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Abstract

We consider Gaussian multiplicative chaos measures defined in a general setting of
metric measure spaces. Uniqueness results are obtained, verifying that different
sequences of approximating Gaussian fields lead to the same chaos measure. Special-
ized to Euclidean spaces, our setup covers both the subcritical chaos and the critical
chaos, actually extending to all non-atomic Gaussian chaos measures.
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1 Introduction

The theory of multiplicative chaos was created by Kahane [20, 21] in the 1980’s in
order to obtain a continuous counterpart of the multiplicative cascades, which were
proposed by Mandelbrot in early 1970’s as a model for turbulence. During the last
10 years there has been a new wave of interest on multiplicative chaos, due to e.g.
its important connections to Stochastic Loewner Evolution [3, 29, 15], quantum field
theories and quantum gravity [18, 13, 14, 24, 6, 23], models in finance and turbulence
[25, Section 5], and the statistical behaviour of the Riemann zeta function over the
critical line [16, 27].

In Kahane’s original theory one considers a sequence of a.s. continuous and centered
Gaussian fields Xn that can be thought of as approximations of a (possibly distribution
valued) Gaussian field X. The fields are defined on some metric measure space (T , λ)
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Uniqueness of critical Gaussian chaos

and the increments Xn+1 −Xn are assumed to be independent. One may then define the
random measures µn on T by setting

µn(dx) := exp(Xn(x)− 1

2
EXn(x)2)λ(dx).

In this situation basic martingale theory verifies that almost surely there exists a (random)
limit measure µ = limn→∞ µn, where the convergence is understood in the weak∗-
sense. The measure µ is called the multiplicative chaos defined by X (or rather by
the sequence (Xn)), and Kahane shows that the limit does not depend on the choice
of the approximating sequence (Xn), assuming that the covariances of the increments
Xn+1 −Xn are non-negative. However, the limit may well reduce to the zero measure
almost surely.

We next recall some of the most important cases of multiplicative chaos in the basic
setting where T is a subset of a Euclidean space, say T = [0, 1]d, and λ is the Lebesgue
measure. Especially we assume that the limit field X is log-correlated, i.e. it has the
covariance

CX(x, y) = 2dβ2 log |x− y|+G(x, y), x, y ∈ T , (1.1)

where G is a continuous and bounded function. As an important example in dimension 2,
the Gaussian free field has locally such a covariance structure.

Assuming that the Xn are nice approximations of the field X as explained above,

Kahane’s theory yields that in case β ∈ (0, 1) the convergence µn
w∗→ µβ takes place

almost surely and the obtained chaos µβ is non-trivial. It is an example of subcritical
Gaussian chaos, and, as we shall soon recall in more detail, in this normalisation β = 1

appears as a critical value.
In order to give a more concrete view of the chaos we take a closer look at a

particularly important example of approximating Gaussian fields in the case where d = 1

and µ is the so-called exactly scale invariant chaos due to Bacry and Muzy [4], [25,
p. 331]. Consider the hyperbolic white noise W in the upper half plane R2

+ so that
EW (A1)W (A2) = mhyp(A1 ∩A2) for Borel subsets A1, A2 ∈ R2

+ with compact closure in
R2

+. Above dmhyp = y−2dx dy denotes the hyperbolic measure in the upper half plane.
For every t > 0 consider the set

At(x) := {(x′, y′) ∈ R2
+ : y′ ≥ max(e−t, 2|x′ − x|) and |x′ − x| ≤ 1/2} (1.2)

and define the field Xt on [0, 1] by setting

Xt(x) :=
√

2dW (At(x)).

Note that the sets At(x) are horizontal translations of the set At(0). One then defines
the subcritical exactly scale invariant chaos by setting

dµβ(x)
a.s
:= lim

t→∞
exp

(
βXt(x)− β2

2
E (Xt(x))2

)
dx for β < 1. (1.3)

If β = 1, the above limit equals the zero measure almost surely. To construct the
exactly scaling chaos measure at criticality β = 1, one has to perform a non-trivial
normalization as follows:

dµ1(x) := lim
t→∞

√
t exp

(
Xt(x)− 1

2
E (Xt(x))2

)
dx, (1.4)

where the limit now exists in probability.
The need of a nontrivial normalisation at the critical parameter value in (1.4) has

been observed in many analogous situations before, e.g. [8, 33]. A convergence result
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Uniqueness of critical Gaussian chaos

analogous to (1.4) was proven by Aidekon and Shi in the important work [2] in the
case of Mandelbrot chaos measures that can be thought of as a discrete analogue of
continuous chaos. Independently C. Webb [31] obtained the corresponding result (with
convergence in distribution) for the Gaussian cascades ([2] and [31] considered the total
mass, but the convergence of the measures can then be verified without too much work).
Finally, Duplantier, Rhodes, Sheffield and Vargas [10, 12] established (1.4) for a class
of continuous Gaussian chaos measures including the exactly scaling one. We refer to
[25, 11] for a much more thorough discussion of chaos measures and their applications,
as well as for further references on the topic.

An important issue is to understand when the obtained chaos measure is independent
of the choice of the approximating fields Xn. As mentioned before, Kahane’s seminal
work contained some results in this direction. Robert and Vargas [26] addressed the
uniqueness question in the case of subcritical log-correlated fields (1.1) for convolution
approximations Xn = φεn ∗X. Duplantier’s and Sheffield’s paper [14] gives uniqueness
results for particular approximations of the 2-dimensional GFF. More general results
developing the method of [26] are contained in the review [25] due to Rhodes and Vargas,
whose conditions are very similar to ours. In [9, 19]1 the method is also applied for a class
of convolution approximations of the critical chaos. Another approach is contained in
the paper of Shamov [28]. The techniques of the latter paper are based on an interesting
new characterisation of chaos measures, which produces strong results but is applicable
only in the subcritical range. Finally, in the paper [5] Berestycki provides an elegant and
simple treatment of convolution approximations, again in the subcritical regime.

In the present paper we develop a new approach to the uniqueness question, which
gives a simple proof of uniqueness in the subcritical regime, but more importantly it
also applies to the case of critical chaos. Our idea uses a specifically tailored auxiliary
field added to the original field in order to obtain comparability directly from Kahane’s
convexity inequality, and the choice is made so that in the limit the effect of the auxiliary
field vanishes. The approach is outlined before the actual proof in the beginning of
Section 3. One obtains a unified result that applies in general to chaos measures obtained
via an arbitrary normalization, the only requirement is that the chaos measure is non-
atomic almost surely. Therefore, our results apply also to a class of chaos measures that
lie between the critical and supercritical ones, which one expects to be useful in the
study of finer properties of the critical chaos itself.

Our basic result considers the following situation: Let (Xn) and (X̃n) be two se-
quences of Hölder-regular Gaussian fields (see Section 2 for the precise definition)
on a compact doubling metric space (T , d). Assume that for each n ≥ 1 we have a
non-negative Radon reference measure ρn defined on T . Define the measures

dµn(x) := eXn(x)− 1
2E [Xn(x)2] dρn(x)

for all n ≥ 1. The measures µ̃n are defined analogously by using the fields X̃n instead.

Theorem 1.1. Let Cn(x, y) and C̃n(x, y) be the covariance functions of the fields Xn

and X̃n respectively. Assume that the random measures µ̃n converge in distribution
to an almost surely non-atomic random measure µ̃ on T . Moreover, assume that the
covariances Cn and C̃n satisfy the following two conditions: There exists a constant
K > 0 such that

sup
x,y∈T

|Cn(x, y)− C̃n(x, y)| ≤ K <∞ for all n ≥ 1, (1.5)

and
lim
n→∞

sup
d(x,y)>δ

|Cn(x, y)− C̃n(x, y)| = 0 for every δ > 0. (1.6)

1 We would like to thank the anonymous referee for pointing out the latter article.
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Uniqueness of critical Gaussian chaos

Then the measures µn converge in distribution to the same random measure µ̃.

Remark 1.2. For simplicity we have stated the above theorem and will give the proof
in the setting of a compact space T . Similar results are obtained for non-compact T by
standard localization. For example assume that T has an exhaustion T =

⋃∞
n=1Kn with

compacts K1 ⊂ K2 ⊂ · · · ⊂ T , such that every compact K ⊂ T is eventually contained in
some Kn. Then if the assumptions of Theorem 1.1 are valid for the restrictions to each
Kn, the claim also holds for T , where now weak convergence is defined using compactly
supported test functions.

The proof of the above theorem is contained in Section 3, where it is also noted that
one may somewhat loosen the condition (1.5), see Remark 3.6. We refer to Section 2
for precise definitions of convergence in the space of measures and other needed
prerequisities.

Section 4 addresses the interesting question when the convergence in Theorem 1.1
can be lifted to convergence in probability (or in Lp). Theorem 4.4 below provides
practical conditions for checking this when the convergence is known for some other
approximation sequence that has a martingale structure – a condition which is often met
in applications.

In Section 5 we discuss consequences for convolution approximations (see Corollar-
ies 5.2 and 5.4). In addition to general results we consider both circular averages and
convolution approximations of the Gaussian free field in dimension 2 (Corollary 5.8).

Finally, Section 6 illustrates the use of the results of the previous sections. This is
done via taking a closer look at the fundamental critical chaos on the unit circle, obtained
from the GFF defined via the Fourier series

X(x) = 2
√

log 2A0 +
√

2

∞∑
k=1

k−1/2
(
Ak sin(2πkx) +Bk cos(2πkx)

)
for x ∈ [0, 1),

where the An, Bn are independent standard Gaussians. In [3] the corresponding sub-
critical Gaussian chaos was constructed using martingale approximates defined via the
periodic hyperbolic white noise. We shall consider four different approximations of X:

1. X1,n is the approximation of X obtained by cutting the periodic hyperbolic white
noise construction of X on the level 1/n.

2. X2,n(x) = 2
√

log 2A0 +
√

2
∑n
k=1 k

−1/2
(
Ak sin(2πkx) +Bk cos(2πkx)

)
for x ∈ [0, 1).

3. X3,n = φ1/n ∗X, where φ is a mollifier function defined on T that satisfies some
weak conditions.

4. X4,n is obtained as the nth partial sum of a vaguelet decomposition of X.

Theorem 1.3. For all j = 1, . . . , 3 the random measures√
log n exp

(
Xj,n(x)− 1

2
E (Xj,n(x))2

)
dx

converge as n → ∞ in probability to the same nontrivial random measure µ1,S1 on T ,
which is the fundamental critical measure on T . The convergence actually takes place
in Lp(Ω) for every 0 < p < 1. The same holds for the vaguelet decomposition X4,n with
the normalization

√
n log 2 instead of

√
log n.

We refer to Section 6 for the precise definitions of the approximations used above.
Theorem 1.3 naturally holds true in the subcritical case if above Xj,n is replaced by
βXj,n with β ∈ (0, 1), and one removes the factor

√
log n. We denote the limit measure

by µβ,S1 .
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2 Notation and basic definitions

A metric space is doubling if there exists a constant M > 0 such that any ball of
radius ε > 0 can be covered with at most M balls of radius ε/2. In this work we shall
always consider a doubling compact metric space (T , d). We denote byM+ the space
of (positive) Radon measures on T . The spaceM of real-valued Radon measures on T
can be given the weak∗-topology by interpreting it as the dual of C(T ). We then give
M+ ⊂M the subspace topology.

