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Perturbations of Voter model in one-dimension

C.M. Newman* K. Ravishankar† E. Schertzer‡

Abstract

We study the scaling limit of a large class of voter model perturbations in one dimen-
sion, including stochastic Potts models, to a universal limiting object, the continuum
voter model perturbation. The perturbations can be described in terms of bulk and
boundary nucleations of new colors (opinions). The discrete and continuum (space)
models are obtained from their respective duals, the discrete net with killing and
Brownian net with killing. These determine the color genealogy by means of reduced
graphs. We focus our attention on models where the voter and boundary nucleation
dynamics depend only on the colors of nearest neighbor sites, for which convergence
of the discrete net with killing to its continuum analog was proved in an earlier paper
by the authors. We use some detailed properties of the Brownian net with killing to
prove voter model perturbations converge to their continuum counterparts. A crucial
property of reduced graphs is that even in the continuum, they are finite almost surely.
An important issue is how vertices of the continuum reduced graphs are strongly
approximated by their discrete analogues.
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1 Introduction

1.1 General voter model perturbations

Motivated by problems in Biology and Statistical Physics (see e.g., [MDDGL99]
[NP00] [OHLN06]), Cox, Durrett, and Perkins [CDP13] considered a class of interacting
particle systems on Zd, called voter model perturbations (or VMP), whose rates of
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Voter model perturbations

transition are close to the ones of a classical voter model. Informally, they considered
models whose transition rates are parametrized by ε with ε→ 0, so that the transition
rates cεx,η(j) (the transition rate of site x to state j given a configuration η for the model
with parameter ε) converges to the rate of a (possibly non-nearest neighbor) zero-drift
voter model. For d ≥ 3, and the number q of opinions or colors at each site equal to 2 (i.e.
for spin systems) the authors show that, under mild technical assumptions, the properly
rescaled local density of one of the colors converges to the solution of an explicit reaction
diffusion equation. They are then able to combine this convergence result together with
some percolation arguments to show some properties of the particle system when ε is
small enough.

In this work, we consider a similar problem when d = 1. We will construct a natural
continuous object — the continuum voter model perturbation (CVMP)— which will
be seen to be the scaling limit of a certain type of voter model perturbation. As we
shall see, such a limit can not be described in terms of a reaction-diffusion equation
anymore (contrary to the case d ≥ 3), but directly in terms of a duality relation with the
Brownian net and Brownian net with killing. The former is a family of one-dimensional
branching-coalescing Brownian motions, as first introduced by Sun and Swart [SS08]
and then studied further by Newman, Ravishankar and Schertzer [NRS08]; the latter
is an extension introduced in [NRS15]. See also [SSS15] for a recent review of those
objects.

We will use some of the properties of the Brownian net to define continuous versions
of the voter model perturbations, and show some properties of these continuous objects.
We expect that a large class of VMP’s in one dimension in both discrete and continuous
time settings will converge to (the universal limiting object) CVMP. Our goal in this paper
is to prove the convergence of a particular class of (discrete time) VMP to CVMP. In the
spirit of [CDP13], we hope that our results will provide some insights into a large class
of interacting particle systems which are close enough to the voter model in dimension
one.

1.2 Decomposition. Bulk and Boundary Nucleations

In the present work, we are interested in the discrete time version of VMP considered
in [CDP13]. We consider interacting particle systems on Z such that the color at each
site x, is updated at time t + 1 according to some transition probability on {1, · · · , q},
that we denote P εx,η (transition probability at site x given a configuration η at time t).
We describe below a large class of models of this type. While our results are for a more
limited subclass, we believe our approach is applicable to the more general class. This
would require proving convergence of the discrete net with more general jump kernels
and branching mechanisms to the Brownian net. (Such improved convergence results
are under active investigation by one or more groups of researchers. See also Section
1.6 for more discussion on this topic.)

In our particular context, we consider a family of such models parametrized by a
number ε, i.e. a family of models with corresponding transition probabilities {P εx,η}ε>0

and such that P εx,η is close to the transition probabilities of a discrete-time voter model
when ε is small, i.e.

∀i ∈ {1, · · · , q}, lim
ε↓0

P εx,η(i) = fx,η(i)

where
fx,η(i) :=

∑
y∈Z

K(x− y)1η(y)=i (1.1)

for a given zero mean transition kernel K. For many applications (see [CDP13] and the
Appendix where we investigate the spatial Lotka-Volterra model, the stochastic Potts
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Voter model perturbations

model and the noisy biased voter model), one can decompose the perturbations part
of our models into two parts: a first part that we call the boundary noise and a second
part called the bulk noise. The bulk noise simply denotes a probability distribution
on {1, · · · , q} — independent of x and the present configuration η of the system. The
boundary noise requires a little more explanation. Informally, one can think of it as a
transition probability Bx,η which is only non-trivial if there is some local impurity around
x — hence the terminology of boundary noise. More formally, a boundary noise can
always be written under the form

Bx,η(i) = EQ
(
gη(x+Y1),··· ,η(x+YN )(i)

)
(1.2)

where (1) N is a fixed integer, (2) for every n-uplet of colors (c1, · · · , cN ), the quantity
gc1,··· ,cN is a probability distribution on {1, · · · , q} with gc,··· ,c = δc, (3) Q is a probability
ditribution on ZN . In words, Bx,η chooses N neighbors at random according to the
probability distribution Q, and will align to its neighbors color if the coloring is uniform.

The reason for distinguishing between bulk and boundary noise is that in many
applications, we shall see in the Appendix that P εx,η can be decomposed into three parts,
i.e.,

P εx,η = wε f εx,η︸︷︷︸
voter noise

+ bε Bεx,η︸︷︷︸
boundary noise

+ κε pε︸︷︷︸
bulk noise

, (1.3)

with wε, bε, κε being three non-negative numbers adding up to 1 and such that for every
x, η (1) each part of the decomposition defines a probability measure on {1, · · · , q},
(2) f εx,η =

(
fx,η +O(κ2

ε , b
3
ε)
)

where fx,η is defined in (1.1) (3) Bεx,η is a boundary noise
converging to a limiting boundary noise Bx,η, (4) pε is a bulk noise converging to a
limiting bulk noise p. We note that the case bε = 0 (no boundary nucleation) has been
treated in [FINR06], and that it turns out to be considerably simpler than the general
case treated in this paper.

Given the distributions described in the previous paragraph, the color transitions are
then most easily understood via a two-step procedure with the first step determining
which of three possible moves to implement at the particular (x, t) under consideration
— a walk move, a kill move or a branch move with respective probabilities wε, κε, bε —
and the second step determining the possible change from the initial color to some new
color. This terminology, which may at present sound rather mysterious, is taken from the
Branching-Coalescing-Killing random walks model, which will be seen to be dual to the
voter model perturbation. Once the type of move has been chosen, here are the rules for
the second step.

• Walk: choose a color according to the probability distribution f εx,η. In other words,
with high probability, choose the color of one of your neighbors chosen at random
according to the kernel K(x, ·).

• Kill: choose a color according to the probability distribution pε.

• Branch: first pick (Y1, · · · , YN ) according to the law Q, and then choose a color
according to the distribution gη(x+Y1),··· ,η(x+YN ).

1.3 Simple VMP and convergence to the continuum VMP

This work is a first step towards the understanding of the scaling limit of systems of
type (1.3) when ε ↓ 0. We will restrict ourselves to the case of nearest neighbor voter
model perturbation. By that, we mean that the distributions corresponding to the voter
and boundary noise f εx,η and Bεx,η are solely determined by the states {η(x− 1), η(x+ 1)}.
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Voter model perturbations

Furthermore, we will assume that

fx,η = f εx,η =
1

2
(δη(x−1) + δη(x+1)).

Regarding the boundary noise, we will assume the existence of a family of probability
distributions {gεi,j}i,j≤q on {1, · · · , q}, each distribution being indexed by two elements
on {1, · · · , q} such that

Bεx,η = gεη(x−1),η(x+1)

with gεi,i = δi. Furthermore, we will assume the existence of a limiting family of measures
{gi,j} and p such that gni,j := gεni,j → gi,j and pn := pεn → p, as the sequence εn ↓ 0. In the
following, such a model with be referred to as a simple Voter Model Perturbation (VMP)
with boundary noise {gεi,j}i,j and bulk noise pε.

We note that in this particular case, the transition rates only depend on the states of
the two nearest neighbors, but not on the current state of the site under consideration.
As we shall see, this hypothesis is made mostly for technical reasons and is done solely
to take advantage of the known convergence result of coalescing-branching discrete
(time and space) random walks to the Brownian net; such a result for the continuous
time or non-nearest neighbor version has still to be established. The continuous time
setting, together with the study of more general voter model perturbations in one dimen-
sion (including the non-nearest neighbor case and more general boundary nucleation
mechanism) will be the subject of future work.

Before stating our main theorem, we recall that the dynamics we consider are all
nearest-neighbor in that the update probabilities of ηt(x) at a particular lattice site
x depend only on (ηt(x − 1), ηt(x + 1)). This property (which is also the case for the
standard nearest neighbor voter model) implies that the Markov chain is reducible with
complete independence between {ηt(x)} on the even (Z2

even = {(x, t) : x+ t is even}) and
odd (Z2

odd = {(x, t) : x+ t is odd}) subsets of discrete space-time. Thus one may restrict
attention to one of these irreducible components.

Given a realization of the odd component of the voter model perturbation with
parameter ε, we define θε(x, t) to be the color of site (x, t) at time t. In particular, θε(·)
defines a random mapping from Z2

odd ∩ {(x, t) ∈ Z2 : t ≥ 0} to {1, · · · , q}. Analogously,
we will define the CVMP as a mapping from R×R+ to the set of subsets of {1, · · · , q},
allowing one space-time point to take several colors. The next theorem enumerates some
of the properties of the CVMP. The precise construction and description will be carried
out in Section 3.

Theorem 1.1. Let λ, {gi,j}, p be a family of probability distributions on {1, · · · , q}, with
gi,i = δi. Let b, κ ≥ 0. There exists a random mapping (x, t) → θ(x, t) from R × R+ to
subsets of {1, · · · , q}, with the following properties:

1. For every deterministic (x, t), |θ(x, t)| = 1 a.s..

2. (Coarsening) For every deterministic t, |θ(x, t)| ≤ 2 a.s.. Moreover, the set {x :

|θ(x,t)| = 2} is locally finite and partitions the line into intervals of uniform color,
i.e. the color of x → θ(x, t) between two consecutive points of this set remains
constant.

3. (Scaling Limit) Let {εn} be a sequence of positive real numbers converging to
0. Let θn(·, ·) := θεn(·, ·) be the simple voter model perturbation characterized by
the boundary noise and bulk noise ({gni,j}1≤i,j≤q, pn), with branching and killing
parameters (bn, κn) such that

(i) there exists b, κ ≥ 0 such that

bn/εn → b, and κn/ε
2
n → κ as n→∞,
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Voter model perturbations

(ii) there exists ({gi,j}1≤i,j≤q, p) a family of probability distributions on {1, · · · , q}
such that

∀i, j, gni,j → gi,j , and pn → p as n→∞,

(iii) the initial distribution of the particle system is given by a product measure ν
(not depending on n) with one-dimensional marginal given by λ.

For every (x, t) ∈ R2, let Sε((x, t)) := (εx, ε2t). For i = 1, · · · , k, let zi be a determin-
istic point in R2 and let {zin}n≥1 be a deterministic sequence in Sεn(Z2

odd) ∩ {(x, t) :

t > 0} such that limn→∞ zin = zi. Then

P
(
θn(z1

n), · · · , θn(zkn) ∈ ·
)
→ P

(
θ(z1), · · · , θ(zk) ∈ ·

)
. (1.4)

Remark 1.2. In the Appendix, we show that the stochastic Potts model in one-dimension
at low temperature – i.e., high β – is a VMP. Further, we shall see that the scaling in
Theorem 1.1(3)(i) emerges naturally in this setting. See Remark 5.2 in the Appendix.

1.4 Duality to branching-coalescing-killling random walks

In this section, we start by introducing a percolation model on Z2
odd (already intro-

duced in [MNR13]) and we show how a random coloring algorithm of this percolation
configuration is dual to simple voter model perturbations.

An oriented percolation model. Let b, κ ≥ 0 with b+ κ ≤ 1. Each site v = (x, t) ∈
Z2
odd — where x is interpreted as a space coordinate and t as a time coordinate — has two

nearest neighbors with higher time coordinates — vr = (x+ 1, t+ 1) and vl = (x− 1, t+ 1)

— and v is randomly (and independently for different v’s) connected to a subset of its
neighbors vr and vl according to the following distribution.

• With probability (1−b−κ)
2 , draw the arrow (v → vl) (i.e. starting at v and ending at

vl);

• with probability (1−b−κ)
2 draw the arrow (v → vr);

• with probability b, draw the two arrows (v → vr) and (v → vl);

• finally do not draw any arrow with probability κ. See Fig. 1.

If we denote by Eb,κ the resulting random arrow configuration, the random graph
Gb,κ = (Z2

odd, Eb,κ) defines a certain type of 1 + 1 dimensional percolation model oriented
forward in the t-direction. In this percolation model, the vertices with two outgoing
arrows will be referred to as branching points whereas points with no arrow will be
referred to as killing points.

By definition, a path π along Eb,κ will denote a path starting from any site of Z2
odd

and following the random arrow configuration until getting killed or reaching∞. More
precisely, a path π is the graph of a function defined on an interval in R of the form
[σπ, eπ], with σπ, eπ ∈ Z ∪ {∞} such that eπ =∞ or (π(eπ), eπ) is a killing point, for every
t ∈ [σπ, eπ), (π(t), t) connects to (π(t+ 1), t+ 1) and π is linear between t and t+ 1.

Considering the set of all the paths along Eb,κ, one generates an infinite family
— denoted by Ub,κ — that can loosely be described as a collection of graphs of one
dimensional coalescing simple random walks, that branch with probability b and get
killed with probability κ. Roughly speaking, a walk at space-time site v can create two
new walks (starting respectively at vl and vr) with probability b and can be killed with
probability κ; two walks move independently when they are apart but become perfectly
correlated (i.e., they coalesce) upon meeting at a space-time point. In the following,
Ub,κ will be referred to as a system of branching-coalescing-killing random walks (or in
short, BCK) with parameters (b, κ), or equivalently, and in analogy with their continuum
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Figure 1: Forward discrete net with killing Figure 2: Backward discrete net with killing

counterpart, as a discrete net with killing (in analogy with the Brownian net with killing
as introduced in [NRS15]).

Backward discrete net. Our percolation model is oriented forward in time. We
define the backward BCK — denoted by Ûb,κ — as the backward in time percolation
model obtained from the BCK by a reflection about the x-axis. See Fig. 2.

A coloring algorithm. We now describe how simple voter model perturbations (as
described in Section 1.3) are exactly dual to the backward BCK (i.e., Ûb,κ). To describe
this duality relation, we consider the subgraph of Ĝb,κ (the backward percolation model)
whose set of vertices is given by Z2

odd ∩ {(x, t) : t ≥ 0}. Then, we equip each vertex
z ∈ Z2

odd ∩ {(x, t) : t ≥ 0} with an independent uniform (on [0, 1]) random variable Uz.
We start by coloring the leaves as follows (see Fig. 3). The color assigned to a point z

with time coordinate equal to 0 — denoted by θε(z) — is the only integer in {1, · · · , q}
such that

Uz ∈ [
∑

j≤θε(z)−1

λ(j),
∑

j≤θε(z)

λ(j)).

(With the convention that λ(0) = 0.) The color assigned to a killing point is the integer in
{1, · · · , q} such that

Uz ∈ [
∑

j≤θε(z)−1

pε(j),
∑

j≤θε(z)

pε(j))

where we recall that pε(·) is the probability distribution determining the transition when
a bulk nucleation occurs (with the convention that pε(0) = 0).

For every other vertex z ∈ Z2
odd ∩ {(x, t) : t ≥ 0}, we consider the component of our

(backward) oriented percolation model originated from z and restricted to the upper half
plane. This defines a certain acyclic directed graph Ĝz = (V̂ z, Êz) whose vertices have
out-degree at most 2 – see Fig. 5. For every point in V̂ z, we assign a color to each of
the nodes sequentially from the leaves to the root by applying the following algorithm,
where V̂ zn will denote the set of color-assigned vertices at step n of the algorithm.

