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Abstract

We study a stochastic differential equation in the sense of rough path theory driven by
fractional Brownian rough path with Hurst parameter H (1/3 < H ≤ 1/2) under the
ellipticity assumption at the starting point. In such a case, the law of the solution at a
fixed time has a kernel, i.e., a density function with respect to Lebesgue measure. In
this paper we prove a short time off-diagonal asymptotic expansion of the kernel under
mild additional assumptions. Our main tool is Watanabe’s distributional Malliavin
calculus.
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1 Introduction

For the usual d-dimensional Brownian motion (wt) and sufficiently regular vector
fields Vi (0 ≤ i ≤ d) on Rn, consider the following stochastic differential equation (SDE)
of Stratonovich type:

dyt =

d∑
i=1

Vi(yt) ◦ dwit + V0(yt)dt with y0 = a ∈ Rn.

If the vector fields satisfy the hypoellipticity condition at the starting point a, then the
law of yt has a heat kernel i.e., a density function pt(a, a

′) with respect to Lebesgue
measure da′ for any t > 0.

In probability theory, the short time asymptotic (off-diagonal) problem of pt(a, a′) has
extensively been studied and is now a classical topic. See for instance [7, 2, 3, 4, 5,
6, 14, 26, 38, 39, 40, 41, 42, 43, 44, 48, 51, 52, 53, 54, 55, 56] and references therein.
(There are also analytic approaches, of course. But, we do not discuss them in this
paper.) Among many probabilistic methods, Malliavin calculus is known to be quite
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Short time asymptotics for rough differential equation

powerful. Bismut [14] was first to prove short time kernel asymptotics via Malliavin
calculus. Among such proofs, we focus on Watanabe’s theory of generalized Wiener
functionals and asymptotic theorems for them [56, 29, 52].

Recently, the theory of “SDE” for fractional Brownian motion (fBm) was developed.
As a result, an analogous asymptotic problem is gathering attention. When Hurst
parameter H is larger than 1/2, the SDE above is in the sense of Young integration.
When 1/4 < H ≤ 1/2, it should be understood as a differential equation in the rough path
sense driven by fractional Brownian rough path. In his previous paper [33], the author
studied both on-diagonal and off-diagonal short time asymptotic expansion of pt(a, a′)
when H > 1/2. The method is Watanabe’s asymptotic theory of generalized Wiener
functionals (i.e., Watanabe distributions) in [56]. In [33] the coefficient vector fields are
assumed to satisfy the ellipticity condition at a and some additional mild conditions are
also assumed. Those conditions are almost parallel to the ones in [56]. Simply put, [33]
is a “fractional version” of [56] in the framework of Young integration.

The aim of this paper is to prove a similar off-diagonal asymptotic expansion when
1/3 < H ≤ 1/2. Although the basic strategy of proof is similar to the case H > 1/2 in
[33], the proof gets much more technically difficult since we work on the rough path
space. We will carry it out by combining various recently proven results for Gaussian
rough paths. A number of paper have been published on Malliavin calculus for Gaussian
rough paths by now. See [1, 10, 12, 13, 15, 16, 17, 18, 20, 27, 28, 30, 34, 35] for instance.
However, this type of short time kernel asymptotics seems new.

The organization of this paper is as follows: In Section 2 we give a precise formulation
of our problem and the statement of our main result (Theorem 2.2). In Section 3 we
prove moment estimates for Taylor expansion of Lyons-Itô map. The expansion in the
deterministic sense is already known, but we need “Lp-version” (or “D∞-version”) of
the expansion in this paper. These estimates play a crucial role in the proof of the
main theorem. In Section 4 we present two propositions (Propositions 4.1 and 4.2) on
regularity in the sense of Malliavin calculus of the solution of RDE driven by fractional
Brownian rough path. Thanks to these propositions, we can use Watanabe’s asymptotic
theory in the proof of the main theorem in Section 5, following the argument in [56, 33].
A difference from [56] is that we can work and, in particular, localize around the energy
minimizing path in the domain (not in the range) of Lyons-Itô map since the map is
continuous in rough path theory.

We do not give a heuristic sketch of our argument for brevity. Since formal computa-
tions are basically the same as in the Young case, the reader who wants to know it may
consult the corresponding part of the author’s previous paper [33].

Remark 1.1. The former version of this paper contains detailed proofs of Theorem 3.4,
Proposition 4.1, Proposition 4.2, and Lemma 5.2. It can be found on arXiv preprint server
(arXiv:1403.3181v2).

2 Setting and main results

2.1 Setting

In this subsection, we introduce a stochastic process that will play a main role in
this paper. From now on we denote by w = (wt)t≥0 = (w1

t , . . . , w
d
t )t≥0 the d-dimensional

fractional Brownian motion (fBm) with Hurst parameter H. Throughout this paper we
assume 1/3 < H ≤ 1/2. It is a unique d-dimensional, mean-zero, continuous Gaussian
process with covariance

E[wisw
j
t ] =

δij
2

(|s|2H + |t|2H − |t− s|2H), (s, t ≥ 0).
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Short time asymptotics for rough differential equation

Note that, for any c > 0, (wct)t≥0 and (cHwt)t≥0 have the same law. This property is
called self-similarity or scale invariance. When H = 1/2, it is the usual Brownian motion.
It is well-known that w admits a canonical rough path lift w, which is called fractional
Brownian rough path.

Let Vi : Rn → Rn be C∞b , that is, Vi is a bounded smooth function with bounded
derivatives of all order (0 ≤ i ≤ d). We consider the following rough differential equation
(RDE);

dyt =

d∑
i=1

Vi(yt)dw
i
t + V0(yt)dt with y0 = a ∈ Rn. (2.1)

This RDE is driven by the Young pairing (w,λ), where λt = t. The unique solution is
denoted by y = (y1,y2) and we set yt := a + y1

0,t as usual. We will sometimes write
yt = yt(a) = yt(a,w) etc. to make explicit the dependence on a and w.

A matrix notation is often convenient. So we set b = V0 and σ = [V1, . . . , Vd], which is
n× d matrix-valued, and often rewrite RDE (2.1) as follows;

dyt = σ(yt)dwt + b(yt)dt with y0 = a ∈ Rn.

2.2 Assumptions

In this subsection we introduce assumptions of the main theorems. First, we assume
the ellipticity of the coefficients of (2.1) at the starting point a ∈ Rn.

(A1) The set of vectors {V1(a), . . . , Vd(a)} linearly spans Rn.

It is known that, under Assumption (A1), the law of the solution yt has a density
pt(a, a

′) with respect to the Lebesgue measure on Rn for any t > 0 (see [27]). Hence, for
any Borel subset U ⊂ Rn, P(yt(a) ∈ U) =

∫
U
pt(a, a

′)da′.
Let H = HH be the Cameron-Martin space of fBm (wt). Note that any γ ∈ H

is continuous and of finite q-variation for some q ∈ [1, 2). For γ ∈ H, we denote by
φ0
t = φ0

t (γ) be the solution of the following Young ODE;

dφ0
t =

d∑
i=1

Vi(φ
0
t )dγ

i
t with φ0

0 = a ∈ Rn. (2.2)

Set, for a′ 6= a,
Ka′

a = {γ ∈ H | φ0
1(γ) = a′}.

We only consider the case where Ka′

a is not empty. For example, if we assume (A1) for all
a, then this set Ka′

a is not empty. From goodness of the rate function in Schilder-
type large deviation for fractional Brownian rough path (see [24]), it follows that
inf{‖γ‖H | γ ∈ Ka′

a } = min{‖γ‖H | γ ∈ Ka′

a }. Now we introduce the following assumption;

(A2) γ̄ ∈ Ka′

a which minimizes H-norm exists uniquely.

In what follows, γ̄ denotes the minimizer in Assumption (A2). We also assume that
‖ · ‖2H/2 is not so degenerate at γ̄ in the following sense.

(A3) At γ̄, the Hessian of the functional Ka′

a 3 γ 7→ ‖γ‖2H/2 is strictly positive in the
quadratic form sense. More precisely, if (−ε0, ε0) 3 u 7→ f(u) ∈ Ka′

a is a smooth curve in
Ka′

a such that f(0) = γ̄ and f ′(0) 6= 0, then (d/du)2|u=0‖f(u)‖2H/2 > 0.

Later we will give a more analytical condition (A3)’, which is equivalent to (A3) under
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(A2). In [56], Watanabe used (A3)’ in his proof of off-diagonal kernel asymptotics. We
will also use (A3)’. In order to state (A3)’, however, we have to introduce a lot of
notations. So, we presented (A3) here for ease of presentation.

Remark 2.1. Assume (A1). If the end point a′ is sufficiently close to the starting point
a, then (A2) and (A3) are satisfied. (This is shown in the author’s previous paper [33]
when 1/2 < H < 1. The same proof works in our case (1/3 < H ≤ 1/2), too. The key is
the implicit function theorem.)

2.3 Index sets

In this subsection we introduce several index sets for the exponent of the small
parameter ε > 0, which will be used in the asymptotic expansion. Unfortunately,
index sets in this paper are not the set of (a constant multiple of) natural numbers
and are rather complicated. (However, all these index sets are discrete subsets of
(Z+H−1Z) ∩ [0,∞) with the minimum 0.)

Set
Λ1 = {n1 +

n2

H
| n1, n2 ∈ N},

where N = {0, 1, 2, . . .}. We denote by 0 = κ0 < κ1 < κ2 < · · · all the elements of Λ1

in increasing order. For a while, consider the case 1/3 < H < 1/2. Several smallest
elements are explicitly given as follows;

κ1 = 1, κ2 = 2, κ3 =
1

H
, κ4 = 3, κ5 = 1 +

1

H
, κ6 = 4, . . .

As usual, using the scale invariance (i.e., self-similarity) of fBm, we will consider the
scaled version of (2.1). (See the scaled and shifted RDE (4.2) below). From its explicit
form, one can easily guess why Λ1 appears.

We also set

Λ2 = {κ− 1 | κ ∈ Λ1 \ {0}} =
{

0, 1,
1

H
− 1, 2,

1

H
, 3, . . .

}
and

Λ′2 = {κ− 2 | κ ∈ Λ1 \ {0, 1}} =
{

0,
1

H
− 2, 1,

1

H
− 1, 2, . . .

}
.

Next we set

Λ3 = {a1 + a2 + · · ·+ am | m ∈ N+ and a1, . . . , am ∈ Λ2}.

In the sequel, {0 = ν0 < ν1 < ν2 < · · · } stands for all the elements of Λ3 in increasing
order. Similarly,

Λ′3 = {a1 + a2 + · · ·+ am | m ∈ N+ and a1, . . . , am ∈ Λ′2}.

In the sequel, {0 = ρ0 < ρ1 < ρ2 < · · · } stands for all the elements of Λ′3 in increasing
order. Finally,

Λ4 = Λ3 + Λ′3 = {ν + ρ | ν ∈ Λ3, ρ ∈ Λ′3}.

We denote by {0 = λ0 < λ1 < λ2 < · · · } all the elements of Λ4 in increasing order.
When H = 1/2, all these index sets Λi,Λ

′
j above are just N.

2.4 Statement of the main result

Now we state our main theorem, which is basically analogous to the corresponding
one in Watanabe [56]. However, when H 6= 1/2 and the drift term exists, there are some
differences. First, the exponents of t are not (a constant multiple of) natural numbers.
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Second, cancellation of “odd terms” as in p. 20 and p. 34, [56] does not occur in general.
(These phenomena were already observed in [33] in the Young integration setting i.e.,
the case H > 1/2.)

Theorem 2.2. Assume a 6= a′ and (A1)–(A3). Then, we have the following asymptotic
expansion as t↘ 0;

p(t, a, a′) ∼ exp
(
−‖γ̄‖

2
H

2t2H

) 1

tnH
{
α0 + αλ1

tλ1H + αλ2
tλ2H + · · ·

}
for certain real constants αλj (j = 0, 1, 2, . . .). Here, {0 = λ0 < λ1 < λ2 < · · · } are all the
elements of Λ4 in increasing order. Moreover, α0 is positive.

