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Abstract

Markovian growth-fragmentation processes introduced by Bertoin model a system
of growing and splitting cells in which the size of a typical cell evolves as a Markov
process X without positive jumps. We find that two growth-fragmentations associated
respectively with two processes X and Y (with different laws) may have the same
distribution, if (X,Y ) is a b ifurcator, roughly speaking, which means that they coincide
up to a bifurcation time and then evolve independently. Using this criterion, we deduce
that the law of a self-similar growth-fragmentation is determined by its index of self-
similarity and a cumulant function κ.
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1 Introduction

We consider the family of Markovian growth-fragmentation processes introduced by
Bertoin [4]; see also [9, 10, 11, 12] for related works. This stochastic model describes the
evolution of a particle system, in which each particle may grow or decay gradually and
split randomly into smaller pieces, independently of the other particles. It is convenient
to describe it in terms of a cell population. The size of a typical cell evolves as a Markov
process X = (X(t), t ≥ 0) with values in [0,∞), with càdlàg path and only negative jumps.
The process X also encodes the relationship between cell size and cell replication: at
each jump time t ≥ 0 of X with ∆X(t) = X(t) − X(t−) < 0, a “daughter” cell with
initial size −∆X(t) is born, and the “mother” is still alive after this cell replication. Each
daughter follows the same dynamics as the mother and evolves independently of the
other cells. Starting at time 0 from a single cell with size x > 0, we construct in this
way a population of cells. For every time t ≥ 0, denote by X(t) the multiset (that allows
multiple instances of the elements) of the sizes of the cells alive at t. Then the process
X = (X(t), t ≥ 0) is called a (Markovian) growth-fragmentation process starting from x

associated with the cell process X. We stress that X maintains only the sizes, but not
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Growth-fragmentations and bifurcators

the genealogy of the population. More formal constructions will be given in Section 2.3
and Section 3.1.

By construction, the law of X is determined by the law of X. However, growth-
fragmentations driven by cell processes with different laws may have the same distribu-
tion. A first instance of such processes appears in Pitman and Winkel [17], with X being
a so-called fragmenter (that is, the exponential of the negative of a pure-jump subordi-
nator). The main purpose of this work is therefore to provide a sufficient condition for
growth-fragmentations driven by different cell processes to have the same distribution.
Our main result can be informally described as follows:

If there exists a coupling of (the distributions of) two cell processes X and Y which
is a bifurcator, in the sense that they almost surely coincide for a strictly positive time
and evolve independently afterwards, then under some mild technical conditions, the
growth-fragmentations driven respectively by X and Y have the same finite-dimensional
distributions.

This will be stated rigorously in Theorem 3.9. The idea of bifurcator also goes back
to [17], which provides an explicit construction of bifurcators of fragmenters, as well as
a characterization of the laws of all bifurcators of fragmenters.

Therefore, to give a sufficient condition for two growth-fragmentations to have the
same distribution, it suffices to understand when two cell processes can be coupled to
form a bifurcator (in other words, when there exists a bifurcator whose two marginal
distributions are the respective laws of these two cell processes). We do not have a com-
plete answer to this question in general, however, we investigate a study of bifurcators
for positive self-similar Markov processes, which further allows us to characterize the
laws of growth-fragmentations driven by self-similar processes, so-called self-similar
growth-fragmentation processes.

Self-similar growth-fragmentations have been previously studied in [4] and have
interesting applications: this model is connected with certain growth-fragmentation
equations, see [8]; besides, a distinguished case of self-similar growth-fragmentation
appears as the re-scaled limit of the lengths of the cycles obtained by slicing random
Boltzmann triangulations with a simple boundary at heights, see [6].

In order to state our results, let us recall some basic facts about Lévy processes,
which are closely related to self-similar Markov processes; see e.g. [1, 14]. Let ξ be a
Lévy process with no positive jumps, which is often referred to as a spectrally negative
Lévy process (SNLP). The SNLP ξ is possibly killed at some independent exponential
time. The distribution of ξ is characterized by its Laplace exponent Φ : [0,∞)→ R:

E
[
eqξ(t)

]
= eΦ(q)t, for all q, t ≥ 0.

It is well-known that the convex function Φ can be expressed by the Lévy-Khintchine
formula

Φ(q) = −k +
1

2
σ2q2 + cq +

∫
(−∞,0)

(eqz − 1 + q(1− ez)) Λ(dz), q ≥ 0, (1.1)

where k ≥ 0 is the killing rate, σ ≥ 0, c ∈ R and the Lévy measure Λ on (−∞, 0) satisfies∫
(−∞,0)

(|z|2 ∧ 1)Λ(dz) <∞. (1.2)

To avoid uninteresting cases, we will always assume that Λ is non-trivial. Then we say ξ
is a SNLP with characteristics (σ, c,Λ, k). We also introduce κ : [0,∞)→ (−∞,∞] which
plays an important role in this work:

κ(q) := Φ(q) +

∫
(−∞,0)

(1− ez)qΛ(dz), q ≥ 0. (1.3)
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Growth-fragmentations and bifurcators

So κ ≥ Φ. Note that κ is convex and κ(q) <∞ for all q ≥ 2 because of (1.2). We stress
that κ does not characterize the law of ξ, see Lemma 2.1.

Let X(0) := exp(ξ), and we write by convention X(0)(t) = ∂ if ξ is killed before t, where
∂ denotes a cemetery point. Then the process X(0) is called a homogeneous cell process,
which is a special case of self-similar process. Let X̃(0) := exp(ξ̃), where ξ̃ is another
SNLP with κ̃ defined as in (1.3), and write X(0) and X̃(0) for two growth-fragmentations
associated with X(0) and X̃(0) respectively (with the same initial size of ancestor x > 0);
see Section 2.3 for their formal construction. The following result partially encompasses
Proposition 5 and Corollary 25 in [17].

Theorem 1.1 (Homogeneous). The following statements are equivalent:

1. κ = κ̃;

2. X(0) and X̃(0) can be coupled to form a bifurcator (see Definition 2.6);

3. X(0) and X̃(0) have the same finite-dimensional distributions.

We hence say that X(0) is a homogeneous growth-fragmentation process with charac-
teristic κ. The function κ serves as cumulant for X(0), in the sense that

E

 ∑
x∈X(0)(t)

xq

 = exp (κ(q)t) for all q ≥ 2 and t ≥ 0,

which is proved in Proposition 2.15.
In general, a self-similar cell process with index α ∈ R is associated with a Lévy

process by Lamperti’s representation [15] as follows. Let us define a time-change by

τ
(α)
t := inf

{
r ≥ 0 :

∫ r

0

exp(−αξ(s))ds ≥ t
}
, t ≥ 0,

with the convention that exp(−αξ(s)) = 0 if ξ is killed before s. For every x > 0, let us
denote by Px the law of the process

X(α)(t) := x exp(ξ(τ
(α)
txα)), t ≥ 0, (1.4)

with the convention that X(α)(t) = ∂ for every t ≥ x−α
∫∞

0
exp(−αξ(s))ds. We know from

[15] that for every c > 0,

the law of (cX(α)(cαt), t ≥ 0) under Px is Pcx,

so we call X(α) a self-similar cell process with index α 1. If α = 0, then we simply have
X(0) = x exp(ξ) under Px, which is indeed a homogeneous cell process.

For α 6= 0, we further need to assume that

there exists q > 0 with κ(q) < 0. (1.5)

Let X(α) be a growth-fragmentation associated with X(α) starting from an ancestor
cell with initial size x > 0. The assumption (1.5) ensures the non-explosion of the
growth-fragmentation X(α), which means that for every t ≥ 0 and a > 0, the multiset
X(α)(t) has only finitely many elements (counted with their multiplicity) in (a,∞); see
[4]. It is also known from a recent work [7] that if κ(q) > 0 for all q ≥ 0 and α 6= 0,
then the growth-fragmentation X(α) explodes in finite time. Under (1.5), it is known

1The way we define the index of self-similarity α is consistent with the theory of self-similar fragmentations.
However, we stress that in the theory of self-similar processes, it is rather −α which is called the index of
self-similarity.
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Growth-fragmentations and bifurcators

from Theorem 2 in [4] that X(α) keeps the self-similarity: recall that X(α) starts from
an ancestor with initial size x, then for every c > 0, the law of (cX(α)(cαt), t ≥ 0) is the
same as a growth-fragmentation associated with X(α) starting from cx. So we call X(α)

a self-similar growth-fragmentation with index α.
Let us now present our main result for the self-similar case. Denote X̃(α̃) for the

self-similar cell process of index α̃ ∈ R associated with ξ̃ by Lamperti’s representation
(1.4) and let X̃(α̃) be a growth-fragmentation driven by X̃(α̃). Suppose that the respective
ancestors of X̃(α̃) and X(α) have the same initial size x > 0.

Theorem 1.2 (Self-similar). Suppose that (1.5) holds for both κ and κ̃, then the following
statements are equivalent:

1. κ = κ̃ and α = α̃;

2. X(α) and X̃(α̃) can be coupled to form a bifurcator (see Definition 3.7);

3. X(α) and X̃(α̃) have the same finite-dimensional distributions.

Therefore, we say that X(α) is a self-similar growth-fragmentation with characteristics
(κ, α). Note that it follows immediately from the self-similarity that if X̃(α̃) and X(α) have
the same finite-dimensional distributions, then α = α̃.

Let us outline our proofs. For the homogeneous case, Theorem 1.1, we provide a di-
rect proof of the equivalence (i)⇔ (iii), by drawing a connection between homogeneous
growth-fragmentations and branching Lévy processes introduced in [3]. However, this
proof cannot be easily extended to the self-similar case. Nevertheless, we can deduce
the implication (iii)⇒ (i) in Theorem 1.2 from the self-similarity mentioned above and
a study of martingales in self-similar growth-fragmentations in [5]. Further, we can
construct a bifurcator of X(α) and X̃(α̃) when κ = κ̃ and α = α̃ by extending the approach
of Pitman and Winkel [17] and using Lamperti’s transformation, which gives (i)⇒ (ii).
This motivates us to establish the general sufficient condition, Theorem 3.9, which is
informally stated above. We hence get the implication (ii) ⇒ (iii) and complete the
proof.