• Step 1 V̂ z1 is the set of leaves, whose colors have already been assigned.

• Step n> 1 If V̂ z \ V̂ zn = ∅ stop. Otherwise, pick a vertex z′ in V̂ z such that z′ is
connected to V̂ zn−1, i.e., all its nearest (directed) neighbor(s) belong to V̂ zn−1. Next,
if z′ connects to a single vertex or if the color of its two neighbors match, assign to
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it the color of its neighbor(s). If the colors of the two neighbors disagree, with two
colors k 6= l, then the site is assigned a color i such that

Uz′ ∈ [
∑

i≤θε(z′)−1

gεk,l(i),
∑

i≤θε(z′)

gεk,l(i+ 1)). (1.5)

See Figs 5-8 for a concrete example in the case q = 3 (white, grey, black corresponding
respectively to 1, 2, 3) and pε, λ, and gεi,j for i 6= j are uniform distributions on {1, 2, 3}.
We note that this specific choice for the bulk and boundary noises correspond to the
discrete time stochastic Potts model considered in the Appendix (see Section 5.2).

Remark 1.3. At step n of the previous algorithm, there can be multiple z′ ∈ V z\V zn , such
that all of its (directed) neighbors are in V̂ zn . (In Fig 6, there are two such vertices – one
connecting to the top white circle and one connecting to the top black circle). However,
we let the reader convince herself that the final coloring of the graph is independent of
the choice of z′ at step n.

Remark 1.4. Our coloring is consistent in the sense that if z′ ∈ V̂ z, the color assigned
to z′ in the coloring algorithm applied to V̂ z is identical to θε(z′) – i.e., the coloring
algorithm applied to V̂ z

′
.

Figure 3: Realization of the coloring (q=3

colors (white, grey, black)) for the leaves
of the backward percolation model re-
stricted to the upper half plane.

Figure 4: Final coloring of a section of
Z2
odd ∩ {(x, t) : t ≥ 0} after applying the

coloring algorithm to every vertex.

Proposition 1.5. Let us consider the simple VMP with characteristic distributions
({ 1

2 (δi + δj)}, {gεi,j}, pε), branching-killing parameters bε, κε ≥ 0, starting with an initial
ν-coloring of the line, where ν is an i.i.d product probability measure on {1, · · · , q}Z.

For every z1, · · · , zk ∈ Z2
odd, the n-tuple (θε(z1), · · · , θε(zk)), as described in the col-

oring algorithm above, coincides with the k-dimensional distribution of this VMP with
initial distribution ν.

Proof. Since coalescing random walks are the dual of the standard voter model [HL75]
[L04], it is clear that in the absence of killing and branching the color genealogy of the
VMP is given by coalescing random walks. At a bulk nucleation site (killing point) a color
independent of the previous color evolution is assigned to the site. This leads to the
conclusion that if a path in the color genealogy evolution hits a bulk nucleation point then
it should be killed at that point. The color at a boundary nucleation point is determined
by the colors of the two adjacent sites. The colors of these two sites are determined by
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Figure 5: subgraph originated from the
top-middle point of Fig. 3 decorated with
fictive variables Uz.

Figure 6: Coloring at Step 3 of the algo-
rithm.

Figure 7: Coloring at Step 7 of the algo-
rithm.

Figure 8: Final coloring of the subgraph.

following the color genealogy evolution starting at these sites until reaching time zero or
hitting a killing point as given by the dual percolation model starting at these two sites.
The uniform random variables at the bulk and boundary nucleation sites along with the
rules for determining the color at these sites given earlier ensure that the colors at these
sites are chosen with the distribution pε and gεk,l respectively.

1.5 Scaling limit

In [NRS15], we introduced the Brownian net with killing (or N b,κ where b and κ are
continuum branching and killing parameters) that was shown to emerge as the scaling
limit of a BCK system with small branching and killing parameters (see Theorem 2.6
below for a precise statement).

In light of the previous section, it is natural to construct the CVMP as a process dual
to the Brownian net with killing; the duality relation between the two models being
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described in terms of the random coloring of the “continuum graphs” induced by the
Brownian net.

The main difficulty in defining the CVMP lies in the fact that the set of vertices of this
“continuum graph” is dense in R×R+. In order to deal with this extra difficulty, we now
discuss some remarkable features of the coloring algorithm described in the previous
section.

Definition 1.1 (Relevant Separation Point and Reduced Graph – Fig. 9-10). Let G = (V,E)

be a finite acyclic oriented graph. We will say that an intermediate node z (i.e. a node
which is neither a root nor a leaf) of the graph is relevant iff there exists two paths of G
passing through z and reaching the leaves such that they do not meet between z and the
leaves. Any other intermediary point will be called irrelevant.

We define the reduced version of G, denoted by G̃ = (Ṽ , Ẽ), as the oriented graph of
G obtained after “skipping” all irrelevant points in V . More precisely, the vertices of Ṽ
are obtained from V by removing the set of irrelevant separation points and placing a
directed edge between two points z, z′ in Ṽ iff there exists a path π = (z1, · · · , zn) in G
with z1 = z and zn = z′ and such that zi is irrelevant for i 6= 1, n.

Figure 9: Colored graph Ĝz originated
from a point z.

Figure 10: Reduced version of the graph
presented in the left-panel.

Proposition 1.6. Let G be a finite rooted acyclic oriented graph whose vertices have at
most out degree 2 and let us assume that the vertices z of the graph are equipped with
i.i.d. random variables {Uz}, uniformly distributed on [0, 1]. For a given coloring of the
leaves, our coloring algorithm (as described in Section 1.4) applied separately to G and
to the reduced graph G̃ induces the same coloring of the vertices Ṽ (using the same set
of i.i.d. uniform random variables for the reduced graph).

Proof. If a vertex z connects to two edges with the same color, then z must align to this
color (by definition of the boundary nucleation). The same holds if z only connects to a
single point. It is then easy to see that any path in the graph G that does not contain
any relevant separation points is uniformly colored, and as consequence, in our coloring
algorithm, irrelevant separation points can be “skipped” to deduce the color of the
vertices Ṽ (see Figs 5-8 for a concrete example).

Significantly, even if the graph induced by the Brownian net paths starting from a
point is infinite, its reduced version is finite (see Fig. 13 below). This will allow us to
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apply our coloring algorithm at the continuum level and to define the CVMP by imitating
the duality relation described in Section 1.4.

1.6 Perspectives

The discrete VMP’s considered in Section 1.3 and Theorem 1.1 are dual to a system
of coalescing-branching nearest neighbor random walks, that are known to converge
(under proper rescaling) to the Brownian net with killing [NRS15].

Let us now reconsider the discrete VMP alluded to in Section 1.2, and whose transition
probabilities are defined in (1.3). As for the nearest neighbor case, at least when
f εx,η = fx,η, it is not hard to see that such systems are dual to branching-coalescing
random walks. However, the transition probabilities of such walks are more complex: (1)
walks move according to the transition kernel K as described in (1.1); (2) they are killed
with probability κε; and finally (3) they branch with probability bε, and upon branching,
the location of the N new particles are chosen according Q (shifted by the current
location of the particle under consideration).

It is plausible that (under some restrictions on the moments of the kernels K and
Q) such systems of particles also converge to the Brownian net with killing. If so, the
limiting object alluded to in Theorem 1.1 – and whose construction will be carried in
Section 3 – should also be the scaling limit of a large class of discrete VMP’s. However,
it remains unclear what should be the limiting branching and killing mechanism at the
continuum. Both the limit of generalized branching-coalescing random walks, and their
relation to the CVMP are challenging questions, and would certainly require techniques
that go beyond the scope of this paper.

Finally, it would be natural to also consider the continuous time analog of the models
alluded above (as in [CDP13] for higher dimensions). In particular, some recent work by
Etheridge, Freeman and Straulino [EFS15] where they considered the paths generated
by the genealogy of a spatial Fleming-Viot process in one dimension could be relevant to
make progress in this direction.

1.7 Outline of the rest of the paper

The rest of the paper is organized as follows. In Section 2, we recall the definition of
the scaling limit of the BCK: the Brownian net with killing introduced in [NRS15], which
can be loosely described as an infinite family of one dimensional coalescing-branching-
killing Brownian motions. In Section 3, this is used to construct the continuum voter
model perturbation (CVMP) by mimicking at the continuum level the discrete duality
relation of Section 1.4. Properties (1)-(2) of Theorem 1.1 will be shown in Proposition
3.7. Finally, we show the convergence result of Theorem 1.1 (Property (3)) in Section 4.

2 The Brownian net with killing

In Proposition 1.5, the nearest-neighbors discrete voter model perturbations were
seen to be dual to an infinite family of BCK random walks. Hence, before defining
a continuous analog of the voter model perturbation, it is natural to start with the
construction of the BCK scaling limit: the Brownian net with killing (as introduced in
[NRS15]), denoted by N b,κ — where b and κ are two non-negative numbers playing a
role analogous to the branching and killing parameters in the discrete setting.

2.1 The space (H, dH)

As in [FINR04], we will define the Brownian net with killing as a random compact set
of paths. In this section, we briefly outline the construction of the space of compact sets.
For more details, the interested reader may refer to [FINR04] and [NRS15].
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First define (R̄2, ρ) to be the compactification of R2 with

ρ((x1, t1), (x2, t2)) = |φ(x1, t1)− φ(x2, t2)| ∨ |ψ(t1)− ψ(t2)|,

where

φ(x, t) =
tanh(x)

1 + |t|
and ψ(t) = tanh(t).

In particular, we note that the mapping (x, t)→ (φ(x, t), ψ(t)) maps R̄2 onto a compact
subset of R2.

Next, let C[t0, t1] denote the set of continuous functions from [t0, t1] to [−∞,+∞].
From there, we define the set of continuous paths in R2 (with a prescribed starting and
ending point) as

Π := ∪t0≤t1C[t0, t1]× {t0} × {t1}.
Finally, we equip this set of paths with a metric d, defined as the maximum of the sup
norm of the distance between two paths, the distance between their respective starting
points and the distance between their ending points. (In particular, when no killing
occurs, as in the forward Brownian web, the ending point of each path is {∞}). More
precisely, if for any path π, we denote by σπ the starting time of π and by eπ its ending
time, we have

d(π1, π2) = |ψ(σπ1
)− ψ(σπ2

)| ∨ |ψ(eπ1
)− ψ(eπ2

)| ∨max
t

ρ((π̄1(t), t), (π̄2(t), t)),

where π̄ is the extension of π into a path from −∞ to +∞ by setting

π̄(t) =

{
π(σπ) for t < σπ,

π(eπ) for t > eπ.

Finally, let H denote the set of compact subsets of (Π, d) and let dH denote the Hausdorff
metric,

dH(K1,K2) = max
π1∈K1

min
π2∈K2

d(π1, π2) ∨ max
π2∈K2

min
π1∈K1

d(π1, π2).

In [FINR04], it is proved that (H, dH) is Polish. In the following, we will construct the
Brownian net with killing as a random element of this space.

2.2 The Brownian web

As mentioned in the introduction, the Brownian web ([TW98] [FINR04] [SSS15]) is
the scaling limit of the discrete web under diffusive space-time scaling and is defined as
an element of (H, dH). The next theorem, taken from [FINR04], gives some of the key
properties of the BW.

Theorem 2.1. There is an (H,FH)-valued random variable W whose distribution is
uniquely determined by the following three properties.

(o) from any deterministic point (x, t) in R2, there is almost surely a unique path B(x,t)

starting from (x, t).
(i) for any deterministic, dense countable subset D of R2, almost surely, W is the

closure in (Π, d) of {B(x,t) : (x, t) ∈ D}.
(ii) for any deterministic n and (x1, t1), . . . , (xn, tn), the joint distribution of

B(x1,t1), . . . , B(xn,tn) is that of coalescing Brownian motions from those starting
points (with unit diffusion constant).

Note that (i) provides a practical construction of the Brownian web. For D as defined
above, construct coalescing Brownian motion paths starting from D. This defines a
skeleton for the Brownian web that is denoted by W(D). W is simply defined as the
closure of this precompact set of paths.
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2.3 The standard Brownian net

2.3.1 Idea of the construction

When κ = 0, Sun and Swart give a construction of the Brownian net which is based on
the construction of two coupled drifted Brownian webs (Wl,Wr) that interact in a sticky
way. For instance, for every point (x, t), there is a unique pair (l, r) ∈ (Wl,Wr) starting
from (x, t), with l ≤ r, and where where l is distributed as the path of a Brownian motion
with drift −b, and r is a Brownian motion with drift +b. The difference between the two
paths is a Brownian motion with sticky reflection at 0 (see [SS08] and a recent review
paper [SSS15] for more details).

The Brownian net N b is then constructed by concatenating paths of the right and left
webs. More precisely, given two paths π1, π2 ∈ Π, let σπ1

and σπ2
be the starting times of

those paths. For t > σπ1
∨ σπ2

(note the strict inequality), t is called an intersection time
of π1 and π2 if π1(t) = π2(t). By hopping from π1 to π2, we mean the construction of a
new path by concatenating together the piece of π1 before and the piece of π2 after an
intersection time. Given the left-right Brownian web (Wl,Wr), let H(Wl∪Wr) denote the
set of paths constructed by hopping a finite number of times between paths inWl

⋃
Wr.

N b is then defined as the closure of H(Wl

⋃
Wr). After taking this limit, Wl and Wr

delimit the net paths from the left and from the right, in the sense that paths in N b can
not cross any element ofWl (resp.,Wr) from the left (resp., from the right).

Finally, we cite from [SS08] a crucial property of the Brownian net that will be useful
for the rest of this paper.

Proposition 2.2. Let S < T and define the branching-coalescing point set

ξS(T ) := {x ∈ R : ∃π ∈ N b s.t. σπ = S, π(T ) = x}.

For almost every realization of the Brownian net, the set ξS(T ) is locally finite.

2.3.2 Special points of the standard Brownian net

In this section, we recall the classification of the special points of the Brownian net, as
described in [SSS09]. As in the Brownian web, the classification of special points will be
based on the local geometry of the Brownian net. Of special interest to us will be the
points with a deterministic time coordinate.

Definition 2.1 (Equivalent Ingoing and Outgoing Paths). Two paths π, π′ ∈ (Π, d) are said
to be equivalent paths entering a point (x, t) = z ∈ R2, or in short π ∼zin π′, iff there
exists a sequence {tn} converging to t such that tn < t and π(tn) = π′(tn) for every n.
Equivalent paths exiting a point z, denoted by π ∼zout π′, are defined analogously by
finding a sequence tn > t with {tn} converging to t and π(tn) = π′(tn).

Despite the notation, these are not in general equivalence relations on the spaces
of all paths entering resp. leaving a point. However, in [SSS09], it is shown that that
if (Wl,Wr) is a left-right Brownian web, then a.s. for all z ∈ R2, the relations ∼zin and
∼zout actually define equivalence relations on the set of paths inWl ∪Wr entering (resp.,
leaving) z, and the equivalence classes of paths inWl ∪Wr entering (resp., leaving) z are
naturally ordered from left to right. Moreover, the authors gave a complete classification
of points z ∈ R2 according to the structure of the equivalence classes inWl∪Wr entering
(resp., leaving) z.

In general, such an equivalence class may be of three types. If it contains only paths
inWl then we say it is of type l, if it contains only paths inWr then we say it is of type r,
and if it contains both paths inWl andWr then we say it is of type p, standing for pair. To
denote the type of a point z ∈ R2 in a Brownian net N b, we list the incoming equivalence
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Figure 11: Structure of the left (grey) and right (black) websWl,Wr at (o, p), (o, pp) and
(p, pp) points of the net N b. In particular, for (o, pp) and (p, pp) points, there are two
equivalent outgoing pairs (l, r′) and (l′, r) (ordered from left to right) exiting the point z.

classes inWl ∪Wr from left to right (see Fig. 11), and then, separated by a comma, the
outgoing equivalence classes of paths from left to right. For example, a point of type
(p, pp) (as in Fig. 11) has exactly one equivalent class of paths entering the point, and
two distinct equivalent classes exiting the point. Further, all of those classes contain at
least a path in Wr and path in Wl. For a point of type (o, p), there is no path entering
the point, and one equivalent class exiting the point. We cite the following results from
Theorems 1.7 and 1.12 in [SSS09].