Remark 2.3. (i) In theory, the constants in the asymptotic expansion in Theorem
2.2 (and in the on-diagonal case in Theorem 4.4 below) are computable. But, actual
computation is quite cumbersome and we do not carry it out in this paper. We just
mention here that the first constants α0 in Theorem 2.2 and c0 in Theorem 4.4 are
non-zero.
(ii) It might be interesting to consider the case 1/4 < H ≤ 1/3. In that case, since the
third level rough path theory is needed, calculations may become much harder.
(iii) Our assumptions (A1)–(A3) are quite similar to the corresponding ones in [56].
Therefore, if we set H = 1/2 in Theorem 2.2 above recovers most of (but not all of) the
main result in Watanabe [56]. Hence, our result could also be regarded as a rough path
proof of [56]. (In this case, however, the index set in Theorem 2.2 is not Λ4 = N, but is
actually 2N, due to cancellation of the odd terms.) Compared to the main theorem in
[56], Theorem 2.2 with H = 1/2 does not include the following two cases;
(a): In this paper the ellipticity assumption (A1) is assumed. In [56], however, something
like “step 2-hypoellipticity” case was also studied. (We simply did not try this case.)
(b): In this paper the coefficient vector fields are of C∞b . However, the condition on
vector fields in [56] is as follows: “For all m = 1, 2, . . . and 0 ≤ i ≤ d, ‖∇mVi‖ is bounded.”
(Vi itself is allowed to have linear growth.) Since Bailleul [8] recently solved RDEs with
such coefficients, it might be possible to extend our theorem to include such a case by
just combining existing methods.
(iv) In a very recent survey [11], many results on various kinds of short time asymptotic
problems for RDEs (or Young ODE) driven by fBm are reviewed. For instance, Varadhan’s
estimate, which is short time asymptotics of log p(t, a, a′), was shown in [12] under the
uniform ellipticity condition on the coefficient vector fields when H > 1/4.

3 Moment estimate for Taylor expansion of Lyons-Itô map

Let p ∈ [2, 3) be the roughness constant and let q ∈ [1, 2) be such that 1/p+ 1/q > 1.
We denote by GΩp(R

d) the geometric rough path space with p-variation topology. In
this paper, the time interval is always [0, 1]. For the definition and basic properties of
geometric rough paths, see Lyons and Qian [47], or Lyons, Caruana, and Lévy [46].

Assume that σ : Rn → Mat(n, d) and b : [0, 1]×Rn → Mat(n, e) are C∞b . For ε ∈ [0, 1],
x ∈ GΩp(R

d) and h ∈ Cq−var0 ([0, 1],Re), we consider the following RDE driven by the
Young pairing (εx,h) ∈ GΩp(R

d+e);

dyεt = σ(yεt )εdxt + b(ε, yεt )dht with yε0 = a ∈ Rn. (3.1)

It was shown in Inahama [31] (or Inahama-Kawabi [36]) that the first level path of
the solution admits a Taylor-like expansion in the deterministic sense as ε↘ 0. Roughly
speaking, the aim of this section is to prove that the expansion holds still true in Lr-sense
for any r ∈ [1,∞), when x is the natural lift of fBm with H ∈ (1/3, 1/2] or a similar
Gaussian process.
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We remark that the following RDE is a special case of (3.1) above:

dyεt = σ(yεt )(εdxt + dkt) + b̂(ε, yεt )dλt with yε0 = a ∈ Rn. (3.2)

Here, σ and x are as above, b̂ : [0, 1] × Rn → Rn, λt = t, k ∈ Cq−var0 ([0, 1],Rd). We can
easily check this by setting e = d+ 1, h = (k, λ), and b = [σ|b̂] (an n× (d+ 1) block matrix).
This type of RDE appears when we make a Young translation of a given RDE driven by a
scaled Gaussian rough path.

3.1 Some notations

In this paper we work in Lyons’ original framework of rough path theory. We borrow
most of notations and terminologies from [47, 46]. Before we start detailed discussions,
however, we need to set some additional notations.

We denote by x = (x1,x2) a generic element in GΩp(R
d) and we write xt := x1

0,t as
usual. Conversely, for x ∈ Cα−var0 ([0, 1],Rd) with α ∈ [1, 2), we denote the natural lift of
x (i.e., the smooth rough path lying above x) by the corresponding boldface letter x.

Note that, for x ∈ Cα−var0 ([0, 1],Rd) and y ∈ Cα−var0 ([0, 1],Re), (x,y) ∈ GΩp(R
d+e)

stands for the natural lift of (x, y), not for the pair (x,y) ∈ GΩp(R
d) × GΩp(R

e). In a
similar way, for x ∈ GΩp(R

d) and h ∈ Cq−var0 (Re) with 1/p+ 1/q > 1, (x,h) ∈ GΩp(R
d+e)

stands for the Young pairing. These notations may be somewhat misleading. But, they
make many operations intuitively clear and easy to understand when we treat rough
paths over a direct sum of many vector spaces.

For a control function ω in the sense of p. 16, [47], we write ω̄ := ω(0, 1). For any
x ∈ GΩp(R

d),

ωx(s, t) := ‖x1‖pp−var,[s,t] + ‖x2‖p/2p/2−var,[s,t] (0 ≤ s ≤ t ≤ 1) (3.3)

defines a control function. Here, the norm on the right hand side denoted the p/j-
variation (j = 1, 2) restricted on the subinterval [s, t]. (This control function is equiva-
lent to the one defined by Carnot-Carathéodory metric.) Similarly, we set ωλ(s, t) :=

‖λ‖qq−var,[s,t] for λ ∈ Cq−var0 ([0, 1],Re).

For α > 0 and x ∈ GΩp(R
d), set τ0(α) = 0 and

τi+1(α) = inf{t ∈ (τi(α), 1] | ωx(τi(α), t) ≥ α} ∧ 1 (i = 1, 2, . . .)

Define
Nα(x) = sup{i ∈ N | τi(α) < 1}. (3.4)

Superadditivity of ωx yields αNα(x) ≤ ωx. This quantity (3.4) was first studied by Cass,
Litterer, and Lyons [19].

For brevity we will often write V = Rd, V̂ = Re, andW = Rn in this section.

3.2 ODEs for ordinary Taylor terms

Ordinary terms in the Taylor expansion are known to satisfy a very simple ODE. In
this section we recall them, following [31], etc. We will first calculate in 1-variational
setting (i.e., the Riemann-Stieltjes sense). After that we will continuously extend these
objects to the rough path setting.

The ODE that corresponds to (3.1) is the following;

dyεt = σ(yεt )εdxt + b(ε, yεt )dht with yε0 = a. (3.5)

Here, (x, h) ∈ C1−var
0 ([0, 1],Rd+e). By setting ε = 0, we can easily see that the 0th term

φ0 = φ0(h) satisfies the following ODE;

dφ0
t = b(0, φ0

t )dht with φ0
0 = a. (3.6)
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ODEs for φ1 and φ2 are given as follows;

dφ1
t −∇b(0, φ0

t )〈φ1
t , dht〉 = σ(φ0

t )dxt + ∂εb(0, φ
0
t )dht with φ1

0 = 0, (3.7)

and

dφ2
t −∇b(0, φ0

t )〈φ2
t , dht〉 = ∇σ(φ0

t )〈φ1
t , dxt〉+

1

2
∇2b(0, φ0

t )〈φ1
t , φ

1
t , dht〉

+∂ε∇b(0, φ0
t )〈φ1

t , dht〉+
1

2
∂2
εb(0, φ

0
t )dht with φ2

0 = 0. (3.8)

ODEs for φk = φk(x, h) (k = 2, 3, 4, . . .) are given as follows. A heuristic explanation
for how to derive these ODEs was given in [31]. We write ∂εb for the partial derivative in
ε and ∇b for the (partial) gradient in y for fixed ε.

dφkt −∇b(0, φ0
t )〈φkt , dht〉 = dAkt + dBkt with φk0 = 0, (3.9)

where

dAkt [x, h, φ0, . . . , φk−1] =

k−1∑
j=1

∑
i1+···+ij=k−1

1

j!
∇jσ(φ0

t )〈φ
i1
t , . . . , φ

ij
t , dxt〉 (3.10)

and

dBkt [x, h, φ0, . . . , φk−1] =

k∑
j=2

∑
i1+···+ij=k

1

j!
∇jb(0, φ0

t )〈φ
i1
t , . . . , φ

ij
t , dht〉

+

k−1∑
m=1

k−m∑
j=1

∑
i1+···+ij=k−m

1

m!j!
∂mε ∇jb(0, φ0

t )〈φ
i1
t , . . . , φ

ij
t , dht〉

+
1

k!
∂kε b(0, φ

0
t )dht. (3.11)

Note that in the definition of Ak, the summation is taken over all positive i1, . . . , ij such
that i1 + · · ·+ ij = k − 1. A similar remark goes for the summations in the definition of
Bk. (As usual we set Ak0 = Bk0 = 0.)

Let us recall that we can obtain φk by the variation of constants formula since the
right hand side of (3.7)–(3.9) is known. Set Kt = Kt[h] =

∫ ·
0
∇b(0, φ0

t )〈 · , dht〉 and consider
the following Mat(n, n)-valued ODE;

dMt = (dKt) ·Mt with M0 = Idn. (3.12)

It is easy to see that M−1
t exists and satisfies a similar ODE. Using this, we can easily

check that φk has the following expression;

φkt = Mt

∫ t

0

M−1
s dZks = Zkt −Mt

∫ t

0

dM−1
s · Zks . (3.13)

Here, Zkt (with Zk0 = 0) is a shorthand for the right hand side of (3.7)–(3.9). Finally, we
set

rk+1
ε = yε − (φ0 + εφ1 + · · ·+ εkφk). (3.14)

It is obvious that for each ε ∈ [0, 1] and k ∈ N

(x, h) 7→ (x, h, yε, φ0, . . . , φk, rk+1
ε ) (3.15)

is continuous from C1−var
0 ([0, 1],V ⊕ V̂) to C1−var([0, 1],V ⊕ V̂ ⊕W⊕k+3). It is known that

this map extends to a continuous map with respect to the rough path topology in the
following sense (after the initial values are suitably adjusted, precisely speaking. Note
that yε0 = a = φ0

0.)
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Proposition 3.1. Let 2 ≤ p < 3 and 1 ≤ q < 2 such that 1/p + 1/q > 1. Then, for each
ε ∈ [0, 1] and k ∈ N, the map (3.15) naturally extends to the following locally Lipschitz
continuous map;

GΩp(V)× Cq−var0 (V̂) 3 (x, h) 7→ (x,h,yε,φ0, . . . ,φk, rk+1
ε ) ∈ GΩp(V ⊕ V̂ ⊕W⊕k+3).

Proof. This was already shown in [31] for arbitrary p ≥ 2. Here, we only give a sketch of
proof for later use.

First, (x,h) is just Young pairing of x and h. Since (yε,φ0) is a unique solu-
tion of an RDE driven by (x,h), we obtain (x,h,yε,φ0). Next, assume that we have
(x,h,yε,φ0, . . . ,φk−1). Then, Ak + Bk on the right hand side of (3.9) can be inter-
preted as a rough path integral, we obtain (x,h,yε,φ0, . . . ,φk−1, Ak + Bk). For M̃t :=

IdV⊕V̂⊕W⊕k+1 ⊕Mt, we can use a rough path version of variation of constant method
to obtain (x,h,yε,φ0, . . . ,φk). (Observe (3.13) above.) Finally, since rk+1

ε is a linear
combination of yε, φ0, . . . , φk, we obtain (x,h,yε,φ0, . . . ,φk, rk+1

ε ).

By the following proposition, this expansion can be called a Taylor(-like) expansion of
Lyons-Itô map.

Proposition 3.2. Keep the same notations and assumptions as in Proposition 3.1 above.
Then, the following (i) and (ii) hold.
(i) For any any ρ > 0 and k = 1, 2, . . ., there exists a positive constants C = C(ρ, k) which
satisfies that

‖(φk)1‖p−var ≤ C(1 + ωx
1/p)k.

for any x ∈ GΩp(V) and any h ∈ Cq−var0 ([0, 1], V̂) with ‖h‖q−var ≤ ρ..
(ii) For any ρ1, ρ2 > 0 and k = 1, 2, . . ., there exists a positive constants C̃ = C̃(ρ1, ρ2, k),
which is independent of ε and satisfies that

‖(rk+1
ε )1‖p−var ≤ C̃(ε+ εωx

1/p)k+1

for any x ∈ GΩp(V) with ωεx
1/p = εωx

1/p ≤ ρ1 and any h ∈ Cq−var0 ([0, 1], V̂) with
‖h‖q−var ≤ ρ2.

Proof. This was already shown in [31] for arbitrary p ≥ 2. In that paper, estimates not
only for the first level path, but also for the higher level paths are given.

Remark 3.3. In a very recent preprint [9], Bailleul gave a simplified proof of Propositions
3.1 and 3.2 for any p ≥ 2 in the framework of Gubinelli’s controlled path theory.

3.3 Main results in this section

In this subsection we state the main result of this section, that is, moment esti-
mates for Taylor expansion of Lyons-Itô map. We will prove this theorem rigorously in
subsequent subsections. Note that ηk may depend on k,x, h, p, q, but not on ε.