Besides the class of self-similar processes associated with Lévy processes by Lam-
perti’s transformations, the stationary processes driven by Lévy processes, exponential
Ornstein-Uhlenbeck type processes (see e.g. [19]), are also natural examples for cell
processes. The techniques developed in this paper also open the way to study the
growth-fragmentations associated with exponential Ornstein-Uhlenbeck type processes,
which is discussed in [20].

The rest of this article is organized as follows. We start with working on homogeneous
growth-fragmentations in Section 2. We first study the bifurcators of homogeneous cell
processes, and then characterize the laws of homogeneous growth-fragmentations by
using their connections with branching Lévy processes. In Section 3, we first provide a
non-explosion condition of general Markovian growth-fragmentations, then we introduce
the notion of bifurcators for general cell processes and establish our main result, Theo-
rem 3.9, a general sufficient condition for two growth-fragmentations to have the same
law. Applying Theorem 3.9, we complete the proofs of Theorem 1.1 and Theorem 1.2.

2 The homogeneous case

Throughout the rest of this work, we denote by ξ and γ two SNLPs with respective
characteristics (σ, c,Λ, k) and (σγ , cγ ,Λγ , kγ), and define κ and κγ respectively for ξ and
γ as in (1.3). We also define

z̄ := log(1− ez), z ∈ (−∞, 0),
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so that ez + ez̄ = 1. Note that z 7→ z̄ is an involution, i.e. ¯̄z = z. For every Lévy measure
Λ, we write Λ̄ for the push-forward measure of Λ via the map z 7→ z̄. We remark that it
follows from (1.2) that

Λ((−∞,− log 2]) <∞ and Λ̄([− log 2, 0)) <∞.

This section is concerned with growth-fragmentations driven by homogeneous cell
processes, and our investigation consists of two parts. We first depict the structure of the
family of SNLPs that have the same κ in Section 2.1, specifically, we show that they can
be derived from each other by the switching transformations, which are introduced by
Pitman and Winkel [17] to study the bifurcators of fragmenters. We next show that the
law of a homogeneous growth-fragmentation associated with exp(ξ) is characterized by
κ. In this direction, we recall the construction of branching Lévy processes introduced
by Bertoin [3] in Section 2.2 and then build a connection between homogeneous growth-
fragmentations and branching Lévy processes in Section 2.3. These two results motivate
us to extend the conception of bifurcator to general Markov processes and to study the
relations between bifurcators and Markovian growth-fragmentations, which will become
the object of investigation in Section 3.

We will often appeal to the following relation between the SNLPs that have the same
κ in terms of their characteristics.

Lemma 2.1. There is κ = κγ , if and only if

Λ + Λ̄ = Λγ + Λ̄γ , σ = σγ , k = kγ ,

and c+

∫
(−∞,− log 2)

(1− 2ez)Λ(dz) = cγ +

∫
(−∞,− log 2)

(1− 2ez)Λγ(dz).

Proof. It is easy to check the if part by straightforward calculation. We now prove the
only if part. If κ = κγ , then the third order derivatives of κ(q) and κγ(q) are equal for
every q > 2, i.e.∫

(−∞,0)

(
eqz̄ z̄3 + eqzz3

)
Λ(dz) =

∫
(−∞,0)

(
eqz̄ z̄3 + eqzz3

)
Λγ(dz).

Therefore, for every q > 2 there is∫
(−∞,0)

eqzz3
(
Λ(dz) + Λ̄(dz)

)
=

∫
(−∞,0)

eqzz3
(
Λγ(dz) + Λ̄γ(dz)

)
,

which implies that Λ + Λ̄ = Λγ + Λ̄γ . Iterating this argument over the lower order
derivatives of κ and κγ , we obtain the other identities in turn.

2.1 Switching transformations and bifurcators

In order to give a construction of bifurcators of homogeneous cell processes, we
now generalize the switching transformations between fragmenters in [17] to SNLPs.
Let ξ be a SNLP with characteristics (σ, c,Λ, k) and p : (−∞, 0)→ [0, 1] be a measurable
function, which will serve as switching probability, such that∫

(−∞,0)

p(z) Λ(dz) <∞. (2.1)

We shall derive another SNLP ξ[p] from ξ by switching according to p in the following
way. At each jump time t > 0 of ξ with z := ∆ξ(t) = ξ(t)− ξ(t−) < 0, we mark this jump
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time with success probability p(z) (so with failure probability 1− p(z) we do not mark it),
independently of the other jumps. We thus define a point process by the marked jumps:

∆1(t) :=

{
∆ξ(t) if t is a marked time,

0 otherwise.

Implicitly, the killing time ζ is never marked. We stress that the number of marked jump
times is locally finite if and only if (2.1) holds. Indeed, observing from the property
of Lévy processes (see e.g. [1]) that (∆ξ(t), t ≥ 0) is a Poisson point process with
characteristic measure Λ, we have that ∆1 is a Poisson point process with characteristic
measure Λ1(dz) := p(z)Λ(dz). Next, we define a point process ∆̄1 associated with ∆1 by

∆̄1(t) :=

{
log(1− e∆1(t)) if ∆1(t) 6= 0,

0 if ∆1(t) = 0.

Then ∆̄1 is a Poisson point process with characteristic measure Λ̄1(dz) := p(z̄)Λ̄(dz),
where Λ̄ is the image of Λ by the map z 7→ z̄. Therefore, as (2.1) holds, the processes

ξ1(t) :=
∑
s≤t

∆1(s) and ξ̄1(t) :=
∑
s≤t

∆̄1(s)

are compound Poisson processes with respective (finite) Lévy measures Λ1 and Λ̄1. We
finally define the switching transform of ξ according to p by the process

ξ[p] := ξ − ξ1 + ξ̄1.

Lemma 2.2. Let ξ be a SNLP with characteristics (σ, c,Λ, k) and p : (−∞, 0)→ [0, 1] be
a measurable function that satisfies (2.1). Then the switching transform ξ[p], derived
from ξ according to p, is a SNLP with characteristics

σ[p] := σ,

Λ[p](dz) := (1− p(z))Λ(dz) + p(z̄)Λ̄(dz),

c[p] := c+
∫

(−∞,0)
(1− 2ez)p(z)Λ(dz),

k[p] := k,

and Laplace exponent

Φ[p](q) := Φ(q) +

∫
(−∞,0)

((1− ez)q − eqz) p(z)Λ(dz), q ≥ 0.

Define κ[p] as in (1.3) for ξ[p], then κ[p] = κ. Further,

τ := inf
{
t ≥ 0 : ξ(t) 6= ξ[p](t)

}
has an exponential distribution with parameter

∫
(−∞,0)\{− log 2} p(z) Λ(dz) <∞. Moreover,

if τ <∞ then τ is a jump time of both ξ and ξ[p] with

exp(ξ(τ)) + exp(ξ[p](τ)) = exp(ξ(τ−)).

Proof. We observe that ξ, ξ1 and ξ̄1 are all Lévy processes with respect to the filtration
σ(ξ(s),∆1(s), s ≤ t). The Lévy processes (ξ − ξ1) and ξ1 are independent since they
never jump at the same time. For the same reason, the Lévy processes (ξ − ξ1) and ξ̄1
are also independent. Therefore, the Laplace exponent of ξ[p] is Φ− Φ1 + Φ̄1, where Φ1
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and Φ̄1 are respective Laplace exponents of ξ1 and ξ̄1. So we get the characteristics of
ξ[p] and thus check that κ[p] = κ by straightforward calculation.

We next observe from the construction of ξ[p] that

inf
{
t ≥ 0 : ξ(t) 6= ξ[p](t)

}
= inf {t ≥ 0 : ∆1(t) 6= 0 and ∆1(t) 6= − log 2} ,

which implies the second part of the statement.

Remark 2.3. It follows from (1.2) that for every a ≥ 2 the function z 7→ (1− ez)a satisfies
(2.1). However, the function z 7→ (1− ez), which would correspond to the size-biased pick
between exp(∆ξ(t)) and (1 − exp(∆ξ(t))) (see Section 2.2 in [17]) cannot satisfy (2.1)
unless

∫
(−∞,0)

(|z| ∧ 1)Λ(dz) <∞.

Lemma 2.4. If κγ = κ, then for every measurable function p : (−∞, 0)→ [0, 1] such that∫
(−∞,0)

p(z)Λγ(dz) <∞ and p(z) + p(z̄) = 1 for (Λγ + Λ̄γ)-a.e. z ∈ (−∞, 0), (2.2)

there is
∫

(−∞,0)
p(z)Λ(dz) <∞ and ξ[p] d

= γ[p].

The function z 7→ 1{z<− log 2} + 1
21{z=− log 2} gives an example that satisfies (2.2).

Proof of Lemma 2.4. As κγ = κ, it follows from Lemma 2.1 and (1.2) that Λ − Λγ is a
finite signed measure and hence we have∫

(−∞,0)

p(z)Λ(dz) ≤
∫

(−∞,0)

p(z)Λγ(dz) +

∫
(−∞,0)

|Λ− Λγ |(dz) <∞.

So the switching transforms ξ[p] and γ[p] are well-defined. As (2.2) holds, by combining
Lemma 2.1 and Lemma 2.2, we get that the characteristics of ξ[p] are the same as those
of γ[p].

We next see that the SNLPs that have the same κ are related to each other via the
switching transformations.

Proposition 2.5. If κγ = κ, then γ
d
= ξ[p], where p is the measurable function defined by

the Radon-Nikodym derivative

p := dΛ̄γ/d(Λγ + Λ̄γ).

Proof. Observe that∫
(−∞,0)

p(z)Λγ(dz) ≤
∫

(−∞,− log 2)

Λγ(dz) +

∫
(− log 2,0)

Λ̄γ(dz) <∞.