Proposition 2.3 (Geometry of the Net at Deterministic Times). Let N b be a Brownian
net and let (Wl,Wr) be the left-right Brownian web associated with N b. Let t be a
deterministic time.

1. For every deterministic point x, the point (x, t) is of type (o, p).

2. Each point (x, t) (with x deterministic or random) is either of type (o, p), (p, p) or
(o, pp), and all of these types occur.

3. Every path π ∈ N b starting from the line R×{t}, is squeezed between an equivalent
pair of right-most and left-most paths, i.e. there exists l ∈ Wl and r ∈ Wr so that
l ∼zout r such that l ≤ π ≤ r on [t,∞).

4. Any point (x, t) entered by a path π ∈ N b with σπ < t is of type (p, p). Moreover, π
is squeezed between an equivalent pair of right-most and left-most paths, i.e. there
exist l ∈ Wl, r ∈ Wr with r ∼zin l and ε > 0 and such that l ≤ π ≤ r on [t− ε, t].

In the Brownian net, a separation point (or branching point) will refer to a point
z = (x, t) such that there exist two paths πr and πl ∈ N b with σπl , σπr < t so that (1)
πl(t) = πr(t) = x and (2) there exists ε > 0 so that πl(s) < πr(s) for every s ∈ (t, t+ ε].

Proposition 2.4 (Geometry of the Net at a Separation Point). If z = (x, t) is a separation
point in the standard Brownian net N b then

1. z is of the type (p,pp).

2. Every path π starting from z is squeezed between some pair of equivalent right-
most and left-most paths — i.e. there exists l ∈ Wl and r ∈ Wr (which will depend
on π) with l ∼zout r such that l ≤ π ≤ r on [t,∞).

3. Every path π entering the point z is squeezed between a pair of equivalent right-
most and left-most paths — i.e., there exist l ∈ Wl, r ∈ Wr, l ∼zin r, entering the
point z and ε > 0 such that l ≤ π ≤ r on [t− ε, t].

2.4 The Brownian net with killing

Construction. Having the standard Brownian net at hand, we now need to turn on
the killing mechanism. To do that, we recall the definition of the time length measure of
the Brownian net as introduced in [NRS15].
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Definition 2.2 (Time Length Measure of the Brownian Net). For almost every realization
of the standard Brownian net, T is the unique σ-finite measure such that for every Borel
set E ⊂ R2,

T (E) =

∫
R

|{x : (x, t) ∈ E ∩ (p, p)}|dt. (2.1)

where (p, p) refers to the set of (p, p) points for the net N b.

Given a realization of the standard Brownian net N b, we define the set of the killing
marksMκ as a Poisson point process with intensity measure κT . Finally, we define the
Brownian net with killing as the union of (1) all the paths π ∈ N b killed at

eπ := inf{t > σπ : (π(t), t) ∈Mκ} (2.2)

and (2) for every z ∈ R2, the trivial path whose starting point and ending point coincide
with z. In the following, this construction will be denoted as N b,κ.

Let E ⊆ R2. We will denote by N b,κ(E) the subset of paths in N b,κ(E) with starting
points in E. Finally, Mκ(S) will denote the set of killing points that are attained by
π ∈ N b,κ with σπ = S. We cite the following result from [NRS15] (Proposition 2.14
therein).

Proposition 2.5. For every S ∈ R,Mκ(S) is locally finite a.s..

Coupling between the net and the net with killing. Our construction of N b,κ

induces a natural coupling between N b and N b,κ, and in the following, N b will refer to
the net used to construct the net with killing N b,κ. Let Ubε,κε denote the discrete BCK (or
discrete net with killing) with branching and killing parameters (bε, κε), and Ubε := Ubε,0.
Like in the continuum, there is a natural and analogous coupling between the discrete
objects Ub and Ub,κ, and again, Ub will always refer to the discrete net coupled with Ub,κ.
(This coupling is obtained by starting from Ub and by removing all the outgoing arrows
independently at every vertex with probability κ).

Convergence. In [NRS15], we show that the killed Brownian net is the scaling limit
of the BCK system for small values of the branching and killing parameters. In the
following, for every element U ∈ H, Sε(U) is the set paths obtained after scaling the
x-axis by ε and the t-axis by ε2.

Theorem 2.6. (Invariance Principle) Let b, κ ≥ 0 and let {bn}n>0 and {κn}n>0 two
sequences of non-negative numbers such that bn+κn ≤ 1 and such that limn→∞ bnε

−1
n = b

and limn→∞ κnε
−2
n = κ. Then, as n→∞,

(Sεn(Ubn), Sεn(Ubn,κn)) → (N b,N b,κ) in law.

Proof. In [NRS15], we showed that Sεn(Ubn,κn) converges to N b,κ in law. However, a
closer look at the proof shows that the result was shown by constructing a coupling
between {(Sεn(Ubn), Sεn(Ubn,κn))}n>0 and (N b,N b,κ) such that Sεn(Ubn) converges to
N b a.s., and such that under this coupling, the convergence of the second discrete
coordinate to its continuum counterpart holds in probability. This allows to extend the
invariance principle derived in [NRS15] to Theorem 2.6.

3 The continuum voter model perturbation (CVMP)

As described in the introduction, we aim at constructing the CVMP as a map from
R×R+ onto finite subsets of {1, ..., q}. This “quasi-coloring” will be defined in terms of
the duality relation given in Section 1.4, i.e, we see the CVMP as dual to the Brownian
net with killing. The key observation is that even if the continuous graph starting from a
“generic” point z is infinite (what we mean by generic will be discussed below in more
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details), the reduced version of this graph is locally finite. (Recall that a reduced graph is
constructed after removal of all the non-relevant separation points in the original graph
— see Definition 1.1).

We now give an outline of the present section. In Section 3.1, we introduce the notion
of relevant separation points and of reduced graph for the Brownian net with killling
and prove some of their properties. Those results are simple extensions of the results
already known in the case κ = 0 [SSS09, SSS14]. In Section 3.2, we construct the CVMP.
In Section 3.3, we prove properties 1 and 2 listed in Theorem 1.1.

3.1 The reduced graph

We first define a notion of graph isomorphism adapted to our problem.

Definition 3.1. Let G = (V,E) and G′ = (V ′, E′) be two finite directed acyclic graphs.
We will say that G and G′ are isomorphic if there exists a bijection ψ from V to V ′ such
that for every z1, z2 ∈ V

(z1, z2) ∈ E iff (ψ(z1), ψ(z2)) ∈ E′. (3.1)

In other words, two graphs will be isomorphic if they coincide modulo some relabelling
of the nodes.

Let us consider the set of all finite directed acyclic graphs whose vertices are labelled
by points in R2. The graph isomorphism property is an equivalence relation partitioning
this set of graphs into equivalence classes. In the following, we will denote by (Γ,G)

the set of all equivalence classes endowed with its natural σ field. In this section, we
construct a natural reduced graph generated by the Brownian net with killing paths
(starting from a point z until a certain time horizon T ) as an element of (Γ,G).

As in the standard Brownian net, in the Brownian net with killing, a separation point
(or branching point) will refer to a point z = (x, t) such that there exist two paths πr
and πl ∈ N b,κ with σπl , σπr < t and eπl , eπr > t so that (1) πl(t) = πr(t) = x and (2) there
exists ε > 0 so that πl(s) < πr(s) for every s ∈ (t,min(t + ε, er, el)]. We note that in the
coupled pair (N b,N b,κ) the separation points of the killed Brownian net and the ones of
the standard Brownian net coincide a.s..

Definition 3.2 (Relevant Separation Point). A point z = (x, t) ∈ R2 with t ∈ (S, T ) is
said to be an (S, T )-relevant separation point of the Brownian net N b,κ, if and only if
there exist two paths π1, π2 ∈ N b,κ with starting time σπ1

= σπ2
= S and ending times

eπ1 , eπ2 > t, and such that

π1(t) = π2(t) but π1(u) 6= π2(u) for u ∈ (t, inf(T, e1, e2)) . (3.2)

In the following, we will denote by Rκ(S, T ) the set of (S, T )-relevant separation
points in the Brownian net with killing N b,κ (with no b superscript in Rκ(S, T ) to ease
the notation). Finally, R(S, T ) will denote the same set when κ = 0 (Proposition 6.1. in
[SSS14]).

Proposition 3.1. For every S < T , the set Rκ(S, T ) is locally finite a.s.

Proof. As already mentioned, this property for κ = 0 has been established in [SSS14]. It
remains to extend the property for κ 6= 0. Let E ⊂ R2 be a bounded set and let us show
that Rκ(S, T ) ∩ E is finite a.s..

Let L > 0 and define BL to be the set of realizations such that

{π ∈ N b : σπ = S, trace(π)∩E 6= ∅} ⊂ {π ∈ N b : σπ = S, ∀t ∈ [S, T ], −L < π(t) < L}.
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In particular, the equicontinuity of the paths in N b implies that P(BL) goes to 1 as
L→∞.

Next, we inductively define θ0 ≡ θ0,L = S and a sequence of killing times {θi ≡
θi,L}i≥1 as follows:

∀i ≥ 0, θi+1 = inf{t > θi : ∃(x, t) ∈ Mκ
(
θi
)

and |x| < L}. (3.3)

whereMκ(t) is the set of killing points attained by the set of paths π ∈ N b,κ with σπ = t.
From the very definitions of the θi’s, it is not hard to see that

conditionally on BL, Rκ(S, T ) ∩ E ⊂ ∪i≥0R(θi ∧ T, θi+1 ∧ T ). (3.4)

(See also Fig. 12.)

Figure 12: Grey circles represent points of the form (x, θi) ∈ Mκ. The (S, T )-relevant
separation points (white circles) hit by a path starting from a given point in (−L,L)×{S}
and staying in the box (−L,L)× [S, T ] belong to ∪i≥0R(θi ∧ T, θi+1 ∧ T ).

We now claim that

for every i, R(θi ∧ T, θi+1 ∧ T ) is locally finite. (3.5)

In order to prove (3.5), it is enough to prove that (a) when θi < T , R(θi, T ) is locally
finite, and (b) R(θi, θi+1) is also locally finite. For property (a), we first note that R(U, T )

is a.s. locally finite for every deterministic U with U < T , implying that the set of times
U for which R(U, T ) is locally finite has full Lebesgue measure. Combining this with the
definition of the random intensity measure used in our Poisson marking (see Definition
2.2) and using Fubini’s theorem show that property (a) must hold.

For Property (b), the strong Markov Property and stationarity in time show that it
is enough to prove the result for the special value i = 0. For any deterministic times
U , we know that R(S,U) is locally finite a.s.. Reasoning as in the previous paragraph
completes the proof of (b), and thus (3.5).

We are now ready to complete the proof of Proposition 3.1. First of all, Mκ(S) is
locally finite by Proposition 2.5. Thus we get that θ1 − θ0 > 0 a.s.. Furthermore, using
the strong Markov property of the standard Brownian net and its stationarity in time,
the sequence (θi+1 − θi) is a sequence of i.i.d. strictly positive random variables. As
a consequence, for every realization of N b,κ, the sequence {R(θi ∧ T, θi+1 ∧ T )}i≥0 is
empty after some finite value of i. Our proposition then immediately follows from (3.4)
and (3.5) and the fact that P(BL) goes to 1 as L goes to∞.
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Define

Lκ(S, T ) = {(x, T ) : ∃π ∈ N b,κ, s.t. σπ = S, eπ ≥ T, π(T ) = x},
Kκ(S, T ) = Mκ(S)

⋂
R× [S, T ]. (3.6)

Definition 3.3 (Continuous Reduced Graph). Let S < T be deterministic or random.
Let z = (x, S) and let V z(T ) be the union of the singleton z with the subset of vertices
Lκ(S, T )

⋃
Kκ(S, T )

⋃
Rκ(S, T ) reached by a path in N b,κ starting from z.

1. A point z = (x, S) will be said to be a T -finite point iff |V z(T )| <∞.

2. For every T -finite point z = (x, S), the reduced graph starting from z on the time
interval [S, T ] — denoted by Gz(T ) — is the random directed graph whose vertices
are given by V z(T ) and whose edges are generated by the Brownian net with killing
N b,κ: two points z′ = (x′, t′), z′′ = (x′′, t′′) ∈ V z(T ), will be connected by a (directed)
edge iff t′ < t′′ and there exists π ∈ N b,κ such that σπ = t′, π(t′) = x′, π(t′′) = x′′

and
∀u ∈ (t′, t′′), (π(u), u) /∈ Lκ(S, T )

⋃
Kκ(S, T )

⋃
Rκ(S, T ).

Proposition 3.2. Let S < T be two deterministic times. Almost surely for every realiza-
tion of the Brownian net with killing, every point (deterministic or random) in R× {S} is
T -finite.

Proof. By equicontinuity of the paths in N b,κ, we only need to show that

Lκ(S, T )
⋃
Kκ(S, T )

⋃
Rκ(S, T )

is locally finite a.s.. First, Rκ(S, T ) is locally finite using Proposition 3.1, andMκ(S) is
also locally finite by Proposition 2.5. Finally, when κ = 0, L0(S, T ) is locally finite by
Proposition 2.2. Since Lκ(S, T ) is stochastically dominated by L0(S, T ), this ends the
proof of Proposition 3.2.

3.2 Construction of the continuum voter model perturbation

In this section, we construct the CVMP alluded to in Theorem 1.1. It will depend
on following quantities (1) the branching and killing parameters b, κ, (2) the boundary
nucleation mechanism {gi,j}i,j≤q, (3) two probability distributions p and λ on {1, · · · , q},
where p is the bulk nucleation mechanism and λ is the analog of the one-dimensional
marginal of the initial distribution for the discrete voter model perturbation.

Recall that in order to determine the color of a vertex (x, t) in our discrete voter
model perturbation {θε(x, t)}(x,t)∈Z2

odd
, we start with a random coloring of the leaves of

the graph induced by the backward BCK, starting from (x, t) as a root. The color of (x, t)

is then determined by applying the algorithm described in Section 1.4 to the reduced
graph rooted at (x, t) (see Proposition 1.6).

The backward Brownian net with killing. As in the discrete case, the backward
Brownian net with killing N̂ b,κ is obtained from the Brownian net with killing by a
reflection about the x-axis. In the following, we will use identical notation for the
backward Brownian net with killing, adding only a hat sign to indicate that we are
dealing with the backward object. For instance R̂κ(S, T ) will refer to the (S,T)–relevant
separation points for the backward net between times S and T .

Step 0. Assignment of i.i.d. random variables. In the continuum, we consider a
realization of the backward Brownian net with killling N̂ b,k and consider the random set
of points consisting of the union of
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1. all the separation points in N̂ b,κ,

2. all the killing points in N̂ b,κ,

3. the set {(x, 0) : ∃π̂ ∈ N̂ b,κ s.t. σπ̂ > 0 and π̂(0) = x}

Those three sets are countable for almost every realization of the Brownian net with
killing for the following reasons:

1. First, for any separation point z, there exists p < q ∈ Q such that z ∈ R̂κp,q. From

Proposition 3.1, R̂κp,q is locally finite a.s., which implies that the set of separation
points is countable a.s.

2. Since, conditional on N b, the set of killing points is defined as a Poisson Point
Process, this set is also countable a.s..

3. Finally, for the third set, we note that

{(x, 0) : ∃π̂ ∈ N̂ b,κ s.t. σπ̂ > 0 and π̂(0) = x} = ∪s>0,s∈Q ξ̂
s(0)

where ξ̂s(0) is the backward version of the branching-coalescing point set as defined
in Proposition 2.2. Since ξ̂s(0) is locally finite for every deterministic s, the third
item is also countable.

Finally, since the random set consisting of the union of the sets 1, 2 and 3 above is a.s.
countable, given a realization of N̂ b,κ, i.i.d. uniformly distributed random variables Uz in
[0, 1] can be assigned to each of the points z in the three sets described above.

Step 1. Pre-coloring of the leaves. We consider the set of leaves, consisting of
the killing points and the intersection points of N̂ b,κ with {t = 0}. For each such point z,
we deduce the pre-coloring of z, denoted by θ̄(z), from the variable Uz according to the
following rule.

• If the leaf z is an intersection point between a path from N̂ b,κ and {t = 0} (i.e. a
point from set 3), θ̄(z) is the unique integer in {1, · · · , q} such that

Uz ∈ [
∑

i≤θ̄(z)−1

λ(i),
∑
i≤θ̄(z)

λ(i))

with the convention that λ(0) = 0.

