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Abstract

We consider regularity properties of stochastic kinetic equations with multiplicative
noise and drift term which belongs to a space of mixed regularity (Lp-regularity in
the velocity-variable and Sobolev regularity in the space-variable). We prove that, in
contrast with the deterministic case, the SPDE admits a unique weakly differentiable
solution which preserves a certain degree of Sobolev regularity of the initial condition
without developing discontinuities. To prove the result we also study the related
degenerate Kolmogorov equation in Bessel-Sobolev spaces and construct a suitable
stochastic flow.
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1 Introduction

We consider the linear Stochastic Partial Differential Equation (SPDE) of kinetic
transport type

dtf + (v ·Dxf + F ·Dvf) dt+Dvf ◦ dWt = 0 , f
∣∣
t=0

= f0 (1.1)

and the associated stochastic characteristics described by the stochastic differential
equation (SDE) {

dXt = Vt dt, dVt = F (Xt, Vt) dt+ dWt

X (0) = x0, V (0) = v0 .
(1.2)
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Regularity of stochastic kinetic equations

Here t ∈ [0, T ], (x, v) ∈ Rd×Rd, f : [0, T ]×Rd×Rd → R, f0 : Rd×Rd → R, F : Rd×Rd →
Rd, x0, v0 ∈ Rd and (Wt)t≥0 is a d-dimensional Brownian motion defined on a complete

filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
; the operation Dvf ◦dWt =

∑d
α=1 ∂vαf ◦dWα

t

will be understood in the Stratonovich sense, in order to preserve (a priori only formally)
the relation df (t,Xt, Vt) = 0, when (Xt, Vt) is a solution of the SDE; we use Stratonovich
not only for this mathematical convenience, but also because, in the spirit of the so called
Wong-Zakai principle, the Stratonovich sense is the natural one from the physical view-
point as a limit of correlated noise with small time-correlation. The physical meaning of
the SPDE (1.1) is the transport of a scalar quantity described by the function f (t, x, v) (or
the evolution of a density f (t, x, v), when divv F = 0, so that FDvf = divv (Ff)), under
the action of a fluid - or particle - motion described by the SDE (1.2), where we have
two force components: a “mean” (large scale) component F (x, v), plus a fast fluctuating
perturbation given by dWt

dt . Under suitable assumptions and more technical work one
can consider more elaborate and flexible noise terms, space dependent, of the form∑∞
k=1 σk (x) dW k

t (see [8], [11] for examples of assumptions on a noise with this structure
and [13] for physical motivations), but for the purpose of this paper it is sufficient to
consider the simplest noise dWt =

∑d
k=1 ek dW k

t , {ek}k=1,...,d being an orthonormal base

of Rd.
For physical reasons, we chose in (1.1) a specific linear form for the drift in the

degenerate component, i.e., v · Dx. It seems reasonable to expect that a possible
generalization to the case of a nonlinear drift term like G(x, v) ·Dx could be obtained
under suitable Hörmander type conditions ensuring that the system is hypoelliptic. We
shall mention that some results in this direction have already been obtained: two strong
well-posedness results for the degenerate SDE (1.2) with nonlinear Hölder continuous
drift terms are presented respectively in [6] and [38]. However, using our approach,
such results are not enough to prove a well-posedness result for the SPDE (1.1) since a
full hypoelliptic regularity result is yet not available at the level of the corresponding
degenerate Kolmogorov equations.

Our aim is to show that noise has a regularizing effect on both the SDE (1.2) and the
SPDE (1.1), in the sense that it provides results of existence, uniqueness and regularity
under assumptions on F which are forbidden in the deterministic case. Results of this
nature have been proved recently for other equations of transport type, see for instance
[19], [16], [18], [2], but here, for the first time, we deal with the case of “degenerate”
noise, because dWt acts only on a component of the system. It is well known that the
kinetic structure has good “propagation” properties from the v to the x component;
however, for the purpose of regularization by noise one needs precise results which are
investigated here for the first time and are technically quite non trivial. Let us describe
more precisely the result proved here.

First Theorem 4.5 shows that weak existence and uniqueness in law holds for the SDE
(1.2) only assuming F ∈ Lp(R2d;Rd) with p > 4d. To prove strong existence for (1.2) and
existence of a stochastic flow we investigate the SDE (1.2) under the assumption (see
below for more details) that F is in the mixed regularity space Lp

(
Rdv;W

s,p
(
Rdx;Rd

))
for some s ∈ ( 2

3 , 1) and p > 6d; this means that we require∫
Rd
‖F (·, v)‖pW s,p dv <∞ ,

where W s,p = W s,p(Rd;Rd) is a fractional Sobolev space (cf. Hypothesis 2.1 and the
comments after this assumption; see also Sections 3.1 and 3.2 for more details). Thus
our drift is only Lp in the “good” v-variable in which the noise acts and has Sobolev
regularity in the other x-variable. This is particularly clear in the special case of

F (x, v) = ϕ(v)G(x) , (1.3)
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Regularity of stochastic kinetic equations

where G ∈ W s,p(Rd;Rd), ϕ ∈ Lp(Rd) and p > 6d with s ∈ ( 2
3 , 1). Just to mention in the

case of full-noise action, the best known assumption to get pathwise uniqueness (cf. [24])
is that F must belong to Lp(RN ;RN ), p > N (in our case N = 2d).

According to a general scheme (see [36], [24], [19], [14], [18] [30], [15], [16], [2], [6],
[37], [38]) to study regularity properties of the stochastic characteristics one first needs
to establish precise regularity results for solutions to associated Kolmogorov equations.
In our case such equations are degenerate elliptic equations of the type

λψ(x, v)− 1

2
4vψ(x, v)− v ·Dxψ(x, v)− F (x, v) ·Dvψ(x, v) = g(x, v) , (1.4)

where λ > 0 is given (see Section 3.3). We prove a useful regularity result for (1.4)
in Bessel-Sobolev spaces (see Theorem 3.7). Such result requires basic Lp-estimates
proved in [4] and [5] and non-standard interpolation techniques for functions from Rd

with values in Bessel-Sobolev spaces (see in particular the proofs of Theorem 3.4 and
Lemma 3.6).

The results of Section 3 are exploited in Section 4 to prove existence of strong
solutions to (1.2) and pathwise uniqueness. Moreover, we can also construct a continuous
stochastic flow, injective and surjective, hence a flow of homeomorphisms. These maps
are locally γ-Hölder continuous for every γ ∈ (0, 1). We cannot say that they are
diffeomorphisms; however, we can show that for any t and P-a.s. the random variable
Zt = (Xt, Vt) admits a distributional derivative with respect to z0 = (x0, v0). Moreover,
for any t and p > 1, the weak derivative DzZt ∈ Lploc(Ω ×R2d) (i.e., DzZt ∈ Lp(Ω ×K),
for any compact set K ⊂ R2d; see Theorem 4.19). These results are a generalization to
the kinetic (hence degenerate noise) case of theorems in [16].

Well-posedness for kinetic SDEs (1.2) with non-Lipschitz drift has been recently
investigated: strong existence and uniqueness have been recently proved in [6] and [37].
Moreover, a stochastic flow of diffeomorphisms has been obtained in [38] even with a
multiplicative noise. In [37] and [38] the drift is assumed to be β-Hölder continuous in
the x-variable with β > 2

3 and Dini continuous in the v-variable. The results here are
more general even concerning the regularity in the x-variable (see also Section 2.1). We
stress that well-posedness is not true without noise, as the counter-examples given by
Propositions 2.2 and 2.3 show.

Based on our results on the stochastic flow, we prove in Section 5 that if the initial
condition f0 is sufficiently smooth, the SPDE (1.1) admits a weakly differentiable solution
and provide a representation formula (see Theorem 5.4). Moreover, the solution of
equation (1.1) in the spatial variable is of classW 1,r

loc

(
R2d

)
, for every r ≥ 1, P-a.s., at every

time t ∈ [0, T ]. Such regularity result is not true without noise: Proposition 2.3 gives an
example where solutions develop discontinuities from smooth initial conditions and with
drift in the class considered here. Moreover, assuming in addition that divvF ∈ L∞(R2d)

we prove uniqueness of weakly differentiable solutions (see Theorem 5.7).
The results presented here may also serve as a preliminary for the investigation

of properties of interest in the theory of kinetic equations, where again we see a
regularization by noise. In a forthcoming paper we shall investigate the mixing property

‖ft‖L∞x (L1
v)
≤ C (t) ‖f0‖L1

x(L
∞
v ) ,

with C (t) diverging as t→ 0, to see if it holds when the noise is present in comparison
to the deterministic case (cf. [20] and [21]). Again the theory of stochastic flows, absent
without noise under our assumptions, is a basic ingredient for this analysis.

The paper is constructed as follows. We begin by introducing in the next section
some necessary notation and presenting some examples that motivate our study. In
Section 3 we state some well-posedness results for an associated degenerate elliptic
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equation (see Theorem 3.7, which contains the main result of this section). These results
will be used in Section 4 to solve the stochastic equation of characteristics associated
to (1.1). This is a degenerate stochastic equation, but we can prove existence and
uniqueness of strong solutions (see Theorem 4.11), generating a weakly differentiable
flow of homeomorphisms (see Theorems 4.18 and 4.19). Using all these tools, we can
finally show in Section 5 that the stochastic kinetic equation (1.1) is well-posed in the
class of weakly differentiable solutions.

Remark 1.1. After submitting the paper, we were informed of two papers [41] and [7]
dealing with degenerate SDEs like (1.2) with multiplicative noise and time-dependent
coefficients. In [41] the author proves strong well-posedness and existence of stochastic
flow under more general assumptions than Hypothesis 2.1 (in particular s could be 2/3

and p > 2(2d+1)). Applications to well-posedness of degenerate Fokker-Planck equations
for measures are also given in [41]. The paper [7] considers (1.2) replacing Vtdt with a
more general term like G(t,Xt, Vt)dt and assuming Hölder-continuity of the coefficients.
A weak well-posedness result is then proven in [7].

2 Notation and examples

We will either use a dot or 〈 , 〉 to denote the scalar product in Rd and | · | for the
Euclidian norm. Other norms will be denoted by ‖ · ‖, and for the sup norm we shall
use both ‖ · ‖∞ and ‖ · ‖L∞(Rd). Cb(R

d) denotes the Banach space of all real continuous
and bounded functions f : Rd → R endowed with the sup norm; C1

b (Rd) ⊂ Cb(Rd) is the
subspace of all functions wich are differentiable on Rd with bounded and continuous
partial derivatives on Rd; for α ∈ R+\N, Cα(Rd) ⊂ Cb(R

d) is the space of α-Hölder
continuous functions on Rd; C∞c (Rd) ⊂ Cb(Rd) is the space of all infinitely differentiable
functions with compact support. C, c,K will denote different constants, and we use
subscripts to indicate the parameters on which they depend.

Throughout the paper, we shall use the notation z to denote the point (x, v) ∈ R2d.
Thus, for a scalar function g(z) : R2d → R, Dzg will denote the vector inR2d of derivatives
with respect to all variables z = (x, v), Dxg ∈ Rd denotes the vector of derivatives taken
only with respect to the first d variables and similarly for Dvg(z). We will have to work
with spaces of functions of different regularity in the x and v variables: we will then use
subscripts to distinguish the space and velocity variables, as in Hypothesis 2.1.

Let us state the regularity assumptions we impose on the force field F .

Hypothesis 2.1. The function F : R2d → Rd is a Borel function such that∫
Rd
‖F (·, v)‖pHsp dv <∞ (2.1)

where s ∈ (2/3, 1) and p > 6d. We write that F ∈ Lp
(
Rdv;H

s
p

(
Rdx;Rd

))
.

The Bessel space Hs
p = Hs

p(Rd;Rd) is defined by the Fourier transform (see Section 3).
According to Remark 3.2, condition (2.1) can also be rewritten using the related fractional
Sobolev spaces W s,p(Rd;Rd) instead of Hs

p(Rd;Rd). In the sequel we will also write
Hs
p(Rd) instead of Hs

p(Rd;Rd) when no confusion may arise.

2.1 Examples

Without noise, when F is only in the space Lp
(
Rdv;H

s
p

(
Rdx
))

for some s > 2
3 and

p > 6d, the equation for the characteristics

x′ = v, v′ = F (x, v) (2.2)

x (0) = x0, v (0) = v0
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and the associated kinetic transport equation

Dtf + v ·Dxf + F ·Dvf = 0, f |t=0 = f0 (2.3)

may have various types of pathologies. We shall mention here some of them in the very
simple case of d = 1,

F (x, v) = ±θ (x, v) sign (x) |x|α (2.4)

for some α ∈
(

1

2
, 1

)
, θ ∈ C∞c

(
R2
)
.

First, note that this function belongs to Lp
(
Rv;H

s
p (Rx)

)
for some s > 2

3 and p > 6.
To check this fact one can first observe that ∂x(sign(x)|x|α) = α|x|α−1 in distributional
sense, so that F (v, ·) ∈ H1

q (Rx) for some appropriate value of q > 2, and then use Sobolev
embedding theorem: H1

q (R) ⊂ Hs
p (R) for 1

p = 1
q − 1 + s.

Thus F satisfies our Hypothesis 2.1. On the other hand when α ∈
(
1
2 ,

2
3

)
, the function

sign (x) |x|α is not in Cγloc (R) for any γ > 2/3 and the results of [37], [38] do not apply.
Let us come to the description of the pathologies of characteristics and kinetic

equation when F (x, v) = ±θ (x, v) |x|α.

Proposition 2.2. In d = 1, if θ ∈ C∞c
(
R2
)
, θ = 1 on B (0, R) for some R > 0, F (x, v) =

θ (x, v) sign (x) |x|α, then system (2.2) with initial condition (x0, 0) has infinitely many solu-
tions. In particular, for small time (depending on R and α), (xt, vt) =

(
x0 +Atβ , Aβtβ−1

)
,

with (β,A) satisfying (2.5) below, and also A = 0, are solutions.

Proof. Let us check that (xt, vt) =
(
Atβ , Aβtβ−1

)
with the specified values of (β,A) and

a small range of t, are solutions. We have x′t = vt,

v′t − F (x, vt) = Aβ (β − 1) tβ−2 − sign (xt) |xt|α

= Aβ (β − 1) tβ−2 − sign (A) |A|α tαβ = 0

for αβ = β − 2 and Aβ (β − 1) = sign (A) |A|α, namely

β =
2

1− α
, A = ±

(
1

β (β − 1)

) 1
1−α

= ±

(
(1− α)

2

2 (1 + α)

) 1
1−α

. (2.5)

With a little greater effort one can show, in this specific example, that every so-
lution (xt, vt) from the initial condition (0, 0) has, for small time, the form (xt, vt) =(
A (t− t0)

β
, Aβ (t− t0)

β−1
)

1t≥t0 for some t0 ≥ 0, or it is (xt, vt) = (0, 0) ((β,A) always

given by (2.5)) and that existence and uniqueness holds from any other initial condition,
even from points of the form (0, v0), v0 6= 0, around which F is not Lipschitz continuous.
Given T > 0 and R > 0 large enough, there is thus, at every time t ∈ [0, T ], a set Λt ⊂ R2

of points “reached from (0, 0)”, which is the set

Λt =
{(
A (t− t0)

β
, Aβ (t− t0)

β−1
)
∈ R2 : t0 ∈ [0, t]

}
.

Using this family of sets one can construct examples of non uniqueness for the transport
equation (2.3), because a solution f (t, x, v) is not uniquely determined on Λt. However,
these examples are not striking since the region of non-uniqueness, ∪t≥0Λt, is thin and
one could say that uniqueness is restored by a modification of f on a set of measure
zero. But, with some additional effort, it is also possible to construct an example with
F (x, v) = ±θ (x, v) |x|α. In this case, for some negative m (depending on R and α), one
can construct infinitely many solutions (xt, vt) starting from any point in a segment (x0, 0),
x0 ∈ [m, 0). Indeed, (xt, vt) = (x0, 0) is a solution, but there are also solutions leaving

EJP 22 (2017), paper 48.
Page 5/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

(x0, 0) which will have vt > 0, at least for some small time interval. Then one obtains that
the solution f(t, x, v) is not uniquely determined on a set of positive Lebesgue measure.

More relevant, for a simple class of drift as the one above, is the phenomenon of
loss of regularity. Preliminary, notice that, when F is Lipschitz continuous, system
(2.2) generates a Lipschitz continuous flow and, using it, one can show that, for every
Lipschitz continuous f0 : R2 → R, the transport equation (2.3) has a unique solution in
the class of continuous functions f : [0, T ] × R2 → R that are Lipschitz continuous in
(x, v), uniformly in t. The next proposition identifies an example with non-Lipschitz F
where this persistence of regularity is lost. More precisely, even starting from a smooth
initial condition, unless it has special symmetry properties, there is a solution with a
point of discontinuity. This pathology is removed by noise, since we will show that with
sufficiently good initial condition, the unique solution f(t, z) is of class W 1,r

loc (R2) for
every r ≥ 1 and t ∈ [0, T ] a.s., hence in particular continuous. However, in the stochastic
case, we do not know whether the solution is Lipschitz under our assumptions, whereas
presumably it is under the stronger Hölder assumptions on F of [38].