Since p(z̄) is equal to the value of the Radon-Nikodym derivative dΛγ/d(Λγ + Λ̄γ)(z) for
(Λγ + Λ̄γ)-a.e. z ∈ (−∞, 0), there is p(z) + p(z̄) = 1 for (Λγ + Λ̄γ)-a.e. z ∈ (−∞, 0). Then
we have by Lemma 2.2 that the switching transform γ[p] is well-defined, and has the

same characteristics as γ, i.e. γ[p] d
= γ. As (2.2) holds, it follows from Lemma 2.4 that

ξ[p] is also well-defined and ξ[p] d
= γ[p]. So we conclude that γ

d
= ξ[p].

We finally present a construction of a bifurcator of homogeneous cell processes,
which has the following precise definition.

Definition 2.6. A pair of homogeneous cell processes (X,Y ) is a bifurcator if it satisfies
the following properties:
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1. Let τ := inf{t ≥ 0 : X(t) 6= Y (t)}. There is almost surely either τ = ∞ or the
identity

X(τ) + Y (τ) = X(τ−) = Y (τ−).

2. (Asymmetric Markov branching property) Conditionally given τ > t, the pair
(X(r + t)/X(t), Y (r + t)/Y (t))r≥0 is a copy of (X,Y ); conditionally given τ ≤ t, the
two processes (X(r + t)/X(t))r≥0 and (Y (r + t)/Y (t))r≥0 are independent copies
of X and Y respectively.

This definition generalizes bifurcators of fragmenters in [17]. We shall later extend
this notion to general cell processes, see Definition 3.7.

Lemma 2.7. If κ = κγ , then there exists a bifurcator of homogeneous cell processes
(X,Y ), such that the marginal laws of X and Y are the laws of exp(ξ) and exp(γ)

respectively.

Proof. Since κ = κγ , we can build as in Proposition 2.5 the switching transform ξ[p]

derived from ξ such that ξ[p] d
= γ. We stress that ξ and ξ[p] are still coupled after the

switching time τ := inf{t ≥ 0 : ξ(t) 6= ξ[p](t)}. However, let us define a process Y by

Y (t) := 1{t<τ} exp(ξ(t)) + 1{t≥τ} exp(ξ[p](τ) + γ′(t− τ)), t ≥ 0,

where γ′ is a copy of γ, independent of ξ[p] and ξ. Then we easily check that Y
d
= exp(γ)

and the pair of homogeneous cell processes (X := exp(ξ), Y ) satisfies Definition 2.6.

2.2 Binary branching Lévy processes

Let ξb be a SNLP with characteristics (σb, cb,Λb, kb) and Πb be a Lévy measure on
[− log 2, 0) that satisfies ∫

[− log 2,0)

(1 ∧ z2)Πb(dz) <∞. (2.3)

Informally speaking, a binary branching Lévy process (BBLP) introduced in [3] models
the evolution of a particle system, in which each particle moves in R according to the
SNLP ξb, independently of the other particles, and at rate Πb(dz) each particle gives
birth to two children scattered on R, whose initial positions relative to the position of
the parent at death are given by z and z̄ = log(1− ez). We further add a properly chosen
positive drift for the entire system, which is an analogue of the compensation term in
the Lévy-Khintchine formula (1.1), so that the particles in this system do not all shift to
−∞ instantaneously. Proposition 3 in [4] establishes a close connection between BBLPs
and homogeneous growth-fragmentations. We will extend this connection in the next
subsection. Before that, we recall some basic facts of BBLPs in this subsection.

Let us represent the formal construction of BBLPs in [3], starting with the case
when the branching occurs with a finite intensity, i.e. Πb([− log 2, 0)) < ∞. Write
U2 :=

⋃∞
n=0{`, r}n for the binary Ulam-Harris tree with {`, r}0 := ∅ by convention, so for

every i ∈ N, an element in {`, r}i is a word v = (n1, n2, . . . , ni) composed of i letters of
the alphabet {`, r}. We write |v| := i for the generation of v and (v`, vr) for its children,
where v` would be referred to as the left child and vr as the right child. For every j ≤ |v|,
we denote by [v]j := (n1, n2, . . . , nj) the ancestor of v at the j-th generation.

Definition 2.8. Let ξb be a SNLP with characteristics (σb, cb,Λb, kb) and Πb be a finite
measure on [− log 2, 0). We consider three independent processes (λv)v∈U2 , (Lv)v∈U2 and
(Dv)v∈U2 such that:

• (λv)v∈U2 is a family of i.i.d. exponential variables with parameter Πb([− log 2, 0)).
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• (Lv)v∈U2 is a family of independent SNLP distributed as

ξb(t) +

(∫
[− log 2,0)

(1− ez)Πb(dz)

)
t, t ≥ 0.

• (Dv`, Dvr)v∈U2 is a family of i.i.d. random variables, such that Dv` is distributed
according to the conditional probability Πb(· | [− log 2, 0)) and

Dvr = Dv` = log(1− exp(Dv`)) ≤ Dv`.

Define for every v ∈ U2 the birth time by βv :=
∑|v|−1
j=0 λ[v]j , and iteratively the positions

of its children at birth by (avi = av + Lv(λv) +Dvi, i ∈ {`, r}), with a∅ = 0. We agree that
Lv(s) = −∞ if Lv is killed before s. Then the positions of the particles alive at time t ≥ 0

form a multiset of elements in R:

Z(t) := {{av + Lv(t− bv) : v ∈ U2, βv ≤ t < βv + λv}}.

The process (Z(t), t ≥ 0) is a binary branching Lévy process (BBLP) with charac-
teristics (σb, cb,Λb, kb,Πb).

Remark 2.9. A multiset I could be equivalently viewed as the point measure
∑
i∈I δi,

where δ stands for the Dirac mass. So we can identify Z with a point process.

We next extend the construction to infinite branching intensity and suppose that

Πb([− log 2, 0)) =∞.

For every d ≤ − log 2, let us set

Π
{d}
b := 1{[− log 2,d̄)}Πb, Λ

{d}
b := Λb + 1{[d̄,0)}Πb. (2.4)

We know from Lemma 3 in [3] that we can construct in the same probability space a
family of processes

(Zd, −∞ < d ≤ − log 2),

with each Zd being a BBLP with characteristics (σb, cb,Λ
{d}
b , kb,Π

{d}
b ) in the sense of

Definition 2.8 (we stress that (2.3) assures that Π
{d}
b is a finite measure), such that for

every d ≤ d′ ≤ − log 2 there is (Zd)
{d′}

= Zd′ , where (Zd)
{d′}

is the system derived from
Zd by keeping at each branching event the child particle that is closer to the mother, and
suppressing the other child particle (together with its offspring) whenever it is born at
distance from its mother ≥ |d′|.
Definition 2.10. In the notation above, suppose that Πb is a Lévy measure on [− log 2, 0)

that verifies (2.3). Then the limit process (by monotonicity in the sense of multiset
inclusion)

Z(t) := lim
d→−∞

↑ Zd(t), t ≥ 0

is a BBLP with characteristics (σb, cb,Λb, kb,Πb).

Remark 2.11. Our notation is slightly different from that of [3]. In this work we only
consider the binary case, that is, in each branching event a particle splits into at most
two fragments. However, branching Lévy processes constructed in [3] are more general:
an offspring of more than two fragments in one dislocation is allowed. In the sense
of Definition 2 in [3], a BBLP with characteristics (σb, cb,Λb, kb,Πb) is characterized by
(σb, cb − kb, µb), where µb is a measure on the infinite vector space{

(r1, r2, r3, . . .) : ri ∈ [−∞, 0] for i ∈ N, er1 + er2 + . . . ≤ 1, and r1 ≥ r2 ≥ . . .
}
,
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and is given by the sum of the following three measures: the image of Λb by the
map z 7→ (z,−∞,−∞, . . .), the image of Πb by the map z 7→ (z, z̄,−∞,−∞, . . .) and
kbδ(−∞,−∞,...).

Let Φb be the Laplace exponent of the SNLP ξb with characteristics (σb, cb,Λb, kb).
Introduce κb : [0,∞)→ (−∞,∞] by

κb(q) := Φb(q) +

∫
[− log 2,0)

(eqz + (1− ez)q − 1 + q(1− ez)) Πb(dz), q ≥ 0,

then κb serves as cumulant for the BBLP Z. Specifically, we know from Theorem 1 in [3]
that for every q ≥ 2, there is κb(q) <∞ and

E

 ∑
z∈Z(t)

eqz

 = eκb(q)t for all t ≥ 0. (2.5)

We now check that if Λb = 0, then the cumulant determines the distribution of the BBLP
in the following sense.

Lemma 2.12. Let Z and Z′ be two BBLPs with respective characteristics (σb, cb,Λb, kb,Πb)

and (σ′b, c
′
b,Λ
′
b, k
′
b,Π

′
b). If Λb = Λ′b = 0 and their cumulants κb = κ′b, then Z and Z′ have

the same law.

Proof. Since the third order derivatives of κ′b and κb are equal for all q > 2, by a similar
argument as in the proof of Lemma 2.1, we find that Π′b + Π̄′b = Πb + Π̄b. As Π′b and Πb

are supported on [− log 2, 0], we hence find that Π′b = Πb. By iterating this argument over
the lower order of derivatives, we conclude that Z and Z′ have the same characteristics,
thus the same law.

2.3 Homogeneous growth-fragmentations

For every x > 0, write Px for the law of the homogeneous cell process X := x exp(ξ),
where ξ is a SNLP with κ defined as in (1.3). If ξ is killed at a time ζ, then by convention
we denote X(t) = ∂ for all t ≥ ζ, where ∂ is the cemetery state. Let X be a homogeneous
growth-fragmentation associated with X, which was informally described in the Intro-
duction. By connecting to branching Lévy processes, we shall prove in this section that
the law of X is characterized by the cumulant function κ.

