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A comparison of a nonlinear sigma model with general
pinning and pinning at one point
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Abstract

We study the nonlinear supersymmetric hyperbolic sigma model introduced by Zirn-
bauer in 1991. This model can be related to the mixing measure of a vertex-reinforced
jump process. We prove that the two-point correlation function has a probabilistic
interpretation in terms of connectivity in rooted random spanning forests. Using this
interpretation, we dominate the two-point correlation function for general pinning,
e.g. for uniform pinning, with the corresponding correlation function with pinning at
one point. The result holds for a general finite graph, asymptotically as the strength of
the pinning converges to zero. Specializing this to general ladder graphs, we deduce
in the same asymptotic regime exponential decay of correlations for general pinning.
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1 Introduction

History of the model. The nonlinear sigma model that we consider here was intro-
duced by Zirnbauer in [8] as a toy model inspired by random matrices in the context of
disordered materials. It can be seen as a statistical mechanical model where spins are
replaced by vectors with both real and Grassmann components. We associate with each
point two real and two Grassmann variables parametrizing a supersymmetric extension
of the hyperbolic plane. Therefore the model is often denoted by H2|2. In dimension
three and higher, a phase transition between a localized (disordered) and an extended
(ordered) phase was proved by Disertori, Spencer, and Zirnbauer in [6] and [5].

After integrating out the Grassmann variables in the nonlinear sigma model, the
corresponding marginal is a probability measure. It was shown by Sabot and Tarrès in
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Comparing nonlinear sigma models with different pinnings

[7] that this marginal has an interpretation as a mixing measure for a vertex-reinforced
jump process and can also be related to linearly edge-reinforced random walk. Exploiting
the former relation, the results in [6] and [5] were used by Sabot and Tarrès in [7] to
deduce recurrence for vertex-reinforced jump processes in all dimensions for small
initial weights and transience in dimensions d ≥ 3 for large initial weights. For linearly
edge-reinforced random walks, Sabot and Tarrès proved recurrence in all dimensions
for small initial weights. An alternative proof, without using the connection to H2|2, was
given by Angel, Crawford, and Kozma in [2]. In dimensions d ≥ 3, Disertori, Sabot, and
Tarrès showed in [4] transience for linearly edge-reinforced random walks for large initial
weights using techniques similar to the one used in [6]. In [3], we proved recurrence for
vertex-reinforced jump processes on general ladder graphs with arbitrary constant initial
weights using the connection to H2|2 just mentioned and a transfer operator method
applied to H2|2.

The role of pinning. Without a regularization the modelH2|2 is ill-defined. On a lattice,
the most natural choice is to introduce a translationally invariant regularization. This
is equivalent to introduce a constant “magnetic field” ε in the corresponding statistical
mechanics model. This magnetic field at point j can be interpreted as a “pinning”,
forcing the spin at point j to remain near a certain value. Then, a constant magnetic
field can be seen as uniform pinning. Another possibility is to take an inhomogeneous
magnetic field, the easiest choice being pinning at a single point.

In this paper, we consider the model on a finite connected undirected graph G, rather
than only lattices. The pinning can also be seen as a modification of the underlying
graph as follows. We augment G by an additional vertex ρ in two different ways. In the
case of uniform pinning, ρ is connected to every other vertex. In the case of pinning at
one point, ρ is only connected to a single vertex in G. When G is a lattice or a ladder
graph, the first graph has a nonlocal structure since the graph distance between any
two vertices is bounded by 2, whereas the second graph remains local.

In the case of ladder graphs, the local structure for pinning at one point allowed us
to prove exponential decay of correlations for arbitrary inverse temperature β; see [3].
However, due to the nonlocal structure of the augmented graph, a similar method is not
directly applicable for uniform pinning.

Aim and organization of this paper. The aim of this paper is to bound the expec-
tation of the Green’s function in the case of uniform (or general) pinning with the
corresponding Green’s function for pinning at one point, asymptotically as ε → 0, for
any inverse temperature β > 0. This result holds for general finite graphs. Specializing
it down to ladder graphs, it allows us to transfer known bounds for pinning at one point
to the case of the Green’s function for uniform pinning.

In Section 2, the model is formally defined and the results are stated and discussed.
In Subsection 3.1, we relate the Green’s function with a probability concerning certain
random spanning trees. Subsection 3.2 contains the proof of the comparison between
the different pinnings. The model H2|2 with pinning at one point has a product structure
when passing to gradient variables, that the model H2|2 with uniform pinning does not
exhibit. This product structure is explained in the appendix.

2 Model and results

2.1 Formal definition

Let G = (V,E) be a finite connected graph with vertex set V and edge set E, consisting
of undirected edges i ∼ j. We extend G by adding an extra vertex ρ and edges i ∼ ρ
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Comparing nonlinear sigma models with different pinnings

connecting it to every other vertex i. The extended graph is denoted by Gρ := (Vρ, Eρ)

with Vρ := V ∪ {ρ} and Eρ := E ∪ {(i ∼ ρ) : i ∈ V }.
We attach to every edge i ∼ j of G an edge weight βij = βji > 0. Moreover, for i ∈ V ,

the edge i ∼ ρ gets a weight βiρ = βρi = εi ≥ 0. We assume that εi > 0 for at least
one vertex i ∈ V . To every vertex i ∈ V , we associate two real variables ti and si, and
abbreviate t := (ti)i∈V and s := (si)i∈V . Furthermore, we set tρ := 0 and sρ := 0. For
i, j ∈ Vρ, we define

Bij(t, s) := cosh(ti − tj) + 1
2 (si − sj)2eti+tj . (2.1)

In particular, for i ∈ V , we have

Biρ(t, s) = cosh(ti) + 1
2s

2
i e
ti . (2.2)

In the following, we study an equivalent version of the modelH2|2, where the contribution
from Grassmann variables is replaced by a sum over spanning trees T of Gρ. Let T
denote the set of spanning trees of Gρ. We identify every tree with its edge set. The
spanning trees T of Gρ are in a natural one-to-one correspondence with rooted spanning
forests of G as follows. Given T ∈ T , the corresponding spanning forest has the edge set

