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Abstract

The objective of this study is to investigate the limiting behavior of a subgraph counting
process built over random points from an inhomogeneous Poisson point process on Rd.
The subgraph counting process we consider counts the number of subgraphs having
a specific shape that exist outside an expanding ball as the sample size increases.
As underlying laws, we consider distributions with either a regularly varying tail or
an exponentially decaying tail. In both cases, the nature of the resulting functional
central limit theorem differs according to the speed at which the ball expands. More
specifically, the normalizations in the central limit theorems and the properties of the
limiting Gaussian processes are all determined by whether or not an expanding ball
covers a region - called a weak core - in which the random points are highly densely
scattered and form a giant geometric graph.
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1 Introduction

The history of random geometric graphs started with Gilbert’s 1961 study ([16])
and, since then, it has received much attention both in theory and applications. More
formally, given a finite set X ⊂ Rd and a real number r > 0, the geometric graph G(X , r)
is defined as an undirected graph with vertex set X and edges [x, y] for all pairs x, y ∈ X
for which ‖x− y‖ ≤ r. The theory of geometric graphs has been applied mainly in large
communication network analysis, in which the connectivity of network agents strongly
depends on the distance between them; see [12], [30], and Chapter 3 of [18]. On the
purely theoretical side of random geometric graphs, the monograph [23] is probably
the best known resource. It covers a wide range of topics, such as the asymptotics of
the number of subgraphs with a specific shape, the vertex degree, the clique number,
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FCLT for subgraph counting processes

the formation of a giant component, etc. From among these interesting subjects, the
present study focuses on constructing the functional central limit theorem (FCLT) for the
number of subgraphs isomorphic to a predefined connected graph Γ of finite vertices.

A typical setup in [23] is as follows. Let Xn be a set of random points on Rd. Typically,
this will be either an i.i.d. random sample of n points from f , or an inhomogeneous
Poisson point process with intensity nf , where f is a probability density. We assume
that the threshold radius rn depends on n and decreases to 0 as n→∞, but we do not
impose any restrictive assumptions on f except for boundedness. Then, the asymptotic
behavior of the subgraph counts given by

Gn :=
∑
Y⊂Xn

1
{
G(Y, rn) ∼= Γ

}
, (1.1)

(∼= denotes graph isomorphism, and Γ is a fixed connected graph) splits into three differ-
ent regimes. First, if nrdn → 0, called the subcritical or sparse regime, the distribution
of subgraphs isomorphic to Γ is sparse, and these subgraphs are mostly observed as
isolated components. If nrdn → ξ ∈ (0,∞), called the critical or thermodynamic regime,
for which rn decreases to 0 at a slower rate than the subcritical regime, many of the
isolated subgraphs in G(Xn, rn) become connected to one another. Finally, if nrdn →∞
(the supercritical regime), the subgraphs are very highly connected and create a large
component.

Historically, the research on the limiting behavior of subgraph counts of the type (1.1)
dates back to the studies of [17], [29], and [31], in all of which mainly the subcritical
regime was treated. Furthermore, [7] adopted an approach based on the martingale CLT
for U -statistics and proved a CLT under various conditions on f and rn. Relying on the
so-called Stein-Chen method, a set of extensive results for all three regimes was nicely
summarized in Chapter 3 of [23].

Recently, as a higher-dimensional analogue of a random geometric graph, there has
been growing interest in the asymptotics of the so-called random Cěch complex. See,
for example, [19], [20], and [32], while [11] provides an elegant review of that direction.
Similarly to subgraph counts in (1.1), the behavior of random Čech complexes splits,
once again, into three different regimes as above. In particular, [20] mainly investigated
sparse regime (i.e., nrdn → 0), while the main focus of [32] was the thermodynamic
regime (i.e., nrdn → ξ ∈ (0,∞)) in which complexes are large and highly connected.

Somewhat parallel to (1.1), but more important for the study on the geometric
features of extreme sample clouds, is an alternative that we explore in this paper. To set
this up, we introduce a growing sequence Rn → ∞ and a threshold radius t > 0. The
following quantity, Gn(t) counts the number of subgraphs in G(Xn, t) isomorphic to Γ

that exist outside a centered ball in Rd with radius Rn:

Gn(t) :=
∑
Y⊂Xn

1
{
G(Y, t) ∼= Γ

}
× 1
{
m(Y) ≥ Rn

}
, (1.2)

where m(x1, . . . , xk) = min1≤i≤k ||xi||, xi ∈ Rd, and ‖ · ‖ is the usual Euclidean norm.
From the viewpoint of extreme value theory (EVT), it is important to investigate limit

theorems for Gn(t). Indeed, over the last decade or so there have been numerous papers
treating geometric descriptions of multivariate extremes, among them [4], [5], and [6].
In particular, Poisson limits of point processes possessing a U-statistic structure were
investigated by [13] and [28], the latter also treating a number of examples in stochastic
geometry. The main references for EVT are [15], [26], and [14].

The asymptotic behavior of (1.2) has been partially explored in [22], where a growing
sequence Rn is taken in such a way that (1.2) has Poisson limits as n → ∞. The
main contribution in [22] is the discovery of a certain layered structure consisting of
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a collection of “rings” around the origin with each ring containing extreme random
points which exhibit different geometric and topological behavior. The objective of the
current study is to develop a fuller description of this ring-like structure, at least in a
geometric graph model, by establishing a variety of FCLTs which describe geometric
graph formation between the rings.

By construction, the subgraph counts (1.2) can be viewed as generating a stochastic
process in the parameter t ≥ 0, while a process-level extension in (1.1) is much less
obvious. Then, while (1.2) captures the dynamic evolution of geometric graphs as t
varies, (1.1) only describes the static geometry. Thus, the limits in the FCLT for (1.2) are
intrinsically Gaussian processes, rather than one-dimensional Gaussian distributions.

One of the main results of this paper is that the limiting Gaussian processes can be
classified into three distinct categories, according to how rapidly Rn grows. The most
important condition for this classification is whether or not a ball centered at the origin
with radius Rn, denoted by B(0, Rn), asymptotically covers a weak core. Weak cores
are balls, centered at the origin with growing radii as n increases, in which the random
points are densely scattered and form a highly connected geometric graph. This notion,
along with the related notion of a core, play a crucial role for the classification of the
limiting Gaussian processes. Indeed, if B(0, Rn) grows so that it asymptotically covers
a weak core, then the geometric graph outside B(0, Rn) is “sparse” with many small
disconnected components. In this case, the limit is denoted as the difference between
two time-changed Brownian motions. In contrast, if B(0, Rn) is asymptotically covered
by a weak core, the geometric graph in the area between the outside of B(0, Rn) and
inside of a weak core becomes “dense”, and, accordingly, the limit becomes a degenerate
Gaussian process with deterministic sample paths. Finally if B(0, Rn) coincides with a
weak core, then the limiting Gaussian process possesses more complicated structure and
are even non-self-similar. The probabilistic properties of the limiting Gaussian processes
are summarized in Tables 1 and 2 at the end of Section 3.

We want to emphasize that the nature of the FCLT depends not only on the growth rate
of Rn but also the tail property of f . This is in complete contrast to (1.1), because, as seen
in Chapter 3 of [23], the proper normalization, limiting Gaussian distribution, etc. of the
CLT are all robust to whether f has a heavy or a light tail. In this paper, we particularly
deal with the distributions of regularly varying tails and (sub)exponential tails. However,
we are not basically concerned with any distribution with a superexponential tail, e.g., a
multivariate normal distribution. The details of the FCLT in that case remain for a future
study.

The remainder of the paper is organized as follows. First, in Section 2 we provide a
formal definition of the subgraph counting process. Section 3 gives an overview of what
was shown in the previous work [22] and what will be shown in this paper. Subsequently,
in Section 4 we focus on the case in which the underlying density has a regularly varying
tail, including power-law tails, and prove the required FCLT. We also investigate the
properties of the limiting Gaussian processes, in particular, in terms of self-similarity
and sample path continuity. In Section 5, we do the same when the underlying density
has an exponentially decaying tail. To distinguish densities via their tail properties, we
need basic tools in EVT. In essence, the properties of the limiting Gaussian processes
are determined by how rapidly Rn grows to infinity, as well as how rapidly the tail of f
decays. Finally, Section 6 carefully examines both cores and weak cores for a large class
of densities.

Before commencing the main body of the paper, we remark that all the random points
in this paper are assumed to be generated by an inhomogeneous Poisson point process
on Rd with intensity nf . In our opinion, the FCLT in the main theorem can be carried
over to a usual i.i.d. random sample setup by a standard “de-Poissonization” argument;
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see Section 2.5 in [23]. This is, however, a little more technical and challenging,
and therefore, we decided to concentrate on the simpler setup of an inhomogeneous
Poisson point process. Furthermore we consider only spherically symmetric distributions.
Although the spherical symmetry assumption is far from being crucial, we adopt it to
avoid unnecessary technicalities.

2 Subgraph counting process

Let (Xi, i ≥ 1) be i.i.d. Rd-valued random variables with spherically symmetric
probability density f . Given a Poisson random variable Nn with mean n, independent of
(Xi, i ≥ 1), denote by Pn = {X1, X2, . . . , XNn} a Poisson point process with |Pn| := Nn.
We choose a positive integer k, which remains fixed hereafter. We take k ≥ 2, unless
otherwise stated, because many of the functions and objects to follow are degenerate in
the case of k = 1.

Let Γ be a fixed connected graph of k vertices and G represent a geometric graph;
∼= denotes graph isomorphism. To avoid an unnecessary triviality, we assume, in the
following, that Γ is feasible, that is, P

(
G({X1, . . . , Xk}, r) ∼= Γ

)
> 0 for some r > 0. We

define
h(x1, . . . , xk) := 1

{
G
(
{x1, . . . , xk}, 1

) ∼= Γ
}
, x1, . . . , xk ∈ Rd .

Next, we define a collection of indicators (ht, t ≥ 0) by

ht(x1, . . . , xk) := h(x1/t, . . . , xk/t) = 1
{
G
(
{x1, . . . , xk}, t

) ∼= Γ
}
, (2.1)

from which one can capture the manner in which a geometric graph dynamically evolves
as the threshold radius t varies. Note, in particular, that h1(x1, . . . , xk) = h(x1, . . . , xk).

Clearly ht is shift invariant:

ht(x1, . . . , xk) = ht(x1 + y, . . . , xk + y) , x1, . . . , xk, y ∈ Rd , (2.2)

and, further,

ht(0, x1, . . . , xk−1) = 0 if ||xi|| > kt for some i = 1, . . . , k − 1 . (2.3)

The latter condition implies that ht(x1, . . . , xk) = 1 only when all the points x1, . . . , xk are
close enough to each other.

Moreover ht can be decomposed as follows. Suppose that Γ has k vertices and j

edges for some j ∈
{
k − 1, . . . , k(k − 1)/2

}
. Letting A` be the set of all connected graphs

on k vertices and ` edges (up to graph isomorphism), define for x1, . . . , xk ∈ Rd,

h+
t (x1, . . . , xk) := ht(x1, . . . , xk) +

k(k−1)/2∑
`=j+1

∑
Γ′∈A`

1
{
G
(
{x1, . . . , xk}, t

) ∼= Γ′
}
,

h−t (x1, . . . , xk) :=

k(k−1)/2∑
`=j+1

∑
Γ′∈A`

1
{
G
(
{x1, . . . , xk}, t

) ∼= Γ′
}
.

Note that h+
t (x1, . . . , xk) = 1 if and only if a geometric graphG

(
{x1, . . . , xk}, t

)
either coin-

cides with Γ (up to graph isomorphism) or has more than j edges, while h−t (x1, . . . , xk) = 1

only when G
(
{x1, . . . , xk}, t

)
has more than j edges. It is then elementary to check that

h±t are both indicators, taking values 0 or 1, and satisfying, for all x1, . . . , xk ∈ Rd and
0 ≤ s ≤ t,

ht(x1, . . . , xk) = h+
t (x1, . . . , xk)− h−t (x1, . . . , xk) , (2.4)

h+
s (x1, . . . , xk) ≤ h+

t (x1, . . . , xk) , (2.5)

h−s (x1, . . . , xk) ≤ h−t (x1, . . . , xk) .

h±t (0, x1, . . . , xk−1) = 0 if ||xi|| > kt for some i = 1, . . . , k − 1 . (2.6)
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In addition, since ht is an indicator, it is always the case that

h−t (x1, . . . , xk) ≤ h+
t (x1, . . . , xk) .

The objective of this study is to establish a functional central limit theorem (FCLT) of
the subgraph counting process defined by

Gn(t) :=
∑
Y⊂Pn

ht(Y)1
{
m(Y) ≥ Rn

}
, t ≥ 0 , (2.7)

where ht is given in (2.1), m(x1, . . . , xk) = min1≤i≤k ||xi||, xi ∈ Rd, and (Rn, n ≥ 1) is a
properly chosen normalizing sequence tending to infinity. Note that (2.7) counts the
number of subgraphs in G(Pn, t) isomorphic to Γ that lie completely outside of B(0, Rn).
More concrete definitions of (Rn) are given in the subsequent sections, where the
sequence is shown to be dependent on the tail decay rate of f .

The current work is motivated by extreme value theory (EVT). EVT studies, as its
name suggests, the extremal behavior of stochastic processes; in our context, we are
interested in the spatial distribution of subgraphs lying far away from the origin. For
this reason, we do not treat the case in which the density f has a bounded support with
Rn tending to a positive and finite constant.

Another important concept related to (2.7) is the number of “components” of G(Pn, t)
isomorphic to Γ. In this case, the resulting FCLT may partially share the same normalizing
constants and limiting Gaussian processes as the FCLT for (2.7), at least when Rn grows
sufficiently fast. The present paper, however, does not treat this quantity, because the
proof of the FCLT, especially that of tightness, involves much more technicalities due to
an extra condition that all Γ-subgraphs must be disconnected from the rest of Pn.