In that direction, let us present the rigorous construction of X, which is only a slight
modification of that in [4]. We start with listing the jumps of X in the following way. Fix
q > 2 and K > Φ(q). Recalling that the jump process ∆ξ is a Poisson point process with
characteristic measure Λ and using the compensation formula (see e.g. [1]), we get for
every x > 0

Ex

∑
0≤s

|∆X(s)|qe−Ks
 = Ex

∑
0≤s

X(s−)q(1− e∆ξ(s))qe−Ks


= Ex

[∫ ∞
0

e−KsX(s−)qds

∫
(−∞,0)

(1− ez)qΛ(dz)

]
,

where Ex stands for mathematical expectation under Px. Using the definition of Φ and κ,
we deduce that

Ex

∑
0≤s

|∆X(s)|qe−Ks
 =

κ(q)− Φ(q)

K − Φ(q)
xq, (2.6)
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which implies that Px-almost surely∑
s≥0

|∆X(s)|qe−Ks <∞.

We may therefore list the jump times of X in a sequence (ti)i∈N, such that the value of
|∆X(ti)|qe−Kti is decreasing with i. By convention, if X has a finite number of jumps,
then the tail of this sequence is filled with∞ with ∆X(∞) = ∂. In the sequel, the i-th
jump time of X shall always refer to the i-th element ti in this sequence.

Let us give some basic notations. Let U :=
⋃∞
i=0N

i be the Ulam-Harris tree, by
convention N0 = {∅}. An element u ∈ U is a finite sequence of natural numbers u =

(n1, . . . , n|u|) where |u| ∈ N stands for the generation of u. We write u− = (n1, . . . , n|u|−1)

for its mother and uk = (n1, . . . n|u|, k) for its k-th daughter with k ∈ N. We also denote
[u]i = (n1, . . . , ni) for every i ≤ |u| with [u]0 = ∅ by convention.

We next construct the cell system driven by X, which is a family of homogeneous
cell processes indexed by U

X := (Xu, u ∈ U),

where each Xu depicts the evolution of the size of the cell indexed by u as time passes.
Specifically, we fix an arbitrary x > 0, which is the initial size of the ancestor cell. Then
we set the birth time of ∅ at b∅ := 0 and let the life career X∅ = (X∅(t), t ≥ 0) be a process
of law Px. Given the life path of X∅, then we generate the first generation. For i ∈ N,
say the i-th jump time of X∅ is ti and xi := −∆X∅(ti), we then set bi = ti and build a
sequence of conditionally independent processes (Xi)i∈N with respective conditional
distribution Pxi . By convention, if ti =∞ (which means that X∅ has less than i jumps),
then we agree that the cell i as well as all its progeny have degenerate life careers,
i.e. for every v ∈ U we set Xiv ≡ ∂ and biv = ∞. We continue in this way to construct
higher generations recursively. More precisely, for every individual u ∈ U , the laws of
her daughters are determined by the trajectory of Xu: given Xu, say the i-th jump of Xu
is at time t with y := −∆Xu(t), then its i-th daughter ui is born at time bui := t and ui’s
size process Xui = (Xui(r), r ≥ 0) has conditional distribution Py, independent of the size
processes of the other individuals in the same generation.

Write Px for the law of this cell system X (recall that x > 0 indicates the initial size
of the Eve ∅, i.e. X∅(0) = x). According to [13], the probability distribution Px indeed
exists and is uniquely determined by the above description.

Finally, for every t ≥ 0 let X(t) be the multiset whose elements are sizes of the cells
alive at time t, i.e.

X(t) := {{Xu(t− bu) : u ∈ U , bu ≤ t < bu + ζu}},

where ζu := inf{t ≥ 0 : Xu(t) = ∂} denotes the life length of u. Then we refer to
X = (X(t), t ≥ 0) as a growth-fragmentation process driven by X and write Px for
the law of X under Px.

Remark 2.13. The construction of the cell system X is only a slight modification of that
of a cell system in [4], and that of a general branching process (also called Crump-Mode-
Jagers process) in [13]. The only difference lies in the fact that, in [4] daughters are
listed in decreasing order of the sizes at birth, and in [13] daughters are enumerated
by their birth times. However, in full generality, it is not always possible to enumerate
the jumps of a homogeneous process X in decreasing order of jump sizes or increasing
order of jump times.

Remark 2.14. If we use a different way to enumerate the jumps of X, it is intuitively
clear that the new cell system is the same as the original one, up to a permutation
of U . Thus the growth-fragmentation X obviously does not depend on the method of
enumeration and the law of X is determined by X.
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We now present a connection between homogeneous growth-fragmentation processes
and BBLPs.

Proposition 2.15. Let ξ be a SNLP with characteristics (σ, c,Λ, k) and κ defined as in
(1.3) and X be a homogeneous growth-fragmentation process (starting from 1) driven by
X := exp(ξ). Then the process logX is the unique (in law) BBLP with cumulant κ and
Λb = 0. Specifically, logX has characteristics (σ, cb, 0, k,Πb), where

cb = c+

∫
(−∞,− log 2)

(
1− 2ez

)
Λ(dz), and Πb = 1{(− log 2,0)}(Λ + Λ̄) +

1

2
1{− log 2}(Λ + Λ̄).

In particular, we have

E1

[ ∑
y∈X(t)

yq
]

= exp (κ(q)t) for all q ≥ 2 and t ≥ 0.

Remark 2.16. Taking account of Remark 2.11, we find that the homogeneous growth-
fragmentation X is a compensated fragmentation process in the sense of Definition 3
in [3]. Further, when σ = 0,

∫
(−∞,0)

(1− ez)Λ(dz) < ∞ and c+
∫

(−∞,0)
(1− ez)Λ(dz) ≤ 0,

X is a homogeneous fragmentation process in the sense of [2]. Loosely speaking, a
compensated fragmentation is the limit of properly dilated homogeneous fragmentations,
see Corollary 4 in [3].

Proposition 2.15 extends Corollary 25 in [17] (which treats the case when ξ is the
negative of a pure-jump subordinator) and Proposition 3 in [4] (for the case when
the Lévy measure Λ of ξ has no mass on (−∞,− log 2)). Before tackling the proof of
Proposition 2.15, let us provide a variation of Theorem 1.1, which summarizes the
discussion in this section.

Corollary 2.17. Let ξ and ξ̃ be two SNLPs with respective cumulants κ and κ̃ defined as
in (1.3). Let X and X̃ be the homogeneous growth-fragmentations associated with ξ and
X̃ respectively (with the same initial size of ancestor x > 0), The following statements
are equivalent:

1. κ = κ̃;

2. ξ̃ has the same law as a switching transform of ξ;

3. X and X̃ have the same finite-dimensional distributions.

Proof of Corollary 2.17. (i)⇔ (ii): The two directions follow respectively from Proposi-
tion 2.5 and Lemma 2.2.

(i)⇔ (iii): We know from Proposition 2.15 that logX and log X̃ are BBLPs with respec-
tive cumulants κ and κ̃. If X and X̃ have the same finite-dimensional distributions, then so
do the BBLPs logX and log X̃, and in particular their cumulants are the same. Conversely,
if κ = κ̃, then we deduce from Lemma 2.1 or Lemma 2.12 that the BBLPs logX and log X̃

have the same characteristics, thus the same finite-dimensional distributions.

The rest of this section is devoted to the proof of Proposition 2.15.

Proof of Proposition 2.15. The idea of the proof is similar to that of Proposition 3 in
[4]. Let Z be a BBLP with characteristics (σ, cb, 0, k,Πb) and write (Zd)d∈(−∞,− log 2]

for the family of BBLPs as in Definition 2.8, each Zd a BBLP with characteristics
(σ, cb,1{[d̄,0)}Πb, k,1{[− log 2,d̄)}Πb), such that

Z(t) = lim
d→−∞

↑ Zd(t), t ≥ 0.
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We shall check for every d ∈ (−∞,− log 2) that exp(Zd) has the same dynamics as a
truncated cell system associated with the cell process X = exp(ξ), in which each cell
u ∈ U is killed at the first instant s with Xu(s) ≤ edXu(s−), together with her future
descendants (born at time > s); furthermore, for each j ∈ N the daughter cell uj is killed
at birth (together with its descendants) whenever her size is less than or equal to ed

times the size of her mother immediately before the birth event, i.e. Xuj(0) ≤ edXu(buj−).
Letting d→ −∞, we conclude from Definition 2.8 and the monotonicity that logX has
the same distribution as Z. Then it is straightforward to check that logX indeed has
cumulant κ and the identity in the proposition thus follows from (2.5). The uniqueness of
logX follows from Lemma 2.12.

So it remains to prove that exp(Zd) indeed has the same law as the truncated cell
system. In this direction, let us construct an auxiliary particle system as follows, which is
a minor modification of Definition 2.8. Fix an arbitrary d < − log 2. Let us consider three
independent sequences of processes (λv)v∈U2 , (Lv)v∈U2 and (Dv`, Dvr)v∈U2 such that:

• (λv)v∈U2 is a family of i.i.d. exponential variables with parameter Λ((∞, d̄));

• (Lv)v∈U2 is a family of i.i.d. SNLPs with characteristics (σ, c̃,1{[d̄,0)}Λ, k), where
c̃ := c+

∫
(−∞,d̄)(1− ez)Λ(dz).

• (Dv`, Dvr)v∈U2 is a family of i.i.d. pairs of random variables such that each Dv` is
distributed according to the conditional probability Λ(· | (−∞, d̄)) and

Dvr = Dv` = log(1− exp(Dvr)).

Write βv :=
∑|v|−1
j=0 λ[v]j for the birth time, and define by induction avi = av+Lv(λv)+Dvi

for i ∈ {`, r} with a∅ = 0. So we define L by

L(t) := {{av + Lv(t− βv) : v ∈ U2, βv ≤ t < βv + λv}}, t ≥ 0.

