas were implemented for a second-order analysis, which in fact
corresponds to the situation where 2H; + Hy > g We will here go one step further and
consider the study of the model up to third order, which covers the case 2H; + Hy > %
This extension will therefore give us the opportunity to go deeper into the exploration
of the concept of a K-rough path. What also makes this work important to us is that it
makes the link with the classical space-time white noise situation, for which H; = Hy = %
(and accordingly 2H, + Hy = %). In brief, thanks to the subsequent results, we are now
able to cover the whole domain that extends up to - but does not include - the standard
space-time white noise. It is worth mentioning here that in the (specific) white-noise
situation, the RS machinery has been implemented by M. Hairer and E. Pardoux in [14],
leading the authors to a Wong-Zakai-type property similar to our forthcoming Corollary
3.6.

e The exhibition of a third-order K-rough path above the fractional noise turns out to
be a quite technical task. The construction differs from those in the white-noise situation,
due to some fractional kernel to be dragged throughout the computations. Our analysis
relies on Fourier techniques inherited from the harmonizable (or Fourier) representation
of the fractional sheet, that is the formula

ezt{ —1le®n _1

_— 1.2
S [ es (12

Bt.a) = ey, [ FOV)(de.di)

for some appropriate constant cy, m, > 0 and where F(W) stands for the Fourier
transform of a space-time white noise in R2. Our main result, namely the existence of
a K-rough path above 0,0, B, can then be seen as a parabolic version of the results of
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Coutin and Qian about fractional rough paths (see [5]). Just as in the latter reference,
we will also be able to provide a decomposition of our fractional K-rough path in terms
of Skorohod integrals, to be compared with the formulas in [5, Theorem 4]. We consider
these chaos-decomposition formulas another substantial improvement with respect to
the study in [7]: we are here able to describe our abstract K-rough path in terms of some
“pre-existing” stochastic tools. In the - very - particular situation of a white-in-time noise,
the decomposition reduces to the sole “It6” K-rough path, an identification that can then
be transposed on the level of the equation itself (see the last statement in Corollary 3.6).

One of the main ideas in both RP and RS theories can be summed up as follows - in a
loose manner, of course: in order to interpret and solve the noisy differential equation
under consideration (standard differential equations for RP theory, parabolic equations
for RS theory), and therefore give a sense to the implicitly-defined solution, we only need
to study a finite number of objects that are explicitly defined in terms of the noise only. In
other words, all the successive operations involved in the equation, i.e., composition with
a smooth vector field, multiplication with the noise, integration and even the fixed-point
argument, nicely combine around these few explicit objects, called the rough path in RP
theory and the K-rough path in our setting.

In this paper about Equation (1.1), and for the sake of conciseness, we will not come
back to the description of the sophisticated machinery that associates a K-rough path
(or a “model” along Hairer’s terminology) with a solution of the equation. The details of
this sophisticated deterministic procedure can be found in [11, Sections 4 to 7], as well
as in [7, Section 2] for a shorter version applying specifically to the dynamics of (1.1).

Thus, in what follows, we will only stick to the problem of constructing a K-rough
path above the fractional noise. A natural way to initiate this construction is to start from
the so-called canonical K-rough path associated with a given smooth approximation B"
of the rough fractional noise B. This object has to be seen as the parabolic counterpart of
the iterated integrals - or “canonical rough path” - of RP theory: just as its one-parameter
model, the canonical K-rough path is indeed derived from a Taylor expansion of the
classical equation associated with the smooth path B™. A specific description of this
object, that we will denote by B™ in the sequel, will be given in Definition 2.6.

Showing the convergence of B™ would then immediately provide us with a K-rough
path above 0,0, B, as desired - again, the situation can for instance be compared with the
RP example treated in [5]. Unfortunately, as soon as 2H; + H> < 2, such a convergence
happens to fail, which forces us to turn to renormalization tricks and exploit the flexibility
of the definition of a K-rough path, as illustrated by Lemma 2.12. This divergence
phenomenon and the need for an appropriate renormalization were already observed at
second order in [7], and can be compared with the well-known divergence properties of
KPZ or parabolic Anderson models. Couterbalancing the explosion will prove to be an
intricate task at third order, with correction terms inspired by the chaos expansion of
the canonical K-rough path.

Throughout the study, we will consider the approximation B" of B given by the
formula:

B"(s,) [ Fmagan 10 (13)

$,%)==¢C ’ I Y A .
b, Vg

where D,, := [-22",22"] x [-2",2"], and cp, u,, F (W) are defined just as in (1.2). Thanks

to the isometry properties satisfied by W (or F (1)), such an approximation readily yields
explicit and manageable formulas (in terms of the fractional kernel) when computing
related moments. Another advantage of the representation is that the Malliavin calculus
with respect to B” (one of the keys of our analysis) can easily be connected with the
standard Malliavin calculus for W, or F(W), as we will see it in Section 4. This being
said, we are pretty sure that the consideration of a mollifying procedure (just as in
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[11]) would lead to very similar constructions and results. Consider indeed a mollifying
sequence p, (s, z) := 237p(22"s,2"z) on R? and denote temporarily

et — 1 e — 1
Liswy(§,m) = cu, 1, FERI R
Then using the representation (1.2) of the fractional sheet and applying Fubbini theorem
- at least formally - allow us to write

(pn * B)(s, ) = - FW)AE, dn) (pn * Ls,2))(&:n)

which points out the strong similarity with the above approximation

Bn(s’ LL’) = - ‘F(W)(dga dn) (1Dn . L(s,x))(§7 77) .
In the same vein, there is no doubt to us that the subsequent constructions could easily
be extended to a wider class of fractional noises, provided one can exhibit appropriate
bounds on the Fourier transform of their covariance function (this will indeed be the
quantity at the core of the computations regarding the noise part). For the sake of
conciseness, we have stuck to the prototype fractional-sheet example though.

The paper is organized as follows. In Section 2, we introduce the notion of a K-rough
path, which corresponds to the central object of our analysis and - hopefully - offers a
clear link between the formalisms of RP and RS theories. We shall also state a few basic
properties satisfied by K-rough paths, and of course emphasize the relation between
these objects and the dynamics of Equation (1.1). This will put us in a position to state
our main result (Section 3), namely the existence of a K-rough path above the fractional
sheet, as well as its consequences on the associated equation. Section 4 and 5 are then
devoted to the details of this construction. Section 4 actually consists in a Malliavin-chaos
expansion of the components of the (renormalized) canonical K-rough path associated
with the smooth approximation B", while Section 5 focuses on the extension of these
formulas above the rough process B, by means of technical moments controls. Finally,
in Appendix A, we have collected a few useful (deterministic) estimates related to the
interactions between K-rough paths and the heat kernel, at first and second orders.

Acknowledgements. I am deeply grateful to two anonymous referees for their
careful reading and their stimulating remarks on this study.

2 K-rough paths

The general machinery of RS theory, as introduced in [11], leans on a combination of a
high number of sophisticated objects, gathered under the names of models and regularity
structures. However, when specializing the analysis to Equation (1.1) and focusing on
the essential information within those models/regularity structures, a relatively simple
object naturally arises. We will call it a K-rough path, owing to its similarity with a
classical RP. The present section is devoted to the presentation of this object and its
properties.

2.1 General setting

Just as with classical RP, the definition of a K-rough path highly depends on the
roughness of the driver - here, the almost sure roughness of B := 9,0,B -, seen as a
distribution. In order to quantify this roughness, we will use the (local) Besov-type
topologies introduced in [11]. Let us recall the main definitions occuring in the latter
framework.
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Notations. For m > 0, let C™ = C™(R?) be the space of m-times differentiable and
compactly-supported functions on R?, and let C;* be the subset of functions in C™ whose
derivatives (up to order m) are uniformly bounded by 1. We will denote by D’(R?) the
set of general distributions and by D/, (R?) (m > 0) the dual of C™. Let us also consider
the usual parabolic scaling s := (2, 1) and the related balls

Bs(z, R) == {y = (yo.y1) € R*: /|yo — wo| + [y1 — 1> < R},

for every z = (79,21) € R*and R > 0. Given ¢ : R?> - R, x = (zg,21) € R and £ > 0, we
will denote by ', the z-centered and 2~“-scaled version of ¢, that is

0t (y) = 2%0(2% (yo — 20),2(y1 — 71)) , forally = (yo,y1) € R?.

Definition 2.1. For every a < 0 and every set & C R?, we say that a distribution
X € D'(R?) belongs to C*(K) if it belongs to D.(R?), with r := — |«|, and if the quantity

”XHa;ﬁ = sup 2ae‘X(‘P£)|

TER,PECT £>0

is finite. In the sequel, we denote by C¥(IR?) the set of distributions X € D’'(R?) such
that X € C*(R) for every compact set 8.

Definition 2.2. For every oo < 0 and every set & C R?, we say that a map X : R®> —
D’'(R?) belongs to C*(K) if for every x € R?, X, belongs to D.(R?) (with r := — |«]) and
if the quantity
[XJlasg = sup 2% X,(¢h)]
TER,pECy >0
is finite. We denote by C%(IR?) the set of maps X : R? — D’'(R?) such that X € C%(R) for
every compact set R.

Proposition 2.3 ([7]). Let B denote a fractional sheet of Hurst index (H,, H»), defined
on some complete probability space (Q,F,P), and consider its derivative B := 8,0,B,
understood in the sense of distributions. Then, almost surely, B belongs to C%(R?), for
every a < =3+ 2H, + H,.

As we already mentionned it in the introduction, the definition of the canonical K-
rough above a smooth approximation B" (and by extension the definition of a K-rough
path above a rough function B) is derived from the space-time expansion of Equation
(1.1), that can also be written as

V(s.2) = (G(s.) = W)(a) + [ it [ dvGls—to @YX ) @

where G stands for the usual heat kernel on R and we have set X := 9,0, B™. Therefore,
it is not a surprise that the description of the key elements of the dynamics, which
together will form the canonical K-rough path, should appeal to the heat kernel. As we
are only dealing with local behaviours, it actually suffices to focus on the kernel around
its singularity, that is around 0, which gives birth to the following definition, more suited
to the topology under consideration:

Definition 2.4. We call a localized heat kernel any function K : R?\{(0,0)} — R
satisfying the following conditions:

(i) K(x) = 0 for every x = (z¢,71) € R? such that xo < 0.

(ii) There exists a smooth function K, : R?> — R with support in [—1,1]? such that for
every non-zero r = (zg,71) € R?, one has

K(z) =Y 2'Ko(2*xo,271) . (2.2)
>0
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Again: alocalized heat kernel K is nothing but a local representation, around 0, of
the heat kernel G (see [11, Lemma 5.5] for more details). The following bound on the
Fourier transform (denoted by F) of such a localized heat kernel will be extensively
used in the computations of Section 5. Its proof is an immediate consequence of the
decomposition (2.2), as the reader can easily check it:

Lemma 2.5. Let K be a localized heat kernel, in the sense of Definition 2.4. Then for all
a,b € [0,1) satisfying a + b < 1, there exists a constant ck 4, such that for all non-zero
&neR, .
K,a,b
| F(K)(&m)| < e
Finally, space-time expansion of (2.1) will naturally lead us to consider space-time
expansions of the heat kernel (or its localized version). Let us label those quantities
for further use: given a localized heat kernel K and for all = (g, 21),y = (yo,¥1),2 =
(20,21) € R?, we set
KNG :=Ky—2)—K(z—2), (2.3)

K@) (2)=K(y—2)— K(z —2) — (y1 — 21)(DOVEK)(z — 2) . (2.4)

2.2 K-rough paths

We are now ready to introduce our central notion of a K-rough path above a given
deterministic distribution X € C¥(IR?), at least for a < 0 large enough. This definition
already appeared in [7] for « € ( —%, 0), which morally corresponds to an expansion of
the equation up to second order - with the consideration of some K-Lévy area term. We
would like to go one step further here and handle the situation where o € (—%, —%],
which forces us to introduce third-order elements in the analysis.

Thus, from now on and for the rest of Section 2, we fix such a coefficient

3 4
I < —— .
2<a7 3

Let us start with the description of the canonical K-rough path in this case:

Definition 2.6 (Canonical K-rough path). Given a localized heat kernel K and a contin-
uous function X : R? — R, we call the canonical K-rough path (of order o) above X the
4-uplet
X _ (Xl, XZ, :}(‘_3.17 X3.2)
defined along the following iterative formulas: for every x = (xo, 1),y = (yo,%1) € R?,
X=X |, X2y =X"(K!))X() |, (2.5)
2

X31(y) = X2(KP) X(y) , X32(y) = XM (K) X(y) . (2.6)
We here use the standard notation f(p) := [p. f(2x)e(x) dx, for all functions f, o such
that f is integrable on R?.