Proposition 2.3. In d = 1, if θ ∈ C∞c
(
R2
)
, θ = 1 on B (0, R) for some R > 0, F (x, v) =

θ (x, v) sign (x) |x|α, then system (2.2) has a unique local solution on any domain not con-
taining the origin, for every initial condition. For every t0 > 0 (small enough with respect

to R), the two initial conditions
(
Atβ0 ,−Aβt

β−1
0

)
with (β,A) given by (2.5) produce the

solution
(xt, vt) =

(
A (t0 − t)β , −Aβ (t0 − t)β−1

)
for t ∈ [0, t0], and (xt0 , vt0) = (0, 0) . As a consequence, the transport equation (2.3) with

any smooth f0 such that f0
(
Atβ0 , −Aβt

β−1
0

)
6= f0

(
−Atβ0 , Aβt

β−1
0

)
for some t0 > 0, has a

solution with a discontinuity at time t0 at position (x, v) = (0, 0).

Proof. The proof is elementary but a full proof is lengthy. We limit ourselves to a few
simple facts, without proving that system (2.2) is forward well posed (locally in time)
and the transport equation (2.3) is also well posed in the set of weak solutions. We only

stress that the claim (xt0 , vt0) = (0, 0) when the initial condition is
(
Atβ0 , −Aβt

β−1
0

)
can

be checked by direct computation (as in the previous proposition) and the discontinuity
of the solution f of (2.3) is a consequence of the transport property, namely the fact that
whenever f is regular we have

f (t, xt, vt) = f0 (x0, v0) (2.6)

where (xt, vt) is the unique solution with initial condition (x0, v0). Hence we have this
identity for points close (but not equal) to the coalescing ones mentioned above, where
the forward flow is regular and a smooth initial condition f0 gives rise to a smooth
solution; but then, from identity (2.6) in nearby points, the limit

lim
(x,v)→(0,0)

f (t0, x, v)

does not exists if t0 is as above and f0
(
Atβ0 , −Aβt

β−1
0

)
6= f0

(
−Atβ0 , Aβt

β−1
0

)
.

3 Well-posedness for degenerate Kolmogorov equations in Bessel-
Sobolev spaces

3.1 Preliminaries on functions spaces and interpolation theory

Here we collect basic facts on Bessel and Besov spaces (see [3], [35] and [32] for
more details). In the sequel if X and Y are real Banach spaces then Y ⊂ X means that
Y is continuously embedded in X.
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The Bessel (potential) spaces are defined as follows (cf. [3, page 139] and [32,
page 135]). For the sake of simplicity we only consider p ∈ [2,∞) and s ∈ R+.

First one considers the Bessel potential Js,

Jsf = F−1[(1 + | · |2)s/2)Ff ]

where F denotes the Fourier transform of a distribution f ∈ S ′(Rd), d ≥ 1. Then we
introduce

Hs
p(Rd) = {f ∈ S ′(Rd) : Jsf ∈ Lp(Rd)}

(clearly H0
p (Rd) = Lp(Rd)). This is a Banach space endowed with the norm ‖f‖Hsp =

‖Jsf‖p, where ‖ · ‖p is the usual norm of Lp(Rd) (we identify functions with coincide a.e.).
It can be proved that

Hs
p(Rd) = {f ∈ Lp(Rd) : F−1[| · |s Ff ] ∈ Lp(Rd)} (3.1)

and an equivalent norm in Hs
p(Rd) is

‖f‖s,p = ‖f‖p + ‖F−1[| · |s Ff ]‖p w ‖F−1[(1 + | · |s)Ff ]‖p .

To show this characterization one can use that

(1 + 4π2|x|2)s/2 = (1 + (2π|x|s)) [Fφ(x) + 1] , x ∈ Rd,

for some φ ∈ L1(Rd) (see [32, page 134]), and basic properties of convolution and Fourier
transform. We note that

Hk
p (Rd) = W k,p(Rd) (3.2)

if k ≥ 0 is an integer with equivalence of norms (here W k,p(Rd) is the usual Sobolev
space; W 0,p(Rd) = Lp(Rd)); see [3, Theorem 6.2.3]. However if s is not an integer we
only have (see [3, Theorem 6.4.4] or [32, page 155])

Hs
p(Rd) ⊂W s,p(Rd) (3.3)

where W s,p(Rd) is a fractional Sobolev space (see below). We have (cf. [3, Theorem
6.2.3])

Hs2
p (Rd) ⊂ Hs1

p (Rd)

if s2 > s1 and, moreover, C∞c (Rd) is dense in any Hs
p(Rd).

One can compare Bessel spaces with Besov spaces Bsp,q(R
d) (see, for instance, Theo-

rem 6.2.5 in [3]). Let p, q ≥ 2, s ∈ (0, 2), to simplify notation.

If s ∈ (0, 1) then Bsp,q(R
d) consists of functions f ∈ Lp(Rd) such that

[f ]Bsp,q =
(∫

Rd

dh

|h|d+sq
(∫

Rd
|f(x+ h)− f(x)|pdx

)q/p)1/q
<∞ .

Thus we have

Bsp,p(R
d) = W s,p(Rd) (3.4)

with equivalence of norms. However if s = 1, B1
p,q(R

d) consists of all functions f ∈ Lp(Rd)
such that

[f ]B1
p,q

=
(∫

Rd

dh

|h|d+q
(∫

Rd
|f(x+ 2h)− 2f(x+ h) + f(x)|pdx

)q/p)1/q
<∞ .

EJP 22 (2017), paper 48.
Page 7/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

Thus we only have B1
p,p(R

d) ⊂W 1,p(Rd). Note that Bsp,q(R
d) is a Banach space endowed

with the norm: ‖ · ‖p +[·]Bsp,q . Similarly, if s ∈ (1, 2), then Bsp,q(R
d) consists of functions

f ∈W 1,p(Rd) such that

[f ]Bsp,q =

d∑
i=1

(∫
Rd

dh

|h|d+sq
(∫

Rd
|∂xif(x+ h)− ∂xif(x)|pdx

)q/p)1/q
<∞ . (3.5)

Moreover, C∞c (Rd) is dense in any Bsp,q(R
d) and

Bs2p,q(R
d) ⊂ Bs1p,q(Rd) , 0 < s1 < s2 < 2 , p ≥ 2 . (3.6)

We also have the following result (cf. [3, Theorem 6.4.4])

Bsp,2(Rd) ⊂ Hs
p(Rd) ⊂ Bsp,p(Rd) , (3.7)

s ∈ (0, 2), p ≥ 2. Next we state a known result (see [3, Theorem 6.4.4]; for a direct proof
see Appendix in [17]). This is useful to give an equivalent formulation to Hypothesis 2.1.

Proposition 3.1. Let p > 2, s, s′ such that 0 < s < s′ < 1. We have

W s′,p(Rd) ⊂ Bsp,2(Rd) ⊂ Hs
p(Rd) .

It is important to notice that Besov spaces are real interpolation spaces (for the
definition of interpolation spaces (X,Y )θ,q with X and Y real Banach spaces and Y ⊂ X
see [29, Chapter 1] or [3]). As a particular case of [3, Theorem 6.2.4] we have for
0 ≤ s0 < s1 ≤ 2, θ ∈ (0, 1), p ≥ 2,

(Hs0
p (Rd), Hs1

p (Rd))θ,p = Bsp,p(R
d) (3.8)

with s = (1− θ)s0 + θs1. Moreover, it holds (see [3, Theorem 6.4.5]):

(Bs0p,p(R
d), Bs1p,p(R

d))θ,p = Bsp,p(R
d) (3.9)

with 0 < s0 < s1 < 2, s = (1− θ)s0 + θs1, θ ∈ (0, 1).

3.2 Interpolation of functions with values in Banach spaces

We follow Section VII in [27] and [9]. Let A0 be a real Banach space. We will consider
the Banach space Lp(Rd;A0), 1 ≤ p < ∞, d ≥ 1. As usual this consists of all strongly
measurable functions f from Rd into A0 such that the real valued function ‖f(x)‖A0

belongs to Lp(Rd). We have

‖f‖Lp(Rd;A0) =
(∫

Rd
‖f(x)‖A0

dx
)1/p

, f ∈ Lp(Rd;A0) .

If A1 is another real Banach spaces with A1 ⊂ A0 we can define the Banach space

Lp(Rd; (A0, A1)θ,q) ,

by using the interpolation space (A0, A1)θ,q, q ∈ (1,∞), p ≥ 1 and θ ∈ (0, 1). One can
prove that (

Lp(Rd;A0), Lp(Rd;A1)
)
θ,q

= Lp(Rd; (A0, A1)θ,q) . (3.10)

with equivalence of norms (see [27] and [9]). In the sequel we will often use, for s ≥ 0,
p ≥ 2,

Lp(Rd;Hs
p(Rd)) . (3.11)
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Regularity of stochastic kinetic equations

We will often identify this space with the Banach space Lp
(
Rdv;H

s
p

(
Rdx
))

of all measurable
functions f(x, v), f : Rd × Rd → R such that f(·, v) ∈ Hs

p(Rd), for a.e. v ∈ Rd, and,
moreover (see (3.1))∫

Rd
‖f(·, v)‖pHsp dv =

∫
Rd

dv

∫
Rd
|F−1x [(1 + | · |s)Fxf(·, v)](x)|pdx <∞ (3.12)

(here Fx denotes the partial Fourier transform in the x-variable; as usual we identify
functions which coincide a.e.). As a norm we consider

‖f‖Lp(Rdv ;Hsp(Rdx)) =
(∫

Rd
‖f(·, v)‖pHspdv

)1/p
. (3.13)

Also Lp(Rdv;L
p(Rdx)) can be identified with Lp(R2d). Similarly, we can define Lp(Rdv;

Bsp,p(R
d
x)). Using (3.7) we have

Lp(Rd;Hs
p(Rd)) ⊂ Lp(Rd;Bsp,p(Rd)), (3.14)

p ≥ 2, 0 < s < 2. Finally using (3.10) and (3.9) we get for 0 < s0 < s1 < 2, θ ∈ (0, 1),
p ≥ 2, (

Lp(Rd; (Bs0p,p(R
d)), Lp(Rd; (Bs1p,p(R

d))
)
θ,p

= Lp(Rd;Bsp,p(R
d)) , (3.15)

with s = (1− θ)s0 + θs1.
In the sequel when no confusion may arise, we will simply write Lp(Rd) instead of

Lp(Rd;Rk), k ≥ 1, p ∈ [1,∞). Thus a function U : Rd → Rk belongs to Lp(Rd) if all

its components Ui ∈ Lp(Rd), i = 1, . . . , k. Moreover, ‖U‖Lp =
(∑k

i=1 ‖Ui‖
p
Lp

)1/p
. This

convention about vector-valued functions will be used for other function spaces as well.

Remark 3.2. Proposition 3.1 and formula (3.3) show that Hypothesis 2.1 is equivalent
to the following one: F : R2d → Rd is a Borel function such that∫

Rd
‖F (·, v)‖pW s,pdv <∞ , (3.16)

where s ∈ (2/3, 1) and p > 6d.

3.3 Regularity results in Bessel-Sobolev spaces

Here RN = R2d and z = (x, v) ∈ Rd × Rd. Let also p ∈ (1,∞), s ∈ (0, 1) and λ > 0.
This section is devoted to the study of the equation

λψ(z)− 1

2
4vψ(z)− v ·Dxψ(z)− F (z) ·Dvψ(z) = g(z)

= λψ(z)− 1

2
Tr
(
QD2ψ(z)

)
− 〈Az,Dψ(z)〉 − 〈B(z), Dψ(z)〉

where A =

(
0 I

0 0

)
, Q =

(
0 0

0 I

)
are (2d × 2d)-matrices, B =

(
0

F

)
: R2d → R2d . We

shall start by considering the simpler equation with B = 0, i.e.,

λψ(z)− 1

2
4vψ(z)− v ·Dxψ(z) = λψ(z)− Lψ(z) = g(z) , z ∈ R2d. (3.17)

Recall that Dvψ and Dxψ denote respectively the gradient of ψ in the v-variables and
in the x-variables; moreover, D2

vψ indicates the Hessian matrix of ψ with respect to the
v-variables (we have 4vψ = Tr(D2

vψ)).
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Regularity of stochastic kinetic equations

Definition 3.3. The space Xp,s consists of all functions f ∈ W 1,p(R2d) such that D2
vf

and v ·Dxf belong to Lp(Rdv;H
s
p(Rdx)). Recall that

‖D2
vf‖

p
Lp(Rdv ;H

s
p(R

d
x))

=

∫
Rd

d∑
i,j=1

‖∂2vivjf(·, v)‖p
Hsp(R

d)
dv .

It turns out that Xp,s is a Banach space endowed with the norm:

‖f‖Xp,s = ‖f‖W 1,p(R2d) + ‖D2
vf‖Lp(Rdv ;Hsp(Rdx)) + ‖v ·Dxf‖Lp(Rdv ;Hsp(Rdx)). (3.18)

If f ∈ Xp,s then (λf −Lf) ∈ Lp(Rdv;Hs
p(Rdx)) (see (3.17)). With a slight abuse of notation,

we will still write f ∈ Xp,s for vector valued functions f : R2d → R2d, meaning that all
components fi : R2d → R, i = 1 . . . 2d belong to Xp,s.

The following theorem improves results in [4] and [5]. In particular it shows that
there exists the weak derivative Dxψ ∈ Lp(R2d) so that (3.17) admits a strong solution ψ
which solves equation (3.17) in distributional sense.

Theorem 3.4. Let λ > 0, p ≥ 2, s ∈ (1/3, 1) and g ∈ Lp(Rdv;H
s
p(Rdx)). There exists a

unique solution ψ = ψλ ∈ Xp,s to equation (3.17). Moreover, we have

λ‖ψ‖Lp(R2d) +
√
λ‖Dvψ‖Lp(R2d) + ‖D2

vψ‖Lp(R2d) + ‖v ·Dxψ‖Lp(R2d) ≤ C‖g‖Lp(R2d) (3.19)

with C = C(d, p) > 0 and

‖Dxψ‖Lp(R2d) ≤ C(λ) ‖g‖Lp(Rdv ;Hsp(Rdx)), (3.20)

with C(λ) = C(λ, s, p, d) > 0 and C(λ) → 0 as λ → ∞. In addition there exists c =

c(s, p, d) > 0 such that

λ‖ψ‖Lp(Rdv ;Hsp(Rdx)) +
√
λ‖Dvψ‖Lp(Rdv;Hsp(Rdx)) + ‖D2

vψ‖Lp(Rdv;Hsp(Rdx )) (3.21)

+‖v ·Dxψ‖Lp(Rdv;Hsp(Rdx)) ≤ c‖g‖Lp(Rdv;Hsp(Rdx))

Proof. Uniqueness. Let ψ ∈ Xp,s be a solution. Note that |ψ|p−2ψ belongs to Lq(R2d),
with q = p

p−1 . Fix η ∈ C∞c (R2d) such that η = 1 on the ball B1 of center 0 and radius 1.

Multiplying both sides of equation (3.17) by |ψ(z)|p−2 ψ(z) η( zn ), n ≥ 1, we obtain

λ

∫
R2d

|ψ(z)|p η(
z

n
)dz − 1

2

∫
R2d

|ψ(z)|p−2 ψ(z) η(
z

n
)4vψ(z) dz (3.22)

−
∫
R2d

η(
z

n
)(v ·Dxψ(z))|ψ(z)|p−2ψ dz =

∫
R2d

η(
z

n
)g(z)|ψ(z)|p−2ψ(z) dz .

Note that there exists the weak derivative Dx(|ψ|p) = p|ψ|p−2ψDxψ ∈ L1(R2d). Hence,
for each n ≥ 1, integrating by parts, we know that∫

R2d

η(z/n)(v ·Dxψ(z))|ψ(z)|p−2ψ(z) dz =
1

p

∫
R2d

η(z/n)v ·Dx(|ψ|p)(z)dz

=
1

p

∫
R2d

Dxη(
x

n
,
v

n
) · v
n
|ψ(z)|pdz −→ 0

as n→∞. Moreover

−1

2

∫
R2d

|ψ|p−2 ψ η(
z

n
)4vψ dz =

(p− 1)

2

d∑
k=1

∫
R2d

η(z/n)|ψ|p−2|∂vkψ|2 dz

+
1

2n

d∑
k=1

∫
R2d

|ψ|p−2ψ ∂vkη(
z

n
)∂vkψ dz −→

d∑
k=1

∫
R2d

|ψ|p−2|∂vkψ|2 dz

EJP 22 (2017), paper 48.
Page 10/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

Finally, passing to the limit as n→∞ in (3.22) we find

λ‖ψ‖p
Lp(R2d)

+
(p− 1)

2

d∑
k=1

∫
R2d

|ψ|p−2|∂vkψ|2 dz =

∫
R2d

g|ψ|p−2ψ dz.