We stress that unlike in Definition 2.8, 1{(−∞,d̄)}Λ is not supported on [− log 2, 0), so
Dv` may be possibly smaller than Dvr. However, we may obtain a BBLP by changing
the indices of the particles. Specifically, let us define a bijection h : U2 → U2 in the
following way. Let h(∅) := ∅. Given h(v) with v ∈ U2 by induction, then we assign the
index of max(Dh(v)`, Dh(v)r) to h(v`) and let h(vr) be the sister of h(v`). We therefore
define (D′v`, D

′
vr) := (Dh(v`), Dh(vr)), β

′
v := βh(v) and L′v := Lh(v) for each v ∈ U2, and

further define recursively a′vi := a′v + L′v(λ
′
v) +D′vi. As h is a bijection, it is plain that

L(t) = {{a′v + L′v(t− β′v) : v ∈ U2, β
′
v ≤ t < β′v + λ′v}}, t ≥ 0.

Let

ΠL =
1

2
1{− log 2}(Λ + Λ̄) + 1{(− log 2,d̄)}Λ + 1{(− log 2,0)}Λ̄,

then ΠL is supported on [− log 2, 0) and we observe that ((D′h(v)`, D
′
h(v)r), v ∈ U2) is a

family of i.i.d. random variables such that D′h(v)` has conditional law ΠL(· | [− log 2, 0))

and D′h(v)r = D′h(v)`, that (β′v, v ∈ U2) is a family of i.i.d. exponential variables with

parameter Λ((−∞, d̄)) = ΠL([− log 2, 0)) and that (L′v, v ∈ U2) is a family of independent
copies of ξ̃. Using this point of view, we hence deduce that L is a BBLP as in Definition 2.8,
with characteristics (σ, cb,ΛL := 1{[d̄,0)}Λ, k,ΠL), where we have used the fact that

c̃−
∫

[− log 2,0)

(1− ez)ΠL(dz) = c+

∫
(−∞,− log 2)

(1− 2ez)Λ(dz) = cb.
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Let us next give some remarks on the left-most branch of the particle system L, that
is the process obtained by concatenating the segments of size processes of particles
{∅, `, ``, ```, . . .} := `N∪{0} := `N0 ⊂ U2:

A`N0 (t) :=
∑
v∈`N0

1{βv≤t<βv+λv}(av + Lv(t− βv)), t ≥ 0. (2.7)

Using elementary properties of Lévy processes, we find that A`N0 has the same distribu-
tion as ξ. We also notice that for every time t ≥ 0 when ∆A`N0 (t) < d̄, that is equivalently
exp(A`N0 ) has a jump of size −∆ exp(A`N0 (t)) > ed exp(A`N0 (t−)), there is t = βv + λv
for a certain v ∈ `N0 . A fortiori, for every s ≥ 0 such that ∆A`N0 (s) < d < d̄, that is
equivalently exp(A`N0 (s)) ≤ ed exp(A`N0 (s−)), there is s = βw + λw for a certain w ∈ `N0 .

We finally consider the process L̂, which is associated with a system derived from
L, by suppressing for each v ∈ U2 the child that corresponds to Dv` whenever Dv` ≤ d.
So we can explain the dynamics of exp(L̂) as follows. This system starts with an Eve
cell whose size evolves according to X∅ := exp(A`N0 ), and the Eve cell is killed (together
with her future descendants) at the first instant s ≥ 0 when there is X∅(s) ≤ edX∅(s−).
Further, for each time t ≤ s when X∅ has a jump of size y := −∆X∅(t) > edX∅(t−), there
is t = βv + λv for a certain v ∈ `N0 , then a daughter cell with initial size y is born
and the size of this daughter cell evolves according to the process exp(Avr`N0 ), where
Avr`N0 is the process associated with vr`N0 :=

{
vrw : w ∈ `N0

}
as in (2.7). Note that

the process exp(Avr`N0 ) has the same distribution as y exp(ξ). This daughter cell evolves
independently of the other daughter cells, is killed at the first instant when her size
drops suddenly by factor smaller than ed, and gives birth to grand-daughter cells each
time her size drops suddenly by factor smaller than ed̄ (note that ed̄ > ed) before being
killed (with killing time included). We continue so on and so forth to obtain the higher
generations. So we conclude that exp(L̂) indeed has the same law as a truncated cell
system associated with X = exp(ξ).

On the other hand, using the point of view that L is a BBLP with characteristics
(σ, cb,ΛL, k,ΠL), since Dvr > d always holds by the construction, we may equivalently
view L̂ as the system obtained from L by suppressing for each v ∈ U2 the smaller child
D′vr whenever D′vr ≤ d. We hence deduce from Lemma 3 in [3] that L̂ is a BBLP with

characteristics (σ, cb,Λ
{d}
L , k,Π

{d}
L ), where Λ

{d}
L and Π

{d}
L are derived from ΛL and ΠL as

in (2.4). We check that (Λ
{d}
L ,Π

{d}
L ) = (1{[d̄,0)}Πb,1{[− log 2,d̄)}Πb), so the two BBLPs L̂ and

Zd have the same characteristics, which ends the proof.

3 Markovian growth-fragmentation processes and bifurcators

In this section, we shall extend the notion of bifurcator to general cell processes and
further establish a sufficient condition for different Markovian growth-fragmentations to
have the same distribution, which finally orients us toward the proofs of Theorem 1.1
and Theorem 1.2. Let us first present a sufficient condition for non-explosion of growth-
fragmentations, which slightly generalizes the approach in [4].

3.1 A sufficient condition for non-explosion

A Feller process X = (X(t), t ≥ 0) is called a cell process, if it has càdlàg path on
(0,∞) ∪ {∂} with no positive jumps. We refer to ∂ as a cemetery point and denote the
lifetime of X by ζ := inf {t ≥ 0 : X(t) = ∂} ∈ [0,∞]. For every x ≥ 0 we write Px for the
law of X with initial value X(0) = x and Ex for mathematical expectation under Px.

As we have discussed in Section 2.3, to study the growth-fragmentation associated
with X, we first want an ordering of the jumps of X, which is necessary to rigorously
build a cell system driven by X. Furthermore, we need a sufficient condition for the
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non-explosion of the cell system, that is for every t ≥ 0 the multiset of the sizes of all
cells alive at time t is locally finite. For these purposes, we henceforth suppose the
following hypothesis for X, which is reminiscent of that in Theorem 1 in [4].

(H) There exists a measurable function f : [0,∞)× ([0,∞)∪{∂})→ [0,∞) which fulfills

f (r, ∂) = f (r, 0) = 0, for every r ≥ 0,

and
inf

r<l,x>a
f (r, x) > 0, for every a, l > 0, (3.1)

such that for every x > 0 and every s, t ≥ 0, there is

Ex

f (s+ t,X(t)) +
∑

0≤r≤t

f (s+ r,−∆X(r))

 ≤ f (s, x) .

Example 3.1. For x > 0, let Px be the law of the homogeneous cell process

X(0)(t) := x exp(ξ(t)), t ≥ 0.

Fix q ≥ 2 and K ≥ κ(q), we have by an analogue of (2.6) that for every x > 0 and every
s, t ≥ 0

Ex

X(0)(t)qe−K(t+s) +
∑

0≤r≤t

|∆X(0)(r)|qe−K(r+s)


=

(
e(Φ(q)−K)t +

κ(q)− Φ(q)

K − Φ(q)
(1− e(Φ(q)−K)t)

)
xqe−Ks ≤ xqe−Ks.

So X(0) satisfies (H) with the function f(t, x) = xqe−Kt.

From now on we fix a function f such that (H) holds for X. In particular, (H) entails
that for every x > 0 ∑

r≥0

f (r,−∆X(r)) <∞ Px-almost surely.

Hence we may naturally enumerate the jump times of X by listing them in a sequence
(ti)i∈N such that (f (ti,−∆X(ti)))i∈N is decreasing, and thus reproduce the construction
in Section 2.3 to build a cell system X := (Xu, u ∈ U) driven by X, starting from an
ancestor of initial size x > 0, with birth time bu and life duration ζu for each u ∈ U .
Denote the sizes of the cells alive at time t ≥ 0 by the multiset

X(t) := {{Xu(t− bu) : u ∈ U , bu ≤ t < bu + ζu}},

then (X(t), t ≥ 0) is a growth-fragmentation process driven by X. We write Px for
the law of X and Px for the law of X under Px. It is intuitively clear that the law of X is
independent of the enumeration method.

For every non-negative measurable function h : (0,∞)→ [0,∞) and every multiset I
with elements in (0,∞), introduce the notation〈

I, h
〉

:=
∑
y∈I

h(y) ∈ [0,∞].

Let us define for every s ≥ 0 a spaceMs
f : a multiset I is inMs

f , if I has elements in

(0,∞) and
〈
I, f (s, ·)

〉
<∞.
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Lemma 3.2. Suppose that X satisfies (H) with a function f . Then we have for every
x > 0 that

Ex
[〈
X(t), f(s+ t, ·)

〉]
≤ f (s, x) , for all t, s ≥ 0,

where Ex denotes the mathematical expectation under Px. So we have Px-almost surely
X(t) ∈Mt

f .

Lemma 3.2 encompasses Theorem 1 in [4] for the case when f only depends on the
x variable, i.e. f (t, x) ≡ f(x) for every x, t ≥ 0. In that case f is a so-called excessive
function for X. In the same spirit, we may refer to f as a time-dependent excessive
function for X.

Proof. The proof is an adaptation of arguments of Theorem 1 in [4]. We may assume that
X is associated with a cell system X of law Px and write Ex for mathematical expectation
under Px. We will prove that the sequence

Σ(i) :=
∑

|u|≤i,bu≤t

f (s+ t,Xu(t− bu)) +
∑

|v|=i,bv≤t

∑
bv≤r≤t

f (s+ r,−∆Xv(r − bv)) , i ∈ N

is a non-negative super-martingale, then Σ(∞) = limi→∞Σ(i) exists almost surely and
Σ(∞) ≥

〈
X(t), f(s+ t, ·)

〉
. We thus deduce from Fatou’s lemma that

Ex
[〈
X(t), f(s+ t, ·)

〉]
≤ Ex [Σ(0)]

= Ex

f (s+ t,X(t)) +
∑

0≤r≤t

f (s+ r,−∆X(r))

 ≤ f (s, x) ,

where the last inequality derives from (H).
So it remains to prove that Σ(i) is a super-martingale. For every v with |v| = i, given

Fi−1 := σ(Xu, |u| ≤ i− 1) we have by (H) that

Ex

f (s+ t,Xv(t− bv)) +
∑

bv≤r≤t

f (s+ r,−∆Xv(r − bv))

∣∣∣∣∣∣ Fi−1

 ≤ f (s+ bv,Xv(0)) .