Let us insist one more time on the fact that this definition is motivated by the space-
time Taylor expansion of the standard PDE (2.1). Then, just as in RP theory, it turns out
that this notion of a canonical K-rough path - and the whole integration machinery built
upon it - can be lifted at some more abstract level above a rougher distribution X, which
gives rise to the following general definition:

Definition 2.7 (K-rough path). Given a localized heat kernel K and a distribution
X € C¥(R?), we call a K-rough path (of order «) above X any 4-uplet

X — ()(17 X2,X3'17X3'2) c Cg(RQ) X Cz(x+2(R2) % Cga+4(R2) % Cga+4(R2)

EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
Page 6/40


http://dx.doi.org/10.1214/17-EJP69
http://www.imstat.org/ejp/

A fractional K-rough path

such that X! = X and the following “K -Chen” relations hold: for every x = (xg,21),y =
(0,91) € R?,

X2 -XZ=Xx*rK")-x* , X32_x32=x'(KklY)) {X2+X2} (2.7)

and
X3.1 o X3‘1 _
T Y
X2(K3)- X'+ X (KW) X2 +{X2((DOVK)(z—.)) -X2 (DY E) (y—)) }-(y1—)- X .

(2.8)

For a fixed localized heat kernel K and given two K-rough paths X,Y (above possibly
different distributions X,Y ), we denote, for every compact set & C R?,

I1%; Yllas = X =Y asn+ 1X2 = Y2 2020+ X3 = Y2 3040+ [ X322 2 50 408

(2.9)
and || X||a;q := ||X;0]|a;5. In the sequel, we will denote by £k ., the set of K-rough paths
of order «.

Remark 2.8. As its name suggests it, the canonical K-rough path above a continuous
function X is a particular example of K-rough path. Relations (2.7) and (2.8) can indeed
be easily checked from the explicit formulas in (2.5)-(2.6).

Remark 2.9. With expansion (2.2) in mind and for every n > 0, let us denote by
K™ the smooth compactly-supported function obtained as the finite sum K"(s,z) :=
Y ocpen 23 Ko(2%5,22). Then, in (2.7) and (2.8), and although K itself is not a smooth
test-function (due to its singularity at 0), the coefficient X; (Kg(fg,) (i € {1,2}), resp.
X2((DVEK)(z —.)), is well defined as the limit of the sequence X! (Ki%") G e {1,2}),
resp. X2((D*YK")(z —.)), where K" is derived from K by replacing each oc-
curence of K with K™. The proof of this assertion can be easily deduced from the
properties in Appendix A, which also contains a few regularity results related to these
quantities.

Remark 2.10. Relations (2.7) and (2.8) can legitimately be considered as a parabolic
analog of the classical Chen’s relations for a third-order rough path x = (x! = §z, x2, x3)
(see [17] for a detailed definition). To emphasize this analogy, introduce the dual path
x = (x,%2,%3) defined for every test-function ¢ as x}(p) := [ ¢(s)ds(x} ;). With these
notations, the classical Chen’s relations can also be written as

32

1 :3
Xs —

X =%t (L)%t %3 -%) =L ) X+ (L) X7

which makes the similarity with (2.7)-(2.8) obvious. Observe however that the higher
complexity of this two-parameter setting forces us to consider more sophisticated struc-
tures exhibiting two third-order components (instead of one for RP theory). Also, the
implicit presence of the (regularizing) heat kernel in the definition of a K-rough path
echoes in a natural way on the choice of the roughness assumptions, that is on the
choice of the successive combinations «, 2« + 2, 3« + 4, as Formulas (2.5)-(2.6) and the
regularity properties of Appendix A should convince the reader.

Remark 2.11. The set £k, can easily be turned into a complete metric space by
considering the distance

1X; YHa;Rk

do(X,Y) o=y 27h 2 o
k>0 I+ HX7Y||OGRk
where [|X; Y||.5 is defined by (2.9) and we have set Ry, := [k, k]2. The completeness of

(€K ,a>do) can indeed be shown along the arguments of the proof of [7, Proposition 3.11].
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The following basic property, the proof of which is immediate, illustrates the flexibility
of the definition of a K-rough path. It shows in particular that, provided it exists, a
K-rough path above a given distribution X € C¥(R?) is not unique at all. Here again,
the idea is strongly reminiscent of the well-known non-uniqueness property of classical
rough paths. In the sequel, we shall rely on this “renormalization” trick to overcome the
diverging issue raised by the canonical K-rough path above the approximation B".

Lemma 2.12 (Renormalization). Fix a localized heat kernel K and a path X € C2(R?).
Given a K-rough path X above X and a constant c € R, consider the path

X = Renorm (X,c) = ()A(:l, )Aiz,)A(3'17)A(3'2)
defined along the following formulas:
X'.=Xx' | )A(g::X?C—c,

X31 .= X3t - XY (KD) X32 .= X32 —2c X' (K() .

9

Then X is a K-rough path above X as well.

In RP theory, the so-called Garsia-Rodemich-Rumsey Lemma and its extensions (see
e.g. [10, Section 6]) provide a very efficient tool to study the roughness of the processes
under consideration, and therefore represent one of the keys of the RP analysis. Using
sophisticated wavelets arguments, M. Hairer succeeded in the exhibition of similar tools
in the multiparameter setting. The following statement offers a possible simple way to
account for these results. In particular, it should be clear to the reader that the central
condition in this statement is directly related to (not to say that it perfectly fits) the
structure of the K-Chen relations from Definition 2.7 (compare (2.10) with (2.7)-(2.8)).
Let us denote by B the set of smooth functions on R? with compact support included in
B5(0,1) and derivatives uniformly bounded by 1 up to order 4.

Lemma 2.13 (Multiparameter G-R-R Lemma). Fix A € [0, —«). Let X : R? — D, (RR?) be a
map with increments of the form

Xo—X,= Y O,y X (2.10)

i=1,...,7

where X% € C(R?) (a; € [, a+)]) and 6" : R? x R? — R is such that for every compact
set & C R? and every x,y € 8, one has

|01(«T7y)| < C@i;ﬁ ||fL — y||a+A—ai ,

s

for some constant Cy:.z > 0. Then there exists a finite set By C B such that

IXNlasrir, S supsup  sup  26CTVIXL (D) + Y Coip,, X5
PeBy £2>0 IEAﬁ ﬂRk+1

;i Re41 0 (2.11)

i=T,.r
where we have set AL .= {(272°ky,27%ky), k1, k2 € Z} and Ry, = [k, k]>.

Proof. It is a straightforward generalization of the arguments in the proof of [7, Lemma
3.21. O

2.3 Connection with the rough heat equation

As we evoke it from the beginning, what makes this K-rough-path structure so
interesting (beyond its clear analogy with the classical rough-path structure) is the fact
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that it can be readily injected into the machinery of [11] so as to deduce numerous
striking results about the equation driven by X, that is

(0:Y)(t,x) = (O2Y)(t,z) + F(x, Y (t,2)) X (t,x) , Y(0,z) = U(x). (2.12)

The following general statement sums up these important consequences. At this point,
let us recall that we have fixed a parameter a € (f%, —%] for the whole Section 2, and
that the map Renorm has been defined through Lemma 2.12, while the distance d, has
been introduced in Remark 2.11.

Proposition 2.14 (Solution map). Fix an arbitrary time horizonT' > 0 as well as a vector
field F € C*°(R?; R) such that | D*1¥2) F|| g2y < oo for all ky, ks > 0 and F(z,y) =0
for all (z,y) € (R\RFr) x R, for some compact set R C R. Then there exists a localized
heat kernel K and a “solution” map

OF gt Exa x L¥(R) — (0,T] x L=([0,T] x R) (2.13)

such that the following properties are satisfied:

(i) If X : R* — R is a continuous function and ¥ € L*(R), then denoting by X the
canonical K-rough path above X, one has ®f (X, ¥) = (T,Y), where Y is the classical
solution on [0,T] of Equation (2.12).

(i) If X : R?> — R is a continuous function, ¥ € L*(R) and c € R, then denoting by X
the canonical K -rough path above X, one has @%F(Renorm(X, ¢),¥) = (T,Y), where Y
is the classical solution on [0, T] of the equation

{at?(t,z) = 02V (t,z)+ F(z,Y(t,2)) X(t,2) — cF(x,Y (t,x)) o F(z,Y (t,2))
Y(0,2) = U(x).

(#33) Let (X, V) € €k .o x L°(R) and (X", ¥") be a sequence in £k o, x L>°(R) such that
do (X", X) =0 , [|U" = V|fem) —0 and @f (X")=(T",Y"),

for some sequence (T",Y") € (0,T] x L*([0,T] x R). ThenY"™ — Y in L*>([0,T1] x R)
for every Ty < (Tp A inf,, T™), where (Tp,Y) := ®% (X, ¥).
(iv) If F p(X) = (To,Y) with Ty < T, then one has tlirrTl0 Y¢llzoo(r) = o0 and Y; = 0 for
t<Ty
t>Tp.
Based on the above properties and setting (Tp,Y) := @%F(X, U), we call Y the
(maximal) solution on [0, Ty, in the sense of the K-rough paths, of the equation

Y =02y + F(,Y)X , Y(0,2) = V().

Proof. The four properties (i)-(iv) are derived from a careful examination and application
of the general analysis carried out in [11]. In order to make this link very clear, we
first need to specify how the K-rough-path structure can be related to the regularity
structure/model terminology used in [11].

As reported in [14, Section 3.1], the general model space 7 associated with the
dynamics of (2.12) can be described as follows. Consider four abstract symbols 1, 73, Z,
7, and denote by U the smallest collection of formal expressions containing 1, Z; and
satisfying the three rules

TeEU=TI(r)eUd , TeU=T(Er)eld , ,TEU=TTEU. (2.14)

Then define 7 as the set of linear combinations of elements in W := U U ZU, where

EU := {7, 7 € U}. In fact, given our roughness assumption o € (—2,—3], it here
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suffices to restrict our attention to the subspace TS% consisting of linear combination of
elements in Wz :=={r e W: |7| < 31}, where || refers to the order of 7, as defined by
the usual rules

1/ =0, [Z:[=1, [E|=a, [Z(7)| = |7| + 2 and |77] = ||+ [7].
To be even more explicit in our situation, it can be checked that

Wes =Wa UWaa o UWag1 UWsaqps UWo U Wapa UWL UWaaya

with
We = {Z}, Waaio = {EZ(E)} , Wai1 = {EZ1} , Waaya = {EZ(EL(E)),EZ(E)*},
Wo = {1}, Waio :={Z(E)}, W1 :={Z1} , Wania := {Z(EZ(E)),Z(2)?} .
At this point, let us define K via [11, Lemma 5.5], starting from the usual heat kernel
G(t,x) = 1m0y (2mt) /220

Then, with the above model space in mind and given a K-rough path X € £k o, we define
the map
I :R? » L(T<s,S'(R?)), resp. I'*:R*xR*— L(T.s),

along the following explicit formulas: for all = (xg,21),y = (yo,y1) € R?,

(e =X' , IXEIE)=X2 ,

X (EZ(EZ(E))) =X31 | OXEZ(E)?) =X32,
1) =1, IXZE)() = XHKL)
INIZEIE))() = X2KE) , TXIE)) () = XHKL)?,

x xT

)
IX(Z)(y) =y —x1 , HONEZ) =X ENNZ),

resp.
X (= = X _
Fa:y(“) - = Fa:y(l) - ’
I5E(E)=IE) -XNEI)L |, IN(Z) =21~ (y —a1)1,
I‘fy(I(EI(E))) =T(EZ(ZE)) — @y Z1 — by I(E) — czy 1,
with

Coy = Xg(Ka(c;) - XI(KQ;) bey — (Y1 — 21) Agy

and finally I'X, (77) := T'X, (1)T'X, (7).