F (T ) := T ∩ E (2.3)

and the set of roots

R(T ) := {i ∈ V : (i ∼ ρ) ∈ T}. (2.4)

Using this notation, we have for t ∈ RV and T ∈ T∏
(i∼j)∈T

βije
ti+tj =

∏
(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti . (2.5)

In this representation, H2|2 is described by the following probability measure on
RV×RV×T

µε(dt ds dT ) :=
∏
j∈V

dtjdsje
−tj

2π
dT

∏
(i∼j)∈Eρ

e−βij(Bij(t,s)−1)
∏

(i∼j)∈T

βije
ti+tj (2.6)

=
∏
j∈V

dtjdsje
−tj

2π
dT

∏
(i∼j)∈E

e−βij(Bij(t,s)−1)
∏
i∈V

e−εi(Biρ(t,s)−1)
∏

(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti ,

where dtj and dsj , j ∈ V , denote the Lebesgue measure on R and dT is the counting
measure on T . As is shown in [6], using supersymmetry and the equivalent description
in terms of Grassmann variables, µε is a probability measure.

For convenience, we suppress the dependence of µε on G and β in the notation. The
symbols t, s, and T are used in two slightly different ways: On the one hand, they denote
the canonical projections on RV ×RV × T . On the other hand, the same symbols are
used as integration (or summation) variables.

Consider the matrix A(t) ∈ RV×V defined by

A(t)ij :=


−βijeti+tj for (i ∼ j) ∈ E,∑
k∈V :

(k∼j)∈E

βkje
tk+tj for i = j,

0 else.

(2.7)
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Comparing nonlinear sigma models with different pinnings

Let Aρ(t) denote the analog of A(t) when the underlying graph is Gρ instead of G and let
ε̂ be the following diagonal matrix:

ε̂ := diag(εie
ti , i ∈ V ). (2.8)

Deleting the row and the column indexed by ρ from Aρ(t), we get the matrix Aρ(t)ρcρc =

A(t) + ε̂(t). Hence, by the well-known matrix tree theorem (see [1] for a generalized
version),

det(A(t) + ε̂) = det (Aρ(t)ρcρc) =
∑
T∈T

∏
(i∼j)∈T

βije
ti+tj . (2.9)

Consequently, the (t, s)-marginal of µε is precisely the supersymmetric sigma model
studied e.g. in [5].

2.2 Results

The proofs of all results stated here are given in Section 3. Let x, y ∈ V be two
different vertices and πi ≥ 0, i ∈ V , be fixed numbers with πx, πy > 0. Given ε > 0, we set

ε = (εi)i∈V = (πiε)i∈V . (2.10)

We are interested in the following Green’s function

Gε
xy := etx+ty (A(t) + ε̂(t))−1xy . (2.11)

It has the following probabilistic interpretation in terms of random weighted spanning
trees:

Lemma 2.1. There is a version Pβ,t of the conditional law of µε given t that fulfills

Pβ,t(T = S) =

∏
e∈S βe(t)∑

S′∈T
∏
e′∈S′ βe′(t)

, for S ∈ T , (2.12)

with βe(t) := βije
ti+tj for e = (i ∼ j). Writing x

T↔ y if x and y are connected in the
spanning tree T through a path which does not use ρ, we have

Gε
xy =

etx+ty

εxetx + εyety
Pβ,t({(x ∼ ρ) ∈ T and x

T↔ y} ∪ {(y ∼ ρ) ∈ T and x
T↔ y}). (2.13)

We define

Oπxy :=
etx+ty

πxetx + πyety
1
{(x∼ρ)∈T and x

T↔y}
. (2.14)

As a consequence of Lemma 2.1, one has

Gε
xy = ε−1Eµε [Oπxy +Oπyx|t] = Eµε [Oε

xy +Oε
yx|t]. (2.15)

The expression Eµε [·|t] stands for the conditional expectation given t.
We denote by εxδx ∈ RV the vector with coordinate εx at x and coordinates 0 at all

other locations. Our main theorem can now be phrased as follows.

Theorem 2.2. Let πi ≥ 0, i ∈ V , be fixed numbers with πx, πy > 0. We have the following
asymptotic comparison between the supersymmetric sigma model with arbitrary pinning
ε = (εi)i∈V = (πiε)i∈V and with pinning at one point:

0 < lim
ε↓0

εEµε [Gε
xy] ≤ lim

ε↓0

(
Eµεxδx

[
Oπxy

]
+ Eµεyδy

[
Oπyx

])
<∞ (2.16)

In particular, the two limits exist.
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Remark. It is important that in (2.16) we keep the random variable Oπxy with the
original π. Indeed, if we replaced Oπxy by Oπxδxxy we would get

Eµεxδx

[
Oπxδxxy

]
= Eµεxδx

[
ety

πx

]
=

1

πx
(2.17)

by formula (A.7) in the appendix. This bound would give no information on eventual
decay in |y − x|.

Ladder graphs. In the special case of quasi-one-dimensional graphs this theorem
implies exponential decay of the expectation of Gε

xy. More precisely, consider a finite
undirected graph Γ0 = (V0, E0) with vertex set V0 and edge set E0. Let G = (V,E) be
the “ladder” built of copies Γn = (Vn, En), n ∈ Z, of Γ0. More precisely, we take the
vertex sets V := Z× V0 and Vn := {n} × V0, where the copy at level 0 is identified with
Γ0. The edge set E consists of “vertical” edges en := ((n, v) ∼ (n, v′)) with n ∈ Z and
e = (v ∼ v′) ∈ E0 and “horizontal” edges vn+1/2 := ((n, v) ∼ (n + 1, v)) with n ∈ Z
and v ∈ V0. For L,L ∈ N, we set L := (−L,L) and denote by GL the subgraph of G
consisting of the vertex set VL := {−L, . . . , L} × V0 and the edge set EL containing all
edges e ∈ E connecting two vertices in VL. We associate with every edge e ∈ E a weight
βe > 0. We assume that the family of weights β := (βe)e∈E is translation invariant in
the sense βen = βe0 and βvn+1/2

= βv1/2 for all n ∈ Z, e ∈ E0, and v ∈ V0. For x = (n, v)

and y = (m,w) in V , their horizontal distance is defined by |x − y| := |n −m|. Let µε
L

denote the distribution of the supersymmetric sigma model on the graph GL with pinning
ε = (εi)i∈VL = (επi)i∈VL , where πi ≥ 0, i ∈ VL, with at least one πi > 0.