The spaceM+ is metrizable (which is not usually the case for the full spaceM), for
example by using the Kantorovich–Rubinstein metric defined by

d(m,m′) := sup

{ˆ
T
f(x) d(m−m′)(x) : f : T → R is 1-Lipschitz

}
.

For a proof see [7, Theorem 8.3.2].
Let P(M+) denote the space of Radon probability measures on M+. One should

note that Borel probability measures and Radon probability measures coincide in this
situation, as well as in the case of P(T ), since we are dealing with Polish spaces. Let
(Ω,F ,P) be a fixed probability space. We call a measurable map µ : Ω→M+ a random
measure on T . For a given random measure µ the push-forward measure µ∗P ∈ P(M+)

is called the distribution of µ and we say that a family of random measures µn converges
in distribution if the measures µn∗P converge weakly in P(M+) (i.e. when evaluated
against bounded continuous functions P(M+)→ R). In order to check the convergence
in distribution, it is enough to verify that

µn(f) :=

ˆ
f(x) dµn(x)

converges in distribution for every f ∈ C(T ), see e.g. [22, Theorem 16.16].
A stronger form of convergence is the following: We say that a sequence of random

measures (µn) converges weakly in Lp to a random measure µ if for all f ∈ C(T ) the
random variable

´
f(x) dµn(x) converges in Lp(Ω) to

´
f(x) dµ(x). This obviously implies

the convergence µn → µ in distribution.
A (pointwise defined) Gaussian field X on T is a random process indexed by T such

that (X(t1), . . . , X(tn)) is a multivariate Gaussian random variable for every t1, . . . , tn ∈ T ,
n ≥ 1. We will assume that all of our Gaussian fields are centered unless otherwise
stated.

Definition 2.1. A (centered) Gaussian field X on a compact metric space T is Hölder-
regular if the map (x, y) 7→

√
E |X(x)−X(y)|2 is α-Hölder continuous on T ×T for some

α > 0.

Lemma 2.2. The realizations of any Hölder-regular Gaussian field on T can be chosen
to be almost surely β-Hölder continuous with some β > 0.

Proof. This is an immediate consequence of Dudley’s theorem (See for instance [1,
Theorem 1.3.5].) and the fact that our space is doubling.

Remark 2.3. By Dudley’s theorem the conclusion of Lemma 2.2 would be valid under
much less restrictive assumptions on the covariance, and most of the results of the
present paper could be reformulated accordingly.

Assume that we are given a sequence of Hölder-regular Gaussian fields (Xn) on T
and also a sequence of measures ρn ∈ M+. Define for all n ≥ 1 a random measure
µn : Ω→M+ by setting

µn(f) :=

ˆ
T
f(x)eXn(x)− 1

2E [Xn(x)2] dρn(x), (2.1)
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Uniqueness of critical Gaussian chaos

for all f ∈ C(T ). In the case where the measures µn converge in distribution to a random
measure µ : Ω→M+, we call µ a Gaussian multiplicative chaos (GMC) associated with
the families Xn and ρn. We call the sequence of measures ρn a normalizing sequence.
In the standard models of subcritical and critical chaos the typical choices are ρn := λ

and ρn := C
√
nλ (or ρn := C

√
log nλ), respectively, where λ stands for the Lebesgue

measure.
Unless otherwise stated, when comparing the limits of two sequences of random

measures (µn) and (µ̃n), we will always use the same normalizing sequence (ρn) to
construct both µn and µ̃n.

Lastly we recall the following fundamental convexity inequality due to Kahane [20].

Lemma 2.4. Assume that X and Y are two Hölder-regular fields such that the co-
variances satisfy CX(s, t) ≥ CY (s, t) for all s, t ∈ T . Then for every concave function
f : [0,∞)→ [0,∞) we have

E

[
f
(ˆ
T
eX(t)− 1

2E [X(t)2] dρ(t)
)]
≤ E

[
f
(ˆ
T
eY (t)− 1

2E [Y (t)2] dρ(t)
)]

for all ρ ∈M+.

3 Convergence and uniqueness: Proof of Theorem 1.1

In this section we prove Theorem 1.1. The simple idea of the proof is as follows: We
construct a sequence of auxiliary fields Yε (see especially Lemma 3.5) that we add on
top of the fields Xn in order to ensure that the covariance of Xn + Yε dominates the
covariance of X̃n pointwise. The fields Yε become fully decorrelated as ε → 0, and
their construction relies on the non-atomicity of the random measure µ̃. After these
preparations one may finish by a rather standard application of Kahane’s convexity
inequality (Lemma 2.4).

The next two lemmata are almost folklore, but we provide proofs for completeness.

Lemma 3.1. Let (µn) be a tight sequence of random measures. Then there exists a
function h : [0,∞)→ [0,∞) that has the following properties:

1. functions h, h2 and h4 are increasing and concave with h(0) = 0 and limx→∞ h(x) =

∞,

2. h satisfies min(1, x)h(y) ≤ h(xy) ≤ max(1, x)h(y), and

3. supn≥1Eh(µn(T ))4 <∞.

Proof. First of all, by the definition of tightness one may easily pick an increasing
g : [0,∞) → [1,∞) with limx→∞ g(x) = ∞ such that supn≥1E [g(µn(T ))] < ∞. Namely,
let 0 = t0 ≤ t1 ≤ t2 ≤ . . . be an increasing sequence of real numbers such that
supn≥1P[µn(T ) ≥ tk] ≤ k−2 for all k ≥ 1 and set g(x) =

∑∞
k=0 χ[tk,∞). One may choose a

concave function h̃ that is majorized by g and satisfies both h̃(0) = 0 and limx→∞ h(x) =

∞. Finally, set h(x) := (h̃(x))1/4. Condition (3) follows, and (2) is then automatically
satisfied by concavity. Since compositions of non-negative concave functions remain
concave we obtain (1) as well.

Lemma 3.2. For n ≥ 1 let Xn and X̃n be Hölder-regular Gaussian fields on T with
covariance functions Cn(x, y) and C̃n(x, y). Define the random measures µn and µ̃n using
the fields Xn and X̃n, respectively. Assume that there exists a constant K > 0 such that

sup
x,y∈T

(C̃n(x, y)− Cn(x, y)) ≤ K <∞
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Uniqueness of critical Gaussian chaos

for all n ≥ 1 and that the family (µ̃n) is tight (in P(M+)). Then also the family (µn) is
tight.

Proof. By the Banach–Alaoglu theorem it is enough to check that

lim
u→∞

sup
n≥1

P[µn(T ) > u] = 0.

Since limu→∞ h(u) =∞, it suffices to verify that supn≥1Eh(µ(T )) <∞, where h is the
concave function given by Lemma 3.1 for the tight sequence µ̃n. Pick an independent
standard Gaussian G. By our assumption the covariance of the field X ′n := Xn +K1/2G

dominates that of the field X̃n, and if the random measure µ′n is defined by using the
field X ′n, we obtain by Kahane’s concavity inequality

E (h(µ′n(T )))2 ≤ E (h(µ̃n(T )))2 ≤ c for any n ≥ 1

for some constant c > 0 not depending on n.
Since µ′n = eK

1/2G−K/2µn the properties (2) and (3) of Lemma 3.1 enable us to
estimate for all n ≥ 1 that

Eh(µn(T )) = E h(e−K
1/2G+K/2µ′n(T )) ≤ E

(
max(1, e−K

1/2G+K/2)h(µ′n(T ))
)

≤
(
E (max(1, e−K

1/2G+K/2))2
)1/2(

E (h(µ̃n(T )))2
)1/2 ≤ c′√c,

for some c′ > 0.

Our proof of Theorem 1.1 is based on the following two lemmas.

Lemma 3.3. Let (Xn) and (X̃n) be two sequences of Hölder-regular Gaussian fields on
T . Assume that there exists a constant K > 0 such that the covariances satisfy

sup
x,y∈T

|C̃n(x, y)− Cn(x, y)| ≤ K <∞

for all n ≥ 1. Assume also that both of the corresponding sequences of random measures
(µn) and (µ̃n) converge in distribution to measures µ and µ̃ respectively, and that µ̃ is
almost surely non-atomic. Then also µ is almost surely non-atomic.

Proof. Let G be an independent centered Gaussian random variable with variance
EG2 = K. Then the covariance of the field Xn+G dominates that of the field X̃n. Define
a field Un(x, y) := Xn(x) + Xn(y) + 2G on the product space T × T . Its covariance is
given by

E [Un(x, y)Un(x′, y′)] = E [Xn(x)Xn(x′)] + E [Xn(y)Xn(y′)] + E [Xn(x)Xn(y′)]

+ E [Xn(y)Xn(x′)] + 4K,

and therefore dominates the covariance of the field Vn(x, y) := X̃n(x) + X̃n(y) given by

E [Vn(x, y)Vn(x′, y′)] = E [X̃n(x)X̃n(x′)] + E [X̃n(y)X̃n(y′)] + E [X̃n(x)X̃n(y′)]

+ E [X̃n(y)X̃n(x′)].

For ε > 0, let

fε(x, y) := max
(

0, 1− |x− y|
ε

)
be a continuous approximation of the characteristic function of the diagonal ∆ := {(x, x) :

x ∈ T } ⊂ T × T . Define a measure ρ′n on T × T by setting

dρ′n(x, y) = fε(x, y)eE [Xn(x)Xn(y)]d(ρn ⊗ ρn)(x, y)
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Uniqueness of critical Gaussian chaos

and let h be as in Lemma 3.1. Then by Kahane’s convexity inequality applied to the fields
Un and Vn w.r.t. the measure ρ′n on the product space T × T we have

Eh((µn ⊗ µn)(fε))

= Eh
(ˆ
T ×T

fε(x, y)eUn(x,y)−2G− 1
2EUn(x,y)2+EXn(x)Xn(y)+2K d(ρn ⊗ ρn)(x, y)

)
≤ E max(1, e2K−2G)Eh

( ˆ
eUn(x,y)− 1

2EUn(x,y)2 dρ′n(x, y)
)

≤ E max(1, e2K−2G)Eh
( ˆ

eVn(x,y)− 1
2EVn(x,y)2 dρ′n(x, y)

)
≤ E max(1, e2K−2G)eKEh((µ̃n ⊗ µ̃n)(fε(x, y))).

Above we applied Lemma 3.1 (2) twice. By letting n→∞ we obtain

Eh((µ⊗ µ)(∆)) ≤ Eh((µ⊗ µ)(fε)) ≤ CEh((µ̃⊗ µ̃)(fε)),

where C = eKE max(1, e2K−2G) is a constant that only depends on K. Letting ε→ 0 lets
us conclude that (µ⊗ µ)(∆) = 0 almost surely, which entails that µ is non-atomic almost
surely.

Remark 3.4. One should note that the above proof is not valid as such if one just
assumes that the dominance of the covariance is valid in one direction only. In a sense
we perform both a convexity and a concavity argument while deriving the required
inequality. We do not know whether this is a limitation of our proof, or whether there
exists an example where one-sided bound is not enough.

Lemma 3.5. Assume that the conditions of Theorem 1.1 hold. Then there exists a
collection Yε (0 < ε < 1) of Hölder-regular Gaussian fields on T such that for a fixed
0 < ε < 1 the covariance of the field Xn + Yε is pointwise larger than the covariance
of the field X̃n for all large enough n. Moreover, there exists a constant C = C(K)

depending only on the constant K appearing in (1.5) such that

E

∣∣∣∣ˆ
T
eYε(x)− 1

2E [Yε(x)2] dλ(x)− λ(T )

∣∣∣∣2 ≤
3ε2λ(T )2 + C(λ⊗ λ)({(x, y) ∈ T : |x− y| < 2ε})

for any λ ∈M+ and ε ∈ (0, 1).