• If the leaf z is a killing point in N̂ b,κ (i.e. from set 2), θ̄(z) is the unique integer in
{1, · · · , q} such that

Uz ∈ [
∑

i≤θ̄(z)−1

p(i),
∑
i≤θ̄(z)

p(i))

with the convention that p(0) = 0.

Step 2. Pre-coloring of the “nice” points. Given a point (x, S) and a time T > S,
recall the definition of the reduced graph G(x,S)(T ) in the forward Brownian net with
killing N b,κ (see Definition 3.3). Similarly, for any S > 0, one can define a reduced graph
Ĝ(x,S)(0) whenever the point (x, S) is 0-finite in the backward Brownian net with killing.

Definition 3.4. A point is “nice” if it is a 0-finite point for the backward Brownian net
N̂ b,κ.

In particular, if we consider D, a countable deterministic dense set of R × R+,
Proposition 3.2 (in its backward formulation) ensures that all the points in D are nice for
almost every realization of the Brownian net with killing.

Definition 3.5. A graph is said to be simply rooted if the out-degree of the root is 1.
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For nice points with a simply rooted graph, we assign the color determined by the
coloring algorithm described in Section 1.4 using the family of distributions {gi,j} and
the Uz’s at separation points (as in (1.5)). For every such point, this defines a color that
we denote by θ̄(z).

For graphs with more complicated root structure (i.e. with the root connected to
more than one point), we decompose the finite graph into simply rooted graphs. (For
instance, if the root connects to two distinct points z′ and z′′, the first component is the
subgraph whose set of vertices is the union of the root with the vertices that can be
accessed from z′; the second component is defined analogously.) θ̄(z) is then defined
as the union of the coloring induced by each of the simply rooted subgraphs in the
decomposition.

Remark 3.3. By construction, |θ̄(z)| is less or equal to the out-degree of the root.

Step 3. Horizontal Limits. The coloring of the half-plane R×R+ is generated by
taking horizontal limits. Our procedure is based on the following lemma.

Lemma 3.1. Almost surely for every realization of the backward Brownian net with
killing, for every time t (deterministic or not) the set {x : (x, t) is nice} is dense in R.

Proof. Let us consider a dense countable deterministic set D ⊂ R×R+. By Proposition
3.2 in its backward formulation, every point in D is nice a.s.. Furthermore, any point z′

belonging to the trace of N̂ b,k(D) (the backward Brownian net with killing paths starting
from D), must also have a finite graph representation, since every relevant separation
point for z′ is also relevant for some z ∈ D, and every leaf for z′ is also a leaf for z. Hence,
for every every realization of the Brownian net, for every t (random or deterministic) it
is sufficient to prove that N̂ b,κ(D) intersects the set R× {t} at a dense set of points.

For κ = 0, the property directly follows from a property of the Brownian web: the
so-called skeleton Ŵr(D) (and also Ŵl(D)) intersect every horizontal time R × {t} at
a dense set of point. (The contrary would easily contradict the equicontinuity of the
web paths.) A fortiori, the net with no killing N̂ b enjoys the same property. Finally, this
extends to the case κ > 0, by noting that our Poisson construction of the killing points
can not charge any horizontal line R× {t} with more than one point.

For every point (x, t) ∈ R×R+ (including the nice points described previously), we
define the colors at point (x, t) as

θ(x, t) = {c ∈ {1, · · · , q} : ∃{(xn, t)} “nice” s.t. xn → x and ∀n, c ∈ θ̄(xn, t)} (3.7)

From Lemma 3.1, θ(x, t) is well defined. Further, for every nice point z ∈ R ×R+, we
must have θ̄(z) ⊆ θ(z).
Remark 3.4. It is natural to ask whether one could define the CVMP by taking limits in
any directions. It is not hard to show that for every deterministic (x, t), and every color
c, there exists a sequence (x, tn) with tn → t such that θ̄(x, tn) = c. As a consequence,
if we allowed for vertical limits, every deterministic point will be trivially colored with
{1, · · · , q}. This property was established in the case where the boundary noise is absent
(Theorem 1.1.(7) in [FINR06])

3.3 Properties of the CVMP

We will now prove some basic properties of our mapping (Theorem 1.1(1)–(2)). In
order to do so, we first elaborate on the properties of the reduced graph at deterministic
times.
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3.3.1 Reduced graphs at deterministic times

In this subsection, we derive some properties of the reduced graph at deterministic
times. We formulate these results “forward in time” – i.e., for the original Brownian net,
and not its backward version. When needed (in the forthcoming sections), these results
will be used in their backward formulation.

Before stating the main proposition of this section (see Proposition 3.5 below), we
start with some definitions. Let z0 and z1 be two T -finite points. We will say that Gz0(T )

and Gz1(T ) only differ by their root iff they are identical up to relabeling of their root,
i.e., when the mapping ψ, defined by

∀z ∈ V z0(T ), ψ(z) =

{
z if z 6= z0

z1 otherwise
,

is a graph isomorphism from Gz0(T ) to Gz1(T ) (as in Definition 3.1).

Before stating our next result, we recall from Proposition 2.3 that for every determin-
istic S, a.s. for every realization of the Brownian net with killing, every point (x, S) is
either of type (o, p), (p, p) or (o, pp).

Proposition 3.5. (Reduced Graph at Deterministic Times) Let S, T be a pair of de-
terministic times with S < T . For almost every realization of the Brownian net with
killing, every z0 = (x0, S) is T-finite (with x0 random or deterministic) and the following
properties hold:

1. If z0 = (x0, S) is of type (o, p) or (p, p) then Gz0(T ) is a simply rooted graph. In
particular, for any deterministic point z0, Gz0(T ) is simply rooted.

2. If z0 = (x0, S) is of type (o, pp), then the root z0 of the graph Gz0(T ) is either of
out-degree 1 or 2.

3. Every intermediate node in Gz0(T ) has out-degree 2.

4. The set
S2(S, T ) := {x0 : G(x0,S)(T ) is not simply rooted } (3.8)

is a locally finite set and is made of (o, pp) points. Further, between two consecutive
points of S2(S, T ), the graphs only differ by their root. I.e., if x, y are such that

x1 < x ≤ y < y1,

where x1 and y1 are two consecutive points in S2(S, T ), then G(x,S)(T ) and G(y,S)(T )

only differ by their root.

The proof of this result relies on some properties of the special point of the Brownian
net. Let (r, l) ∈ (Wr,Wl) and let z, z′ be two vertices in the graph Gz0(T ). We will write

z := (x, t)→l,r z
′ := (x′, t′)

iff t < t′, l ∼zout r and l ∼z′in r, and z and z′ are connected by the paths l and r, in the
sense that l and r do not encounter any element of V z0(T ) in the time interval (t, t′).
Among other things, the following technical lemma will allow to relate the out-degree of
a root to its type (see Corollary 3.1).

Lemma 3.2. Let S < T be two deterministic times. For almost every realization of the
Brownian net with killing, for every z0 = (x0, S) (with x0 random or deterministic), the
following properties hold.

1. Suppose z ∈ V z0(T ) is not a leaf. For every equivalent outgoing pair (l, r) from z,
there exists a unique z′ ∈ V z0(T ) such that z →l,r z

′.
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2. For every z, z′ ∈ V z0(T ) such that z → z′, there exists a unique pair (l, r) ∈ (Wr,Wl)

such that z = (x, t)→l,r z
′ = (x′, t′).

3. Let z− = (x−, S) and z+ = (x+, S) with x− ≤ x+ such that there exist two distinct
equivalent outgoing paths (l, r′) and (l′, r) starting respectively from z− and z+,
with the convention that when x− = x+, (l, r′) and (l′, r) are ordered from left to
right. Finally, let zl and zr such that

z− →l,r′ zl and z+ →l′,r zr.

Then zl 6= zr if and only if l and r do not meet on (S,Ul,r′ ∧ Ul′,r], where

Ul,r′ := T ∧ inf{u ≥ S : ∃π ∈ N b,κ s.t. σπ = S, eπ = u, and l ≤ π ≤ r′} (3.9)

and Ul′,r is defined analogously using l′ and r.

Proof. We start with the proof of item 1. Let z := (x, t) ∈ V z0(T ), for every equivalent
outgoing pair (l, r) at z, define Ul,r analogously to (3.9), i.e.,

Ul,r = T ∧ inf{u ≥ t : ∃π ∈ N b,k s.t. σπ = t, eπ = u, and l ≤ π ≤ r}.

Finally, define
τl,r := sup{u ∈ [t, Ul,r] : l(u) = r(u)} (3.10)

to be the last time l and r separate before time Ul,r. We first claim that the point

z′ := (l(τl,r), τl,r) = (r(τl,r), τl,r) (3.11)

belongs to V z0(T ) and that r ∼z′in l. In order to prove this claim, we distinguish two
cases.

Let us first assume that τl,r = Ul,r. There are only two possibilities: If Ul,r = T , then
z′ is a leaf and must be of type (p, p) by Proposition 2.3(4); if Ul,r 6= T , the point z′ must
be a killing point (ands thus a leaf) which is also of type (p, p) (this follows directly from
the structure of the intensity measure (2.1) used in the Poissonian construction of the
killing points). Hence, when τl,r = Ul,r, the point z′ (as defined in (3.11)) is always a leaf
of V z0(T ) and is always of type (p, p), which implies that l ∼z′in r.

Let us now assume that τl,r < Ul,r. It is not hard to show that z′ is an (S,T)-relevant
separation point in Gz0(T ). Since separation points are of type (p, pp) (by Proposition
2.4(1)), z′ is a point of V z0(T ) (a separation point) with the property l ∼z′in r.

In the two previous paragraphs, we showed that the point z′ = (l(τl,r), τl,r) belongs to
V z0(T ) and that l ∼z′in r. Furthermore, the definition of τl,r directly implies that r and l
do not encounter any relevant separation point or any killing point before entering the
point z′. Combining those two facts implies that z →l,r (l(τl,r), τl,r). This ends the proof
of item 1.

We now proceed with the proof of the second item of Lemma 3.2. Let z, z′ ∈ V z0(T )

be such that z → z′. Let π ∈ N b be a path connecting z and z′. z is not a leaf and thus it
can either be (1) a separation point, or (2) a root. In case (1), Proposition 2.4 implies
that π is squeezed between a unique equivalent pair (l, r) such that l ∼zout r. In case (2),
since we are considering the case of a reduced graph rooted at a deterministic time, the
same property must hold by Proposition 2.3. Let τl,r be defined as in (3.10). By definition
of τl,r, π can not access any point of V z0(T ) on the interval (t, τl,r). Since we proved that
(l(τl,r), τl,r) ∈ V z0(T ), z′ must coincide with (l(τl,r), τl,r). Finally, since we showed that
z →l,r (l(τl,r), τl,r), this ends the proof of item 2.

We now proceed with the proof of the third item of Lemma 3.2. The existence of zl
and zr is guaranteed by item 1 of Lemma 3.2. Further, from what we showed earlier,
zl = (l(τl,r′), τl,r′) and zr = (r(τl′,r), τl′,r) and thus

zl = zr ⇐⇒ τl,r′ = τl′,r, and l(τl,r′) = r(τl′,r).
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Figure 13: Three reduced graphs generated from the net paths starting from points on
the line R×{S} (with time horizon T ). The leftmost and rightmost graphs are generated
from two consecutive points in S2(S, T ). Grey (resp., black) paths represent paths from
Wl (resp.,Wr).

Using the non-crossing property of the Brownian web paths (in Wl or Wr), if l and r

meet before time Ul,r′ ∧Ul′,r, then the condition on the RHS of the former equivalence is
satisfied. Conversely, if the condition on the RHS of the former equivalence is satisfied, it
is clear that l and r meet before time Ul,r′ ∧ Ul′,r. This ends the proof of Lemma 3.2.

As a direct corollary of Lemma 3.2(1) and (2), we deduce the following result.

Corollary 3.1. Let S < T be two deterministic times. For almost every realization of the
Brownian net with killing, for every z0 = (x0, S) (with x0 random or deterministic), the
out-degree of a point z ∈ V z0(T ) is at most equal to the number of pairs (l, r) ∈ (Wl,Wr)

such that l ∼zout r.

Proof of Proposition 3.5. The fact that z0 is T-finite is the content of Proposition 3.2. We
now turn to the proof of item 1. By Proposition 2.3, for any point of type (o, p) or (p, p),
there exists a unique pair l, r such that l ∼z0out r. By Corollary 3.1, this proves that the
degree of z0 is at most 1. Since z0 is a.s. not a killing point, the out-degree is at least 1,
thus showing that the finite graph representation at any point of type (o, p) or (p, p) is
simply rooted. Finally, since every deterministic point is a.s. of type (o, p) (by Proposition
2.3), the same property must hold at any deterministic point a.s.. This ends the proof of
item 1.

We now turn to the proof of items 2 and 3. We first claim that any node of type
(∗, pp) — where * can be either be o (for roots of type (o,pp)) or 1 (corresponding to
separation point by Proposition 2.3 and Proposition 2.4) — connects to one or two points.
By definition of a point of type (∗, pp), there exists exactly two distinct pairs (l, r′) and
(l′, r) in (Wl,Wr) starting from z such that l ∼zout r′ and r′ ∼zout l. By Corollary 3.1, the
out-degree is at most two, thus proving item 2. Further, by definition of a relevant
separation point, the out-degree for such a point is at least two, and thus the out-degree
of a relevant separation point is exactly equal to 2. This ends the proof of item 3.

It remains to show item 4. The fact that S2(S, T ) is a set of (o, pp) points follows from
Corollary 3.1 and the fact that at deterministic times, points are either of type (o, p), (p, p)

or (o, pp). Next, we show that S2(S, T ) is locally finite. Lemma 3.2(3) (in the special
case x− = x+) easily implies that if x is in S2(S, T ) then there exists a time tx — either
a killing time for a path starting from time S, or tx = T — such that the rightmost and
leftmost paths l, r starting from (x, S) do not meet before time tx.

Let L > 0. SinceMκ(S) is locally finite (by Proposition 2.5), the previous argument
and the equicontinuity of the net paths imply that there exists a rational number q > 0

EJP 22 (2017), paper 34.
Page 22/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP37
http://www.imstat.org/ejp/


Voter model perturbations

such that [−L,L] ∩ S2(S, T ) is a subset of

{x : the leftmost and rightmost path in N b starting from (x, S) do not meet on (S, S+q)};
(3.12)

e.g., take q < inf{s > S : (y, s) ∈ Mκ and ∃π ∈ N b, σπ = S, π(S) ∈ [−L,L], π(s) = y}.
Since a.s. for every realization of the net, the set (3.12) is locally finite for every
deterministic q, this proves that [−L,L] ∩ S2(S, T ) is finite a.s. and thus, S2(S, T ) is
locally finite. (This can easily be seen as a direct consequence from the fact that the dual
branching-coalescing point set (the dual branching-coalescing point set being defined
from the dual Brownian net as defined in [SS08]) starting from t+ q is finite at time t by
Proposition 2.2.)

To conclude the proof of item 4, it remains to show that Gz−(T ) and Gz+(T ) are
identical (up to some relabeling of the roots) if z− = (x−, S) and z+ = (x+, S) are
located (strictly) between two consecutive elements of S2(S, T ). We give an argument
by contradiction and assume that the roots of Gz−(T ) and Gz+(T ) do not connect to
the same point (i.e., zl 6= zr). We now show that this implies the existence of a point
z0 = (x0, S) between z− and z+ (i.e. x− ≤ x0 ≤ x+) that connects to two distinct points.

Since [x−, x+] ∩ S2(S, T ) = ∅, we can partition the segment [x−, x+] into equivalence
classes, where x1, x2 are equivalent iff they connect to the same vertex (i.e., to the same
element of Lκ(S, T )∪Rκ(S, T )∪Kκ(S, T ) as defined in (3.6)). Since Lκ(S, T )∪Rκ(S, T )∪
Kκ(S, T ) is locally finite, the equicontinuity of the net paths implies that the number of
classes is finite. From there, it is straightforward to check that there exists x0 ∈ [x−, x+],
z1 and z2 two elements in Lκ(S, T )∪Rκ(S, T )∪Kκ(S, T ), and two sequences of net paths
{πn1 } and {πn2 } with σπni = S, i = 1, 2 such that

(πn1 (S), S) connects to z1, (πn2 (S), S) connects to z2 and lim
n→∞

πn1 (S), πn2 (S) = x0.