Corollary 2.3. There exist constants c1, c2 > 0 depending only on Γ0 and β such that for
any L, any two different vertices x, y ∈ VL with πx, πy > 0, and c3(π) := min{πx, πy}−1
one has

0 < lim
ε↓0

εEµε
L

[Gε
xy] ≤ c1c3e−c2|x−y|. (2.18)

For sufficiently small β > 0, the methods from [5] can be used to prove a version of
(2.18) not only for the limit as ε ↓ 0, but also for given ε > 0 small enough. In contrast,
our result holds for arbitrary β > 0, but only asymptotically for ε ↓ 0.

2.3 Discussion

Meaning and some properties of the Green’s function. In the original representa-
tion of the H2|2-model the spin at a point j is given by a vector consisting of three even
elements xj , yj , zj and two odd elements ξj , ηj in a real Grassmann algebra subject to
the constraints 1 +x2j + y2j − z2j + 2ξjηj = 0 and zj > 0; see [6]. Introducing horospherical

coordinates tj , sj , ψj , ψj as in section 2.2 of [6], one has in particular yj = sje
tj . Since

the Gaussian part in the measure µε is given by exp[− 1
2s
t(A(t) + ε̂(t))s], the Green’s

function defined in (2.11) is given by the conditional two-point correlation function

Gε
ij = Eµε [sisje

ti+tj |t] = Eµε [yiyj |t] = Covµε(yi, yj |t). (2.19)

Moreover, if we denote by 〈·〉ε the superintegration measure for H2|2 including the
Grassmann variables, we get the unconditional two-point correlation function

Eµε [Gε
ij ] = Eµε [sisje

ti+tj ] = Eµε [yiyj ] = 〈yiyj〉ε = 〈xixj〉ε, (2.20)

where the last identity is due to rotational symmetry in the xy-plane.
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Comparing nonlinear sigma models with different pinnings

The following sum rule for the expected Green’s function holds:∑
j∈V

εjEµε [Gε
ij ] = 1. (2.21)

For the special case of uniform pinning this equals formula (4.6) in [6]. As explained in
appendix B of that paper, this formula is a consequence of the Lorentz boost symmetry
in the yz-plane. The same argument proves also the generalization (2.21) as follows. The
Lorentz boost symmetry generator L2 fulfills L2yj = zj and L2zj = yj for any j ∈ V . Let
Aβ,ε denote the action of the H2|2-model in x, y, z coordinates as given in formula (2.6)
of [6]. With explanations given below, we obtain for the observable F = yi

1 = 〈zi〉ε = 〈L2F 〉ε = 〈FL2Aβ,ε〉ε =

〈
F
∑
j∈V

εjL2zj

〉
ε

=
∑
j∈V

εj 〈yiyj〉ε =
∑
j∈V

εjEµε [Gε
ij ]. (2.22)

The first equality is contained in (B.3) from [6]. The third equality follows from (B.2) in
[6]. Finally, the fourth equality holds since

∑
j εjzj is the only contribution in the action

Aβ,ε not invariant under L2.

Vertex-reinforced jump processes for general pinning. According to [7], the mix-
ing measure for the vertex-reinforced jump process (VRJP) with starting point x on the
graph G = (V,E) with edge weights βij can be described in terms of the model H2|2 on
the same graph with the same edge weights and pinning at the single point x. Here is
an alternative description, which is well-suited for the generalization to general pinning.
Consider the augmented graph Gρ from Section 2.1 with the additional edge weights
βxρ = εx > 0 but βiρ = 0 for i ∈ V \ {x}. The VRJP on G with starting point x can be
obtained from the VRJP on Gρ with starting point ρ by removing all time intervals where
the random walker stays in ρ. Corresponding to this fact, the H2|2 model on Gρ with
reference point ρ, i.e. tρ = sρ = 0, encodes both, the mixing measure for VRJP with
starting point ρ on the graph Gρ and for VRJP with starting point x on the graph G.

For general pinning, we drop the condition βiρ = 0 for i ∈ V \ {x}, taking again the
augmented graph Gρ, now with arbitrary edge weights βiρ = εi, i ∈ V , εx > 0. In this
general setup, the easy connection between VRJP on Gρ with start in ρ and VRJP on G
with start in x gets lost. However, the description of the mixing measure for VRJP on Gρ
with start in ρ in terms of the H2|2 model on Gρ with reference point ρ but arbitrary edge
weights remains valid.

Order of limits. In spin models like the Ising model or the Heisenberg model, having
a compact symmetry space, one usually takes the thermodynamic limit |V | → ∞ first
and then the limit of vanishing symmetry breaking field h→ 0, the other order of limits
lim|V |→∞ limh→0 being trivial.