Subgraph counts are one of the most basic quantities in random geometric graph
theory. Nevertheless, the study on subgraph counts is a good starting point for more
advanced and general objects. One of the most natural and interesting objects is a
random Čech complex, which can be regarded as a higher-dimensional version of a
random geometric graph. Then, some variants of (2.7), which counts the number of
homological holes, are known as a Betti number in algebraic topology. The relevant
article in this direction is [21] which discusses the asymptotic behavior of Betti numbers
relating to the tail of probability distributions. In addition, (2.7) can also be seen
as a special case of “local” U -statistics, and therefore, for a future work, it would be
interesting to construct FCLTs for a general class of U -statistics. The related publications
include, e.g., [24], [25], and [9], though these articles do not necessarily focus on the
tail of probability distributions.

3 Annuli structure

The objective of this short section is to clarify what is already known and what is new
in this paper. Without any real loss of generality, we will do this via two simple examples,
one of which treats a power-law density and the other a density with a (sub)exponential
tail. Before this, however, we introduce two important notions.

Definition 3.1. ([1]) Given an inhomogeneous Poisson point process Pn in Rd with a
spherically symmetric density f , a centered ball B(0, Rn), with Rn →∞, is called a core
if

B(0, Rn) ⊂
⋃

X∈Pn∩B(0,Rn)

B(X, 1) . (3.1)

In other words, a core is a centered ball in which random points are densely scattered,
so that placing unit balls around them covers the ball itself. We usually wish to seek
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the largest possible value of Rn such that (3.1) occurs asymptotically with probability 1.
A related notion, the weak core, plays a more decisive role in characterizing the FCLT
proven in this paper. It is shown later that a weak core is generally larger but close in
size to a core of maximum size.

Definition 3.2. Let f be a spherically symmetric density on Rd and e1 = (1, 0, . . . , 0) ∈
Rd. A weak core is a centered ball B(0, R

(w)
n ) such that nf(R

(w)
n e1)→ 1 as n→∞.

Example 3.3. Consider the power-law density

f(x) = C/
(
1 + ||x||α

)
, x ∈ Rd, (3.2)

for some α > d and normalizing constant C. Using this density, we see how random
geometric graphs are formed in all of Rd. First, according to [1], there exists a sequence
R

(c)
n ∼ constant×(n/ log n)1/α, n→∞ such that, if Rn ≤ R(c)

n , (3.1) occurs asymptotically
with probability 1. In addition, as for the radius of a weak core, it suffices to take
R

(w)
n = (Cn)1/α. Although R

(w)
n grows faster than R

(c)
n , they are seen to be “close” to

each other in the sense that they have the same regular variation exponent, 1/α.
Beyond a weak core, however, the formation of random geometric graphs drastically

varies. In fact, the exterior of a weak core can be divided into annuli of different radii, at
which many isolated subgraphs of finite vertices are asymptotically placed in a specific
fashion. To be more precise, let us fix connected graphs Γk with k vertices for k = 2, 3, . . .

and let
R

(p)
k,n :=

(
Cn
)1/(α−d/k)

,

which in turn implies that R(w)
n � · · · � R

(p)
k,n � R

(p)
k−1,n � · · · � R

(p)
2,n, and

nk
(
R

(p)
k,n

)d
f
(
R

(p)
k,ne1

)k → 1 , n→∞ .

Under this circumstance, [22] considered the subgraph counts given by∑
Y⊂Pn

1
{
G(Y, t) ∼= Γk

}
× 1
{
m(Y) ≥ R(p)

k,n

}
, (3.3)

and showed that (3.3) weakly converges to a Poisson distribution for each fixed t. To be
more specific on the geometric side, let Ann(K,L) be an annulus with inner radius K
and outer radius L. Then, we have, in an asymptotic sense,

• Outside B
(
0, R

(p)
2,n

)
, there are finitely many graphs isomorphic to Γ2, but none

isomorphic to Γ3,Γ4, . . . .

• Outside B
(
0, R

(p)
3,n

)
, equivalently inside Ann

(
R

(p)
3,n, R

(p)
2,n

)
, there are infinitely many

graphs isomorphic to Γ2 and finitely many graphs isomorphic to Γ3, but none
isomorphic to Γ4,Γ5, . . . .

In general,

• Outside B
(
0, R

(p)
k,n

)
, equivalently inside Ann

(
R

(p)
k,n, R

(p)
k−1,n

)
, there are infinitely many

graphs isomorphic to Γ2, . . . ,Γk−1 and finitely many graphs isomorphic to Γk, but
none isomorphic to Γk+1,Γk+2, . . . etc.

Section 4 of the current paper considers the subgraph counts of the form∑
Y⊂Pn

1
{
G(Y, t) ∼= Γk

}
× 1
{
m(Y) ≥ Rn

}
, (3.4)

where (Rn) satisfies
nkRdnf(Rne1)k →∞ , n→∞ , (3.5)
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Figure 1: Layered structure of random geometric graphs. For the density (3.2), R(c)
n and

R
(w)
n are regularly varying sequences with exponent α−1. R(p)

k,n is also a regularly varying
sequence with exponent (α − d/k)−1. We study the FCLT for (3.4) in three different
regimes, i.e., (i) nf(Rne1) → 0, (ii) nf(Rne1) → ξ ∈ (0,∞), and (iii) nf(Rne1) → ∞.

In relation to other radii, they are respectively equivalent to (i) R
(w)
n � Rn � R

(p)
k,n,

(ii) Rn ∼ R(w)
n , and (iii) Rn � R

(w)
n .

in which case, Rn � R
(p)
k,n. Equivalently, B(0, Rn) is covered by B

(
0, R

(p)
k,n

)
as n → ∞.

We may, therefore, expect that infinitely many subgraphs isomorphic to Γk appear
asymptotically outside B(0, Rn). This in turn implies that, instead of a Poisson limit
theorem, the FCLT governs the limiting behavior of the subgraph counting process.
More directly, slightly modifying the argument in Theorem 2 of [1], we see that the mean
of (3.4) asymptotically behaves as a constant multiple of nkRdnf(Rne1)k, which itself
diverges as n→∞. This also indicates that the subgraph counting process (3.4) obeys a
FCLT.

As the analog of the setup for (1.1), when deriving an FCLT, the behavior of (3.4)
splits into three different regimes:

(i) nf(Rne1)→ 0 , (ii) nf(Rne1)→ ξ ∈ (0,∞) , (iii) nf(Rne1)→∞ .

Specifically, if nf(Rne1) → 0 (i.e., B(0, Rn) contains a weak core), many isolated com-
ponents of subgraphs isomorphic to Γk are distributed outside B(0, Rn). If nf(Rne1)→
ξ ∈ (0,∞) (i.e., B(0, Rn) agrees with a weak core), the subgraphs isomorphic to Γk
outside B(0, Rn) begin to be connected to one another. In particular, observing that

limk→∞R
(p)
k,n = R

(w)
n for all n, we see that

• Outside of B(0, R
(w)
n ), there are infinitely many graphs isomorphic to Γj for every

j = 2, 3, . . . .

If nf(Rne1)→∞ (i.e., B(0, Rn) is contained in a weak core), the subgraphs isomorphic
to Γk outside B(0, Rn) are further increasingly connected and form a large component.

In Section 4, we will see that the nature of the FCLT, including the normalizing
constants and the properties of the limiting Gaussian processes, differs according to
which regime one considers. Combing the results on the FCLT and the Poissonian results
in [22] produces a complete picture of the annuli structure formed by heavy tailed
random variables.

Example 3.4. Next, we turn to a density with a (sub)exponential tail

f(x) = Ce−||x||
τ/τ , x ∈ Rd , 0 < τ ≤ 1 .

for which the radius of a maximum core is given by

R(c)
n =

(
τ log n− τ log log(τ log n)1/τ + constant

)1/τ
;
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nf(Rne1)→ 0 nf(Rne1)→ ξ nf(Rne1)→∞

Regularly varying tail d(k − 1)/2 Non-SS d(k − 1)

Subexponential tail d(k − 1)/2 Non-SS d(k − 1)

Exponential tail Non-SS Non-SS Non-SS

Table 1: Self-similarity exponents of the limiting Gaussian processes. A regularly varying
tail is a notion generalizing a power-law tail. Non-SS means that the process is non-self-
similar. A zero limit of nf(Rne1) is equivalent to the case in which a ball B(0, Rn) contains
a weak core, and nf(Rne1) → ∞ if and only if B(0, Rn) is contained in a weak core. If
nf(Rne1) → ξ ∈ (0,∞), then B(0, Rn) agrees with a weak core (up to multiplicative
constants).

see [1] and [22]. In addition, one can take R(w)
n =

(
τ log n + τ logC

)1/τ
. We have that

R
(c)
n < R

(w)
n for sufficiently large n, but these radii are asymptotically equal. As in the

previous example, the exterior of a weak core is characterized by the same kind of layer
structure, for which the description in Figure 1 applies, except for the change in the
values of R(p)

k,n. Letting

R
(p)
k,n =

(
τ log n+ k−1(d− τ) log(τ log n) + τ logC

)1/τ
,

we have, in an asymptotic sense, R(w)
n � · · · � R

(p)
k,n � R

(p)
k−1,n � · · · � R

(p)
2,n, and

nk
(
R

(p)
k,n

)d−τ
f
(
R

(p)
k,ne1

)k → 1 , n→∞ .

Then, it was shown in [22] that (3.3) converges weakly to a Poisson distribution for each
fixed t.

In Section 5 of this paper, taking (Rn) such that nkRd−τn f(Rne1)k →∞, we establish
a FCLT for the subgraph counting process (2.7). To this end, our argument has to be
split, once again, into the three different regimes:

(i) nf(Rne1)→ 0 , (ii) nf(Rne1)→ ξ ∈ (0,∞) , (iii) nf(Rne1)→∞ .

As in the last example, three different Gaussian limits may appear depending on the
regime. This completes the full description of the annuli structure formed by random
variables with an exponentially decaying tail, when combined with the Poisson limit
theorems in [22].

Before proceeding to the next section, we would like to quickly overview the prop-
erties of limiting Gaussian processes in the FCLT in terms of self-similarity and some
representation results. The probabilistic features of the limiting Gaussian processes
crucially differ whether B(0, Rn) contains a weak core or not. In addition, the tail decay
rate of an underlying density plays a decisive role as well. More detailed arguments are
presented in the subsequent sections.

4 Heavy tail case

4.1 The setup

In this section, we explore the case in which the underlying density f on Rd has a
heavy tail under a more general setup than that in Example 3.3. Let Sd−1 be a (d− 1)-
dimensional unit sphere in Rd. We assume that the density has a regularly varying tail
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nf(Rne1)→ 0 nf(Rne1)→ ξ nf(Rne1)→∞

Regularly varying tail Difference of time-
changed Brownian
motions

New Degenerate Gaus-
sian process

Subexponential tail Difference of time-
changed Brownian
motions

New Degenerate Gaus-
sian process

Exponential tail Difference of time-
changed Brownian
motions

New New

Table 2: Representation results on the limiting Gaussian processes. “New” implies that
the limit constitutes a new class of Gaussian processes.

(at infinity) in the sense that for any θ ∈ Sd−1 (equivalently, for some θ ∈ Sd−1 because of
the spherical symmetry of f ), and for some α > d,

lim
r→∞

f(rtθ)

f(rθ)
= t−α for every t > 0 .

Denoting by RV−α a collection of regularly varying functions (at infinity) of exponent −α,
the above is written as

f ∈ RV−α . (4.1)

Clearly, a power-law density in Example 3.3 satisfies (4.1). Let k ≥ 2 be an integer
that remains fixed throughout this section. We remark that many of the functions and
objects are dependent on k, but the dependence may not be stipulated by subscripts (or
superscripts). Choosing the sequence Rn →∞ so that

nkRdnf(Rne1)k →∞ as n→∞ , (4.2)

we consider the subgraph counting process given in (2.7), whose behavior is, as argued
in Example 3.3, expected to be governed by a FCLT.

The scaling constants for the FCLT, denoted by τn, are shown to depend on the limit
value of nf(Rne1) as n→∞. More precisely, we take

τn :=


nkRdnf(Rne1)k if nf(Rne1)→ 0 ,

Rdn if nf(Rne1)→ ξ ∈ (0,∞) ,

n2k−1Rdnf(Rne1)2k−1 if nf(Rne1)→∞ .

(4.3)

The reason for which we need three different normalizations is deeply related to the
connectivity of a random geometric graph. To explain this, we need the notion of a weak
core; see Definition 3.2 for the formal definition. The main point is that the density of
random points between the outside and inside of a weak core is completely different.
In essence, random points inside a weak core are highly densely scattered, and the
corresponding random geometric graph forms a single giant component. Beyond a weak
core, however, random points are distributed sparsely, and as a result, we observe many
isolated geometric graphs of smaller size. This disparity between the outside and inside
of a weak core requires different normalizations in (τn). In Section 6, a more detailed
study in this direction is presented.
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4.2 Limiting Gaussian processes and the FCLT

We introduce a family of Gaussian processes which function as the building blocks
for the limiting Gaussian processes in the FCLT. For ` = 1, . . . , k, let

B` =
sd−1

`!
(
(k − `)!

)2(
α(2k − `)− d

) ,
where sd−1 is a surface area of the (d− 1)-dimensional unit sphere in Rd.

For ` = 2, . . . , k, write λ` for the Lebesgue measure on (Rd)`−1, and denote by G` a
Gaussian B`λ`-noise, such that

G`(A) ∼ N
(
0, B`λ`(A)

)
for measurable sets A ⊂ (Rd)`−1 with λ`(A) <∞, and if A∩B = ∅, then G`(A) and G`(B)

are independent. For ` = 1, we define G1 as a Gaussian random variable with zero mean
and variance B1. We assume that G1, . . . , Gk are independent.

For ` = 2, . . . , k − 1, we define Gaussian processes V` =
(
V`(t), t ≥ 0

)
by

V`(t) :=

∫
(Rd)`−1

∫
(Rd)k−`

ht(0,y, z) dzG`(dy), t ≥ 0.

In addition, if ` = k, define

Vk(t) :=

∫
(Rd)k−1

ht(0,y)Gk(dy),

and if ` = 1, set

V1(t) :=

∫
(Rd)k−1

ht(0, z) dzG1 = td(k−1)

∫
(Rd)k−1

h1(0, z) dzG1.