For i = 1, 2, going to a subsequence if necessary, πni converges to a net path π∞i starting
from (x0, S) and passing trough the point zi. We will now show that π∞i connects z0 to zi
(in order to get the desired contradiction). In order to do so, it is sufficient to prove that
π∞i does not encounter any element in Lκ(S, T ) ∪Rκ(S, T ) ∪Kκ(S, T ) before entering zi.

Again, we argue by contradiction. Let us assume that π∞i connects (x0, S) to a point
z̄ = (x̄, t̄) before entering zi. Since z0 → z̄, by the second item of Lemma 3.2, there must
exist a left-right pair (l, r) such that l ≤ π∞i ≤ r on [0, t̄]. Let q be any rational number in
(S, t̄). By Proposition 2.2, the set ξS(q) is locally finite a.s., and since πn1 converges to π∞1 ,
πn1 (q) and π∞1 (q) coincide for n large enough. This implies that πn1 is “trapped” between
l and r after a finite rank, i.e., that l ≤ πni ≤ r on [q, t̄]. (Here we used the property that a
net path can not cross a left-most path from the right, and a rightmost path from the left
– see [SS08]). This implies that πni enters the point z̄ for n large enough, which is the
desired contradiction. This completes the proof of item 4 of Proposition 3.5.

Let us take a point x in S2(S, T ). By Proposition 3.5, (x, S) must be of type (o, pp),
and connects to two distinct points. By Lemma 3.2(3), there exist two points z′, z′′ with
z′ 6= z′′, such that if (l, r′) and (l′, r) are the two distinct outgoing equivalent paths in
(Wl,Wr) exiting the point (x, S), ordered from left to right, then

(x, S)→l,r′ z
′ = (x′, t′) (x, S)→l′,r z

′′ = (x′′, t′′).

One can always decompose G(x,S) into two simply rooted graphs, a left and a right
component G(x,S)

l (T ) and G(x,S)
r (T ): We define G(x,S)

l (T ) as the subgraph whose set of
vertices is the union of (x, S) with the vertices of the (directed) subgraph originated from

z′. G(x,S)
r (T ) is defined analogously using z′′. (Note that the two sub-graphs can share a

lot of common vertices, and that this decomposition is not a partition of the vertices).
For a pictorial representation of the next proposition, we refer the reader to Fig. 13.
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Proposition 3.6. Let xl, x, xr be three consecutive points in S2(S, T ) and let G(x,S)
l (T )

and G(x,S)
r (T ) be respectively the left and right component of the graph G(x,S)(T ).

∀y ∈ (xl, x), G(y,S)(T ) and G(x,S)
l (T ) only differ by their root,

∀y ∈ (x, xr), G(y,S)(T ) and G(x,S)
r (T ) only differ by their root.

Proof. We only prove the first relation. The second relation can be proved along the same
lines. In the following, as before, (l, r′) and (l′, r) will denote the two outgoing equivalent
paths in (Wl,Wr) exiting the point (x, S), ordered from left to right. In particular, it is
not hard to see from Proposition 2.3, that l (resp., r) is the leftmost (resp., rightmost)
path starting from (x, S).

Take xn ↑ x, and for every n, let (ln, rn) be an equivalent pair of outgoing paths
starting from (xn, S). By Proposition 3.5(4), all the points in (xl, x) have the same finite
graph representation, up to relabeling of their root. As a consequence, we need to prove
that if xn ↑ x then G(xn,S)(T ) and G

(x,S)
l (T ) coincide up to their root, after some rank,

i.e., we need to show that (xn, S)→(ln,rn) (x′, t′) (after some rank), where z′ = (x′, t′) is

the only point in G(x,S)
l (T ) connected to (x, S).

According to Lemma 3.2(3), and since Uln,r′ ≤ Uln,rn ∧ Ul,r′ (as defined in (3.9)), we
need to prove that ln and r′ meet before time

Uln,r′ = T ∧ inf{u ≥ t : ∃π ∈ N b,k s.t. σπ = t, eπ = u, and ln ≤ π ≤ r′}.

Let us first show that ln coalesces with l at some time τn → S. By compactness of the
Brownian web, ln converges to some path l̄ ∈ Wl starting from (x, S). Since ln does not
cross the path l, we have ln ≤ l, implying that l̄ ≤ l. Since l is the leftmost path starting
from (x, S), this yields l̄ = l, and thus ln converges to l. Using an argument analogous to
the one given in the last paragraph of the proof of Proposition 3.5, it is not hard to show
that ln coalesces with l at some τn → S, as claimed earlier. Next, since rn can not cross
r′, we have rn ≤ r′. This implies that for any s ≥ τn,

l(s) = ln(s) ≤ rn(s) ≤ r′(s).

On the other hand, since l ∼zout r′, we can choose a time t̃ arbitrarily close to S, such that
l(t̃) = r′(t̃). In particular, for n large enough such that τn ≤ t̃, the previous inequality
implies that ln and r′ must have met before time t̃. Finally, since the set of killing points
Mκ(S) is locally finite, and since t̃ can be chosen arbitrarily close to S, we can choose
n large enough such that ln and r′ meet before any path squeezed between those two
paths encounters a killing point, i.e., before time Uln,r′ . As explained earlier, by Lemma

3.2(3), this implies that for n large enough, the graphs G(xn,S)(T ) and G(x,S)
l (T ) coincide

modulo their root. This ends the proof of Proposition 3.6.

3.3.2 Proof of Theorem 1.1 (1)–(2)

Let t be a deterministic time. Proposition 3.2 implies that for any point (x, t) (with x

deterministic or random) is “nice” and has a well defined pre-coloring θ̄(x, t).

Lemma 3.3. At any deterministic time t, for almost every realization of the CVMP, for
every x (deterministic or random), the pre-coloring θ̄(x, t) coincides with the coloring
θ(x, t).

Proof. The key point of our proof is that if two graphs only differ by their root, they
must have the same pre-coloring (by the very definition of the coloring algorithm as
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defined in Section 1.4). We denote by Ŝ2(0, t) the backward analog of S2(0, t) as defined
in Proposition 3.5(4), i.e.

Ŝ2(0, t) = {x : Ĝ(x,t)(0) is not simply rooted.}

We first show that Lemma 3.3 holds for z = (x, t) /∈ Ŝ2(0, T ). Since Ŝ2(0, T ) is a.s.
locally finite, Proposition 3.5(4) — in its backward formulation — implies that there exists
δ > 0 small enough s.t.

∀x′, s.t. |x′ − x| < δ, Ĝ(x,t)(0) and Ĝ(x′,t)(0) only differ by their root

As a consequence, for any xn → x, θ̄(xn, t) is stationary after a certain rank, and thus

θ(x, t) = lim
n
θ̄(xn, t) = θ̄(x, t).

Let us now consider z ∈ Ŝ2(0, T ). First, by definition of the precoloring θ̄(·), we must
have θ̄(z) = {cl} ∪ {cr}, with cl (resp., cr) being the color given by our coloring algorithm
applied on the graph Ĝx,tl (0) (resp., Ĝx,tr (0)) — those two graphs being defined as in
Proposition 3.6 in the backward context. (Note that those two colors are potentially
equal.) Let us now consider a subsequence xn → x, with xn 6= x. We can decompose this
sequence into two subsequences xln < x and xrn > x. For the sequence xln, Proposition
3.6, implies that for n large enough, θ̄(xln, t) = cl, while for the sequence xrn, we must
have θ̄(xrn, t) = cr. As a consequence, we get θ(z) = θ̄(z).

Theorem 1.1 (1)–(2) is then a direct consequence of the following proposition.

Proposition 3.7. At any deterministic time t, for almost every realization of the CVMP:

1. |θ(x, t)| = 1 a.s., for any deterministic point (x, t). Furthermore, the coloring θ(x, t)
is obtained by applying the coloring algorithm to the reduced graph starting from
(x, t) (see Section 1.4 for a definition of the coloring algorithm).

2. For every x, |θ(x, t)| ≤ 2.

3. The set of points such that |θ(x, t)| = 2 is locally finite. Moreover, the color
between two consecutive points of this set remains constant.

Proof. The first item of Proposition 3.7 is a direct consequence of Proposition 3.5(1)
and Lemma 3.3. For the second item, we first note that Proposition 3.5 implies that for
any point (x, t) (with x deterministic or random), the out-degree of the root of Ĝ(x,t)(0)

is either 1 or 2. Furthermore, the definition of our pre-coloring implies |θ̄(x, t)| is less
or equal to the out-degree of the reduced Ĝ(x,t)(0). The second item then follows by a
direct application of Lemma 3.3.

We now turn to the third item of Proposition 3.7 Since the Ĝ(x,t)(T )’s for the x’s
between two consecutive point of Ŝ2(0, T ) only differ by their root, θ̄(x, t) (and hence
θ(x, t)) must remain constant between two elements of Ŝ2(0, t). Since Ŝ2(0, t) is locally
finite (Proposition 3.5 (4)), this implies that the set of points such that |θ(x, t)| = 2 is
locally finite.

Finally, |θ̄(x, t)| = 2 (and hence θ(x, t)) iff (x, t) ∈ Ŝ2(0, t) and the colors induced by

the graphs Ĝ(x,t)
l (0) and Ĝ

(x,t)
r (0) differ (where Ĝ(x,t)

l (0) and Ĝ
(x,t)
r (0) are defined as in

Proposition 3.6). By Proposition 3.6, for every xln ↑ x (resp., xrn ↓ x) the color θ̄(xln, S)

(resp., θ̄(xrn, S)) must coincide with the color induced by Ĝ(x,t)
l (0) (resp., Ĝ(x,t)

r (0)) after
a certain rank. This implies that |θ(x, t)| = 2 iff x delimits two color intervals.
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4 Convergence to the continuum model. Proof of Theorem 1.1
(3)

Let {εn} be a sequence of positive numbers such that εn → 0. As in Theorem 1.1,
we assume that there exists b, κ ≥ 0, and two positive sequences {bn} and {κn} such
that bn/εn → b and κn/ε2n → κ. We also assume that the boundary and bulk mechanisms
{gni,j}i,j≤q and pn converge to a sequence of limiting probability distributions {gi,j}i,j≤q
and p when n→∞.

Let z1
n, · · · , zkn ∈ Sεn(Z2

odd) be such that for every i = 1, · · · , k, limn→∞ zin = zi for
some zi ∈ R2. Our goal is to show that the distribution of the coloring of the points
(z1
n, · · · , zkn) for the discrete model labelled by n converges to the distribution of the

coloring of (z1, · · · , zk) at the continuum.
By Proposition 3.7(1), the coloring of a deterministic point z in the CVMP is obtained

by applying the coloring algorithm to the reduced graph Ĝz(0) (the backward of the
object introduced in Definition 3.3). By Proposition 1.6, the color of a point in the discrete
model can be recovered by applying the same procedure to the discrete backward net
with killing.

From the previous observation, and since the same property holds at the discrete level
(see Proposition 1.6), our convergence result easily follows from the convergence (in

law) of ∪ki=1Ĝ
zin
n (0) to ∪ki=1Ĝ

zi(0), where Ĝ
zin
n (0) is the backward reduced graph starting

from zin with time horizon 0 and constructed from the (backward) discrete net with
killing Sεn(Ûbn,κn) restricted to the upper half-plane. In this section, and for the sake of
clarity, we will only prove the result for k = 1 (i.e., the convergence of one dimensional
marginals of the coloring). The general case involves more cumbersome notation, but
can be treated along exactly the same lines.

Let zn ∈ Sεn(Z2
odd) such that zn converges to z = (x, T ). We need to show that

Ĝznn (0) converges to Ĝz(0). By reversing the direction of time and using translation
invariance (in the x and t directions), it is equivalent to show the following result in the
forward-in-time setting:

Proposition 4.1. Let zn ∈ Sεn(Z2
odd) such that zn → (0, 0). For every T > 0,

Gn := Gznn (T ) → G := G(0,0)(T ) in law,

where Gznn (T ) is the reduced graph at zn with time horizon T for the (rescaled) forward
discrete net with killing Sεn(Ubn,κn).

4.1 Proof of Proposition 4.1

We start by introducing some notation. Define

N b,κ(Σ0) := {π ∈ N b,κ : σπ = 0}

and for any path π ∈ N b,κ(Σ0), let r(π) be the (a.s. finite) sequence of points in

Lκ(0, T )
⋃
Kκ(0, T )

⋃
Rκ(0, T ) (4.1)

(as defined in (3.6)) visited by the path π, the points in the sequence being listed in their
order of visit. (In particular, the final point of r(π) must be a leaf, and every other point
is a relevant separation point). In the following, r(π) will be referred to as the finite
graph representation of π.

Analogously to the continuum level, we assume that the discrete net with killing
Ubn,κn is coupled with a discrete net Ubn (where κn = 0). (See Section 2.4 for more
details). Sεn(Ubn,κn(Σ0)) will denote the discrete analog of N b,κ(Σ0), and for any path
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πn ∈ Sεn(Ubn,κn(Σ0)), rn(πn) will denote the finite graph representation at the discrete
level.

For any point (x, t) and s ≤ t, define

ds((x, t)) := inf{|y − x| : y 6= x and y ∈ ξs(t)}.

and from the Brownian net (with no killing), define the point process

R̄(s, t) :=
∑

z∈R(s,t)

δz,ds(z). (4.2)

In words, R̄(s, t) records the location of the (s, t)–relevant separation points (in the
standard Brownian net (with no killing)), together with a measure of “isolation” around
each of those points. Analogously, we define R̄n(s, t) for the rescaled discrete net
Sεn(Ubn).

Let L > 0. Recall the definition of θi given in (3.3) for S = 0, i.e. θ0 = 0 and for every
i ≥ 0

θi+1 := inf{t > θi : ∃x ∈ (−L,L), (x, t) ∈Mκ(θi)}.

where we recall that Mκ(S) is the set of killing points attained by some path in N b,κ

starting at time S. Define

N = inf{i ≥ 1 : θi ≥ T}. (4.3)

For every s < t, define
�Ls,t := (−L,L)× [s, t],

and for every i ≥ 0,

Ri+1 := R(θi ∧ T, θi+1 ∧ T ) ∩�L0,T

Li+1 :=

{
{(x, θi+1) ∈Mκ(θi) : x ∈ ξ0(θi+1) ∩ (−L,L)} if θi+1 < T

{(x, T ) : x ∈ ξ0(T ) ∩ (−L,L)} otherwise.

Note that when θi+1 < T , Li+1 is a single killing point a.s.. Analogously to (4.2), for
every i ≥ 1, we also define

R̄i :=
∑
z∈Ri

δz,d0(z), L̄i :=
∑
z∈Li

δz,d0(z).

(To ease the presentation, L and T are not explicit in the notation). Finally, θin, Nn,Rin, R̄in
and Lin, L̄in will denote the analogous quantities for the rescaled process Sεn(Ubn ,Ubn,κn).
As in the proof of Proposition 3.1, the previous definitions are motivated by the fact that
if the paths starting from (0, 0) of the Brownian net (with no killing) between time 0 and
T are all contained in the box �L0,T , i.e.,

{(π(s), s) : s ∈ [0, T ], π ∈ N b((0, 0))} ⊂ �L0,T ,

then any intermediary point (resp., leaf) in G must be a point in ∪iRi (resp., ∪iLi). See
Fig. 12. The analogous property holds at the discrete level.

The next two results will be instrumental in the proof of Proposition 4.1. Informally,
Proposition 4.2 states that relevant separation points are isolated from the left and from
the right. Proposition 4.3 implies that the same holds at the discrete level; furthermore
it shows that each continuum separation point is the limit of a single discrete separation
point, which is essential for the proof of Proposition 4.1, the convergence of reduced
graphs.
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Proposition 4.2. For almost every realization of N b,κ, d0(z) > 0 for every z in ∪Ni=1(Ri ∪
Li).

Proof. By Proposition 2.3 and 2.4 and the construction of the killing points, z is of type
(p, ∗) – with ∗ being equal either to p and pp. Proposition 4.2 is then the content of
Proposition 3.11(c) in [SSS09].