Theorem 3.4. Let 2 ≤ p < 3 and 1 ≤ q < 2 such that 1/p + 1/q > 1 and let h ∈
Cq−var0 ([0, 1],Re). Assume that x is a GΩp(R

d)-valued random variable which satisfies
that (a) ωx = ωx(0, 1) ∈ ∩1≤r<∞L

r and (b) exp(Nα(x)) ∈ ∩1≤r<∞L
r for any α > 0.

Then, for any x, h, and k ∈ N, there exist control functions ηk = ηk,x,h such that the
following (i)– (iii) hold:
(i) ηk are non-decreasing in k, i.e., ηk,x,h(s, t) ≤ ηk+1,x,h(s, t) for all k,x, h, (s, t).
(ii) ηk,x,h ∈ ∩1≤r<∞L

r for all k, h.
(iii) For all ε ∈ (0, 1], k ∈ N, h, x, and 0 ≤ s ≤ t ≤ t, j = 1, 2, we have∣∣(x,h,yε,φ0, . . . ,φk, ε−(k+1)rk+1

ε

)j
s,t

∣∣ ≤ ηk,x,h(s, t)j/p.
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In particular, for all k ∈ N and h, ‖(φk)1‖p−var ∈ ∩1≤r<∞L
r and ‖(rk+1

ε )1‖p−var =

O(εk+1) in Lr for any 1 < r <∞.

Remark 3.5. (1) Examples of Gaussian processes whose rough path lifts satisfy the
integrability assumptions

ωx(0, 1) ∈ ∩1≤r<∞L
r and exp(Nα(x)) ∈ ∩1≤r<∞L

r (∀α > 0)

can be found in Friz and Oberhauser [22] (a Fernique-type theorem) and Cass, Litterer,
and Lyons [19] (Integrability of Nα). FBm with Hurst parameter H ∈ (1/4, 1/2] is a
typical example.
(2) The estimate above is actually uniform in h when it varies in a bounded subset in
q-variation space. (But, the uniform version is not needed in this paper.)

3.4 Proof of Theorem 3.4 for k = 0

The rest of this section is devoted to showing Theorem 3.4. Without loss of generality
we may assume that the initial value a = 0. In this proof c1, c2, . . . stands for unimpor-
tant positive constants, which is independent of ε ∈ (0, 1] and x, but may depend on
p, q, σ, b, ‖h‖q−var, etc. We say that a geometric p-rough path x is controlled by a control
function ω if |xjs,t| ≤ ω(s, t)j/p for any s ≤ t and j = 1, 2.

The expansion of the Itô map in the deterministic case is already given in [31, 36]
by mathematical induction. We will closely look at it and check the integrability holds
or not. In this subsection, we will obtain the moment estimates of r1

ε. Surprisingly, for
those who understand the proof for the deterministic sense, the most difficult part is this
initial step of the induction. However, that problem is somewhat similar to the moment
estimates of Jacobian process driven by Gaussian rough paths, which was solved by Cass,
Litterer, and Lyons [19]. In the sequel we will check that their method also applies to
this kind of problem as they conjectured in [19].

Now we prove Theorem 3.4 for k = 0. Set ωh(s, t) = ‖h‖qq−var,[s,t] and ωx,h(s, t) =

ωx(s, t) + ωh(s, t). Then, the Young pairing (x,h) ∈ GΩp(V ⊕ V̂) is controlled by c1(1 +

ωx,h)c2ωx,h, that is, ∣∣(x,h)is,t
∣∣ ≤ {c1(1 + ωx,h)c2ωx,h(s, t)

}i/p
for all i and (s, t).

Next we consider (yε,φ0) which is a solution of aW⊕2-valued RDE driven by (x,h).

Since the C
[p]+1
b -norm of the coefficients of the RDE is bounded in ε, (x,h,yε,φ0) ∈

GΩp(V ⊕ V̂ ⊕W⊕2) is controlled by c3(1 + ωx,h)c4ωx,h.
It is easy to see from (3.5) and (3.6) that r1

ε,t satisfies the following equation in the
1-variational setting;

1

ε
dr1
ε,t = σ(yεt )dxt +

1

ε
{b(ε, yεt )− b(0, φ0

t )}dht with r1
ε,0 = 0. (3.16)

The first term on the right hand side can be interpreted as a rough path integration
of a C [p]+1

b one-form along (x,h,yε,φ0). Hence, (x,h,yε,φ0,
∫
σ(yε)dx) is controlled by

c5(1 + ωx,h)c6ωx,h, namely,

∣∣(x,h,yε,φ0,

∫
σ(yε)dx

)i
s,t

∣∣ ≤ {c5(1 + ωx,h)c6ωx,h(s, t)
}i/p

(3.17)

for all i and (s, t). With (3.17) in hand we have only to obtain a nice estimate of q-variation
norm of the second term on the right hand side of (3.16).

Let us estimate the first level path of r1
ε, that is the difference of the first level

paths of yε and φ0. yε and φ0 are the solutions of the RDEs (whose coefficient are the

EJP 21 (2016), paper 34.
Page 9/29

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4144
http://www.imstat.org/ejp/


Short time asymptotics for rough differential equation

n × (d + e)-matrix [σ, b(ε, · )] and [σ, b(0, · )], resp.) driven by (εx,h) and (0,h), resp. A
useful estimate of difference of two solutions of RDEs can be found in Theorem 10.26, pp.
233–236, [25]. (0 denotes a rough path such that xj ≡ 0 for j = 1, 2.) There are positive
constants c7, c8 such that C [p]

b -norm of [σ, b(ε, · )] and [σ, b(ε, · )]− [σ, b(0, · )] are dominated
by c7 and c8ε, respectively. Set ω′ = c9ωx,h(s, t). If we take c9 sufficiently large, we have
‖(εx,h)‖p−ω′ ≤ 1 for all ε ∈ [0, 1] (see Chapter 8, [25] the definition and ‖ · ‖p−ω′ and
details) and (εx,h) satisfies the assumption (iii), Theorem 10.26, [25]. Note also that∣∣(εx,h)js,t − (0,h)js,t

∣∣ ≤ εc10(1 + ω′(S, T ))c11ω′(s, t)j/p for any S, T, s, t with S ≤ s ≤ t ≤ T .
Then, (a trivial modification of) Theorem 10.26, [25] implies that, on any subinterval

[S, T ] ⊂ [0, 1], there exist positive constant c12, c13 such that∣∣(yε)1
s,t − (φ0)1

s,t

∣∣
≤ c12

[
c7|(yε)1

0,S − (φ0)1
0,S |+ c8ε+ εc10(1 + ω′(S, T ))c11

]
ω′(s, t)1/p exp(c12c

p
7ω
′(S, T ))

≤ c13

[
|(yε)1

0,S − (φ0)1
0,S |+ ε(1 + ωx,h(S, T ))c13

]
ωx,h(s, t)1/p exp(c13ωx,h(S, T )) (3.18)

for any S ≤ s ≤ t ≤ T .
Let τi = τi(α) be as in the definition of Nα(x) in (3.4). We choose α > 0 so small

that c13(1 + 2α)c13(2α)1/p ≤ 1 holds. Consider each subinterval Ii := [τi−1, τi] (i =

1, 2, . . . , Nα(x)). Let {τi−1 = σ
(i)
0 < σ

(i)
1 < · · · < σ

(i)
Ki

= τi} be a partition of Ii such that

ωh(σ
(i)
j−1, σ

(i)
j ) = α for 1 ≤ j ≤ Ki − 1 and ωh(σ

(i)
Ki−1, σ

(i)
Ki

) ≤ α. It is easy to see that

Ki − 1 ≤ ωh(τi−1, τi)/α. Let {0 = t0 < t1 < · · · < tJ = 1} be all σ(i)
j ’s in increasing order.

The total number J of the subintervals is now at most

J =

Nα(x)+1∑
i=1

Ki ≤
Nα(x)+1∑
i=1

(
1 +

ωh(τi−1, τi)

α

)
≤ Nα(x) + 1 +

‖h‖qq−var
α

.

On each subinterval Îi := [ti−1, ti], ωx,h(ti−1, ti) ≤ 2α. Hence we have from (3.18) that∣∣(yε)1
s,t − (φ0)1

s,t

∣∣ ≤ [|(yε)1
0,ti−1

− (φ0)1
0,ti−1

|+ ε
]

exp(c13ωx,h(ti−1, ti))

for any ti−1 ≤ s ≤ t ≤ ti. By mathematical induction, we have

|(yε)1
0,ti−1

− (φ0)1
0,ti−1

| ≤ ε

i−1∏
k=1

{
1 + exp(c13ωx,h(tk−1, tk))

}
≤ ε2i−1 exp

(
c13

i−1∑
k=1

ωx,h(tk−1, tk)
)
.

Putting this back into (3.18), we have on each interval Îi,

∣∣(yε)1
s,t − (φ0)1

s,t

∣∣ ≤ ε
{
c132i−1 exp

(
c13

i−1∑
k=1

ωx,h(tk−1, tk)
)

+ (2α)−1/p
}

×ωx,h(s, t)1/p exp(c13ωx,h(ti−1, ti))

≤ εc14 exp
(
J log 2 + c13

J∑
k=1

ωx,h(tk−1, tk)
)
ωx,h(s, t)1/p

≤ εc14 exp
[
(Nα(x) + 1 +

‖h‖qq−var
α

) log 2

+c13{α(Nα(x) + 1) + ‖h‖qq−var}
]
ωx,h(s, t)1/p

≤ εc15 exp(c16Nα(x))ωx,h(s, t)1/p.
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Here, the positive constants ci (14 ≤ i ≤ 16) depend on α, too. Since there are J

subintervals, we have on the whole interval that∣∣(yε)1
s,t − (φ0)1

s,t

∣∣ ≤ J1−1/pεc15 exp(c16Nα(x))ωx,h(s, t)1/p

≤ εc17

(
Nα(x) + 1

)1−1/p
exp(c16Nα(x))ωx,h(s, t)1/p

≤ εc18 exp(c18Nα(x))ωx,h(s, t)1/p (3.19)

for any 0 ≤ s ≤ t ≤ 1. This is the most difficult part in this subsection. For brevity
we set a control function ξ1 by ξ1(s, t)1/p = c18 exp(c18Nα(x))ωx,h(s, t)1/p. Obviously,
ξ1 ∈ ∩1<r<∞L

r by assumption.
We see from (3.17) and (3.19) that∣∣∣{b(ε, yεt )− b(0, φ0

t )} − {b(ε, yεs)− b(0, φ0
s)}
∣∣∣

≤ ‖∇b‖∞|(yε)1
s,t − (φ0)1

s,t|+
(
ε‖∂ε∇b‖∞ + 2‖∇2b‖∞‖yε − φ0‖∞

)
|(φ0)1

s,t|

≤ ε
[
‖∇b‖∞ξ1(s, t)1/p +

(
‖∂ε∇b‖∞ + 2‖∇2b‖∞ξ1

){
c5(1 + ωx,h)c6ωx,h(s, t)

}1/p
]

≤ ε2(p−1)/p
[
‖∇b‖p∞ξ1(s, t) +

(
‖∂ε∇b‖∞ + 2‖∇2b‖∞ξ1

)p
c5(1 + ωx,h)c6ωx,h(s, t)

]1/p
.

We denote the right hand side by εξ2(s, t)1/p. Then, ξ2 is a control function such that
ξ2 ∈ ∩1<r<∞L

r.
From a basic property of Young integration and the above estimate, we have

1

ε

∣∣∣∫ t

s

{b(ε, yεt )− b(0, φ0
t )}dht

∣∣∣ ≤ c19

(
1 + ξ2 + ωh

)c19{ξ2(s, t) + ωh(s, t)}1/q. (3.20)

In particular, the Young integral on the left hand side above is of finite q-variation.
From (3.16), (3.17), (3.20) and a basic property of Young pairing, we have∣∣(x,h,yε,φ0, ε−1r1

ε

)i
s,t

∣∣ ≤ ξ3(s, t)i/p

for some control function ξ3 such that ξ3 ∈ ∩1<r<∞L
r. This ξ3 can be written as a simple

combination of control functions which appear on the right hand sides on (3.17) and
(3.20) and is independent of ε. Thus, we have shown Theorem 3.4 for k = 0

3.5 Proof of Theorem 3.4 for general k ≥ 1

In this subsection we prove Theorem 3.4 for k, assuming that it holds for the cases
up to k − 1. In the proof of the deterministic case in [31, 36], it is explained how to
obtain an estimate of rk+1

ε , which can be expressed as a rough path integral along
(x,h,yε,φ0, . . . ,φk−1).