It follows easily that

‖ψ‖Lp(R2d) ≤
1

λ
‖g‖Lp(R2d) (3.23)

which implies uniqueness of solutions for the linear equation (3.17).

Existence. Step 1. We prove existence of solutions and estimates (3.19) and (3.20).
Let us first introduce the Ornstein-Uhlenbeck semigroup

Ptg(z) = Ptg(x, v) =

∫
R2d

g(etAz + y)N(0, Qt) dy (3.24)

=

∫
R2d

g(x+ tv + y1, v + y2)N(0, Qt) dy , g ∈ C∞c (R2d) , t ≥ 0 ,

where N(0, Qt) is the Gaussian measure with mean 0 and covariance matrix

Qt =

∫ t

0

esAQesA
∗
ds =

∫ t

0

esA
(

0 0

0 IRd

)
esA

∗
ds =

(
1
3 t

3IRd
1
2 t

2IRd

1
2 t

2IRd tIRd

)
(3.25)

(A∗ denotes the adjoint matrix). By the Young inequality (cf. the proof of [31, Lemma
13]) we know that Ptg is well-defined also for any g ∈ Lp(R2d), z a.e.; moreover Pt :

Lp(R2d)→ Lp(R2d), for any t ≥ 0, and

‖Ptg‖Lp(R2d) ≤ ‖g‖Lp(R2d) , g ∈ Lp(R2d) , t ≥ 0 . (3.26)

Let us consider, for any λ > 0, z ∈ Rd, g ∈ C∞c (R2d),

ψ(z) = Gλg(z) =

∫ +∞

0

e−λtPtg(z) dt . (3.27)

Using the Jensen inequality, the Fubini theorem and (3.26) it is easy to prove that Gλg is
well defined for g ∈ Lp(R2d), z a.e., and belongs to Lp(R2d). Moreover, for any p ≥ 1,

Gλ : Lp(R2d)→ Lp(R2d) , ‖Gλg‖p ≤
‖g‖p
λ

, λ > 0 , g ∈ Lp(R2d) . (3.28)

Note that Lp(Rdv;H
s
p(Rdx)) ⊂ Lp(Rdv;W

s,p(Rdx)) (see (3.3)). Let us consider a sequence
(gn) ∈ C∞c (R2d) such that

gn → g in Lp(Rdv;W
s,p(Rdx)) .

Arguing as in [31, Lemma 13] one can show that there exist classical solutions ψn to
(3.17) with g replaced by gn. Moreover, ψn = Gλgn. By [31, Theorem 11], which is based
on results in [5], we have that

‖D2
vψn‖Lp(R2d) ≤ C‖gn‖Lp(R2d) , (3.29)

λ > 0, n ≥ 1, C = C(p, d). Using also (3.28) we deduce easily that (ψn) and (D2
vψn) are

both Cauchy sequences in Lp(R2d). Let us denote by ψ ∈ Lp(R2d) the limit function; it
holds that ψ = Gλg and D2

vψ ∈ Lp(R2d).
Passing to the limit in (3.17) when ψ and g are replaced by ψn and gn we obtain that

ψ solves (3.17) in a weak sense (v ·Dxψ is intended in distributional sense). By (3.29) as
n→∞ we also get

‖D2
vψ‖Lp(R2d) ≤ C‖g‖Lp(R2d) , ‖ψ‖Lp(R2d) ≤

1

λ
‖g‖Lp(R2d) (3.30)

and ‖v ·Dxψ‖Lp(R2d) ≤ C ‖g‖Lp(R2d) .
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Note that the second estimate follows writing

v ·Dxψ(z) = λψ(z)− 1

2
4vψ(z)− g(z) .

To prove (3.19) it remains to show the estimate for Dvψ. This follows from

‖Dvψ‖pLp(R2d)
=

∫
Rd
‖Dvψ(x, ·)‖p

Lp(Rd)
dx ≤ (‖ψ‖Lp(R2d))

p/2 (‖D2
vψ‖Lp(R2d))

p/2. (3.31)

To prove that ψ ∈W 1,p(R2d) it is enough to check that

ψ ∈ Lp
(
Rdv;W

1,p(Rdx)
)
. (3.32)

Thus we have to prove that ψ(·, v) ∈W 1,p(Rd) for a.e. v and∫
Rd

dv

∫
Rd
|Dxψ(x, v)|p dx <∞ .

To this purpose we will use a result in [4] and interpolation theory. We consider η ∈
C∞c (R) such that Supp(η) ⊂ [−1, 1] and

∫ 1

−1 η(t)dt > 0.

Setting f(t, z) = η(t)ψ(z), where ψ solves (3.17), we have that f ∈ Lp(R×Rd ×Rd).
In order to apply [4, Corollary 2.2] we note that, for z = (x, v) ∈ R2d, t ∈ R,

∂tf(t, z) + v ·Dxf(t, z) = η′(t)ψ(z)− η(t)g(z) + λη(t)ψ(z)− 1

2
η(t)4vψ(z) .

SinceD2
vψ ∈ Lp(R2d) we deduce that ∂tf+v·Dxf andD2

vf both belong to Lp(R×Rd×Rd).
By [4, Corollary 2.2] and (3.30) we get easily that ψ(·, v) ∈ H2/3

p (Rd), for v ∈ Rd a.e.,
and ∫

Rd
dv

∫
Rd
|F−1x [(1 + | · |2/3)Fxψ(·, v)](x)|p dx ≤

(λ+ 1

λ

)2p/5
c ‖g‖p

Lp(R2d)
,

λ > 0, with c = c(p, d), i.e.,

ψ = Gλg ∈ Lp(Rdv;H2/3
p (Rdx)) and ‖Gλg‖Lp(Rdv;H2/3

p (Rdx))
≤
(λ+ 1

λ

)2/5
c1 ‖g‖Lp(R2d) .

(3.33)
By (3.10) and (3.8) with s0 = 0 and s1 = 2/3 we can interpolate between (3.33) and
the estimate ‖Gλg‖Lp(Rd;Lp(Rd)) ≤ 1

λ ‖g‖Lp(R2d) (see [29, Proposition 1.2.6]) and get, for
ε ∈ (0, 2/3),

‖Gλg‖Lp(Rdv;W 2/3−ε,p(Rdx))
≤ cε(λ)‖g‖Lp(R2d) . (3.34)

with cε(λ)→ 0 as λ→∞.
Suppose now that g ∈ Lp(Rdv;W

1,p(Rdx)) and fix k = 1, . . . , d. By approximating g

with regular functions, it is not difficult to prove that there exists the weak derivative
∂xkψ ∈ Lp(R2d), and

∂xkψ(z) = ∂xkGλg(z) =

∫ +∞

0

e−λtPt(∂xkg)(z)dt . (3.35)

Arguing as in (3.34) we obtain that ∂xkψ ∈ Lp(Rdv;W 2/3−ε,p(Rdx)) and

‖∂xkψ‖Lp(Rdv ;W 2/3−ε,p(Rdx))
≤ cε(λ)‖∂xkg‖Lp(R2d), k = 1, . . . , d ,

so that
‖Gλg‖Lp(Rdv ;B1+2/3−ε,p

p,p (Rdx))
≤ cε(λ)‖g‖Lp(Rdv ;W 1,p(Rdx))

. (3.36)
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Taking into account (3.8), (3.9) and (3.10) we can interpolate between (3.34) and (3.36)
(see also (3.11) and (3.12)) and get

Gλ : Lp(Rdv;W
s,p(Rdx)) =

(
Lp(Rd;H0

p (Rd)), Lp(Rd;W 1,p(Rd))
)
s,p

(3.37)

−→
(
Lp(Rd;W 2/3−ε,p(Rd)), Lp(Rd;B5/3−ε

p,p (Rd)))s,p = Lp(Rdv;B
s+2/3−ε
p,p (Rdx)).

Since Lp(Rdv;B
s+2/3−ε
p,p (Rdx)) ⊂ Lp(Rdv;W

1,p(Rdx)) with ε small enough (recall that s ∈
(1/3, 1)) we finally obtain that

Gλ : Lp(Rdv;W
s,p(Rdx))→ Lp(Rdv;W

1,p(Rdx)) (3.38)

is linear and continuous. Moreover, we have with ψ = Gλg∫
Rd

dv

∫
Rd
|∂xkψ(x, v)|p dx ≤ C ′(λ) ‖g‖p

Lp(Rdv ;W
s,p(Rdx))

≤ C ′′(λ) ‖g‖p
Lp(Rdv ;H

s
p(R

d
x))
, (3.39)

k = 1, . . . , d, where C ′(λ) and C ′′(λ) tend to 0 as λ→∞ (recall the estimates (3.34) and
(3.36)). This proves (3.20) and (3.32).

Step 2. We prove the last assertion (3.21). The main problem is to show that∫
Rd
‖D2

vψ(·, v)‖p
Hsp(R

d)
dv =

∫
Rd

dv

∫
Rd
|F−1x [(1 + | · |s)FxD2

vψ(·, v)](x)|p dx

=

∫
Rd

dv

∫
Rd
|D2

v

(
F−1x [(1 + | · |s)Fxψ(·, v)]

)
(x)|p dx ≤ C‖g‖p

Lp(Rdv;H
s
p(R

d
x))

(Fx denotes the Fourier transform in the x-variable) with ψ = Gλg. We introduce

hs(x, v) = F−1x [(1 + | · |s)Fxg(·, v)](x) ,

x, v ∈ Rd. We know that hs ∈ Lp(R2d) by our hypothesis on g. A straightforward
computation based on the Fubini theorem shows that

F−1x [(1 + | · |s)Fxψ(·, v)](x) = Gλhs(x, v) .

By using (3.30) (with g replaced by hs and ψ by Gλhs) we easily obtain that∫
Rd
‖D2

vψ(·, v)‖p
Hsp(R

d)
dv =

∫
Rd

dv

∫
Rd
|D2

v Gλhs(x, v)|p dx (3.40)

≤ C‖hs‖pLp(R2d)
= C‖g‖p

Lp(Rdv;H
s
p(R

d
x))
,

where C = C(d, p). Similarly, we have∫
Rd
‖Dvψ(·, v)‖p

Hsp(R
d)

dv =

∫
Rd

dv

∫
Rd
|Dv Gλhs(x, v)|p dx (3.41)

≤ C

(λ)p/2
‖hs‖pLp(R2d)

=
C

(λ)p/2
‖g‖p

Lp(Rdv;H
s
p(R

d
x))

and ‖ψ‖Lp(Rdv;Hsp(Rdx)) = ‖Gλhs‖Lp(R2d) ≤ 1
λ‖Gλhs‖Lp(R2d) = 1

λ‖g‖Lp(Rdv;Hsp(Rdx)). The proof
is complete.

Lemma 3.5. Assume as in Theorem 3.4 that g ∈ Lp(Rdv;Hs
p(Rdx)), s ∈ (1/3, 1). Moreover,

suppose that p > d. Then the solution ψ = Gλg to (3.17) verifies also

sup
v∈Rd

‖Dvψ(·, v)‖Hsp(Rd) ≤ C(λ)‖g‖Lp(Rdv ;Hsp(Rdx)) , λ > 0 , (3.42)

where C(λ)→ 0 as λ→∞.

EJP 22 (2017), paper 48.
Page 13/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

Proof. Using the notation introduced in the previous proof, we have for any v ∈ Rd, a.e.,

‖Dvψ(·, v)‖p
Hsp(R

d)
=

∫
Rd
|Dv Gλhs(x, v)|p dx .

By (3.40), (3.41) and the Fubini theorem we know that∫
Rd

dx

∫
Rd
|Dv Gλhs(x, v)|p dv +

∫
Rd

dx

∫
Rd
|D2

v Gλhs(x, v)|p dv <∞ .

It follows that, for x ∈ Rd a.e.,

‖Dv Gλhs(x, ·)‖pW 1,p(Rd)
=

∫
Rd
|Dv Gλhs(x, v)|p dv +

∫
Rd
|D2

v Gλhs(x, v)|p dv <∞ .

In order to prove (3.42) with C(λ) → 0, we consider r ∈ (0, 1) such that rp > d. Let us
fix x ∈ Rd, a.e.; by the previous estimate the mapping v 7→ Dv Gλhs(x, v) belongs to
W r,p(Rd) ⊂W 1,p(Rd).

We can apply the Sobolev embedding theorem (see [35, page 203]) and get that
v 7→ Dv Gλhs(x, v) in particular is bounded and continuous on Rd. Moreover,

sup
v∈Rd

|Dv Gλhs(x, v)|p ≤ c ‖Dv Gλhs(x, ·)‖pW r,p(Rd)
, (3.43)

where c = c(p, d, r). Integrating with respect to x we get∫
Rd

[
sup
v∈Rd

|Dv Gλhs(x, v)|p
]

dx ≤ c
∫
Rd
‖Dv Gλhs(x, ·)‖pW r,p(Rd)

dx .

By (3.8) we know that
(
Lp(Rd),W 1,p(Rd)

)
r,p

= W r,p(Rd). Applying [29, Corollary 1.2.7]

we obtain that, for any f ∈W 1,p(Rd),

‖f‖W r,p(Rd) ≤ c(r, p)
(
‖f‖Lp(Rd)

)1−r · (‖f‖W 1,p(Rd)

)r
.

It follows that

sup
v∈Rd

‖Dvψ(·, v)‖p
Hsp(R

d)
= sup
v∈Rd

∫
Rd
|Dv Gλhs(x, v)|p dx

≤
∫
Rd

[
sup
v∈Rd

|Dv Gλhs(x, v)|p
]

dx ≤ c
∫
Rd
‖Dv Gλhs(x, ·)‖pW r,p(Rd)

dx

≤ c′
∫
Rd
‖Dv Gλhs(x, ·)‖p(1−r)Lp(Rd)

· ‖Dv Gλhs(x, ·)‖prW 1,p(Rd)
dx

≤ c′
(∫

Rd
‖Dv Gλhs(x, ·)‖pLp(Rd)dx

)1−r
·
(∫

Rd
‖Dv Gλhs(x, ·)‖pW 1,p(Rd)

dx
)r
.

Now we easily obtain (3.42) using (3.40) and (3.41), since∫
Rd
‖Dv Gλhs(x, ·)‖pLp(Rd)dx =

∫
Rd

dv

∫
Rd
|Dv Gλhs(x, v)|p dx ≤ C(λ) ‖g‖Lp(Rdv;Hsp(Rdx))

with C(λ)→ 0 as λ→∞.

We complete the study of the regularity of solutions to equation (3.17) with the
next result in which we strengthen the assumptions of Lemma 3.5. Note that the next
assumption on p holds when p > 6d as in Hypothesis 2.1.
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Lemma 3.6. Let λ > 0, s ∈ (2/3, 1) and g ∈ Lp(Rdv;Hs
p(Rdx)). In addition assume that

p(s− 1
3 ) > 2d, then the following statements hold.

(i) The solution ψ = Gλg (see (3.28)) is bounded and Lipschitz continuous on R2d.
Moreover there exists the classical derivative Dxψ which is continuous and bounded on
R2d and, for λ > 0,

‖ψ‖∞ + ‖Dxψ‖∞ ≤ C(λ)‖g‖Lp(Rdv ;Hsp(Rdx)) , with C(λ)→ 0 as λ→∞ . (3.44)

(ii) Dvψ ∈ W 1,p(R2d) (so in particular there exist weak partial derivatives ∂xi∂vjψ ∈
Lp(R2d), i, j = 1, . . . , d) and

‖Dvψ‖W 1,p(R2d) ≤ c(λ)‖g‖Lp(Rdv;Hsp(Rdx)) , λ > 0 , with c = c(λ)→ 0 as λ→∞ . (3.45)

Proof. (i) The boundedness of ψ follows easily from estimates (3.19) and (3.20) using the
Sobolev embedding since in our case p > 2d. Let us concentrate on proving the Lipschitz
continuity.