Proposition 4.3. Let P̄ be the space of Radon measures on R×R+×R+ equipped with
the vague topology. For every L > 0 and T > 0, the random variable N is finite and for
every 1 ≤ i ≤ N , R̄i and L̄i are finite measures a.s.. Further,{(

Sεn(Ubn,κn), Sεn(Ubn,κn(Σ0)),

Nn∑
i=1

R̄in,
Nn∑
i=1

L̄in

)}
n≥1

→

(
N b,κ,N b,κ(Σ0),

N∑
i=1

R̄i,
N∑
i=1

L̄i
)

in law,

where the convergence is meant in the product topology H×H× P̄ × P̄.

Proposition 4.4. Let zn = (xn, tn) ∈ Sεn(Z2
odd) such that zn → (0, 0). As n→∞,

P
(
Gznn (T ) and G(0,0)

n (T ) are isomorphic
)
→ 1

The proofs of Propositions 4.3 and Proposition 4.4 are rather technical, and for the
sake of clarity they are postponed until Sections 4.3 and 4.4.

Proof of Proposition 4.1 (assuming Propositions 4.3 and 4.4). By Proposition 4.4, it is
enough to show Proposition 4.1 for zn = (0, 0).

Let AL be the set of realizations such that {(π(s), s) : s ∈ [0, T ], π ∈ N b((0, 0))} ⊆
�L0,T . By equicontinuity of the net paths, the probability of AL goes to 1 as L → ∞.
Thus, to prove Proposition 4.1, it is enough to show that for every L > 0, there exists
a coupling such that for almost every realization in AL, Gn and G are isomorphic for n
large enough.

By the Skorohod Representation Theorem and Proposition 4.3, for every L > 0, there
exists a coupling between the discrete and continuum levels such that{(

Sεn(Ubn,κn(Σ0)),

Nn∑
i=1

R̄in,
Nn∑
i=1

L̄in

)}
n≥1

→

(
N b,κ(Σ0),

N∑
i=1

R̄i,
N∑
i=1

L̄i
)

a.s.

Until the end of the proof, we work under this coupling. For any n ∈ N and any
realization in AL, for any discrete point zn ∈ ∪i≥1 (Rin ∪ Lin), define ψn(zn) to be the
closest point in ∪i≥1 (Ri ∪ Li) to zn (it is easy to see that ψn(zn) is well defined a.s.).
As argued above, we need to show that for almost every realization in AL, for n large
enough, the graphs Gn and G are isomorphic under this mapping.

We claim that conditional on AL, for any subsequence of discrete paths {πn}n≥1 with
πn ∈ Sεn(Ubn,κn((0, 0))) converging to π ∈ N b,κ((0, 0)), the discrete and continuum paths
have the same finite graph representation (up to ψn) after a finite rank. Once this claim
is obtained, the proof of Proposition 4.1 goes by contradiction: it is rather easy to see
that if Proposition 4.1 was not satisfied, this would contradict the latter claim. Thus, the
rest of the proof is dedicated to the proof of this statement.

Let us now consider a sequence πn ∈ Sεn(Ubn,κn((0, 0))) converging to π, and let us
show that for n large enough, for any zn = (xn, tn) ∈ ∪i≥1 (Rin ∪ Lin) then πn hits zn if
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and only if π hits the point (x, t) := ψn(zn). First,

∀(xn, tn) ∈ ∪i≥1 (Rin ∪ Lin), (x, t) = ψn(zn) :

|π(t)− x| ≤ |π(t)− πn(tn)|+ |πn(tn)− xn|+ |x− xn|,
|πn(tn)− xn| ≤ |πn(tn)− π(t)|+ |π(t)− x|+ |x− xn|.

Define

γn := min
z∈∪Ni=1 (Ri∪Li)

d0(z) ∧ min
zn∈∪Nni=1 (Rin∪Lin)

d0
n(zn)

On the one hand, since N (as defined in (4.3)) is finite and the Ri’s and Li’s are made
of finitely many atoms, Proposition 4.2 implies that under our coupling lim inf γn =

minz∈∪Ni=1 (Ri∪Li) d
0(z) > 0 a.s..

On the other hand, {πn} converges to π and maxzn ρ(zn, ψn(zn))→ 0 by Proposition
4.3 (where the max is taken over ∪Nni=1 (Rin ∪ Lin)). Using the equicontinuity of the paths
in the sequence {πn}, we can choose n large enough such that the first and last terms of
the two latter inequalities are less than γn/3, i.e., such that

∀(xn, tn) ∈ ∪i≥1 (Rin ∪ Lin), (x, t) = ψn(zn) :

|π(t)− x| ≤ |πn(tn)− xn| +
2γn
3

≤ |πn(tn)− xn| +
2

3
d0(z)

|πn(tn)− xn| ≤ |π(t)− x|+ 2

3
d0
n(zn).

From the definition of d0 and d0
n, this easily implies that for n large enough (so that the

previous inequalities are satisfied), the following statement holds:

for any zn ∈ ∪i≥1 (Rin ∪ Lin), πn hits zn if and only π hits the point ψn(zn),

as claimed earlier. Finally, for every realization in AL, and for n large enough, we
already argued that the set of vertices of G (resp., Gn) is a subset of ∪i≥1 (Ri∪Li) (resp.,
∪i≥1 (Rin∪Lin)). Combining this with the previous statement implies that n large enough,
the finite graph representation of πn and π coincides (up to ψn).

This completes the proof of the claim and and, as argued above, the proof of Proposi-
tion 4.1

It remains to prove Proposition 4.3 and Proposition 4.4.

4.2 Preliminary work for the proof of Proposition 4.3

For the time being, we only consider the Brownian net N b (with no killing). For every
t > 0, let ξ0

n(t) and Rn(0, t) be the discrete counterpart (in the rescaled net Sεn(Ubn)) of
ξ0(t) and R(0, t). Finally, R̄n(0, t) is the discrete analog of R̄(0, t). The rest of this section
is dedicated to proving the following result, which is closely related to Proposition 4.3.

Proposition 4.5. For every T > 0, (Sεn(Ubn), R̄n(0, T )) → (N b, R̄(0, T )) in law, where
the convergence is in the product topology H× P̄.

In order to prove Proposition 4.5, we will need the following lemma.

Lemma 4.1. For almost every realization, d0(z) > 0 for every z ∈ V := R(0, T )∪{(x, T ) :

x ∈ ξ0(T )}.

Proof. This a special case of Proposition 4.2 when κ = 0.
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Corollary 4.1. For every (z1, · · · , zκ) ∈ (R2)n, let

A(z1, · · · , zκ) := {π ∈ N b(Σ0) : r(π) = (z1, · · · , zκ)}
B(z1, · · · , zκ) := N b(Σ0) \A(z1, · · · , zκ).

If A(z1, · · · , zκ) 6= ∅, then A(z1, · · · , zκ) is a compact set and dH
(
A(z1, · · · , zκ),

B(z1, · · · , zκ)
)
> 0.

Proof. We first show that A(z1, · · · , zκ) is a compact set of paths. Since N b is compact, it
is is sufficient to prove that for any {pl}l≥1 in A(z1, · · · , zκ) converging to π inN b(Σ0), the
finite graph representation r(π) is given by z1, · · · , zκ. On the one hand, it is clear that π
must hit the points z1, · · · , zκ. On the other hand, if π touches some z̄ = (x̄, t̄) ∈ V distinct
from z1, · · · , zκ, we would have pl(t̄) 6= x̄, but pl(t̄) → x̄ as l → ∞, which would imply
that d0(z̄) = 0. However, by Lemma 4.1, d0(z̄) > 0 a.s.. This shows that A(z1, · · · , zκ) is a
compact set of paths a.s.

Next, since sets of the form A(z̄1, · · · , z̄κ) with (z̄1, · · · , z̄κ) ∈ ∪l∈N∗(R2)l are pairwise
disjoint, the distance between A(z1, · · · , zκ) and any finite union of sets of the form
A(z̄1, · · · , z̄m) 6= ∅ with (z̄1, · · · , z̄m) 6= (z1, · · · , zκ) is strictly positive. Furthermore, by
equicontinuity of the paths in N b and the local finiteness of V , the same property holds
for any infinite union of those sets since one can restrict attention to a finite space-time
box. Combining this with the fact that B(z1, · · · , zk) can be written as the union of all
the non-empty A(z̄1, · · · , z̄m)’s with (z̄1, · · · , z̄m) 6= (z1, · · · , zκ) completes the proof of
Corollary 4.1.

Let P be the space of Radon measures on R×R+ equipped with the vague topology.
From Proposition 6.14 in [SSS14], it is already known that

(Sεn(Ubn), Rn(0, T )) → (N b, R(0, T )) in law, (4.4)

where the convergence is meant in the product topology H×P.

Lemma 4.2. For every deterministic t > 0,

(Sεn(Ubn), ξ0
n(t)) → (N b, ξ0(t)) in law. (4.5)

Proof. From the Skorohod representation theorem, there exists a coupling between the
discrete and continuum levels such that

Sεn(Ubn) → N b a.s..

Let a < b ∈ R. The previous convergence statement entails that under our coupling:

lim inf
n→∞

|ξn(t) ∩ [a, b]| ≥ |ξ(t) ∩ [a, b]| a.s.

On the other hand, using the same technic as in Proposition 4.3. in [NRS15], one can
show that

lim sup
n→∞

E(|ξn(t) ∩ [a, b]|) = E(|ξ(t) ∩ [a, b]|).

Combing the two previous results, for every interval [a, b], we get

lim
n→∞

|ξn(t) ∩ [a, b]| = |ξ(t) ∩ [a, b]| a.s.,

which ends the proof of the lemma.

We will need one more ingredient that is a simple extension of Lemma 6.7 in [SSS14],
whose proof is left as an exercise to the reader.
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Lemma 4.3. Let E be a Polish space. Let {Fi}i∈I and {Gi}i∈I be two finite or countable
collections of Polish spaces and for each i ∈ I, let fi : E → Fi and gi : E → Gi be
measurable functions. Let X,Xk, Y, Yk and Uk,i, Vk,i be random variables {k ≥ 1, i ∈ I}
such thatX,Xk, Y, Yk take values in E and Uk,i, Vk,i takes values in Fi andGi respectively;
for every k, (Xk, Yk, Uk,i, Vk,i, i ∈ I) are defined on the same probability space; (X,Y ) are
defined on the same probability space. Then

(Xk, Uk,i)
(d)−−→ (X, fi(X)) , (Yk, Vk,i)

(d)−−→ (Y, gi(Y )) , ∀i ∈ I

and (Xk, Yk)
(d)−−→ (X,Y )

implies (Xk, Yk, Uk,i, (Vk,i)i∈I)
(d)−−→ (X,Y, fi(X), (gi(Y ))i∈I)

where the convergence is meant in the product topology.

By Lemma 6.12 in [SSS14], (Sεn(Ubn), Sεn(Ubn(Σ0))) converges to (N b,N b(Σ0)) in
(H, dH). Using Lemma 4.3 (in the special case X = Y = N b, and Uk,i = Vk,i) and the
Skorohod Representation Theorem, (4.4) and (4.5) imply that there exists a coupling
between the discrete and the continuum levels such that

{
(
Sεn(Ubn(Σ0)), Rn(0, T ), {ξ0

n(q)}q∈Q+ , ξ0
n(T )

)
}n≥1

→
(
N b(Σ0), R(0, T ), {ξ0(q)}q∈Q+ , ξ0(T )

)
a.s..

From now until the end of this subsection, we will work under this coupling. In particular,
if Vn denotes the analog of V (as defined in Lemma 4.1), then Vn =⇒ V a.s. under our
coupling.

In the next lemma, An(z1, · · · , zk) will refer to the discrete analog of A(z1, · · · , zk) (i.e.,
the set of paths in the rescaled net Sεn(Ubn(Σ0)) with discrete finite graph representation
(z1, · · · , zk)).

Lemma 4.4. Let (z1, · · · , zk) be such that A(z1, · · · , zk) 6= ∅. For almost every realiza-
tion of our coupling, for large enough n, there exists (z1

n, · · · , zkn) such that

∀i ∈ {1, · · · , k − 1}, zin ∈ Rn(0, T )→ zi

and xkn ∈ ξ0
n(T ) such that zkn = (xkn, T ) → zk. Further, the set of paths An(z1

n, · · · , zkn)

converges to A(z1, · · · , zk) in (H, dH) a.s..

Proof. The existence of the zin’s is a direct consequence of the fact that Vn =⇒ V a.s.. The
rest of the proof (i.e., the convergence An(z1

n, · · · , zkn) to A(z1, · · · , zk)) is decomposed
into two steps.

Step 1. Let δ(z1, · · · , zk) := dH
(
A(z1, · · · , zk), B(z1, · · · , zk)

)
. Define

Ān(z1, · · · , zk) = {πn ∈ Sεn(Ubn(Σ0)) : min
π∈A(z1,··· ,zk)

d(πn, π) ≤ 1

3
δ(z1, · · · , zk)},

and

B̄n(z1, · · · , zk) = {πn ∈ Sεn(Ubn(Σ0)) : min
π∈B(z1,··· ,zk)

d(πn, π) ≤ 1

3
δ(z1, · · · , zk)}.

In this step, we will show that after a finite rank, for any πn ∈ Ān(z1, · · · , zk), the finite
graph representation of πn is a subsequence of (z1

n, · · · , zkn), and that An(z1
n, · · · , zkn) ⊆

Ān(z1, · · · , zk).
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By Corollary 4.1, δ(z1, · · · , zk) > 0 a.s.. From there, it is straightforward to check
from the definition of δ(z1, · · · , zk) and the fact that under our coupling Sεn(Ubn(Σ0))

converges to N b(Σ0) a.s. that:

dH(Ān(z1, · · · , zk), A(z1, · · · , zk))→ 0, dH(B̄n(z1, · · · , zk), B(z1, · · · , zk))→ 0 a.s. (4.6)

as n → ∞, and that Ān(z1, · · · , zk) and B̄n(z1, · · · , zk) form a partition of the set
Sεn(Ubn(Σ0)) for large enough n. Let us now derive two consequences of this result.

First, Corollary 4.1 easily implies that

min
z̄∈V, z̄ /∈{z1,··· ,zk}

min
π∈A(z1,··· ,zk),s≥0

ρ ((π(s), s), z̄) > 0.

Further, under our coupling, Vn =⇒ V a.s., and since Ān(z1, · · · , zk)→ A(z1, · · · , zk) (in
(H, dH)), the equicontinuity of the paths in ∪nSεn(Ubn) combined with the previous limit
implies that

lim inf
n→∞

min
z̄n∈Vn, z̄n /∈{z1n,··· ,zkn}

min
πn∈Ān(z1,··· ,zk),s≥0

ρ ((πn(s), s), z̄n) > 0.

As a consequence, after a finite rank, for any πn ∈ Ān(z1, · · · , zk), the (discrete) finite
graph representation of πn is a subsequence of (z1

n, · · · , zkn). (In words, some zin’s can be
“missed”, but any point in the finite graph representation of πn must be in (z1

n, · · · , zkn)).
Secondly, by reasoning along the same lines, one can deduce that after a finite

rank, the finite graph representation of any path πn ∈ B̄n(z1, · · · , zk) must be distinct
from (z1

n, · · · , zkn). Since Ān(z1, · · · , zk) and B̄n(z1, · · · , zk) form a partition of the set of
discrete net paths starting at time 0 (for large enough n), it follows that An(z1

n, · · · , zkn) ⊆
Ān(z1, · · · , zk) after a finite rank.

Step 2. We now show that Ān(z1, · · · , zk) = An(z1
n, · · · , zkn) for n large enough. Since

we showed in Step 1 that after a finite rank, for any πn ∈ Ān(z1, · · · , zk), the finite
graph representation of πn is a subsequence of (z1

n, · · · , zkn), and since An(z1
n, · · · , zkn) ⊆

Ān(z1, · · · , zk), it is sufficient to show that for n large enough, any πn ∈ Ān(z1, · · · , zk)

must pass through z1
n, · · · , zkn.

First, for n large enough, is is easy to see that any πn ∈ Ān(z1, · · · , zk) must go
through zkn. This is a direct consequence of the fact that ξ0(T ) is locally finite, ξ0

n(T ) =⇒
ξ0(T ) a.s. under our coupling, and the fact Ān(z1, · · · , zk) converges to A(z1, · · · , zk) a.s.
(see Step 1).