Our strategy is quite simple. We carefully look at the proof in [31, 36] once again
and make sure that every operation is “of at most polynomial order.” Therefore, for
those who already know the proof for the deterministic case, this subsection is not very
difficult. Since the full proof is quite lengthy, we only give a sketch of proof here.

Let us calculate rk+1
ε . From (3.5)–(3.9), we have

drk+1
ε,t −∇b(0, φ0

t )〈rk+1
ε,t , dht〉 =

[
σ(yεt )εdxt −

k∑
l=1

εldAlt

]
+
[
b(ε, yεt )dht − b(0, φ0

t )dht −∇b(0, φ0
t )〈yεt − φ0

t , dht〉 −
k∑
l=1

εldBlt

]
=: dIk+1

t + dJk+1
t , with rk+1

ε,0 = 0. (3.21)
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Here, Ik+1 and Jk+1 stand for sums of the integrals with respect to x and h, respectively.
Observe the right hand side of (3.21). There are only x, h, yε, φ0, . . . , φk−1 (and no φk).
See (3.10) and (3.11). Therefore, the right hand side can be regarded as a rough path
integral along (x,h,yε,φ0, . . . ,φk−1, ε−krkε). As a result we obtain

(x,h,yε,φ0, . . . ,φk−1, ε−krkε , I
k+1 + Jk+1) ∈ GΩp(V ⊕ V̂ ⊕W⊕k+3).

We will prove that the rough path above is controlled by a nice control function with
moments of all order. Note that Jk+1 is a path of finite q-variation and hence the above
rough path is a Young translation of (x,h, . . . , ε−krkε , I

k+1) by Jk+1.
From Taylor expansion and the way the rough path integral is defined, we can see

that the above rough path satisfies essentially the same estimate as in Theorem 3.4, (iii)
as follows.

Lemma 3.6. Keep the same notations and assumptions as in Theorem 3.4. Assume that
Theorem 3.4 holds for the cases 1, 2, . . . , k − 1. Then, there exists a control function
ξ = ξx,h such that ηk−1,x,h(s, t) ≤ ξx,h(s, t), ξ ∈ ∩1≤r<∞L

r, and∣∣(x,h,yε,φ0, . . . ,φk−1, ε−krkε , ε
−(k+1)(Ik+1 + Jk+1)

)j
s,t

∣∣ ≤ ξx,h(s, t)j/p. (3.22)

for all 0 ≤ s ≤ t ≤ 1 and j = 1, 2. (Note that ξ may not depend on ε.)

Let M be as in (3.12). Then, M and M−1 are deterministic, depends only on h, and
are of finite q-variation. We see from (3.21) that at least formally

rk+1
ε,t = Mt

∫ t

0

M−1
s d[Ik+1

s + Jk+1
s ] = [Ik+1

t + Jk+1
t ]−Mt

∫ t

0

dM−1
s · [Ik+1

s + Jk+1
s ].

Note that the last expression takes the form of Young translation.
To be more precise, set M̃t := IdV⊕V̂⊕W⊕k+2 ⊕Mt and apply (a rough path version of)

variation of constant method as in (3.13) to the rough path in (3.22) in Lemma 3.6 above.
Then, we obtain

(
x,h,yε,φ0, . . . ,φk−1, ε−krkε , ε

−(k+1)rk+1
ε

)
. We can easily see that this

rough path satisfies the same inequality as in (3.22) (if ξ is suitably replaced).
Note that φk = ε−krkε − ε{ε−(k+1)rk+1

ε }. By applying a simple linear map to the above
rough path, we can obtain

(
x,h,yε,φ0, . . . ,φk−1,φk, ε−(k+1)rk+1

ε

)
. Since the operator

norm of this ε-dependent linear map is bounded in ε, this rough path also satisfies the
same inequality as in (3.22) (if ξ is suitably replaced by another control function, which
we call ηk,x,h). This is the sketch of proof of Theorem 3.4.

3.6 Remark for fractional order case

In this subsection we consider the case where the coefficients of RDEs are of fractional
order in ε and present analogous results to Proposition 3.1, Proposition 3.2, and Theorem
3.4. The contents of this subsection will be used in later sections.

In this subsection we assume that 1/3 < 1/p < H ≤ 1/2. Let σ : Rn → Mat(n, d) and
b : Rn → Rn be C∞b . Let x ∈ GΩp(R

d) and h ∈ Cq−var0 (Rd) with 1/p+ 1/q > 1 and we set
λt = t. We consider the following RDE driven by the Young pairing (εx,h,λ);

dỹεt = σ(ỹεt )(εdxt + dht) + ε1/Hb(ỹεt )dt

= σ(ỹεt )εdxt +
[
σ(ỹεt )dht + ε1/Hb(ỹεt )dλt

]
with ỹε0 = a ∈ Rn. (3.23)

This is a variant of RDE (3.2). Strictly speaking, unless H = 1/2 the results in previous
subsections cannot be used for RDE (3.23). With minor modifications, however, similar
results hold in this case, too. We will explain it below. (Proofs are essentially the same
and will be omitted).
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Let us fix some notations for fractional order expansions. For

Λ1 = {n1 +
n2

H
| n1, n2 ∈ N},

let 0 = κ0 < κ1 < κ2 < · · · be all elements of Λ1 in increasing order. More concretely,
leading terms are as follows if H ∈ (1/3, 1/2);

(κ0, κ1, κ2, . . .) = (0, 1, 2,
1

H
, 3, 1 +

1

H
, 4, 2 +

1

H
, 5 ∧ 2

H
, . . .). (3.24)

If H = 1/2, then Λ1 = N.

Instead of (3.14) the Taylor expansion of Lyons-Itô map takes the following form;

rκk+1
ε = ỹε − (φ0 + εκ1φκ1 + · · ·+ εκkφκk). (3.25)

In this case, φκk is the term of “order κk” and is explicitly given in essentially the same
way as in (3.9), (3.10), and (3.11). For the reader’s convenience, we will give explicit
formal expressions of φκk for k = 0, 1, 2, 3 when 1/3 < H < 1/2.

dφ0
t = σ(φ0

t )dht with φ0
0 = a, (3.26)

dφ1
t −∇σ(φ0

t )〈φ1
t , dht〉 = σ(φ0

t )dxt with φ1
0 = 0, (3.27)

dφ2
t −∇σ(φ0

t )〈φ2
t , dht〉 = ∇σ(φ0

t )〈φ1
t , dxt〉

+
1

2
∇2σ(φ0

t )〈φ1
t , φ

1
t , dht〉 with φ2

0 = 0, (3.28)

dφ
1/H
t −∇σ(φ0

t )〈φ
1/H
t , dht〉 = b(φ0

t )dt with φ
1/H
0 = 0. (3.29)

Proposition 3.1 holds still true with a slight modification. Namely, if 1/p + 1/q > 1,
the map

GΩp(V)× Cq−var0 ([0, 1],V) 3 (x, h)

7→ (x,h,λ, ỹε,φ0,φκ1 , . . . ,φκk , rκk+1
ε ) ∈ GΩp(V⊕2 ⊕R⊕W⊕k+3).

is locally Lipschitz continuous for any k.

The deterministic estimates for terms in the expansion (Proposition 3.2) can easily be
modified as follows (This proposition was already used in [32]);

Proposition 3.7. Assume 1/3 < 1/p < H < 1/2 and 1/p+ 1/q > 1. Consider RDE (3.23)
and keep the same notations as above. Then, the following (i) and (ii) hold.
(i) For any ρ > 0 and k = 1, 2, . . ., there exists a positive constants C = C(ρ, k) which
satisfies that

‖(φκk)1‖p−var ≤ C(1 + ωx
1/p)κk .

for any x ∈ GΩp(V) and h ∈ Cq−var0 ([0, 1],V) with ‖h‖q−var ≤ ρ.
(ii) For any ρ1, ρ2 > 0 and k = 1, 2, . . ., there exists a positive constants C̃ = C̃(ρ1, ρ2, k),
which is independent of ε and satisfies that

‖(rκk+1
ε )1‖p−var ≤ C̃(ε+ εωx

1/p)κk+1

for any x ∈ GΩp(V) with ωεx
1/p = εωx

1/p ≤ ρ1 and any h ∈ Cq−var0 ([0, 1],V) with
‖h‖q−var ≤ ρ2.

The moment estimates for terms in the expansion (Theorem 3.4) can be modified in
the following way. This can be shown in essentially the same way as in Theorem 3.4.
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Theorem 3.8. We consider RDE (3.23). Assume 1/3 < 1/p < H < 1/2 and 1/p+ 1/q > 1

and let h ∈ Cq−var0 ([0, 1],V). Assume that x be a GΩp(V)-valued random variable such
that (i) ωx = ωx(0, 1) ∈ ∩1≤r<∞L

r and (ii) exp(Nα(x)) ∈ ∩1≤r<∞L
r for any α > 0.

Then, for any x, h and k ∈ N, there exist control functions ηk = ηk,x,h such that the
following (i)– (iii) hold:
(i) ηk are non-decreasing in k, i.e., ηk,x,h(s, t) ≤ ηk+1,x,h(s, t) for all k,x, h, (s, t).
(ii) ηk,x,h ∈ ∩1≤r<∞L

r for all k, h.
(iii) For all ε ∈ (0, 1], k ∈ N, h, x, and 0 ≤ s ≤ t ≤ 1, j = 1, 2, we have∣∣(x,h,yε,φ0,φκ1 , . . . ,φκk , ε−κk+1rκk+1

ε

)j
s,t

∣∣ ≤ ηk,x,h(s, t)j/p.

In particular, for all k ∈ N and h, ‖(φκk)1‖p−var ∈ ∩1≤r<∞L
r and ‖(rκk+1

ε )1‖p−var =

O(εκk+1) in Lr for any 1 ≤ r <∞.

Remark 3.9. (i) This section (Section 3) may look a little bit lengthy. But, we will only
use Proposition 3.7 and Theorem 3.8 in later sections.
(ii) The author guesses that the results in this section naturally extends to the case of
[p] ≥ 3. But, computation may be hard and it has not been confirmed yet.

4 Malliavin Calculus for solution of RDE driven by fBM

In this section we study the solution of a (scaled) RDE driven by fractional Brownian
motion with H ∈ (1/3, 1/2] via Malliavin calculus. It was already done by Hairer and
Pillai [27] (and Cass, Hairer, Litterer, and Tindel [18]). In this section we basically follow
their arguments, but in our case we need to check dependency on the small parameter
ε ∈ (0, 1].

To keep our argument concise, we do not explain much about Malliavin calculus here.
The reader should refer to well-known textbooks such as Nualart [49] and Shigekawa
[50]. In this paper we use Watanabe distribution theory and asymptotic theorems for
them, which can be found in [56] or Section V-9, [29]. (The results in [56, 29] are
formulated on the classical Wiener space, but they are still true on an abstract Wiener
space.) One thing different from is [56, 29] that the index sets of asymptotic expansions
may not beN = {0, 1, 2, . . .} in this paper. So, we need to slightly modify these asymptotic
theorems. However, we skip details here since a summary was already given in the
author’s previous work [33].

In this paper, we use the following notations. D stands for the H-derivative. Sobolev
space of the integral index r ∈ (1,∞) and the differential index s ∈ R is denoted by Dr,s.
As in [56, 29], we set D∞ = ∩∞k=1 ∩1<r<∞ Dr,k, D−∞ = ∪∞k=1 ∪1<r<∞ Dr,−k. Moreover,
we also use D̃∞ = ∩∞k=1 ∪1<r<∞ Dr,k and D̃−∞ = ∪∞k=1 ∩1<r<∞ Dr,−k in Watanabe
distribution theory. The Sobolev space of vector-valued Wiener functionals is denoted by
Dr,s(K), etc., where K is a real separable Hilbert space.