First we recall a Fubini type theorem for fractional Sobolev spaces (see [33]):

W γ,p(R2d) =
{
f ∈ Lp(R2d) :

∫
Rd
‖f(x, ·)‖p

Wγ,p(Rd))
dx+

∫
Rd
‖f(·, v)‖p

Wγ,p(Rd))
dv <∞

}
,

(3.46)
γ ∈ (0, 1] (with equivalence of the respective norms). Let η ∈ (0, s+ 2/3− 1) be such that

ηp > 2d . (3.47)

We will prove that Dxψ ∈ W η,p(R2d) so that by the Sobolev embedding W η,p(R2d) ⊂
C
η−2d/p
b (R2d) (see [35, page 203]) we get the assertion. According to (3.46) we check

that ∫
Rd
‖Dxψ(·, v)‖p

Wη,p(Rd)
dv ≤ C(λ)‖g‖p

Lp(Rdv;H
s
p(R

d
x))
, (3.48)

and ∫
Rd
‖Dxψ(x, ·)‖p

Wη,p(Rd)
dx ≤ C(λ)‖g‖p

Lp(Rdv ;H
s
p(R

d
x))
. (3.49)

with C(λ) → 0 as λ → ∞. Estimate (3.48) follows by (3.37) which gives
ψ ∈ Lp(Rdv;Bη+1

p,p (Rdx)) with η = s− ε− 1/3.
Let us concentrate on (3.49). We still use the interpolation theory results of Section

3.2 but here in addition to (3.12) we also need to identify Lp(Rd;Hs
p(Rd)) with the Banach

space Lp(Rdx;Hs
p(Rdv)) of all measurable functions f(x, v), f : Rd × Rd → R such that

f(x, ·) ∈ Hs
p(Rd), for x ∈ Rd a.e., 0 ≤ s ≤ 2, and, moreover

∫
Rd
‖f(x, ·)‖pHsp dx <∞. As a

norm one considers

‖f‖Lp(Rdx;Hsp(Rdv)) =
(∫

Rd
‖f(x, ·)‖p

Hsp(R
d)

dx
)1/p

. (3.50)

Similarly, we identify Lp(Rd;Bsp,p(R
d)) with the Banach space Lp(Rdx;Bsp,p(R

d
v)) of all

measurable functions f : Rd × Rd → R such that f(x, ·) ∈ Bsp,p(R
d), for x a.e., and∫

Rd
‖f(x, ·)‖p

Bsp,p(R
d)

dx < ∞. By (3.19) and (3.20) in Theorem 3.4 and using (3.35) we

find with ψ = Gλg∫
Rd

dx

∫
Rd
|Dxψ(x, v)|p dv =

∫
Rd
‖Dxψ(x, ·)‖p

Lp(Rd)
dx ≤ C(λ)‖g‖p

Lp(Rdv;H
s
p(R

d
x))
,∫

Rd
dx

∫
Rd
|D2

v(Dxψ)(x, v)|p dv =

∫
Rd
‖D2

v(Dxψ)(x, ·)‖p
Lp(Rd)

dx ≤ c‖g‖p
Lp(Rdv;H

1
p(R

d
x))
,

(3.51)
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with c = c(d, p) > 0. Thus we can consider the following linear maps (s′ ∈ (1/3, 1) will be
fixed below)

DxGλ : Lp
(
Rdv;H

s′

p (Rdx)
)
→ Lp(R2d) = Lp

(
Rdx;Lp(Rdv)

)
, (3.52)

DxGλ : Lp
(
Rdv;H

1
p (Rdx)

)
→ Lp

(
Rdx;H2

p (Rdv)
)
.

Interpolating, choosing s′ ∈ (1/3, 1) such that

s′ < 2s− 1 ,

we get (see (3.8) and (3.10) with θ = s−s′
1−s′ > 1/2)

DxGλ : Lp
(
Rdv;W

s,p(Rdx)
)

=
(
Lp
(
Rdv;H

s′

p (Rdx)
)
, Lp

(
Rdv;H

1
p (Rdx)

))
θ,p

(3.53)

−→
(
Lp
(
Rdx;Lp(Rdv)

)
, Lp

(
Rdx;H2

p (Rdv)
))
θ,p

= Lp
(
Rdx;B2θ

p,p(R
d
v)
)

and by the estimates in (3.51) we find∫
Rd
‖Dx(Gλg)(x, ·)‖p

B2θ
p,p(R

d)
dx ≤ C ′(λ)‖g‖p

Lp(Rdv ;H
s
p(R

d
x))

(recall that Hs
p(Rd) ⊂W s,p(Rd)). Since η < 2/3 we have B2θ

p,p(R
d) ⊂W η,p(Rd) (cf. (3.6))

and we finally get (3.49).

(ii) We fix j = 1, . . . , d and prove the assertion with Dvψ replaced by ∂vjψ.
By Theorem 3.4 we already know that there exists Dv∂vjψ ∈ Lp(R2d). Therefore to

show the assertion it is enough to check that there exists the weak derivative

Dx(∂vjψ) = ∂vj (Dxψ) ∈ Lp(R2d) . (3.54)

We use again (3.53) with the same θ. Since 2θ > 1 we know in particular that DxGλg ∈
Lp(Rdx;W 1,p(Rdv)). Thus we have that there exists the weak derivative ∂vjDxψ(x, ·), for x
a.e., and∫

Rd
dx

∫
Rd
|∂vjDxψ(x, v)|p dv =

∫
Rd
‖∂vjDxψ(x, ·)‖p

Lp(Rd)
dx ≤ C(λ) ‖g‖p

Lp(Rdv ;H
s
p(R

d
x))
.

(3.55)
This finishes the proof.

Now we study the complete equation

λψ(z)− 1

2
4vψ(z)− v ·Dxψ(z)− F (z) ·Dvψ(z) = g(z), z = (x, v) ∈ R2d, (3.56)

assuming that F ∈ Lp(Rdv;Hs
p(Rdx)) (cf. (3.12) and (3.13)). From the previous results we

obtain (see also Definition 3.3)

Theorem 3.7. Let s ∈ (2/3, 1) and p be such that p(s− 1
3 ) > 2d. Assume that

g, F ∈ Lp(Rdv;Hs
p(Rdx)) .

Then there exists λ0 = λ0(s, p, d, ‖F‖Lp(Rdv ;Hsp(Rdx))) > 0 such that for any λ > λ0 there
exists a unique solution ψ = ψλ ∈ Xp,s to (3.56) and moreover

λ‖ψ‖Lp(Rdv;Hsp(Rdx)) +
√
λ‖Dvψ‖Lp(Rdv ;Hsp(Rdx)) + ‖D2

vψ‖Lp(Rdv ;Hsp(Rdx)) (3.57)

+‖v ·Dxψ‖Lp(Rdv;Hsp(Rdx)) ≤ C‖g‖Lp(Rdv ;Hsp(Rdx))
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with C = C(s, p, d, ‖F‖Lp(Rdv;Hsp(Rdx))) > 0. We also have

sup
v∈Rd

‖Dvψ(·, v)‖Hsp(Rd) ≤ C(λ)‖g‖Lp(Rdv;Hsp(Rdx)), with C(λ)→ 0 as λ→∞ . (3.58)

Moreover, ψ ∈ C1
b (R2d), i.e., ψ is bounded on R2d and there exist the classical derivatives

Dxψ and Dvψ which are bounded and continuous on R2d; we also have with C(λ)→ 0 as
λ→∞

‖ψ‖∞ + ‖Dxψ‖Lp(R2d) + ‖Dxψ‖∞ + ‖Dvψ‖∞ ≤ C(λ)‖g‖Lp(Rdv ;Hsp(Rdx)) . (3.59)

Finally, Dvψ ∈W 1,p(R2d) and

‖Dvψ‖W 1,p(R2d) ≤ c(λ)‖g‖Lp(Rdv;Hsp(Rdx)) , c = c(λ)→ 0 as λ→∞ . (3.60)

Proof. First note that, since p > 2d, the boundedness of ψ follows by the Sobolev
embedding (recall also (3.18)). Similarly the second estimate in (3.59) follows from
(3.60).

We consider the Banach space Y = Lp(Rdv;H
s
p(Rdx)) and use an argument similar to

the one used in the proof of [10, Proposition 5]. Introduce the operator Tλ : Y → Y ,

Tλf := F ·Dv(Gλf) , f ∈ Y,

where Gλ is defined in (3.27). It is not difficult to check that Tλf ∈ Y for f ∈ Y . Indeed
by Lemma 3.5 we get∫

Rd
‖Tλf(·, v)‖p

Hsp(R
d)

dv ≤ sup
v∈Rd

‖Dv(Gλf)(·, v)‖p
Hsp(R

d)

∫
Rd
‖F (·, v)‖p

Hsp(R
d)

dv

≤ C(λ)‖f‖p
Lp(Rdv;H

s
p(R

d
x))
‖F‖p

Lp(Rdv ;H
s
p(R

d
x))
.

It is clear that Tλ is linear and bounded. Moreover we find easily that there exists λ0 > 0

such that for any λ > λ0 we have that the operator norm of Tλ is less than 1/2.
Let us fix λ > λ0. Since Tλ is a strict contraction, there exists a unique solution f ∈ Y

to
f − Tλf = g . (3.61)

We write f = (I− Tλ)−1g ∈ Y .
Uniqueness. Let ψ1 and ψ2 be solutions in Xp,s. Set w = ψ1 − ψ2. We know that

λw(z)− 1

2
4vw(z)− v ·Dxw(z)− F (z) ·Dvw(z) = 0 .

We have λw − 1
24vw − v ·Dxw = f ∈ Y . By uniqueness (see Theorem 3.4) we get that

w = Gλf . Hence, for z a.e.,

0 = f(z)− F (z) ·Dvw(z) = f(z)− F (z) ·DvGλf(z) .

Since Tλ is a strict contraction we obtain that f = 0 and so ψ1 = ψ2.
Existence. It is not difficult to prove that

ψ = ψλ = Gλ(I− Tλ)−1g , (3.62)

is the unique solution to (3.56).

Regularity of ψ and estimates. All the assertions follow easily from (3.62) since
(I− Tλ)−1g ∈ Y and we can apply Theorem 3.4, Lemmas 3.5 and 3.6.

In the Appendix we will also present a result on the stability of the PDE (3.56), see
Lemma 6.1 .
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4 Regularity of the characteristics

We will prove existence of a stochastic flow for the SDE (1.2) assuming Hypothesis 2.1.
We can rewrite our SDE as follows. Set Zt = (Xt, Vt) ∈ R2d, z0 = (x0, v0) and

introduce the functions b(x, v) = A · z +B(z) : R2d → R2d, where

A =

(
0 I

0 0

)
, R =

(
0

I

)
, RR ∗ = Q =

(
0 0

0 I

)
, B = RF =

(
0

F

)
: R2d → R2d .

(4.1)
With this new notation, (1.2) can be rewritten as{

dZt = b(Zt) dt+R · dWt

Z0 = z0
(4.2)

or {
dZt =

(
A · Zt +B(Zt)

)
dt+R · dWt

Z0 = z0
. (4.3)

We have

Xt = x0 +

∫ t

0

Vs ds = x0 + tv0 +

∫ t

0

(t− s)F (Xs, Vs) ds+

∫ t

0

Ws ds ,

Vt = v0 +

∫ t

0

F (Xs, Vs) ds+Wt . (4.4)

4.1 Strong well posedness

To prove strong well posedness for (4.2) we will also use solutions U with values in
R2d of

λU(z)− 1

2
Tr
(
QD2U(z)

)
− 〈Az,DU(z)〉 − 〈B(z), DU(z)〉 = B(z) ,

i.e., λU(z)− LU(z) = B(z) (4.5)

(defined componentwise at least for λ large enough). Note that U =

(
0

ũ

)
where

λũ(z)− Lũ(z) = F (z)

is again defined componentwise (ũ : R2d → Rd).

Remark 4.1. In the following, according to (4.1), we will say that the singular diffu-
sion Zt (the noise acts only on the last d coordinates {ed+1, . . . , e2d}) or the associated
Kolmogorov operator

Lf(z) =
1

2
4vf(z) + 〈b(z), Df(z)〉 ,

b(z) = Az +B(z), are hypoelliptic to refer to the fact that the vectors{
ed+1, . . . , e2d, Aed+1, . . . , Ae2d

}
generate R2d. Equivalently using Q given in (4.1) and the adjoint matrix A∗ we have that
the symmetric matrix Qt =

∫ t
0
esAQesA

∗
ds is positive definite for any t > 0 (cf. (3.25)).

Note that
det(Qt) = c t4d, t > 0 .

We collect here some preliminary results, which we will later need. Recall the OU
process{

dLt = ALt dt+R dWt

L0 = z ∈ R2d , i.e., Lt = Lzt = etAz +

∫ t

0

e(t−s)AR dWs . (4.6)
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Using the fact that Lt is hypoelliptic, for any t > 0, one gets that the law of Lt is
equivalent to the Lebesgue measure in R2d (see for example the proof of the next lemma).
We also have the following result.

Lemma 4.2. Let (Lzt ) be the OU process solution of (4.6). Let f : R2d → R belong to
Lq(R2d) for q > 2d. Then there exists a constant C depending on q, d and T such that

sup
z∈R2d

E
[ ∫ T

0

f(Lzs) ds
]
≤ C‖f‖Lq(R2d) . (4.7)

Proof. We need to compute

E
[ ∫ T

0

f(Lzs) ds
]

=

∫ T

0

Psf(z) ds ,

where Pt is the Ornstein-Uhlenbeck semigroup introduced in (3.24). By changing variable
and using the Hölder inequality we find, for t ∈ [0, T ], z ∈ R2d,

|Ptf(z)| =
∣∣∣cd ∫

R2d

f(etAz +
√
Qt y)e−

|y|2
2 dy

∣∣∣ ≤ cq(∫
R2d

|f(etAz +
√
Qt y)|q dy

)1/q
=

cq
(det(Qt))1/2q

(∫
R2d

|f(etAz + w)|q dw
)1/q

=
cq

(det(Qt))1/2q
‖f‖Lq(R2d) .

with cq independent of z. We now have to study when∫ t

0

1

(det(Qs))1/2q
ds <∞ . (4.8)

By a direct computation for s→ 0+

(det(Qs))
1/2q ∼ c(s4d)1/2q ,

hence the result follows for q > 2d.

We state now the classical Khas’minskii lemma for an OU process. The original
version of this lemma ([23], or [34, Section 1, Lemma 2.1]) is stated for a Wiener process,
but the proof only relies on the Markov property of the process, so that its extension to
this setting requires no modification.

Lemma 4.3 (Khas’minskii 1959). Let (Lzt ) be our 2d−dimensional OU process starting
from z at time 0 and f : R2d → R be a positive Borel function. Then, for any T > 0 such
that

α = sup
z∈R2d

E
[ ∫ T

0

f
(
Lzt
)

dt
]
< 1 , (4.9)

we also have

sup
z∈R2d

E
[

exp
(∫ T

0

f
(
Lzt
)

dt
)]

<
1

1− α
. (4.10)

We now introduce a generalization of the previous Khas’minskii lemma which we will
use to prove the Novikov condition, allowing us to apply Girsanov’s theorem.

Proposition 4.4. Let (Lt) be the OU process solution of (4.6). Let f : R2d → R belong
to Lq(R2d) for q > 2d. Then, there exists a constant Kf depending on d, q, T and
continuously depending on ‖f‖Lq(R2d) such that

sup
z∈R2d

E
[

exp
(∫ T

0

|f(Lzs)|ds
)]

= Kf <∞ . (4.11)
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Proof. From Lemma 4.2, for any a > 1 s.t. q/a > 2d we get

sup
z∈R2d

E
[ ∫ T

0

|f |a(Lzs) ds
]
≤ C‖f‖aLq(R2d) .

Setting ε = (C‖f‖aLq )−1 ∧ 1, we apply Young’s inequality: |f(z)| ≤ ε
a |f(z)|a + Cε

a−1
a and

Khas’minskii’s Lemma 4.3 replacing f with ε
a |f |

a to get

sup
z∈R2d

E
[

exp
(∫ T

0

|f(Lzs)|ds
)]
≤ sup
z∈R2d

E
[

exp
(∫ T

0

ε

a
|f(Lzs)|ads

)]
eTcε,a ≤ 1

1− α
eCT <∞ .

The next result can be proved by using the Girsanov theorem (cf. [22] and [28]).

Theorem 4.5. Suppose that in (4.2) we have F ∈ Lp(R2d;Rd) with p > 4d. Then the
following statements hold.

(i) Equation (4.2) is well posed in the weak sense.
(ii) For any z ∈ R2d, T > 0 the law in the space of continuous functions C([0, T ];R2d)

of the solution Z = (Zt) = (Zzt ) to the equation (4.2) is equivalent to the law of the OU
process L = (Lt) = (Lzt ).

(iii) For any t > 0, z ∈ R2d, the law of Zt is equivalent to the Lebesgue measure in
R2d.

Proof. (i) Existence. We argue similarly to the proof of [22, Theorem IV.4.2]. Let T > 0.

Starting from an Ornstein-Uhlenbeck process (cf. (4.6))

Lt = Lzt = z +

∫ t

0

ALs ds+RWt , t ≥ 0

defined on a stochastic basis (Ω,F , (Ft),P) on which it is defined an Rd-valued Wiener
process (Wt) = W , we can define the process

Ht := Wt −
∫ t

0

F (Lr) dr , t ∈ [0, T ] . (4.12)

Since p > 4d, Proposition 4.4 with f = F 2 provides the Novikov condition ensuring that
the process

Φt = exp
(∫ t

0

〈F (Ls),dWs〉 −
1

2

∫ t

0

|F (Ls)|2ds
)
, t ∈ [0, T ] ,

is an Ft-martingale. Then, by the Girsanov theorem (Ht)t∈[0,T ] is a d-dimensional Wiener
process on (Ω,FT , (Fs)s≤T ,Q), where Q is the probability measure on (Ω,FT ) having
density Φ = ΦT with respect to P. We have that on the new probability space

Lt = Lzt = z +

∫ t

0

ALs ds+

∫ t

0

RF (Ls) ds+RHt , t ∈ [0, T ]

(cf. (4.1)). Hence L = (Lt) is a solution to (4.2) on (Ω,FT , (Fs)s≤T ,Q).