Let us now argue that after some rank, any πn ∈ Ān(z1, · · · , zk) must also go through
the point zin for i < k. In fact, we will show a little more: We will show by induction on
i ∈ N, that for any m > i and any z̄1, · · · z̄m such that A(z̄1, · · · z̄m) 6= ∅, for n large enough,
any πn ∈ Ān(z̄1, · · · , z̄m) must go through z̄1

n, · · · , z̄in, where {z̄in} is defined analogously
to {zin} (i.e., as a sequence of points in Vn approximating z̄i).

The case i=1: Let us first show the property for i = 1. We argue by contradiction.
Going to a subsequence if necessary, let us assume that there exists an infinite sequence
{πn}n with πn ∈ Ān(z̄1, · · · , z̄m) (with m > 1) and such that πn does not go through
the point z̄1

n (i.e., if z̄1
n = (x̄1

n, t̄
1
n) then π1

n(t̄1n) 6= x̄1
n). Going to a further subsequence,

we can assume w.l.o.g. that {πn} converges to π ∈ A(z̄1, · · · , z̄m). (The fact that π ∈
A(z̄1, · · · , z̄m) easily follows from Corollary 4.1.) Since m > 1, the point z̄1 = (x̄1, t̄1) is a
relevant separation point. From this observation, one can construct a path π′ ∈ N b(Σ0)

such that π = π′ up to t̄1 and the paths π and π′ separate after t̄1. (This is done
by concatenating π with one of the paths in (Wr,Wl) starting from z̄1: for instance,
following the notation of Proposition 2.4 and Fig. 11, if π is squeezed between l and r′,
we concatenate π with r. The constructed path belongs to the net using the stability of
the net under hopping – See [SS08].)
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Since Sεn(Ubn(Σ0)) converges to N b(Σ0), there is a sequence {π′n}n in Sεn(Ubn(Σ0))

converging to π′. Let q ∈ Q, with q < t̄1. ξ0(q) is a.s. locally finite and under our coupling
ξ0
n(q) =⇒ ξ0(q) a.s.. Since

lim
n→∞

|πn(q)− π′n(q)| = |π(q)− π′(q)| = 0,

it follows that πn(q) = π′n(q) for n large enough. Finally, since π and π′ separate at z̄1,
π′n and πn must separate at some point (xn, tn) with lim sup tn ≤ t̄1. However, in Step
1, we showed that after a finite rank, the finite graph representation of πn is a subset
of {z̄1

n, · · · , z̄kn}. Since lim sup tn ≤ t̄1, it follows that for large n, (xn, tn) = z̄1
n and so πn

must go through z̄1
n (for n large enough), which yields a contradiction. This shows the

induction hypothesis for i = 1.
The induction step from i-1 to i: Let us now assume that our property holds

at rank i − 1 with i ≥ 2. Again we argue by contradiction and we assume that there
exists a subsequence πn ∈ Ān(z̄1, · · · , z̄m) (with m > i) such that πn(t̄in) 6= x̄in (where
z̄in = (x̄in, t̄

i
n)). By arguing as in the case i = 1, we can assume w.l.o.g. that πn converges

to π ∈ A(z̄1, · · · , z̄m), and that there exists π′ ∈ N b such that π and π′ coincide up to t̄i

and separate afterwards. Let (z̃1, · · · , z̃l) be the finite graph representation of π′. By
construction, l > i and z̃j = z̄j for j ≤ i. Since Ān(z̃1, · · · , z̃l)→ A(z̃1, · · · , z̃l) (by Step 1),
there exists π′n ∈ Ān(z̃1, · · · , z̃l) such that {π′n} converges to π′.

By using our induction hypothesis, πn and π′n must go through the point z̄i−1
n = z̃i−1

n

after a finite rank. Further, since π and π′ separate at z̄i, the two paths πn and π′n must
separate at some time tn with lim sup tn ≤ t̄i. However, for n large enough, the finite
graph representation of πn is a subset of (z̄1

n, · · · , z̄kn), and since πn and π′n coincide at
t̄i−1
n , πn and π′n must separate at z̄in. As a consequence, πn goes through the point z̄in,

which yields the desired contradiction. This ends the proof of Lemma 4.4.

Proof of Proposition 4.5. Under our coupling, we already know that Rn(0, T ) =⇒ R(0, T )

a.s. It is enough to show that for every z = (x, t) ∈ V , and for every zn = (xn, tn) ∈ Vn
with zn → z, we have limn→∞ d0

n(zn) = d0(z) a.s.. Note that if z = (x, t) ∈ R(0, T ) then

d0(z) = inf{|x−y| : ∃(z1, · · · , zk) and π ∈ A(z1, · · · , zk), s.t. y = π(t) and ∀i ≤ k, z 6= zi}.

Thus, if we write

m
(
(z1, · · · , zk), z

)
= inf{|x− y| : ∃π ∈ A(z1, · · · , zk) s.t. y = π(t)}

d0(z) is the infimum of all the m
(
(z1, · · · , zk), z

)
’s such that ∀i ≤ k, z 6= zi. The analogous

statement holds at the discrete level.
Let mn denote the discrete analog of m, and let zn, z1

n, · · · , zkn ∈ Vn converging to
z, z1, · · · , zk ∈ V such thatA(z1, · · · , zk) 6= ∅. Lemma 4.4 implies thatmn

(
(z1
n, · · · , zkn), zn

)
converges to m

(
(z1, · · · , zk), z

)
. The latter convergence statement extends by taking the

infimum over finitely many m
(
(z1, · · · , zk), z

)
’s and mn

(
(z1
n, · · · , zkn), zn

)
. Proposition 4.5

is then a direct consequence of the equicontinuity of the paths in N b and ∪nSεn(Ubn).

4.3 Proof of Proposition 4.3

In the course of the proof of Proposition 3.1, we already proved that N <∞ (where
N is defined as in (4.3)) and for every 1 ≤ i ≤ N , the random point measure R̄i is finite
a.s.. When θi < T , L̄i is a singleton a.s., and when θi > T , the number of atoms in L̄i
coincides with the cardinality of {x : x ∈ ξ0(T ) ∩ (−L,L)}. By Proposition 2.2, this
shows that that L̄i is also a finite measure a.s.. In this section, to prove Proposition 4.3,
our main task will be to prove the following two lemmas:

Lemma 4.5. (Sεn(Ubn,κn), L̄1
n) → (N b,κ, L̄1) in law.
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Lemma 4.6. (Sεn(Ubn,κn), R̄1
n) → (N b,κ, R̄1) in law.

We note that in both lemmas, the convergence is meant in the product topology
H×P.

By using the strong Markov property and the stationarity in time of the killed net
(both at the discrete and continuum level), Lemmas 4.5 and 4.6 will imply that

{(Sεn(Ubn,κn), {R̄in}i≥1)}n≥1 → (N b,κ, {R̄i}i≥1) and

{(Sεn(Ubn,κn), {L̄in}i≥1)}n≥1 → (N b,κ, {L̄i}i≥1) in law,

where the convergence is again meant in the product topology. Since N (resp., Nn)
coincides with the first i such that R̄i (resp., R̄in) is empty, this implies{(

Sεn(Ubn,κn),

Nn∑
i=1

R̄in

)}
n≥1

→

(
N b,κ,

N∑
i=1

R̄i
)

and {(
Sεn(Ubn,κn),

Nn∑
i=1

L̄in

)}
n≥1

→

(
N b,κ,

N∑
i=1

L̄i
)

in law.

Using Theorem 2.6, it is not hard to prove that Sεn(Ubn,κn , Ubn,κn(Σ0)) converges (in
law) to (N b,κ,N b,κ(Σ0)) (this is done in Lemma 6.19 in [SSS14] for the case κn, κ = 0.
The same type of argument carries over for the killed Brownian net). Proposition 4.3
then follows by a direct application of Lemma 4.3 (taking X,Y = N b,κ). The rest of the
section is dedicated to the proofs of Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. In Lemma 4.2, we showed that

(1) (ξ0
n(T ), Sεn(Ubn)) converges to (ξ0(T ),N b) in law.

In [NRS15], we showed that the following statements hold in distribution:

(2) {(x, θ1
n) killing point : x ∈ ξ1

n(θ1
n) ∩ (−L,L)} converges to the singleton (x, θ1) ∈

Mk(0),

(3) and finally

θ1
n → θ1, and ξ0

n(θ1
n) =⇒ ξ0(θ1). (4.7)

The second item can be found in Proposition 4.4(1) and Lemma 4.4 in [NRS15]. The
third item is the content of Corollary 4.2 in [NRS15]. Further, analogously to Theorem
2.6, a closer look at the proofs shows that the latter results were shown by constructing
a coupling between {(Sεn(Ubn), Sεn(Ubn,κn))}n>0 and (N b,N b,κ) such that under this
coupling, the convergence of the random variables above and the convergence of
Sεn(Ubn,κn) to N b,κ hold jointly in probability.

Using Lemma 4.3, this shows the convergence (in law) of {(Sεn(Ubn,κn), θ1
n, ξ

0
n(θ1

n))}
to its continuum counterpart, and from there it is easy to see that (Sεn(Ubn,κn), L̄1

n)→
(N b,κ, L̄1).

Proof of Lemma 4.6. Combing Proposition 4.5, Lemma 4.5, together with the conver-
gence of {(Sεn(Ubn,κn), θ1

n, ξ
0
n(θ1

n))} to (N b,κ, θ1, ξ0(θ1)) — see previous lemma — we have

∀t ≥ 0, {(Sεn(Ubn), R̄n(0, t))} → (N b, R̄(0, t)), (Sεn(Ubn,κn), L̄1
n) → (N b,κ, L̄1),

and {(Sεn(Ubn,κn), θ1
n, ξ

0
n(θ1

n))} → (N b,κ, θ1, ξ0(θ1)) in law.
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Furthermore, by Theorem 2.6, Sεn(Ubn ,Ubn,κn) converges to (N b,N b,κ). By the Sko-
rohod representation theorem and Lemma 4.3 with (X,Y ) = (N b,N b,κ), this implies
that there exists a coupling between the discrete and continuum levels such that (1)
Sεn(Ubn) converges to N b a.s., (2) L̄1

n converges to L̄1 a.s., (3) the convergence state-
ment {(Sεn(Ubn,κn), θ1

n, ξ
0
n(θ1

n))} hold a.s., and (4) such that R̄n(0, t) =⇒ R̄(0, t) a.s. for
any positive rational value of t and for t = T . We will work under this coupling for the
rest of the proof.

Next, we first note that

∀t ∈ Q+, t = T, R(0, t) ∩ {(x, s) : s ∈ [0, t], x = ±L} = ∅ a.s. (4.8)

(This is a direct consequence of the fact that R(0, t) is locally finite a.s. and translation
invariance of the Brownian net along the x-axis). Since ∀t ∈ Q+, t = T, R̄n(0, t) =⇒
R̄(0, t) a.s., this implies that

∀t ∈ Q+, t = T,
∑

z∈Rn(0,t)∩�L0,t

δz,d0n(z) =⇒
∑

z∈R(0,t) ∩�L0,t

δz,d0(z) a.s.. (4.9)

(4.9) when t = T entails that Lemma 4.6 holds for almost every realization on {θ1 > T}.
In order to complete the proof of Lemma 4.6, it remains to show that∑

z∈Rn(0,θ1n)∩�L
0,θ1n

δz,d0n(z) =⇒
∑

z∈R(0,θ1) ∩�L
0,θ1

δz,d0(z) a.s.. (4.10)

We will proceed in three steps.
Step 1. Since N b is a set of equicontinuous paths a.s., for almost every realization of

our coupling, there exists L′ ∈ Q+ with L′ > L (and L′ random) such that any path in
N b(Σ0) hitting a point in R(0, θ1) ∩�L0,θ1 remains in the box �L

′

0,θ1 between time 0 and θ1,
and further, under our coupling, the same holds at the discrete level for n large enough.
In the following, we show that for almost every realization of our coupling, there exists a
(random) rational q < θ1 such that

R(0, θ1) ∩�L
′

q,θ1 = ∅, (4.11)

and for n large enough , Rn(0, θ1
n) ∩�L

′

q,θ1n
= ∅.

Since under our coupling, θ1
n → θ1 a.s., it is enough to show that

inf{x < θ1 : R(0, θ1) ∩�L
′

x,θ1 = ∅} < θ1,

lim sup
n→∞

inf{x < θ1
n : Rn(0, θ1

n) ∩�L
′

x,θ1n
= ∅} < θ1 a.s. (4.12)

The first property simply follows from the fact that R(0, θ1) is locally finite (which was
established in the proof of Proposition 3.1). Let us consider a realization such that the
lim sup above is equal to θ1 and let us show that it must belong to a set of measure zero.
Going to a subsequence if necessary, there is a sequence qn ↑ θ1 such that

Rn(0, θ1
n) ∩�L

′

qn,θ1n
6= ∅.

In particular, there must exist a sequence of discrete separation points {zn} with zn ∈
R(0, θ1

n) ∩�L
′

qn,θ1n
, and π1

n, π
2
n ∈ Sεn(Ubn(Σ0)) such that π1

n and π2
n pass through the point

zn but attain two distinct points (x1
n, θ

1
n) and (x2

n, θ
1
n) at time θ1

n. Recall that ξ0(θ1) is
locally finite a.s. and that under our coupling

ξ0
n(θ1

n) =⇒ ξ0(θ1) a.s.
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In particular, the sets ξ0
n(θ1

n) are sparse, in the sense that distinct points must remain at a
macroscopic distance from each other. Let us assume w.l.o.g. that the realization under
consideration belongs to the set under which the previous limiting statement holds.
Since the two distinct points x1

n, x
2
n alluded to earlier belong to ξ0

n(θ1), this entails that
the family of paths {π1

n, π
2
n}n is not equi-continuous (the two paths π1

n and π2
n separate at

time arbitrarily close to θ1
n and take two macroscopically distinct values at time θ1

n). We
already argued that ∪nSεn(Ubn) is a set of equicontinuous paths a.s. As a consequence,
the event {lim supn→∞ inf{x < θ1

n : Rn(0, θ1
n) ∩ �L

′

x,θ1n
= ∅} = θ1} has measure 0. It

follows that (4.12) (and thus (4.11)) holds a.s., as claimed earlier.

Step 2. For every q, L′ ∈ Q+, define Eq,L′ to be the set of realizations such that (1)
for n large enough, any path in Sεn(Ubn)(Σ0) hitting a point in R(0, θ1

n)∩�L0,θ1 remains in

the box �L
′

0,θ1 and (2) θ1 > q, and (3) (4.11) holds. Note that for any realization in Eq,L′ ,

any point in R(0, θ1) ∩�L0,θ1 must belong to the rectangle �L0,q.
In Step 2, our goal is to show that for almost every realization in Eq,L′ ,∑

z∈Rn(0,θ1n) ∩�L0,q

δz,d0n(z) =⇒
∑

z∈R(0,θ1) ∩�L0,q

δz,d0(z) a.s.. (4.13)

First, under our coupling,∑
z∈Rn(0,q)∩�L0,q

δz,d0n(z) =⇒
∑

z∈R(0,q) ∩�L0,q

δz,d0(z) a.s.. (4.14)

Next, on Eq,L′ , since q < θ1, R(0, θ1) ∩�L0,q is a subset of R(0, q) ∩�L0,q: if t < q, any two
paths separating at t up to time θ1 must also separate up to time q. Let us now show that
for almost every realization in Eq,L′ :

∀zn = (xn, tn) ∈ Rn(0, q) s.t. zn → z = (x, t) ∈ R(0, q), then

z ∈ R(0, θ1) iff zn ∈ R(0, θ1
n) for infinitely many n. (4.15)

Combining (4.14) with (4.15) yields (4.13). The rest of Step 2 is dedicated to the proof of
(4.15) (thus showing (4.13)).

First, let us assume that z ∈ R(0, q) and that z also belongs to R(0, θ1). We now show
that zn (as defined in (4.15)) belongs to R(0, θ1

n) for n large enough. Let π1, π2 ∈ N b(Σ0)

passing through z and separating up to θ1. Since Sεn(Ubn(Σ0)) converges to N b(Σ0) a.s.,
there are two sequences π1

n and π2
n in Sεn(Ubn(Σ0)) such that πin converges to πi, for

i = 1, 2. By Lemma 4.1, d0(z) > 0 a.s. and further, under our coupling d0
n(zn) converges

to d0(z) a.s.: in other words, zn must remain macroscopically isolated from the left and
from the right. Since π1

n(tn)− π2
n(tn)→ 0, this implies that

π1
n(tn) = π2

n(tn) for n large enough.