In contrast to this, the H2|2 models have a non-compact symmetry space. Then the
order of limits lim|V |→∞ limε→0 is ill-defined unless one takes care of the 1

ε divergence,
which is already visible in the sum rule (2.21). In the case of uniform pinning, the order of
limits limε→0 lim|V |→∞ is less relevant than the coupled limit |V | → ∞ with εi = O(|V |−1)

for all i ∈ V . For a general pinning this corresponds to require
∑
j∈V εj = O(1). From

the point of view of the VRJP this means that the total jump rate starting from the
reference point ρ should remain bounded if the volume |V | of the graph diverges.
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Here, we rescale the 1
ε divergence and consider the limit ε → 0 before the limit

|V | → ∞. Theorem 2.2 shows for any finite graph that the limit

gij := lim
ε↓0

εjEµε [Gε
ij ] (2.23)

exists. By the sum rule (2.21), it fulfills∑
j∈V

gij = 1. (2.24)

For strips, gij decays exponentially in |i− j| uniformly in the volume by Corollary 2.3.
The order of limits lim|V |→∞ limε→0 studied in this paper is relevant for the localized

regime, where one expects εjEµε [Gε
ij ] to decay exponentially in |i− j|, uniformly in the

volume and ε. In this case, the rescaled expected Green’s function has a summable
dominating function. In particular, if the infinite volume limit lim|V |→∞ limε→0 εjEµε [Gε

ij ]

exists, the sum rule (2.24) survives in the infinite volume limit in this regime.
It remains an open problem to analyze the coupled limit of εjEµε [Gε

ij ] as |V | → ∞
and εi = |V |−1 for all i ∈ V .

3 Proofs

3.1 Probabilistic interpretation of the Green’s function

Let G and Gρ be the graphs introduced in Section 2.1. Without loss of generality,
we assume V = {1, . . . , n} throughout this subsection. Recall that T denotes the set of
spanning trees of Gρ. We will use the definitions (2.3) of the forest F (T ) and (2.4) of the

set of roots R(T ). Finally, recall that x
T↔ y iff x and y are connected in F (T ). For any

x, y ∈ V , let

Txy := {T ∈ T : x ∈ R(T ) and x
T↔ y}. (3.1)

For the proof of Lemma 2.1, we need the following result.

Lemma 3.1. Consider x, y ∈ V and a real symmetric matrix M ∈ RV×V with Mij = 0

whenever i 6= j and there is no edge between i and j. Then, the determinant of the minor
of M obtained by taking away the column x and the row y is given by

detMycxc = (−1)x+y
∑
T∈Txy

 ∏
j∈R(T )\{x}

(∑
i∈V

Mij

) ∏
(i∼j)∈F (T )

(−Mij). (3.2)

Proof. In the case that G is the complete undirected graph with vertex set V , this is
the special case of Theorem 1 of Abdesselam’s article [1] for a symmetric matrix M
when the index sets I and J are replaced by singletons {y}, {x} ⊆ {1, . . . , n}, respectively.
Note that the sign ε(F) appearing in Abdesselam’s formula equals 1 in our special case
because I = {y} and J = {x} are singletons. Since Mij = 0 whenever i 6= j and there is
no edge between i and j, formula (3.2) remains literally true if we replace the complete
graph by the given graph G.

Proof of Lemma 2.1. The tree dependent part of the density of µε in (2.6) is given by∏
e∈T βe(t); note that s and T are conditionally independent given t. Consequently, for-

mula (2.12) describes indeed the law of T conditional on t.
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By definition (2.11), it holds

e−(tx+ty)Gε
xy = (A(t) + ε̂(t))−1xy = (−1)x+y

det(A(t) + ε̂(t))ycxc

det(A(t) + ε̂(t))
. (3.3)

For the numerator, we use Lemma 3.1 with M = A(t) + ε̂. Clearly, all columns of A(t)

sum up to 0. Consequently, for all j ∈ V , one has∑
i∈V

Mij =
∑
i∈V

(Aij(t) + ε̂ij) = ε̂jj = εje
tj . (3.4)

Furthermore, for (i ∼ j) ∈ F (T ), T ∈ T , one has −Mij = βije
ti+tj . Using this, formula

(3.2) yields

(−1)x+y det(A(t) + ε̂(t))ycxc =
∑
T∈Txy

 ∏
j∈R(T )\{x}

εje
tj

 ∏
(i∼j)∈F (T )

βije
ti+tj . (3.5)

Multiplying this equation by εxe
tx and using formula (2.5), we get

(−1)x+yεxe
tx det(A(t) + ε̂(t))ycxc =

∑
T∈Txy

 ∏
j∈R(T )

εje
tj

 ∏
(i∼j)∈F (T )

βije
ti+tj

=
∑
T∈Txy

∏
(i∼j)∈T

βije
ti+tj . (3.6)

Hence, using (2.9) for the denominator, we obtain

εxe
tx(A(t) + ε̂(t))−1xy =(−1)x+yεxe

tx
det(A(t) + ε̂(t))ycxc

det(A(t) + ε̂(t))

=

∑
T∈Txy

∏
(i∼j)∈T βije

ti+tj∑
T∈T

∏
(i∼j)∈T βije

ti+tj

=Pβ,t(T ∈ Txy) = Pβ,t((x ∼ ρ) ∈ T and x
T↔ y). (3.7)

Exchanging x and y and using the symmetry of A(t) + ε̂(t), we get

εye
ty (A(t) + ε̂(t))−1xy =Pβ,t(T ∈ Tyx) = Pβ,t((y ∼ ρ) ∈ T and x

T↔ y). (3.8)

Since x 6= y, the sets Txy and Tyx are disjoint. Hence, Pβ,t(T ∈ Txy) + Pβ,t(T ∈ Tyx) =

Pβ,t(T ∈ Txy ∪ Tyx). Finally, we add (3.7) and (3.8) and insert them into (3.3) to obtain
the claim (2.13).

3.2 Comparing different pinnings

We write the random variable Oπxy defined in (2.14) as a sum:

Oπxy = Oπxy1{R(T )={x}} +Oπxy1{|R(T )|>1}. (3.9)

Note that we have Oπxy1{|R(T )|=1} = Oπxy1{R(T )={x}} because Oπxy contains the indicator
function of the event {(x ∼ ρ) ∈ T}.