Note that V1 is a degenerate Gaussian process with deterministic sample paths. These
processes later turn out to be the building blocks of the weak limits in the main theorem.

The covariance function of the process V` is given by

L`(t, s) := E
{
V`(t)V`(s)

}
(4.4)

= B`

∫
(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1 ht(0,y, z1)hs(0,y, z2) , t, s ≥ 0

(if ` = k, we take zi = ∅, i = 1, 2, and if ` = 1, we set y = ∅).
Using the decomposition (2.4), we can express V` as the difference between two

Gaussian processes; that is, for ` = 2, . . . , k − 1,

V`(t) =

∫
(Rd)`−1

∫
(Rd)k−`

h+
t (0,y, z) dzG`(dy)−

∫
(Rd)`−1

∫
(Rd)k−`

h−t (0,y, z) dzG`(dy)

:= V +
` (t)− V −` (t).

The same decomposition is feasible in an analogous manner for V1 and Vk.
The following proposition shows that the processes V+

k and V−k can be represented
as a time-changed Brownian motion.

Proposition 4.1. The process V+
k can be expressed as(

V +
k (t), t ≥ 0

) d
=
(
B
(
K+
k t

d(k−1)
)
, t ≥ 0

)
,

where B is the standard Brownian motion, and K+
k := Bk

∫
(Rd)k−1 h

+
1 (0,y)dy.

Replacing K+
k with K−k := Bk

∫
(Rd)k−1 h

−
1 (0,y)dy, we obtain the same statement for

V−k .
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Proof. It is enough to verify that the covariance functions on both sides coincide. It
follows from (2.5) that for 0 ≤ s ≤ t,

E
{
V +
k (t)V +

k (s)
}

= Bk

∫
(Rd)k−1

h+
t (0,y)h+

s (0,y)dy

= sd(k−1)K+
k

= E
{
B(K+

k t
d(k−1))B(K+

k s
d(k−1))

}
.

We also claim that the process V` is self-similar and has a.s. Hölder continuous
sample paths. Recall that a stochastic process

(
X(t), t ≥ 0

)
is said to be self-similar with

exponent H if (
X(cti), i = 1, . . . , k

) d
=
(
cHX(ti), i = 1, . . . , k

)
for any c > 0, t1, . . . , tk ≥ 0, and k ≥ 1.

Proposition 4.2. (i) For ` = 1, . . . , k, the process V` is self similar with exponent
H = d(2k − `− 1)/2.

(ii) For ` = 1, . . . , k and every T > 0,
(
V`(t), 0 ≤ t ≤ T

)
has a modification, the sample

paths of which are Hölder continuous of any order in [0, 1/2).

Proof. We can immediately prove (i) by the scaling property

L`(ct, cs) = cd(2k−`−1)L`(t, s) , t, s ≥ 0 , c > 0 .

As for (ii), the statement is obvious for ` = 1 or ` = k; therefore, we take ` ∈
{2, . . . , k − 1}. By Gaussianity,

E
{(
V`(t)− V`(s)

)2m}
=

m∏
i=1

(2i− 1)
(
E
{(
V`(t)− V`(s)

)2})m
, m = 1, 2, . . . (4.5)

We now show that there exists a constant C > 0, which depends on T , such that

E
{(
V`(t)− V`(s)

)2} ≤ C(t− s) for all 0 ≤ s ≤ t ≤ T . (4.6)

By virtue of the decomposition V` = V+
` −V−` , showing (4.6) for each of V+

` and V−`
suffices. We handle V+

` only, since V−` can be treated in the same manner. We have

E
{(
V +
` (t)− V +

` (s)
)2}

= B`

∫
(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1

{
h+
t (0,y, z1)− h+

s (0,y, z1)
}

×
{
h+
t (0,y, z2)− h+

s (0,y, z2)
}
.

Because of (2.6), the above integral is not altered if the integral domain is restricted to

(Rd)`−1 × (Rd)k−` ×
(
B(0, kT )

)k−`
. In addition, by (2.5), there exist constants C1, C2 > 0,

both depending on T , such that

E
{(
V +
` (t)− V +

` (s)
)2} ≤ C1

∫
(Rd)`−1

∫
(Rd)k−`

{
h+
t (0,y, z)− h+

s (0,y, z)
}
dzdy

= C1

∫
(Rd)`−1

∫
(Rd)k−`

h+
1 (0,y, z)dzdy

(
td(k−1) − sd(k−1)

)
≤ C2

∫
(Rd)`−1

∫
(Rd)k−`

h+
1 (0,y, z)dzdy (t− s) for all 0 ≤ s ≤ t ≤ T ,

which verifies (4.6).
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Combining (4.5) and (4.6), we have that for some C3 > 0,

E
{(
V`(t)− V`(s)

)2m} ≤ C3(t− s)m for all 0 ≤ s ≤ t ≤ T .

It now follows from the Kolmogorov continuity theorem that there exists a modification
of
(
V`(t), 0 ≤ t ≤ T

)
, the sample paths of which are Hölder continuous of any order in[

0, (m− 1)/(2m)
)
. Since m is arbitrary, we are done by letting m→∞.

We are now ready to state the FCLT for the subgraph counting process, suitably
scaled and centered in such a way that

Xn(t) = τ−1/2
n

(
Gn(t)− E{Gn(t)}

)
, t ≥ 0 .

In the following,⇒ denotes weak convergence. All weak convergence hereafter are in
the space D[0,∞) of right-continuous functions with left limits. The proof of the theorem
is deferred to Section 7.1. Since Γ is assumed to be a feasible subgraph, we have that
Gn(t) > 0 with positive probability for any n ≥ 1 and t > 0, and thus, the resulting FCLTs
are always non-trivial.

Theorem 4.3. Assume that the probability density f has a regularly varying tail as in
(4.1).

(i) If nf(Rne1)→ 0 as n→∞, then(
Xn(t), t ≥ 0

)
⇒
(
Vk(t), t ≥ 0

)
in D[0,∞) .

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

(
Xn(t), t ≥ 0

)
⇒

(
k∑
`=1

ξ2k−`V`(t), t ≥ 0

)
in D[0,∞) .

(iii) If nf(Rne1)→∞ as n→∞, then(
Xn(t), t ≥ 0

)
⇒
(
V1(t), t ≥ 0

)
in D[0,∞) .

The processes V1, . . . ,Vk can be viewed as the building blocks of the limiting Gaus-
sian processes; however, how many and which ones contribute to the limit depends
on whether the ball B(0, Rn) covers a weak core or not. If B(0, Rn) covers a weak
core, equivalently, nf(Rne1) → 0, then Vk is the only process remaining in the limit.
Although, as seen in Proposition 4.1, Vk is generally represented as the difference in two
time-changed Brownian motions, it can be denoted as a single time-changed Brownian
motion when ht is increasing in t, i.e., hs(Y) ≤ ht(Y) for all 0 ≤ s ≤ t, Y ∈ (Rd)k. This is
the case when Γ is a complete graph, in which case the negative part h−t is identically
zero. In contrast, the process V1, a degenerate Gaussian process with deterministic
sample paths, only appears in the limit when B(0, Rn) is contained in a weak core,
i.e., nf(Rne1) → ∞. Finally, if B(0, Rn) agrees with a weak core (up to multiplicative
constants), all of the processes V1, . . . ,Vk contribute to the limit. Interestingly, only in
this case, do the weak limits become non-self-similar.

5 Exponentially decaying tail case

5.1 The setup

This section develops the FCLT of the subgraph counting process suitably scaled
and centered, when the underlying density on Rd possesses an exponentially decaying
tail. Typically, in the spirit of extreme value theory, a class of multivariate densities with
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exponentially decaying tails can be formulated by the so-called von Mises functions. See
for example, [3] and [4]. In particular, in the one-dimensional case (d = 1), the von Mises
function plays a decisive role in the characterization of the max-domain of attraction
of the Gumbel law. See Proposition 1.4 in [26]. We assume that the density f on Rd is
given by

f(x) = L
(
||x||

)
exp
{
−ψ
(
||x||

)}
, x ∈ Rd. (5.1)

Here, ψ : R+ → R is a function of C2-class and is referred to as a von Mises function, so
that

ψ′(z) > 0, ψ(z)→∞,
(
1/ψ′

)′
(z)→ 0 (5.2)

as z → z∞ ∈ (0,∞]. In this paper, we restrict ourselves to an unbounded support of
the density, i.e., z∞ ≡ ∞. For notational ease, we introduce the function a(z) = 1/ψ′(z),
z > 0. Since a′(z)→ 0 as z →∞, the Cesàro mean of a′ converges as well:

a(z)

z
=

1

z

∫ z

0

a′(r)dr → 0 , as z →∞ . (5.3)

Suppose that a measurable function L : R+ → R+ is flat for a, that is,

L
(
t+ a(t)v

)
L(t)

→ 1 as t→∞ uniformly on bounded v-sets. (5.4)

This condition implies that L behaves as a constant locally in the tail of f , and thus, only
ψ plays a dominant role in the characterization of the tail of f . Here, we need to put an
extra technical condition on L. Namely, there exist γ ≥ 0, z0 > 0, and C ≥ 1 such that

L(zt)

L(z)
≤ C tγ for all t > 1, z ≥ z0 . (5.5)

Since L is negligible in the tail of f , it seems reasonable to classify the density (5.1)
in terms of the limit of a. If a(z) → ∞ as z → ∞, we say that f belongs to a class of
densities with subexponential tail, because the tail of f decays more slowly than that
of an exponential distribution. Conversely, if a(z) → 0 as z → ∞, f is said to have a
superexponential tail, and if a(z) → c ∈ (0,∞), we say that f has an exponential tail.
To be more specific about the difference in tail behaviors, let us consider a slightly
more general example than that in Example 3.4, for which f(x) = L

(
||x||

)
exp
{
−||x||τ/τ

}
,

τ > 0, x ∈ Rd. Clearly, the parameter τ is associated with the speed at which f vanishes
in the tail. Observe that a(z) = z1−τ → ∞ as z → ∞ if 0 < τ < 1, and therefore in this
case, f has a subexponential tail. If τ > 1, a(z) decreases to 0, in which case f has a
superexponential tail.

An important assumption throughout most of this study is that there exists c ∈ (0,∞]

such that

a(z)→ c as z →∞ . (5.6)

In view of the classification described above, (5.6) eliminates the possibility of densities
with superexponential tail. As discovered in [22] and [1], random points drawn from a
superexponential law hardly form isolated geometric graphs outside a core, whereas
random points coming from a subexponential law do constitute a layer of isolated
geometric graphs outside a core. Accordingly, it is highly likely that the nature of the
FCLT differs according to whether the underlying density has a superexponential or a
subexponential tail. The present work focuses on the (sub)exponential tail case, and
more detailed studies on a superexponential tail case remain for future work.
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To realize a more formal set up, let k ≥ 2 be an integer, which remains fixed for the
remainder of this section; however, once again, note that many of the functions and
objects are implicitly dependent on k. Define the sequence Rn →∞, so that

nka(Rn)Rd−1
n f(Rne1)k →∞ , n→∞ . (5.7)

Defining an alternative sequence R(p)
k,n →∞ for which

nka
(
R

(p)
k,n

)(
R

(p)
k,n

)d−1
f
(
R

(p)
k,ne1

)k → 1 , n→∞ ,

the subgraph counting process using R
(p)
k,n is known to weakly converge to a Poisson

distribution; see [22]. Since Rn in (5.7) grows more slowly than R(p)
k,n, i.e., Rn/R

(p)
k,n → 0,

we may expect that an FCLT plays a decisive role in the asymptotic behavior of a
subgraph counting process.

As in the last section, we now want to recall the notion of a weak core. Let R(w)
n →∞

be a sequence such that nf(R
(w)
n e1)→ 1 as n→∞. Then, we say that a ball B

(
0, R

(w)
n

)
is a weak core. We have to change, once again, the scaling constants τn of the FCLT,
depending on whether B(0, Rn) covers a weak core or not. More specifically, we define

τn :=


nka(Rn)Rd−1

n f(Rne1)k if nf(Rne1)→ 0 ,

a(Rn)Rd−1
n if nf(Rne1)→ ξ ∈ (0,∞) ,

n2k−1a(Rn)Rd−1
n f(Rne1)2k−1 if nf(Rne1)→∞ .

(5.8)

5.2 Limiting Gaussian processes and the FCLT

The objective of this subsection is to formulate the limiting Gaussian processes and
the FCLT. Let

D` =
sd−1

`!
(
(k − `)!

)2 , ` = 1, . . . , k, (5.9)

and let H` be a Gaussian µ`-noise, where the µ` for ` = 2, . . . , k, satisfy

µ`(dρ dy) = D` e
−`ρ−c−1∑`−1

i=1 〈e1,yi〉

× 1
{
ρ+ c−1〈e1, yi〉 ≥ 0, i = 1, . . . , `− 1

}
dρ dy, ρ ≥ 0, y ∈ (Rd)`−1,

and
µ1(dρ) = D1 e

−ρdρ, ρ ≥ 0,

where c ∈ [0,∞) is determined in (5.6). Moreover, we assume that H1, . . . ,Hk are
independent.

We now define a collection of Gaussian processes needed for the construction of the
limits in the FCLT. For ` = 2, . . . , k − 1, we define

W`(t) :=

∫
[0,∞)×(Rd)`−1

∫
(Rd)k−`

e−
∑k−`
i=1

(
ρ+c−1〈e1,zi〉

)
× 1
{
ρ+ c−1〈e1, zi〉 ≥ 0, i = 1, . . . , k − `

}
ht(0,y, z) dzH`(dρ dy),

and, further,

W1(t) :=

∫ ∞
0

∫
(Rd)k−1

e−
∑k−1
i=1

(
ρ+c−1〈e1,zi〉

)
× 1
{
ρ+ c−1〈e1, zi〉 ≥ 0, i = 1, . . . , k − 1

}
ht(0, z) dzH1(dρ),

Wk(t) :=

∫
[0,∞)×(Rd)k−1

ht(0,y)Hk(dρ dy).