Using the properties contained in the very definition of a K-rough path, one can
now check that for all z,y € R?, the identity IIX = IIX o 'Y, holds true, while for every
compact set £ C R?, one has, with the notations of [11, Section 2.3],

1O, T o S Xl NPT (TN g S KiK. (2.15)

for some compact set & O £. This leads us to the expected conclusion: the above-
described pair (IT¥,I'X) does define a model for the model space TS%, in the sense of
[11, Definition 2.17].
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With this setting in hand, the analysis of (2.12) follows from the general machinery
described in [11, Sections 4-6], and which ultimately leads to a well-posed equation
in the space D%’O(X) of modelled distribution with respect to (7<3/2, X, TX) (see [11,
Definition 6.2]). As reported also in [14, Section 3.4], the procedure actually consists
in “lifting” to 7<3/, the three operations involved in (2.12): composition with F' ([11,
Proposition 6.13]), multiplication with the noise ([11, Proposition 6.12]) and convolution
with the heat kernel ([11, Proposition 6.16, Lemmas 7.3 and 7.5]). A very detailed
treatment of these successive steps, applying specifically to the dynamics of (2.12), can
be found in [7, Sections 2.2-2.4] for the smoother situation o € (—3, —1]. The exhibition
of a unique solution Y € D?#°(X), defined up to a maximal time T, > 0, can then be
derived from a fixed-point argument, as described in [11, Theorem 7.8].

Finally, we define the solution-map in (2.13) as fl)qlf,F(X, U) = (Tp,Y), with Y (¢, x) :=
(RxY)(t,z) if t < Tp and Y (¢,x) := 0 if t € [Ty, T]. The notation Rx here refers to the
central reconstruction operator associated with (HX, FX) ([11, Theorem 3.10]). We are
now in a position to elaborate on the four points of our statement.

(1)-(4¢): With the above notations, and using the properties of the reconstruction operator,
it is easy to check that for every (¢,z) € [0,Tp) x R,

Y(t,a:)z/]RG(t,a:—y)\I!(y)dy+/o /D{G(t—s,x—y)nx(ﬁ“{)(s,y), (2.16)

where Y stands for the transformation of Y through the composition and multiplication-
by-the-noise steps of the above-mentionned procedure. In particular, Y can be expanded
as

Y(t,x) = YO(t,2)2+ Y (t,2)EL(Z) + Y2(t, 2)221 + Y° (¢, 2)2L(2L(2)) 4+ Y (t, 2)EL(Z)? ,

with YO(t,z) := F(z,Y(t,x)) and Y!(t,2) := F(z, Y (t,2))0:F(z,Y (t, 2)).

When X is a continuous function, the reconstruction operator is known to be given by
the formula (Rxv)(t,x) = Hé)x)(v(t, x))(t, ), for any K-rough path X above X. There-
fore, in this continuous situation, we derive that

Rx(Y)(t,2) = YO(t,2) X (t, ) + Y'(t,2)XZ, (¢, 2)
+ Y3t 2) XL (7)) + Yt 2)XE2 (@) - (2.17)

If X := X" is defined as the canonical K-rough path above X, we get by (2.5)-(2.6)
that Rx (Y)(t,2) = YO(t, 2) X (t, z), while if X := Renorm (X, ¢), decomposition (2.17)
reduces to Rx(Y)(t,z) = Y(t,2) X (t,z) — ¢ Y'(t,z). Going back to (2.16), we get the
desired consistency properties (7)-(4i).

(7i7) Keeping the two bounds (2.15) in mind, the assertion is an immediate consequence
of the continuity properties of the solution Y ([11, Theorem 7.8]) and the reconstruction
operator Rx ([11, Proposition 6.9]) with respect to the model (HX, I‘X) and the initial
condition ¥.

(tv) The maximality of Y clearly follows from that of Y (the latter is a straighforward
consequence of the patching property described in [11, Proposition 7.11]). O

2.4 Extension to higher orders

Let us again insist on the fact that Definition 2.7 of a K-rough path highly depends

on the roughness parameter « of the noise under consideration, and that the number of

components to be considered in X is directly related to the assumption that o € (f%, fg].

As the noise gets rougher, that is as o gets smaller, we naturally expect a similar
notion of a K-rough-path to exist, with definition also made of an analytical regularity
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condition and algebraic “K-Chen” relations. More precisely, and with the general
machinery described in [11, Section 8] or [14, Section 3] in mind: (i) we expect the
exhibition of a K-rough-path notion to be possible at least when o > —2, due to the
subcriticality constraint outlined in [11, Assumption 8.3]; (zz) a speciﬁc definition of a
K-rough path is to occur on each successive slice « € (-2 + T+1’ -2+ ] n > 1, with a
number N (n) of components in X fastly growing with n. The situation treated in [7] thus
corresponds to n = 2, while the above definitions 2.6-2.7 are designed for the step n = 3.

This being said, we expect the explicit description of a general K-rough path (for a
general n) to be an intricate task, owing to the quick sophistication of the underlying
model space. Recall indeed that, with the notations of the proof of Proposition 2.14, the
symbols to be encoded at step n correspond to the set V,, of elements of the form =7,
with 7 € U of order |7| < 2 — . As such, the definition of V), is thus only provided
through the recursive algorlthm (2 14), which makes the explicit description of this set a
rather long exercise for large n (for instance, when n = 4, these rules give rise to the
consideration of N(4) = 11 elements, as reported in [14, Section 4]). Accordingly, at
this point, the only general definition we can think of for a K-rough path is still based
on a sophisticated algorithm-procedure, that involves the additional module/co-module
structure introduced in [11, Section 8.1]. Since such a formulation does certainly not
bring any novelty with respect to [11] (at least not any significant insight), we refrain
from detailing it here, and we plan instead to further analyze the exact content of V),
(for n > 1) in a future study.

Once endowed with the general definition of K-rough path, we expect the construc-
tion of such an object above the fractional noise (in other words, the extension of the
subsequent results to all Hy, Hy € (0,1)) to be a tremendously-technical exercise, al-
though the recent criteria exhibited in [3] might bring significant help in this direction.
In any case, and with the below computations in mind, we expect the constraint H; > %
to arise in the construction, as a parabolic counterpart of the classical barrier occurring
for the fractional rough path (see [5] or the end of [3, Section 1]).

3 Main results on the fractional K-rough path

With the above preliminary - deterministic - material in hand, we can turn to the
detailed presentation of our main contribution, namely the exhibition of a K-rough path
above the stochastic fractional sheet B.

3.1 Main results

Our construction will be based on a chaos decomposition of the canonical K-rough
path above B"™, a strategy that will naturally lead us to the consideration of trace-type
terms. The procedure will more specifically involve a series of operators L, O X
that we propose to introduce right now. Let us recall that, throughout the paper, we
denote by F the usual Fourier transformation, that is

F(p)(&m) ZZ/ drodry e ™0 e (30, 21)
R2

First, for every (Hy, Ho) such that 2H; + Hy > % every x = (z9,71) € R? and every
smooth compactly-supported function 7 on R2, we set

zﬁa:g Ty
L) 1=~ [ [ den T R G FO)En . G

where cy, f, refers to the constant in the representation (1.2) of the fractional sheet.
Then, for every X € C¢(R?) (with e € (—2,—3]) and every = (zg,21),y = (yo,¥1) € R?,
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we define successively

D, X)(y) =9y X(KL) , 0w, X)(y) =) X (KL) (11 — 1)

O X)) = [ dzvty+2) X (KL K2 L)
and finally

ezfrg Mzl

LE () =~ [ din gyt PO (€ n) PO @ X)) E0n)

1£mo T
L2X( CH],H2 // dfdﬁ |£|2H1 1|6 |2[—[2 1‘/——'(D(0’1)K)(£’7]) ‘7:(652)(77[1,)())(5777) )

déd
LdX 7CH1 Hy // |§|2H1 §|777)2H2 1 (923)(10,)())(5,77)-

Remark 3.1. Checking the well-posedness of the above operators is one of the objectives
behind the computations of Section 5 and Appendix A. Therefore, we refer the reader
to these sections for a detailed analysis of L, © and L¥. In fact, the treatment of
these trace operators (which are specific to the fractional situation, as emphasized by
Proposition 3.5) will prove to be one of the most technical parts of our study.

Theorem 3.2 (Existence of a fractional K-rough path). Fix (Hy, H3) € (0,1)? and o < 0
such that

3 3 4
§<2H1+H2§2 s _§<a<mln(_§7—3+2H1+H2)7

and let B be a (Hy, Hy)-fractional sheet defined on some complete probability space
(Q,§,P), with representation (1.2). Let B"™ be the approximation of B given by (1.3) and,
for a fixed localized heat kernel K, denote by B the canonical K -rough path (of order
«) above Bm = 0;0,B", in the sense of Definition 2.6. Then there exists a K-rough path
B above B := 9,0, B such that if we set B" := Renorm (B", CH, m,) With

d¢d
H1,H2 = CH] Hy // ‘§-|2H1 é1.|,',]72]{2 1 (K)(fﬂ?) ) (32)

one has almost surely
do(B",B) =370

Moreover, the following identification formulas hold true for the components of B: for
every x € R? and every smooth compactly-supported function 1/, one has almost surely

B'(y) = B(¢) (3.3)

B2(y) = 6% (¢ - BY(K)) + Lo () , (3.4)

B3 (y) = 6% (v BE(KP)) + [LyP () + L2P () + L3P ()] (3.5)
B22(y) = 6% (- (B (K1))*) + 2L () , (3.6)

where the notation 62 refers to the Skorohod integral with respect to B (see Section 4).
Remark 3.3. Using the Malliavin-calculus terminology, decompositions (3.4)-(3.6) are
of course nothing but the expansions of the components of B, () into the chaoses
associated with the fractional noise B. For instance, in (3.5), 07 (¢) - B2(K(2))) stands for

the component in the third-order chaos, while LL-B (), L2 (1) and L3 (¢)) all belong
to the first-order chaos.
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Remark 3.4. By following the arguments of the proof of [7, Proposition 3.12], it is easy
to show that the quantity ¢y, ,, defined by (3.2) asymptotically behaves as
N s 0o d}il " 92n(2—2H1—H>) if % <2H;+Hy <2,
CHl,Hg ~ d2 ’ if 9H H, — (37)

Hy,Hy " T 1 1+Hy =2,

for some constants d}{l’ Hy» d%,h 1,» which points out the actual divergence of the canonical
K-rough path B™ as soon as 2H; + Hy < 2.

In the very particular situation of a white-in-time noise, that is when H; = % - and the
whole It0 integration theory becomes available -, the symmetry in representation (1.2),
combined with the vanishing properties of any (localized) heat kernel, offers a drastic
simplification of both the analysis and the results:

Proposition 3.5 (White-in-time noise). In the setting of Theorem 3.2, assume that
H, = % and Hy, > % that is B is a white-in-time noise with fractional spatial regularity of
order Hy > % Then, with the above notations, one has, for every test-function ) with
support included in the set {xr € R? : zo > 0} and every z € R?,

Lo($2) = LYB () = L3P (y,) = L3P () = 0,

where we have set 1, (y) := (y — x). Accordingly, in this case, and when applied to such
test-functions, the K-rough path B exhibited in Theorem 3.2 reduces (almost surely) to
the It6 K -rough path above B, that is to the K -rough path extending Formulas (2.5)-(2.6)
by means of Ité integrals.

Proof. Since H, = %, we can lean on the basic isometry properties of the Fourier
transform to assert that

d — -
_c%{l’H2 Rw%elnﬁl /]R2 dy1dz e m(yl-&-zl)/RdfezExo
FEy)EF Wal-s21))(E)
d —1 z
= c %emxl/ dyydzy e~ it 1)/ dyo K (zo — Yo, y1)% (Yo — o, 21 — 21) .
r 7] R2 R

It now suffices to observe that due to the vanishing assumption on K and the support
condition on 1, the latter integral is necessarily equal to zero. The same combination
of arguments (isometry property and support condition) can also be used to show that
Lzlc7B<'(/J:v) = Li’B(%) = L%B(d}z> =0.