Let 1/3 < H ≤ 1/2 and choose p so that 1/3 < 1/p < H. The d-dimensional fBm
(wt)0≤t≤1 with Hurst parameter H admits a natural rough path lift w as a random rough
path that takes values in GΩp(R

d). We denote by H = HH the Cameron-Martin space
associated with d-dimensional fBm with H ∈ (1/3, 1/2]. Throughout this section γ ∈ H is
arbitrary, but fixed. By Friz-Victoir [23], there is a continuous embedding

HH ↪→W 1/q,2([0, 1],Rd) ↪→ Cq−var0 ([0, 1],Rd) (4.1)

for any q ∈ ((H + 1/2)−1, 2). (In a recent paper [21], the above embedding is shown to
still hold for q = (H + 1/2)−1.) The Banach space in the middle is the fractional Sobolev
(i.e., Besov) space with the differential index 1/q and the integral index 2. Note that if
p and q are sufficiently close to 1/H and (H + 1/2)−1, respectively, then 1/p+ 1/q > 1,
which makes Young integration/translation/paring possible.
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Let us make a remark on Hölder regularity of the above RDE. It is well-known that
w is actually an α-Hölder geometric rough path a.s., where we set α := 1/p. At first,
it is not so obvious whether τγ(εw) is an α-Hölder geometric rough path, even though
HH ↪→ Cα−hld0 (Rd). It was shown to be true in Friz and Victoir [23] and Exercise 9.37, p.
211, [25]. Using (4.1) with 1/q = α+ 1/2, they showed that

‖τγ(x)1‖α−hld ≤ const.× (‖x1‖α−hld + ‖γ‖H),

‖τγ(x)2‖2α−hld ≤ const.× (‖x2‖2α−hld + ‖x1‖α−hld‖γ‖H + ‖γ‖2H)

for any γ ∈ H and x ∈ GΩHα (Rd). These imply that the driving signal (τγ(εw), ε1/Hλ) of
RDE (4.2) is actually a α-Hölder geometric rough path a.s. Consequently, so is ỹε.

As before σ : Rn → Mat(n, d) and b : Rn → Rn be C∞b . For notational convenience,
we will sometimes denote by Vi : Rn → Rn the ith column vector field of σ (1 ≤ i ≤ d),
i.e., σ = [V1; · · · ;Vd]. In a similar way we will write V0 = b.

We consider the following RDE for ε ∈ (0, 1] and a ∈ Rn;

dỹεt = σ(ỹεt )(εdwt + dγt) + ε1/Hb(ỹεt )dt with ỹε0 = a ∈ Rn. (4.2)

We write ỹεt = a+ (ỹε)1
0,t and study this process. When γ = 0, we write ỹε = yε. When

γ = 0 and ε = 1, we write ỹε = y. If Φ denotes the Lyons-Itô map that corresponds to
[σ, b] and a, then ỹε = Φ((τγ(εw), ε1/Hλ)). Here, (i) τγ(εw) denotes the Young translation
of εw by γ and (ii) (τγ(εw), ε1/Hλ) denotes the Young pairing of τγ(εw) and the one-
dimensional path ε1/Hλt = ε1/Ht. Using Vi’s we can rewrite RDE (4.2) as follows:

dỹεt =

d∑
i=1

Vi(ỹ
ε
t )(εdw

i
t + dγit) + ε1/HV0(ỹεt )dt with ỹε0 = a ∈ Rn. (4.3)

Note that (yεt )0≤t≤1 and (yε1/Ht)0≤t≤1 have the same law. (See Inahama [32] for a proof).
In Hairer and Pillai [27], they proved the following: (i) yt ∈ D∞(Rn) for any t > 0,

i.e., Dmyt exists and in ∩1<r<∞L
r for any m = 0, 1, 2, . . .. (ii) Under Hörmander’s

hypoellipticity condition on vector fields {V1, . . . , Vd, V0} at the starting point a, Malliavin
covariance matrix of yt is non-degenerate in the sense of Malliavin for any t > 0, i.e.,

det
[
{〈Dy(i)

t , Dy
(j)
t 〉H}ni,j=1

]−1

∈ ∩1<r<∞L
r,

where y(i)
t denoted the ith component of yt.

It is almost obvious that ỹε1 also satisfies (i) and (ii) above for each fixed ε. In this
paper, however, we need to check dependency on ε ∈ (0, 1] as it varies. The precise
statements are given in the following two propositions. We will prove them later by
slightly modifying the proofs in [27, 18, 35].

Proposition 4.1. Assume σ and b are C∞b and let γ ∈ H be arbitrary but fixed. Then, for
any m = 0, 1, 2, . . . and r ∈ (1,∞), there exists a positive constant c = cm,r such that

E
[
‖Dmỹε1‖rH⊗m

]1/r ≤ cεm.
Proof. In [35] the author proved D∞-property of solutions of RDEs driven by Gaussian
rough path w including fBm with H > 1/4. The proof is so flexible that we can replace
w by τγ(εw) = εw + γ. If we keep track of ε-dependency in that argument, then we
can easily see that Dmỹε is O(εm) as ε ↘ 0 for any m ∈ N. In that proof, the uniform
estimate of Jacobian process and its inverse plays a crucial role.
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Proposition 4.2. In addition to the assumption of Proposition 4.1, we assume the
ellipticity assumption (A1). Then, (ỹε1 − a)/ε is uniformly non-degenerate in the sense of
Malliavin, that is,

sup
0<ε≤1

E
[
det
[
{〈D

( ỹε,(i)1 − a
ε

)
, D
( ỹε,(j)1 − a

ε

)
〉H}ni,j=1

]−r]
<∞

for any r ∈ (1,∞).

Proof. Note that the special case “γ = 0 and b ≡ 0 and uniformly elliptic coefficients”
was already shown in [10, 12], etc. Since this proposition can be shown in a similar way,
we omit the proof. (However, we note that uniform non-degeneracy of (ỹε1 − a)/ε for the
shifted RDE becomes quite complicated under a Hörmander-type condition instead of
(A1).)

Consider the asymptotic expansion of ỹε as in (3.25). We have already seen that
this expansion holds true both in the deterministic sense and the Lr-sense. Moreover,
evaluated at time t = 1, it also holds true in D∞-sense.

Proposition 4.3. We keep the same assumptions as in Proposition 4.1. Then, we have
the following asymptotic expansion as ε↘ 0:

ỹε1 ∼ φ0
1 + εκ1φκ1

1 + · · ·+ εκkφκk1 + · · · in D∞(Rn).

This means that for each k, (i) φκk1 ∈ D∞(Rn) and (ii) Dr,s-norm of r
κk+1

ε,1 is O(εκk+1) for
any r ∈ (1,∞) and s ≥ 0.

Proof. By the way it is constructed, φκk1 is an element of inhomogeneous Wiener chaos of
order at most [κk]. Hence, φκk1 ∈ D∞(Rn) and D[κk]+1φκk1 = 0. Next we estimate Sobolev
norms of the remainder terms. We see from the stronger form of Meyer’s equivalence
that, for any integer s ≥ [κk] + 1 and any r ∈ (1,∞), there exists C = Cr,s such that

‖rκk+1

ε,1 ‖Dr,s
≤ C(‖rκk+1

ε,1 ‖Lr + ‖Dsr
κk+1

ε,1 ‖Lr ) = C(‖rκk+1

ε,1 ‖Lr + ‖Dsỹε1‖Lr )

holds. By Theorem 3.8 and Proposition 4.1, the right hand side is O(εκk+1) + O(εs) =

O(εκk+1). Thus, we have the desired estimate for such (r, s). Since Dr,s-norm is increas-
ing in s, the proof is done.

Now we state and prove on-diagonal short time asymptotics of pt(a, a) = E[δa(yt)].
Compared to the off-diagonal case, this is not so difficult. From Propositions 4.2, and 4.3,
and Watanabe’s asymptotic theory for generalized Wiener functionals (i.e., Watanabe
distributions), we can obtain the following theorem.

Theorem 4.4. Assume the ellipticity assumption (A1). Then, the diagonal of the kernel
p(t, a, a) admits the following asymptotics as t↘ 0;

p(t, a, a) ∼ 1

tnH
(
c0 + cν1t

ν1H + cν2t
ν2H + · · ·

)
for certain real constants c0, cν1 , cν2 , . . .. Here, {0 = ν0 < ν1 < ν2 < · · · } are all the
elements of Λ3 in increasing order. Moreover, c0 is positive.

Proof. In this proof, γ = 0. From the scaling property, we see that

p(ε1/H , a, a) = E[δa(yε1(a))] = E[δ0
(
ε
yε1(a)− a

ε

)
] = ε−nE[δ0

(yε1(a)− a
ε

)
].

By Proposition 4.2, (yε1(a)− a)/ε is uniformly non-degenerate. It admits asymptotic
expansion in D∞(Rn) as in Proposition 4.3 with the index set for the exponents being
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Λ2. Then, by (a slight generalization of) Theorem 9.4, p. 387, Ikeda and Watanabe [29],
the following asymptotic expansion holds in D̃−∞ as ε↘ 0;

δ0
(yε1(a)− a

ε

)
∼ φ0 + εν1φν1 + εν2φν2 + · · · as ε↘ 0.

Formally, this is a composition of Taylor expansion of δ0( · ) and the asymptotic expansion
of (yε1(a) − a)/ε. Hence, the new index set is N〈Λ2〉 = Λ3. By taking the generalized
expectation and setting cνk = E[φνk ], we have

p(ε1/H , a, a) ∼ ε−n
(
c0 + cν1ε

ν1 + cν2ε
ν2 + · · ·

)
as ε↘ 0.

Putting ε = tH , we prove the asymptotic expansion. It is straight forward to see that

c0 = E[δ0(

d∑
j=1

Vj(a)wj1)] = (2π)−n/2{det(σ(a)σ(a)∗)}−1/2 > 0,

which completes the proof.

5 Off-diagonal short time asymptotics

In this section, following Watanabe [56], we prove the short time asymptotics of
kernel function pt(a, a′) when a 6= a′ and 1/3 < H ≤ 1/2. Unlike in [56], we can localize
around the energy minimizing path in the geometric rough path space in this paper,
since Lyons-Itô map is continuous in this setting. (The case H > 1/2 was done in [33].
The result in this section can be regarded as a rough path version of that in [33].)

5.1 Localization around energy minimizing path

Let GΩBα,m(Rd) be the geometric rough path space with (α,m)-Besov norm for α ∈
(1/3, 1/2] and m > 1 with α− 1/m > 1/3. Explicitly, the norms are given by

‖xi‖iα,m/i−B :=
(∫∫

0≤s<t≤1

|xis,t|m/i

|t− s|1+mα
dsdt

)i/m
(i = 1, 2).

We have the following continuous embeddings

GΩHβ (Rd) ↪→ GΩBα′,m(Rd) ↪→ GΩHα (Rd) ↪→ GΩp(R
d) (5.1)

if 1/3 < 1/p = α < α′ − 1/m < α′ < β ≤ 1/2 (see Appendix A2, Friz and Victoir [25]).
Next, we introduce a measure. Let µ = µH be the law of the fractional Brownian

motion with Hurst parameter H ∈ (1/3, 1/2]. This is a probability measure on W = H,
which is the closure of H = HH in Cp−var0 ([0, 1],Rd). Then, the triple (W,H, µ) is an
abstract Wiener space.

For any β ∈ (1/3, H), fBm (wt) admits a natural lift a.s. via dyadic piecewise linear
approximation and the lift w is a random variable taking values in GΩHβ (Rd). Note

that the lift of Cameron-Martin space H is contained in GΩHβ (Rd). Moreover, as ε↘ 0,

Schilder-type large deviation holds for the laws of εw, which will be denoted by νε = νHε .
(See Friz and Victoir [24]). Because of Besov-Hölder embedding mentioned above, these
properties also hold with respect to (α′,m)-Besov topology if α′ < H. As usual, the good
rate function I is given as follows: I(x) = ‖h‖2H/2 if x is the lift of some h ∈ H and
I(x) =∞ if otherwise.

Let us clarify the conditions on various indices here. From now on, these will be
assumed unless otherwise stated. First, for given H ∈ (1/3, 1/2], we choose p := 1/α ∈
(1/H, 3) and q ∈ ((H + 1/2)−1, 2) so that 1/p+ 1/q > 1 holds. Then, we choose α′ ∈ (α,H)
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andm ∈ N such that (α′−α)∨(H−α′) > 1/(4m) and considerGΩBα′,4m(Rd). (Heuristically,
m is a very large integer.)

Since m is an integer, w 7→ ‖wi−hi‖4m/iiα,4m/i−B is D∞ in the sense of Malliavin calculus
for i = 1, 2, where h is a fixed element. Actually, it is an element of an inhomogeneous
Wiener chaos. Due to this fact, the localization is allowed even in the framework of
Watanabe distribution theory. This is the reason why we use this Besov-type norm on the
geometric rough path space.

The Young translation τγ works on GΩBα′,4m(Rd) for any γ ∈ H. The proof is just a
slight modification of the Hölder case.

Lemma 5.1. Let H,α′,m be as above. Then, for any γ ∈ H, the Young translation τγ is a
continuos map from GΩBα′,4m(Rd) to itself.