EJP 22 (2017), paper 17.
Page 14/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP30
http://www.imstat.org/ejp/


FCLT for subgraph counting processes

As we did in Section 4.2, by the decomposition ht = h+
t − h−t , one can write the process

W` as the corresponding difference W` = W+
` −W−

` for ` = 1, . . . , k.
It is easy to compute the covariance function of W`. We have, for ` = 1, . . . , k and

t, s ≥ 0,

M`(t, s) := E
{
W`(t)W`(s)

}
(5.10)

= D`

∫ ∞
0

∫
(Rd)2k−`−1

e−(2k−`)ρ−c−1∑2k−`−1
i=1 〈e1,yi〉

× 1
{
ρ+ c−1〈e1, yi〉 ≥ 0 , i = 1, . . . , 2k − `− 1

}
h

(`)
t,s(0,y) dy dρ ,

where

h
(`)
t,s(0, y1, . . . , y2k−`−1) := ht(0, y1, . . . , yk−1)hs(0, y1, . . . , y`−1,yk, . . . , y2k−`−1) , (5.11)

and, in particular, we set

hs(0, y1, . . . , y`−1, yk, . . . , y2k−`−1) :=

{
hs(0, yk, . . . , y2k−2) if ` = 1 ,

hs(0, y1, . . . , yk−1) if ` = k .

It is important to note that if a(z)→∞ as z →∞, then M` coincides with L` given in
(4.4) up to multiplicative factors, i.e.,

M`(t, s) =
(
α− d(2k − `)−1

)
L`(t, s), t, s ≥ 0.

This in turn implies that

W`
d
=
(
α− d(2k − `)−1

)1/2
V`,

in which case, there is nothing to explore here, because the properties of V` have already
been studied in Section 4.2.

In contrast, if a(z)→ c ∈ (0,∞) as z →∞, then M` does not directly relate to L` as
above, and, consequently, the process W` exhibits properties different to those of V`.
For example, although one may anticipate, as the analog of the process V1, that W1 is a
degenerate Gaussian process, this is no longer the case.

Proposition 5.1. Suppose that a(z)→ c ∈ (0,∞) as z →∞.
(i) W1 is a non-degenerate Gaussian process.
(ii) For ` = 1, . . . , k, W` is non-self-similar.

Proof. If a(z)→ c ∈ (0,∞) as z →∞, then M1(t, s) cannot be decomposed into a function
of t and a function of s, and therefore, W1 is non-degenerate.

As for (ii), M` does not match L` at all and it loses the scale invariance, meaning that
W` is non-self-similar.

Similarly to Proposition 4.1, however, the process Wk(= W+
k −W−

k ) can be denoted
in law as the difference between two time-changed Brownian motions, regardless of
whether a(z)→∞ or a(z)→ c ∈ (0,∞) as z →∞. Furthermore, the sample paths of W`

are Hölder continuous.

Proposition 5.2. Irrespective of the limit of a, the following two results hold.
(i) The process W+

k can be represented in law as(
W+
k (t), t ≥ 0

) d
=

(
B
(∫

[0,∞)×(Rd)k−1

h+
t (0,y)µk(dρ dy)

)
, t ≥ 0

)
,

where B is the standard Brownian motion.
The same statement holds for W−

k , by replacing h+
t with h−t .

(ii) For ` = 1, . . . , k, and every T > 0,
(
W`(t), 0 ≤ t ≤ T

)
has a modification, the

sample paths of which are Hölder continuous of any order in [0, 1/2).
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Proof. The proof of (i) is very similar to that in Proposition 4.1, so we omit it. The proof
of (ii) is analogous to that in Proposition 4.2 (ii); we have only to show that for some
C > 0,

E
{(
W`(t)−W`(s)

)2} ≤ C(t− s) for all 0 ≤ s ≤ t ≤ T .

Because of the decomposition W` = W+
` −W−

` , it suffices to prove the above for each
W+

` and W−
` . We check only the case of W+

` . We see that

E
{(
W+
` (t)−W+

` (s)
)2}

=

∫
[0,∞)×(Rd)`−1

(∫
(Rd)k−`

e−
∑k−`
i=1

(
ρ+c−1〈e1,zi〉

)
1
{
ρ+ c−1〈e1, zi〉 ≥ 0, i = 1, . . . , k − `

}
×
(
h+
t (0,y, z)− h+

s (0,y, z)
)
dz

)2

µ`(dρ dy)

≤ D`B
−1
` E

{(
V +
` (t)− V +

` (s)
)2}

.

The rest of the argument is completely the same as Proposition 4.2 (ii).

Now, we can state the FCLT of the centered and scaled subgraph counting process

Xn(t) = τ−1/2
n

(
Gn(t)− E{Gn(t)}

)
, t ≥ 0 ,

where the normalizing sequence (Rn) satisfies (5.7) and (τn) is defined in (5.8). The
proof of the theorem is presented in Section 7.2.

We have now officially presented all the limiting Gaussian processes of this paper, so
it would be beneficial for the readers to return to Tables 1 and 2 in Section 3 to overview
their properties once again. These tables indicate that the limiting Gaussian processes
are somewhat special when f has an exponential tail. For example, in this case, the
limits always lose self-similarity, regardless of the asymptotics of nf(Rne1), whereas, in
the regularly varying or the subexponential tail case, the self-similarity is lost only when
nf(Rne1) converges to a positive and finite constant. Furthermore, when nf(Rne1)→∞,
a non-degenerate limit appears only in the exponential tail case. Finally, we remark
that as in the last section, the resulting FCLTs are necessarily non-trivial, because Γ is a
feasible subgraph.

Theorem 5.3. Assume that the density (5.1) satisfies (5.2), (5.4), (5.5), and (5.6).
(i) If nf(Rne1)→ 0 as n→∞, then(

Xn(t), t ≥ 0
)
⇒
(
Wk(t), t ≥ 0

)
in D[0,∞) .

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

(
Xn(t), t ≥ 0

)
⇒

(
k∑
`=1

ξ2k−`W`(t), t ≥ 0

)
in D[0,∞) .

(iii) If nf(Rne1)→∞ as n→∞, then(
Xn(t), t ≥ 0

)
⇒
(
W1(t), t ≥ 0

)
in D[0,∞) .

6 Graph connectivity in weak core

We start this section by recalling the weak core, which was defined as a centered
ball B

(
0, R

(w)
n

)
such that nf

(
R

(w)
n e1

)
→ 1 as n→∞. In addition, we need the relevant
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notion, the core, which was defined in Definition 3.1. Recall that, given a Poisson point
process Pn on Rd, a core is a centered ball B(0, Rn) such that

B(0, Rn) ⊂
⋃

X∈Pn∩B(0,Rn)

B(X, 1) . (6.1)

In the following, we seek the largest possible sequence Rn →∞ such that the event
(6.1) occurs asymptotically with probability 1, and subsequently, it is shown that the
largest possible core and a weak core are “close” in size. However, the degree of this
closeness depends on the tail of an underlying density f , and therefore, we divide the
argument into two cases.

We first assume that the density f on Rd is spherically symmetric and has a regularly
varying tail, as in (4.1). For increased clarity, we place an extra condition that p(r) :=

f(re1) is eventually non-increasing in r, that is, p is non-increasing on (r0,∞) for some
large r0 > 0. In this case, the radius of a weak core is, clearly, given by

R(w)
n =

(
1

p

)←
(n) := inf

{
s :

(
1

p

)
(s) ≥ n

}
. (6.2)

Proposition 6.1. Suppose that p ∈ RV−α for some α > d and p is eventually non-
increasing. Define

R(c)
n =

(
1

p

)←(
δ1n

log n− δ2 log log n

)
(6.3)

with δ1 ∈
(
0, α/(2ddd/2+1)

)
and δ2 ∈ (0, 1). If Rn ≤ R(c)

n , then

P

B(0, Rn) ⊂
⋃

X∈Pn∩B(0,Rn)

B(X, 1)

→ 1 , n→∞ . (6.4)

Furthermore, the sequences (R
(c)
n ) in (6.3) and (R

(w)
n ) in (6.2) are both regularly varying

sequences with exponent 1/α, and

R
(c)
n

R
(w)
n

−
(

δ1
log n− δ2 log log n

)1/α

→ 0 , n→∞ . (6.5)

One can obtain a parallel result when the underlying density has an exponentially
decaying tail, as in (5.1). We simplify the situation a bit by assuming

f(x) = C exp
{
−ψ
(
||x||

)}
, x ∈ Rd , (6.6)

where C is a normalizing constant and ψ : R+ → R is of C2-class and satisfies ψ ∈ RVv
(at infinity) for some v > 0 and ψ′ > 0. It should be noted that we are permitting the case
v > 1, implying that, unlike in the previous section, we do not rule out densities with
superexponential tail. Evidently, the radius of a weak core is given by

R(w)
n = ψ←(log n+ logC) . (6.7)

Proposition 6.2. Assume that a probability density f on Rd is given by (6.6). Define

R(c)
n = ψ←(log n− log log log n− δ1 − δ2) , (6.8)

where δ1 = d log 2− log v + (1 + d/2) log d− logC and δ2 > 0. If Rn ≤ R(c)
n , then

P

B(0, Rn) ⊂
⋃

X∈Pn∩B(0,Rn)

B(X, 1)

→ 1 , n→∞ . (6.9)

EJP 22 (2017), paper 17.
Page 17/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP30
http://www.imstat.org/ejp/


FCLT for subgraph counting processes

Furthermore, the sequences (R
(c)
n ) in (6.8) and (R

(w)
n ) in (6.7) are close in size in the

sense of
R

(c)
n

R
(w)
n

−
(

1− log log log n+ δ1 + δ2 + logC

logCn

)1/v

→ 0 , n→∞ . (6.10)

The following result is needed as preparation for the proof of these propositions. The
proof may be obtained by slightly modifying the proof of Theorem 2.1 in [1], but we
repeat the argument in order for this paper to be self-contained.

Lemma 6.3. Given a spherically symmetric density f on Rd, suppose that p(r) = f(re1)

is eventually non-increasing. Let g = 1/(2d1/2). Suppose, in addition, that there exists a
sequence Rn ↗∞ such that d logRn − gdnf(Rne1)→ −∞ as n→∞. Then,

P

B(0, Rn) ⊂
⋃

X∈Pn∩B(0,Rn)

B(X, 1)

→ 1 , n→∞ . (6.11)

Proof. For ρ > 0, let Q(ρ) be a collection of cubes with grid g that are contained in
B(0, ρ). Then,{

Q ∩ Pn 6= ∅ for all Q ∈ Q(ρ)
}
⊂
{
B(0, ρ) ⊂

⋃
X∈Pn∩B(0,ρ)

B(X, 1)
}

for all ρ > 0 and n ≥ 1. It now suffices to show that

P
(
Q ∩ Pn = ∅ for some Q ∈ Q(Rn)

)
→ 0 , n→∞ .

This probability is estimated from above by∑
Q∈Q(Rn)

P(Q ∩ Pn = ∅) =
∑

Q∈Q(Rn)

exp
{
−n
∫
Q

f(x)dx
}

≤
∑

Q∈Q(Rn)

exp
{
−ngdf(Rne1)

}
≤ g−dRdn exp

{
−gdnf(Rne1)

}
.

At the first inequality, we used the fact that p is eventually non-increasing. Clearly, the
rightmost term vanishes as n→∞.

Proof. (proof of Proposition 6.1) Observe that the assumption p ∈ RV−α implies (1/p)← ∈
RV1/α, e.g., Proposition 2.6 (v) in [27]. Thus, (6.5) readily follows from the uniform
convergence of regularly varying functions; see Proposition 2.4 in [27]. By Lemma 6.3,
it suffices to verify that d logR

(c)
n − gdnf

(
R

(c)
n e1

)
→ −∞ as n→∞. Since 0 < δ2 < 1, we

have

d logR(c)
n ≤ d

[
log

(
1

p

)←(
δ1n

log n− δ2 log log n

)][
log

(
δ1n

log n− δ2 log n log n

)]−1

× (log δ1 + log n− δ2 log log n) ,

and gdnf
(
R

(c)
n e1

)
= gdδ−1

1 (log n− δ2 log log n). Using Proposition 2.6 (i) in [27],

d

[
log

(
1

p

)←(
δ1n

log n− δ2 log log n

)][
log

(
δ1n

log n− δ2 log n log n

)]−1

− gdδ−1
1

→ dα−1 − gdδ−1
1 < 0 , n→∞ .

At the last inequality, we applied the constraint in δ1. Therefore, we have d logR
(c)
n −

gdnf
(
R

(c)
n e1

)
→ −∞, n→∞, as requested.
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Proof. (proof of Proposition 6.2) Since ψ← ∈ RV1/v, it is easy to show (6.10), and

therefore, we prove only that d logR
(c)
n − gdnf

(
R

(c)
n e1

)
→ −∞ as n→∞. We see that

d logR(c)
n ≤ d logψ←(log n) ∼ dv−1 log log n , n→∞ ,

and that gdnf
(
R

(c)
n e1

)
= gdCeδ1+δ2 log log n. By virtue of the constraints in δ1 and δ2, we

have dv−1 − gdCeδ1+δ2 < 0; thus, the claim is proved.

Remark 6.4. The proof of Lemma 6.3 merely estimated the probability in (6.11) from
below. Therefore, it seems to be possible that in the propositions above, (6.4) and (6.9)
may hold for the sequence Rn ↗ ∞ growing more quickly than R

(c)
n but more slowly

than R(w)
n , i.e., R(c)

n ≤ Rn ≤ R(w)
n ; it is unknown, however, to what extent we can make

Rn closer to R(w)
n .

7 Proof of main results

This section presents the proof of the main results of this paper. The proof is,
however, rather long, and therefore, it is divided into several parts. All the supplemental
ingredients necessary are collected in the Appendix, most of which are cited from [23].

Let Ann(K,L) be an annulus of inner radius K and outer radius L. For x1, . . . , xk ∈ Rd,
define Max(x1, . . . , xk) as the function selecting an element with the largest distance
from the origin. That is, Max(x1, . . . , xk) = xi if ||xi|| = max1≤j≤k ||xj ||. If multiple xj ’s
achieve the maximum, we choose an element with the smallest subscript.