The proof of Theorem 2.2 is based on Lemmas 3.2 and 3.4, below, dealing with the
first and second summand in (3.9), respectively. Surprisingly, the main mass contributing
to the expectation of the first and second summand in (3.9) comes from quite different
locations; see also the explanations following formula (3.31), below. On the one hand,
values (t, s) with tj ≈ − log ε carry most of the mass for the expectation of Oπxy1{R(T )={x}}.
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Comparing nonlinear sigma models with different pinnings

On the other hand, the main contribution to the expectation of Oπxy1{|R(T )|>1} comes
from values (t, s) with tj ≈ + log ε. Thus, for small ε > 0, in the two expectations the
main masses sit at opposite ends. As we shall see, the main contribution comes from the
term with precisely one root at x. We examine this contribution first.

Lemma 3.2 (Contribution of one root). For all ε > 0,

Eµε [Oπxy1{R(T )={x}}] ≤e
∑
i∈V \{x} εiEµεxδx

[
Oπxy

]
. (3.10)

Furthermore,

0 < lim
ε↓0

Eµε [Oπxy1{R(T )={x}}] = lim
ε↓0

Eµεxδx

Oπxy√ πxe
tx∑

i∈V πie
ti

∏
i∈V \{x}

e−
1
2 επie

ti


≤ lim

ε↓0
Eµεxδx

[
Oπxy

]
≤ min

{
1

πx
,

1

πy

}
. (3.11)

In particular all the displayed limits exist.

The proof will be a consequence of a more general result, where the family ε is
replaced by another family εa and the random variable Oπxy1{R(T )={x}} is multiplied by
an additional factor χ.

Take a = (ai)i∈V with ai ≥ 0 for all i and ax > 0 and an additional density function
χ : RV → (0, 1]. We will study the expectation

Eµεa [χ(t+ log ε)Oπxy1{R(T )={x}}], (3.12)

where we abbreviate t+ log ε := (ti + log ε)i∈V . The main contribution to the expectation
coming from values of the ti’s close to − log ε motivates us to shift the ti’s by log ε. For
this purpose, we introduce new variables:

t′i := ti + log ε, s′i := ε−1(si − sx) for all i ∈ V. (3.13)

With this definition, s′x = 0. Therefore, we will use as new integration variables (t′i)i∈V , sx,
and (s′i)i∈V \{x}. For any fixed configuration t′, s′ of these new variables, we consider an
auxiliary random variable S′ on some probability space, taking values s′i with probabilities

Pa,t′,s′(S
′ = s′i) :=

aie
t′i

za,t′
, i ∈ V, (3.14)

where

za,t′ :=
∑
i∈V

aie
t′i (3.15)

is the normalizing constant. We denote by Ea,t′,s′ and Vara,t′,s′ the corresponding
expectation and variance operators, respectively. In order to have a compact notation,
we abbreviate in the following

κ(dt′ds′) :=
∏
j∈V

dt′j e
−t′j

2π

∏
j∈V \{x}

ds′j
∏

(i∼j)∈E

e−βij(Bij(t
′,s′)−1)

·
∑
T∈T

∏
(i∼j)∈F (T )

βije
t′i+t

′
j et
′
x

et
′
x+t

′
y

πxet
′
x + πye

t′y
1
{R(T )={x} and x

T↔y}
. (3.16)

Note that κ depends also on the fixed quantities π, (βij)(i∼j)∈E , and on the vertices x, y,
although this is not displayed. We remind that s′x = 0 by construction.
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Comparing nonlinear sigma models with different pinnings

Lemma 3.3. With all the definitions above, we have

e−ε
∑
i∈V aiEµεa [χ(t+ log ε)Oπxy1{R(T )={x}}]

=

∫
RV ×RV \{x}

κ(dt′ds′)
√

2π
za,t′

e−
z
a,t′
2 ε2 Vara,t′,s′ (S

′)
∏
i∈V

e−
1
2ai(e

t′i+ε2e−t
′
i ) · axχ(t′)

↑ε↓0
∫

RV ×RV \{x}

κ(dt′ds′)
√

2π
za,t′

∏
i∈V

e−
1
2aie

t′i · axχ(t′) > 0. (3.17)

Proof. Note that on the event {R(T ) = {x}}, the root contribution in (2.5) is given by
εaxe

tx . Using (2.6), we get

Eµεa [χ(t+ log ε)Oπxy1{R(T )={x}}]

=
∑
T∈T

∫
(RV )2

∏
j∈V

dtjdsje
−tj

2π

∏
(i∼j)∈E

e−βij(Bij(t,s)−1)
∏
i∈V

e−εai(Biρ(t,s)−1)
∏

(i∼j)∈F (T )

βije
ti+tj

· εaxetxχ(t+ log ε)
etx+ty

πxetx + πyety
1
{R(T )={x} and x

T↔y}
. (3.18)

Changing variables according to (3.13), we get (si − sj)2eti+tj = (s′i − s′j)2et
′
i+t
′
j and

Eµεa [χ(t+ log ε)Oπxy1{R(T )={x}}]

=
∑
T∈T

∫
RV

∏
j∈V

dt′j εe
−t′j

2π

∫
R

dsx

∫
RV \{x}

∏
j∈V \{x}

ε ds′j
∏

(i∼j)∈E

e−βij(Bij(t
′,s′)−1)

·
∏
i∈V

e−
1
2ai(e

t′i+ε2e−t
′
i−2ε+(εs′i+sx)

2et
′
i )

∏
(i∼j)∈F (T )

βijε
−2et

′
i+t
′
j · axet

′
x

· χ(t′)
ε−1et

′
x+t

′
y

πxet
′
x + πye

t′y
1
{R(T )={x} and x

T↔y}

=eε
∑
i∈V ai

∫
R

dsx

∫
RV ×RV \{x}

κ(dt′ds′)
∏
i∈V

e−
1
2ai(e

t′i+ε2e−t
′
i+(εs′i+sx)

2et
′
i ) · axχ(t′). (3.19)