Proof. Fix a sequence of independent standard Gaussian random variables Ai, i ≥ 1,
such that they are also independent of the fields Xn. Let ε > 0 and choose a maximal
set of points a1, . . . , an in T such that |ai − aj | ≥ ε/2 for all 1 ≤ i < j ≤ n. Let Bi be
the ball B(ai, ε). Then the balls Bi cover T and we may form a Lipschitz partition of
unity p1, . . . , pn with respect to these balls. That is, p1, . . . , pn are non-negative Lipschitz
continuous functions such that pi(x) = 0 when x /∈ B(ai, ε) and for all x ∈ T we have∑n
i=1 pi(x) ≡ 1.
Define the field Zε(x) by setting

Zε(x) =

n∑
i=1

Ai
√
pi(x),

whence the covariance of Zε is given by

Cε(x, y) := E [Zε(x)Zε(y)] =

n∑
i=1

√
pi(x)pi(y).
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Uniqueness of critical Gaussian chaos

By the Cauchy-Schwartz inequality we see that

Cε(x, y) ≤

√√√√ n∑
i=1

pi(x)

√√√√ n∑
i=1

pi(y) = 1

for all x, y ∈ T . Futhermore Cε(x, x) = 1 for all x ∈ T .

We may now define the field Yε(x) = εG+
√
KZε(x) where G is a standard Gaussian

random variable independent of the fields Zε and Xn. The conditions (1.5) and (1.6)
together with compactness yield that for all large enough n the covariance of the field
Xn + Yε is greater than the covariance of the field X̃n at every point (x, y) ∈ T × T .

Now a direct computation gives

E

∣∣∣∣ˆ
T
eYε(x)− 1

2E [Yε(x)2] dλ(x)− λ(T )

∣∣∣∣2 =

ˆ
T

ˆ
T

(
eKCε(x,y)+ε2 − 1

)
dλ(x) dλ(y).

Clearly when |x− y| ≥ 2ε, we have |x− ai|+ |y − ai| ≥ 2ε, so one of x or y lies outside of
Bi for every 1 ≤ i ≤ n, which implies that Cε(x, y) = 0. Therefore we have

ˆ
T

ˆ
T

(eKCε(x,y)+ε2 − 1) dλ(x) dλ(y)

= (eε
2

− 1)(λ⊗ λ)({|x− y| ≥ 2ε}) +

ˆ
{|x−y|<2ε}

(
eε

2+KCε(x,y) − 1
)
d(λ⊗ λ)(x, y)

≤ (eε
2

− 1)(λ⊗ λ)({|x− y| ≥ 2ε}) + (eε
2+K − 1)(λ⊗ λ)({|x− y| < 2ε}),

from which the claim follows, since eε
2 − 1 ≤ 3ε2 for 0 < ε < 1.

Proof of Theorem 1.1. We will first assume that both sequences (µn) and (µ̃n) converge
in distribution and show how to get rid of this condition at the end.

Let Yε be the independent field constructed as in Lemma 3.5. We may assume,
towards notational simplicity, that our probability space has the product form Ω = Ω1×Ω2,
and for (ω1, ω2) ∈ Ω one has Xn((ω1, ω2)) = Xn(ω1) and X̃n((ω1, ω2)) = X̃n(ω1) together
with Yε((ω1, ω2)) = Yε(ω2) for all ε > 0. Let ϕ : [0,∞)→ [0,∞) be a bounded, continuous
and concave function. Then by Kahane’s convexity inequality we have

E

[
ϕ

(ˆ
T

f(x)eXn(x)+Yε(x)− 1
2E [Xn(x)2]− 1

2E [Yε(x)2] dρn(x))

)]
≤

E

[
ϕ

(ˆ
T
f(x)eX̃n−

1
2E [X̃n(x)2] dρn(x)

)]

for all non-negative f ∈ C(T ). Since for all fixed ω2 ∈ Ω2, Yε(ω2)(x) − 1
2E [Yε(x)2] is a

continuous function on T , we see that

EΩ1

[
ϕ

(ˆ
T
f(x)eXn(x)+Yε(x)− 1

2E [Xn(x)2]− 1
2E [Yε(x)2] dρn(x)

)]
→

EΩ1

[
ϕ

(ˆ
T
f(x)eYε(x)− 1

2E [Yε(x)2] dµ(x)

)]
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Uniqueness of critical Gaussian chaos

as n→∞. In particular we have by Fatou’s lemma that

E

[
ϕ

(ˆ
T
f(x)eYε(x)− 1

2E [Yε(x)2] dµ(x)

)]
(3.1)

=EΩ2 lim
n→∞

EΩ1

[
ϕ

(ˆ
T
f(x)eXn(x)+Yε(x)− 1

2E [Xn(x)2]− 1
2E [Yε(x)2] dρn(x)

)]
≤ lim inf

n→∞
E

[
ϕ

(ˆ
T
f(x)eX̃n−

1
2E [X̃n(x)2] dρn(x)

)]
= E

[
ϕ

(ˆ
T
f(x) dµ̃(x)

)]
.

Accoding to Lemma 3.5, for almost every ω1 ∈ Ω1 we know that

gε :=

ˆ
T
f(x)eYε(x)− 1

2E [Yε(x)2] dµ(x) −→
ε→0

g :=

ˆ
T
f(x) dµ(x) (3.2)

in L2(Ω2). We next note that for a suitable fixed sequence εk → 0 this convergence also
happens for almost every ω2 ∈ Ω2. By Lemma 3.5 we have the estimate

‖gε − g‖2L2(Ω2) ≤3ε2‖f‖2C(T )µ(T )2 + C‖f‖2C(T )(µ⊗ µ)({|x− y| < 2ε}) =: ξε,

Choose the sequence εk so that

P[ξεk > 4−k] ≤ 1

k2
,

which is possible because (µ ⊗ µ)({(x, x) : x ∈ T }) = 0 almost surely. By the Borel–
Cantelli lemma there exists a random index k0(ω1) ≥ 1 such that with probability 1 we
have

‖gεk − g‖2L2(Ω2) ≤ 4−k

for all k ≥ k0(ω1). Now a standard argument verifies the almost sure convergence in
(3.2).

The almost sure convergence finally lets us to conclude for all non-negative f ∈ C(T )

and non-negative, bounded, continuous and concave ϕ that

E

[
ϕ

(ˆ
T
f(x) dµ(x)

)]
≤ E

[
ϕ

(ˆ
T
f(x) dµ̃(x)

)]
.

Similar inequality also holds with the measures µ and µ̃ switched, so we actually have

E

[
ϕ

(ˆ
T
f(x) dµ(x)

)]
= E

[
ϕ

(ˆ
T
f(x) dµ̃(x)

)]
.

It is well known that this implies µ ∼ µ̃.
Let us now finally observe that one can drop the assumption that both families

of measures converge. By Lemma 3.2 and Prokhorov’s theorem we know that every
subsequence µnk has a further subsequence that converges in distribution to a random
measure. Lemma 3.3 ensures that the limit measure of any converging sequence has
almost surely no atoms, and hence by the previous part of the proof this limit must equal
µ̃. This implies that the original sequence must converge to µ̃ as well.

Remark 3.6. Our proof of Theorem 1.1 may be modified in a way that allows the
conditions (1.5) and (1.6) to be somewhat relaxed. E.g. in the case of subcritical
logarithmically correlated fields it is basically enough to have for ε > 0 the inequality

|Cn(s, t)− C̃n(s, t)| ≤ ε(1 + log+ 1

|s− t|
)

for n ≥ n(ε). Analogous results exist also for the critical chaos, but in this case the
specific conditions are heavily influenced by the approximation sequence Xn one uses.
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4 Convergence in probability

In the previous section convergence was established in distribution, which often suffices,
and the main focus was on the uniqueness of the limit. In the present section we estab-
lish the convergence also in probability, assuming that this is true for the comparison
sequence µ̃n, which is constructed using approximating sequence (X̃n) that has indepen-
dent increments. Convergence in probability in the subcritical case was also discussed
in [28], and our Theorem 4.4 below can be seen as an alternative way to approach the
question.

Here is an outline of our method: We assume that the sequence µn is defined using
linear approximations RnX of the field X (see Definition 4.3), and invoke Lemma 4.1
to prove the convergence in probability by showing that if g is any (random) function
that depends only on X1, . . . , Xk for some fixed k ≥ 1, then we have the convergence in
distribution g dµn → g dµ̃. To establish the latter convergence, we split the measure µn
as

dµn = eEk,neXk−
1
2E [X2

k]eRn(X−Xk)− 1
2E [(Rn(Xn−Xk))2] dρn,

where Ek,n is a σ(X1, . . . , Xk)-measurable error resulting from the approximation that
goes to 0 as n→∞. By applying Lemma 4.2 we then conclude that g dµn converges to
geXk−

1
2E [X2

k] dνk in distribution, where νk is a random measure independent ofX1, . . . , Xk.
Finally, by using the convergence in probability of µ̃n we can write µ̃ = eXk−

1
2E [X2

k] dηk
for a random measure ηk, also independent of X1, . . . , Xk, and Lemma 4.2 tells us that
νk and ηk have the same distribution. This lets us conclude that geXk−

1
2E [X2

k] dνk ∼ g dµ̃.
Enough speculation, it is time to work.

Lemma 4.1. Let F1 ⊂ F2 ⊂ . . . be an increasing sequence of sigma-algebras and denote
F∞ := σ(

⋃∞
j=1 Fk) ⊂ F . Assume that the real random variables X,X1, X2, . . . satisfy: X

and Xk are F∞-measurable, and for any Fj measurable set E (with arbitrary j ≥ 1) it
holds that

χEXk
d−→ χEX as k →∞. (4.1)

Then Xk
P−→ X as k →∞.

Proof. We first verify that (4.1) remains true also if the set E is just F∞-measurable.
For that end define hj := E (χE |Fj) and construct an F∞-measurable approximation
Ej := h−1

j ((1/2, 1]). The martingale convergence theorem yields that P(Ej∆E) → 0 as
j → ∞. Since the claim holds for each Ej , it also follows for the set E by a standard
approximation argument.

Let us then establish the stated convergence in probability. Fix ε > 0 and pick M > 0

large enough so that P(|X| > M/2) ≤ ε/2, and such that P(|X| = M) = 0. Then for
some k0 we have that P(|Xk| ≥ M) ≤ ε if k ≥ k0. Divide the interval (−M,M ] into non
overlapping half open intervals I1, . . . , I` of length less than ε/2 and denote Ej := X−1(Ij)

for j = 1, . . . , `. In the construction we may assume that 0 is the center point of one of
these intervals and P(X = a) = 0 if a is an endpoint of any of the intervals. We fix j and

apply condition (4.1) to deduce that χEjXk
d−→ χEjX as k →∞. Assume first that 0 6∈ Ij .

Then the Portmonteau theorem yields that limk→∞P(χEjXk ∈ Ij) = P(χEjX ∈ Ij), or in
other words

P({X ∈ Ij} ∩ {Xk ∈ Ij})→ P(X ∈ Ij) as k →∞.