In the following, Y,Y ′,Yi, etc. always represent a finite collection of d-dimensional
real vectors. We use the following shorthand notations. That is, for x = (x1, . . . , xm) ∈
(Rd)m, x ∈ Rd, and y = (y1, . . . , ym−1) ∈ (Rd)m−1,

f(x) := f(x1) · · · f(xm) ,

f(x+ y) := f(x+ y1) · · · f(x+ ym−1) ,

ht(0,y) := ht(0, y1, . . . , ym−1) etc.

Regarding the indicator ht : (Rd)k → {0, 1} given in (2.1), the following notations are
used to save space.

ht,s(x) := ht(x)− hs(x) , 0 ≤ s ≤ t , x ∈ (Rd)k, (7.1)

h±t,s(x) := h±t (x)− h±s (x) , 0 ≤ s ≤ t , x ∈ (Rd)k,

hn,t,s(x) := ht,s(x)1
{
m(x) ≥ Rn

}
, 0 ≤ s ≤ t , x ∈ (Rd)k, (7.2)

and for ` ∈ {0, . . . , k},

h
(`)
t,s(x) := ht(x1, . . . , xk)hs(x1, . . . , x`, xk+1, . . . , x2k−`) , t, s ≥ 0 , x ∈ (Rd)2k−`. (7.3)

In particular, we set

hs(x1, . . . , x`, xk+1, . . . , x2k−`) :=

{
hs(xk+1, . . . , x2k) if ` = 0 ,

hs(x1, . . . , xk) if ` = k .

In Section 7.1, we use, for 1 ≤ K < L ≤ ∞, n ∈ N+ and t ≥ 0,

hn,t,K,L(x) := ht(x)1
{
m(x) ≥ Rn , Max(x) ∈ Ann(KRn, LRn)} ,

h±n,t,K,L(x) := h±t (x)1
{
m(x) ≥ Rn , Max(x) ∈ Ann(KRn, LRn)} .
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The same notations are retained for Section 7.2 to represent, for 0 ≤ K < L ≤ ∞, n ∈ N+

and t ≥ 0,

hn,t,K,L(x) := ht(x)1
{
m(x) ≥ Rn , a(Rn)−1

(
Max(x)−Rn

)
∈ [K,L)

}
,

h±n,t,K,L(x) := h±t (x)1
{
m(x) ≥ Rn , a(Rn)−1

(
Max(x)−Rn

)
∈ [K,L)

}
.

Finally, C∗ denotes a generic positive constant, which may change between lines and
does not depend on n.

In the following, we divide the argument into two subsections. Section 7.1 treats the
case in which the underlying density has a regularly varying tail; our goal is to prove
Theorem 4.3. Subsequently Section 7.2 provides the proof of Theorem 5.3, where the
density is assumed to have an exponentially decaying tail. Before the specific subsections,
however, we show some preliminary results, which are commonly used for the tightness
proof in both subsections.

Lemma 7.1. Let ht : (Rd)k → {0, 1} be an indicator given in (2.1). Fix T > 0. Then, we
have for ` ∈ {1, . . . , k},∫

(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1h
+
t,s(0,y, z1)h+

s,r(0,y, z2) ≤ C∗(t− s)(s− r) , (7.4)∫
(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1h
−
t,s(0,y, z1)h−s,r(0,y, z2) ≤ C∗(t− s)(s− r)

for all 0 ≤ r ≤ s ≤ t ≤ T .

Proof. We only prove the first inequality. If ` = 1 or ` = k, the claim is trivial, and
therefore, we can take 2 ≤ ` ≤ k − 1. It follows from (2.6) that the integral in (7.4)

is not altered if the integral domain is restricted to
(
B(0, kT )

)`−1 ×
(
B(0, kT )

)k−` ×(
B(0, kT )

)k−`
. With λ being the Lebesgue measure on (Rd)k−`, we see that for every

y ∈ (Rd)`−1,∫(
B(0,kT )

)k−` h+
t,s(0,y, z)dz = λ

{
z ∈

(
B(0, kT )

)k−`
: h+

t (0,y, z) = 1 , h+
s (0,y, z) = 0

}
≤ λ

{
z ∈

(
B(0, kT )

)k−`
: s < ||zi − zj || ≤ t for some i 6= j

}
+ λ
{
z ∈

(
B(0, kT )

)k−`
: s < ||zi − yj || ≤ t for some i, j

}
+ λ
{
z ∈

(
B(0, kT )

)k−`
: s < ||zi|| ≤ t for some i

}
+ λ
{
z ∈

(
B(0, kT )

)k−`
: s < ||yi − yj || ≤ t for some i 6= j

}
+ λ
{
z ∈

(
B(0, kT )

)k−`
: s < ||yi|| ≤ t for some i

}
. (7.5)

Observe that for i 6= j,

λ
{
z ∈

(
B(0, kT )

)k−`
: s < ||zi − zj || ≤ t

}
≤ (kT )d(k−`−1)(ωd)

k−`(td − sd) ,

where ωd is the volume of the d-dimensional unit ball. Since the second and the third
terms on the rightmost term in (7.5) have the same upper bound, we ultimately obtain∫(

B(0,kT )
)k−`h+

t,s(0,y, z)dz

≤ C∗
(
td − sd +

`−1∑
i,j=1, i6=j

1
{
s < ||yi − yj || ≤ t

}
+

`−1∑
i=1

1
{
s < ||yi|| ≤ t

})
.
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Therefore, the integral in (7.4) is bounded above by

C∗
∫(
B(0,kT )

)`−1

(
td − sd +

`−1∑
i,j=1, i6=j

1
{
s < ||yi − yj || ≤ t

}
+

`−1∑
i=1

1
{
s < ||yi|| ≤ t

})

×
(
sd − rd +

`−1∑
i,j=1, i6=j

1
{
r < ||yi − yj || ≤ s

}
+

`−1∑
i=1

1
{
r < ||yi|| ≤ s

})
dy .

An elementary calculation shows that for all i, j, i′, j′ ∈ {1, . . . , `−1} with i > j and i′ > j′,∫(
B(0,kT )

)`−1
1
{
s < ||yi − yj || ≤ t

}
1
{
r < ||yi′ − yj′ || ≤ s

}
dy

≤ C∗(td − sd)(sd − rd) ≤ C∗(t− s)(s− r)

In particular, if i = i′ and j = j′, the integral is identically zero. Applying the same
manipulation to the integral of other cross-terms, we can conclude the claim of the
lemma.

7.1 Regularly varying tail case

Under the setup of Theorem 4.3, we first define the subgraph counting process with
restricted domain. For 1 ≤ K < L ≤ ∞, n ∈ N+, and t ≥ 0, let

Gn,K,L(t) =
∑
Y⊂Pn

ht(Y)1
{
m(Y) ≥ Rn , Max(Y) ∈ Ann(KRn, LRn)}

:=
∑
Y⊂Pn

hn,t,K,L(Y) ,

and

G±n,K,L(t) =
∑
Y⊂Pn

h±t (Y)1
{
m(Y) ≥ Rn , Max(Y) ∈ Ann(KRn, LRn)}

:=
∑
Y⊂Pn

h±n,t,K,L(Y) ,

where (Rn) satisfies (4.2). For the special case K = 1 and L = ∞, we simply denote
Gn(t) = Gn,1,∞(t) and G±n (t) = G±n,1,∞(t). The subgraph counting processes, centered
and scaled, for which we prove the FCLT, are given by

Xn(t) = τ−1/2
n

(
Gn(t)− E

{
Gn(t)

})
,

X±n (t) = τ−1/2
n

(
G±n (t)− E

{
G±n (t)

})
, (7.6)

where (τn) is determined by (4.3) according to which regime is considered. The first
proposition below computes the covariances of

(
Gn,K,L(t)

)
.

Proposition 7.2. Assume the conditions of Theorem 4.3. Let 1 ≤ K < L ≤ ∞.
(i) If nf(Rne1)→ 0 as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→ (Kd−αk − Ld−αk)Lk(t, s) , n→∞ .

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→

k∑
`=1

(Kd−α(2k−`) − Ld−α(2k−`))ξ2k−`L`(t, s) , n→∞ .

(iii) If nf(Rne1)→∞ as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→ (Kd−α(2k−1) − Ld−α(2k−1))L1(t, s) , n→∞ .
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Proof. We start by writing

E
{
Gn,K,L(t)Gn,K,L(s)

}
=

k∑
`=0

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

hn,t,K,L(Y1)hn,s,K,L(Y2)1
{
|Y1 ∩ Y2| = `

}}

:=

k∑
`=0

E{I`} .

For ` = 0, applying Palm theory (see the Appendix) twice,

E{I0} =
n2k

(k!)2
E
{
hn,t,K,L(X1, . . . , Xk)hn,s,K,L(Xk+1, . . . , X2k)

}
= E

{
Gn,K,L(t)

}
E
{
Gn,K,L(s)

}
.

Therefore, the multiple applications of Palm theory yield

Cov
(
Gn,K,L(t) , Gn,K,L(s)

)
=

k∑
`=1

E{I`}

=

k∑
`=1

n2k−`

`!
(
(k − `)!

)2 E{hn,t,K,L(Y1)hn,s,K,L(Y2)1
{
|Y1 ∩ Y2| = `

}}
.

Define for ` ∈ {1, . . . , k},

C(`)
n (K,L) :=

{
x ∈ (Rd)2k−` : Max(x1, . . . , xk) ∈ Ann(KRn, LRn) ,

Max(x1, . . . , x`, xk+1, . . . , x2k−`) ∈ Ann(KRn, LRn)
}
.

By the change of variables x → (x, x + y) with x ∈ (Rd)2k−`, x ∈ Rd, y ∈ (Rd)2k−`−1,
together with invariance (2.2), while recalling notation (7.3),

E
{
hn,t,K,L(Y1)hn,s,K,L(Y2)1

{
|Y1 ∩ Y2| = `

}}
=

∫
(Rd)2k−`

f(x)1
{
m(x) ≥ Rn

}
h

(`)
t,s(x)1

{
x ∈ C(`)

n (K,L)
}
dx

=

∫
Rd

∫
(Rd)2k−`−1

f(x) f(x+ y)1
{
m(x, x+ y) ≥ Rn

}
h

(`)
t,s(0,y)

× 1
{

(x, x+ y) ∈ C(`)
n (K,L)

}
dydx .

The polar coordinate transform x→ (r, θ) and an additional change of variable ρ→ r/Rn
yield

E
{
hn,t,K,L(Y1)hn,s,K,L(Y2)1

{
|Y1 ∩ Y2| = `

}}
(7.7)

= Rdnf(Rne1)2k−`
∫
Sd−1

J(θ)dθ

∫ ∞
1

dρ

∫
(Rd)2k−`−1

dy ρd−1 f(Rnρe1)

f(Rne1)

×
2k−`−1∏
i=1

f
(
||Rnρθ + yi||e1

)
f(Rne1)

1
{
||ρθ + yi/Rn|| ≥ 1

}
h

(`)
t,s(0,y)

× 1
{

(Rnρθ,Rnρθ + y) ∈ C(`)
n (K,L)

}
,

where Sd−1 denotes the (d − 1)-dimensional unit sphere in Rd and J(θ) is the usual
Jacobian

J(θ) = sink−2(θ1) sink−3(θ2) · · · sin(θk−2) .
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Note that by the regular variation of f (with exponent −α), for every ρ > 1, θ ∈ Sd−1,
and yi’s,

f(Rnρe1)

f(Rne1)
→ ρ−α ,

2k−`−1∏
i=1

f
(
||Rnρθ + yi||e1

)
f(Rne1)

→ ρ−α(2k−`−1) , n→∞ (7.8)

and, furthermore,

1
{

(Rnρθ,Rnρθ + y) ∈ C(`)
n (K,L)

}
→ 1{K ≤ ρ ≤ L} , n→∞ . (7.9)

Substituting (7.8) and (7.9) back into (7.7), while supposing temporarily that the domi-
nated convergence theorem is applicable, we may conclude that

Cov
(
Gn,K,L(t) , Gn,K,L(s)

)
(7.10)

∼
k∑
`=1

n2k−`Rdnf(Rne1)2k−`(Kd−α(2k−`) − Ld−α(2k−`))L`(t, s) , n→∞ .

Observe that the limit value of nf(Rne1) completely determines which term on the right
hand side of (7.10) is dominant. If nf(Rne1) → 0, then the kth term,i.e., ` = k, in the
sum grows fastest, while the first term, i.e., ` = 1, grows fastest when nf(Rne1)→∞.
Moreover, if nf(Rne1)→ ξ ∈ (0,∞), then all the terms in the sum grow at the same rate.
This concludes the claim of the proposition.

It now remains to establish an integrable upper bound for the application of the
dominated convergence theorem. First, condition (2.3) provides

h
(`)
t,s(0,y) ≤ 1

{
||yi|| ≤ k(t+ s) , i = 1, . . . , 2k − `− 1

}
.

Next, appealing to Potter’s bound ,e.g., Proposition 2.6 (ii) in [27], for every ξ ∈ (0, α−d)

and sufficiently large n,

f(Rnρe1)

f(Rne1)
1{ρ ≥ 1} ≤ (1 + ξ) ρ−α+ξ 1{ρ ≥ 1}

and

2k−`−1∏
i=1

f(||Rnρθ + yi||e1)

f(Rne1)
1
{
||ρθ + yi/Rn|| ≥ 1

}
≤ (1 + ξ)2k−`−1 .

Since
∫∞

1
ρd−1−α+ξdρ <∞, we are allowed to apply the dominated convergence theorem.

The next proposition proves the weak convergence of Theorem 4.3 in a finite-
dimensional sense.

Proposition 7.3. Assume the conditions of Theorem 4.3. Then, weak convergences
(i)− (iii) in the theorem hold in a finite-dimensional sense. Furthermore, let X±n be the
processes defined in (7.6). Then, the following results also hold in a finite-dimensional
sense.