Proof. Generally, we have the following basic result for Young integrals. Let p′, q′ > 0

with 1/p′ + 1/q′ > 1. Then, there is a constant C > 0 which depends only on p′, q′ such
that ∣∣∣∫ t

s

(xu − xs)⊗ dyu
∣∣∣ ≤ C‖x‖p′−var;[s,t] · ‖y‖q′−var;[s,t].

for any [s, t] ⊂ [0.1].

Now we prove the lemma. We have

τγ(x)1
s,t = x1

s,t + γ1
s,t

τγ(x)2
s,t = x2

s,t + γ2
s,t +

∫ t

s

x1
s,u ⊗ dγu +

∫ t

s

γ1
s,u ⊗ dxu (5.2)

Here, the second, the third, and the fourth terms on the right hand side of (5.2) are
Young integrals. As usual we set xt = x1

0,t. By Besov-Hölder embedding theorem, x is
α′ − 1/(4m) Hölder continuous. Moreover, there is a constant c such that

‖γ‖q−var;[s,t] ≤ c‖γ‖W 1/q,2 · (t− s)
1
q−

1
2 ≤ c‖γ‖H · (t− s)

1
q−

1
2 (γ ∈ H, 1

q
< H +

1

2
).

(See p. 211, [25]. The constant c > 0 may vary from line to line.) Therefore, γ2

is of finite 2(1/q − 1/2) Hölder norm. The third and the fourth terms are of finite
(1/q − 1/2) + (α′ − 1/(4m)) Hölder norm. Since H − α′ < 1/(4m) and we may choose q
so that 1/q − 1/2 can be arbitrarily close to H, these three terms are actually of finite
(2α′ + δ) Hölder norm for some δ > 0 and hence are of finite (2α′, 2m) Besov norm. Thus,
we have shown that τγ maps GΩBα′,4m(Rd) to itself.

We can show continuity of τγ by estimating the difference |τγ(x)is,t − τγ(x̃)is,t| for
i = 1, 2 in essentially the same way. So, we omit details.

For γ ∈ H ⊂ Cq−var0 ([0, 1],Rd), let φ0 = φ0(γ) be a unique solution of (3.26) in the
q-variational Young sense, which starts at a ∈ Rn. Set, for a 6= a′,

Ka′

a = {γ ∈ H | φ0
1(γ) = a′}.

This is a closed set in H. We only consider the case that Ka′

a is not empty. For example,
if (A1) is satisfied for any a, then Ka′

a is not empty for any a′. From the Schilder-type
large deviation theory, we see that inf{‖γ‖H | γ ∈ Ka′

a } = min{‖γ‖H | γ ∈ Ka′

a }.
We continue to assume (A1). Moreover, we assume (A2) in addition. In the sequel, γ̄

denotes the minimizer in Assumption (A2) and we use the results of the previous section
for this γ̄.
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Note that (i) the mapping γ ∈ H ↪→ Cq−var0 ([0, 1],Rd) 7→ φ0
1(γ) ∈ Rn is Fréchet

differentiable and (ii) its Jacobian is a surjective linear mapping from H to Rn at any γ,
because there exists a positive constant c = c(γ) such that(

〈Dφ0,i
1 (γ), Dφ0,j

1 (γ)〉H∗
)

1≤i,j≤n
≥ c · Idn. (5.3)

This can be shown in the same way as in the proof of non-degeneracy of yt under
ellipticity assumption. (Actually, it is easier since γ is non-random and fixed here.)

Therefore, by the Lagrange multiplier method, there exists ν̄ = (ν̄1, . . . , ν̄n) ∈ Rn
uniquely such that the map

H×Rn 3 (γ, ν) 7→ 1

2
‖γ‖2H − 〈ν, φ0

1(γ)− a′〉Rn ∈ R (5.4)

attains an extremum at (γ̄, ν̄). By differentiating in the direction of k ∈ H, we have

〈γ̄, k〉H = 〈ν̄, Dkφ
0
1(γ̄)〉Rn =

〈
ν̄, Ĵ(γ̄)1

∫ 1

0

Ĵ(γ̄)−1
t σ(φ0

t (γ̄))dkt
〉
Rn
. (5.5)

Here, Ĵ(γ̄)±1 are of finite q-variation and Ĵ(γ̄) satisfies the following ODE in Young sense;

dJt = ∇σ(φ0
t (γ̄)))〈Jt, dγ̄t〉 with J0 = Idn.

Since the integral on the right hand side is of (5.5) Young integral, 〈γ̄, · 〉H naturally
extends to a continuous linear functional on Cp−var0 ([0, 1],Rd).

Next, set ν̂ε = νε ⊗ δε1/Hλ, where λ is a one-dimensional path defined by λt = t

and ⊗ stands for the product of probability measures. This measure is supported on
GΩBα′,4m(Rd) × R〈λ〉. The Young pairing map GΩBα′,4m(Rd) × R〈λ〉 → GΩBα′,4m(Rd+1) is

continuous. The law of ν̂ε induced by this map is the law of (εw, ε1/Hλ), the Young
pairing of εw and ε1/Hλ.

Define Î(x; l) = ‖h‖2H/2 if x is the lift of some h ∈ H and lt ≡ 0 and define Î(w, l) =∞
if otherwise. Here, l is a one-dimensional path. We can easily show that {ν̂ε}ε>0 also
satisfies a large deviation principle as ε↘ 0 with a good rate function Î. We will use this
in Lemma 5.2 below to show that we may localize on a neighborhood of the minimizer γ̄
in order to obtain the asymptotic expansion.

Now we introduce a cut-off function. Let ψ : R → [0, 1] be a smooth function such
that ψ(u) = 1 if |u| ≤ 1/2 and ψ(u) = 0 if |u| ≥ 1. For each η > 0 and ε > 0, we set

χη(ε, w) =

2∏
i=1

ψ
( 1

η4m
‖τ−γ̄(εw)i‖4m/iiα′,4m/i−B

)
.

Here, τ−γ̄ is the Young translation by −γ̄. It is a continuous map from GΩHβ (Rd) to itself.
So, the right hand side is defined for almost all w ∈ W. Shifting by γ̄/ε, we have

χη(ε, w +
γ̄

ε
) =

2∏
i=1

ψ
( ε4m

η4m
‖wi‖4m/iiα′,4m/i−B

)
.

This is a D∞-functional. Moreover, from Taylor expansion for ψ, the following asymptotics
holds; for any η > 0 and any M ∈ N,

χη(ε, w +
γ̄

ε
) = 1 +O(εM ) in D∞ as ε↘ 0. (5.6)

Since ‖wi‖4m/iiα′,4m/i−B is an element of an inhomogeneous Wiener chaos of order 4m,

so is its Cameron-Martin shift ‖τ−γ̄(εw)i‖4m/iiα′,4m/i−B. For any r ∈ (0,∞), Lr-norm of this
Wiener functional is bounded in ε. Hence, so is its Dr,k-norm for any r, k.

The following lemma states that only rough paths sufficiently close to the lift of the
minimizer γ̄ contribute to the asymptotics.
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Lemma 5.2. Assume (A1) and (A2). Then, for any η > 0, there exists c = cη > 0 such
that

0 ≤ E
[
(1− χη(ε, w)) · δa′(yε1)

]
= O

(
exp
{
−‖γ̄‖

2
H + c

2ε2

})
as ε↘ 0.

Proof. The proof of this lemma is a bit lengthy and quite similar to the proof for the
corresponding lemma in [33] or [56], except that we work on the geometric rough path
space. So, we only give a sketch of proof here.

Set g(u) = u ∨ 0 for u ∈ R. Then, in the sense of distributional derivative, g′′ = δ0.
Take a bounded continuous function C : Rn → R such that C(u1, . . . , un) = g(u1 −
a′1)g(u2 − a′2) · · · g(un − a′n) if |u− a′| ≤ 2η′. Take η′ > 0 arbitrarily small.

Then, we have

0 ≤ E
[
(1− χη(ε, w)) · δa′(yε1)

]
= E

[
{1− χη(ε, w)}ψ

( |yε1 − a′|2
η′2

)
· δa′(yε1)

]
= E

[
{1− χη(ε, w)}ψ

( |yε1 − a′|2
η′2

)
(∂2

1 · · · ∂2
nC)(yε1)

]
(5.7)

The idea is that by using the integration by parts formula for generalized expectations
as in [56, 29], we reduce the problem to the upper bound of the large deviation principle
for {ν̂ε}ε>0. (The reason is as follows. Thanks to the formula, we can remove the partial
differentiations in (∂2

1 · · · ∂2
nC)(yε1) at a certain price. Then, we have only to treat C(yε1)

which is just a bounded function.)

5.2 Integrability lemmas

In this subsection, we prove a few lemmas for integrability of Wiener functionals of
exponential type which will be used in the proof of the short time asymptotic expansion.

Throughout this subsection we assume (A2). Let γ̄ be as in (A2) and let φκj and
r
κj+
ε = r

κj+1
ε (j = 0, 1, 2, . . .) be as in (3.25) with γ = γ̄. First we consider

rκ3
ε

ε2
=
r2+
ε

ε2
=

1

ε2
(ỹε − φ0 − εφ1 − ε2φ2) = εκ3−2φκ3 + εκ4−2φκ4 + · · · .

Recall that κ3 = 1/H if H ∈ (1/3, 1/2) and κ3 = 3 if H = 1/2. When evaluated at time
t = 1, this quantity has a kind of exponential integrability in the following sense. (Now
that γ̄ is fixed, r2+

ε (x), φ2(x), etc. are function of x alone. We will often write r2+
ε , φ2, etc.

for simplicity.)

Lemma 5.3. Assume (A2). For any M > 0, there exists η > 0 such that

sup
0<ε≤1

E
[
exp
(
M〈ν̄, r2+

ε,1〉/ε2
)
IUη (εw)

]
<∞.

Here, we set Uη = ∩i=1,2{‖xi‖1/iiα′,4m/i−B < η} as before.

Proof. Let ωx be as in (3.3). Note that U1 is bounded with respect to p-variation norm.
So we may use Proposition 3.2 to see that, for some positive constants c1, c2,

‖r2+
ε ‖p−var ≤ c1(ε+ ω̄1/p

εx )κ3 ≤ c2(ε+ ‖(εx)1‖α′,4m−B + ‖(εx)2‖1/22α′,2m−B)κ3 (εx ∈ U1).

(In this paragraph we used Besov-Hölder-variation embedding theorem on geometric
rough path spaces. See Proposition A.9, p. 578, [25] for instance.) Hence, if εx ∈ Uη for
0 < η ≤ 1, then

‖r2+
ε ‖p−var
ε2

≤ c2(1 + ‖x1‖α′,4m−B + ‖x2‖1/22α′,2m−B)2(ε+ 2η)κ3−2. (5.8)
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Recall that Fernique’s theorem holds for fractional Brownian rough path w with
respect to β-Hölder topology and hence with respect to (α′, 4m)-Besov topology. It states
that for some ρ > 0 we have

E
[
exp
(
ρ(1 + ‖w1‖α′,4m−B + ‖w2‖1/22α′,2m−B)2

)]
<∞.

(See Friz and Oberhauser [22] for a proof.)
For given M , take 0 < η ≤ 1 so that M |ν̄|c2(3η)κ3−2 ≤ ρ. Then, we have

sup
0<ε≤η

E
[
exp
(
M〈ν̄, r2+

ε,1〉/ε2
)
IUη (εw)

]
<∞.

Note that, if εw ∈ Uη and η ≤ ε ≤ 1, then ‖r2+
ε ‖p−var/ε2 is bounded. (The bound may

depend on η.) This completes the proof.

Next we consider

r2
ε

ε
=
r1+
ε

ε
=

1

ε
(ỹε − φ0 − εφ1) = εφ2 + εκ3−1φκ3 + · · · .

Lemma 5.4. Assume (A2). For any M > 0, there exists η > 0 such that

sup
0<ε≤1

E
[
exp
(
M‖r2

ε‖2p−var/ε2
)
IUη (εw)

]
<∞.

Proof. We can prove the lemma in the same way as in Lemma 5.3 above. So we only
give a sketch of proof.

In this case we have the following inequality instead of (5.8):

‖r2
ε‖2p−var
ε2

≤ c2(1 + ‖x1‖α′,4m−B + ‖x2‖1/22α′,2m−B)2(ε+ 2η)2 (εx ∈ Uη).

The rest is similar. So we omit details.

From now on we assume (A1) and (A2). In addition, we introduce the following
assumption;

(A3)’ E[exp
(
〈ν̄, φ2

1(w)〉
)
| φ1

1 = 0] <∞.