The identification with the It6 K-rough path immediately follows from Formulas (3.3)
to (3.6) and the fact that Skorohod integrals are known to coincide with It6 integrals in
this situation (see for instance [9]). O

We can finally combine the above construction with the general results of [11] about
Equation (1.1), as we summed them up through Proposition 2.14:

Corollary 3.6 (Application to the equation). Fix (Hy, Hs) € (0,1)? such that 2H; + Ho > %
a € (f%, —3+ 2H, + H,), and let B be a (Hy, Hy)-fractional sheet defined on some
complete probability space (2, §,P), with representation (1.2). Fix an arbitrary time
horizon T > 0 and let F : R?> — R be a vector field that satisfies the assumptions of
Proposition 2.14. Also, consider a sequence of bounded deterministic initial conditions
U™ that converges in L>°(R) to some element U, and set, with the notations of Proposition
2.14 and Theorem 3.2, (Ty,Y) := <I>IT(F(]§)
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Then for every 0 < T < Ty and as n tends to infinity, the sequence Y" of classical
solutions of the (renormalized) equation

o Y"(t,z) = 02Y"(t,x) + F(x,Y"(t,7)) 0,0, B"(t, )
—Ch, m, F (0, Y (1, 2)) O F (2, Y (£, 2)) (3.8)
Y"(0,z) = ¥ (z),

a.s. converges in L>=([0,T1] x R) to Y, that is to the solution on [0, Ty] of the equation
&Y =Y +F(LY)B |, Yo=1, (3.9)

understood in the sense of the K -rough paths. When H, = 1 and H, > 3, one has Ty = T
and the solution Y a.s. coincides with the solution on [0, T] of the equation

oY =0°Y + F(.,Y)0,0,B , Yo=1, (3.10)
understood in the classical It6 sense.

Proof. The first assertion is a straightforward application of Proposition 2.14 and The-
orem 3.2. When H; = % the identification of the solution with It6’s solution is then a
consequence of the identification result of Proposition 3.5 (on the level of the K-rough
path): the details of this lifting procedure can be found in [14, Section 6]. O

Remark 3.7. When H; % and with decompositions (3.4)-(3.6) in mind, one might
expect a similar identification as in (3.10) to be still possible for the solution of (3.9), with
a reference equation that would be understood in some Skorohod sense. Unfortunately,
such a stochastic approach to the model turns out to be an intricate task (for H; # %)
due to the limited flexibility of the Skorohod integral, and we are not aware of any well-
posedness result for the general Skorohod heat equation, which makes the comparison

with the solution of (3.9) an inaccessible property for the moment.

Figure 1 illustrates the domain covered by the combination of the above results
with the results of [7], regarding the pair (H;, H»). Based on Proposition 2.3, the
successive stages for the global roughness « of the noise turn into successive slices for
the combination 2H; + H>. The black, resp. red, slice corresponds to the first-order,
resp. second-order, situation where o € (—1,0), resp. a € (—3, —1], and was treated in
[7]. The blue slice corresponds to the setting of the present paper, with « € ( —%, —%]. Its
border extends up to the standard space-time white-noise situation (H; = Hy = %), as
we pointed it out earlier.

3.2 Strategy of the proof

The rest of the paper is devoted to the proof of Theorem 3.2. Therefore, from now on
and until the end, we fix, on a complete probability space ({2, F,P), a fractional sheet B
of Hurst index (Hy, Hs) € (0,1)? satisfying

3
§<2H1+H2§27

and admitting representation (1.2) with respect to some space-time white noise W. Also,
we consider the smooth approximation B™ defined by (1.3) and, for some fixed localized
heat kernel K, we denote by B” the canonical K-rough path associated with B", in the
sense of Definition 2.6. Finally, we denote by

]§n = (]’él,n7 ﬁZ,n’ ]§341,n7 ﬁ3.2,n)
the renormalized K-rough path B" := Renorm(B", ¢}, p,) (see Lemma 2.12), where

c%th is defined by (3.2).
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Figure 1: The successive domains for the pair (H;, Hs)

At this point, it must be recalled that the third-order results of Theorem 3.2 (covering
the situation where 2H; + Hy > %) are the continuation of the first and second-order
results of [7] for the more restrictive case where 2H; + Hy > % In particular, the study
of the first and second-order components of the renormalized canonical K-rough path
(i.e., Bl and ]§2’”) can be done along the very same arguments and estimates as in [7],
which already provides us with the following preliminary statement:

Lemma 3.8. ([7, Corollaries 3.4 and 3.5]) For every o € (—%, —3+2H, + H>), there exist
e > 0 and a pair (B!, B2) € C¢(R?) x C2**2(R?) such that

n1 n2 _p2 _ pl 1 n1
B'=0,0.B , BZ2-B2=B'(xl)) B',
and for alln,k,p > 1,
E[|B |2 5,] < Cpak® . E[IB™" ~ B, ] < Cpa k2277, (3.11)
E[IB*" 50 i05,] < Cpak® , E[IB> = B[S, 5] < Crak®27"",  (3.12)
for some constant C,, ., and where we have set Ry, := [—k, k|*.

Remark 3.9. We are aware that in [7], the results of (3.12) are only stated under the
assumption that % < 2H; + H> < 2 (the bounds in (3.11) are actually true for every
(H1, Hs) € (0,1)?). However, a close examination of the technical details in the latter
reference would show to the - patient - reader that the computations remain valid for
2H, + H> € (2, 2] as well. In any case, the forthcoming proof of Formula (3.4) for B2
would easily allow us to recover (3.12) (see for instance (5.1)), and these bounds at first
and second-order orders turn out to be elementary to obtain in comparison with the

subsequent third-order estimates.

Now, our strategy to deal with the (much more sophisticated) third-order components
B31" and B32" is based on the following two-step procedure, the overall shape of
which is rather standard in such a Gaussian setting:

Step 1 (Section 4): For fixed n > 1, expand B31"(y) and B32"(¢)) as a sum of
B™-driven Skorohod integrals, with integrands expressed in terms of the lower-order
components B and B2".

Step 2 (Section 5): Using the isometry properties of the Skorohod integral and existing
estimates on ]§17”,]A32’”, show the convergence, as n tends to infinity, of each of the
summands in the chaos-type decompositions of Step 1.
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This general strategy therefore emphasizes some “iterative” structure in our construc-
tion: estimates on B31" and B32" are somehow reduced to estimates on B1", B2n.
Unfortunately, applying the procedure still requires us to deal with a lot of technicalities,
for two essential reasons: (i) Due to the fractional setting, the isometry properties of
the Skorohod integral can only be expressed by means of sophisticated kernels, which
leads to the consideration of Sobolev-type topologies and the treatment of singularities
involving the two parameters H;, H,. The situation must here be compared with the
white-noise case, where the classical L?-isometry occurring in Wiener chaoses would
drastically simplify many of the below estimates; (ii) The involvement of B" and B2"
within these fractional computations must go through a tricky combination of the de-
terministic bounds contained in the appendix and the stochastic controls of the above
Lemma 3.8.

4 Chaos decomposition of the fractional canonical K-rough path

Before we go further, note that, for the sake of clarity in the subsequent computations,
and in opposition with the formulation of Section 3, we will henceforth go back to more
standard notations regarding time, resp. space, variables, and denote them by s, t,u,
resp. x,y, z.

The present section is devoted to the proof of the above-described Step 1, and
therefore, some preliminary material on Malliavin calculus must be introduced. In
fact, for the two-parameter processes we shall consider in the sequel, an exhaustive
presentation of this material can be found in [4, Sections 5 and 6], and accordingly we
will not return to the definition of the classical objects therein introduced, namely the
Hilbert space Hz, the Malliavin derivative D? and the Skorohod integral 6% associated
with any centered Gaussian field {Z(s,z); s,z € R} on a complete probability space
(Q, F,P).

However, what must be underlined in this situation (i.e., when working with B or
B") is that thanks to the representation (1.2), resp. (1.3), there exists a close link
between the Malliavin calculus with respect to B, resp. B", and the Malliavin calculus
with respect to W or W := F(W). To elaborate on these relations, let us introduce the
family of operators Q,, o, (1,02 € (0,1)), resp. QF defined for every integrable,

a,02’

compactly-supported function ¢ and every £, € R as

§-m

Qou,ozz ) = - al,ozzﬁf - Sy T )
() (&:m) = —c PERETa— (@)(=&—n)

resp.
§-n

€|t 2 ploats

‘F(@)(_§7 _77) )

where c,, o, is the same constant as in the representation (1.2). We can then rely on
the following identities: for every test-function ¢, every functional F' = F(B), resp.
F"™ = F™(B™), smooth enough (in the sense of Malliavin calculus) and every H p-valued,
resp. H pr-valued, random variable u in an appropriate domain, it holds that

Qs s (P)(E:M) = —Cay an Li(e.m)eD,}

||@||HB = |‘QH1,H2((P)||L2(R2) 5 <U7DBF>HB = <QH1,H2(u)vDWF>L2(]R) 5

0% (u) = 6" (Qu, . () 4.1
resp.
lellsn = 19Q%, (D) l2mzy + (u, D" F")p = (Qf, g, (w), DV F") 2wy
6Bn (u) = 5W(Q¥11,H2 (u)) N (4'2)
EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
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Here again, we refer the reader to [4] (and more specifically to [4, Lemma 6.1]) for a
proof of these identities, as well as for further details regarding the specific assumptions
on F, F" and u. Let us also recall the following general product rule satisfied by the
Skorohod integral, for either Z := B or Z := B™ (see [18]):

§2(Fu) = F6%u — (D?F,u)y, . (4.3)

Identities (4.1) and (4.2) point out the important role played by the operators
Qa1,a21 Doy 0, 10 this setting. The following related estimates will thus prove to be
fundamental in the sequel:

Lemma 4.1. Let a1,y € (0,1). For every smooth compactly-supported function ¢ :
R? — R, it holds that

196, .00 @) L2(R2) < 5, 0, el (r2) (4.4)
with dy, ,, — o0 asn — oo, and
||Q(¥1,(¥2(90)||L2(R2) SJ H‘:D”ahoo ) (4.5)

where ||¢]|a, 0, is defined along the following formulas:
° IfOél,CVQ S (%, 1), then

. 2
t,
1012, o, = // dsda:(// dtdy L‘i( y) 3a> . (4.6)
ke R o= sfF Ty — a0

e Ifay €(0,3) and as € (3,1), then

et = o e [ |x—(;|y)“2)2

dsdt 2
// _dsdt /dx(/d so(sy)so(y)) @
R2 |S _t‘ 1 R R |fL‘ _y‘**az
o Ifay,ap € (O, %), then

dxdy
oIz, o, = /ds/dwmz /d/ e lolo) o)
dsdt
/ dm/ﬂz |H|2 o [e(s,2) — o (t,2)[*

2
R2 R2

| ‘2 2a1|x_ |2 2a

Proof. The bound (4.4) is of course immediate: setting d. ,, :== [; %, one

has
dédn .
/D WW@)H, —)I? <Ay, IF (D)7 r2) < dity an N1 (g2 -

As for (4.5), it can easily be derived from the same Sobolev-embedding arguments as in
[7, Lemma 4.4]. O

We are now in a position to prove the desired decomposition formulas for the compo-
nents of B (for each fixed n), namely:

Proposition 4.2. For every smooth compactly-supported function ) : R?> — R and every
(s,x) € R2, one has, in LQ(Q),

EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
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A3.1. 52, (2) 1,n,B™ 2,n,B" 3,n,B™
and " ) )
H3.2,n B" 1,n 1 1,n,B™
B (W) =07 (v (B( o (Kol )7 ) 2L (0) (4.11)
where, following the notations of Section 3.1, we have set, for every X € C%(RR?),

ez{s ez

Loy ) = i, [ i et s UM FWIEm).

l,n,X zfs evnT 1)
L(s,m) ( CH1 Ho dgdﬂ |§|2H1 1|m2Hz 1 (K)(gvn) F(Q(S,x)(va))(E»n) )
z§s T
Ly W) = =i, m, // A gy F(D VK€ m) FO, (6, X)Em)
and

3,n,X d&dn
L(s,a;) CHl,Hz // |£|2H1 1|n|2H2 1 ( (sm)(¢> ))(6,77%

Proof. Let us first focus on the most intricate identity, namely (4.10). To this end, we set
n o n2.n (2)
V(s,x) (t’ y) E 7/}(t’ y) B(s,x) (K(s x),(t, y))

and consider two sequences of partitions ¢; = tf Y= ;" (E, meN,i,j€Z).