(i) If nf(Rne1)→ 0 as n→∞, then

(X+
n ,X

−
n )⇒ (V+

k ,V
−
k ) . (7.11)

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

(X+
n ,X

−
n )⇒

(
k∑
`=1

ξ2k−`V+
` ,

k∑
`=1

ξ2k−`V−`

)
. (7.12)
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(iii) If nf(Rne1)→∞ as n→∞, then

(X+
n ,X

−
n )⇒ (V+

1 ,V
−
1 ) . (7.13)

The limiting Gaussian processes (V+
` ,V

−
` ), ` = 1, . . . , k are all defined in Section 4.2.

Proof. The proofs of (7.11), (7.12), and (7.13) are a bit more technical, but are very
similar to the corresponding results in Theorem 4.3; therefore, we check only finite-
dimensional weak convergences in Theorem 4.3. The argument here is closely related
to that in Theorem 3.9 of [23], for which we rely on the so-called Cramér-Wold device.
For 0 ≤ t1 < · · · < tm < ∞, a1, . . . , am ∈ R and m ≥ 1, define Sn :=

∑m
j=1 ajGn(tj). For

K > 1, Sn can be further decomposed into two parts:

Sn =

m∑
j=1

ajGn,1,K(tj) +

m∑
j=1

ajGn,K,∞(tj)

:= T (K)
n + U (K)

n .

We define a constant γK as follows in accordance with the limit of nf(Rne1).

γK :=


∑m
i=1

∑m
j=1 aiaj(1−Kd−αk)Lk(ti, tj) if nf(Rne1)→ 0 ,∑m

i=1

∑m
j=1 aiaj

∑k
`=1(1−Kd−α(2k−`))ξ2k−`L`(ti, tj) if nf(Rne1)→ ξ ∈ (0,∞) ,∑m

i=1

∑m
j=1 aiaj(1−Kd−α(2k−1))L1(ti, tj) if nf(Rne1)→∞ .

Moreover, γ := limK→∞ γK . It directly follows from Proposition 7.2 that, regardless of
the regime we consider,

τ−1
n Var{T (K)

n } → γK , τ−1
n Var{U (K)

n } → γ − γK as n→∞ .

For the completion of the proof, we ultimately need to show that

τ−1/2
n

(
Sn − E{Sn}

)
⇒ N(0, γ) .

By the standard approximation argument given on p. 64 of [23], it suffices to show that

τ−1/2
n

(
T (K)
n − E

{
T (K)
n

})
⇒ N(0, γK) for every K > 1 ; (7.14)

equivalently,

T
(K)
n − E

{
T

(K)
n

}√
Var
{
T

(K)
n

} ⇒ N(0, 1) for every K > 1 . (7.15)

Let (Q` : ` ∈ N) be a collection of unit cubes covering Rd. Define

Vn :=
{
` ∈ N : Q` ∩ Ann(Rn,KRn) 6= ∅

}
,

where we have that |Vn| ≤ C∗Rdn.

Then, T (K)
n can be partitioned as follows.

T (K)
n =

∑
`∈Vn

m∑
j=1

aj
∑
Y⊂Pn

htj (Y)1
{
m(Y) ≥ Rn, Max(Y) ∈ Ann(Rn,KRn) ∩Q`

}
:=
∑
`∈Vn

η`,n .

For i, j ∈ Vn, we put an edge between i and j (write i ∼ j) if i 6= j and the distance
between Qi and Qj are less than 2ktm. Then, (Vn,∼) gives a dependency graph with
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respect to (η`,n, ` ∈ Vn); that is, for any two disjoint subsets I1, I2 of Vn with no edges
connecting I1 and I2, (η`,n, ` ∈ I1) is independent of (η`,n, ` ∈ I2). Notice that the
maximum degree of (Vn,∼) is at most finite.

Writing Φ for a distribution function of the standard normal distribution, it follows
from Stein’s method for normal approximation (see Theorem 2.4 in [23]) that for all
λ ∈ R, ∣∣∣∣∣∣P

T (K)
n − E

{
T

(K)
n

}√
Var
{
T

(K)
n

} ≤ λ

− Φ(λ)

∣∣∣∣∣∣
≤ C∗

√√√√√Rdn max
`∈Vn

E
∣∣η`,n − E{η`,n}∣∣3(
Var
{
T

(K)
n

})3/2
+ C∗

√√√√√Rdn max
`∈Vn

E
∣∣η`,n − E{η`,n}∣∣4(

Var
{
T

(K)
n

})2

Thus, (7.15) immediately follows if we can show that for p = 3, 4,

Rdn max
`∈Vn

E
∣∣η`,n − E{η`,n}∣∣p(
Var
{
T

(K)
n

})p/2 → 0 as n→∞ . (7.16)

Since the proof for showing this varies depending on the limit of nf(Rne1), we divide
the argument into three different cases. Suppose first that nf(Rne1)→ 0 as n→∞. Let
Z`,n denote the number of points in Pn lying in

Tube(Q`; ktm) :=
{
x ∈ Rd : inf

y∈Q`
||x− y|| ≤ ktm

}
.

Then, Z`,n has a Poisson distribution with mean n
∫

Tube(Q`;ktm)
f(z)dz. Using Potter’s

bound, we see that Z`,n is stochastically dominated by another Poisson random variable
Zn with mean C∗nf(Rne1). Observing that

|η`,n| ≤ C∗
(
Z`,n
k

)
,

we have, for q = 1, 2, 3, 4,

E|η`,n|q ≤ C∗E
(
Z`,n
k

)q
≤ C∗E

(
Zn
k

)q
≤ C∗

(
nf(Rne1)

)k
,

where in the last step we used the assumption nf(Rne1)→ 0.
It now follows that for p = 3, 4,

max
`∈Vn

E
∣∣η`,n − E{η`,n}∣∣p ≤ C∗(nf(Rne1)

)k
.

Therefore,

Rdn max
`∈Vn

E
∣∣η`,n − E{η`,n}∣∣p(
Var
{
T

(K)
n

})p/2 ≤ C∗Rdn
(
nf(Rne1)

)k(
nkRdnf(Rne1)kγK

)p/2
=

C∗

γ
p/2
K

(
nkRdnf(Rne1)k

)1−p/2 → 0 , n→∞ ,

where the last convergence follows from (4.2).
In the case of nf(Rne1)→ ξ ∈ (0,∞), the argument for proving (7.16) is very similar

to, or even easier than, the previous case, so we omit it.
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Finally, suppose that nf(Rne1)→∞ as n→∞. We begin by establishing an appro-
priate upper bound for the fourth moment expectation

E
∣∣η`,n − E{η`,n}∣∣4 =

4∑
j=0

(
4

j

)
(−1)jE{ηj`,n}

(
E{η`,n}

)4−j
. (7.17)

Letting

g`,n(Y) :=

m∑
j=1

ajhtj (Y)1
{
m(Y) ≥ Rn, Max(Y) ∈ Ann(Rn,KRn) ∩Q`

}
,

we see that for every j ∈ {0, . . . , 4},

Fn(j) := E{ηj`,n}
(
E{η`,n}

)4−j
can be denoted as the expectation of a quadruple sum

E

 ∑
Y1⊂P(1)

n

∑
Y2⊂P(2)

n

∑
Y3⊂P(3)

n

∑
Y4⊂P(4)

n

g`,n(Y1) g`,n(Y2) g`,n(Y3) g`,n(Y4)

 , (7.18)

where, for every i 6= j, either P(i)
n = P(j)

n or P(i)
n is an independent copy of P(j)

n . By
definition, each Yi is a finite collection of d-dimensional vectors. If, in particular, |Y1 ∪
Y2 ∪ Y3 ∪ Y4| = 4k, i.e., any two of Yi, i = 1, . . . , 4 have no common elements, then the

Palm theory given in the Appendix reveals that (7.18) is equal to
(
E{η`,n}

)4
. Then, in

this case, their overall contribution to (7.17) is identically zero, because

4∑
j=0

(
4

j

)
(−1)j

(
E{η`,n}

)4
= 0 .

Next, suppose that |Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k − 1, i.e., there is a pair (Yi,Yj), i 6= j

having exactly one element in common and no other common elements between Yi’s are
present. In this case, (7.18) can be written as

n2k−1(
(k − 1)!

)2 E{g`,n(Y1) g`,n(Y2)1
{
|Y1 ∩ Y2| = 1

}}(nk
k!
E
{
g`,n(Y)

})2

. (7.19)

In particular, (7.19) appears once in Fn(2),

(
3

2

)
times in Fn(3), and

(
4

2

)
times in Fn(4).

Thus, the total contribution to (7.17) sums up to{(
4

2

)
(−1)2 +

(
4

3

)
(−1)3

(
3

2

)
+

(
4

4

)
(−1)4

(
4

2

)}
× (7.19) = 0 .

We may assume, therefore, that |Y1 ∪ Y2 ∪ Y3 ∪ Y4| ≤ 4k − 2. Let us start with
|Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k − 2, where we shall examine in particular the case in which

P(1)
n = P(2)

n = P(3)
n = P(4)

n , |Y1 ∩ Y2| = 2 and no other common elements between Yi’s
exist. The argument for the other cases will be omitted because they can be handled in
the same manner. Then, by Palm theory, (7.18) is equal to

n2k−2

2
(
(k − 2)!

)2 E{g`,n(Y1) g`,n(Y2)1
{
|Y1 ∩ Y2| = 2

}}(nk
k!
E
{
g`,n(Y)

})2

. (7.20)
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Because of Potter’s bound, together with the fact that Q` intersects with Ann(Rn,KRn),∣∣∣E{g`,n(Y1) g`,n(Y2)1
{
|Y1 ∩ Y2| = 2

}}∣∣∣
≤ C∗

(
P
{
X1 ∈ Tube(Q`; ktm)

})2k−2

≤ C∗f(Rne1)2k−2.

Similarly, we can obtain ∣∣∣E{g`,n(Y)
}∣∣∣ ≤ C∗f(Rne1)k,

and therefore, the absolute value of (7.20), equivalently that of (7.18), is bounded above

by C∗
(
nf(Rne1)

)4k−2
.

A similar argument proves that if |Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k − q for some q ≥ 3, the

absolute value of (7.18) is bounded above by C∗
(
nf(Rne1)

)4k−q
. Putting these facts

altogether, while recalling nf(Rne1)→∞ as n→∞, we may conclude that

E
∣∣η`,n − E{η`,n}∣∣4 ≤ C∗(nf(Rne1)

)4k−2
.

Now, it is easy to check (7.16).
In terms of the third moment expectation E

∣∣η`,n − E{η`,n}∣∣3, we apply Hölder’s
inequality to obtain

E
∣∣η`,n − E{η`,n}∣∣3 ≤ (E∣∣η`,n − E{η`,n}∣∣4)3/4

≤ C∗
(
nf(Rne1)

)3k−3/2
.

Again, it is easy to prove (7.16).
Now, we have obtained a CLT in (7.14) as required, regardless of the limit of nf(Rne1).

Proof of Theorem 4.3. The last proposition has justified finite-dimensional weak conver-
gence of the processes (Xn) and (X+

n ,X
−
n ). The proof of Theorem 4.3 will be complete,

provided that the tightness of (Xn) is verified in the space D[0,∞) equipped with the
Skorohod J1-topology; see [8]. To this aim, it suffices to show that (X+

n ) and (X−n ) are
both tight in D[0,∞). To see this, suppose that X+

n and X−n were tight in D[0,∞). Then,
a joint process (X+

n ,X
−
n ) is tight as well in D[0,∞) × D[0,∞), which is endowed with

the product topology. Because of the already established finite-dimensional weak con-
vergence of (X+

n ,X
−
n ), every subsequential limit of (X+

n ,X
−
n ) coincides with the limiting

process in Proposition 7.3. This in turn implies the weak convergence of (X+
n ,X

−
n ) in

D[0,∞)×D[0,∞). Using the basic fact that the map (x, y)→ x−y from D[0,∞)×D[0,∞)

to D[0,∞) is continuous at (x, y) ∈ C[0,∞) × C[0,∞), while recalling that the limits in
Proposition 7.3 all have continuous sample paths, the continuous mapping theorem gives
weak convergence of Xn = X+

n −X−n in D[0,∞).
In the following, we prove the tightness of (X+

n ) only, because the argument for (X−n )

is the same as that for (X+
n ). By a standard argument for the D-space (see, e.g., Chapter

16 in [8]), it is enough to show the tightness in the space D[0, L] for every L > 0. For
notational ease, we omit the superscript “+” from all the functions and objects during
the proof. By Theorem 13.5 of [8], it is sufficient to show that there exists B > 0 such
that

E
{(
Xn(t)−Xn(s)

)2(
Xn(s)−Xn(r)

)2} ≤ B(t− r)2

for all 0 ≤ r ≤ s ≤ t ≤ L and n ≥ 1.
For typographical convenience, we use shorthand notations (7.1), (7.2), and further,

ξn,t,s :=
∑
Y⊂Pn

hn,t,s(Y) .
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Then,

E
{(
Xn(t)−Xn(s)

)2(
Xn(s)−Xn(r)

)2}
= τ−2

n E
{(
ξn,t,s − E{ξn,t,s}

)2(
ξn,s,r − E{ξn,s,r}

)2}
= τ−2

n

2∑
p=0

2∑
q=0

(
2

p

)(
2

q

)
(−1)p+qFn(p, q) ,

where
Fn(p, q) = E{ξpn,t,sξqn,s,r}

(
E{ξn,t,s}

)2−p(
E{ξn,s,r}

)2−q
.

Note that for every p, q ∈ {0, 1, 2}, Fn(p, q) can be represented by

E

 ∑
Y1⊂P(1)

n

∑
Y2⊂P(2)

n

∑
Y3⊂P(3)

n

∑
Y4⊂P(4)

n

hn,t,s(Y1)hn,t,s(Y2)hn,s,r(Y3)hn,s,r(Y4)

 , (7.21)

where, for every i 6= j, either P(i)
n = P(j)

n or P(i)
n is an independent copy of P(j)

n .
According to the Palm theory given in the Appendix, if |Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k, i.e.,

any two of Yi have no common elements, then (7.21) reduces to
(
E{ξn,t,s}

)2(
E{ξn,s,r}

)2
.

Then, an overall contribution in this case identically vanishes, since

2∑
p=0

2∑
q=0

(
2

p

)(
2

q

)
(−1)p+q

(
E{ξn,t,s}

)2(
E{ξn,s,r}

)2
= 0 .