In particular, for large enough k we have that

P
(
Ej ∩ (|X −Xk| > ε)

)
≤ ε

2`
(4.2)

If 0 ∈ Ij we obtain in a similar vein that limk→∞P(χEjXk ∈ (Ij)
c) = P(χEjX ∈ (Ij)

c) = 0,
or in other words P({X ∈ Ij} ∩ {Xk ∈ Icj })→ 0, so that we again get that P

(
Ej ∩ (|X −
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Xk| > ε
)
≤ ε

2` for large enough k. By summing the obtained inequalities for j = 1, . . . , `

and observing that P(
⋃`
k=1Ek) > 1− ε/2 we deduce for large enough k the inequality

P(|X −Xk| > ε) < ε, as desired.

Lemma 4.2. Let X be a Hölder-regular Gaussian field on T that is independent of the
random measures µ and ν on T .

(i) If eXµ ∼ eXν, then also µ ∼ ν.

(ii) If (µn) is a sequence of random measures such that the sequence (eXµn) converges
in distribution, then also the sequence (µn) converges in distribution.

Proof. We will first show that if X is of the simple form Nf with N a standard Gaussian
random variable and f ∈ C(T ), then the claim holds. To this end let us fix g ∈ C(T ) and
consider the function ϕ : R→ C defined by

ϕ(x) = E [exp
(
i

ˆ
eNfe−xfg dµ

)
] = E [exp

(
i

ˆ
eNfe−xfg dν

)
].

Because N is independent of µ and ν, we may write

ϕ(x) =

ˆ ∞
−∞

E [exp(i

ˆ
e(y−x)fg dµ)]

1√
2π
e−

y2

2 dy.

By denoting u(t) = E [exp(i
´
e−tfg dµ)], v(t) = E [exp(i

´
e−tfg dν)] and h(x) = 1√

2π
e−

x2

2 ,

we see that ϕ(x) = (u ∗ h)(x) = (v ∗ h)(x). Because the Fourier transform of h is also
Gaussian we deduce by taking convolutions that the Fourier transforms û and v̂ coincide
as Schwartz distributions. Since u and v are continuous, this implies that u(x) = v(x) for
all x. In particular setting x = 0 gives us

E [exp(i

ˆ
g dµ)] = E [exp(i

ˆ
g dν)],

for all g ∈ C(T ), whence the measures µ and ν have the same distribution.
To deduce the general case, note that we have the Karhunen–Loève decomposition

X =
∞∑
k=1

Nkfk

where Nk are standard Gaussian random variables and fk ∈ C(T ) for all k ∈ N. Moreover
the above series converges almost surely uniformly. (See for example [1, Theorem
3.1.2.].) By the first part of the proof we know that e

∑∞
k=nNkfk µ and e

∑∞
k=nNkfk ν have

the same distribution for all n ∈ N. By the dominated convergence theorem we have

E [exp(i

ˆ
g dµ)] = lim

n→∞
E [exp(i

ˆ
e
∑∞
k=nNkfkg dµ)]

= lim
n→∞

E [exp(i

ˆ
e
∑∞
k=nNkfkg dν)] = E [exp(i

ˆ
g dν)]

for all g ∈ C(T ), which shows the claim.
The second part of the lemma follows from the first part. Since supt∈T X(t) < ∞

almost surely, one checks that the sequence (µn) inherits the tightness of the sequence
(eXµn). It is therefore enough to show that any two converging subsequences have
the same limit. Indeed, assume that µkj → µ and µnj → ν in distribution. Then by
independence we have eXµkj → eXµ and eXµnj → eXν, but by assumption the limits are
equally distributed and hence also µ and ν have the same distribution.

EJP 22 (2017), paper 11.
Page 12/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP28
http://www.imstat.org/ejp/


Uniqueness of critical Gaussian chaos

A typical example of a linear regularization process described in the following defini-
tion is given by a standard convolution approximation sequence. We denote by Cα(T )

the Banach space of α-Hölder continuous functions on T .

Definition 4.3. Let (Xk) be a sequence of approximating fields on T . We say that a
sequence (Rn) of linear operators Rn :

⋃
α∈(0,1) C

α(T )→ C(T ) is a linear regularization
process for the sequence (Xk) if the following properties are satisfied:

1. We have limn→∞ ‖Rnf − f‖∞ = 0 for all f ∈
⋃
α∈(0,1) C

α(T ).

2. The limit RnX := limk→∞RnXk exists in C(T ) almost surely.

Theorem 4.4. Assume that the increments {Xm+1 −Xm : m ≥ 1} of the approximating
fields Xm are independent and that there is the convergence in probability

dµ̃n := eXn−
1
2E [X2

n] dρn
P−→

n→∞
µ̃. (4.3)

Let Rn be some linear regularization process for the sequence Xk such that

eRnX−
1
2E [(RnX)2] dρn

d−→
n→∞

µ̃.

Then also dµn = eRnX−
1
2E [(RnX)2] dρn converges to µ̃ in probability.

Remark 4.5. As in Remark 1.2 the above theorem extends to the case of a non-compact
T when the assumptions are suitably reinterpreted. In a particular application it is also
enough to assume the condition (1) in Definition 4.3 for one suitable fixed value of α > 0,
if the exponent of the Hölder regularity of the approximating fields is known.

Proof. Define the filtration Fn := σ(X1, . . . , Xn). First of all, since eXn−
1
2E [X2

n] dρn con-
verges to µ̃ in probability as n→∞, we also have

eXn−Xk−
1
2E [(Xn−Xk)2] dρn

P−→
n→∞

e−Xk+ 1
2E [X2

k]µ̃ for every k ≥ 1.

To see this, one uses that E [(Xn −Xk)2] = E [X2
n]− E [X2

k ] and considers almost surely

converging subsequences, if necessary. We denote ηk := e−Xk+ 1
2E [X2

k]µ̃.
Notice that E [(RnX)(RnXk)] = E [(RnXk)2] by the independent increments and the

definition of RnX. We may thus write

dµn = eRnX−
1
2E [(RnX)2] dρn (4.4)

=
[
eRnXk−Xk+ 1

2E [X2
k−(RnXk)2]

]
eXk−

1
2E [X2

k]eRn(X−Xk)− 1
2E [(Rn(X−Xk))2] dρn.

Above on the right hand side the term in brackets is negligible as n→∞. To see this,
we note first that eRnXk−Xk tends almost surely to the constant function 1 uniformly
according to Definition 4.3(1). Moreover, E [X2

k − (RnXk)2] tends to 0 in C(T ), since
the field Xk takes values in a fixed Cγ(T ) for some γ > 0, and by the Banach–Steinhaus
theorem supn≥1 ‖Rn‖Cγ(T )→C(T ) <∞. Namely,

‖E [X2
k − (RnXk)2]‖C(T ) ≤ E ‖(Xk −RnXk)(Xk +RnXk)‖C(T )

≤ E
[
‖Xk −RnXk‖C(T )‖Xk +RnXk‖C(T )

]
. E ‖Xk‖2Cγ(T ),

whence the dominated convergence theorem applies, since ‖Xk‖Cγ(T ) has a super
exponential tail by Fernique’s theorem. All in all, invoking the assumption on the
convergence of µn we deduce that

eXk−
1
2E [X2

k]eRn(X−Xk)− 1
2E [(Rn(X−Xk))2] dρn −→ µ̃ (4.5)
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in distribution as n→∞.
By Lemma 4.2 we thus have the distributional convergence

eRn(X−Xk)− 1
2E [(Rn(X−Xk))2] dρn −→ νk as n→∞,

where the limit νk may be assumed to be independent of Fk. In particular, recalling (4.5)
we deduce that eXk−

1
2E [X2

k]νk has the same distribution as µ̃ = eXk−
1
2E [X2

k]ηk. Lemma 4.2
now verifies that νk ∼ ηk. In order to invoke Lemma 4.1, fix any Fk measurable bounded
random variable g. Then g and Xk are independent of X −Xk, and we therefore have
the distributional convergence

geXk−
1
2E [X2

k]eRn(X−Xk)− 1
2E [(Rn(X−Xk))2] dρn (4.6)

−→
n→∞

geXk−
1
2E [X2

k] dνk ∼ geXk−
1
2E [X2

k] dηk = g dµ̃,

where the second last equality followed by independence. Finally, again by the negli-
gibility of the term eRnXk−Xke−

1
2E [X2

k−(RnXk)2] and using (4.4) we see that (4.6) in fact
entails the convergence of g dµn to g dµ̃ in distribution. At this stage Lemma 4.1 applies
and the desired claim follows.

Remark 4.6. In the previous theorem it was crucial that we already have an approxi-
mating sequence of fields along which the corresponding chaos converges in probability.
In general if one only assumes convergence in distribution in (4.3), one may not auto-
matically expect that it is possible to lift the convergence to that in probability, even
for natural approximating fields. However, for most of the standard constructions of
subcritical chaos this problem does not occur, as we have even almost sure convergence
in (4.3) due to the martingale convergence theorem.

5 Convolution approximations

In this section we provide a couple of useful results for dealing with convolution approxi-
mations, ?-scale invariant fields and circular averages of 2-dimensional Gaussian fields.
We also note that the results can be applied to a 2-dimensional Gaussian free field in a
domain.

The next lemma and its corollaries show that any two convolution approximations
(with some regularity) applied to log-normal chaos stay close to each other in the sense
of Theorem 1.1.

Lemma 5.1. Let ϕ,ψ : Rd → R satisfy
´
ϕ(x) dx =

´
ψ(x) dx = 1 and |ϕ(x)|, |ψ(x)| ≤

C(1 + |x|)−(d+δ) for all x ∈ Rd with some constants C, δ > 0. Then if u ∈ BMO(Rd), we
have

|(ϕε ∗ u)(x)− (ψε ∗ u)(x)| ≤ K

for some constant K > 0 not depending on ε.

Proof. One can use the mean zero property and decay of ϕ− ψ together with a standard
BMO-type estimate [17, Proposition 7.1.5.] to see that for any ε > 0 we have∣∣∣∣ˆ

Rd
(ϕε − ψε)(t)u(x− t) dt

∣∣∣∣
=

∣∣∣∣∣
ˆ
Rd

(ϕ− ψ)(t)
(
u(ε(x− t))−

 
B(0,1)

u(ε(x− s)) ds
)
dt

∣∣∣∣∣
≤
ˆ
Rd

|u(ε(x− t))−
ffl
B(0,1)

u(ε(x− s)) ds|
(1 + |t|)d+δ

dt

≤ Cd,δ‖u(ε(x− ·))‖BMO = Cd,δ‖u‖BMO.
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Corollary 5.2. Let f(x, y) = 2dβ2 log+ 1
|x−y| + g(x, y) be a covariance kernel of a distri-

bution valued field X defined on Rd. Here g is a bounded uniformly continuous function.
Assume that ϕ and ψ are two locally Hölder continuous convolution kernels in Rd that
satisfy the conditions of Lemma 5.1. Let (εn) be a sequence of positive numbers εn
converging to 0. Then the approximating fields Xn := ϕεn ∗X and X̃n := ψεn ∗X satisfy
the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. The function `(x) := 2dβ2 log+ 1
|x| belongs to BMO(Rd) since log |x| ∈ BMO(Rd),

see for example [17, Example 7.1.3]. One computes that the covariance of ϕε ∗X equals
ˆ ˆ

ϕε(x− t)ϕε(y − s)`(t− s) dt ds+

ˆ ˆ
ϕε(x− t)ϕε(y − s)g(t, s) dt ds.