For all fixed 4, j, ¢, m, we know by (4.3) that, writing 1g,, for 1[t1,t,,+1)><[yj,yj+1)l one has
5 (Vi oy (tiyi) 1n,,) = Vi (ki y;) 677 (10,,) - <DW(V( o ti:95)), Oy m, (10,,)) L2 (me) -
(4.12)

Now, since

f' n wué N BN (1) (2)
_CH1>H2w(ti7yj)—‘€|Hl+% o5 g dudze B (K(S ), (u, z)) K(S,$)7(ti,yj)(u, z),

we can assert that

-~ dedy
n n 2
D DYV oy (ts93))s Qb o, (100, ) 22(82) = Sy, //D e 2T

I, jEL

1 ! \ ! o
). — A (tir1—t)€ _ — A (Yj+1—Y)n _
T E w(tl,y]){l—l—/o dX{e 1}] [1—1—/0 dX{e 1}

i,j€Z
—(ti—u)é —1( —2z) n (1) (2)
/ e e HTIB (K (), () Kt (12 -

From this expression, and with the help of (A.1) and (3.11), we can easily justify that as
f,m — oo,

Z<DW (Vv(s x) (t“ y])) QT}Lh H, (1Dij)>L2(R2)

L%Q) ) de dn
— CH,,H, |£|2H1 Lp[2H>—1

2 w) —1 2) pPn 1 2
J[ vt [ auas e w,) KD, )

dé dn n( (D)
CH1 Hy // |€|2H T ]pp| 2Ha - 1// dtdy ¢ (t,y) B <K(sw)( ))

/ /]R2 dudz e S0 m=ARE) (0, 2) + L?nzf (@) -
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At this point, observe that

S dudz A )
= F(K)(&n) — e e 0N F(K) (€ ) + (y —2) - F(DOVE))(Em)}

which immediately entails that

d€ dn n (D)
H17H2 // |€[2Hi—1[j[2Hz 71/ dtdyy(t,y)B (K(s x), (t7y))

—€(t—u) ,—m(y—2) (2)
/IR2 dudze e MY K(s,x),(t,y)

n Sn 1 M, 3 n,
= B (KL VW) + L @) + LT ()
Going back to (4.12) and observing in addition that

B (K ) = BEm (K 1)

it remains us to prove that as ¢, m — oo, one has
" n Lz(Q) n n
0" ( Z ‘/(5190) (ti’ yj) 1Dij) — 8 (Vv(s,x))
i,jEZ
and

SVt yy) 65 (1) 2 B (W) (4.13)
I,jEZ
Using the basic properties of the Skorohod integral, the proof of the first convergence
actually reduces to showing that

Y Viw(toy) 1o, = Vi, in LA(QHp) .

i,jEZ

To this end, we can first invoke (4.2) and (4.4) to assert that

E[H Z V(Z)z) (tivyj) 1|:|i_7‘ - V(TSL,I) ||3‘[B":|

1,j€EZ
< H1,Hz {H Z V(sr) i» ) V(sz)HLl ]R2)}
1,jEZ
tit1 Yj+1
< Wl B[( T [ dt/ Ay 1V (9) = Vi b)) |
z]GZ
tit1 2
1/2
< @ (0 [ [T BV 0 Vi o] )
Z]EZ ti

Going back to the definition of V(Zz) the conclusion now follows from the combination
of (A.2)-(A.5)-(A.7) and (3.12).
As for the convergence statement (4.13), observe that

E[\sz,z><ti,yj>63< S =B )]

i,jEZ

tit1

1,JEZL

it+1 Yji+1 2
1/4 SN 1/4
< Z/ dt/ Ay (VG 0y (9) ~ Vi (u)*] VBB 0 0] )
1,jEZ
EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
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Just as above, we can now conclude by using (A.2)-(A.5)-(A.7) and (3.12), together with
the fact that

‘n 471/4 " 1/2 dgdn
E[|B"(t,y)|"] <]EUB // JEPH—1[p2Ha1 -

This achieves the proof of (4.10).
The - less sophisticated - identities (4.9) and (4.11) can then be shown along the very
same arguments, and therefore we leave their proofs to the reader as an exercise. 0O

5 Convergence of the decomposition

We turn here to Step 2 of the strategy sketched out in Section 3.2. Thus, in brief, our
aim now is to prove the convergence of B" by showing the convergence of each of the
summands in the decompositions (4.9)-(4.11). Identities (3.4)-(3.6) will then be obtained
as immediate consequences of this extension.

Throughout the section, and just as in Lemma 3.8, we will use the notation Ry :=
[k, k)%, for k > 0. Besides, we recall that given ¢ : R? — R, (s,x) € R? and ¢ > 0, we
denote by %@) the rescaled function

Uiy (y) = 2522t — 5),2(y — x)) , forall (t,y) € R?.

For a clear statement of our result, let us introduce the processes B2, B3! and B32
defined by the right-hand sides of (3.4), (3.5) and (3.6), that is

B () _5B(¢ B?, . (K(2,))) + [Lésiw+L?;i><w>+Lf’;i><¢>]
and

B(s m)('l/}) =" (q/) (BI(K((;)I) ))2) + 2L(s z)(w) )

where the processes ]§1, B2 have been introduced through the preliminary Lemma 3.8.
The result of the main technical step of our analysis now reads as follows (we recall
that the set B of test-functions has been introduced at the beginning of Section 3):

Proposition 5.1. For every a € (— 5 —3+2H, + H») and every p > 1, there existse > 0
such that for alln,¢ >0, k > 1, (s,x) € Ry and ¢ € B, one has
2pA
B[[{B2, -~ Bl ) (vho)| ] S wr2mea-2nerd 6.1
2pA
3.1,n 4 2po—neo—2¢p(3a+4
H{B(é =B, N (Wly)| | S Ko Gty (5.2)
and )
-
E[[{BY2) - B2 H(ul,.0)| | S k2r2mmeaitions (5.3)

where the proportional constants are independent of (n, k, ¢, ) (but depend on p).

Proof. Observe first that, due to the standard hypercontractivity properties of Gaussian
chaoses, it suffices to prove these estimates for p = 1. In the latter case, starting from
the decompositions (4.9)-(4.11), the result is actually a straightforward consequence
of the bounds exhibited in the next subsections. To be more specific, when p =1, (5.1)
follows from the combination of (5.12) and (5.54), (5.3) from the combination of (5.7)
and (5.14), while (5.2) follows from (5.6), (5.14), (5.25) and (5.34). O
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Before we turn to the proof of the technical estimates behind Proposition 5.1, let us
see how the latter result can be used in order to derive our main Theorem 3.2.

Proof of Theorem 3.2. Fixa € (f%, —3+2H;+H>) and let m > n be two positive integers.

By applying Lemma 2.13 and using the K-chen relations satisfied by ﬁ”, B™, we easily
obtain that for o € {3.1,3.2},

IBO™ = B |30+ 4;r, S sup sup  sup  2CFDBY" — BY ()| + M (5.4)

~

YEB £20 zeANRE
with
My g = HBL” - Blvaa;Rkﬂ
{1+ B2 pey + 1BV 2k, + B> 2042:m0 00 + B*™||2042iR0 0 }

+ {”Bl’n”a;Rw—l + ||B1’m||a;31«+1} HBZ’n - B2’m||204+2;Rk+1 .

At this point, let us pick o’ € (o, —3 + 2H; + Hs) and use (5.1)-(5.3) to get that, for
o€ {3.1,3.2},

2p
| (sup s s 2B - By )|
YEBo £20 zEALNRy 41
< k2p Z |A§ N Rk+1| 2—6€p(a'—a)2—na < k2p+22—na Z 2—3@(2;}((1/—(,!)—1) ,
£>0 £>0

and of course Y., 2~ 3(2P(e’=2)~1) < o provided p is chosen large enough. Therefore,
going back to (5.4) and using also (3.11)-(3.12), we can assert that for every p large
enough, one has, for o € {3.1,3.2},

BB ~ B3 g, ] S K722 5.5)

Then, since R L
E[do(B",B™)?] <> 27" EB[|B™B™ |2y, ],
k>0

~

we can combine (5.5) with (3.11)-(3.12) to conclude that every p large enough, (B"),,>0
is a Cauchy sequence in the complete space L*?(2; (£ o, d.)) (see Remark 2.11). Its
limit provides us with the desired K-rough path B above B, and we know in addition that
]E[da(ﬁ”,ﬁ)Qﬂ < 277¢. The almost-sure convergence of B" to B in (€K,a,da) follows
immediately.

As far as the identities (3.4)-(3.6) are concerned, it now suffices to write, for every
n,k and x € Ry,

{B2 - B2}(v)| {B2 - B2"}(y)| + |{B2" — B2}(y)]

< B2 = B2 30448, + |[{B2" — B2}(¢)]

IN

and use (5.1) again while letting » tend to infinity. The same argument obviously holds
for B31 and B32 as well, which achieves the proof of the theorem. O

The rest of the section is devoted to the proof of (5.1)-(5.3). Based on decompositions
(4.9)-(4.11), the strategy reduces to controlling the convergence of each summand in
these formulas. To this end, our arguments will strongly rely on the general deterministic
bounds collected in Appendix A, and therefore we are rather confident about the fact
that the subsequent computations could easily be extended to a more general class of
fractional noises.

EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
Page 22/40


http://dx.doi.org/10.1214/17-EJP69
http://www.imstat.org/ejp/

A fractional K-rough path

5.1 Convergence in the third chaos

Proposition 5.2. For every o € (f%, —3+2H, + H,), there exists ¢ > 0 such that for all
n,0>0,k>1,(s,x) € R, and ¢ € BB, one has

n ~ 2
B{[67" (v B (K, )) =07 (e Bl (K ) ) [ ] S 2770272000 (.69
and

n n 2 2\ |2 —neo— a
B |67 (0 (BU (K 0)7) =07 (g (Bl (KD ))7)[] S w2mea2iesn),

(5.7)
where the proportional constants are independent of (n, k,{) and 1.

Proof. Let us set

n,l Y 52,1 (2)
Vi (69) 5= 000y (69) B (K )

and
0 Y B2 (2)
‘/(s,z) (t’ y) T w(s,w) (t’ y) B(S,w) (K(s,z),(t,y)) .
Then by (4.1) and (4.2), and for € > 0 small enough, we have that

Bl[67" (v2t) =67 (V)| ] = Bl (Qtyna (V25)) 0% (@ (Vi)
|| @i, (V{2%) = Qo (V) e |
B[{Q 1, = ettt (V) ey | + B Quriors (VS = V) [

27 B[ @ty (Vi) ey | + B @ttt (Vi) ey | |
+Ew%mm0@$—wwﬂhmm]- (5.8)

A

AN

At this point, let us turn to the estimates of Lemma 4.1, and focus first on the situation
where H; > % and Hs < % We get in this case that

||QH1»H2 (‘/‘(3 z - VS f )||L2(R2)

2
< 9—20(2H:1-3) dy dt (s w)( y) 4+ 9 20(=3+2H1+H>)
~ T T
dydz [ ae( [ du Flom(t9) = Py (1:2) (5.9)
re [y — 2220 |t—u|§‘H1 T

P(Zf;) (’U,, y) = u y {B(s x) B(S CD)}(K((: z),(s+2 2y, x+2- [y))

Now we can combine the two estimates (A.3) and (A.8) to retrieve the following bounds:

with

‘P(Z i) y)| 271 O g Ljug<a,yi<1y (5.10)

and

[Pt () = Pt (u,2)] S

2~ H(2atd) . Cnk - L{ju<1y [1{|y|§1,|z|§1} y— 2+ Liyi<nfzz1y + 1{\y|21,\z|§1}] )
(5.11)
EJP 22 (2017), paper 52. http://www.imstat.org/ejp/
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where we have set

Cn,k = ||]§2,n — ]§2||2(1+2;Rk+1

+[B" — B, BT

|04;Rk-+1 + ||B1H04§Rk+1 ||B1’n - BlHa;Rk+1 .

Injecting (5.10)-(5.11) into (5.9) easily leads us to the estimate

n,l 0 2 —20(3a+4 2 20—20(3a+4) o—ne
B[ Qe 11, (V) = Vi) gy S 272 CHIBICR,] < K22 Beiigne
where we have used (3.11) and (3.12) to deduce the last inequality.

By following similar arguments (just replace the use of (A.3) and (A.8) with (A.2) and
(A.7)), we also get that

]E|:||QH1*E,H2 (V(n’e )HiZ(]Rz)] f, k22—22(3a+4)

s,x)

and
n,l 2 _ o
B ||, - (Vi) o sy | S 727249

provided € > 0 is picked small enough. Going back to (5.8), we have thus shown (5.6) in
the situation where H; > 1 and H < 1.

The other situations can be dealt along the same procedure: if (Hy, H>) € (3,1)?,
resp. (Hy, Hs) € (%, 1) x (0, %), we lean successively on (4.8) and (A.2)-(A.3), resp. (4.7)
and (A.5)-(A.6). Finally, note that the condition 2H; + Hy > % rules out the case where
(H1, Hs) € (0, 3)2.