In the following, we examine the case in which at least one common element exists
between Yi’s. First, for ` = 1, . . . , k, we count the number of times

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

hn,t,s(Y1)hn,t,s(Y2)1
{
|Y1 ∩ Y2| = `

}}(
E{ξn,s,r}

)2
(7.22)

appears in each Fn(p, q). Indeed, (7.22) appears only once in Fn(2, 0), Fn(2, 1), and
Fn(2, 2). Therefore, the total contribution amounts to[(

2

2

)(
2

0

)
(−1)2+0 +

(
2

2

)(
2

1

)
(−1)2+1 +

(
2

2

)(
2

2

)
(−1)2+2

]
× (7.22) = 0 .

Similarly, for every ` = 1, . . . , k, no contribution is made by

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

hn,s,r(Y1)hn,s,r(Y2)1
{
|Y1 ∩ Y2| = `

}}(
E{ξn,t,s}

)2
.

Subsequently, for ` = 1, . . . , k, we explore the presence of

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

hn,t,s(Y1)hn,s,r(Y2)1
{
|Y1 ∩ Y2| = `

}}
E{ξn,t,s}E{ξn,s,r} . (7.23)

One can immediately check that (7.23) appears once in Fn(1, 1), twice in Fn(2, 1), twice
in Fn(1, 2), and four times in Fn(2, 2). However, their total contribution disappears again,
because[(

2

1

)(
2

1

)
(−1)1+1 +

(
2

2

)(
2

1

)
(−1)2+1 · 2

+

(
2

1

)(
2

2

)
(−1)1+2 · 2 +

(
2

2

)(
2

2

)
(−1)2+2 · 4

]
× (7.23) = 0 .
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Next, let `i ∈ {0, . . . , k}, i = 1, 2, 3, ` ∈ {2, . . . , 2k} such that at least two of `i’s are
non-zero, so that we should examine the appearance of

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

hn,t,s(Y1)hn,t,s(Y2)hn,s,r(Y3)

× 1
{
|Y1 ∩ Y2| = `1, |Y1 ∩ Y3| = `2, |Y2 ∩ Y3| = `3, |Y1 ∪ Y2 ∪ Y3| = 3k − `

}}
E{ξn,s,r} .

(7.24)

This actually appears once in Fn(2, 1) and twice in Fn(2, 2); therefore, their overall
contribution is [(

2

2

)(
2

1

)
(−1)2+1 +

(
2

2

)(
2

2

)
(−1)2+2 · 2

]
× (7.24) = 0 .

For the same reason, we can ignore the presence of

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

hn,t,s(Y1)hn,s,r(Y2)hn,s,r(Y3)

× 1
{
|Y1 ∩ Y2| = `1, |Y1 ∩ Y3| = `2, |Y2 ∩ Y3| = `3, |Y1 ∪ Y2 ∪ Y3| = 3k − `

}}
E{ξn,t,s} .

where `i ∈ {0, . . . , k}, i = 1, 2, 3, ` ∈ {2, . . . , 2k} such that at least two of `i’s are non-zero.

Putting these calculations altogether, we find that the tightness follows, once we can
show that there exists B > 0 such that

τ−2
n E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

hn,t,s(Y1)hn,t,s(Y2)hn,s,r(Y3)hn,s,r(Y4)

× 1
{

each Yi has at least one common elements with

at least one of the other three
}}
≤ B(t− r)2 (7.25)

for all 0 ≤ r ≤ s ≤ t ≤ L and n ≥ 1. We need to check only the following possibilities.
[I] ` := |Y1 ∩ Y2| ∈ {1, . . . , k}, `′ := |Y3 ∩ Y4| ∈ {1, . . . , k}, and (Y1 ∪ Y2) ∩ (Y3 ∪ Y4) = ∅.
[II] ` := |Y2 ∩ Y3| ∈ {1, . . . , k}, `′ := |Y1 ∩ Y4| ∈ {1, . . . , k}, and (Y2 ∪ Y3) ∩ (Y1 ∪ Y4) = ∅.
[III]. Each Yi has at least one common element with at least one of the other three, but
neither [I] or [II] is true.

For example, if |Y1 ∩ Y2| = 2, |Y1 ∩ Y3| = 3, |Y2 ∩ Y4| = 1, and there are no other
common elements between Yi’s, then it falls into category [III], where, unlike [I] or [II],
the expectation in (7.25) can no longer be separated by the Palm theory.

Denoting by A the left-hand side of (7.25), let us start with case [I]. As a result of
Palm theory,

A = τ−1
n

n2k−`

`!
(
(k − `)!

)2 E{hn,t,s(Y1)hn,t,s(Y2)1
{
|Y1 ∩ Y2| = `

}}
× τ−1

n

n2k−`′

`′!
(
(k − `′)!

)2 E{hn,s,r(Y3)hn,s,r(Y4)1
{
|Y3 ∩ Y4| = `′

}}
:= A1 ×A2 .
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Proceeding as in the calculation of Proposition 7.2, we obtain

A1 ≤ C∗τ−1
n n2k−`Rdnf(Rne1)2k−`

∫
(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1 ht,s(0,y, z1)ht,s(0,y, z2) ,

(7.26)

A2 ≤ C∗τ−1
n n2k−`′Rdnf(Rne1)2k−`′

×
∫

(Rd)`′−1

dy

∫
(Rd)k−`′

dz2

∫
(Rd)k−`′

dz1 hs,r(0,y, z1)hs,r(0,y, z2) . (7.27)

Notice that ht is increasing in t in the sense of (2.5) (recall that the superscript “+”
is suppressed during the proof). It also follows from (2.6) that the triple integral in

(7.26) is unchanged if the integral domain is restricted to
(
B(0, kL)

)`−1×
(
B(0, kL)

)k−`×(
B(0, kL)

)k−`
. Therefore, with λ being the Lebesgue measure on (Rd)k−`,∫

(Rd)`−1

dy

∫
(Rd)k−`

dz2

∫
(Rd)k−`

dz1 ht,s(0,y, z1)ht,s(0,y, z2)

≤ λ
{(
B(0, kL)

)k−`} ∫
(Rd)`−1

∫
(Rd)k−`

ht,s(0,y, z)dydz

= λ
{(
B(0, kL)

)k−`} (
td(k−1) − sd(k−1)

) ∫
(Rd)k−1

h1(0,y)dy

≤ C∗(t− r) .

Applying the same manipulation to the triple integral in (7.27), we obtain

A ≤ C∗τ−2
n n4k−`−`′R2d

n f(Rne1)4k−`−`′(t− r)2.

It remains to check that supn τ
−2
n n4k−`−`′R2d

n f(Rne1)4k−`−`′ < ∞, which is, however,
easy to prove, irrespective of the definition of τn. Now case [I] is done.

Next, we turn to case [II]. As a consequence of the same operation as in [I], we obtain
the same upper bound for A up to multiplicative constants.

Finally, we proceed to case [III]. Let ` := 4k− |Y1 ∪Y2 ∪Y3 ∪Y4|; then, it must be that
3 ≤ ` ≤ 3k. It follows from Palm theory that

A = C∗τ−2
n n4k−`E

{
hn,t,s(Y1)hn,t,s(Y2)hn,s,r(Y3)hn,s,r(Y4)

}
with (Y1, . . . ,Y4) satisfying requirements in case [III]. In particular, (Y1 ∪ Y2) ∩ (Y3 ∪ Y4)

must be non-empty; hence, we may assume without loss of generality that Y1 ∩ Y3 6= ∅.
Set `′ := |Y1 ∩ Y3| ∈ {1, . . . , k}. By (2.5) and (2.6), we have

A ≤ C∗τ−2
n n4k−`Rdnf(Rne1)4k−`

×
∫

(Rd)`′−1

dy

∫
(Rd)k−`′

dz2

∫
(Rd)k−`′

dz1 ht,s(0,y, z1)ht,s(0,y, z2) ,

Because of Lemma 7.1,

A ≤ C∗τ−2
n n4k−`Rdnf(Rne1)4k−`(t− r)2.

Once again, verifying

sup
n
τ−2
n n4k−`Rdnf(Rne1)4k−` <∞

is elementary, and hence, we have completed the proof of (7.25) as required.
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7.2 Exponentially decaying tail case

We start by defining a subgraph counting process with restricted domain. For
0 ≤ K < L ≤ ∞, we define

Gn,K,L(t) =
∑
Y⊂Pn

ht(Y)1
{
m(Y) ≥ Rn , a(Rn)−1

(
Max(Y)−Rn

)
∈ [K,L)

}
:=

∑
Y⊂Pn

hn,t,K,L(Y) ,

and

G±n,K,L(t) =
∑
Y⊂Pn

h±t (Y)1
{
m(Y) ≥ Rn , a(Rn)−1

(
Max(Y)−Rn

)
∈ [K,L)

}
:=

∑
Y⊂Pn

h±n,t,K,L(Y) ,

where (Rn) satisfies (5.7). For the special case K = 0 and L = ∞, we denote Gn(t) =

Gn,0,∞(t) and G±n (t) = G±n,0,∞(t). The centered and scaled versions of the subgraph
counting process are

Xn(t) = τ−1/2
n

(
Gn(t)− E

{
Gn(t)

})
, (7.28)

X±n (t) = τ−1/2
n

(
G±n (t)− E

{
G±n (t)

})
, (7.29)

where (τn) is given in (5.8). As seen in the regularly varying tail case, we first need to
know the growing rate of the covariances of Gn,K,L(t). Before presenting the results, we
introduce for ` = 1, . . . , k,

M`,K,L(t, s) := D`

∫ ∞
0

∫
(Rd)2k−`−1

e−(2k−`)ρ−c−1∑2k−`−1
i=1 〈e1,yi〉

× 1
{
y ∈ E(`)

K,L(ρ, e1)
}
h

(`)
t,s(0,y) dydρ , t, s ≥ 0 ,

where D` is given in (5.9), h(`)
t,s(0,y) is defined in (5.11), and for ρ > 0 and θ ∈ Sd−1,

E
(`)
K,L(ρ, θ) =

{
y ∈ (Rd)2k−`−1 : ρ+ c−1〈θ, yi〉 ≥ 0 , i = 1, . . . , 2k − `− 1 ,

K ≤ max
{
ρ , ρ+ c−1 max

i=1,...,k−1
〈θ, yi〉

}
< L ,

K ≤ max
{
ρ , ρ+ c−1 max

i=1,...,`−1,k,...,2k−`−1
〈θ, yi〉

}
< L

}
.

Note that M`,0,∞(t, s) completely matches (5.10).

Proposition 7.4. Assume the conditions of Theorem 5.3. Let 0 ≤ K < L ≤ ∞.
(i) If nf(Rne1)→ 0 as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→Mk,K,L(t, s) , n→∞ .

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→

k∑
`=1

ξ2k−`M`,K,L(t, s) , n→∞ .

(iii) If nf(Rne1)→∞ as n→∞, then

τ−1
n Cov

(
Gn,K,L(t), Gn,K,L(s)

)
→M1,K,L(t, s) , n→∞ .
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Proof. As argued in Proposition 7.2, with the multiple applications of Palm theory, one
can write

Cov
(
Gn,K,L(t) , Gn,K,L(s)

)
=

k∑
`=1

n2k−`

`!
(
(k − `)!

)2 E{hn,t,K,L(Y1)hn,s,K,L(Y2)1
{
|Y1 ∩ Y2| = `

}}
.

Define for ` ∈ {1, . . . , k},

F (`)
n (K,L) :=

{
x ∈ (Rd)2k−` : a(Rn)−1

(
Max(x1, . . . , xk)−Rn

)
∈ [K,L) ,

a(Rn)−1
(
Max(x1, . . . , x`, xk+1, . . . , x2k−`)−Rn

)
∈ [K,L)

}
.

By the change of variables x → (x, x + y) with x ∈ (Rd)2k−`, x ∈ Rd, y ∈ (Rd)2k−`−1,
together with invariance (2.2),

E
{
hn,t,K,L(Y1)hn,s,K,L(Y2)1

{
|Y1 ∩ Y2| = `

}}
=

∫
(Rd)2k−`

f(x)1
{
m(x) ≥ Rn

}
h

(`)
t,s(x)1

{
x ∈ F (`)

n (K,L)
}
dx

=

∫
Rd

∫
(Rd)2k−`−1

f(x) f(x+ y)1
{
m(x, x+ y) ≥ Rn

}
h

(`)
t,s(0,y)

× 1
{

(x, x+ y) ∈ F (`)
n (K,L)

}
dydx .

Let Jk denote the last integral. Further calculation by the polar coordinate transform
x→ (r, θ) with J(θ) = |∂x/∂θ| and the change of variable ρ = a(Rn)−1(r −Rn) yields

Jk =a(Rn)Rd−1
n f(Rne1)2k−`

∫
Sd−1

J(θ)dθ

∫ ∞
0

dρ

∫
(Rd)2k−`−1

dy (7.30)

×
(

1 +
a(Rn)

Rn
ρ

)d−1 f
((
Rn + a(Rn)ρ

)
e1

)
f(Rne1)

×
2k−`−1∏
i=1

f(Rne1)−1f
(
‖(Rn + a(Rn)ρ)θ + yi‖e1

)
1
{
‖(Rn + a(Rn)ρ)θ + yi‖ ≥ Rn

}
× 1
{(

(Rn + a(Rn)ρ)θ, (Rn + a(Rn)ρ)θ + y
)
∈ F (`)

n (K,L)
}
h

(`)
t,s(0,y) ,

where Sd−1 is the (d− 1)-dimensional unit sphere in Rd.
The following expansion is applied frequently in the following. For each i = 1, . . . , 2k−

`− 1, ∣∣∣∣∣∣(Rn + a(Rn)ρ
)
θ + yi

∣∣∣∣∣∣ = Rn + a(Rn)ρ+ 〈θ, yi〉+ γn(ρ, θ, yi) ,

so that γn(ρ, θ, yi)→ 0 uniformly in ρ > 0, θ ∈ Sd−1, and ‖yi‖ ≤ k(t+ s).
For the application of the dominated convergence theorem, we need to compute the

limit of the expression under the integral sign, while establishing an integrable upper
bound. We first calculate the limit of the indicator functions. For every ρ > 0, θ ∈ Sd−1,
and ‖yi‖ ≤ k(t+ s), i = 1, . . . , 2k − `− 1,

2k−`−1∏
i=1

1
{
‖(Rn + a(Rn)ρ)θ + yi‖ ≥ Rn

}
× 1
{(

(Rn + a(Rn)ρ)θ, (Rn + a(Rn)ρ)θ + y
)
∈ F (`)

n (K,L)
}

→ 1
{
y ∈ E(`)

K,L(ρ, θ)
}
, n→∞ .
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Next, it is clear that for every ρ > 0,
(
1 + a(Rn)ρ/Rn

)d−1
tends to 1 as n → ∞ (see

(5.3)) and is bounded above by 2
(
max{1, ρ}

)d−1
.