Because g is bounded and uniformly continuous the second term goes to g(x, y) uniformly,
so we may without loss of generality assume that g(x, y) = 0. The first term equals
(ϕε ∗ ϕε(−·) ∗ `)(x − y), so the condition (1.5) follows from Lemma 5.1 applied to the
convolution kernels ϕ ∗ ϕ(−·) and ψ ∗ ψ(−·). Here one easily checks that also ϕ ∗ ϕ(−·)
satisfies the conditions of Lemma 5.1 and that (ϕ ∗ ϕ(−·))ε = ϕε ∗ ϕε(−·). Finally, the
condition (1.6) is immediate.

Remark 5.3. One may easily state localized versions of the above corollary.

Corollary 5.4. Assume that f(x, y) = 2β2 log+ 1
2| sin(π(x−y))| + g(x, y) is the covariance of

a (distribution valued) field X on the unit circle. Here g is a bounded continuous function
that is 1-periodic in both variables x and y and we have identified the unit circle with
R/Z. Assume that ϕ and ψ are two locally Hölder continuous convolution kernels in R
that satisfy the conditions of Lemma 5.1, and let (εn) be a sequence of positive numbers
εn converging to 0. Then the approximating fields Xn := ϕεn ∗ X and X̃n := ψεn ∗ X
satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Remark 5.5. Above when defining the approximating fields Xn we assume that X stands
for the corresponding periodized field on R and the fields Xn will then automatically be
periodic so that they also define fields on the unit circle.

Proof. One easily checks that `(x) = 2β2 log+ 1
2| sin(πx)| is in BMO(R). The rest of the

proof is analogous to the one of the previous corollary.

The previous result showed that different convolution approximations lead to the
same chaos. In turn, in order to show that a single convolution approximation converges
to the desired chaos, one may often compare the convolution approximation directly
to a martingale approximation field used originally to define the chaos. As an example
of this, we show that the convolutions of ?-scale invariant fields are comparable (in
the sense of Theorem 1.1) with the natural approximating fields arising from the ?-
scale decomposition. This also extends the convergence of the critical chaos in [12] to
convolution approximations.

Lemma 5.6. Let k : [0,∞) → R be a compactly supported and positive definite C1-
function with k(0) = 1. Define the ?-scale invariant field X on Rd, whose covariance is
(formally) given by

EX(x)X(y) =

ˆ ∞
1

k(u|x− y|)
u

du. (5.1)

Moreover, let ϕ be a convolution kernel satisfying the conditions of Corollary 5.2. Then
the approximating fields Xn := ϕe−n ∗X and the fields X̃n whose covariance is given by

E X̃n(x)X̃n(y) =

ˆ en

1

k(u|x− y|)
u

du
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Uniqueness of critical Gaussian chaos

satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. One may easily check that the covariance in (5.1) is of the form

log+ 1

|x− y|
+ g(x, y),

and therefore by Corollary 5.2 it is enough to show the claim for one mollifier ϕ. In
particular, we may without generality assume that the support of ϕ is contained in
B(0, 1/2) and that ϕ is a symmetric non-negative function. A short calculation shows
that we have

EXn(0)Xn(x) =

ˆ ∞
1

(ϕe−n ∗ ϕe−n ∗ k(u| · |))(|x|)
u

du.

Let ψ = ϕ ∗ϕ. Then the support of ψ is contained in B(0, 1) and ψe−n = ϕe−n ∗ϕe−n . Thus
we get

EXn(0)Xn(x)− E X̃n(0)X̃n(x)

=

ˆ en

1

(ψe−n ∗ k(u| · |))(x)− k(u|x|)
u

du+

ˆ ∞
en

(ψe−n ∗ k(u| · |))(x)

u
du.

Fix R > 0 so that the support of k is contained in [0, R]. Then we have

|(ψe−n ∗ k(u| · |))(x)− k(u|x|)| ≤
ˆ
B(x,e−n)

ψe−n(x− s)|k(u|s|)− k(u|x|)| ds

≤

{
0, if (|x| − e−n)u > R

u‖k′‖∞e−n, otherwise

We also have the bound

|(ψe−n ∗ k(u| · |))(x)| ≤ ‖k‖∞
ˆ
B(0,R/u)

ψe−n(x− s) ds

≤

{
0, if (|x| − e−n)u > R

C‖k‖∞‖ψ‖∞Rd

ud
end, otherwise

for some constant C > 0. Using just the upper bounds of these estimates for all x we get∣∣∣ˆ en

1

|(ψe−n ∗ k(u| · |))(x)− k(u|x|)
u

du
∣∣∣ ≤ ‖k′‖∞

and ∣∣∣ˆ ∞
en

(ψe−n ∗ k(u| · |))(x)

u
du
∣∣∣ ≤ C‖k‖∞‖ψ‖∞Rd/d,

verifying (1.5). Assume then that δ > 0 is fixed and |x| > δ. Then for large enough n we
have that e−n < δ/2 and

∣∣∣ˆ en

1

|(ψe−n ∗ k(u| · |))(x)− k(u|x|)
u

du
∣∣∣ ≤ ˆ 2R

δ

1

‖k′‖∞e−n du→ 0

and ˆ ∞
en

(ψe−n ∗ k(u| · |))(x)

u
du = 0,

showing (1.6).

Finally, we state a result for circle averages of 2-dimensional Gaussian fields.
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Uniqueness of critical Gaussian chaos

Lemma 5.7. Let X be a two dimensional Gaussian field with covariance of the form
EX(x)X(y) = 4β2 log+ 1

|x−y| + g(x, y), where g is continuous and bounded. Let Xε(x) =
1

2π

´ 2π

0
X(x + εeiθ) dθ and let ϕ be a convolution kernel satisfying the conditions of

Corollary 5.2. Then the approximating fields Xn := ϕe−n ∗ X and the fields X̃n :=
1

2π

´ 2π

0
X(x+ e−n+iθ) dθ satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. We may compute

E X̃n(x)X̃n(y) =
1

4π2

ˆ 2π

0

ˆ 2π

0

(
4β2 log+ 1

|x+ e−n+is − y − e−n+it|
+ g(x+ e−n+is, y + e−n+it)

)
ds dt.

Clearly we can assume that g = 0, since that part of the integral is bounded by a constant
and converges uniformly. Moreover, we may assume that |x− y| ≤ 1

2 , since the integral
converges uniformly to the right value as n→∞ when |x− y| ≥ 1

2 . Thus we may write

E X̃n(x)X̃n(y) =
1

4π2

ˆ 2π

0

ˆ 2π

0

4β2 log
1

|x+ e−n+is − y − e−n+it|

for n large enough so that |x+ e−n+is − y − e−n+it| < 1. Now if |x− y| > 2e−n, then by
invoking the harmonicity of the logarithm and using the mean value principle twice, we
have

E X̃n(x)X̃n(y) = 4β2 log
1

|x− y|
.

On the other hand if |x− y| ≤ 2e−n, then we may write

E X̃n(x)X̃n(y) = n+
1

4π2

ˆ 2π

0

ˆ 2π

0

4β2 log
1

|en(x− y) + eis − eit|
,

where the integrand on the right hand side is bounded from below, and boundedness
from above of the whole integral follows since the inner integral contains at most a
logarithmic singularity, which is integrable. Thus we have shown that

E X̃n(x)X̃n(y) =

{
n+O(1), if |x− y| ≤ 2e−n

4β2 log+ 1
|x−y| + g(x, y) + o(1), if |x− y| > 2e−n.

This is enough to show the claim, since it is easy to check that certain convolution
kernels ϕ yield approximations with similar covariance structure.

We then very briefly note that the above results can be applied to the 2-dimensional
Gaussian free field and its variants. We refer to the paper [12] for the definition of the
massless free field (MFF) and a Gaussian free field (GFF) in a bounded domain.

Corollary 5.8. Let X be the MFF, or a GFF in some planar domain with Dirichlet
boundary conditions. Then the critical chaos defined via convolution approximations
(naturally one needs to localize in the case of GFF) of X exists and is independent of the
convolution kernel used. The same applies to the circle averages.

Proof. The MFF is of the ?-scale invariant form, so our result applies directly. In the
case of a GFF, we may write X as a smooth perturbation of the MFF (see [12]), whence
the claim follows easily.

Remark 5.9. We note that Theorem 4.4 often applies for convolution approximations.
Especially it can be easily localized and it works for the MFF and GFF, including circular
average approximations. The verification of the latter fact is not difficult and we omit it
here.
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Remark 5.10. Convergence of convolution approximations for the critical GFF in the
unit circle have also been proven in [19]. The method used there is ’interpolation’ of
Gaussian fields X1 and X2 by the formula

√
tX1 +

√
1− tX2, used already in [26]. It is

not immediately clear how far beyond convolution approximations this approach can be
extended.

6 An application (Proof of Theorem 1.3)

The main purpose of this chapter is to prove Theorem 1.3 and explain carefully the
approximations mentioned there. For the reader’s convenience we try to be fairly
detailed, although some parts of the material are certainly well-known to the experts.

We start by defining the approximation X2,n of the restriction of the free field on the
unit circle S1 := {(x1, x2) ∈ R2 : x2

1 + x2
2 = 1}. Following [3] recall that the trace of the

Gaussian free field on the unit circle (identified with R/Z) is defined to be the Gaussian
field2

X(x) = 2
√

log 2G+
√

2

∞∑
k=1

(Ak√
k

cos(2πkx) +
Bk√
k

sin(2πkx)
)
, (6.1)

where Ak, Bk and G are independent standard Gaussian random variables. The field
X is distribution valued and its covariance (more exactly, the kernel of the covariance
operator) can be calculated to be

E [X(x)X(y)] = 4 log(2) + 2 log
1

2| sin(π(x− y))|
. (6.2)

A natural approximation of X is then obtained by considering the partial sum of the
Fourier series

X2,n(x) := 2
√

log 2G+
√

2

n∑
k=1

(Ak√
k

cos(2πkx) +
Bk√
k

sin(2πkx)
)
.

Another way to get hold of this covariance is via the periodic upper half-plane white
noise expansion that we define next – recall that the non-periodic hyperbolic white noise
W and the hyperbolic area measure mhyp were already defined in the introduction. We
define the periodic white noise Wper to be

Wper(A) = W (A mod 1),

where A mod 1 = {(x mod 1, y) : (x, y) ∈ A} and we define x mod 1 to be the number
x′ ∈ [− 1

2 ,
1
2 ) such that x− x′ is an integer. Now consider cones of the form

H(x) := {(x′, y′) : |x′ − x| < 1

2
, y >

2

π
tan |π|x′ − x||}.

It was noted in [3] that the field x 7→
√

2Wper(H(x)) has formally the right covariance
(6.2), whence a natural sequence of approximation fields (X1,n) is obtained by cutting
the white noise at the level 1/n. More precisely we define the truncated cones

Ht(x) := H(x) ∩ {(x, y) ∈ R2 : y > e−t} (6.3)

and define the regular field X1,n by the formula

X1,n(x) :=
√

2Wper(Hlogn(x)). (6.4)

2Observe that we have in fact multiplied the standard definition by
√
2 to get the critical field. Also the

innocent constant term 2
√
log 2G is often omitted in the definition.
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The third approximation fields X3,n are defined by using a Hölder continuous function
ϕ ∈ L1(R) that satisfies

´
ϕ = 1 and possesses the decay

|ϕ(x)| ≤ C

(1 + |x|)1+δ

for some C, δ > 0. We then set X3,n := ϕ1/n ∗ Xper, where Xper(x) = X(x + 2πZ) is
the natural lift of X to a map R → R. This form of convolution is fairly general, and
encompasses convolutions against functions ϕ̃ defined on the circle whose support do
not contain the point (−1, 0).