Next, recall that π1 and π2 separate at z up to time θ1. By the latter property, π1
n and π2

n

separate up to θ1
n for large enough n at a point z′n with ρ(z′n, zn)→ 0 as n→∞. However,

because R(0, q) is locally finite and Rn(0, q) =⇒ R(0, q) a.s., z′n and zn must coincide after
a finite rank. This proves that if z ∈ R(0, q), but z also belongs to R(0, θ1), then zn also
belongs to R(0, θ1

n) for n large enough.
Next, let us assume that zn ∈ Rn(0, q) and also belongs to Rn(0, θ1

n) for infinitely many
n. Going to a subsequence if necessary, we can assume that zn belongs to Rn(0, θ1

n) for
every n. Let π1

n and π2
n in Sεn(Ubn(Σ0)) separating at zn up to time θ1

n. In order to prove
(4.15), we need to show that z belongs to R(0, θ1). Going to a subsequence if necessary,
πin converges to πi ∈ N b(Σ0) for i = 1, 2. Furthermore, since d0(z) > 0 a.s., arguing as in
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the previous paragraph, the πi’s must go through the point z. It remains to prove that π1

and π2 separate up to time θ1 after passing through z. First, since ξ0(θ1) is locally finite
a.s., and since ξ0

n(θ1
n) converges to ξ0(θ1) a.s., the set of ξ0

n(θ1
n) remains “sparse” as n

goes to∞. Since π1
n(θ1

n) 6= π2
n(θ1

n), this entails

lim
n
π1
n(θ1

n)− π2
n(θ1

n) > 0,

which is equivalent to π1(θ1) 6= π2(θ1).
We now need to prove that π1 and π2 never coincide on the time interval (t, θ1) (where

t is the time coordinate of z). Let us assume by contradiction that π1 and π2 meet again
on this time interval. Since π1(θ1) 6= π2(θ1), the two paths must separate at another
point z′ = (x′, t′), with t < t′ < θ1. Since we are only considering realizations in Eq,L′ ,
we must have t′ < q (as already mentioned at the beginning of Step 2). Let z′n ∈ Rn(0, q)

converging to z′. Since d0(z′) > 0 and d0
n(z′n) converges to d0(z′), this implies that πn1

and πn2 must also go through z′n after a finite rank. But this would contradict the fact
that π1

n and π1
n separate at zn. This ends the proof of (4.13).

Step 3. We are now ready to prove (4.10). For every q, L′ ∈ Q+, and for almost every
realization in Eq,L′ :∑

z∈R(0,θ1) ∩�L
0,θ1

δz,d0(z) =
∑

z∈R(0,θ1) ∩�L0,q

δz,d0(z) +
∑

z∈R(0,θ1) ∩�L
q,θ1

δz,d0(z)

=
∑

z∈R(0,θ1) ∩�L0,q

δz,d0(z) .

Since the analogous identity holds at the discrete level for n large enough, (4.13) implies
that for almost every realization in Eq,L′∑

z∈R(0,θ1n) ∩�L
0,θ1n

δz,d0n(z) =⇒
∑

z∈R(0,θ1) ∩�L
0,θ1

δz,d0(z) a.s.

Finally, since P(∪q,L′∈Q+Eq,L′) = 1 by Step 1, (4.10) follows. This completes the proof of
Lemma 4.6.

4.4 Proof of Proposition 4.4

Going to a subsequence, we can assume w.l.o.g. that the sign of tn remains constant
as n varies. In the following, we will treat the case ∀n ∈ N, tn ≤ 0. The other case can
be handled along the same lines. We decompose the proof of Proposition 4.4 into three
lemmas.

Lemma 4.7. Let γ > 0 and define the event

Dγ,n = {∀k ∈ Z s.t. |(2k + 1)εn| ≤ γ, G((2k+1)εn,0)
n (T )

and G(0,0)
n (T ) only differ by their root}.

Then lim infγ→0 lim infn→∞P (Dγ,n) = 1.

Proof. Define
γn := sup{(2k + 1)εn : k ∈ N, (2k + 1)εn ≤ γ}.

and let lγ,n (resp., rγ,n) be the leftmost (resp., rightmost) path in Sεn(Ubn) starting from
−γn (resp., γn). Finally, we set

τγ,n := inf{t > 0 : rγ,n(t) = lγ,n(t)}.
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Let L = 1 in the definition of θ1
n. Any path in Sεn(Ubn,κn) starting on [−γn, γn] at time 0

remains squeezed between lγ,n and rγ,n, which easily implies that

D′γ,n = {τγ,n ≤ θ1
n, |rγ,n(u)|, |lγ,n(u)| < 1,∀u ∈ [0, τγ,n]}

is a subset of Dγ,n. (Indeed, the properties characterizing D′γ,n ensure that any path in
the killed Brownian net starting at time 0 at x̄n ∈ [−γn, γn] connects the root (x̄n, 0) to
the point (r(τγ,n), τγ,n) = (l(τγ,n), τγ,n)). On the other hand, as n go to +∞, lγ,n and rγ,n
converge to drifted Brownian motions starting from −γ and γ respectively, those two
Brownian motions being independent until they meet. This easily implies:

∀δ > 0, lim
γ→0

lim
n→∞

P(τγ,n ≤ δ, |rγ,n(u)|, |lγ,n(u)| < 1,∀u ∈ [0, τγ,n]) = 1,

whereas θ1
n converges in distribution to θ1, with θ1 > 0 a.s.. This implies that

lim
γ→0

lim
n→∞

P(D′γ,n) = 1,

and since D′γ,n ⊆ Dγ,n, this completes the proof of the lemma.

Lemma 4.8. Let γ > 0 and define Fγ,n = {∀π ∈ Sεn(Ubn)(zn), |π(0)| < γ/2}. Then
lim infn→∞P (Fγ,n) = 1.

Proof. This is a direct consequence of the equicontinuity of the paths in ∪nSεn(Ubn).

Lemma 4.9. Define Hn = {∀π ∈ Sεn(Ubn,κn)(zn), eπ > 0}. Then lim infn→∞P (Hn) = 1.

Proof. Again, we let L = 1 in the definition of θ1
n. Using translation invariance (both in

time and space), we have

P(Hn) = P(∀π ∈ Sεn(Ubn,κn)(0, 0), eπ > −tn)

≥ P(∀π ∈ Sεn(Ubn,κn)(0, 0), |π(u)| ≤ 1 ∀u ∈ [0,−tn], θ1
n > −tn).

Finally, the conclusion follows from the equicontinuity of ∪nSεn(Ubn,κn) and the fact that
θn1 goes to θ1, with θ1 > 0 a.s..

We are now ready to complete the proof of Proposition 4.4. It is not hard to check
that for every γ > 0,

Dγ,n ∩ Fγ,n ∩Hn ⊂ {Gznn (T ) and G(0,0)
n (T ) are isomorphic}

and thus,

P({Gznn (T ) and G(0,0)
n (T ) are isomorphic}c) ≤ P(Dc

γ,n) + P(F cγ,n) + P(Hc
n).

Letting successively n and γ go to∞ and 0 respectively completes the proof of Proposition
4.4.

5 Appendix

In this section we present three models that can be written as a voter model pertur-
bation (VMP). In the following, we use the same notation as in Section 1.2.
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5.1 Spatial stochastic Lotka-Volterra model

As in [CDP13], we consider a discrete version of the stochastic Lotka-Volterra model
as introduced by Pacala and Neuhauser [NP00]. It is a spin system with each site
taking value in {0, 1}. At each time step, the dynamics can easily be described by a
two steps procedure (between t and t+ 1). First, the particle at x dies with probability
α(1−mε(1−η(x)) fx,η(1−η(x))), where mε is a function from {0, 1} to (0, 1) and α ∈ [0, 1].
Secondly, if it dies, it is replaced by the type of one its neighbor chosen according to the
transition kernel K.

For the sake of illustration, we show that when mε(1) = mε(0) = ε > 0 (symbiotic
symmetric case) the Lotka-Volterra model can be written as a perturbation of the voter
model. Other cases (i.e. when mε is not constant and might be negative) can be treated
in a similar fashion.

Proposition 5.1. The symmetric symbiotic Lotka—Volterra model can be written as a
perturbation of the voter model.

Proof. We will show that the symmetric symbiotic Lotka—Volterra model can be written
as a perturbation of the voter model

P εx,η = (1− ε)P̄ vx,η + εBx,η (5.1)

with
P̄ vx,η = (1− α)δη(x) + α

∑
i

fx,η(i)δi

and Bx,η is a boundary noise with

Q = δ0 ×K(0, dy)×K(0, dy)

g0,1,0 = g0,0,1 =
1

2
αδ1 + (1− 1

2
α)δ0 and g0,i,j = δ0 otherwise.

g1,1,0 = g1,0,1 =
1

2
αδ0 + (1− 1

2
α)δ1 and g1,i,j = δ1 otherwise

(Note that there is no bulk noise in this model.) For η(x) = 0, we have

P εx,η(1) = α(1− εfx,η(1))fx,η(1)

P εx,η(0) = (1− α(1− εfx,η(1))) + α(1− εfx,η(1))fx,η(0)

which can be rewritten as

P εx,η(1) = (1− ε)[αfx,η(1)] + ε[αfx,η(1)− αfx,η(1)2]

= (1− ε)[αfx,η(1)] + ε[αfx,η(0)fx,η(1)]

P εx,η(0) = (1− ε)[αfx,η(0) + (1− α)] + ε[1− αfx,η(0)f(1)].

One can get a symmetric expression for η(x) = 1. From there, one can directly check
that (5.1) holds.

5.2 The q colors Potts model

In this example, we show how our particular scaling for the voter model perturba-
tion emerges naturally when considering a stochastic Potts model at low temperature.
Stochastic one-dimensional Potts model are Markov processes {ηt} in discrete or con-
tinuous time taking values in the state space {1, ..., q}Z with an invariant distribution
equal (or closely related) to the Gibbs measure (at inverse temperature β) with formal
Hamiltonian H given by

H(η) =
∑
x∈Z

δη(x)6=η(x+1), (5.2)
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where η(x) is the x coordinate of the configuration η. Interpreting {1, ..., q} as a set of
colors, H simply counts the number of boundaries between the color-clusters of the
system. In dimension 1, it is well known that for β < ∞ the Gibbs measure is unique,
and that there is no phase transition for the (static) Potts model.

We will primarily be concerned with the following discrete time model in which at
each integer time, the values of ηt(x) for x ∈ Z all update simultaneously with the
following probabilities

wβ =
2(eβ − 1)

q + 2(eβ − 1)
, bβ =

(eβ − 1)2q

((e2β − 1) + q)(q + 2(eβ − 1))
, κβ =

q

e2β + (q − 1)

This particular dynamics qualifies as a perturbation of the voter model, with the
parameter ε corresponding to e−β and further

kβe
2β → q and bβe

β → q/2.

Remark 5.2. The scaling of the branching and killing parameters coincides with the
scaling of Theorem 1.1(3)(i).

Later in this section, we will discuss the relation of the Potts model Gibbs measure to
this discrete time process. But first, we motivate the choice of transition probabilities by
considering a continuous time voter model perturbation with transition rates given by
wβ , bβ and kβ

Proposition 5.3. Let us consider the continuous time Markov process with transition
rates (wβ , bβ , κβ) – the transitions corresponding to a walk, branch and kill move respec-
tively (see end of Section 1.2) – and let {Bx,η} for η(x−1) 6= η(x+1) and p be the uniform
distribution on {1, · · · , q} and Bx,η = δη(x−1) when η(x−1) = η(x+ 1). This model defines
a contiuous time q-states Potts model at inverse temperature which is reversible with
respect to Gibbs measure.

Proof. When a Poisson clock rings at site x at time t that site is updated based on the
values of spins at the two nearest neighbor sites. Therefore in the detailed balance
equations needed for reversibility η(x− 1) and η(x+ 1) are fixed while ηt−(x) makes a
transition to ηt(x). For ci = (c`, ci, cr) the color configuration in {1, . . . , q}3 of (ηt−(x −
1), ηt−(x), ηt−(x + 1)), cf the color of ηt(x), with cf = (c`, cf , cr), the detailed balance
equations for the rates q of the transitions ci → cf and cf → ci are

q(ci → cf )/q(cf → ci) = exp(−β∆H(ci → cf )) , (5.3)

where

∆H(ci → cf ) = H(cf )−H(ci) = (δcf 6=c` − δci 6=c`) + (δcf 6=cr − δci 6=cr ) . (5.4)

One can readily check that (5.3) is satisfied for our particular choice of the triplet
(wε, bε, κε).

Before returning to our discrete time model where all vertices update simultaneously,
we consider a model in which, say, even (resp., odd) vertices update at even (resp., odd)
integer times. We leave it as an exercise for the reader to convince herself that the
detailed balance calculation in the proposition above for continuous time model implies
the same for each time step in this (alternating) discrete time model.

For the (simultaneously updating) discrete model, we note two elementary properties:
(A) if one restricts attention to the even (resp., odd) space-time sublattice of Z × N,
these two restricted stochastic processes are independent of each other. (B) The odd
sublattice restriction of this dynamics is identical to the odd sublattice restriction of the
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alternating discrete model. These two properties imply that an invariant measure for
simultaneously updating process is P × P ′ where P (resp., P ′) is the Gibbs measure on
Z restricted to Zeven (Zodd).

5.3 Noisy biased voter model

We start with a general description of this model. Let (κε, bε, α) be three non-negative
numbers with α ∈ [0, 1]. In a continuous time setting, the noisy biased voter model is a
spin system with transition rates at x:

transition to 1 (1 + bε)fx,1(η) + κε(1− α),

transition to 2 f2,η(x) + κεα.

A discrete time analog of such system consists in updating each site x at each discrete
time step according to the following rule

take on color 1 with probabilty P εx,η(1) =
(1 + bε)f1,η(x) + (1− α)κε

1 + bεf1,η(x) + κε
,

take on color 2 with probability P εx,η(2) =
f2,η(x) + ακε

1 + bεf1,η(x) + κε
, (5.5)

Proposition 5.4. Let b, k ≥ 0, and let κε = ε2κ and bε = εb. In the case d = 1, the
previous model is a voter model perturbation.

Proof. We show that the biased voter model is a voter model perturbation with a bound-
ary nucleation part given by

Q = K(0, dy)×K(0, dy)×K(0, dy)

g2,2,2 = δ2, g1,1,1 = δ1 (5.6)

g1,2,2 = g2,1,2 = g2,2,1 = 1
3δ2 + 2

3δ1

g2,1,1 = g1,2,1 = g1,1,2 = bε
3 δ2 + (1− bε

3 )δ1 (5.7)

and a bulk nucleation part given by

pε(2) = α, , pε(1) = 1− α,

while the rate of branching is bε and the killing rate is κε. Expanding (5.5) in the ε

parameter, we get that

P εx,η(1) = (fx,η(1) + rε(fx,η(1))) + bεfx,η(1) (1− (1 + bε)fx,η(1) + bεf1,ε)

+κε((1− α)− fx,η(1))

P εx,η(2) = (fx,η(2)− rε(fx,η(1))) + bεf2,ε(bεfx,η(1)2 − fx,η(1)) + κε(α− fx,η(2)). (5.8)

where rε is a function such that rε(fx,η(1)) = O(ε3) and for ε small enough, for every
value of fx,η(1) ∈ [0, 1]:

fx,η(1) + rε(fx,η(1))/wε, fx,η(2)− rε(fx,η(1))/wε ≥ 0.

After some straightforward manipulations, this can be rewritten under the following
form

P εx,η(1) = wε (fx,η(1) + rε(fx,η(1))/wε)

+ bε

(
fx,η(1)3 + 3fx,η(2)2fx,η(1)× 2

3
+ 3fx,η(1)2fx,η(2)× (1− bε

3
)

)
+ κε(1− α)

P εx,η(2) = wε (fx,η(2)− rε(fx,η(1))/wε)

+ bε

(
fx,η(2)3 + 3fx,η(2)2fx,η(1)× 1

3
+ 3fx,η(1)2fx,η(2)× bε

3

)
+ κεα,
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where wε = 1− bε − κε.
Under this condition, one can readily check that the noisy voter model can be written

as a voter model perturbation with a boundary and bulk nucleations chosen as described
above.
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