As for the ratio of the densities in the second line of (7.30), we use the basic fact that
1/a is flat for a, that is, as n→∞,

a(Rn)

a
(
Rn + a(Rn)v

) → 1 , uniformly on bounded v-sets; (7.31)

see p142 in [15] for details. Noting that L is also flat for a, we have for every ρ > 0,

f
((
Rn + a(Rn)ρ

)
e1

)
f(Rne1)

=
L
(
Rn + a(Rn)ρ

)
L(Rn)

exp
{
−ψ
(
Rn + a(Rn)ρ

)
+ ψ(Rn)

}
=
L
(
Rn + a(Rn)ρ

)
L(Rn)

exp
{
−
∫ ρ

0

a(Rn)

a
(
Rn + a(Rn)r

)dr}
→ e−ρ, as n→∞ .

To provide an upper bound for the ratio of the densities, let
(
qm(n), m ≥ 0, n ≥ 1

)
be a

sequence defined by

qm(n) = a(Rn)−1
(
ψ←
(
ψ(Rn) +m

)
−Rn

)
,

equivalently,
ψ
(
Rn + a(Rn)qm(n)

)
= ψ(Rn) +m.

Then, for ε ∈
(
0, (d+ γ(2k − `))−1

)
, there exists an integer Nε ≥ 1 such that

qm(n) ≤ emε/ε for all n ≥ Nε,m ≥ 0 .

For the proof of this assertion, the reader may refer to Lemma 5.2 in [3]; see also Lemma
4.7 of [22]. Because of the fact that ψ is non-decreasing, we have, for sufficiently large n,

exp
{
−ψ
(
Rn + a(Rn)ρ

)
+ ψ(Rn)

}
1{ρ > 0}

=

∞∑
m=0

1
{
qm(n) < ρ ≤ qm+1(n)

}
exp
{
−ψ
(
Rn + a(Rn)ρ

)
+ ψ(Rn)

}
≤
∞∑
m=0

1
{

0 < ρ ≤ ε−1e(m+1)ε
}
e−m.

Using the bound in (5.5),

L(Rn)−1L
(
Rn + a(Rn)ρ

)
1{ρ > 0} ≤ C

(
1 +

a(Rn)

Rn
ρ

)γ
≤ 2C

(
max{ρ, 1}

)γ
.

Combining these bounds,

f
((
Rn + a(Rn)ρ

)
e1

)
f(Rne1)

1{ρ > 0} ≤ 2C
(
max{ρ, 1}

)γ ∞∑
m=0

1
{

0 < ρ ≤ ε−1e(m+1)ε
}
e−m.

Finally, we turn to

2k−`−1∏
i=1

f
(
‖(Rn + a(Rn)ρ)θ + yi‖e1

)
f(Rne1)

=

2k−`−1∏
i=1

L
(
Rn + a(Rn)

(
ρ+ ξn(ρ, θ, yi)

))
L(Rn)

× exp

{
−
∫ ρ+ξn(ρ,θ,yi)

0

a(Rn)

a
(
Rn + a(Rn)r

) dr} ,
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where

ξn(ρ, θ, y) =
〈θ, y〉+ γn(ρ, θ, y)

a(Rn)
.

Since c = limn→∞ a(Rn) > 0,

A := sup
n≥1, ρ>0,

θ∈Sd−1, ‖y‖≤k(t+s)

∣∣ξn(ρ, θ, y)
∣∣ <∞ .

Therefore, because of the uniform convergence in (7.31), for every ρ > 0, θ ∈ Sd−1, and
‖yi‖ ≤ k(t+ s),

2k−`−1∏
i=1

f
(
‖(Rn + a(Rn)ρ)θ + yi‖e1

)
f(Rne1)

→ exp
{
−(2k − `− 1)ρ− c−1

2k−`−1∑
i=1

〈θ, yi〉
}
.

Subsequently, on the set{
‖(Rn + a(Rn)ρ)θ + yi‖ ≥ Rn , i = 1, . . . , 2k − `− 1

}
=
{
ρ+ ξn(ρ, θ, yi) ≥ 0, i = 1, . . . , 2k − `− 1

}
,

we have an obvious upper bound

2k−`−1∏
i=1

exp

{
−
∫ ρ+ξn(ρ,θ,yi)

0

a(Rn)

a
(
Rn + a(Rn)r

) dr} ≤ 1

from which, together with (5.5), we see that

2k−`−1∏
i=1

f
(
‖(Rn + a(Rn)ρ)θ + yi‖e1

)
f(Rne1)

≤
2k−`−1∏
i=1

C

(
1 +

a(Rn)

Rn

(
ρ+ ξn(ρ, θ, yi)

))γ
≤ C∗

(
max{ρ, 1}

)γ(2k−`−1)
.

From the argument thus far, for every ρ > 0, θ ∈ Sd−1, and ‖yi‖ ≤ k(t + s), i =

1, . . . , 2k − `− 1, the expression under the integral sign in (7.30) eventually converges to

e−(2k−`)ρ−c−1∑2k−`−1
i=1 〈θ,yi〉 1

{
y ∈ E(`)

K,L(ρ, θ)
}
h

(`)
t,s(0,y) ,

while it possesses an upper bound of the form

C∗
(
max{ρ, 1}

)d−1+γ(2k−`)
∞∑
m=0

1
{

0 < ρ ≤ ε−1e(m+1)ε
}
e−mh

(`)
t,s(0,y)

for sufficiently large n. Because of the restriction in ε, it is elementary to check that∫ ∞
0

(
max{ρ, 1}

)d−1+γ(2k−`)
∞∑
m=0

1
{

0 < ρ ≤ ε−1e(m+1)ε
}
e−mdρ <∞ .

As a result of the dominated convergence theorem, we have obtained, as n→∞,

Jk ∼ a(Rn)Rd−1
n f(Rne1)2k−`

∫
Sd−1

J(θ)dθ

∫ ∞
0

dρ

∫
(Rd)2k−`−1

dy

× e−(2k−`)ρ−c−1∑2k−`−1
i=1 〈θ,yi〉 1

{
y ∈ E(`)

K,L(ρ, θ)
}
h

(`)
t,s(0,y)

= a(Rn)Rd−1
n f(Rne1)2k−``!

(
(k − `)!

)2
M`,K,L(t, s) ,
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where the last step follows from the rotation invariance of h·. Hence, we have

Cov
(
Gn,K,L(t) , Gn,K,L(s)

)
∼

k∑
`=1

n2k−`a(Rn)Rd−1
n f(Rne1)2k−`M`,K,L(t, s) , n→∞ .

If nf(Rne1)→ 0, then the kth term in the sum is asymptotically dominant, and therefore,
statement (i) of the theorem is complete. However, the first term becomes dominant
when nf(Rne1) → ∞, in which case, statement (iii) is established. In addition, if
nf(Rne1) → ξ ∈ (0,∞), all the terms in the sum grow at the same rate, and this
completes statement (ii).

Subsequently, we show the results on finite-dimensional weak convergence of Xn

and (X+
n ,X

−
n ) defined in (7.28) and (7.29), which somewhat parallel those of Proposition

7.3. The reader may return to Section 5.2 to recall the definition and properties of the
limit (W+

` ,W
−
` ). We omit their proofs, since the argument in Proposition 7.3 does apply

again with minor modifications.

Proposition 7.5. Assume the conditions of Theorem 5.3. Then, weak convergences
(i)− (iii) in the theorem hold in a finite-dimensional sense. Furthermore, the following
results also hold in a finite-dimensional sense.

(i) If nf(Rne1)→ 0 as n→∞, then

(X+
n ,X

−
n )⇒ (W+

k ,W
−
k ) .

(ii) If nf(Rne1)→ ξ ∈ (0,∞) as n→∞, then

(X+
n ,X

−
n )⇒

(
k∑
`=1

ξ2k−`W+
` ,

k∑
`=1

ξ2k−`W−
`

)
.

(iii) If nf(Rne1)→∞ as n→∞, then

(X+
n ,X

−
n )⇒ (W+

1 ,W
−
1 ) .

Proof of Theorem 5.3. For the same reason as discussed in the proof of Theorem 4.3,
it suffices to prove that (X+

n ) and (X−n ) are both tight in D[0,∞). We only prove the
tightness of (X+

n ), while suppressing the superscript “+” from the functions and objects
involved during the proof. Proceeding completely in the same manner as the proof of
Theorem 4.3, we have only to show that there exists B > 0 such that

τ−2
n E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

hn,t,s(Y1)hn,t,s(Y2)hn,s,r(Y3)hn,s,r(Y4)

× 1
{

each Yi has at least one common elements

with at least one of the other three
}}
≤ B(t− r)2 (7.32)

for all 0 ≤ r ≤ s ≤ t ≤ L and n ≥ 1. There are three possibilities to be discussed.
[I] ` := |Y1 ∩ Y2| ∈ {1, . . . , k}, `′ := |Y3 ∩ Y4| ∈ {1, . . . , k}, and (Y1 ∪ Y2) ∩ (Y3 ∪ Y4) = ∅.
[II] ` := |Y2 ∩ Y3| ∈ {1, . . . , k}, `′ := |Y1 ∩ Y4| ∈ {1, . . . , k}, and (Y2 ∪ Y3) ∩ (Y1 ∪ Y4) = ∅.
[III]. Each Yi has at least one common element with at least one of the other three, but
neither [I] or [II] is true.

Let B be the left hand side of (7.32). As for case [I], by mimicking the argument in
the proof of Theorem 4.3, we obtain

B ≤ C∗τ−2
n n4k−`−`′a(Rn)2R2(d−1)

n f(Rne1)4k−`−`′(t− r)2 ≤ C∗(t− r)2,
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which proves (7.32). Since we can deal with [II] in an analogous way, we can turn to case
[III]. Letting ` := 4k− |Y1 ∪Y2 ∪Y3 ∪Y4| ∈ {3, . . . , 3k}, the same argument as in the proof
of Theorem 4.3 yields

B ≤ C∗τ−2
n n4k−`a(Rn)Rd−1

n f(Rne1)4k−`(t− r)2 ≤ C∗(t− r)2

which verifies (7.32).

8 Appendix

We collect supplemental but important results for the completion of the main the-
orems. This result is known as the Palm theory of Poisson point processes, which is
applied a number of times throughout the proof.

Lemma 8.1. (Palm theory for Poisson point processes, [2], Corollary B.2 in [10], see
also Theorem 1.6 in [23]) Let (Xi) be i.i.d. Rd-valued random variables with common
density f . Let Pn be a Poisson point process on Rd with intensity nf . Let h(Y), hi(Y),
i = 1, 2, 3, 4 be measurable bounded functions defined for Y ∈ (Rd)k. Then,

E
{ ∑
Y⊂Pn

h(Y)
}

=
nk

k!
E
{
h(Y)

}
,

and for every ` ∈ {0, . . . , k},

E
{ ∑
Y1⊂Pn

∑
Y2⊂Pn

h1(Y1)h2(Y2)1
{
|Y1 ∩ Y2| = `

}}
=

n2k−`

`!
(
(k − `)!

)2 E{h1(Y1)h2(Y2)1
{
|Y1 ∩ Y2| = `

}}
.

Moreover, for every `1, `2, `3 ∈ {0, . . . , k} and ` ∈ {0, . . . , 2k}, there exists a constant
C > 0, which depends only on `i, `, and k such that

E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

h1(Y1)h2(Y2)h3(Y3)

× 1
{
|Y1 ∩ Y2| = `1, |Y1 ∩ Y3| = `2, |Y2 ∩ Y3| = `3, |Y1 ∪ Y2 ∪ Y3| = 3k − `

}}
= Cn3k−`E

{
h1(Y1)h2(Y2)h3(Y3)

× 1
{
|Y1 ∩ Y2| = `1, |Y1 ∩ Y3| = `2, |Y2 ∩ Y3| = `3, |Y1 ∪ Y2 ∪ Y3| = 3k − `

}}
.

Similarly, for `i,j ∈ {0, . . . , k}, mp,q,r ∈ {0, . . . , k}, i, j, p, q, r ∈ {1, 2, 3, 4} with i 6= j, p 6=
q, p 6= r, q 6= r, and ` ∈ {0, . . . , 3k}, there exists a constant C > 0, which depends only on
`i,j , mp,q,r, `, and k such that

E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

∑
Y3⊂Pn

∑
Y4⊂Pn

h1(Y1)h2(Y2)h3(Y3)h4(Y4)

× 1
{
|Yi ∩ Yj | = `i,j , i, j ∈ {1, 2, 3, 4}, i 6= j ,

|Yp ∩ Yq ∩ Yr| = mp,q,r, p, q, r ∈ {1, 2, 3, 4}, p 6= q, p 6= q, q 6= r,

|Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k − `
}}

= Cn4k−`E
{
h1(Y1)h2(Y2)h3(Y3)h4(Y4)
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× 1
{
|Yi ∩ Yj | = `i,j , i, j ∈ {1, 2, 3, 4}, i 6= j ,

|Yp ∩ Yq ∩ Yr| = mp,q,r, p, q, r ∈ {1, 2, 3, 4}, p 6= q, p 6= q, q 6= r,

|Y1 ∪ Y2 ∪ Y3 ∪ Y4| = 4k − `
}}

.
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