Summing over v of i-th generation on the event {t ≥ bv}, we get that

Ex

 ∑
|v|=i,bv≤t

f (s+ t,Xv(t− bv)) +
∑

|v|=i,bv≤t

∑
bv≤r≤t

f (s+ t,−∆Xv(r − bv))

∣∣∣∣∣∣ Fi−1


≤

∑
|v|=i,bv≤t

f (s+ bv,Xv(0)) =
∑

|u|=i−1,bu≤t

∑
bu≤r≤t

f (s+ r,−∆Xu(r − bu)) .

Adding
∑
|u|≤i−1,bu≤t f (s+ t,Xu(t− bu)) to both sides of inequality, we conclude that

Ex [Σ(i) | Fi−1] ≤ Σ(i− 1),

which means that Σ(i) is a super-martingale.

LetM+ be the class of all multisets I on (0,∞), which has only finitely many elements
in [a,∞) for every a > 0. Note that each I ∈ M+ corresponds to a Radon measure on
(0,∞) (in the sense of Remark 2.9) and (3.1) ensures thatMs

f ⊂M+ for every s ≥ 0. On
account of Lemma 3.2, we can hence view the growth-fragmentation X as a stochastic
process with values in M+, which means that X does not explode. The space M+ is
endowed with the following topology:
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Definition 3.3. We denote the cardinality of a multiset J by |J |. A sequence (In)n∈N in
M+ converges to I ∈ M+ if and only if for all r ∈ (0,∞) such that I ∩ {r} = ∅ there is
|In ∩ [r,∞)| → |I ∩ [r,∞)|.

The advantage of endowingM+ with this topology is that it is a Polish space (homeo-
morphic to a complete and separable metric space), see Theorem 2.1 and Theorem 2.2
in [16]. It is known from Lemma 2.1 in [16] that convergence in M+ implies vague
convergence. See [16] for more properties ofM+.

We next introduce a truncate operation on X tailored for our future purpose, which
is different from the one in the proof of Proposition 2.15. For every ε > 0, we obtain
a truncated system X [ε] = (X [ε]

u , u ∈ U), by killing each cell process at the first time
s ≥ 0 when its size is less than or equal to ε, together with its future (born at time
> s) descendants. Specifically, let us denote for every u ∈ U its ancestral lineage by
Au := (Au(t), t ≥ 0), i.e.

Au(t) :=
∑

n≤|u|−1

X[u]n
(t− b[u]n)1{b[u]n≤t<b[u]n+1} + Xu(t− bu)1{bu≤t}, t ≥ 0,

where [u]n denotes u’s ancestor at the n-th generation for all n ≤ |u|, then we have that

X [ε]
u (t) :=

{
Xu(t), if inf0≤r≤t+bu Au(r) > ε.

∂, otherwise.
(3.2)

Let X[ε] be the point process on (0,∞) associated with X [ε]:

X[ε](t) = {{X [ε]
u (t− bu) : u ∈ U , bu ≤ t,X [ε]

u (t− bu) 6= ∂}}, t ≥ 0.

Lemma 3.4. Suppose that X satisfies (H). Then for every x ≥ 0 and every t ≥ 0, under
the topology ofM+ the multiset X[ε](t) converges Px-almost surely to X(t) as ε ↓ 0+.

Proof. We first note that if a cell u ∈ U is alive at time t ≥ 0 with Xu(t − bu) > 0, then
Px-almost surely its ancestral lineage has a size bounded away from 0 before time t, i.e.
inf0≤r≤tAu(r) > 0. So there exists ε > 0 small enough such that X [ε]

u (r− bu) = Xu(r− bu)

for all bu ≤ r ≤ t, and we have Px-almost surely

lim
ε→0+

X [ε]
u (t− bu)1{t≥bu} = Xu(t− bu)1{t≥bu}.

We hence obtain by the monotone convergence that for every a > 0, Px-almost surely

lim
ε→0

∑
u∈U

1{X [ε]
u (t−bu)≥a

}X [ε]
u (t− bu)1{t≥bu} =

∑
u∈U

lim
ε→0

1{X [ε]
u (t−bu)≥a

}X [ε]
u (t− bu)1{t≥bu},

which means that Px-almost surely

lim
ε→0
|X[ε](t) ∩ [a,∞)| = |X(t) ∩ [a,∞)|.

So we conclude that X[ε](t) converges Px-almost surely to X(t) inM+.

We observe that the truncated system X [ε] has a discrete temporal branching struc-
ture, since for each càdlàg process the set of jump times with sizes of jumps < −ε is
discrete. By the same arguments as the proof of Proposition 2 in [4], we deduce from this
observation and Lemma 3.4 that X has the temporal branching property. To describe
this property, let us define a family (ρs,t, t ≥ s ≥ 0), where each ρs,t is a probability kernel
fromMs

f toMt
f , in the following way. Given a multiset J ∈ Ms

f , we may construct a
family of independent random multisets (Iy, y ∈ J ), such that each Iy has the law of
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X(t − s) under Py. Define by the sum of the multisets J t :=
⊎
y∈J Iy, then J t ∈ Mt

f ,
since it follows from Lemma 3.2 that〈

J t, f (t, ·)
〉

=
∑
y∈J

Ey
[〈
X(t− s), f (t, ·)

〉]
≤
∑
y∈J

f (s, y) =
〈
J , f (s, ·)

〉
<∞.

We hence define ρs,t(J , ·) by the law of J t.
Proposition 3.5 (Temporal branching property). Suppose that X satisfies (H) with a
function f . Then for every t ≥ s ≥ 0 and every x > 0, the conditional distribution of X(t)

under Px given (X(r), 0 ≤ r ≤ s) is ρs,t(X(s), ·).
Remark 3.6. One may easily extend the analysis in this section to time-inhomogeneous
Markov processes. Let X is a time-inhomogeneous cell process and write Ps,x for the law
of X starting at time s ≥ 0 with initial size x ≥ 0. Then the counterpart of condition (H)
is that there exists a function f that satisfies (3.1) and for every x > 0 and every s ≥ 0,

Es,x

f (t,X(t)) +
∑
s≤r≤t

f (r,−∆X(r))

 ≤ f (s, x) , for all t ≥ s,

where Es,x means mathematical expectation under Ps,x. Under this condition, one may
easily build a cell system driven by X (with the life path of each Xu scaled by the
universal time) and check that the system does not explode by an analogue of Lemma 3.2.
Details shall be left to interested readers.

3.2 Bifurcators

For every x > 0, let Px and Qx be respectively the laws of two cell processes X and
Y , both starting from x. We now give a formal definition of bifurcators of cell processes,
which extends both Definition 2 by Pitman and Winkel [17] and the present Definition 2.6
for homogeneous cell processes.

Definition 3.7. A bivariate process (X ′, Y ′) is called a bifurcator of branches X and
Y , if it satisfies the following properties:

1. For every x > 0, write Px for the joint distribution of (X ′, Y ′) with initial value
X ′(0) = Y ′(0) = x. Under Px, each component X ′ and Y ′ has the law Px and Qx
respectively, that is, the two marginal distributions of Px are Px and Qx.

2. Let τ := inf{t ≥ 0 : X ′(t) 6= Y ′(t)}. For every x > 0, conditionally on {τ <∞}, there
is

X ′(τ) + Y ′(τ) = X ′(τ−) = Y ′(τ−), Px − a.s. (3.3)

3. (Asymmetric Markov branching property) For every x > 0, the process

(X ′(t), Y ′(t),1{τ>t})t≥0

is Markovian under Px. Specifically, conditionally given τ > t, the bivariate
process (X ′(r + t), Y ′(r + t))r≥0 has distribution PX′(t); conditionally given τ ≤ t,
(X ′(r + t), Y ′(r + t))r≥0 is a pair of independent processes of respective laws PX′(t)

and QY ′(t).

If such a bifurcator (X ′, Y ′) exists, then we say X and Y can be coupled to form a
bifurcator.

Remark 3.8. We know from (3.3) that if τ <∞, then (3.3) implies that τ is a jump time
of both X ′ and Y ′, which is almost surely strictly positive and strictly smaller than the
lifetimes of X ′ and Y ′. Define a filtration (Gt)t≥0 by the usual augmentation (see e.g.
Section 1.4 in [18]) of σ(X ′(r), Y ′(r), 0 ≤ r ≤ t), note that τ is a (Gt)-stopping time and
each component X ′ or Y ′ satisfies the strong Markov property.
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We next state a sufficient condition for growth-fragmentations based on different
cell processes to have the same distribution, which is the main purpose of this work.
Suppose that (H) holds for both X and Y , then we know from the preceding subsection
that we can construct two non-explosive growth-fragmentations X and Y associated
with X and Y respectively. Note that (H) entails that for every x > 0 and every s ≥ 0,

Ex

∑
r≥0

f(s+ r,−∆X(r))

 ≤ f(s, x).

However, we shall need a stronger inequality and make the following assumption:

(Hη) For a certain η ∈ (0, 1), there exists a function g that satisfies

inf
r<l,x>a

g(r, x) > 0, for every a, l > 0, (3.4)

such that for every x > 0 and every s ≥ 0,

Ex

∑
r≥0

g(s+ r,−∆X(r))

 ≤ ηg(s, x).

Theorem 3.9. Let X and Y be two cell processes that both satisfy (H) and (Hη). Suppose
that X and Y can be coupled to form a bifurcator, then for every x > 0, two Markovian
growth-fragmentations X and Y driven respectively by X and Y , both starting from x,
have the same finite-dimensional distributions.