Example 6.1. Let u be the harmonic extension of X in the unit disc and consider the
approximating fields Xn(x) = u(rnx) for x ∈ S1 and for an increasing sequence of radii
rn tending to 1. Then Xn(x) is obtained from X by taking a convolution against the
Poisson kernel ϕεn on the real axis, where ϕ(x) = 2

1+4π2x2 and εn = log 1
rn

. This kind of
approximations might be useful for example in studying fields that have been considered
in [24].

The fourth approximation fields X4,n are defined by using a wavelet ψ : R→ R, that
is obtained from a multiresolutional analysis, see [32, Definition 2.2]. We further assume
that ψ is of bounded variation, so that the distributional derivative ψ′ is a finite measure.
Finally we require the mild decay

|ψ(x)| ≤ C(1 + |x|)−α (6.5)

with some constants C > 0 and α > 2, and the tail conditionˆ ∞
−∞

(1 + |x|)d|ψ′|(x) <∞. (6.6)

Remark 6.2. The conditions (6.5) and (6.6) are fairly general, especially the standard
Haar wavelets satisfy them.

With the above definitions it follows from [32, Proposition 2.21] that the periodized
wavelets

ψj,k(x) := 2j/2
∞∑

l=−∞

ψ(2j(x− l)− k)

together with the constant function 1 form a basis for the space L2([0, 1]).
We next consider vaguelets that can be thought of as half-integrals of wavelets. Our

presentation will be rather succinct – another more detailed account can be found in the
article by Tecu [30]. The vaguelet ν : R→ R is constructed by setting

ν(x) :=
1√
2π

ˆ ∞
−∞

ψ(t)√
|x− t|

dt. (6.7)

An easy computation utilizing the decay of ψ and the fact that
´
ψ = 0 verifies that

ν : R→ R satisfies

|ν(x)| ≤ C

(1 + |x|)1+δ
(6.8)

for some C, δ > 0. We may then define the periodized functions

νj,k(x) :=
∑
l∈Z

ν(2j(x− l)− k) (6.9)

for all j ≥ 0 and 0 ≤ k ≤ 2j−1. It is straightforward to check that the Fourier coefficients
of νj,k satisfy

ν̂j,k(n) =
ψ̂j,k(n)√
|2πn|

when n 6= 0.
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The field X4,n can now be defined by

X4,n(x) := 2
√

log 2G+
√

2π

n∑
j=0

2j−1∑
k=0

Aj,kνj,k(x), (6.10)

where G and Aj,k are independent standard Gaussian random variables. To see that this
indeed has the right covariance one may first notice that

Y =

∞∑
j=0

2j−1∑
k=0

Aj,kψj,k(x)

defines a distribution valued field satisfying E 〈Y, u〉〈Y, v〉 = 〈u, v〉 for all 1-periodic C∞

functions u and v. The field X4,n(x) is essentially the half integral of this field, whose
covariance is given by

E 〈I1/2Y, u〉〈I1/2Y, v〉 = E 〈Y, I1/2u〉〈Y, I1/2v〉 = 〈I1/2u, I1/2v〉 = 〈Iu, v〉,

where the lift semigroup Iβf for functions f on S1 is defined by describing its action
on the Fourier basis: Iβe2πinx = (2π|n|)−βe2πinx for any n 6= 0 and Iβ1 = 0. A short
calculation shows that the operator I has the right integral kernel 1

π log 1
2| sin(π(x−y))| .

Proof of Theorem 1.3. The road map for the proof (as well as for the rest of the section)
is as follows:

1. We first show in Lemma 6.4 below that the chaos measures constructed from the
white noise approximations converge weakly in Lp by comparing it to the exactly
scale invariant field on the unit interval by using Proposition A.2.

2. Next we verify in Lemma 6.5 that the Fourier series approximations give the same
result as the white noise approximations. This is done by a direct comparison of
their covariances to verify the assumptions of Theorem 1.1.

3. Thirdly we deduce in Lemma 6.7 that convolution approximations also yield the
same result by comparing a convolution against a Gaussian kernel to the Fourier
series and again using Theorem 1.1.

4. Fourthly we prove in Lemma 6.8 that a vaguelet approximation yields the same
result by comparing it against the white noise approximation.

5. Finally, in Lemma 6.9 convergence in probability is established for the Fourier
series, convolution and vaguelet approximations by invoking Theorem 4.4.

After the steps (1)–(5) the proof of Theorem 1.3 is complete.

The following lemma gives a quantitative estimate that can be used to compare fields
defined using the hyperbolic white noise on H.

Lemma 6.3. Let U be an open subset of {(x, y) ∈ H : y < 1} such that the set {(x, y) ∈
U : y = s} is an interval for all 0 < s < 1. Let f(s) denote the length of this interval
and assume that f(s) ≤ Cs1+δ for some δ > 0. Then the map (x, s) 7→ W (Us + x)

admits a modification that is almost surely continuous in [a, b]× [0, 1] for any a < b, and
almost surely the maps x 7→ W (Us + x) tend to W (U + x) uniformly when s→ 0. Here
Us = {(x, y) ∈ U : y > s}.
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Proof. Let us first show that

E |W (Us + x)−W (Us + y)|2 ≤ C̃|x− y|
δ

1+δ .

for some C̃ > 0. By translation invariance of the covariance it is enough to consider
E |W (Us + x) − W (Us)|2 and we can clearly assume that 0 < x < 1. Obviously the
1-dimensional Lebesgue measure of the set ((Us + x) ∩ {y = a})∆(Us ∩ {y = a}) equals
2 min(f(a), x). Hence we have

E |W (Us + x)−W (Us)|2 = 2

ˆ 1

s

min(f(y), x)

y2
dy ≤ 2 max(1, C)

ˆ 1

0

min(y1+δ, x)

y2
dy

= 2 max(1, C)
(

(1 + δ−1)x
δ

1+δ − x
)
≤ C̃x

δ
1+δ .

Notice next that

E |W (Us)−W (Ut)|2 =

ˆ t

s

f(u)

u2
du ≤ C

δ
(tδ − sδ).

It follows that the map (x, s) 7→W (Us+x) is Hölder-regular both in x and s, and therefore
also jointly. By Lemma 2.2 the realizations can be chosen to be almost surely continuous
in the rectangle [a, b]× [0, 1] which obviously yields the claim.

The claim concerning the approximating fields X1,n follows from the next lemma by
taking into account the definitions (6.3) and (6.4). In the proof we identify the field on
the unit circle locally as a perturbation of the exactly scaling field on the unit interval.
For the chaos corresponding to the last mentioned field the fundamental result on
convergence was proven in [12], and we use this fact as the basis of the proof of the
following lemma.

Lemma 6.4. Let either β < 1 and ρt be the Lebesgue measure on the circle, or let β = 1

and dρt(x) =
√
t dx. Then the measures

eβ
√

2Wper(Ht(x))−β2E [Wper(Ht(x))2] dρt(x)

defined on the unit circle (which we identify with R/Z) converge weakly in Lp(Ω) to a
non-trivial measure µβ,S1 for 0 < p < 1.

Proof. As our starting point we know that the measures defined by

dµ̃t(x) := eβ
√

2W (At(x))−β2E [W (At(x))2] dρt(x)

on the interval [− 1
2 ,

1
2 ] converge weakly in Lp(Ω) to a non-trivial measure for 0 < p < 1

under the assumptions we have on β and ρt. Here At stands for the cone defined in (1.2)
in the introduction. One should keep in mind that we are using the same hyperbolic
white noise when defining both W and Wper.

Let us split the cones Ht into two sets H+
t and H−t , where

H+
t (x) := Ht(x) ∩ {(x, y) ∈ H : y ≥ 1} and H−t (x) := Ht(x) ∩ {(x, y) ∈ H : y < 1}.

Clearly Wper(Ht(x)) = Wper(H
+
t (x)) + Wper(H

−
t (x)) and by elementary geometry it is

easy to see that if we restrict x to the interval (−δ0, δ0) where δ0 = 1
2 −

arctan(π/2)
π ≈ 0.18,

we have (Wper(H
−
t (x)))x∈(−δ0,δ0) = (W (H−t (x)))x∈(−δ0,δ0). Hence our aim is to first verify

the convergence on the interval (−δ0, δ0).
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Write then

Yt(x) = Wper(Ht(x)),

Y +
t (x) = Wper(H

+
t (x)),

Y −t (x) = W (H−t (x))

and similarly for the limit fields (which clearly exist in the sense of distributions) write

Y (x) = Wper(H(x)),

Y +(x) = Wper(H
+(x)),

Y −(x) = W (H−(x)).

Let Xt(x) := W (At(x)) and X(x) := W (A(x)) and define Zt(x) := Y −t (x)−Xt(x) so that
we may write Y −t (x) = Xt(x) + Zt(x). We next make sure that Zt(x) is a Hölder regular
field, the realizations of which converge almost surely uniformly to the Hölder regular
Gaussian field Z(x) := Y −(x)−X(x).

The field Z(x) decomposes into a sum L(x) +R(x) + T (x), where L(x) = −W (L̃+ x),
R(x) = −W (R̃+ x) and T (x) = −W (T̃ + x) with

R̃ = {(x, y) :
1

π
arctan(

π

2
y) < x ≤ y

2
, y < 1}

L̃ = {(−x, y) : (x, y) ∈ R̃}

T̃ = {(x, y) : −1

2
≤ x ≤ 1

2
, y ≥ 1}.

We define the truncated versions of Lt, Rt and Tt by cutting the respective sets at the
level e−t as usual, so that Zt(x) = Lt(x) +Rt(x) + Tt(x). Clearly Tt(x) = T (x) for t ≥ 0.

Let now f(u) = u
2 −

1
π arctan(π2u). Using the Taylor series of arctan(u) = u− u3

3 + u5

5 −
u7

7 + . . . we have

f(u) =
π2

24
u3 +O(u5),

so f(u) ≤ Cu3 for some constant C > 0. It follows from Lemma 6.3 that Lt(x) and Rt(x)

converge almost surely uniformly to the fields L(x) and R(x), so Zt(x) converges almost
surely uniformly to Z(x) as t→∞.