It is then not hard to see that we can mimic the above arguments in order to prove
(5.7). In fact, it suffices to replace the above quantities V(Zi) (t,y), V(Esm) (t,y) and P(Z:i)
with

n, -~ ,n 2
Vi (t9) = 0y (6) (BM (KL 1))
= 2
Vv(?s,a:) (t7 y) = wfs,:r) (t’ y) (Bl (K((.sl7):p),(t,y))) ’

£ _ 51, (1) 2 51 (1) 2
P(ns,ag) (u,y) = P(u,y) {(B(sf;') (K(s,x),(s+2*22u,+2*2y))) - (B(s,x) (K(s,w),(s+2*22u,+2*£y)) } )
and check with the help of (A.1) that both estimates (5.10) and (5.11) still hold true in
this case, by using also the basic relation

1) €8] _ (1)
Kooty ~ Eorm s = Eue) () -

5.2 Convergence in the second chaos

Proposition 5.3. For every a € (—%, —3+4 2H, + H>), there exists ¢ > 0 such that for all

n, 0 >0,k>1,(s,z) € R and 1 € B, one has
2
B (. ¢ Hln(p-(1) B ¢ D (1) —neg—20(2a
B[ (4o - BY (K1) = 07 (6o - BUEGL) ))[] S RP2727200 .12)

where the proportional constant is independent of (n, k,¢) and 1.

Proof. The argument is very similar as the one in the proof of Proposition 5.2, and
therefore we will only focus on the main ideas. In fact, by setting

0 RN B (1)
Vi) () 1= 0 oy (6 9) BYE Gy (1) »
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observe that if for instance H; > 1 and H» < %, one has by (4.7)

19, 1, (VE oy = Vi) 2 e

S 272@(2H17 )/ dy/ dt(/ (Sx)(u y))
R |t—ul?

K 2
92~ 42H, ) / dydz / dt( / iy Pl (4:9) = <s,z>(“’z)> ,
Re |y — 22722 |t —ul3—H

P(Ks,z) (u>y) = ’L/J(u y) Bl (K((s)w) (s+2—2bu,z+2-¢ )) ’
Besides, thanks to (A.1), we know that

| Pl ay ()| S 27D Bl Rics - Ljuj<a pyi<1y

with

and
|P(€s,z)(u7 y) - P(Zs,z)(u?z)’ 5
27D B oy Ry - Ljui<ty - [Lwi<nizi<ay - v = 21°72 + Lgyi<a im0y + Lyizzi<y] -

With these estimates in mind, we can easily mimic the proof of Proposition 5.2 and
conclude that, for ¢ > 0 small enough,

n ~ ~ 2
MWW@BWWW%W%fFM$M}
5 2722(2a+2){E“|]§1,n ] +9- nsE[HBlna Rk+1}} S k227n5272€(204+2) ’

where we have used (3.11) to derive the last inequality. O

5.3 Convergence in the first chaos: case of LimB"
Proposition 5.4. For every o € (—%, —3+42H, + H>), there exists ¢ > 0 such that for all
XY € C¥(R?), n,£ >0,k >1, (s,r) € Ry and ¢ € B, one has

n, X Y — « —-n
|{Lgs z) éq z) (¢€s,x))| S 2 4 +4){2 E||X||a;Rk+1 + HX - Y||a;Rk+1} ) (5.13)

where the proportional constant is independent of (n, k,{) and v. As a consequence of

(5.13) and (3.11), one has in particular

H {Ll n,B" Ll B)}(wfs’z))ﬁ] g k22—2€(3a+4)2—2na ) (5.14)

(s,x

Proof. Let us start with the basic inequality

LG = LG Y (Wan)| S ol + IS (5.15)

with
d€dn
o) = | Joo PR
‘F(K)(g,n) / /}R dtdy et DTGl (1 y){X — YHED, (. y>)‘

and

[T / / d€dn

(s:2) ” R2\D,, [E[2H = T|p[2Ha -1

—1§(t—s) ,— —x 1
K)(é,n)//]R2dtdye Smslemmly Wfs,x)(t»y)X(Kgs,)m,(t,y))"
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Estimation of | (es,x). Using elementary changes of variables, we can write [, éw) as

déd
Iy = //]R REE §|77|2H2 CF(K) (&) F(F(, 1) (272¢,27) (5.16)

with
4 -
F(s,w) (t’ y) T w {X Y}( (9 ) (9+2*22t,r+2*5y)) : (5.17)
At this point, pick A1, A2, ag satlsfylng the following conditions:
max(0,4H; —3) < A\; <min(4H; — 1,1) , max(0,4Hs —3) <Ay <1, (5.18)
and
M+ =7T+40y , a<ay<-3+2H1+ H,y. (5.19)

Given our assumptions on (H;, Hs), the existence of such a triplet (A1, A2, ag) is indeed
easy to check. Now write

ded 3
L e AL
déd 2
([], emirrt e ez nP)
i ded H

(//RQ |§|CAZ§|CZ7|A2 F(F ) (En)] )2 : (5.20)

Owing to (5.18), we know that 4H; —2 — A\; < 1 and 4Hs — 2 — Ay < 1. Besides, using
(5.18)-(5.19), it is easy to check that there exists a,b € [0,1) such that a + b < 1 and

4H1 —2— X +2a>1 , 4Hy, —2— )Xy +4b>1.

Thanks to Lemma 2.5, we are therefore in a position to guarantee that

déd
//}R2 5|4H1—2—,\§|,;7|4H2_2_,\2 ‘f(K)(E,U)V < . (5.21)

As far as the second integral in (5.20) is concerned, we can use Lemma 4.1 (more
precisely the bound (4.6)) and then (A.1) to get that

//]R2 5|C’§ﬁ:|’\2 ( (s, L))(f 77)\
e ff, ot >
2 2| X V|2 p // dsdm(//]R2 dtdy - w2(t|yy)| |1A22)2

S 2HIX Yy, (6:22)

A

Going back to (5.20), we get the desired estimate, namely

|I(ésx)| S 2_€(3a+4)”X - Y||O£;Rk+1 .
Estimation of // ("g';) Observe that for any € > 0, one has

n,l —2ne (17561 —(,2

(s,z
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where

—1 d€dn
11 =
(s,) //11{2 |€|2(H1—s)—1|m2H2—1

Foen [ /]R dtdy DDy ) X (KD, )|

—0,2 dédn
11, . = //
(s,7) re |E[2H1—1|p[2(Ha—e)—1

P Em) // dtdy <=y ) X (KD )]

and

Then the estimation of both ﬁf’l ) and ﬁffI) can of course be done along the very same
lines as the estimation of I‘f (by picking € > 0 small enough), which leads us to the
bound iy

(o) S 27N X s -

The proof of our assertion is therefore complete. O

5.4 Convergence in the first chaos: case of L2mB"

Proposition 5.5. For every a € (f%, —3+2H, + H,), there exists ¢ > 0 such that for all
X, Y € C¥(R?), n,{ >0,k >1, (s,x) € R, and ¢ € B, one has

|{L2 X L2 Y)}(wfe,x)” /S 274(3a+4){27n€||X||OL§Rk+1 + HX - Y”Oé;RkJrl} ) (524)

(sm

where the proportional constant is independent of (n, k, () and v. As a consequence of
(5.24) and (3.11), one has in particular

[|{L2 M, B" L2 B)}(wfs7z))|2] g k2272€(3a+4)272n€ . (525)

(s,x

Proof. 1t is based on the same strategy as the proof of Proposition 5.4, that is an
appropriate Cauchy-Schwartz argument. As above, let us start with the inequality

2,n,X 2y
HEG = Ly Wlom)| S Mol + I (5.26)
with
dedn
' //]Rz |€[2H L[| 2= Em e 1 E)E )]
y// dtdy e~ €)== (y — 2yl (L)X = YHELD, ()
R2
and

d€dn
n,
II(ML) //11{2\17 |€[2H—1 || 2H2— g‘f(K)(fyﬁ)"
—€(t—s) ,—wm(y—z 1
‘/]Rz dtdy e €= el )(y—x)tﬂfs,x)(t,y)X(Kﬁs,)x),(tyy))‘.

We have here used the basic identity (F(D®VK))(&,n) = cn F(K)(, 7).
Estimation of I/

(s,x

déd
o //R2 |€[2H - §‘7;7|2H2 2 F(K)(&n) ( )(2_2[5 2_217) (5.27)

- Just as in the proof of Proposition 5.4, write I, fs,x) as
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with
4 o
G(s7x)(t’y) T ’l/)(t y "y {X Y}( (<; x) (s+2—20t, 242~ ’Zy)) (5.28)

Then note that given our assumptions on (H;, H3), we can easily find A, s, o satisfying
the following conditions:

max(0,4H; —3) < A\; <min(4H; —1,1) , —1< Xy <min(0,4Hy — 1), (5.29)
A+ A =b+4day , a<ay<-—-3+2H,+ H,, (5.30)
and write
1
_ dédn B
7 ¢ 2
|I(s,:v)| < 2 (/,/]RZ ‘€|4H1—2—)\1|n‘4H2—4—>\2 ‘}-(K)(&U” )

déd ,
(L., i 7l e 2 n)

1

déd :
-t ([ s PO € )

ded 3
(//]R |£|*§|:|A2 F fs,m)(f,n)IQ) : (5.31)

At this point, observe that 4H; — 2 — Ay < 1 and 4Hs — 4 — Ay < 1. Moreover, with
(5.29)-(5.30) in mind, it is easy to exhibit a,b € [0,1) such that a + b < 1 and

IN

4H, —2—-X +2a>1 , 4Hy—4— )Xy +4b>1.

Consequently, we can apply Lemma 2.5 and assert that

déd
//]R2 |£|4H1727)\1‘77T]|4H2—47)\2 |F(K)(&n)]* < oo

As for the second integral in (5.31), we have, by Lemma 4.1 (and more precisely by

(4.7)),
//R 5|C£§d77w [F(Gloy) (&I
s Lo [l |t_u|1>)2
S o [ ey

Using (A.1), we can here rely on the following bounds:

|Gl (w0)] S 27X =Y [lasriys - Lju<plyl<1)
and

|G(s z) u y) Gfs,m) (U, Z)| g 27€(a+2)

a+2
Lijui<ay - [Lyi<nizi<ay - [y = 2172+ 1y i< o1y + Lyizn)z<n] -

Combined with fact that Ay > —1 > —2(a + 2), these estimates allow us to conclude that

dédn 2 < 9-2t(a42)
//]R2 |§|)\1‘77|)\2 ( (s,x) )(f 77)' 2 ||X YHaRk_H . (5.32)
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Going back to (5.31), we have thus proved the desired estimate, namely
|I(ész)| 5 2_6(3a+4)||X - YHOé;Rk-H :

Estimation of I/ ("’g ). The argument is the same as in the proof of Proposition 5.4: we

first bound |17 (" )| in a similar way as in (5.23) and then use the same Cauchy-Schwartz
bound (5.31) (by replacing H; with H; — ¢, for € > 0 small enough, and X — Y with X).
This leads us to the expected estimate, namely

|II(ns:Zx)| < 2_6(3a+4)2_n6HX”a;Rk+1 ) 0

5.5 Convergence in the first chaos: case of L3mB"

Proposition 5.6. For every a € (—3, -3+ 2H; + H,), there exists ¢ > 0 such that for all
X, Y € C¢(R?), n,0 >0,k >1, (s,z) € R and ¢ € B, one has

(L3~ LY AWl )] S 270 27 K iy + IX — Viamen} s (5.33)

where the proportional constant is independent of (n,k, {) and ). As a consequence of
(5.33) and (3.11), one has in particular

[|{L3 M, B™ L3 B)}(’(/}gs’z))‘Q] S_, k22—2£(3a+4)2—2n6 . (534)

(s,x

Proof, Let us set X2 := X — Y. One has

{L3 L?S‘;) FWlomy) = 2 {I{omy + II(’;’i :E

with

7t d&dn
(s,2) * R2 ‘§|2H1 1|77|2H2 1’

—€(t—u) —m(y—z) v A [ 7-(1) (2)
//detdyw(“)(t’y)//]Rad“d” e MNP K (1) ) K (e (1) (0 2) 5

- ] dcdn
(s,x) * R2\D,, |§|2H1 1|n‘2H2 1
—1 —Uu —1 —Zz (1) (2
//]detdw(s,m)(t’y)//wd“d” YO (K 1), ) K (o (0 (80 2) -

Just as in the proofs of Proposition 5.4 and Proposition 5.5, it is easy to see that the
estimations of I/ (s,2) and 17 (” £ ») can be done along the very same steps (by relying on a
similar bound as in (5.15) or (5.26)), and therefore we only focus on the estimation of

It ..
(s,2)
First, using elementary changes of variables, let us write the latter expression as

I{, gy =279 I (5.35)

where

dgdn w’u 72 z
I(Gr) //]R2 |E[2H— 1| [2H2~ 1//RQdudze ¢ K // dtdy ) (t,y)

A1) 2/ ‘
X (K(s+2 204 242 0y) (s42-2¢ (t—u),z+2— (y— z)))K(O 0),(2-20¢,2-* )(2 (t—u),27(y—2)).
(5.36)
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Now, with expansion (2.2) in mind, let us decompose

2 _ _
K((O?O),(%“t,ﬂy)@ 2t —u), 27y — 2))

as
K® 2=20(4 _ ). 2y —
(0,0),(2-2¢¢, wy)( (t —u), (y—2))
2 _ _
= Z K((O)O;n(Q 204 9t )(2 it —u), 27y - 2))
o<m</¢
Y K o sty (27— w), 27 (g = 2)) (5.37)
m>l
where
2),m — —
K((o)o) (2- 2%,24;,)(2 %(t —u),2 e(y —2))

= 2K (22m Oy, 2m ) — 2m Ko (22D (4 — 1), 2 (2 — y))
_2—€ y 22m(D0,1K0)(22(m—€) ('LL _ t), 2m—€(z _ y)) .