3.3 Proof of Theorem 3.9

Let us briefly explain the idea of the proof. Fix x > 0, let X and Y be cell systems
associated with X and Y respectively, with respective laws Px and Qx. For every ε > 0,
let X[ε] be the process associated with the truncated cell system X [ε] derived from X as
in (3.2), by killing each cell together with its future descendants when its size becomes
less than or equal to ε. Similarly we define Y[ε]. We shall prove for every ε > 0 that X[ε]

under Px has the same law as Y[ε] under Qx. Then letting ε → 0+, we conclude from
Lemma 3.4 that X and Y have the same finite-dimensional distributions.

Let us fix an arbitrary ε > 0. To prepare for the proof that X[ε] and Y[ε] have the
same law, we construct a family of bivariate processes ((Xv, Yv), v ∈ U2) (recall that
U2 =

⋃
n∈N {`, r}

n is the binary tree) in the following way. Since X and Y can be
coupled to form a bifurcator, there exists a bifurcator with distribution (Py, y > 0), whose
marginal distributions are Py and Qy under Py. Then we let (X∅, Y∅) be a bifurcator with
law Px and write β∅ := 0 for the birth time of ∅. Suppose by induction that we have built
for a certain v ∈ U2 a bifurcator (Xv, Yv) with birth time βv. Write

τv := inf{t ≥ 0 : Xv(t) 6= Yv(t)}

for the switching time of this bifurcator,

TXv := inf {t ≥ 0 : Xv(t) ≤ ε}

for the first time when Xv is smaller than ε, and

T̃Xv := inf {t ≥ 0 : −∆Xv(t) > ε}

for the first time when Xv has a jump of size greater than ε. Then we define the lifetime
of v by

λv := τv ∧ TXv ∧ T̃Xv ,
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then λv is a (Gvt )-stopping time, where Gvt is the usual augmentation of

σ
((
Xv(r), Yv(r)

)
, 0 ≤ r ≤ t

)
.

At the lifetime λv, we distinguish the following two situations.

• If λv = TXv < T̃Xv ∧ τv or λv = ∞, then v is killed at its lifetime λv. Further, we
agree that for every w ∈ U2 \ {∅}, vw is also killed, with βvw = ∞, λvw = 0 and
Xvw ≡ Yvw ≡ ∂. As τv ∧ T̃Xv is almost surely strictly positive, this situation also
covers the case when λv = 0 (if and only if TXv = 0, i.e. Xv(0) ≤ ε).

• Otherwise, v branches at its lifetime λv, giving birth to two independent bifurca-
tors (Xv`, Yv`) and (Xvr, Yvr) with respective distributions Pav` and Pavr , where

(av`, avr) := (Xv(λv),−∆Xv(λv)). (3.5)

Set their birth time by βv` = βvr := βv+λv. We further mark v if λv = τv ≤ TXv ∧T̃Xv
(we also say that we mark the branching event at the death of v), so v is non-
marked if λv = T̃Xv < τv. Using the junction relation (3.3) of the bifurcator, we
also have

(av`, avr) =

{
(−∆Yv(λv), Yv(λv)), if v is marked,

(Yv(λv),−∆Yv(λv)), if v is non-marked.
(3.6)

Note that if v is non-marked, then avr > ε always holds; but if v is marked, then it
is possible that avr ≤ ε, which means that vr is immediately killed and λvr = 0. In
both marked and non-marked cases, it is possible that av` ≤ ε and v` is immediately
killed with λv` = 0.

We continue so on and so forth to construct all generations of the family (Xv, Yv)v∈U2
and denote its law by Px (recall that x = X∅(0) = Y∅(0)). Finally, we define a process

W(X,Y )(t) := {{Xv(t− βv) : v ∈ U2, βv ≤ t < βv + λv}}, t ≥ 0.

Note by construction that every element of W(X,Y )(t) is larger than ε. A notable feature
of this system is that, roughly speaking, W(X,Y ) is symmetric, i.e. its law is invariant
under the permutation of labels X and Y .

Lemma 3.10. W(X,Y ) has the same law as W(Y,X).

Proof. Given the family ((Xv, Yv), v ∈ U2) constructed as above, let us define recursively
a bijection h : U2 → U2 with h(∅) := ∅, such that for every v ∈ U2 we have

(
h(v`), h(vr)

)
:=

{(
h(v)r, h(v)`

)
, if h(v) is marked,(

h(v)`, h(v)r
)
, if h(v) is non-marked or killed.

We next describe the dynamics of ((Y ′v , X
′
v) := (Yh(v), Xh(v)), v ∈ U2) as a bivariate system

generated by the bifurcator (Y,X). Specifically, define TYv and T̃Yv for Yv in the same
way as TXv and T̃Xv , then the lifetime of each (Y ′v , X

′
v) is λ′v := τh(v) ∧ TYh(v) ∧ T̃

Y
h(v), which

is equal to λh(v). Indeed, since Xh(v)(t) = Yh(v)(t) for all t < τh(v), we find that

• If λh(v) = TXh(v) < T̃Xh(v) ∧ τh(v) or λh(v) =∞, then

TYh(v) = TXh(v) and TYh(v) < T̃Yh(v) ∧ τh(v);

• If λh(v) = τh(v) ≤ TXh(v) ∧ T̃
X
h(v), then τh(v) ≤ TYh(v) ∧ T̃

Y
h(v);
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• if λh(v) = T̃Xh(v) < τh(v), then T̃Yh(v) = T̃Xh(v) < τh(v) and T̃Yh(v) ≤ T
Y
h(v).

At the lifetime λh(v), v is killed in the first case; in the other two cases, v generates two
independent bifurcators (Y ′v`, X

′
v`) and (Y ′vr, X

′
vr) of respective laws Pah(v`) and Pah(vr) .

It follows from (3.6) and the construction of h that for every v ∈ U2:

(ah(v`), ah(vr)) = (Yh(v)(λh(v)),−∆Yh(v)(λh(v))).

Define for every t ≥ 0 that

W′(t) :={{Y ′v(t− β′v) : v ∈ U2, β
′
v ≤ t < β′v + λ′v}}

={{Yh(v)(t− βh(v)) : v ∈ U2, βh(v) ≤ t < βh(v) + λh(v)}},

then the process (W′(t), t ≥ 0) is a copy of W(Y,X). On the other hand, since h is a
bijection and recall that for every v ∈ U2, Xv(t) = Yv(t) for all t < λv, then clearly
W′ = W(X,Y ).

We next consider the process associated with the left-most branch `N0 = {∅, `, ``, . . .},
that is

A`N0 (t) :=
∑
n≥0

1{β`n≤t<β`n+λ`n}X`n(t− β`n)

=
∑
n≥0

1{β`n≤t<β`n+λ`n}Y`n(t− β`n), t ≥ 0.
(3.7)

where `n := (`` . . . `) ∈ {`, r}n and `0 := ∅. Let N := inf {n ∈ N : `n is killed}, with
convention inf{∅} =∞. IfN <∞, thenA`N0 (t) = ∂ for all t ≥ β`N+λ`N . By concatenating
A`N0 with the segment of X`N after its lifetime λ`N , we define

AX`N0 (t) :=

{
A`N0 (t), t < β`N + λ`N .

X`N (t− β`N ), , t ≥ β`N + λ`N .
(3.8)

We agree that AX
`N0

= A`N0 if N =∞.

Lemma 3.11. Suppose that (Hη) holds for both X and Y . Then the process AX
`N0

has the
law of Px (the law of X starting from x), and the process derived from AX

`N0
by killing at

ζX
`N0

:= inf
{
t ≥ 0 : AX

`N0
(t) ≤ ε

}
is A`N0 .

Proof. It should be intuitive that AX
`N0

has the law of Px because of the construction (3.5)
and the strong Markov property of X; however, it is a priori possible that none of `N0 is
killed and their birth times accumulate to a finite limit, i.e. N =∞ and limn→∞ β`n <∞,
then AX

`N0
is killed at this limit time, thus does not have the law of Px. We shall prove

that this case does not happen, thanks to the assumption (Hη). Therefore, almost surely
there are only two possible situations: either N <∞, or N =∞ & limn→∞ β`n =∞, so
we deduce from the strong Markov property of X that AX

`N0
indeed has the law of Px.

Further, we easily check that ζX
`N0

= β`N + λ`N when N <∞ and ζX
`N0

=∞ when N =∞,
then the second part of the claim follows.

So it remains to prove that if N =∞, which means that none of (`n)n∈N is killed, then
limn→∞ β`n =∞. We consider separately the following two situations.

In the first situation there are infinitely many marked elements in `N0 , and we list all
of them in a sequence (`ni)i∈N ⊂ `N0 with ni ↑ ∞. Let Gn := σ(X`j , Y`j , j ≤ n) and gY be
a function such that (Hη) holds for Y with ηY < 1, then

Mi := η−iY
∑
r≥0

gY (β`ni + r,−∆Y`ni (r)), i ∈ N
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is a non-negative Gni -super-martingale. Indeed, consider the ancestral lineage of `ni+1

for the Y -side, shifted to the left by β`ni` (`ni` means `ni+1), that is

AYi+1(t) :=
∑

ni+1≤k<ni+1

1{β`k≤t+β`ni `<β`k+λ
`k}Y`k(t+ β`ni` − β`k)

+ 1{t+β`ni `≥β`ni+1}Y`ni+1 (t+ β`ni` − β`ni+1 ), t ≥ 0,

with AYi+1(0) = Y`ni`(0). Then

Mi+1 ≤ η−(i+1)
Y

∑
r≥0

gY (β`ni` + r,−∆AYi+1(r)).