Note that E [Zt(x)Xt(x)] tends to a finite constant as t→∞, so the assumptions of
Proposition A.2 are satisfied. Therefore the measures

νt =

ˆ
f(x)eβ

√
2Y −t (x)−β2E [Y −t (x)2] dρt(x)

on (−δ, δ) converge weakly in Lp(Ω) for all 0 < p < 1. Because Y + is a regular field, we
may again use Proposition A.2 to conclude that also the measures

µ̃t(f) =

ˆ
f(x)eβ

√
2Yt(x)−β2E [Yt(x)2] dρt(x)

on (−δ, δ) converge in Lp(Ω). By the translation invariance of the field the same holds
for any interval of length 2δ. Let I1, . . . , In be intervals of length 2δ that cover the unit
circle and let p1, . . . , pn ∈ C(S1) be a partition of unity with respect to the cover Ik. The
measure

µt(f) =

ˆ
f(x)eβ

√
2Yt(x)−β2E [Yt(x)2] dρt(x)

on the whole unit circle can be expressed as a sum dµt(x) = p1(x)dµ̃
(1)
t (x) + · · · +

p2(x)dµ̃
(n)
t (x). Because each of the summands converges in Lp(Ω), we see that also the

family of measures µt converges in Lp(Ω).
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Lemma 6.5. Let either β < 1 and dρn(x) = dx for all n ≥ 1 or let β = 1 and dρn(x) =√
log ndx. Then the measures

dµ2,n(x) := eβX2,n(x)− β
2

2 E [X2,n(x)2] dρn(x)

converge in distribution to the random measure µβ,S1 constructed in Lemma 6.4.

Proof. Let fn(x) := E [X2,n(x)X2,n(0)]. It is straightforward to calculate that

fn(x) = 4 log 2 + 2

n∑
k=1

cos(2πkx)

k
.

In particular fn(0) = 4 log 2 + 2Hn, where Hn is the nth Harmonic number, Hn = log n+

γ +O( 1
n ) with γ being the Euler–Mascheroni constant. Let f(x) := 4 log 2 + 2 log 1

2| sin(πx)|
be the limit covariance and define gn(x) := f(x)− fn(x). One can easily compute that
for 0 < x ≤ 1

2 we have

g′n(x) = −
2π cos(2π(n+ 1

2 )x)

sin(πx)
.

In particular the maximums and minimums of the difference gn(x) occur at the points

x
(n)
j = 2j+1

4n+2 , 0 ≤ j ≤ n. Consider the telescoping sum

gn(x
(n)
j ) = (gn(x

(n)
j )− gn(x

(n)
j+1)) + · · ·+ (gn(x

(n)
n−1)− gn(x(n)

n )) + gn(x(n)
n ). (6.11)

Here the terms in parentheses form an alternating series whose terms are decreasing in
absolute value. Moreover, the term gn(x

(n)
0 )− gn(x

(n)
1 ) stays bounded as n→∞ and the

term gn(x
(n)
n ) goes to 0 as n→∞. All this is obvious from writing

gn(x
(n)
j+1)− gn(x

(n)
j ) =

ˆ x
(n)
j+1

x
(n)
j

g′n(t) dt = −2π

ˆ 2j+3
4n+2

2j+1
4n+2

cos(π(2n+ 1)t)

sin(πt)
dt (6.12)

=
−2π

2n+ 1

ˆ 1/2

−1/2

cos(π(y + j + 1))

sin(π y+j+1
2n+1 )

dy

=
(−1)j2π

2n+ 1

ˆ 1/2

−1/2

cos(πy)

sin(π y+j+1
2n+1 )

dy,

gn(x(n)
n ) = −2 log(2)− 2

n∑
k=1

(−1)k

k
.

In particular we deduce that

sup
n≥1

sup
x≥x(n)

0

|gn(x)| <∞. (6.13)

Notice also that for any fixed ε > 0 all the maximums and minimums in the range x > ε

are located at the points x(n)
j with j > 2εn+ ε− 1

2 , and

lim
n→∞

sup
j>εn+ε− 1

2

|gn(x
(n)
j+1)− gn(x

(n)
j )| = 0

by (6.12). From this and (6.11) it follows that the Fourier covariance converges to the
limit covariance uniformly in the set {|x| > ε}, a fact that could also be deduced from
the localized uniform convergence of the Fourier series of smooth functions [34, p. 54,
Theorem 6.8].
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Uniqueness of critical Gaussian chaos

Consider next the white noise covariance ht(x) := 2E [Wper(Ht(x))Wper(Ht(0))]. By
symmetry we may assume all the time that x > 0. After a slightly tedious calculation one
arrives at the formula

ht(x) =


4 log 2 + 2 log 1

2 sin(πx) , if x > 2
π arctan(π2 e

−t)

−2xet + 2t− 2 log(cos(π2x)) + log(π2e−2t + 4)

+
2 arctan(π2 e

−t)
π
2 e
−t − 2 log(π), if x ≤ 2

π arctan
(
π
2 e
−t).

Let us consider the approximation along the sequence tn = log(n). Then htn(0) =

2 log(n) +O(1). Moreover at the point xn = 2
π arctan(π2 e

−tn) = 2
π arctan( π2n ) we have

htn(xn) = 4 log 2 + 2 log
1

2 sin(2 arctan( π2n ))
= 2 log(n) +O(1).

Because the function htn without the bounded term −2 log(cos(π2x)) is linear and decreas-
ing on the interval [0, xn] we know that it is actually 2 log(n)+O(1) on that whole interval.
Similarly it is easy to check that for the Fourier series we have fn(x) = 2 log(n) +O(1)

on the interval [0, xn] because |f ′n(x)| ≤ 4πn and xn = O( 1
n ). Thus |fn(x)− htn(x)| = O(1)

for x ≤ xn. For x ≥ xn it follows from (6.13) that |fn(x)− htn(x)| = |gn(x)| is bounded.
From the above considerations and symmetry it follows that the covariances of the

fields X1,n and X2,n satisfy the assumptions of Theorem 1.1. This finishes the proof.

Remark 6.6. The somewhat delicate considerations in the previous proof are necessary
because of the fairly unwieldy behaviour of the Dirichlet kernel.

Next we verify that any convolution approximation to the field X also has the same
limit.

Lemma 6.7. Let ϕ be a Hölder continuous mollifier satisfying
´∞
−∞ ϕ(x) dx = 1 and

ϕ(x) = O(x−1−δ) for some δ > 0. Then the fields X3,n defined on S1 by using the
periodized field on R:

X3,n(x) := (ϕ1/n ∗Xper)(x)

are Hölder-regular and the measures

dµ3,n := eβX3,n(x)− β
2

2 E [X3,n(x)2] dρn(x),

converge in distribution to µβ,S1 . Here ρn is the Lebesgue measure if β < 1 and
dρn =

√
log ndx if β = 1.

Proof. It is enough to show the assumptions of Theorem 1.1 for one kernel satisfying the
conditions of the lemma because of Corollary 5.4, and because of Lemma 6.5 we can do
our comparison against the covariance obtained from the Fourier series construction.

We will make the convenient choice of ϕ(x) = 1√
2π
e−

x2

2 as our kernel. The covariance of

the field ϕε ∗Xper is given by (ψε ∗ f)(x− y), where ψε(x) = (ϕε ∗ϕε(−·))(x) = 1
2ε
√
π
e−

x2

4ε2

and f(x) = 4 log 2 + 2 log 1
2| sin(πx)| .

Using the identity log 1
2| sin(πx)| =

∑∞
k=1

cos(2πkx)
k , a short computation shows that we

can write the difference of the covariances of X2,n (the Fourier field) and X3,n in the
form (we may take y = 0 as we are in the translation invariant case)

2

n∑
k=1

cos(2πkx)

k
(1− e−4π2 k2

n2 )− 2

∞∑
k=n+1

cos(2πkx)

k
e−4π2 k2

n2 .
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Since 1− e−x ≤ x for x ≥ 0, the first term is bounded by 2
∑n
k=1

4π2k
n2 ≤ 16π2. In turn the

second term is bounded from above by

2

ˆ ∞
n

e−4π2 t2

n2

t
dt = 2

ˆ ∞
1

e−4π2s2

s
ds.

Because both of the covariances converge locally uniformly outside the diagonal, we
again see that the assumptions of Theorem 1.1 are satisfied.

Our next goal is to prove the convergence in distribution for the vaguelet approxi-
mation X4,n. In the lemma below we recall the definition of the field X4,n in (6.10). The
elementary bounds on vaguelets we use are gathered in Appendix B.

Lemma 6.8. Let either β < 1 and dρn(x) = dx for all n ≥ 1 or let β = 1 and dρn(x) =√
n log 2 dx. Then the measures

dµ4,n := eβX4,n(x)− β
2

2 E [X4,n(x)2] dρn(x)

converge in distribution to the random measure µβ,S1 constructed in Lemma 6.4.

Proof. The covariance Cn(x, y) of the field X4,n is given by

Cn(x, y) = 4 log 2 + 2π

n∑
j=0

2j−1∑
k=0

νj,k(x)νj,k(y).

Let ψj,k be the periodized wavelets. Then there exists a constant D > 0 such that
‖ψj,k‖∞ ≤ D2j/2 for all j ≥ 0, 0 ≤ k ≤ 2j − 1. It follows from Lemma B.1 and Lemma B.3
that when |x− y| ≤ 2−n, we have

|Cn(x, x)− Cn(x, y)| ≤2π

n∑
j=0

2j−1∑
k=0

|νj,k(x)||νj,k(x)− νj,k(y)| (6.14)

≤2πC
√
|x− y|

n∑
j=0

2j−1∑
k=0

|νj,k(x)|‖ψj,k‖∞

≤2πACD
√
|x− y|

n∑
j=0

2j/2 ≤ E.

for some constant E > 0. From Lemma B.3 it also follows that for any ε > 0 the
covariances Cn(x, y) converge uniformly in the set Vε = {(x, y) : dist(x, y) ≥ ε}. Obviously
by definition there is a distributional convergence to the right covariance 4 log 2 +

2 log 1
2| sin(π(x−y))| and this must agree with the uniform limit in Vε. Especially, by invoking

again the bound from Lemma B.3 we deduce that

|Cn(x, x+ 2−n)− 4 log 2− 2 log
1

2 sin(π2−n)
| ≤ 2πB. (6.15)

Thus by combining (6.14) and (6.15) the covariance satisfies

|Cn(x, y)− 2n log 2| ≤ F for all (x, y) ∈ {(x, y) : dist(x, y) ≤ 2−n}

for some constant F > 0. From the known behaviour (see e.g. the end of the proof of
Lemma 6.5) of the covariance of the white noise field X1,n it is now easy to see that the
assumptions of Theorem 1.1 are satisfied for the pair (X4,n) and (X1,n).
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Finally we observe that the convergence in lemmas 6.5, 6.7 and 6.8 also takes place
weakly in Lp.

Lemma 6.9. The convergences stated in lemmas 6.5, 6.7 and 6.8 take place in Lp for
0 < p < 1 (especially in probability).

Proof. We only prove the claim in the critical case since the subcritical case is similar.
We will use the fields X1,n as the fields Xn in Theorem 4.4. Then according to Lemma 6.4

we have that eXn−
1
2E [X2

n] dρn converges in probability to a measure µ1,S1 when dρn =√
log ndx.

In the case of the Fourier approximation we can define Rn in Theorem 4.4 to be the
nth partial sum of the Fourier series. That is

Rnf :=

n∑
k=−n

f̂(k)e2πikx.

Recalling Jackson’s theorem on the uniform convergence of Fourier series of Hölder
continuous functions, it is straightforward to check that Rn is a linear regularization
process.

In the case of convolutions we take Rn to be the convolution against 1
εn
ϕ( xεn ), where

(εn)n≥1 is a sequence of positive numbers tending to 0. The sequence (Rn) obviously
satisfies the required conditions.

Finally, we sketch the proof for the vaguelet approximations. This time we employ
the sequence of operators

Rnf(x) :=

ˆ 1

0

f +

n∑
j=0

2j−1∑
k=0

(ˆ 1

0

ψj,k(y)
(
I−1/2f(y)

)
dy

)
νj,k(x).