Uniqueness. To prove weak uniqueness we use some results from [28]. First note that
the process

Vt = v0 +

∫ t

0

F (Xs, Vs) ds+Wt (4.13)

(cf. (4.4)) is a process of diffusion type according to [28, Definition 7, Section 4.2, page
118]. Indeed, since Xt = x0 +

∫ t
0
Vs ds we have

Vt = v0 +

∫ t

0

F
(
x0 +

∫ s

0

Vr dr, Vs

)
ds+Wt
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Regularity of stochastic kinetic equations

and the process (bs(V ))s∈[0,T ] = (F (x0 +
∫ s
0
Vr dr, Vs))s∈[0,T ] is (FVt )-adapted (here FVt is

the σ-algebra generated by {Vs, s ∈ [0, t]}).
We can apply to V = (Vt) [28, Theorem 7.5, page 257] (see also [28, Paragraph

7.2.7]): since
∫ T
0
|bs(V )|2ds <∞, P-a.s., we obtain that

µV ∼ µW on B
(
C([0, T ];Rd)

)
,

i.e. the laws of V = (Vt)t∈[0,T ] and W = (Wt)t∈[0,T ] are equivalent. Moreover, by [28,
Theorem 7.7], the Radon-Nykodim derivative µV

µW
(x), x ∈ C([0, T ];Rd), verifies

µV
µW

(W ) = exp
(∫ T

0

〈bs(W ),dWs〉 −
1

2

∫ T

0

|bs(W )|2 ds
)
.

It follows that, for any Borel set B ∈ B(C([0, T ];Rd)),

E
[
1B(V )

]
= EµW

[
1B

µV
µW

]
= E

[
1B(W ) exp

(∫ T

0

〈bs(W ),dWs〉 −
1

2

∫ T

0

|bs(W )|2 ds
)]

;

this shows easily that uniqueness in law holds.
Clearly (iii) follows from (ii). Let us prove (ii).

(ii) The processes L = (Lt) and Z = (Zt), t ∈ [0, T ], satisfy the same equation (4.2) in
(Ω,F ,Ft,Q, (Ht)) and (Ω,F ,Ft,P, (Wt)) respectively. Therefore, by weak uniqueness,
the laws of L and Z on C([0, T ];R2d) are the same (under the probability measures Q
and P respectively). Hence, for any Borel set J ⊂ C([0, T ];R2d), we have

E[1J(Z)] = E[1J(L) Φ] .

Since Wt = (〈Lt, ed+1〉, . . . , 〈Lt, e2d〉) we see that each Ws is measurable with respect to
the σ-algebra generated by the random variable Ls, s ≤ T . By considering L as a random
variable with values in C([0, T ];R2d), we obtain that

Φ = exp[G(L)]

for some measurable function G : M = C([0, T ];R2d)→ R. Using the laws µZ of Z and
µL of L we find∫

M

1J(ω)µZ(dω) = E[1J(Z)] = E
[
1J(L) exp[G(L)]

]
=

∫
M

1J(ω) exp[G(ω)]µL(dω) .

Finally note that |G(ω)| < ∞, for any ω ∈ M µL-a.s. (indeed
∫
M
|G(ω)|µL(dω) =

E[|G(L)|] <∞). It follows that exp[G(ω)] > 0, for any ω ∈M µL-a.s., and this shows that
µL is equivalent to µZ .

We can now prove that the result of Lemma 4.2 holds also when replacing the OU
process Lt with Zt.

Lemma 4.6. Let F ∈ Lp(R2d;Rd) for p > 4d and Zzt be a solution of (4.2). Let
f : R2d → R belong to Lq(R2d) for some q > 2d. Then there exists a constant C
depending on q, d and T such that

sup
z∈R2d

E
[ ∫ T

0

f(Zzs ) ds
]
≤ C‖f‖Lq(R2d) (4.14)

and a constant Kf depending on q, d, T and continuously depending on ‖f‖Lq(R2d) for
which

sup
z∈R2d

E
[

exp
(∫ T

0

f(Zzs ) ds
)]
≤ Kf . (4.15)
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Proof. As seen in the previous proof, the laws of Lt and Zt are the same under Q and P
respectively. Then, applying Hölder’s inequality with 1/a+ 1/a′ = 1 we have

EP
[ ∫ T

0

f(Zs) ds
]

= EQ
[ ∫ T

0

f(Ls) ds
]
≤ EP

[ ∫ T

0

fa(Ls) ds
]1/a

EP
[
Φa
′
]1/a′

.

Taking a > 1 small enough so that q/a > 2d, we can apply Lemma 4.2 to |f |a and control
the first expectation on the right hand side with a constant times ‖f‖Lq(R2d). Then we
write

Φa
′

= exp
(∫ T

0

〈a′F (Ls),dWs〉 −
1

2

∫ T

0

|a′F (Ls)|2 ds+
(a′)2 − a′

2

∫ T

0

|F (Ls)|2 ds
)
,

which has finite expectation due to Proposition 4.4. Both these estimates are uniform in
z, so that (4.14) follows. Similarly, we have

EP
[

exp
(∫ T

0

f(Zs) ds
)]
≤ EP

[
exp

(
2

∫ T

0

f(Ls) ds
)]1/2

EP
[
Φ2
]1/2

.

Both terms on the right hand side are finite due to Proposition 4.4: this proves (4.15).

From now to the end of the paper we will assume Hypothesis 2.1.

Lemma 4.7. Any process (Zt) which is solution of the SDE (4.2) has finite moments of
any order, uniformly in t ∈ [0, T ]: for any q ≥ 2

E
[
|Zzt |q

]
≤ Cz,q,d,T <∞ . (4.16)

Proof. Recall that, setting Zzt = Zt,

Zt = z +

∫ t

0

F (Zs) ds+

∫ t

0

AZs ds+

∫ t

0

R dWs .

It follows from (4.15) that for any q ≥ 1, E
[
|
∫ T
0
F (Zt) dt|q

]
≤ C. Using this bound, the

explicit density of RWt and the Grönwall lemma we obtain the assertion.

In the proof of strong uniqueness of solutions of the SDE (4.2) we will have to
deal with a new SDE with a Lipschitz drift coefficient, but a diffusion which only has
derivatives in Lp. However, following an idea of Veretennikov [36], we can deal with
increments of the diffusion coefficient on different solutions by means of the process
Nt defined in (4.17). The following lemma generalizes Veretennikov’s result to our
degenerate kinetic setting and even provides bounds on the exponential of the process
Nt. It will be a key element to prove continuity of the flow associated to (4.2) and will
also be used in Subsection 4.3 to study weak derivatives of the flow.

Lemma 4.8. Let Zt, Yt be two solutions of (4.2) starting from z, y ∈ R2d respectively,
U : R2d → R2d, U ∈ Xp,s ∩ C1

b (see Definition 3.3), and set

Nt =

∫ t

0

1{Zs 6=Ys}

‖[DU(Zs)−DU(Ys)]R
∥∥∥2
HS

|Zs − Ys|2
ds , (4.17)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. Then, Nt is a well-defined, real valued,
continuous, adapted, increasing process such that E[NT ] <∞, for every t ∈ [0, T ]∫ t

0

∥∥∥[DU(Zzs )−DU(Y ys )
]
R
∥∥∥2
HS

ds =

∫ t

0

∣∣Zzs − Y ys ∣∣2 dNs (4.18)

and for any k ∈ R, uniformly with respect to the initial conditions z, y:

sup
z,y∈R2d

E
[
ekNT

]
<∞ . (4.19)
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Proof. Recall that B =

(
0

F

)
and

∥∥[DU(Zs) − DU(Ys)
]
R
∥∥2
HS

=
∣∣Dvũ(Zs) − Dvũ(Ys)

∣∣2.
We have

∣∣Dvũ(Zs)−Dvũ(Ys)
∣∣ =

∣∣∣ 2d∑
i=1

(Zs − Ys)i
∫ 1

0

DiDvũ(rZs + (1− r)Ys) dr
∣∣∣

≤ |Zs − Ys|
∫ 1

0

∣∣DDvũ
(
rZs + (1− r)Ys

)∣∣ dr .
Set Zrt = rZt + (1− r)Yt (the process (Zrt )t≥0 depends on r ∈ [0, 1]). We will first prove
that

E
[ ∫ 1

0

dr

∫ t

0

∣∣DDvũ(Zrs )
∣∣2ds

]
<∞ , t > 0 . (4.20)

By setting F rs = [rF (Zs)+(1−r)F (Ys)] and zr = rz+(1−r)y, we obtain, for any r ∈ [0, 1],

Zrt = zr +

∫ t

0

(
0

F rs

)
ds+

(
0

Wt

)
+

∫ t

0

AZrsds .

Since
∫ T
0
|F rs |2 ds ≤ C

∫ T
0
|F (Zs)|2 + |F (Ys)|2 ds, using Hölder’s inequality and Lemma 4.6

we get for all k ∈ R

sup
z,y
E
[

exp
(
k

∫ T

0

|F rs |2 ds
)]
≤ Ck < ∞ , (4.21)

where the constant Ck depends on k, p, T and ‖F‖Lp(R2d), but is uniform in z, y and r.
We can use again the Girsanov theorem (cf. the proof of Theorem 4.5). The process

W̃t := Wt +

∫ t

0

F rs dr , t ∈ [0, T ]

is a d-dimensional Wiener process on (Ω, (Fs)s≤T ,FT ,Q), where Q is the probability
measure on (Ω,FT ) having the density ρr with respect to P,

ρr = exp
(∫ T

0

−〈F rs , dWs〉 −
1

2

∫ T

0

|F rs |2 ds
)
.

Recalling the Ornstein-Uhlenbeck process Lt (starting at zr), i.e.,

Lt = etAzr +WA(t), where WA(t) =

∫ t

0

e(t−s)AR dWs , (4.22)

we have:

Zrt = Lt +

∫ t

0

e(t−s)ARF rs ds .

Hence

Zrt = etAzr +

∫ t

0

e(t−s)A dW̃s

is an OU process on (Ω, (Fs)s≤T ,FT , ρrP).
We now find, by the Hölder inequality, for some a > 1 such that 1/a+ 1/a′ = 1,

E
[
ρ−1/ar ρ1/ar

∫ t

0

|DDvũ(Zrs )|2ds
]
≤ cT

(
E
[
ρr

∫ t

0

|DDvũ(Zrs )|2ads
])1/a(

E[ρ−a
′/a

r ]
)1/a′

(4.23)

≤ CT
(
E
[
ρr

∫ t

0

|DDvũ(Zrs )|2a ds
])1/a

,
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for any t ∈ [0, T ]. Observe that the bound on the moments of ρr is uniform in the initial
conditions z, y ∈ R2d due to (4.21). Setting f(z) = |DDvũ(z)|2a and using the Girsanov
Theorem, assertion (4.20) follows from Lemma 4.2 if we fix a > 1 such that q = p/2a > 2d.

Therefore, the process Nt is well defined and E[Nt] <∞ for all t ∈ [0, T ]. (4.18) and
the other properties of Nt follow.

To prove the exponential integrability of the process Nt we proceed in a way similar
to [15, Lemma 4.5]. Using the convexity of the exponential function we get

E
[
ekNT

]
≤ E

[
exp

(
k

∫ T

0

∫ 1

0

|DDvũ(Zrs )|2 drds
)]
≤
∫ 1

0

E
[

exp
(
k

∫ T

0

|DDvũ(Zrs )|2 ds
)]

dr

and we can continue as above (superscripts denote the probability measure used to take
expectations)

sup
z,y
EP
[
ekNT

]
≤ sup

z,y

∫ 1

0

EP
[
ρ−1/ar ρ1/ar exp

(
k

∫ T

0

|DDvũ(Zrs )|2 ds
)]

dr

≤ CT sup
z,y

∫ 1

0

EQ
[

exp
(
ak

∫ T

0

|DDvũ(Zrs )|2 ds
)]1/a

dr

≤ CT sup
z,y

∫ 1

0

EP
[

exp
(
ak

∫ T

0

|DDvũ(Ls)|2 ds
)]1/a

dr .

The last integral is finite due to Proposition 4.4 because p/2 > 2d. The proof is complete.

Proposition 4.9 (Itô formula). If ϕ : R2d → R belongs to Xp,s ∩ C1
b and Zt is a solution

of (4.2), for any 0 ≤ s ≤ t ≤ T the following Itô formula holds:

ϕ(Zt) = ϕ(Zs) +

∫ t

s

[
b(Zr) ·Dϕ(Zr) +

1

2
∆vϕ(Zr)

]
dr +

∫ t

s

Dvϕ(Zr) dWr . (4.24)

Proof. Note that we can use (iii) in Theorem 4.5 to give a meaning to the critical term∫ t
s

∆vϕ(Zr) dr. The result then follows approximating ϕ with regular functions and using
Lemma 4.6.

Let ϕε ∈ C∞c → ϕ in Xp,s. ϕε satisfy the assumptions of the classical Itô formula,
which provides an analogue of (4.24) for ϕε(Zt). For any fixed t, the random variables
ϕε(Zt) → ϕ(Zt) P-almost surely. Using that Dϕ is bounded and almost surely F (Zr)

and AZr are in L1(0, T ) (this follows by Lemma 4.6 and Lemma 4.7 respectively), the
dominated convergence theorem gives the convergence of the first term in the Lebesgue
integral. For the second term we use Lemma 4.6 with f = ∆vϕε − ∆vϕ (recall that
p > 6d):

E
[ ∫ t

s

∆vϕε(Zr)−∆vϕ(Zr) dr
]
≤ C‖∆vϕε −∆vϕ‖Lp(R2d) → 0 .

In the same way, one can show that E
[ ∫ t
s
|Dvϕε(Zr)−Dvϕ(Zr)|2 dr

]
converges to zero,

which implies the convergence of the stochastic integral by the Itô isometry.

Remark 4.10. Using the boundedness of ϕ, it is easy to generalize the above Itô formula
(4.24) to ϕa(Zt) for any a ≥ 2.

We can finally prove the well-posedness in the strong sense of the degenerate SDE
(4.2). A different proof of this result in a Hölder setting is contained in [6], but no explicit
control on the dependence on the initial data is given there, so that a flow cannot be
constructed. See also the more recent results of [37]. We here present a different, and in
some sense more constructive, proof. This approach, based on ideas introduced in [19],
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[24], [15], will even allow us to obtain some regularity results on certain derivatives of
the solution. We will use Theorem 3.7 from Section 3.3, which provides the regularity
Xp,s ∩ C1

b (R2d) of solutions of (4.5).

Theorem 4.11. Equation (4.2) is well posed in the strong sense.

Proof. Since we have weak well posedness by (i) of Theorem 4.5, the Yamada-Watanabe
principle provides strong existence as soon as strong uniqueness holds. Therefore,
we only need to prove strong uniqueness. This can be done by using an appropriate
change of variables which transforms equation (4.2) into an equation with more regular
coefficients. This method was first introduced in [19], where it is used to prove strong
uniqueness for a non degenerate SDE with a Hölder drift coefficient.

Here, the SDE is degenerate and we only need to regularize the second component
of the drift coefficient, F (·), which is not Lipschitz continuous. We therefore introduce
the auxiliary PDE (4.5) with λ large enough such that

‖Uλ‖L∞(R2d) + ‖DUλ‖L∞(R2d) < 1/2 (4.25)

holds (see (3.59)). In the following we will always use this value of λ and to ease notation
we shall drop the subscript for the solution Uλ of (4.5), writing Uλ = U.

Let Zt be one solution to (4.2) starting from z ∈ R2d. Since

Zt = z +

∫ t

0

B(Zs) ds+

∫ t

0

AZs ds+RWt ,

and U ∈ Xp,s ∩ C1
b (see Theorem 3.7), by the Itô formula of Proposition 4.9 we have

U(Zt) = U(z) +

∫ t

0

DU(Zs)R dWs +

∫ t

0

LU(Zs) ds

= U(z) +

∫ t

0

DU(Zs)R dWs + λ

∫ t

0

U(Zs) ds−
∫ t

0

B(Zs) ds .