Note that φ1
T (w) = ĴT

∫ T
0
Ĵ−1
t σ(φ0

t )dwt. Here φ0
t = φ0

t (γ̄), Ĵt = Ĵ(γ̄)t. Note that the
right hand side is Young integral and, consequently, is continuous in w ∈ W. We regard
its jth component φ1,j

1 ∈ W∗ ⊂ H∗ as an element of H by Riesz isometry, we write
]φ1,j

1 ∈ H ⊂ W. We have an orthogonal decomposition H = kerφ1
1 ⊕ (kerφ1

1)⊥. We denote
by π the orthogonal projection fromH onto kerφ1

1. Note that (kerφ1
1)⊥ is an n-dimensional

linear subspace spanned by {]φ1,1
1 , . . . , ]φ1,n

1 }. Since dim(kerφ1
1)⊥ < ∞, the abstract

Wiener space splits into two;W = kerφ1
1

‖ · ‖p−var ⊕ (kerφ1
1)⊥. The projection π naturally

extends to the one from W onto kerφ1
1

‖ · ‖p−var
, which is again denoted by the same

symbol. There exist Gaussian measures µ1 and µ2 such that (kerφ1
1

‖ · ‖p−var
, kerφ1

1, µ1)

and ((kerφ1
1)⊥, (kerφ1

1)⊥, µ2) are abstract Wiener spaces. Naturally, µ1 = π∗µ, µ2 = π⊥∗ µ

and µ = µ1 × µ2 (the product measure). One may think µ1 is the definition of the
conditional measure P[ · | φ1

1 = 0] in (A3)’ above.
Therefore, (A3)’ is equivalent to the following;

E[exp(〈ν̄, φ2
1(πw)〉)] <∞. (5.9)
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Precisely, πw := L(πw) = limm→∞ L
(
(πw)(m)

)
. Here, L stands for the rough path lift

map. Now we will see that πw is well-defined and has nice properties.
Note that φ1

1(k) = Dkφ
0
1(γ̄) and recall (5.3), (5.5). Hence, {φ1,1

1 , . . . , φ1,n
1 } are of rank

n in H∗. Let C be the positive symmetric matrix in (5.3) and set K = (Kij) = C−1,
M = (Mij) = C−1/2, which are again positive symmetric. Then we have

πw = w −
n∑
j=1

〈w,
n∑
l′=1

Mjl
]φ1,l

1 〉
n∑
l′=1

Mjl′
]φ1,l′

1 = w −
n∑

l,l′=1

Kll′φ
1,l
1 (w) · ]φ1,l′

1 . (5.10)

This projection also works in q-variational setting. Note that the second term on the
right hand side is H-valued. Therefore, the lift of πw is actually a Young translation of w

by
∑
l,l′ Kll′φ

1,l
1 (w) · ]φ1,l′

1 . It also holds that πw = limm→∞ L
[
π(w(m))

]
.

For k, k′ ∈ Cq−var0 ([0, 1],Rd), we set

A(k, k′) =
1

2
Ĵ1

∫ 1

0

Ĵ−1
t {∇σ(φ0

t )〈φ1
t (k
′), dkt〉+∇σ(φ0

t )〈φ1
t (k), dk′t〉}

+
1

2
Ĵ1

∫ 1

0

Ĵ−1
t ∇2σ(φ0

t )〈φ1
t (k), φ1

t (k
′), dγ̄t〉 (5.11)

and Â(k, k′) = 〈ν̄,A(πk, πk′)〉. Here, Ĵ = Ĵ(γ̄) and φ0 = φ0(γ̄) for brevity. Then, Â is a
symmetric bounded bilinear mapping form on H×H. Notice that

A(k, k) = φ2
1(k)− 1

2
δH,1/2 · Ĵ1

∫ 1

0

Ĵ−1
t b(φ0

t )dt, (5.12)

where δH,1/2 = 1 if H = 1/2 and δH,1/2 = 0 if otherwise. Therefore, Â(k, k) = φ2
1(k) +

(const).
Now we will see that (i) Â is actually Hilbert-Schmidt and (ii) φ2

1(πw) ∈ C2 ⊕ C0
whose C2-component corresponds to Â, that is, φ2

1(πw) = ΞÂ(w) + (const). Here, Cj
denotes the jth homogeneous Wiener chaos of order j and ΞB denotes the element in C2
which unitarily corresponds to a symmetric Hilbert-Schmidt bilinear form B.

For m ∈ N, set Âm(k, k′) = 〈ν̄,A((πk)(m), (πk′)(m))〉. The corresponding bounded
self-adjoint operator on H is denoted by Âm. This bilinear form extends to a bounded
bilinear form onW ×W. Hence, by Goodman’s theorem (see Theorem 4.6, p. 83, [37]),
it is of trace class (and consequently Hilbert-Schmidt). Âm(w,w) = ΞÂm(w) + Trace(Âm).
As a result, φ2

1((πw)(m)) = ΞÂm(w) + sm, where the constant sm may depend on m.
By a straight forward rough path calculation as in Section 5, Inahama [32], we can

prove that φ2
1((πw)(m)) converges to φ2

1(πw) in L2(µ). (In Inahama [32], the convergence
φ2

1(w(m))→ φ2
1(w) as m→∞ is shown. We can modify that proof, since the effect of the

projection π appears as Young translation as we have already seen.) Hence, both ΞÂm
and sm converge in C2 and C0, respectively. By the unitary correspondence, there exists
a symmetric Hilbert-Schmidt bilinear form B such that Âm → B as m → ∞ in Hilbert-
Schmidt norm. From a basic property of Young integral, we see that Âm(k, k′)→ Â(k, k′)

as m→∞ for each fixed k, k′ ∈ H. Thus we have shown (i) and (ii) above.
Exponentially integrability of quadratic Wiener functionals is well-known. (5.9) is

equivalent to E[exp(ΞÂ)] <∞, which in turn is equivalent to sup Spec(Â) < 1/2. Since the

inequality is strict, there exists ρ > 1 such that sup Spec(ρÂ) < 1/2, which is equivalent to
E[exp(ρΞ̂Â)] <∞. Summing it up, we have seen that (A3)’ is equivalent to the following;

E[exp(ρ〈ν̄, φ2
1(πw)〉)] <∞ for some ρ > 1. (5.13)

Let us check here that (A3) and (A3)’ are equivalent under (A1), (A2).
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Proposition 5.5. Under (A1) and (A2), the two conditions (A3) and (A3)’ are equiva-
lent.

Proof. As is explained above, (A3)′ is equivalent to sup Spec(Â) < 1/2. Keep in mind that
the only accumulation point of Spec(Â) is 0, since Â is Hilbert-Schmidt. Let (−ε0, ε0) 3
u 7→ f(u) ∈ Ka′

a be a smooth curve in Ka′

a such that f(0) = γ̄ and f ′(0) 6= 0 as in (A3).
Then, a straight forward calculation shows that

d2

du2

∣∣∣
u=0

‖f(u)‖2H
2

=
d2

du2

∣∣∣
u=0

(‖f(u)‖2H
2

− 〈ν̄, φ0
1(fu)− a′〉

)
= ‖f ′(0)‖2H + 〈f ′′(0), γ̄〉H −

〈
ν̄, Dφ0

1(γ̄)〈f ′′(0)〉
〉
−
〈
ν̄, D2φ0

1(γ̄)〈f ′(0), f ′(0)〉
〉

= ‖f ′(0)‖2H −
〈
ν̄, D2φ0

1(γ̄)〈πf ′(0), πf ′(0)〉
〉

= ‖f ′(0)‖2H − 2
〈
ν̄, ψ〈πf ′(0), πf ′(0)〉

〉
, (5.14)

where we used (5.4)–(5.5) and the fact that f ′(0) is tangent to the submanifold Ka′

a . Since
f ′(0) can be any non-zero vector h such that πh = h, we see from (5.14) that (A3) is
equivalent to 〈

ν̄, ψ〈πf ′(0), πf ′(0)〉
〉
<

1

2
‖h‖2H (h ∈ H \ {0}),

which in turn is equivalent to sup Spec(Â) < 1/2.

The following is a key technical lemma. Roughly speaking, it states that restricted on
a sufficiently small subset, exp(〈ν̄, r2

ε,1〉/ε2) ∈ ∪1<q<∞L
q uniformly in ε.

Lemma 5.6. Assume (A1), (A2) and (A3). Then, there exists ρ1 > 1 and η > 0 such that

sup
0<ε≤1

E
[
exp
(
ρ1〈ν̄, r2

ε,1〉/ε2
)
IUη (εw)I{|r1ε,1/ε|≤η1}

]
<∞

for any η1 > 0.

Proof. By Lemma 5.3 and the relation r2
1,ε/ε

2 = φ2
1 + r2+

ε,1/ε
2, it is sufficient to show that

sup
0<ε≤1

E
[
exp
(
ρ1〈ν̄, φ2

1〉
)
IUη (εw)I{|r1ε,1/ε|≤η1}

]
<∞. (5.15)

Then, from (5.10) and (5.12) we have

φ2
1(w) = lim

m→∞
φ2

1(w(m)) = lim
m→∞

A(w(m), w(m))− (const)

= φ2
1(πw) + 2

∑
j,j′

φ1,j
1 (w)Kjj′ · A〈w, ]φ1,j′

1 〉

+
∑

j,j′,k,k′

φ1,j
1 (w)φ1,k

1 (w)Kjj′Kkk′ · A〈]φ1,j′

1 , ]φ1,k′

1 〉 =: Z1 + Z2 + Z3. (5.16)

Note that A〈w, ]φ1,j′

1 〉 and A〈]φ1,j′

1 , ]φ1,k′

1 〉 are well-defined as Young integrals.
Exponential integrability of the first term Z1 on the right hand side of (5.16) is given

in (5.13). So, we estimate the second term Z2. Since εφ1
1(w) = r2

ε,1(w) − r1
ε,1(w) and

|A〈w, ]φ1,j′

1 〉| . ‖w‖p−var, we have

|φ1,j
1 (w)A〈w, ]φ1,j′

1 〉| ≤ c1
{∣∣∣r2

ε,1(w)

ε

∣∣∣+
∣∣∣r1
ε,1(w)

ε

∣∣∣}‖w‖p−var
≤ c1

{∣∣∣c′r2
ε,1(w)

ε

∣∣∣2 +
‖w‖2p−var

4c′2

}
+ c1

∣∣∣r1
ε,1(w)

ε

∣∣∣‖w‖p−var
for any c′ > 0.
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Set c2 = 2c1n
2 supj,j′ |Kj,j′ | and let M > 0. Then, by Hölder’s inequality,

E
[
eM |Z2|IUη (εw)I{|r1ε,1/ε|≤η1}

]
≤ E

[
exp
(
3Mc2c

′2|r2
ε,1/ε|2

)
IUη (εw)

]1/3
×E
[
e3Mc2‖w‖2p−var/(4c

′)
]1/3

E
[
e3Mc2η1‖w‖p−var

]1/3
.

For any M > 0 and η1 > 0, the third factor is integrable. If c′ is chosen sufficiently large,
then the second factor is also integrable by Fernique’s theorem. By Lemma 5.4, there
exists η > 0 such that supε of the first factor is finite and, hence,

sup
0<ε≤1

E
[
eM |Z2|IUη (εw)I{|r1ε,1/ε|≤η1}

]
<∞. (5.17)

Since φ1,j
1 (w)φ1,k

1 (w) = ε−1{r2
ε,1(w)j − r1

ε,1(w)j}φ1,k
1 (w), we can deal with Z3 in the

same way. For any M > 0 and η1 > 0, there exists η > 0 such that

sup
0<ε≤1

E
[
eM |Z3|IUη (εw)I{|r11,ε/ε|≤η1}

]
<∞. (5.18)

Let ρ > 1 be as in (5.13). Set ρ1 = (1 +ρ)/2 > 1, s = 2ρ/(1 +ρ) > 1, and 1/s+ 1/s′ = 1.
Then, from Hölder’s inequality and (5.13), (5.16)–(5.18), we can easily see that

E
[
exp
(
ρ1〈ν̄, φ2

1〉
)
IUη (εw)I{|r11,ε/ε|≤η1}

]
≤ E

[
exp
(
ρ〈ν̄, φ2

1 ◦ π〉
)]1/s 2∏

i=1

E
[
e2q′ρ1|ν̄||Zi|IUη (εw)I{|r11,ε/ε|≤η1}

]1/(2s′)
.

From this, (5.15) is immediate. This completes the proof.

5.3 Proof of off-diagonal short time asymptotics

In this subsection we prove Theorem 2.2, namely, off-diagonal short time asymptotics
of the density of the solution (yt) = (yt(a)) of RDE (2.1) driven by fractional Brownian
rough path w with 1/3 < H ≤ 1/2 under Assumptions (A1)–(A3).