For counting powers of ε in the last equality, we have used that F (T ) is a spanning tree
of G for |R(T )| = 1 and consequently |F (T )| = |V | − 1. Next we integrate out sx. In terms
of the auxiliary random variable S′ as specified in (3.14), the part of the exponent in
(3.19) containing sx can be rewritten as follows:∑

i∈V
aie

t′i(εs′i + sx)2 =za,t′Ea,t′,s′ [(εS
′ + sx)2]

=za,t′ Vara,t′,s′(εS
′ + sx) + za,t′Ea,t′,s′ [εS

′ + sx]2

=za,t′ε
2 Vara,t′,s′(S

′) + za,t′ (εEa,t′,s′ [S
′] + sx)

2
(3.20)

This yields ∫
R

dsx exp

[
−1

2

∑
i∈V

aie
t′i(εs′i + sx)2

]

= exp
[
−za,t

′

2
ε2 Vara,t′,s′(S

′)
] ∫

R

dsx exp
[
−za,t

′

2
(εEa,t′,s′ [S

′] + sx)
2
]

=
√

2π
za,t′

exp
[
−za,t

′

2
ε2 Vara,t′,s′(S

′)
]
. (3.21)
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Comparing nonlinear sigma models with different pinnings

Inserting this into (3.19), we obtain the equality claimed in (3.17).
The ε-dependent integrand in (3.17) increases as ε ↓ 0. Hence, by the monotone

convergence theorem, we get the claimed limit.

Proof of Lemma 3.2. To prove (3.10), we compare two special cases of formula (3.17) in
Lemma 3.3, namely χ = 1 with first a = π and second a = πxδx. For a = πxδx we have
Varπxδx,t′,s′(S

′) = 0, hence√
2π
zπ,t′

e−
z
π,t′
2 ε2 Varπ,t′,s′ (S

′)
∏
i∈V

e−
1
2πi(e

t′i+ε2e−t
′
i ) ≤

√
2π

πxe
t′x
e−

1
2πx(e

t′x+ε2e−t
′
x )

=
√

2π
zπxδx,t′

e−
z
πxδx,t′

2 ε2 Varπxδx,t′,s′ (S
′)e−

1
2πx(e

t′x+ε2e−t
′
x ). (3.22)

Inserting this in the equality in Lemma 3.3 yields claim (3.10) as follows

e−
∑
i∈V εiEµε [Oπxy1{R(T )={x}}] ≤e−εxEµεxδx [Oπxy1{R(T )={x}}] = e−εxEµεxδx [Oπxy]. (3.23)

Note that the event {R(T ) = {x}} holds µεxδx -almost surely.
To prove the remaining claim (3.11), we compare three special cases of formula

(3.17) in Lemma 3.3.
Case 1: a = π, χ = 1;

Case 2: a = πxδx, χ(t′) =

√
πxe

t′x∑
i∈V πie

t′
i

∏
i∈V \{x}

e−
1
2πie

t′i =

√
πxe

tx∑
i∈V πie

ti

∏
i∈V \{x}

e−
1
2 επie

ti
;

Case 3: a = πxδx, χ = 1.
Note that √

2π
zπ,t′

=
√

2π
zπxδx,t′

√
πxe

t′x∑
i∈V πie

t′
i
≤
√

2π
zπxδx,t′

. (3.24)

Consequently, the limits in (3.17) for the first two cases coincide, while the limit in the
third case yields an upper bound for the other two cases. Hence,

0 < lim
ε↓0

Eµε [Oπxy1{R(T )={x}}]

= lim
ε↓0

Eµεxδx

Oπxy√ πxe
tx∑

i∈V πie
ti

∏
i∈V \{x}

e−
1
2 επie

ti
1{R(T )={x}}


≤ lim

ε↓0
Eµεxδx

[
Oπxy1{R(T )={x}}

]
. (3.25)

Recall that the event {R(T ) = {x}} holds µεxδx -almost surely. Consequently, we can drop
the indicator function in the last two expectations.

Next, we argue that the last limit is finite. Clearly, from (2.14), we have

Oπxy ≤ min

{
etx

πy
,
ety

πx

}
. (3.26)

By formula (A.7) in the appendix, we conclude

Eµεxδx

[
Oπxy

]
≤Eµεxδx

[
min

{
etx

πy
,
ety

πx

}]
≤min

{
1

πy
Eµεxδx [etx ],

1

πx
Eµεxδx [ety ]

}
= min

{
1

πx
,

1

πy

}
. (3.27)

Since the upper bound is independent of ε, we have the same bound for the limit:
limε↓0Eµεxδx

[
Oπxy

]
≤ min{π−1x , π−1y }.
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Comparing nonlinear sigma models with different pinnings

The next lemma deals with the lower order corrections coming from forests with at
least two roots.

Lemma 3.4 (Contribution of at least two roots).

lim
ε↓0

Eµε [Oπxy1{|R(T )|>1}] = 0. (3.28)

Proof. Let S be a fixed spanning tree of G. We drop the interaction terms βij(Bij−1) ≥ 0

along the edges (i ∼ j) 6∈ S ∪ {x ∼ ρ}. This yields

Eµε [Oπxy1{|R(T )|>1}]

=
∑
T∈T

1{|R(T )|>1}

∫
(RV )2

∏
j∈V

dtjdsje
−tj

2π

∏
(i∼j)∈E

e−βij(Bij(t,s)−1)
∏
i∈V

e−εi(Biρ(t,s)−1)

·
∏

(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti · etx+ty

πxetx + πyety
1
{(x∼ρ)∈T and x

T↔y}

≤
∑
T∈T

1{|R(T )|>1}

∫
(RV )2

∏
j∈V

dtjdsje
−tj

2π

∏
(i∼j)∈S

e−βij(Bij(t,s)−1) · e−εx(Bxρ(t,s)−1)

·
∏

(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti · e

tx

πy
. (3.29)

In the following, we first change variables to sx and gradient variables sij := si − sj ,
(i ∼ j) ∈ S, along the spanning tree S, where the edges in S are oriented in a fixed, but
arbitrary way. Since S is a spanning tree, this is a well defined coordinate change. Then
we integrate the new variables out.