Using the SDE to rewrite the last term we find

U(Zt) =U(z) +

∫ t

0

DU(Zs)R dWs + λ

∫ t

0

U(Zs) ds− Zt + z +

∫ t

0

AZs ds+RWt

and so

Zt = U(z)− U(Zt) +

∫ t

0

DU(Zs)R dWs + λ

∫ t

0

U(Zs)ds+ z +

∫ t

0

AZsds+RWt . (4.26)

Let now Yt be another solution starting from y ∈ R2d and let

γ(x) = x+ U(x), x ∈ R2d . (4.27)

We have γ(z)−γ(y) = z−y+U(z)−U(y), and so |z−y| ≤ |U(z)−U(y)|+|γ(z)−γ(y)|. Since
we have chosen λ such that ‖DU‖L∞(R2d) < 1/2, there exist finite constants C, c > 0 such
that

c|γ(z)− γ(y)| ≤ |z − y| ≤ C|γ(z)− γ(y)| , ∀z, y ∈ R2d. (4.28)

We find
dγ(Zt) =

(
λU(Zt) +AZt

)
dt+

(
DU(Zt) + I

)
R · dWt (4.29)

and

γ(Zt)− γ(Yt) = z − y + U(z)− U(y) +

∫ t

0

[
DU(Zs)−DU(Ys)

]
R · dWs (4.30)

+ λ

∫ t

0

[
U(Zs)− U(Ys)

]
ds+

∫ t

0

A(Zs − Ys) ds .
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For a ≥ 2, let us apply Itô formula to
∣∣γ(Zt)− γ(Yt)

∣∣a =
(∑2d

i=1

[
γ(Zt)− γ(Yt)

]2
i

)a/2
:

d
[∣∣γ(Zt)− γ(Yt)

∣∣a] = a
∣∣γ(Zt)− γ(Yt)

∣∣a−2(γ(Zt)− γ(Yt)
)
· d
(
γ(Zt)− γ(Yt)

)
+
a

2

∣∣γ(Zt)− γ(Yt)
∣∣a−4 2d∑

i,j=1

d∑
k=1

{
(a− 2)

(
γ(Zt)− γ(Yt)

)
i

(
γ(Zt)− γ(Yt)

)
j

+ δi,j
∣∣γ(Zt)− γ(Yt)

∣∣2}
×
[(
DU(Zt)−DU(Yt)

)
R
]
k,i

[(
DU(Zt)−DU(Yt)

)
R
]
k,j

dt

≤ a
∣∣γ(Zt)− γ(Yt)

∣∣a−2{(γ(Zt)− γ(Yt)
)
·
[
DU(Zt)−DU(Yt)

]
R · dWt

+
(
γ(Zt)− γ(Yt)

)
·
(
λ
[
U(Zt)− U(Yt)

]
+A(Zt − Yt)

)
dt

+ Ca,d

∥∥∥[DU(Zt)−DU(Yt)
]
R
∥∥∥2
HS

dt
}
.

Note that Zt has finite moments of all orders, and U is bounded, so that also the process
γ(Zt) has finite moments of all orders. Using also that DU is a bounded function, we
deduce that the stochastic integral is a martingale Mt:

Mt =

∫ t

0

a
∣∣γ(Zs)− γ(Ys)

∣∣a−2(γ(Zs)− γ(Ys)
)
·
[
DU(Zs)−DU(Ys)

]
R · dWs

As in [24] and [14] we now consider the following process

Bt =

∫ t

0

1{Zs 6=Ys}

∥∥∥[DU(Zs)−DU(Ys)]R
∥∥∥2
HS

|γ(Zs)− γ(Ys)|2
ds ≤ C2Nt , (4.31)

where we have used the equivalence (4.28) between |Zt − Yt| and |γ(Zt) − γ(YT )| and
Nt is the process defined by (4.17) and studied in Lemma 4.8. Just as the process Nt,
also Bt has finite moments, and even its exponential has finite moments. With these
notations at hand we can rewrite

d
[∣∣γ(Zt)− γ(Yt)

∣∣a]
≤ a

∣∣γ(Zt)− γ(Yt)
∣∣a−2(γ(Zt)− γ(Yt)

)
·
(
λ
[
U(Zt)− U(Yt)

]
+A(Zt − Yt)

)
dt

+ dMt + Ca,d
∣∣γ(Zt)− γ(Yt)

∣∣a dBt .

Again by Itô formula we have

d
(
e−Ca,dBt

∣∣γ(Zt)− γ(Yt)
∣∣a) = −Ca,d e−Ca,dBt

∣∣γ(Zt)− γ(Yt)
∣∣a dBt (4.32)

+ e−Ca,dBt
{
a
∣∣γ(Zt)− γ(Yt)

∣∣a−2(γ(Zt)− γ(Yt)
)
·
(
λ
[
U(Zt)− U(Yt)

]
+A(Zt − Yt)

)
dt

+ dMt + Ca,d
∣∣γ(Zt)− γ(Yt)

∣∣a dBt

}
.

The term e−Ca,dBtdMt is still the differential of a zero-mean martingale. Integrating and
taking the expected value we find

E
[
e−Ca,dBt

∣∣γ(Zt)− γ(Yt)
∣∣a] =

∣∣γ(z)− γ(y)
∣∣a + E

[ ∫ t

0

e−Ca,dBsa
∣∣γ(Zs)− γ(Ys)

∣∣a−2
×
(
γ(Zs)− γ(Ys)

)
·
(
λ
[
U(Zs)− U(Ys)

]
+A(Zs − Ys)

)
ds
]
.
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Using again the equivalence (4.28) between |Zt − Yt| and |γ(Zt) − γ(YT )| and the fact
that U is Lipschitz continuous, this finally provides the following estimate:

E
[
e−Ca,dBt

∣∣Zt − Yt∣∣a] ≤ C{|z − y|a +

∫ t

0

E
[
e−Ca,dBs

∣∣Zs − Ys∣∣a] ds
}
.

By Grönwall’s inequality, there exists a finite constant C ′ such that

E
[
e−Ca,dBt

∣∣Zt − Yt∣∣a] ≤ C ′∣∣z − y∣∣a . (4.33)

Using that Bt is increasing and a.s. BT <∞, taking z = y we get for any fixed t ∈ [0, T ]

that P
(
Zt 6= Yt

)
= 0. Strong uniqueness follows by the continuity of trajectories. This

completes the proof.

Corollary 4.12. Using the finite moments of the exponential of the process Bt, we can
also prove that for any a ≥ 2,

E
[∣∣Zt − Yt∣∣a] ≤ C∣∣z − y∣∣a . (4.34)

Proof. Using Hölder’s inequality and for an appropriate constant c, we have

E
[∣∣Zt − Yt∣∣a] = E

[
ecBte−cBt

∣∣Zt − Yt∣∣a]
≤ C

(
E
[
e−2cBt

∣∣Zt − Yt∣∣2a])1/2 ≤ C∣∣z − y∣∣a .
4.2 Stochastic flow

The main result of this section is the existence of a stochastic flow generated by the
SDE (4.2), which is presented in Theorem 4.18. This result follows in a standard way
from the results of Lemma 4.13 and Corollary 4.17. One possible line of proof is to follow
[25, Chapter II.2] or [26, Chapter 4.5], adapting such results to the irregular coefficients
(as in [15]) and degenerate setting considered here.

Another standard result which follows from Corollary 4.12 and Lemma 4.13 is the
(local) Hölder continuity of the flow, which we present in Theorem 4.15.

Lemma 4.13. Let a be any real number. Then there is a positive constant Ca independent
of t ∈ [0, T ] and z ∈ R2d such that

E
[(

1 +
∣∣Zzt ∣∣2)a] ≤ Ca,d(1 + |z|2

)a
.

Proof. Using the boundedness of the solution U of the PDE (4.5) (see (4.25)) one can
show the equivalence

c(1 + |z|2) ≤ 1 + |γ(z)|2 ≤ C(1 + |z|2) .

Set γt = γ(Zzt ). Then, it is enough to prove that E
[(

1 + |γt|2
)a] ≤ Ca,d(1 + |γ(z)|2

)a
. Set

f(z) := (1 + |z|2). The idea is to apply the Itô formula to g(γt), where g(z) = fa(z). Since

∂g

∂zi
(z) = 2afa−1(z)zi ,

∂2g

∂zi ∂zj
(z) = 4a(a− 1)fa−2(z)zizj + 2afa−1(z)δi,j ,

we see that

g(γt)− g(γ(z)) = 2a

∫ t

0

fa−1(γs) γs · σ̃(γs) · dWs + 2a

∫ t

0

fa−1(γs) γs · b̃(γs) ds (4.35)

+

2d∑
i,j,k=1

∫ t

0

2afa−2(γs)
[
(a− 1)γisγ

j
s + δi,jf(γs)

]
σ̃k,i(γs)σ̃

k,j(γs) ds .
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Here we have used the relation d〈γt, γt〉 = σ̃(γt) σ̃
t(γt) dt . Since γt has finite moments,

the first term on the right hand side of (4.35) is a martingale with zero mean. Note that
f(z) ≥ 1, so that fa−1 ≤ fa and |z| ≤ f1/2(z). Moreover, since σ̃ is bounded and b̃ is
Lipschitz continuous, |̃b(z)| ≤ C(1 + |z|) ≤ Cf1/2(z). Using all this, we can see that the
second and third term on the right hand side of (4.35) are dominated by a constant times∫ t
0
g(γs) ds. Therefore, taking expectations in (4.35) we have

E
[
g(γt)

]
− g(γ0) ≤ Ca,d

∫ t

0

E
[
g(γs)

]
ds ,

and the result follows by Grönwall’s lemma.

Proposition 4.14. Let Zzt be the unique strong solution to the SDE (4.2) given by
Theorem 4.11 and starting from the point z ∈ R2d. For any a > 2, s, t ∈ [0, T ] and
z, y ∈ R2d we have

E
[∣∣Zzt − Zys ∣∣a] ≤ Ca,d,λ,T{|z − y|a +

(
1 + |z|a + |y|a

)
|t− s|a/2

}
.

Proof. Assume t > s. It suffice to show that

E
[∣∣Zzs − Zys ∣∣a] ≤ C|z − y|a ,
E
[∣∣Zzt − Zzs ∣∣a] ≤ C(1 + |z|a

)
|t− s|a/2 .

The first inequality was obtained in Corollary 4.12. To prove the second inequality we
use the equivalence (4.28) between Zt and γ(Zt). We use the Itô formula (4.29) for γ(Zt)

and γ(Zs): we can control the differences of the first and last term using the fact that U
and DU are bounded, together with Burkholder’s inequality

E
[∣∣Zzt − Zzs ∣∣a] ≤ CE[∣∣γ(Zzt )− γ(Zzs )

∣∣a]
≤ Ca,d

{∣∣∣ ∫ t

s

[
‖λU‖2∞dr

∣∣∣a/2+ E[∣∣∣ ∫ t

s

AZzr dr
∣∣∣a]+ ‖DU‖∞E

[∣∣R(Wt −Ws)
∣∣a]}

and for the linear part we use Hölder’s inequality and Lemma 4.13:

E
[∣∣∣ ∫ t

s

AZzr dr
∣∣∣a] ≤ (t− s)a/2E

[ ∫ t

s

|AZzr |a dr
]
≤ C(t− s)a/2

∫ t

s

(1 + |z2|)a/2 dr .

Applying Kolmogorov’s regularity theorem (see [25, Theorem I.10.3]), we immediately
obtain the following

Theorem 4.15. The family of random variables (Zzt ), t ∈ [0, T ], z ∈ Rd, admits a modifi-
cation which is locally α-Hölder continuous in z for any α < 1 and β-Hölder continuous
in t for any β < 1/2.

From now on, we shall always use the continuous modification of Z provided by this
theorem.

To obtain the injectivity of the flow, we review the computations of Proposition 4.14:
we now want to allow the exponent a to be negative. The proofs of the following lemma
is given in Appendix.

Lemma 4.16. Let a be any real number and ε > 0. Then there is a positive constant
Ca,d (independent of ε) such that for any t ∈ [0, T ] and z, y ∈ R2d

E
[(
ε+

∣∣Zzt − Zyt ∣∣2)a] ≤ Ca,d(ε+ |z − y|2
)a
. (4.36)
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Corollary 4.17. Let ε tend to zero in Lemma 4.16. Then, by monotone convergence, we
have:

E
[ ∣∣Zzt − Zyt ∣∣a] ≤ Ca,d|z − y|a . (4.37)

From the above results one can obtain the following theorem. The line of proof is
quite standard, but the interested reader can find a complete proof in Section 4.2 of [17].

Theorem 4.18. The unique strong solution Zt = (Xt, Vt) of the SDE (1.2) defines a
stochastic flow of Hölder continuous homeomorphisms φt.

4.3 Regularity of the derivatives

Although F is not even weakly differentiable, from the reformulation (4.26) of equation
(4.2) it is reasonable to expect differentiability of the flow, since the derivatives DXt, DVt
with respect to the initial conditions (x, v) formally solve suitable SDEs with well-defined,
integrable coefficients. We have the following result.

Theorem 4.19. Let φt(z) be the flow associated to (4.2) provided by Theorem 4.18.
Then, for any t ∈ [0, T ], P-a.s., the random variable φt(z) admits a weak distributional
derivative with respect to z; moreover Dzφt ∈ Lploc(Ω×R2d) (i.e., Dzφt ∈ Lp(Ω×K), for
any compact set K ⊂ R2d), for any p ≥ 1.

Proof. Step 1. Bounds on difference quotients. It is sufficient to prove the existence and
regularity of Dziφt for some fixed i ∈ {1, . . . , 2d}. We omit to write i and set e = ei.

Introduce for every h > 0 the stochastic processes

θht (z) =
φt(z + he)− φt(z)

h
, ξht (z) =

γ
(
φt(z + he)

)
− γ
(
φt(z)

)
h

, (4.38)

where γ(z) = z + U(z) as in (4.27). It is clear that they have finite moments of all orders
because φ and γ(φ) do. The two processes are also equivalent in the sense that there
exist constants C1, C2 such that

C1|ξht (z)| ≤ |θht (z)| ≤ C2|ξht (z)| . (4.39)

This follows from (4.28). To fix the ideas, consider the case i > d. We have

ξht = e+
1

h

[
U(z + he)− U(z)

]
(4.40)

+

∫ t

0

λ

h

[
U
(
φs(z + he)

)
− U

(
φs(z)

)]
+Aθht (z) ds

+
1

h

∫ t

0

[
DU

(
φs(z + he)

)
−DU

(
φs(z)

)]
R · dWs .

Proceeding as in the proof of Theorem 4.11 above we have

d
∣∣ξht ∣∣p ≤ p∣∣ξht ∣∣p−2ξht · (λh[U(φt(z + he)

)
− U

(
φt(z)

)]
+Aθht (z)

)
dt

+
p

h

∣∣ξht ∣∣p−2ξht · [DU(φt(z + he)
)
−DU

(
φt(z)

)]
R · dWt

+
Cp,d
h2
∣∣ξht ∣∣p−2∥∥∥DU(φt(z + he)

)
−DU

(
φt(z)

)
R
∥∥∥2
HS

dt

= p
∣∣ξht ∣∣p−2ξht · (λh[U(φt(z + he)

)
− U

(
φt(z)

)]
+Aθht (z)

)
dt

+ dMh
t + Cp,d

∣∣ξht ∣∣p−2∣∣θht ∣∣2 dNt ,
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where the process Nt is defined as in (4.17), but with Z = φ(z + he) and Y = φ(z), and
for every h > 0, dMh

t is the differential of a martingale because DU is bounded and ξht
has finite moments. Setting Cp = (C2)2Cp,d we get

d
(
e−CpNt

∣∣ξht ∣∣p) = −Cpe−CpNt
∣∣ξht ∣∣pdNt + e−CpNtd

(∣∣ξht ∣∣p) (4.41)

≤ e−CpNtp
∣∣ξht ∣∣p−2ξht · (λh[U(φt(z + he)

)
− U

(
φt(z)

)]
+Aθht (z)

)
dt+ e−CpNtdMh

t .

After integrating and taking expectations we find

E
[
e−CpNt

∣∣ξht ∣∣p] ≤ ∣∣∣e+
1

h

[
U(z + he)− U(z)

]∣∣∣p
+

∫ t

0

E
[
e−CpNsp

∣∣ξhs ∣∣p−2ξht · (λh[U(φs(z + he)
)
− U

(
φs(z)

)]
+Aθhs (z)

)]
ds

≤ C
(
1 + ‖DU‖p

L∞(R2d)

)
+

∫ t

0

C
(
λ‖DU‖L∞(R2d) + |A|

)
E
[
e−CpNsp

∣∣ξhs ∣∣p] ds .

A similar estimate holds for the case i ≤ d. We now apply Grönwall’s inequality and
proceeding as in the proof of Corollary 4.12 we finally get that

E
[∣∣θht ∣∣p] ≤ CE[∣∣ξht ∣∣p] ≤ Cp,d,T,λ <∞ . (4.42)

Step 2. Derivative of the Flow. Remark that, due to the boundedness of DU , the
bound (4.42) is uniform in h and z, and we get

sup
z∈R2d

sup
h∈(0,1]

E
[∣∣θht ∣∣p] ≤ Cp,d,T,λ <∞ . (4.43)

We can then apply [1, Corollary 3.5] and obtain the existence of the weak derivative for
the flow Dφt ∈ Lploc(Ω×R2d).