Because of finiteness of the defining series it is easy to see that (Rn) satisfies the second
condition in Definition 4.3. For the first condition we first fix α ∈ (0, 1/2) and observe
that Rnνj′,k′ = νj′,k′ as soon as n ≥ j′. By the density of vaguelets, in order to verify the
first condition it is enough to check that the remainder term tends uniformly to 0 for any
f ∈ Cα(S1). We begin by noting that d

dx = −iHI−1, where H is the Hilbert transform,
which yields for f ∈ Cα(S1)∣∣∣ˆ 1

0

ψj,k(y)
(
I−1/2f(y)

)∣∣∣ =
∣∣∣ˆ 1

0

d

dy
ψj,k(y)

(
HI+1/2f(y)

)∣∣∣ ≤ C2−αj , x ∈ [0, 1),

since HI+1/2f(x) ∈ Cα+1/2(S1) by the standard mapping properties of Iβ, and the
Hilbert transform is bounded on any of the Cα-spaces. Above, the final estimate was
obtained by computing for any g ∈ Cα+1/2(S1) with periodic continuation G to R that∣∣∣∣ˆ 1

0

d

dx
ψj,0(x)g(x)

∣∣∣∣ =

∣∣∣∣ˆ ∞
−∞

2
3
2 jdψ′(2jx)G(x)

∣∣∣∣ = 2j/2
∣∣∣∣ˆ ∞
−∞

dψ′(x)(G(2−jx)−G(0))

∣∣∣∣
≤ 2j/2

ˆ ∞
−∞
|dψ′(x)|(2−jx)α+1/2 ≤ 2−αj

ˆ ∞
−∞
|dψ′(x)|(1 + |x|).

The last integral is finite by the assumption (6.6). Together with Lemma B.3 this obviously
yields the desired uniform convergence.

The proofs of the lemmas 6.5, 6.7 and 6.8 show that the covariances stay at a bounded
distance from the covariance of the field X1,n, and therefore a standard application of
Kahane’s convexity inequality gives us an Lp bound. Combining this with Theorem 4.4
yields the result.
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Uniqueness of critical Gaussian chaos

As noted in the beginning of this section, having proved all the lemmas above we may
conclude the proof of Theorem 1.3.

Remark 6.10. In the case of vaguelet approximations we may also rewrite

X(x) =

∞∑
i=1

Ãiν̃i(x),

where Ãi and ν̃i are the random coefficents and vaguelets appearing in (6.10) ordered
in their natural order. The convergence and uniqueness then also holds for the chaos
constructed from the fields

X̃4,n :=

n∑
i=1

Ãiν̃i(x),

with the normalizing measure dρn(x) =
√

log ndx.

Remark 6.11. There are many interesting questions that we did not touch in this paper.
For example (this question is due to Vincent Vargas), it is natural to ask whether the con-
vergence or uniqueness of the derivative martingale [10] depends on the approximations
used.

A Localization

The Proposition A.2 below is needed in a localization procedure in Lemma 6.4 that
is used to carry results from the real line to the unit circle. For its proof we need the
following lemma.

Lemma A.1. Assume that µn is a sequence of random measures that converges to µ

weakly in Lp(Ω). Let F : Ω → C(T ) be a function valued random variable and assume
that there exists q > 0 such that

E

∣∣∣∣sup
x∈T

F (x)

∣∣∣∣α <∞
for some α > pq

p−q . Then
´
F (x) dµn(x) tends to

´
F (x) dµ(x) in Lq(Ω).

Proof. It is again enough to show that any subsequence possesses a converging sub-
sequence with the right limit. To simplify notation let us denote by µn an arbitrary
subsequence of the original sequence.

Directly from the definition of the metric in the space M+ we see that µn → µ

in probability, meaning that we can pick a subsequence µnj that converges almost
surely. Then the almost sure convergence holds also for the sequence

´
F (x) dµnj (x).

Finally, for any allowed value of q a standard application of Hölder’s inequality shows
that E |

´
F (x) dµnj (x)|q+ε is uniformly bounded for some ε > 0. This yields uniform

integrability and we may conclude.

Proposition A.2. Let (Xn) and (Zn) be two sequences of (jointly Gaussian) Hölder-
regular Gaussian fields on T . Assume that the pseudometrics arising in Definition 2.1 can
be chosen to have the same Hölder exponent and constant for all the fields Zn. Assume
further that there exists a Hölder-regular Gaussian field Z such that Zn converges to Z
uniformly almost surely and that E [Xn(x)Zn(x)] converges uniformly to some bounded
continuous function x 7→ E [X(x)Z(x)]. Then if the measures

dµn(x) := eXn(x)− 1
2E [Xn(x)2] dρn(x)
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converge weakly in Lp(Ω) to a measure µ, also the measures

dνn(x) := e(Xn(x)+Zn(x))− 1
2E [(Xn(x)+Zn(x))2] dρn(x)

= eZn(x)− 1
2E [Zn(x)2]−E [Xn(x)Zn(x)] dµn(x)

converge weakly in Lq(Ω) for all q < p to the measure

dν(x) := eZ(x)− 1
2E [Z(x)2]−E [X(x)Z(x)] dµ(x).

Proof. By a standard application of the Borell–TIS inequality [1, Theorem 4.1.2] we have
the following uniform bound

E er supx∈T Zn(x) ≤ Cr (A.1)

for all r > 0. Fix ε > 0 and for all n ≥ 1 define

Aεn := {ω ∈ Ω : sup
x∈T
|Zk(x)− Z(x)| < ε for all k ≥ n}.

By the assumption on uniform convergence we have P[Aεn]→ 1 as n→∞.
Fix f ∈ C(T ), which we may assume to be non-negative, and let 0 < q < p. We first

show that
E [χΩ\Aεn |νn(f)− ν(f)|q]→ 0

as n→∞. It is enough to verify uniform integrability by checking that

sup
n≥1

E |νn(f)|p
′
+ E |ν(f)|p

′
<∞ (A.2)

for some q < p′ < p. This in turn follows easily from the assumed uniform Lp bound for
µn by using Hölder’s inequality together with (A.1).

To handle the remaining term E [χAεn |νn(f) − ν(f)|q] we use the defining property
of the set Aεn, i.e. |Zn(x) − Z(x)| < ε for all x ∈ T . By choosing n large enough
and by using (A.1) we may further assume that supx∈T |E [Zn(x)2] − E [Z(x)2]| < ε and
supx∈T |E [Zn(x)Xn(x)]− E [Z(x)X(x)]| < ε. It follows that when ω ∈ Aεn, we have

e−3εcn(f) ≤ νn(f) ≤ e3εcn(f),

where

cn(f) =

ˆ
f(x)eZ(x)− 1

2E [Z(x)2]−E [Z(x)X(x)] dµn(x).

By combining this with the bound (A.2) we see that E |νn(f) − cn(f)|q → 0 as ε → 0,
uniformly in n. Finally, by Lemma A.1 we have cn(f)→ ν(f) in Lq(Ω). This finishes the
proof.

B Estimates for vaguelets

In this appendix we have collected a couple of elementary estimates concerning
vaguelets, see (6.9) in Section 6 for the definition of νj,k.

Lemma B.1. Let f : R→ R be a bounded integrable function and let

F (x) =
1√
2π

ˆ ∞
−∞

f(t)√
|x− t|

dt

be its half-integral. Then there exists a constant C > 0 (not depending on f ) such that
for all x, y ∈ R we have

|F (x)− F (y)| ≤ C‖f‖∞
√
|x− y|.
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Proof. Clearly it is enough to show that

ˆ ∞
−∞

∣∣∣∣∣ 1√
|x− t|

− 1√
|y − t|

∣∣∣∣∣ dt ≤ C√|x− y|.
Notice that the integrand can be approximated by∣∣∣∣∣ 1√

|x− t|
− 1√

|y − t|

∣∣∣∣∣ =

∣∣|y − t| − |x− t|∣∣
|x− t|

√
|y − t|+

√
|x− t||y − t|

≤ |x− y|
|x− t|

√
|y − t|+

√
|x− t||y − t|

.

We can without loss of generality assume that x < y and split the domain of integration
to the intervals (−∞, x], [x, x+y

2 ], [x+y
2 , y] and [y,∞). On each of the intervals the value

of the integral is easily estimated to be less than some constant times
√
|x− y|, which

gives the result.

Lemma B.2. We have
νj,0(x) ≤ c

(1 + 2j dist(x, 0))1+δ

for some constant c > 0. Here dist(x, y) = min{|x− y + k| : k ∈ Z}.

Proof. Without loss of generality we may assume that 0 ≤ x < 1 and let d = dist(x, 0).
We have

|νj,0(x)| ≤
∑
l∈Z

C

(1 + 2j |x− l|)1+δ
≤
∞∑
l=0

C

(1 + 2jx+ 2j l)1+δ
+

∞∑
l=1

C

(1 + 2j l − 2jx)1+δ

≤ 2C

(1 + 2jd)1+δ
+ 2

∞∑
l=1

C

(1 + 2j l)1+δ

≤ 2C

(1 + 2jd)1+δ
+

2C

(1 + 2j)1+δ
+ 2

ˆ ∞
1

C

(1 + 2ju)1+δ
du

≤4C
1

(1 + 2jd)1+δ
+

2C

δ

1

2j(1 + 2j)δ
≤ c

(1 + 2jd)1+δ
.

Lemma B.3. There exists a constant A > 0 such that

2j−1∑
k=0

|νj,k(x)| ≤ A

for all j ≥ 0 and x ∈ R.
Moreover, there exists a constant B > 0 such that for all n ≥ 0 and x, y ∈ R satisfying

dist(x, y) ≥ 2−n we have
∞∑
j=n

2j−1∑
k=0

|νj,k(x)νj,k(y)| ≤ B.

Proof. By using Lemma B.2 and the fact that νj,k(x) = νj,0(x− k2−j) we have

2j−1∑
k=0

|νj,k(x)| =
2j−1∑
k=0

|νj,0(x− k2−j)| ≤
2j−1∑
k=0

c

(1 + 2j dist(x− k2−j , 0))1+δ

≤2c

∞∑
k=0

1

(1 + k)1+δ
<∞,
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which shows the first claim.
Again invoking Lemma B.2 and the fact that νj,k(x) = νj,0(x− k2−j) we may estimate

∞∑
j=n

2j−1∑
k=0

|νj,k(x)νj,k(y)|

≤
∞∑
j=n

2j−1∑
k=0

c2

(1 + 2j dist(x− k2−j , 0))1+δ(1 + 2j dist(y − k2−j , 0))1+δ

≤
∞∑
j=n

2j−1∑
k=0

2c2

max((1 + k)1+δ, (1 + 2j−n−1)1+δ)

≤2c2
∞∑
j=n

( 1 + 2j−n−1

(1 + 2j−n−1)1+δ
+

∞∑
k=2j−n−1+1

1

(1 + k)1+δ

)
≤2c2

∞∑
j=n

( 1

(1 + 2j−n−1)δ
+

ˆ ∞
2j−n−1

1

(1 + x)1+δ
dx
)

≤2c2(1 +
1

δ
)

∞∑
j=n

1

(1 + 2j−n−1)δ
≤ 2c2(1 +

1

δ
)

∞∑
j=0

2−δ(j−1) = B <∞,

giving us the second claim.
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