r.h.s. in (3.29)

=
∑
T∈T

1{|R(T )|>1}

∫
RV

∏
j∈V

dtj e
−tj

2π

∫
R

dsx e
−εx(cosh tx−1+ 1

2 s
2
xe
tx )

·
∫
RS

∏
(i∼j)∈S

dsij
∏

(i∼j)∈S

e−βij(cosh(ti−tj)−1+
1
2 s

2
ije

ti+tj )
∏

(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti · e

tx

πy

=
∑
T∈T

1{|R(T )|>1}

∫
RV

∏
j∈V

dtj e
−tj

√
2π

· e−εx(cosh tx−1)ε−
1
2

x e−
1
2 tx

·
∏

(i∼j)∈S

e−βij(cosh(ti−tj)−1)β
− 1

2
ij e−

1
2 (ti+tj)

∏
(i∼j)∈F (T )

βije
ti+tj

∏
i∈R(T )

εie
ti · e

tx

πy
. (3.30)

Next, we set

t′x := tx − log ε, τi := ti − t′x − log ε (3.31)

for i ∈ V . In particular, τx = 0; thus, we use t′x and τi, i ∈ V \ {x}, as new integration
variables. Note that this substitution is different from the one in the proof of Lemma 3.2.
Heuristically speaking, the reason is that in the case of |R(T )| > 1 most of the mass of
the tx-integral is located near tx ≈ + log ε, while in the case of one root R(T ) = {x} the
mass is essentially located near tx ≈ − log ε. To do the power counting for ε and et

′
x in

the following calculation, we use

|F (T )|+ |R(T )| = |Vρ| − 1 = |V | = |S|+ 1. (3.32)
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We obtain

(3.30) =
∑
T∈T

1{|R(T )|>1}

∫
R

dt′x e
−t′x

ε
√

2π
e−επx[

1
2 (εe

t′x+ε−1e−t
′
x )−1](επx)−

1
2 ε−

1
2 e−

1
2 t
′
x

·
∫
RV \{x}

∏
j∈V \{x}

dτj e
−t′x−τj

ε
√

2π

∏
(i∼j)∈S

[e−βij(cosh(τi−τj)−1)β
− 1

2
ij ε−1e−t

′
xe−

1
2 (τi+τj)]

∏
(i∼j)∈F (T )

βijε
2e2t

′
x+τi+τj

∏
i∈R(T )

ε2πie
t′x+τi · εe

t′x

πy

=εeεπx
∑
T∈T

1{|R(T )|>1}

∫
R

dt′x√
2π
e(

3
2−|R(T )|)t′xe−

πx
2 (ε2et

′
x+e−t

′
x )π
− 1

2
x

·
∫
RV \{x}

∏
j∈V \{x}

dτj e
−τj

√
2π

∏
(i∼j)∈S

[e−βij(cosh(τi−τj)−1)β
− 1

2
ij e−

1
2 (τi+τj)]

∏
(i∼j)∈F (T )

βije
τi+τj

∏
i∈R(T )

πie
τi · 1

πy
. (3.33)

Next, we drop the term e−
πx
2 ε

2et
′
x ≤ 1. For any T ∈ T with |R(T )| ≥ 2, we obtain∫

R

dt′x√
2π
e(

3
2−|R(T )|)t′xe−

πx
2 (ε2et

′
x+e−t

′
x ) ≤

∫
R

dt′x√
2π
e(

3
2−|R(T )|)t′xe−

πx
2 e
−t′x

=:c4(π, |R(T )|) <∞. (3.34)

Note that in this integral, the integrand decays superexponentially for t′x near −∞ and
exponentially for t′x near +∞. Thus, we get

(3.33) ≤εeεπx
∑
T∈T

1{|R(T )|>1}c4(π, |R(T )|)π−
1
2

x

∫
RV \{x}

∏
j∈V \{x}

dτj e
−τj

√
2π∏

(i∼j)∈S

[e−βij(cosh(τi−τj)−1)β
− 1

2
ij e−

1
2 (τi+τj)]

∏
(i∼j)∈F (T )

βije
τi+τj

∏
i∈R(T )

πie
τi · 1

πy

=:εeεπxc5(π, β,G). (3.35)

Note that c5(π, β,G) <∞ because the product over e−βij [cosh(τi−τj)−1] decays superexpo-
nentially fast (recall that τx = 0). Summarizing, we get

0 ≤ Eµε [Oπxy1{|R(T )|>1}] ≤ εeεπxc5(π, β,G)
ε↓0−→ 0. (3.36)

The main theorem 2.2 is now proved by a combination of Lemmas 3.2 and 3.4:

Proof of Theorem 2.2. From (3.9), we get

Eµε [Oπxy] = Eµε [Oπxy1{R(T )={x}}] + Eµε [Oπxy1{|R(T )|>1}]. (3.37)

Combining this with Lemma 3.2 and Lemma 3.4 yields

0 < lim
ε↓0

Eµε [Oπxy] = lim
ε↓0

Eµεxδx

Oπxy√ πxe
tx∑

i∈V πie
ti

∏
i∈V \{x}

e−
1
2 επie

ti


≤ lim

ε↓0
Eµεxδx

[
Oπxy

]
<∞. (3.38)
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Using (2.15), we obtain

εEµε [Gε
xy] = Eµε [Oπxy +Oπyx]. (3.39)

Applying (3.38) twice, as it is and with x and y interchanged, the claim follows.