Remark 4.20. Since the bound (4.42) is also uniform in time, applying [1, Theorem 3.6]
one would also get the existence of the weak derivative as a process Dφt belonging
to Lploc([0, T ] × R2d) with probability one, and the weak convergence θht ⇀ Dφt in
Lploc(Ω× [0, T ]×R2d).

It seems that Dφt ∈ Lploc(Ω× [0, T ]×R2d) for p ∈ (2,∞) could also be obtained directly
from Corollary 4.12 using [39, Theorem 1.1]. However, to obtain an L∞-in-time result
using this approach one would first need to show that the estimate (4.34) holds with a
supt∈[0,T ] inside the expected value.

5 Stochastic kinetic equation

We present here results on the stochastic kinetic equation (1.1). The first result
concerns existence of solutions with a certain Sobolev regularity (see Theorem 5.4). The
second one is about uniqueness of solutions (see Theorem 5.7).

We will use the results of the previous sections together with results similar to the
ones given in [16] to approximate the flow associated to the equation of characteristics.
We report them in the Appendix for the sake of completeness. To prove that some degree
of Sobolev regularity of the initial condition is preserved on has to deal with weakly
differentiable solutions, according to the definition introduced in [16] for solutions of
the stochastic transport equation.

Recall that, as observed in Section 2, by point 2 of the next definition and Sobolev
embedding, weakly differentiable solutions of the stochastic kinetic equation are a.s.
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continuous in the space variable, for every t ∈ [0, T ]; this is in contrast with the deter-
ministic kinetic equation, where solutions can be discontinuous (see Proposition 2.3). In
the sequel, given a Banach space E we denote by C0

(
[0, T ];E

)
the Banach space of all

continuous functions from [0, T ] into E endowed with the supremum norm.

Definition 5.1. Assume that F satisfies Hypothesis 2.1. We say that f is a weakly
differentiable solution of the stochastic kinetic equation (1.1) if

1. f : Ω× [0, T ]×R2d → R is measurable,
∫
R2d f (t, z)ϕ (z) dz (well defined by property

2 below) is progressively measurable for each ϕ ∈ C∞c
(
R2d

)
;

2. P
(
f (t, ·) ∈ ∩r≥1W 1,r

loc

(
R2d

))
= 1 for every t ∈ [0, T ] and both f and Df are in

∩r≥1C0
(
[0, T ];Lr(Ω×R2d)

)
;

3. setting b(z) = A · z + B(z), b : R2d → R2d, see (4.1), for every ϕ ∈ C∞c
(
R2d

)
and

t ∈ [0, T ], with probability one, one has

∫
R2d

f(t, z)ϕ(z) dz +

∫ t

0

∫
R2d

b(z) ·Df(s, z)ϕ(z) dzds

=

∫
R2d

f0(z)ϕ(z) dz +

d∑
i=1

∫ t

0

(∫
R2d

f (s, z) ∂viϕ (z) dz

)
dW i

s

+
1

2

∫ t

0

∫
R2d

f(s, z)∆vϕ(z) dzds .

Remark 5.2. The process s 7→ Y is :=
∫
R2d f (s, z) ∂viϕ(z) dz is progressively measurable

by property 1 and
∫ T
0

∣∣Y is ∣∣2 ds < ∞ P-a.s. by property 2, hence the Itô integral is well
defined.

Remark 5.3. The term
∫ t
0

∫
R2d b (z) ·Df (s, z)ϕ (z) dzds is well defined with probability

one because of the integrability properties of b (assumptions) and Df (property 2).

In the next result the inverse of φt will be denoted by φt0.

Theorem 5.4. If F satisfies Hypothesis 2.1 and f0 ∈ ∩r≥1W 1,r(R2d), then
f (t, z) := f0 (φt0(z)) is a weakly differentiable solution of the stochastic kinetic equation
(1.1).

Proof. The proof follows the one of [16, Theorem 10]. We divide it into several steps.

Step 1. Preparation. The random field (ω, t, z) 7→ f0 (φt0(z)(ω)) is jointly measurable
and (ω, t) 7→

∫
R2d f0 (φt0(z)(ω))ϕ (z) dz is progressively measurable for each ϕ ∈ C∞c (R2d).

Hence part 1 of Definition 5.1 is true. To prove part 2 and 3 we approximate f (t, z) by
smooth fields fn (t, z).

Let f0,n be a sequence of smooth functions which converges to f0 in W 1,r(R2d), for
any r ≥ 1, and so uniformly on R2d by the Sobolev embedding. This can be done for
instance by using standard convolution with mollifiers. Moreover suppose that Fn are
smooth approximations converging to F in Lp(R2d) (p is given in Hypothesis 2.1), let
φt,n be the regular stochastic flow generated by the SDE (4.3) where B is replaced by
Bn = RFn and let φt0,n be the inverse flow. Then fn (t, z) := f0,n

(
φt0,n (z)

)
is a smooth

solution of

dfn = −
(
v ·Dxfn + Fn ·Dvfn

)
dt−Dvfn ◦ dWt
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and thus for every ϕ ∈ C∞c (R2d), t ∈ [0, T ] and bounded r.v. Y , it satisfies

E

[
Y

∫
R2d

fn(t, z)ϕ(z) dz

]
+ E

[
Y

∫ t

0

∫
R2d

bn (z) ·Dfn (s, z)ϕ (z) dzds

]
= E

[
Y

∫
R2d

f0,n (z)ϕ (z) dz
]

+

d∑
i=1

E

[
Y

∫ t

0

(∫
R2d

fn (s, z) ∂viϕ (z) dz

)
dW i

s

]
+

1

2
E

[
Y

∫ t

0

∫
R2d

fn (s, z) ∆vϕ (z) dzds

]
. (5.1)

We shall pass to the limit in each one of these terms. We are forced to use this very weak
convergence due to the term

E

[
Y

∫ t

0

∫
R2d

bn (z) ·Dfn (s, z)ϕ (z) dzds

]
, (5.2)

where we may only use weak convergence of Dfn.

Step 2. Convergence of fn to f . We claim that, uniformly in n and for every r ≥ 1,

sup
t∈[0,T ]

∫
R2d

E
[
|fn(t, z)|r

]
dz ≤ Cr , (5.3)

sup
t∈[0,T ]

∫
R2d

E
[
|Dfn(t, z)|r

]
dz ≤ Cr . (5.4)

Let us show how to prove the second bound; the first one can be obtained in the same
way. The key estimate is the bound (6.6) on the derivative of the flow, which is proved in
Appendix. We use the representation formula for fn and the Hölder inequality to obtain(∫

R2d

E
[
|Dfn(t, z)|r

]
dz

)2

≤ sup
z∈R2d

E
[
|Dφt0,n(z)|2r

] ∫
R2d

E
[∣∣Df0,n(φt0,n(z)

)∣∣2r]dz .
The first term on the right-hand side can be uniformly bounded using Lemma 6.3. Also
the last integral can be bounded uniformly: changing variables (all functions are regular)
we get ∫

R2d

E
[∣∣Df0,n(φt0,n(z)

)∣∣2r]dz =

∫
R2d

∣∣Df0,n(y)
∣∣2r E[Jφt,n(y)

]
dy ,

where Jφt,n(y) is the Jacobian determinant of φt,n(y). Then we conclude using again the
Hölder inequality, (6.6) and the boundedness of (f0,n) in W 1,r(R2d) (for every r ≥ 1).
Remark that all the bounds obtained are uniform in n and t.

We can now consider the convergence of fn to f . Let us first prove that, given
t ∈ [0, T ] and ϕ ∈ C∞c (R2d),

P− lim
n→∞

∫
R2d

fn (t, z)ϕ (z) dz =

∫
R2d

f (t, z)ϕ (z) dz (5.5)

(convergence in probability). Using the representation formulas fn = f0,n(φt0,n),

f = f0(φt0) and Sobolev embedding W 1,4d ↪→ C1/2 we have (Supp(ϕ) ⊂ BR where
BR is the ball of radius R > 0 and center 0)∣∣∣∣∫

R2d

(fn (t, z)− f (t, z))ϕ (z) dz

∣∣∣∣ ≤ ‖f0,n − f0‖L∞(R2d) ‖ϕ‖L1(R2d)

+ C ‖ϕ‖L∞(R2d)

∫
BR

∣∣φt0,n (z)− φt0 (z)
∣∣1/2 dz .
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The first term converges to zero by the uniform convergence of f0,n to f0. From
Lemma 6.2 we get

lim
n→∞

E

[∫
BR

∣∣φt0,n (z)− φt0 (z)
∣∣dz] = 0 ,

and the convergence in probability (5.5) follows. This allows to pass to the limit in the
first and in the last term of equation (5.1) using the uniform bound (5.3) and the Vitali
convergence theorem. Similarly, we can show that, given ϕ ∈ C∞c

(
R2d

)
,

P− lim
n→∞

∫ T

0

∣∣∣∣∫
R2d

(fn (t, z)− f (t, z))ϕ (z) dz

∣∣∣∣2 dt = 0 , (5.6)

which allows to pass to the limit in the stochastic integral term of (5.1). Hence, one can
easily show convergence of all terms in (5.1) except for the one in (5.2) which will be
treated in Step 4.

Step 3. A bound for f . Let us prove property 2 of Definition 5.1. The key estimate is
property (5.4) obtained in the previous step.

Recall we have already obtained the convergence (5.5) and the uniform bound (5.4)
on Dfn. We can then apply [16, Lemma 16] which gives P

(
f(t, ·) ∈ W 1,r

loc (R2d)
)

= 1 for
any r ≥ 1 and t ∈ [0, T ], and

E

[∫
BR

|Df (t, z)|r dz

]
≤ lim sup

n→∞
E

[∫
BR

|Dfn (t, z)|r dz

]
≤ Cr ,

for every R > 0 and t ∈ [0, T ]. Hence, by monotone convergence we have

sup
t∈[0,T ]

E

[∫
R2d

|Df (t, z)|r dz

]
≤ Cr . (5.7)

A similar bound can be proved for f itself using (5.3), the convergence in probability
(5.5) and the Vitali convergence theorem.

Step 4. Passage to the limit. Finally, we prove that we can pass to the limit in equation
(5.1) and deduce that f satisfies property 3 of Definition 5.1. It remains to consider the
term E

[
Y
∫ t
0

∫
R2d bn (s, z) ·Dfn (s, z)ϕ (z) dzds

]
. Since Fn → F in Lp(R2d), it is sufficient

to use a suitable weak convergence of Dfn to Df . Precisely, for t ∈ [0, T ],

E
[
Y

∫ t

0

∫
R2d

bn (z) ·Dfn (s, z)ϕ (z) dzds
]

− E
[
Y

∫ t

0

∫
R2d

b (z) ·Df (s, z)ϕ (z) dzds

]
= I(1)n (t) + I(2)n (t) ;

I(1)n (t) = E

[
Y

∫ t

0

∫
R2d

(
Fn (z)− F (z)

)
·Dvfn (s, z)ϕ (z) dzds

]
;

I(2)n (t) = E

[
Y

∫ t

0

∫
R2d

ϕ (z) b (z) ·
(
Dfn (s, z)−Df (s, z)

)
dzds

]
.

We have to prove that both I(1)n (t) and I(2)n (t) converge to zero as n→∞. By the Hölder
inequality, for all t ∈ [0, T ]

I(1)n (t) ≤ C ‖Fn − F‖Lp(R2d) sup
t∈[0,T ]

E
[∥∥Dfn(t, ·)

∥∥
Lp′ (R2d)

]
where 1/p + 1/p′ = 1 and C = CY,T,ϕ. Thus, from (5.4), I(1)n (t) converges to zero as

n → ∞. Let us treat I(2)n (t). Using the integrability properties shown above we can
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Regularity of stochastic kinetic equations

change the order of integration. The function

hn (s) := E

[∫
R2d

Y ϕ (z) b (z) ·
(
Dfn (s, z)−Df (s, z)

)
dz

]
, s ∈ [0, T ],

converges to zero as n→∞ for almost every s and satisfies the assumptions of the Vitali
convergence theorem (we shall prove these two claims in Step 5 below). Hence I(2)n (t)

converges to zero.
Now we may pass to the limit in equation (5.1) and from the arbitrariness of Y we

obtain property 3 of Definition 5.1.

Step 5. Auxiliary facts. We have to prove the two properties of hn(s) claimed in Step
4. For every s ∈ [0, T ] [16, Lemma 16] gives

E

[∫
R2d

∂zif (s, z)ϕ (z)Y dz

]
= lim
n→∞

E

[∫
R2d

∂zifn (s, z)ϕ (z)Y dz

]
, (5.8)

for every ϕ ∈ C∞c (R2d) and bounded r.v. Y . Since the space C∞c (R2d) is dense in Lp(R2d),
we may extend the convergence property (5.8) to all ϕ ∈ Lp(R2d) by means of the bounds
(5.4) and (5.7), which proves the first claim.

Moreover, for every ε > 0 there is a constant CY,ε such that (Supp(ϕ) ⊂ BR)

sup
n≥1

∫ T

0

h1+εn (s) ds ≤ CY,ε ‖bϕ‖1+εLp

{(
E

∫ T

0

∫
BR

∣∣Dfn (s, z)
∣∣rdzds) 1+ε

r

+

(
E

∫ T

0

∫
BR

∣∣Df (s, z)
∣∣rdzds) 1+ε

r }
for a suitable r depending on ε (we have used Hölder inequality; cf. [16, page 1344]).
The bounds (5.4) and (5.7) imply that

∫ T
0
h1+εn (s) ds is uniformly bounded, and the Vitali

theorem can be applied. The proof is complete.

We now present the uniqueness result for weakly differentiable solutions. We exploit
(in Step 2 of the proof of Theorem 5.7) a renormalization property of solutions, which
is proved in Step 1. The proof seems to be of independent interest, see the following
remark.

Remark 5.5. The main idea of our proof is to exploit the specific form of the equation
using in Step 2 of the proof localizing test functions that have a different behavior in
the x and v variables. We have then to perform two limits, and choosing the right order
allows to deal with the problematic part of the drift coefficient.

It seems that this small trick allows to extend the possibility to apply the classical
line of proof based on renormalized solutions, the DiPerna-Lions commutators lemma
[12] and Grönwall’s lemma to a wider class of degenerate equations.

Remark 5.6. Potentially, it seems that the proof can be also done by the maximum
principle, along the lines of [40, Section 4]. This however requires a generalization of the
known results since for the linear part of the drift term we only have v/(1+|z|) ∈ L∞(R2d)

(allowing to obtain the renormalization property for solutions f ), but v/(1+|z|) /∈ L2(R2d).
Therefore, b(z)/(1 + |z|) /∈ L2(R2d).

Theorem 5.7. If F satisfies Hypothesis 2.1 and, moreover, divvF ∈ L∞(R2d) (divvF is
understood in distributional sense) weakly differentiable solutions are unique.

Proof. By linearity of the equation we just have to show that the only solution starting
from f0 = 0 is the trivial one.

EJP 22 (2017), paper 48.
Page 34/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

Step 1. f2 is a solution. We prove that for any solution f , the function f2 is still
a weak solution of the stochastic kinetic equation. Take test functions of the form
ϕnζ (z) = ρn(ζ − z), where (ρn)n is a family of standard mollifiers (ρn has support in B1/n).

Let ζ = (ξ, ν) ∈ R2d, fn(t, ζ) =
(
f(t, ·) ? ρn

)
(ζ). By definition of solution we get that,

P-a.s.,

fn(t, ζ) +

∫ t

0

b(ζ) ·Dfn(s, ζ) ds+

∫ t

0

Dvfn(t, ζ) ◦ dWs =

∫ t

0

Rn(s, ζ) ds ,

Rn(s, ζ) =

∫
R2d

(
b(ζ)− b(z)

)
·Dzf(s, z) ρn(ζ − z) dz .

The functions fn are smooth in the space variable. For any fixed ζ ∈ R2d, by the Itô
formula we get

df2n = 2fn dfn = −2fnb ·Dfn dt− 2fnDvfn ◦ dWt + 2fnRn dt .

Now we multiply by ϕ ∈ C∞c (R2d) and integrate over R2d. Using the Itô integral we pass
to the limit as n→∞ and find, P-a.s.,∫

R2d

f2n(t, ζ)ϕ(ζ) dζ − 1

2

∫ t

0

∫
R2d

f2n(s, ζ)4vϕ(ζ) dζds+

∫ t

0

∫
R2d

ϕ(ζ) b(ζ) ·Df2n(s, ζ) dζds

−
∫ t

0

∫
R2d

f2n(s, ζ)Dvϕ(ζ) dζ · dWs = 2

∫ t

0

∫
R2d

fn(s, ζ)Rn(s, ζ)ϕ(ζ) dζds . (5.9)

Recall that

b(z) = A · z +

(
0

F (z)

)
∈ R2d.