Observing that these segments are connected by only non-marked branching events and
using (3.6), we hence deduce by the strong Markov property of Y that conditionally on
Gni , AYi has distribution Qy with y := Y`ni`(0). As Y satisfies (Hη), we have

Ex
[
Mi+1

∣∣Gni] ≤ Ex

[
η
−(i+1)
Y

∑
r≥0

gY (β`ni` + r,−∆AYi+1(r))

∣∣∣∣Gni]
≤ η−iY gY (β`ni`, Y`ni`(0)) = η−iY gY (β`ni + λ`ni ,−∆Y`ni (λ`ni )) ≤Mi,

where Ex denotes the mathematical expectation under the law Px of the system
(Xv, Yv, v ∈ U2), and the equality follows from (3.6) as `ni is marked. We conclude
that Mi is a non-negative super-martingale and hence Mi converges almost surely to a
limit as i→∞. Multiplying the last display by ηniY , we have

gY (β`ni`, X`ni`(0)) = gY (β`ni + λ`ni ,−∆Y`ni (λ`ni )) ≤ ηiYMi → 0 almost surely.

As gY satisfies (3.4), it follows that in the event limn→∞ β`n <∞, there is

lim
i→∞

X`ni`(0) = 0.

This is absurd as we have assumed that no element in `N0 is killed.
In the second situation, there are infinitely many non-marked branching elements in

`N0 . Consider for each k ∈ N the ancestral lineage of `k for the side of X, i.e.

AX`k(t) :=

k−1∑
n=0

1{β`n≤t<β`n`}X`n(t− β`n) + 1{β`k≤t}X`k(t− β`k), t ≥ 0.

Then for each k ∈ N, we deduce from the strong Markov property of X that AX`k has law
Px under Px. Let gX be a function such that (Hη) holds for X with constant ηX < 1, then

Ex

∑
r≥0

gX(r,−∆AX`k(r))

 ≤ gX(0, x). (3.9)

Suppose, by contradiction, that there exists a certain M > 0 such that with probability
pM > 0 there is limn→∞ β`n < M and write inft<M,y≥ε gX(t, y) =: cM,ε > 0 as (3.4) holds
for gX . For every k ∈ N, write mk for the number of non-marked particles in the set
{`i, i < k}, then we get that

Ex

∑
r≥0

gX(r,−∆AX`k(r))

 ≥ Ex

[ ∑
1≤i≤k−1

1{`i is non-marked}gX(β`i ,−∆X`i(λ`i))

]
≥ pMmkcM,ε,

where the last inequality is obtained by restricting to the event limn→∞ β`n < M and
observing that −∆X`i(λ`i) ≥ ε whenever `i is non-marked. Letting k → ∞, we find a
contradiction against (3.9) since mk →∞. We have therefore proved the claim.
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Remark 3.12. Given the system ((Xv, Yv), v ∈ U2), let us define a branch

v̄ := (vn ∈ U2)n≥0

with v0 := ∅ by setting recursively vn+1 := vn` if vn is non-marked and vn+1 := vnr if vn
is marked. Then the branch AYv̄ associated with the system ((Xv, Yv), v ∈ U2) has the
same law as Y . Indeed, recall that the system ((Yh(v), Xh(v)), v ∈ U2) defined as in the
proof of Lemma 3.10 can be viewed as a system generated by the bifurcator (Y,X), then
applying Lemma 3.11 to this system, we have that AY

h(`N0 )
has the same law as Y . We

observe that v̄ = h(`N0) by the construction of h, which entails our claim.

Lemma 3.13. W(X,Y ) has the same law as X[ε].

Proof. We first give some remarks on the process AX
`N0

defined as in (3.8). We know from
Lemma 3.11 that AX

`N0
has law Px, and AX

`N0
killed at ζ`N0 := inf

{
t ≥ 0 : AX

`N0
(t) ≤ ε

}
is

A`N0 . For every `n ∈ `N0 such that t := β`n + λ`n ≤ ζ`N0 , we have by (3.6) that the size of
the jump at t is

y := −∆AX`N0 (t) = −∆X`n(λ`n) = X`nr(0).

Note that it is possible that y > ε or y ≤ ε: if y ≤ ε, then we know that the particle `nr
(together with its progeny) is killed immediately, that is λ`nr = 0. On the other hand, for
all m ∈ N and t′ ∈ (β`m , β`m + λ`m), we have −∆AX

`N0
(t′) ≤ ε.

Let us now describe the dynamics of W(X,Y ) as the following truncated cell system.
The cell system starts with a cell whose size evolves according to X∅ := AX

`N0
with law

Px. By killing X∅ at the time when entering (0, ε], we get X [ε]
∅ = A`N0 . We next build the

first generation. The daughter cells in the first generation born (strictly) after ζ`N0 are
all killed. For each time t ≤ ζ`N0 with y := −∆X∅(t) > ε, we observe from the remarks
above that there exists a certain w ∈ `N0 such that t = βw + λw and Xwr(0) = y. So a
daughter cell is born at t and its size evolves according to AX

wr`N0
, which is the process

associated with wr`N0 := {wrv, v ∈ `N0} as in (3.8). As wr`N0 is the left-most branch in
the sub-tree (wrv, v ∈ U2), we deduce from Lemma 3.11 that AX

wr`N0
has distribution Py

and Awr`N0 defined as in (3.7) is AX
wr`N0

killed when entering (0, ε]. On the other hand,
for every time t′ ≤ ζ`N0 with y′ := −∆X∅(t′) ∈ (0, ε], we agree that the daughter cell born
at t′ is killed immediately. We hence conclude that those non-degenerate size processes
X [ε]
i with i ∈ N are exactly those non-degenerate processes Awr`N0 with w ∈ `N0 . The

proof is completed by iteration of this argument.

Proof of Theorem 3.9. For every ε > 0, applying Lemma 3.13 to W(Y,X), we deduce that
W(Y,X) and Y[ε] have the same law. Together with Lemma 3.10, this implies that X[ε]

and Y[ε] have the same law. Letting ε→ 0+, we conclude by Lemma 3.4 that X and Y

have the same finite-dimensional distributions.

3.4 Proof of Theorem 1.1

Using Theorem 3.9, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The implication (i)⇒ (ii) follows from Lemma 2.7 and the equiv-
alence (iii) ⇔ (i) follows from Corollary 2.17. So it remains to prove that (ii) ⇒ (iii).
Suppose that X(0) and X̃(0) can be coupled to form a bifurcator. We can check that
X(0) and X̃(0) satisfy (H) and (Hη), then we are led to the conclusion that the growth-
fragmentations have the same finite dimensional distribution by Theorem 3.9. Indeed,
fix q ≥ 2 and K > κ(q), then we know from Example 3.1 that X(0) satisfies (H) with the
function (t, x) 7→ xqe−Kt; further, it follows from (2.6) that X(0) also satisfies (Hη) with
this function and any η ∈ (κ(q)−Φ(q)

K−Φ(q) , 1). Similarly, we have that X̃(0) also satisfies both
(H) and (Hη). This completes the proof.
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3.5 Proof of Theorem 1.2

We now turn to self-similar growth-fragmentations. In order to prove Theorem 1.2,
we first prove the following lemmas.

Lemma 3.14. Let X(α) be a self-similar cell process with index α ∈ R related to a SNLP
ξ as in (1.4). Suppose κ(q) < 0 for a certain q > 0, then X(α) satisfies both (H) and (Hη)
(for any η ∈ (1− κ(q)

Φ(q) , 1)) with the function (t, x) 7→ xq.

Proof. This follows directly from Lemma 2 and Lemma 3 in [4].

Lemma 3.15. Let X(α) and Y (α) be two self-similar cell processes with index α ∈ R
related to SNLPs ξ and γ respectively as in (1.4). Suppose that κ = κγ , then X(α) and
Y (α) can be coupled to form a bifurcator.

Proof. By Proposition 2.5 we may assume that ξ is the switching transform of γ with
switching time τ = inf{t ≥ 0 : ξ(t) 6= γ(t)}. Say X(α)(0) = Y (α)(0) = x > 0, we set

τ (α) := x−α
∫ τ

0

exp(−αξ(r))dr,

then we have by Lamperti’s time-substitution (1.4) the identities

τ (α) = inf{t ≥ 0 : X(α)(t) 6= Y (α)(t)}

and
X(α)(τ (α)) + Y (α)(τ (α)) = X(α)(τ (α)−).

Let Ỹ (α) be an independent copy of Y (α) and we build a process

Ŷ (α)(t) := Y (α)(t)1{t<τ(α)} + yỸ (α)(yα(t− τ (α)))1{t≥τ(α)}, t ≥ 0,

where y := −∆X(α)(τ (α)). Then (X(α), Ŷ (α)) is a bifurcator.

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. (i)⇒ (ii): This follows from Lemma 3.15.
(ii) ⇒ (iii): Since Lemma 3.14 ensures that (H) and (Hη) hold under assumption

(1.5), we have from Theorem 3.9 that the self-similar growth-fragmentations X(α) and
X̃(α̃) have the same finite-dimensional distributions.

(iii) ⇒ (i): Suppose that the growth-fragmentations X(α) and X̃(α̃) have the same
finite-dimensional distributions. We first know from the self-similarity (Theorem 2 in [4])
that α = α̃.

To prove κ = κ̃, we first deduce from Proposition 3.3 and its proof in [5] that for every
q > 0, there is

E1

∫ ∞
0

( ∑
y∈X(α)(t)

yq+α
)
dt

 =

{
− 1
κ(q) , if κ(q) < 0,

∞, otherwise.
(3.10)

Note from Corollary 4 in [4] that the integrand possesses càdlàg paths under assumption
(1.5). As X(α) and X̃(α) have the same same finite-dimensional distributions, we thus
deduce that for every q > 0 with κ(q) < 0, there is κ̃(q) = κ(q) < 0. Therefore, if there
exists q0 > 0 such that κ(q) < 0 for all q > q0, then κ(q) = κ̃(q) for all q > q0. Otherwise,
by the convexity of κ there exists ω > 0, which is the largest root of κ, such that κ(q) > 0

for all q > ω. It follows from (3.10) that ω is also the largest root for κ̃ and κ̃(q) > 0

for all q > ω. We hence deduce from Theorem 3.5 in [5] that κ̃(q) = κ(q) for all q > ω.
Summarizing the two cases, we conclude that there exists a certain constant a > 0 such
that κ(q) = κ̃(q) for all q > a, which entails that κ = κ̃.
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