Finally, specializing the theorem down to ladder graphs, we transfer our results from
[3] concerning exponential decay of weights in the case of pinning at one point to the
case of uniform pinning (or more general pinning):

Proof of Corollary 2.3. Recall that c3 = min{πx, πy}−1. We estimate

Oπxy ≤
etx+ty

πxetx + πyety
≤ c3 min{etx , ety} ≤ c3etxe

1
4 (ty−tx). (3.40)

By Lemma A.1, with respect to µεxδx
L , the random variables etx and e

1
4 (ty−tx) are stochas-

tically independent and the distribution of e
1
4 (ty−tx) is independent of εx. Furthermore,

Eµεxδx
L

[etx ] = 1. Thus, for every ε > 0, we have

Eµεxδx
L

[Oπxy] ≤c3Eµεxδx
L

[
etxe

1
4 (ty−tx)

]
= c3Eµεxδx

L

[
etx
]
Eµεxδx

L

[
e

1
4 (ty−tx)

]
=c3Eµεxδx

L

[
e

1
4 (ty−tx)

]
= c3EµδxL

[
e

1
4 (ty−tx)

]
; (3.41)

in the last expectation we replaced εx by 1.

Let z denote the copy of x at the level of y, i.e. if x = (n, v) and y = (m,w), then
z := (m, v). Using the Cauchy-Schwarz inequality, we obtain

EµδxL

[
e

1
4 (ty−tx)

]
= EµδxL

[
e

1
4 (ty−tz)e

1
4 (tz−tx)

]
≤ EµδxL

[
e

1
2 (ty−tz)

] 1
2EµδxL

[
e

1
2 (tz−tx)

] 1
2 . (3.42)

By Theorem 2.1 in [3], there exist constants c6, c7 > 0 depending only on Γ0 and β such
that

EµδxL

[
e

1
2 (tz−tx)

]
≤ c6e−c7|z−x| = c6e

−c7|y−x|. (3.43)

For the points y and z on the same level, estimate (7.6) from [3] states

EµδxL

[
e

1
2 (ty−tz)

]
≤ c8 (3.44)

with a constant c8 depending only on Γ0 and β. Summarizing, (3.41)–(3.44) yield

Eµεxδx
L

[Oπxy] ≤ c3(c6c8)
1
2 e−

1
2 c7|y−x| =:

c1c3
2
e−c2|y−x| (3.45)

with constants c1(Γ0, β), c2(Γ0, β) > 0 uniformly in ε > 0. This shows

lim
ε↓0

Eµεxδx
L

[Oπxy] ≤ c1c3
2
e−c2|y−x|. (3.46)

Interchanging the roles of x and y, we get the same upper bound for limε↓0Eµεyδy
L

[Oπyx].

An application of Theorem 2.2 yields the claim.
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A Appendix: Product structure of the model with single pinning

When transforming the model H2|2 with pinning at one point to gradient variables, it
exhibits a certain product structure coming from scaling symmetry. This is made precise
in the following lemma.

Lemma A.1. With respect to µεxδx , the random pair (tx, sx) is independent of the random
vector consisting of the (rescaled) gradient variables

(t′i := ti − tx, s′i := (si − sx)etx)i∈V \{x}. (A.1)

The joint distribution of (tx, sx) with respect to µεxδx has the density
εx
2π

exp
[
−εx

(
cosh tx − 1 + 1

2s
2
xe
tx
)]
, (A.2)

independently of the graph G. In particular,

Eµεxδx [etx ] = 1. (A.3)

The joint distribution of (t′i, s
′
i)i∈V \{x} does not dependent on εx.

Proof. Recall the definition of µε given in (2.6). In the special case ε = εxδx, the random
tree T contains µεxδx -almost surely the edge x ∼ ρ, but no other edge of the type i ∼ ρ,
i 6= x. Hence, we get

µεxδx(dt ds dT ) (A.4)

=
∏
j∈V

dtjdsje
−tj

2π
dT e−εx(Bxρ(t,s)−1)εxe

tx
∏

(i∼j)∈E

e−βij(Bij(t,s)−1)
∏

(i∼j)∈F (T )

βije
ti+tj .

Let νεxδx denote the joint distribution of (tx, sx, (t
′
i, s
′
i)i 6=x). We set t′x := 0 and s′x := 0.

Note that (si − sj)2eti+tj = (s′i − s′j)2et
′
i+t
′
j . Changing variables accordingly and denoting

the set of spanning trees of the graph G by TG , we obtain

νεxδx(dtx dsx dt
′ ds′) =

dtxdsxe
−tx

2π

∏
j∈V \{x}

dt′jds
′
je
−2tx−t′j

2π

e−εx(cosh(tx)−1+
1
2 s

2
xe
tx )εxe

tx
∏

(i∼j)∈E

e−βij [Bij(t
′,s′)−1]

∑
T∈TG

∏
(i∼j)∈T

βije
2tx+t

′
i+t
′
j

=
dtxdsxεx

2π
e−εx(cosh(tx)−1+

1
2 s

2
xe
tx )

·
∏

j∈V \{x}

dt′jds
′
je
−t′j

2π

∏
(i∼j)∈E

e−βij [Bij(t
′,s′)−1]

∑
T∈TG

∏
(i∼j)∈T

βije
t′i+t

′
j . (A.5)

In the special case of the graph G consisting of only one point x, i.e. V = {x} and E = ∅,
the measure νεxδx has the density given in (A.2). Since νεxδx is a probability measure, the
density in (A.2) is normalized to have total mass one. Consequently, given the product
structure in (A.5), for a general graph G, the random vectors (tx, sx) and (t′, s′) are
independent with the claimed first marginal and the second marginal not depending on
εx. Finally, we calculate

Eµεxδx [etx ] =
εx
2π

∫
R2

etx exp[−εx(cosh tx − 1 + 1
2s

2
xe
tx)] dsxdtx

=
√

εx
2π

∫
R

e
tx
2 exp[−εx(cosh tx − 1)] dtx

(by symmetry)
=

√
εx
2π

∫
R

e−
tx
2 exp[−εx(cosh tx − 1)] dtx

= Eµεxδx [1] = 1. (A.6)
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Using supersymmetry, identity (A.3) can be generalized as follows.

Lemma A.2 (Formula (B.3) in [6]). For any y ∈ V and any choice of ε we have

Eµε [ety ] = 1. (A.7)
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