Let us fix t ∈ [0, T ]. By definition of weakly differentiable solution it is not difficult to
pass to the limit in probability as n → ∞ in all the terms in the left hand side of (5.9).
Indeed, we can use that, for every t ∈ [0, T ], r ≥ 1, fn(t, ·)→ f(t, ·) in W 1,r

loc (R2d), P-a.s.,
together with the bounds

sup
t∈[0,T ]

∫
R2d

E
[
|fn(t, z)|r

]
dz ≤ Cr , sup

t∈[0,T ]

∫
R2d

E
[
|Dfn(t, z)|r

]
dz ≤ Cr , (5.10)

and the Vitali theorem. For instance, if Supp(ϕ) ⊂ BR we have

Jn(t) = E

∫ t

0

∫
R2d

|f2n(s, ζ)− f2(s, ζ)||4vϕ(ζ)|dζds

≤ Cϕ
∫ T

0

E

∫
BR

|f2n(s, ζ)− f2(s, ζ)|dζds ,

and, for any s ∈ [0, T ], P-a.e ω, kn(ω, s) =
∫
BR
|f2n(ω, s, ζ)− f2(ω, s, ζ)|dζ → 0 as n→∞.

From (5.10) we deduce easily that

sup
n≥1

E
[ ∫ T

0

k2n(s) ds
]
<∞

and so by the Vitali theorem we get
∫ T
0
E
[ ∫
BR
|f2n(s, ζ)− f2(s, ζ)|dζ

]
ds→ 0, as n→∞,

which implies limn→∞ Jn(t) = 0. In order to show that

E
[ ∫ t

0

∫
R2d

|fn(s, ζ)Rn(s, ζ)ϕ(ζ)|dζds
]
≤ CϕE

[ ∫ t

0

∫
BR

|fn(s, ζ)Rn(s, ζ)|dζds
]
→ 0

EJP 22 (2017), paper 48.
Page 35/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP65
http://www.imstat.org/ejp/


Regularity of stochastic kinetic equations

as n→∞, it is enough to prove that for fixed ω, P-a.s., and s ∈ [0, T ] we have∫
BR

|fn(s, ζ)Rn(s, ζ)|dζ → 0 , (5.11)

as n → ∞. Indeed once (5.11) is proved, using the bounds (5.10) and the Hölder
inequality we get

sup
n≥1

E
[ ∫ t

0

∣∣∣ ∫
BR

∣∣fn(s, ζ)Rn(s, ζ)
∣∣dζ∣∣∣2ds

]
≤ CR sup

n≥1
E
[ ∫ t

0

∫
BR

|fn(s, ζ)Rn(s, ζ)|2 dζds
]
,

which is finite. Thus we can apply the Vitali theorem and deduce the assertion. Let us
check (5.11).

By Sobolev regularity of weakly differentiable solutions we know that

sup
n≥1

sup
ζ∈BR

|fn(s, ζ)| = M <∞ .

Hence it is enough to prove that
∫
BR
|Rn(s, ζ)|dζ → 0. Recall that

Rn(s, ζ) = b(ζ) ·Dfn(s, ζ)− [(b ·Df(s, ·)) ∗ ρn](s, ζ) .

Using the fact that b ∈ Lploc(R2d), with p given in Hypothesis 2.1, the Hölder inequality
and basic properties of convolutions we have∫

BR

∣∣b(ζ) ·Dfn(s, ζ)− b(ζ) ·Df(s, ζ)
∣∣dζ → 0 ,∫

BR

∣∣∣[(b ·Df(s, ·)) ∗ ρn
]
(s, ζ)− b(ζ) ·Df(s, ζ)

∣∣∣ dζ → 0 ,

as n → ∞. This shows that (5.11) holds. We have proved that also f2 is a weakly
differentiable solution of the stochastic kinetic equation.

Step 2. f is identically zero. Due to the integrability properties of f , the stochastic
integral in Itô’s form is a martingale; it follows that the function g(t, z) = E[f2(t, z)]

belongs to C0([0, T ];W 1,r(R2d)) for any r ≥ 1 and satisfies, for any ϕ ∈ C∞c (R2d),∫
R2d

g(t, z)ϕ(z) dz +

∫ t

0

∫
R2d

b(z) ·Dg(s, z)ϕ(z) dzds =
1

2

∫ t

0

∫
R2d

g(s, z)∆vϕ(z) dzds .

We have, for any s ∈ [0, T ],∫
R2d

b(z) ·Dg(s, z)ϕ(z) dz =

∫
R2d

v ·Dxg(s, z)ϕ(z) dz +

∫
R2d

F (z) ·Dvg(s, z)ϕ(z) dz

= −
∫
R2d

v ·Dxϕ(z)g(s, z) dz +

∫
R2d

F (z) ·Dvg(s, z)ϕ(z) dz .

Now we fix η ∈ C∞c (Rd) such that η = 1 on the ball B1 of center 0 and radius 1. By
considering the test functions:

ϕnm(x, v) = η(x/n)η(v/m) , (x, v) = z ∈ R2d,

n,m ≥ 1, we obtain∫
R2d

g(t, z)η(x/n)η(v/m) dz − 1

n

∫ t

0

∫
R2d

η(v/m)v ·Dη(x/n)g(s, z) dzds

+

∫ t

0

∫
R2d

F (z) ·Dvg(s, z)η(x/n)η(v/m) dzds =
1

2m2

∫ t

0

∫
R2d

η(x/n)g(s, z)∆η(v/m) dzds .
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Now we fix m ≥ 1 and pass to the limit as n→∞ by the Lebesgue theorem. We infer∫
R2d

g(t, z)η(v/m) dz +

∫ t

0

∫
R2d

F (z) ·Dvg(s, z)η(v/m) dzds

=
1

2m2

∫ t

0

∫
R2d

g(s, z)∆η(v/m) dzds .

Passing to the limit as m→∞ we arrive at∫
R2d

g(t, z) dz = −
∫ t

0

∫
R2d

F (z) ·Dvg(s, z) dzds .

Since in particular g(t, z) ∈ C0([0, T ];W 1,r(R2d)), with r = p
p−1 , we obtain∫

R2d

g(t, z) dz =

∫ t

0

∫
R2d

divvF (z)g(s, z) dzds ≤ ‖divvF (z)‖∞
∫ t

0

∫
R2d

g(s, z) dzds .

Applying the Grönwall lemma we get that g is identically zero and this proves uniqueness
for the kinetic equation.

6 Appendix

Proof of Lemma 4.16. Remark that, due to (4.28),(
ε+

∣∣Zzt − Zyt ∣∣2)a ≤ C(ε+
∣∣γ(Zzt )− γ(Zyt )

∣∣2)a .
Therefore, we can prove (4.36) for γ(Zt) instead of Zt.

We proceed as in [25, Lemma II.2.4] or [15, Lemma 5.4]. Fix any t ∈ [0, T ] and set for
z, y ∈ R2d: g(z) := fa(z), f(z) := (ε + |z|2) and ηt := γ(Zzt ) − γ(Zyt ). Then, applying the
Itô formula we obtain as in the proof of Lemma 4.13

g(ηt)− g(η0) = 2a

∫ t

0

fa−1(ηs) ηs ·
[
b̃
(
Zzs
)
− b̃
(
Zys
)]

ds

+ 2a

∫ t

0

fa−1(ηs) ηs ·
[
σ̃
(
Zzr
)
− σ̃

(
Zys
)]
· dWs

+ a
∑
i,j

∫ t

0

fa−2(ηs)
[
f(ηs)δi,j + 2(a− 1) ηisη

j
s

]
×
[(
σ̃
(
Zzs
)
− σ̃

(
Zys
))(

σ̃
(
Zzs
)
− σ̃

(
Zys
))t]i,j

ds .

Recall that |z| ≤ f1/2(z) and that the coefficient b̃ is Lipschitz continuous:

|̃b(z)− b̃(y)| ≤ L|z − y| ≤ C|γ(z)− γ(y)| ≤ Cf1/2
(
|γ(z)− γ(y)|

)
.

We can continue with the estimates and obtain

g(ηt)− g(η0) ≤ 2C|a|
∫ t

0

fa(ηs) ds+ 2 a

∫ t

0

fa−1(ηs)ηs

[
σ̃
(
Zzs
)
− σ̃

(
Zys
)]

dWs (6.1)

+ Ca,d|a|
∫ t

0

fa−1(ηs) |ηs|2 dNs .

Here, Nt is the process introduced and studied in Lemma 4.8:∫ t

0

∥∥σ̃(Zzs )− σ̃(Zys )
∥∥2
HS

ds =

∫ t

0

∣∣Zzs − Zys ∣∣2 dNs .
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The stochastic integral in (6.1) is a martingale with zero mean (σ̃ is bounded). Proceeding
as in (4.32), we get

E
[
e−Ntg(ηt)

]
− e−N0g(η0) ≤ Ca,d

∫ t

0

E
[
e−Nsg(ηs)

]
ds .

By Grönwall’s inequality applied to the function h(t) := E
[
e−Ntg(ηt)

]
, it follows

E
[
e−Nt

(
ε+

∣∣Zzt − Zyt ∣∣2)a] ≤ CE[e−Ntg(ηt)
]
≤ Ca,d g(η0) = Ca,d

(
ε+ |γ(z)− γ(y)|2

)a
≤ Ca

(
ε+ |z − y|2

)a
. (6.2)

To complete the proof of the lemma, we manipulate (6.2) using Hölder’s inequality and
we conclude invoking Lemma 4.8 to bound the term E[e2NT ]:

E
[(
ε+

∣∣Zzt − Zyt ∣∣2)a]2 ≤ E[e2Nt]E[e−2Ntg2(ηt)
]
≤ Ca,d

(
ε+ |z − y|2

)2a
.

We now present some results on the convergence and regularity of approximations
φt0,n of the inverse flow φt0 associated to the SDE (4.2). Note that φt0,n are solutions of
SDEs with regular coefficients, see the proof of Theorem 5.4. These results are adapted
from [16] and based on the following lemma on the stability of the PDE (4.5), which is of
independent interest.

Lemma 6.1 (Stability of the PDE (4.5)). Let Un be the unique solutions provided by
Theorem 3.7 to the PDE (4.5) with smooth approximations Bn(z) = (0, Fn(z)) of B(z) =

(0, F (z)) and some λ large enough for (6.4) to hold. If Fn(z)→ F (z) in Lp(Rdv;H
s
p(Rdx)),

with s, p as in Hypothesis 2.1, then Un andDvUn converge pointwise and locally uniformly
to the respective limits. In particular, for any r > 0 there exists a function g(n)→ 0 as
n→∞ s.t.

sup
z∈Br

∣∣Un(z)− U(z)
∣∣ ≤ g(n) ,

sup
z∈Br

∣∣DvUn(z)−DvU(z)
∣∣ ≤ g(n) . (6.3)

Moreover, there exists a λ0 s.t. for all λ > λ0∥∥DvUn
∥∥
∞ ≤ 1/2 . (6.4)

Proof. Setting Vn = (Un − U) we write for λ large enough (cf. (4.5))

λVn(z)− 1

2
Tr
(
QD2Vn(z)

)
− 〈Az,DVn(z)〉 − 〈B(z), DVn(z)〉

= Bn(z)−B(z) + 〈Bn(z)−B(z), DvUn(z)〉 .

By (3.57) we know that

√
λ‖DvUn‖Lp(Rdv;Hsp(Rdx)) ≤ C‖Bn‖Lp(Rdv ;Hsp(Rdx)) ≤ C‖B‖Lp(Rdv ;Hsp(Rdx)) , n ≥ 1 ,

with C = C(s, p, d, ‖F‖Lp(Rdv;Hsp(Rdx)) > 0. Hence applying (3.58), (3.59), (3.60) and
Sobolev embedding we obtain (6.3) with g(n) = C‖B − Bn‖Lp(Rdv ;Hsp(Rdx)). On the other
hand the last assertion follows from (3.60).

Lemma 6.2 ([16, Lemma 3]). For every R > 0, a ≥ 1 and z ∈ BR,

lim
n→∞

sup
t∈[0,T ]

sup
z∈BR

E
[∣∣φt0,n (z)− φt0 (z)

∣∣a] = 0 .
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Proof. To ease notation, we shall prove the convergence result for the forward flows
φt,n → φt. This in enough since the backward flow solves the same equation with
a drift of opposite sign. Since the flow φt is jointly continuous in (t, z), the image
of [0, T ] × BR is contained in [0, T ] × Br for some r < ∞. Thus for z ∈ BR, from
Lemma 6.1 we get |Un(φt,n)−U(φt)| ≤ g(n)+1/2|φt,n−φt| and |DvUn(φt,n)−DvU(φt)| ≤
g(n) + |DvUn(φt,n)−DvUn(φt)|. Extending the definition (4.27) to γn(z) = z + Un(z) we
have the approximate equivalence

2

3

(∣∣γn(φt,n)− γ(φt)
∣∣− g(n)

)
≤
∣∣φt,n − φt∣∣ ≤ 2

(∣∣γn(φt,n)− γ(φt)
∣∣+ g(n)

)
.

Therefore, it is enough prove the convergence result for the transformed flows γt,n =

γn(φt,n)→ γ(φt) = γt. Proceeding as in the proof of Theorem 4.11 we get, for any a ≥ 2

1

a
d
∣∣γt,n − γt∣∣a ≤ ∣∣γt,n − γt∣∣a−2{(γt,n − γt) · [λ(Un(φt,n)− U(φt)

)
+A(φt,n − φt)

]
dt

+
(
γt,n − γt

)
·
(
DUn(φt,n)−DU(φt)

)
R · dWt

+ Ca,d
∥∥(DUn(φt,n)−DU(φt)

)
R
∥∥2
HS

dt

}
. (6.5)

The stochastic integral is a martingale. Since

|φt,n − φt|
|γt,n − γt|

≤ C
(

1 +
g(n)

|γt,n − γt|

)
,

the term on the last line in (6.5) can be bounded using (6.3) by a constant times
|γt,n − γt|a dBt,n + |γt,n − γt|a−2g2(n)(dBt,n + dt), where for every n the process Bt,n is
defined as in (4.31) but with DUn(φt,n) and DUn(φt) in the place of DU(Zt) and DU(Yt)

respectively. One can show that Bt,n share the same integrability properties of the
process Nt studied in Lemma 4.8, uniformly in n, see [16, Lemma 14]. Computing
E[e−Bt,n |γt,n − γt|a] using the Itô formula and taking the supremum over t ∈ [0, T ] leads
to

sup
t∈[0,T ]

E
[
e−Bt,n

∣∣γt,n − γt∣∣a] ≤ CE[ ∫ T

0

e−Bs,n
∣∣γs,n − γs∣∣ads

]
+ Cg(n)E

[ ∫ T

0

e−Bs,n
(∣∣γs,n − γs∣∣a−1 + g(n)

∣∣γs,n − γs∣∣a−2)ds]
+ g2(n)E

[ ∫ T

0

e−Bs,n
∣∣γs,n − γs∣∣a−2dBs,n

]
.

Using the integrability properties of φt, φt,n, U(φt), Un(φt,n) one can see that all terms
are bounded, uniformly in n. To conclude the proof we can pass to the limit

lim sup
n

sup
t∈[0,T ]

E
[
e−Bt,n

∣∣γt,n − γt∣∣a] ≤ C ∫ T

0

lim sup
n

sup
t∈[0,s]

E
[
e−Bt,n

∣∣γt,n − γt∣∣a]ds ,
apply Grönwall’s lemma and proceed as in Corollary 4.12 to get rid of the exponential
term.

Lemma 6.3 ([16, Lemma 5]). For every a ≥ 1, there exists Ca,d,T > 0 such that

sup
t∈[0,T ]

sup
z∈R2d

E
[∣∣Dφt0,n(z)

∣∣a] ≤ Ca,d,T (6.6)

uniformly in n.
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Proof. Let us show the bound for the forward flows φt,n. These are regular flows: let θt,n
and ξt,n denote the weak derivative of Dφt,n and Dγt,n = Dγn(φt,n), respectively. They
are equivalent in the sense of (4.39), so we shall prove the bound for ξt,n instead of θt,n.
Proceeding as in the proof of Theorem 4.19 we obtain as in (4.41)

de−C1Bt,n
∣∣ξt,n∣∣a ≤ e−C1Bt,n

[
C2

∣∣ξt,n∣∣adt+ dMt

]
,

where the process Bt,n is simply given by
∫ t
0
|DDvUn(φs,n)|2ds. We can integrate, take

expected values, the supremum over t ∈ [0, T ] and apply Grönwall’s inequality to get

sup
t∈[0,T ]

E
[
e−C1Bt,n |ξt,n|a

]
≤ CT |ξ0,n|a = Ca,d,T .

Observe that this bound is uniform in n and z ∈ R2d. Proceeding as in Corollary 4.12 we
can get rid of the exponential term and obtain the desired uniform bound on ξt,n.
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