First, let us calculate the kernel p(t, a, a′). Take η > 0 as in Lemma 5.6. Then, we see

p(ε1/H , a, a′) = E
[
δa′(y

ε
1)
]

= E
[
δa′(y

ε
1)χη(ε, w)

]
+ E

[
δa′(y

ε
1)
{

1− χη(ε, w)
}]

=: I1 + I2.

As we have shown in Lemma 5.2, the second term I2 on the right hand side does not
contribute to the asymptotic expansion. So, we have only to calculate the first term I1.
By Cameron-Martin formula,

I1 = E
[
exp
(
−‖γ̄‖

2
H

2ε2
− 1

ε
〈γ̄, w〉

)
δa′(ỹ

ε
1)χη(ε, w +

γ̄

ε
)
]
.

Recall that 〈γ̄, w〉 = 〈ν̄, φ1
1(w)〉 for all w. Hence, we have

I1 = exp
(
−‖γ̄‖

2
H

2ε2

)
E
[
exp
(
−1

ε
〈ν̄, φ1

1〉
)
δa′(a

′ + εφ1
1 + r2

ε,1)χη(ε, w +
γ̄

ε
)
]

=
1

εn
exp
(
−‖γ̄‖

2
H

2ε2

)
E
[
exp
(
−1

ε
〈ν̄, φ1

1〉
)
δ0(φ1

1 + ε−1r2
ε,1)χη(ε, w +

γ̄

ε
)
]

=
1

εn
exp
(
−‖γ̄‖

2
H

2ε2

)
E
[
exp
(
〈ν̄, r2

ε,1〉/ε2
)
δ0(φ1

1 + ε−1r2
ε,1)χη(ε, w +

γ̄

ε
)
]

=
1

εn
exp
(
−‖γ̄‖

2
H

2ε2

)
E
[
F (ε, w)δ0

( ỹε1 − a′
ε

)]
,
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where

F (ε, w) = exp
(
ε−2〈ν̄, r2

ε,1〉
)
χη(ε, w +

γ̄

ε
)ψ
( 1

η2
1

∣∣∣ ỹε1 − a′
ε

∣∣∣2) (5.19)

for any positive constant η1. Here, ψ is the cut-off function introduced in Subsection 5.1.
It is easy to see that (i) χη(ε, w + γ̄/ε) and its derivatives vanish outside {w | εw ∈ Uη}
and (ii) ψ

(
η−2

1

∣∣(ỹε1 − a′)/ε∣∣2) and its derivatives vanish outside {|r1
ε,1/ε| ≤ η1}. Hence,

by Lemma 5.6, F (ε, w) ∈ D̃∞ and F (ε, w) = O(1) with respect to that topology. Since
δ0((ỹε1 − a′)/ε) admits an asymptotic expansion in D̃−∞, the problem reduces to whether
F (ε, w) admits an asymptotic expansion in D̃∞.

Lemma 5.7. Assume (A1)–(A3). For any M ∈ N, we have

E
[
F (ε, w)δ0

( ỹε1 − a′
ε

)]
= E

[
F (ε, w)ψ(|φ1

1/η1|2)δ0
( ỹε1 − a′

ε

)]
+O(εM )

as ε↘ 0.

Proof. By using Taylor expansion for ψ, we see that, for given M , there exist m ∈ N and
Gj(ε, w) ∈ D∞ (1 ≤ j ≤ m) such that

ψ
( 1

η2
1

∣∣∣ ỹε1 − a′
ε

∣∣∣2) = ψ
(∣∣φ1

1

η1

∣∣2)+

m∑
j=1

ψ(j)
(∣∣φ1

1

η1

∣∣2)Gj(ε, w) +O(εM ) (5.20)

in D∞ as ε ↘ 0. Gj(ε, w) = O(1), but its explicit form is not important. Note that
ψ(j)(|φ1

1/η1|2)T (φ1
1) = 0 if j ≥ 1 and supp(T ) ⊂ {a ∈ Rn | |a| < η1/2}.

By Proposition 4.2 and Watanabe’s asymptotic theory in [56, 29], δ0((ỹε1−a′)/ε) admits
an asymptotic expansion in D̃−∞ as follows. As before, we set {0 = ν0 < ν1 < ν2 < · · · }
to be all the elements of Λ3 in increasing order. For given M , let l ∈ N be the smallest
integer such that M ≤ νl+1. Then, for some Φνj ∈ D̃−∞ (1 ≤ j ≤ l), it holds that

δ0((ỹε1 − a′)/ε) = δ0(φ1
1) + εν1Φν1 + · · ·+ ενlΦνl +O(ενl+1) (5.21)

in D̃−∞ as ε↘ 0. Here, Φνj is a finite linear combination of terms of the form

∂βδ0(φ1
1)× {a polynomial of the components of φκi1 ’s},

where β stands for a multi-index. Hence, ψ(j′)(|φ1
1/η1|2)Φνj vanish for all j, j′.

Now, using (5.20) and (5.21), we prove the lemma.

E
[
F (ε, w)δ0((ỹε1 − a′)/ε)

]
= E

[
F (ε, w)ψ

( 1

η2
1

∣∣∣ ỹε1 − a′
ε

∣∣∣2)δ0((ỹε1 − a′)/ε)
]

= E
[
F (ε, w)ψ(|φ1

1/η1|2)δ0((ỹε1 − a′)/ε)
]

+ E
[
F (ε, w)

( m∑
j=1

ψ(j)
(∣∣φ1

1

η1

∣∣2)Gj(ε, w)
)
δ0((ỹε1 − a′)/ε)

]
+O(εM )

= E
[
F (ε, w)ψ(|φ1

1/η1|2)δ0((ỹε1 − a′)/ε)
]

+ E
[
F (ε, w)

( m∑
j=1

ψ(j)
(∣∣φ1

1

η1

∣∣2)Gj(ε, w)
)(
δ0(φ1

1) + · · ·+ ενlΦνl
)]

+O(εM )

= E
[
F (ε, w)ψ(|φ1

1/η1|2)δ0((ỹε1 − a′)/ε)
]

+O(εM ).

Thus, we have shown the lemma.
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Set Λ′2 = {κ − 2 | κ ∈ Λ1 \ {0, 1}}. If H 6= 1/2, then Λ′2 = {0 < H−1 − 2 < 1 < · · · }.
Next we set Λ′3 = {a1 + a2 + · · · + am | m ∈ N+ and a1, . . . , am ∈ Λ′2}. In the following
lemma, {0 = ξ0 < ξ1 < ξ2 < · · · } stands for all the elements of Λ′3 in increasing order.

Note that the following lemma does not claim Fk+1(ε, w) = O(εξk+1), but it claims
Fk+1(ε, w)T (φ1

1) = O(εξk+1) if T ∈ S ′(Rn) is for example of the form ∂βδ0.

Lemma 5.8. Assume (A1)–(A3) and let F (ε, w) ∈ D̃∞ as in (5.19). Then, for every
k = 1, 2, 3, . . .,

F (ε, w)ψ(|φ1
1(w)/η1|2)

= exp
(
〈ν̄, φ2

1(w)
)
ψ(|φ1

1(w)/η1|2)2{1 + εξ1Kξ1(w) + · · ·+ εξkKξk(w)}+ Fk+1(ε, w),

where Fk+1(ε, w) ∈ D̃∞ satisfies that

Fk+1(ε, w)T (φ1
1) = O(εξk+1) in D−∞ as ε↘ 0

for any T ∈ S ′(Rn) with supp(T ) ⊂ {a ∈ Rn | |a| ≤ η1/2}. Moreover, Kξj ∈ D∞ (j =

1, 2, . . .) are determined by the following formal expansion (κ3 = H−1 if H 6= 1/2);

∞∑
m=0

〈ν̄, rκ3
ε,1/ε

2〉m

m!
=
∞∑
m=0

1

m!

{
εκ3−2〈ν̄, φκ3

1 〉+ εκ4−2〈ν̄, φκ3
1 〉+ · · ·

}m
= 1 + εξ1Kξ1 + εξ2Kξ2 + · · · .

Proof. Let ρ1 > 1 be as in Lemma 5.6. First we show that, for any η1 > 0,

E
[
exp
(
ρ1〈ν̄, φ2

1〉
)
I{|φ1

1|≤η1}
]
<∞. (5.22)

We can choose a subsequence {εk} such that, as k →∞, εk ↘ 0 and R1,εk
1 /εk → φ1

1 a.s.
To prove (5.22), we apply Fatou’s lemma to (5.15) with η1 replaced by 2η1.

∞ > lim inf
k→∞

E
[
exp
(
ρ1〈ν̄, φ2

1〉
)
IUη (εkw)I{|r1εk,1/εk|≤2η1}

]
≥ E

[
exp
(
ρ1〈ν̄, φ2

1〉
)

lim inf
k→∞

I{|r1εk,1/εk|≤2η1}
]
≥ E

[
exp
(
ρ1〈ν̄, φ2

1〉
)
I{|φ1

1|≤η1}
]
.

From (5.22), it is easy to check that exp
(
〈ν̄, φ2

1〉
)
ψ(|φ1

1/η1|2) ∈ D̃∞.
Now we expand exp(〈ν̄, r2

ε,1〉/ε2) = exp(〈ν̄, φ2
1〉) exp(〈ν̄, rκ3

ε,1〉/ε2) in ε. Set Ql+1 : R→ R

by

Ql+1(u) = eu −
(

1 + u+
u2

2!
+ · · ·+ ul

l!

)
= ul+1

∫ 1

0

(1− θ)l

l!
eθudθ (u ∈ R).

We will prove that, for sufficiently large l ∈ N, as ε↘ 0,

e〈ν̄,φ
2
1〉Ql+1(〈ν̄, rκ3

ε,1〉/ε2)χη(ε, w +
γ̄

ε
)ψ(|φ1

1/η1|2) = O(εξk+1) in D̃∞. (5.23)

Note that χη(ε, w + γ̄
ε ) = O(1) in D∞ as ε ↘ 0 by (5.6). By Proposition 4.3, rκ3

ε,1/ε
2 =

O(εκ3−2) in D∞. So, if l + 1 ≥ ξk+1/(κ3 − 2), then (〈ν̄, rκ3
ε,1〉/ε2)l+1 = O(εξk+1) in D∞.

Therefore, in order to verify (5.23), it is sufficient to show that, as ε↘ 0,∫ 1

0

(1− θ)le〈ν̄,φ
2
1+θr

κ3
ε,1/ε

2〉dθ · χη(ε, w +
γ̄

ε
)ψ(|φ1

1/η1|2) = O(1) in D̃∞. (5.24)

To verify the integrability of this Wiener functional, note that eθu ≤ 1+eu for all u ∈ R and
0 ≤ θ ≤ 1. This implies that the first factor on the left hand side of (5.24) is dominated by
e〈ν̄,φ

2
1〉 + e〈ν̄,r

2
ε,1〉/ε

2

. From Lemma 5.6 and (5.22), we see that the left hand side of (5.24)
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is O(1) in any Lr (1 < r <∞). In the same way, the Malliavin derivatives of the left hand
side of (5.24) are O(1) in any Lr.

It is easy to see that, as ε↘ 0,

l∑
k=0

{〈ν̄, rκ3
ε,1〉/ε2}k

k!
= 1 + εξ1Kξ1 + · · ·+ εξkKξk +O(εξk+1) in D∞. (5.25)

From this and (5.6), we see that

F (ε, w)ψ(|φ1
1(w)/η1|2)

= exp
(
〈ν̄, φ2

1(w)
)
ψ(|φ1

1(w)/η1|2)ψ
( 1

η2
1

∣∣∣ ỹε1 − a′
ε

∣∣∣2){1 + εξ1Kξ1(w) + · · ·+ εξkKξk(w)}

+O(εξk+1) in D̃∞.

Using (5.20), we finish the proof.

Proof of the main theorem (Theorem 2.2). Now we prove our main theorem in this paper.
We set

Λ4 = Λ3 + Λ′3 = {ν + ξ | ν ∈ Λ3, ξ ∈ Λ′3}.

We denote by {0 = λ0 < λ1 < λ2 < · · · } all the elements of Λ4 in increasing order.
It is no mystery why this index set appears in the short time expansion of the kernel
because, very formally speaking, the problem reduces to finding asymptotic behavior of
E[exp(〈ν̄, r2

ε,1〉/ε2) · δ0(r1
ε,1/ε)], as we have seen. Now, by (5.19), Lemma 5.7 Lemma 5.8,

and (5.21), we can easily prove the asymptotic expansion in Theorem 2.2. It is easy to
see that α0 = E[e〈ν̄,φ

2
1〉δ(φ1

1)] > 0.
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