Injecting (5.37) back into (5.36) gives a decomposition we label as follows:

Tl _ lm 4
oy = D2 Iy + D10 = Al + Blow) (5.38)
o<m<¢ m>/

Estimation of Afs ) Let us here rely on the basic Taylor expansion

2),m — —
) K<(0,)0>,(2*’-’@t,24y)(2 2t —u),27(y — 2))
0<m<¥

1
= 20 Y 27 / dr (D Ko) (272 (u — t +1t),27™2)
0<m<2 0

+2¢ Z g—3m 2/ drr/ dr' (D*2Ky) (272 (u—1),27™(z —y +r1'y)) ,

0o<m<<

which gives rise to the decomposition A(S 2 = ALt

(s,x

) + A?fw), where

dedn Crew
1,6 . _ ot —3m wu ,—1nz

0<m<t R?

A ge(D)
X (K(s+2 2t 242 ty),(s+2 2 (t—u),x+2" ¢ (y— z)))

/dr(DO’lKo)(2_2m(u—t+rt),2_mz) (5.39)

0
and
d&dn Cu —
A% =0t 27 3m/ _— dudz e " e ”’z/ dtdy y? (t,y
b= 2 PP o SV VD)
A (1)
X (K s+27 20t x+2Ly), (s+27 24 (t—u),z+2 ¢ (y— z)))

/drr/ dr' (D°2Ko) (272 (u —t),27™ (2 — y + rr'y)) .

Let us first write A"

(s,z) as
ded
1,6 _ é Ui L,m
A(s x) Z /2 |[2H—T]p[2H2— A m) &mn) - (5.40)
0<m<t
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For the sake of clarity, we have postponed the estimation of |Azf;’7(§ ,n)| to the subse-
quent Lemma 5.7. Now, for some small fixed ¢ > 0, picka € (0,2 —2H;), b € (0,2 — 2H>)
such that a + b = 1 — . Note that this is made possible by the condition 2H; + H, < 2,
which entails that (2 — 2H;) + (2 — 2Hs) > 1. Using the bounds (5.51)-(5.52), we derive
that

A S 2 DX i, .,

Z (2m(a+2))5 dfdn + d§d77
1 i1 JEPTTre g PTeD Ayt

0<m<t g1<tlni>1 1€

+/ dé&dn Jr/ dé&dn }
1> 1 i<t PN s s [ 22t

< 2—@(Oé+1)||XA|| 9l(at+2)e

a;Rp41

It is easy to see that the very same arguments apply to A(S 2) @8 well, leading us to the

conclusion that
| AL o] S 279V X A g, 20025 (5.41)

: : ¢ ¢ _ plt 3,0
Estimation of B(S’ ). Decompose B(s z) @S B(S 5) = B(w) (5 L) B(‘S )

dédn // - //
om dud wWu ,—inz dtd "
Z /AQ |§|2H1 1|77‘2H2 1 - uaz e e . yw( 7y)

)KO(QQ(m—Z)u, 2m—[z) ;

with

A (1)
X (K(9+2 20t 242 Ly),(s+2-2¢(t—u),x+2" ¢ (y—=2))

m dgd’r] —iLu ,—1nz
B(s z) 2 // |€[2H 1|y |2Ha~ 1/ dudz e™"$ e / dtdy)(t,y)
>ﬁ R? Y R? R2

A1) 2(m—¢ m—¢
X (K(s+2*2£t,a:+2*ey),(S+2*25(tfu),a:Jr?*[(yfz)))KO(2 ( )(U - t)’ 2 (Z - y)) )

_ dédn _ _
B” =270y " 92m // // dudz e *Ete™"* // dtdy (t
Z R2 |§|2H1 Ynl2H2=1 ] Jg2 e ‘ R2 yv(6y)

(1) 0,1 2(m—¢ m—4
X2 (K(s+2*2’ft,x+2*’fy),(s+2*”(t—u)7r+2*f(y—z)))'y'(D Ko) (22O (u—1),2m (2 —y)) -

(i) Estimation ofB(lfx). One has

d§dn Bt
__ ol m
(sw) 2 Z//]R2 ‘€|2H1 1|77|2H2 1 (s;E (57 )’ (542)
where
B ) =27 [ duds e e Ry 2P 2Ny 02).
with
. A (1)
N(Ga:) u,z): //]R2 dtdy (t, y) X (K s+2-20¢ p42—y), (s+2— 2 (t—u),z+2— ¢ (y— z))) (5.43)

Using the subsequent Lemma 5.8, it is easy to derive the following bound:

m e ) Cam gm  9m
| (15£m) (57 )| 52 “ +2)||XA||O¢;RIC+1 -inf <2 3 7527774> y (5.44)

where the proportional constant is independent from (£,7) and (¢, m). Observe indeed
that
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|B(1;)Z;T(€717)| < Z*Qm/ dudz | Ko(u, 2)| |Né7m)(272mu, 2=m2)|
R2

AN

2737712*4(0&2)HXAHO”Rk+1 / dudz |Ko(u, 2)[{|u] + |2|} ,
]R2

while, for instance,
IBE;,ZT@, 0|
< / dudz |0} (Ko(27™., 2™ )N{, 1y (-5 ) (u, 2)|

~

2m
< S o7 XA ir 28 | dudz [(D?OKY) (22w, 2 2) | { ul + |2
52 sl 41

]R‘z

+22m/ dudz|(D1’0K0)(22mu,2mz)|+/ dudz|K0(22mu,2mz)|}
R?2 R2

2™ e
Sj ?2 “« +2)HXA||Q;R1€+1 .
Going back to (5.42), the estimate (5.44) allows us to assert that

’B<s M S 27O XA sy - (5.45)

Indeed, observe that we can picka € (1 — Hy,3), b€ (3(1 - Hz),3) such thata+b < 3
(due to 2H; + Hy > %). Then write

1,0 _
‘B(S $)| < 2O XA g
Z {2—3m/ % +2_m(3—4a)/ dfdn
m20 gl<tfp<t [§PF 2t le|>1,|nj<1 |§[2Hr—1H2a|p|2Ha 1

+2—m(3—4b)/ dedn
le|<1,|n|>1 [§[2 =1 |p|2H2= 1440

o m(3—4(atb)) / dedn }
[€]>1,|n|>1 |§‘2H171+2“‘n|2H2*1+4b

N 27f(a+1) ”XA”Oé'RkJrl .

~

(ii) Estimation of B( ) Using basic changes of variables, we get that

B2 __dedn g ey
Bloa) = ke [€[2H 1]y 2H>—1 (sw) n

with

(2561)(5 n) = 2° dtdy e *Ste™"Yap(t, y) dudze_lgue_”’zK(u,z)
]RQ

A 1)
X (K(9+2 20t 242~ Ly),(s—2~ 2y, x—2~ [z))

= 2 FWEn) [ dudze K )X KD (s
—2' F(K)(&n) / dtdy e e Mt y) XN (K, (o seraraoy)

= BR(en) - B
Now, on the one hand, it holds by (A.1) that
IBESEml S 27 XA aim, [ F@)(E )] /}R dudz | K (u, z)|

(<; x) ~
g~ Ha+D) ”XA llov: ey [F () (€ )]

A
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and accordingly

d€dn 2,1,@ -
/]R2 W’ (s,z) 6 n ‘ <2 é(a+1)||XA||a Riq1 - (5.46)

On the other hand, with the notations of the proof of Proposition 5.4 (see (5.17)), we
have that

BE2S(&m) = 20 F(K)(&,m) F(F{ ) (6m) -
Therefore, we are dealing with a very similar quantity as the one defined by (5.16), and
we can rely on the same Cauchy-Schwarz argument (that is, the combination of (5.20)
and (5.22)) to assert that

dédn B2 —t(a
/]Rz W’ (s,) (&n ‘ S2 e HXAHOé Riy1 - (5.47)

(ii) Estimation of B?fw . In the same spirit as with B -

)
notation ¢(t,y) == ¥(t,y) - y,
= 26/ dtdy e*lgte*mygo(t,y)/ dudz e e™"* (DY K) (u, 2)
R? R2

(s+2—20t,x42"Ly),(s—2~ 24, w72_[’z))

= 25]:(90)(5777)/ dudze™*"e ™" (DM K) (u, Z)XA(K((S)@ (s—2-2¢u—2-2))

z)” write, with the additional

o F((DO’IK))(&n)/ didy e~ e M p(t, y) X (K]
R2

(s,x), (s+2*22t,x+2*4y))
= Bl (&n) = B En) -

Now,
‘B?‘;}Ig(é_’n)’ 5 2_£(a+1)HXA||Q’Rk+1|]:(SD)(E’77)| /IRQ dUdZ |(D071K)(u7 Z)|
S 27X i IF@E M
and so ded
n 3 1 e —A(a+1 A
|, s B e ] S 2 I s, o4

Besides, with the notations of the proof of Proposition 5.5 (see (5.28)), one has

B2 (&, m) = 28 F(DUMK)(&,m) F(G{, ,))(&7) -

So, just as above, we can use the same argument as with the estimation of (5.27) (that is,
the bounds (5.31) and (5.32)) to get that

dgdn B2 —t(at1) | A
/]R2 W’ (s,x) g’ ‘<2 ( )”X ||0‘?Rk+1 . (5.49)

We can then combine the estimates (5.45)-(5.46)-(5.47)-(5.48)-(5.49) to conclude that
1Bloy S 27X sy - (5.50)

The desired bound for Ifs 2) is now immediate: injecting (5.41) and (5.50) into (5.35) and
(5.38) leads us to

|I( )’ < ||XA||()4Rk+1 272(0(4»1)27[(4H1+2H27376(a+2)) .

and by choosing € > 0 small enough, we can finally assert that

’I(és,r)| S || 2—@(3(1-1—4) . O
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Lemma 5.7. Let Aéfj)“(g,n) be the quantity defined through (5.39)-(5.40) (note in par-
ticular that 0 < m < /). Then it holds that

A —(l—m)(a
AT Em)] S 27O XA iy, (5.51)
and for every p,q > 1,
1 1
A”m &,n)| <271 XA wirss mf< ) . (5.52)
| s x) ( )| || || k+ |§|p |n|q
In both (5.51) and (5.52), the proportional constant does not depend on &, 1, ¢, m, k and

.

Proof. Set p(t,y) :=t-9(t,y). For (5.51), observe that due to both (A.1) and support
reasons (involving the supports of ¢ and K), one has

AL Eom))|

S 27Z(a+2)”XA”a;Rk+1 2*37"/
lu|$22m

du / dz / dtdy ()| {Ju] + 22} E)
‘2‘52771 R2

1
/ dr | (DO Ko) (27" (u — t 4+ 7t),27™2)|
0

< 27Z(a+2)||XA||o¢;Rk+1 gm(a+2) (5.53)

~

As far as (5.52) is concerned, one has for instance, by setting 02 = K x X5,

AL (€m)]

2 3m
< dudz / dr
€l /Rz

{02(s+272(t— ),z +27(y—2) — 0% (s +2 ¢, o + Q_Zy)}) (u, 2)] .

dtdy o(t,y) Oy ((DLOKO)(Z_QM(. —t+71t),27™2)
RQ

Then note that the integral with respect to (¢, y) can be decomposed as
g—2m / dtdy o(t,y) (D*°Ko)(272™ (u — t +1t),27™2)
IR2
{QA(S + 272t —u),x+ 27y — 2)) — 02 (s + 272,z + Z_Ey)}
= [ dtdyt.9) (DK@ 470, 272)
R?
at{GA(s + 272 —u), x4+ 27y — 2)) — 0°(s — 27 Hu, 2z + 2%2)}(15, Y)
= 27m / dtdy o(t,y) (D*°Ko)(272™ (u — t +7t),27™2)
R2
{02(s+ 272 (t —u), 2+ 27 (y —2)) — 02 (s + 27,z +27"y) }
+ [ dtdy @) t,) (DMK @ e+ 70),272)
IR?
{GA(S +272(t — ),z + 27y — 2)) — 0°(s — 27w,z + 242)}
+272m(r — 1) / dtdy o(t,y) (D*°Ko)(272™ (u — t +7t),27™2)
R2
{02(s+ 272 (t —u),z +27(y — 2)) — 0% (s — 2 % u, 2 + 2772)}
which, by (A.1) and for the same support reasons as in (5.53), easily leads us to the

expected bound:
2—€(a+2)

lfm

||XA||a;Rk+1 .
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The other estimates contained in (5.52) can then be derived from the same integration-
by-parts arguments. O

Lemma 5.8. Let NZ 2) be the function defined by (5.43). Then for every p,q > 0 such
that 1 <p+q <4, onehas

sup ’8”8"( ) u, z)‘ < g—t(at2) ||XA||a Rii1 s
(u,z)€[—1,1]2

where the proportional constant does not depend on ¢,k and v. In particular, as
N{, ,,(0,0) =0, one has for every (u, 2) € [~1,1]%,

| NGy (0, 2)] S 27D XA sy {lul + 2]} -
Proof. Set 62 := K x« X2. Then we have

|0502 (N{, ) (u. 2)|

/ didy (t, )
RZ

PO (s+272(t— ),z + 27 (y—.) — 02 (s + 27,2+ 27"y)) (u, 2)

- / dtdy (¢, )
]R2

OO (s +27%( —w),w+ 27— 2) — 08 (s — 2 X u,z — 2712)) (4, y>\

= | [, aay @rogu)e.y
{02 (s + 272 (t —u),z+2 (y —2)) — 02 (s — 272 u, x — 2_52)}’
and so, by (A.1),
(V) 2] S 2N i, [ ey |00t )

S 27X i - =

5.6 Convergence in the deterministic chaos

Proposition 5.9. For every a € (—3, -3+ 2H; + H,), there exists ¢ > 0 such that for all
n, 0 >0,k>1,(s,x) € R, and 1 € B, one has
n 14 —L(204+2) 9—ne
|{L(s,x) - L(Saf)}(¢(s,x))| 5 2 (2t )2 ’ (5.54)

where the proportional constant is independent of (n, k,¢) and 1.

Proof. 1t is again a basic Cauchy-Schwartz argument. In fact, pick (A1, A2, o) exactly as
in (5.18)-(5.19) and observe that with this choice, one has

‘L(s,a:) Wé,m)) |

dédn dédn , 2>%
(//1;2 |§|4H1—2—)\1|n‘4H2—2—A2| ( ) <// |£‘>\1|77‘>\2 (w(oo))(f,nﬂ
(20 déd
e JrQ)(//]R2 |£|4H1727>\1‘:|4H2727)\2 |]:(K)(€777)|2)

(L g Fwe ,n>|2)% |
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The argument showing that the latter bound is finite is then the same as for (5.21). With
these estimations in mind, the proof of (5.54) (for £ > 0 small enough) is immediate. O

A A few deterministic estimates at first and second orders

We collect here a few useful estimates related to the interactions between a given
K-rough path (more precisely, its first and second-order components) and a localized
heat kernel (in the sense of Definition 2.4). Just as in Section 3, we fix a coefficient
o c (—%, —%), as well as a localized heat kernel K. We recall that the notations & (") and
K® are then defined through (2.3) and (2.4), respectively. Also, for every R > 0, we set
IR = [7R, RP

Let us start with a basic result applying to the first-order component of a K-rough
path, that is to a general C®(R?) distribution (the proof of this estimate can be found for
instance in [7, Lemma 2.2]).

Lemma A.1. Let X € C¥(IR?). Then, for every R > 0 and every z = (xo, 1),y = (yo,y1) €
IR such that z — y € [-2,2]%, one has

X (ESD ] S X aste - 2 = wlls 2 (A.1)
Let us now turn to second-order considerations and fix two paths
X = (X', X2, Y =(Y'Y? €C¥R? xC*(R?)

that satisfy the K-Chen relation (2.7).

Lemma A.2. For every R > 0 and every © = (zo,21),y = (Y0,%1) € Ig such that
r —y € [-2,2]?, one has

IXZ(KE)] S X 2asire + X 20, ) - Nl = wll2oH (A.2)

and

(X2 = Y2H(KE)|

Y

S {||X2_Y2||2a+2;13+||xl_Y1||a;IR||X1||a;IR+HY1

Yot o lle =yl
(A.3)

Moreover,
I X2((DY'K)(2—.))=X2((D" K)(y—) | S {I1X2l2aroira+IX 21, - le—yl227 . (A4)

Proof. We follow a similar strategy as in the proof of [7, Lemma 2.2]. Namely, with
expansion (2.2) in mind, we write

sz (2)1]

£>0

where Kg(C 2, stands for the expression obtained by replacing each occurence of K with
Ky = 2'Ky(22¢.,2¢.) in K?). Then pick i > 0 such that 3-2~(+1) < ||z — y||; < 3-2~". For
{ > i, we use (2.7) to derive that

XZ( (2) /)

z,Y

(X2 (Kely=)) + X (KU) X (Kely—) | =X (Koo =) = (g1 1) X2((D" K (2 —2)) -
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Therefore, by (A.1), we can assert that

X3 (K55

Z,Yy
< (IR ooz + K20, } {2705 s — 274D gy 32 2742}

and as a result
3 X2(EP)] < (1K 20s2:1
0>i

On the other hand, for 0 < ¢ < 4, write

|2a+4

— ]

1
X2 (K;?;’f) = (yo — o) / dr X2 (D" Ky)(zo + r(yo — o) — -, y1 — .))
0

1 1
+ (g1 — x1)? / drr/ dr’ X2((D"?Ky)(zo — o1 +rr'(y1 — 21) — J) s
0
and so, using (2.7) and (A.1) just as above, we get that
X2(K2)0)| S (1% llaas2s + 11X 12,7, )
(o —0]- 2742 4 [y —axg - [l — |92 27 |y — s [2-27 04 |y, o270}
Consequently,

> IXEEE] S X lat20m +
0<l<i

)l =yl 2o

which achieves the proof of (A.2). It is then clear that (A.3) can be shown along the very
same lines.

The proof of (A.4) also relies on a similar strategy and therefore we omit it for the
sake of conciseness. O

Lemma A.3. Forall R > 0, z = (w,71) € I, vy = (y0,v1) € [—1,1]? and z € [-1,1], it
holds that

(2) (2)
|X2 (Kx J(zotyo,x1t+y1) @ (ro+2mm1+y1))|

S A{IX2 ll2a42irm,, + [IXH2 Tnas |- Uy — 20l 2 [y 12t Jyo — 20/ +2)} , (A.5)

and

2 2 (2) (2)
’{X“: a Yw}(KL(wo-FyO»Il-i-yl) - Kw7($o+z07$1+y1)) ’
SAIX? = Y2 ar2irny + 11X = Y asrn X astnes + 1Y s X =

1
{lyo — 20T + YlI2 T2 [yo — 20T} . (A6)

Proof. One has trivially

) @ _ k@
x,(zo+yo,r14+y1) z,(zo+20,71+y1) (zo+yo,x14+y1),(zo+20,21+y1)

_ K(l)
(zo+yo,21+y1),(To+20,21+y1)

and so, by (2.7), we get the identity
2(1-(2) (2)
X (K J(zo+yo,x1+y1) Kx’(xo+?:o,m1+y1))
(2)
X($0+yo7961 +y1) (K(ro-‘ryoﬁm +y1),(zo+20,21 +y1))

(1) (1)
+X1 (K:r w+y) X! (K(mo-'ruo z1+y1), (wo+ZO,x1+U1)) :

The desired estimate (A.5) now follows from (A.1) and (A.2). The very same arguments
can be applied in order to derive (A.6). O
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Lemma A.4. Forall R > 0, x = (z9,71) € Ir, y = (yo,y1) € [-1,1]? and z; € [-1,1], it
holds that

2(1(2) (2)
|XI (Kx,(ro+yg,x1+y1) - Kr,(zg+yo,m1+zl))|
S AKX 2ar 2 HIX sy b {v =21 P g =z [y l32F g =2 T2yl 2
(A.7)
and
2 2 (2) (2)
HXI a YZ}(K%(Z(J-HIO»TA-HH) - KI7($0+y07I1+Z1)) ’

/S {HXZ - Y2||204+2;IR+1 + ”Xl - Yl‘ a;lr+1 ||X1||Q;IR+1 + ||Y1||Q;IR+1 ”Xl - Y1||04§IR+1 }
{lyr = 2P gy — 2] ly 12972 + Jyr — 2272 yllg ™2} . (A8)

Proof. We will rely on the following readily-checked identity:

2(7-(2) (2) _ w2 (2)
X (Kar,(xo-&-yo,xﬁzl) o Kx,(xo+yo,x1+y1)) - Xl‘+y (K:c+y,(:co+yo,x1+zl))
1 (1) 1 (1)
+X (Kr,xﬂ;) X (Kac+y,(wo+yo,w1+z1)) + (21 - yl) ’ Vz,y ’
where

Vi = X2((D"'K)(x +y — ) — (DY K)(z — ) — XY (K ) XD K (@ +y — ) -

Using (A.1), resp. (A.2), we get that

1 1
X (RS ) XEHED oo so) | S IX R e - 1272 g — 202
resp.
2 (2) 2 12 2044
|Xw+y(Kw+y,(ﬂﬂo+yo,m1+z1))| S {”X 2t 275 +[1X ||a;1R+1} yn =z

Therefore, the proof reduces to the estimation of V. ,. To this end, and in the same
vein as in the proof of Lemma A.2, pick i > 0 such that 27 < |y|, < 27(¢~1. Also,
with expansion (2.2) in mind, denote by ny the expression obtained by replacing each
occurence of K with K, := 2¢K,(2%.,2%.) in V, . For ¢ > i, let us use (2.7) in order to
write V/ as

Vi, =X2

x—&-y((DO’lKé)(z + Y- )) - Xi((DO’lKE)(x - )) 3

which immediately entails that |V, | < [X2|l2a+42:1,., 27?*™3), and so

> VL S IXP 20t 2irm, [9l20 (A.9)
>4

For 0 < ¢ < i, observe on the one hand that
’Xl((DOJKZ)(x ty-— ))| < ||X1||oc;IR+1 27t (A.10)
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On the other hand, combining basic Taylor expansions with (2.7) gives us that

1X2((D' Ko)(z+y — ) — (DM Ky (x — )|

< lyol /01 dr {‘X(2330+7’yo,a:1+y1)((DLlK@)(‘rO +ryo — x1+y )|
+’X1(K§()zo+ryo,zl+yl))’ | X (DM Ko) (o + ryo — @1 + 41 — ))’}
+lw| /01 dr {yx(ﬂwwl)((DO»QK@)(xO — Lzt =)
+X! (Kg()xo,m-&-ryl))‘ | X (D™ Ke) (w0 — w1 4+ 791 —.)) ’}
S {IXPl2at2izngy + 1XMZ 1y, } - {lvol - [276C*HD 4 y[jgF2 - 274 D)]

|- 270G et 27} A

Putting together (A.10) and (A.11) easily provides us with the desired estimate, that is

STV S X2 aszine, + 1X 200, ) - I9I22F2
0<e<i

which achieves the proof of (A.7). A similar strategy can then be implemented towards
(A.8). O
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