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Abstract

The Kob-Andersen model is a fundamental example of a kinetically constrained lattice
gas, that is, an interacting particle system with Kawasaki type dynamics and kinetic
constraints. In this model, a particle is allowed to jump when sufficiently many
neighboring sites are empty. We study the motion of a single tagged particle and in
particular its convergence to a Brownian motion. Previous results showed that the
path of this particle indeed converges in diffusive time-scale, and the purpose of this
paper is to study the rate of decay of the self-diffusion coefficient for large densities.
We find upper and lower bounds matching to leading behavior.
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1 Introduction

Kinetically constrained lattice gases is a family of models divised by physicists in
order to study glassy systems. It could be seen as the conservative version of kinetically
constrained spin models, see e.g. [10, 14, 6]. In this paper we study one such model –
the (k, d)-Kob-Andersen model. It is a Markov process living on the graph Zd, depending
on a parameter k ≥ 2. Each site of Zd may contain at most one particle, that can jump to
an empty neighboring site if it has at least k empty neighbors both before and after the
jump. When this constraint is satisfied the particle jumps at rate 1. For any q ∈ (0, 1) this
process is reversible with respect to the product Bernoulli measure of parameter 1− q.

At large times, the path of a marked particle converges to a Brownian motion with
a coefficient called the self-diffusion, which is the subject of this paper. In [1] it has
been proven that this coefficient is strictly positive for all q ∈ (0, 1), in contrast to the
conjecture in the physics literature that below some non-zero critical q the path of tagged
particles is no longer diffusive. In this work we find the dependence of this diffusion
coefficient in q. We show that it decays very fast when q is small, in a similar way to the
spectral gap [12].

We start by introducing the model and our result, and then prove a lower and an upper
bound on the diffusion coefficient. The main tool we use is a variational formula of [16]
for the diffusion coefficient. In order to bound it from below, as in [1], we compare the
Kob-Andersen dynamics with a random walk on an infinite percolation cluster. The upper
bound is obtained by identifying an appropriate test function related to the bootstrap
percolation, a process which is closely related to the Kob-Andersen model.
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2 Model and main result

The model we study here is defined on the lattice Zd. We denote by (e1, . . . , ed) the

standard orthonormal basis. The set of configurations is Ω = {0, 1}Zd , where 0 stands for
an empty site and 1 for an occupied site. Given two sites x, y we denote x ∼ y if they are
nearest neighbors. We also denote by [L]d the cube [1, L]d.

Fix an integer k ∈ [2, d]. For η ∈ Ω and x ∼ y, we define the local constraint for the
edge xy by

cxy(η) =

{
1 if

∑
z∼x,z 6=y(1− η(z)) ≥ k − 1 and

∑
z∼y,z 6=x(1− η(z)) ≥ k − 1,

0 otherwise.
(2.1)

For V ⊂ Zd, and η ∈ {0, 1}V , we define the constraint cxy(η) = cxy(η′) where η′ ∈ Ω

equals η on V and is entirely occupied elsewhere.
The generator of our Markov process describing the KA dynamics operating on a

local function f is given by:

Lf(η) =
∑
x∈Zd

∑
y∼x

cxy(η)η(x)(1− η(y)) [f(ηxy)− f(η)] , (2.2)

where ηxy is the configuration equal to η except that ηxy(x) = η(y) and ηxy(y) = η(x).
In words, the only way a configuration can change is a particle (i.e. an occupied site)
“jumping” to a neighboring empty site provided that each of those sites has at least (k−1)

other empty neighbors. We call this transition a legal KA-kf transition, or simply legal
transition whenever context allows.

Observe that, from Formula (2.2), this process is reversible with respect to the
product measure µ := ⊗x∈ZdBer(1− q) for any q ∈ (0, 1).

We now consider the trajectory of a tagged particle. Let µ0 = µ(·|η(0) = 1) and, under
the initial distribution µ0, Xt the position at time t of the particle initially at 0. More
precisely, (Xt, ηt)t≥0 is the Markov process with generator:

Ltaggedf(X, η) =
∑
y∈Zd
y 6=X

∑
z∼y

cyz(η)η(y)(1− η(z)) [f(X, ηyz)− f(X, η)]

+
∑
y∼X

cXy(η)η(X)(1− η(y))
[
f(y, ηXy)− f(X, η)

]
(2.3)

The following classic result gives a convergence for Xt:

Theorem 2.1 ([16, 9]). For any q ∈ (0, 1), there exists a non-negative d× d matrix D(q)

such that
εXε−2t −→

ε→0

√
2D(q)Bt,

where Bt is a d-dimensional Brownian motion process and the convergence holds in
the sense of weak convergence of path measures on D(R+,R

d). Furthermore, D(q) is
characterized by the following variational formula:

∀u ∈ Rd,

u ·D(q)u = inf
f
µ0

∑
x 6=0

∑
y∼x

cxy (f (ηxy)− f (η))
2

+
∑
y∼0

c0y
(
u · y + f

(
τyη

0y
)
− f (η)

)2 ,
(2.4)

where the infimum is taken over all local functions on Ω, and τyη is the configuration
defined by (τyη)(z) = η(z − y) for all z ∈ Zd.

ECP 26 (2021), paper 3.
Page 2/12

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP370
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Self-diffusion coefficient in the Kob-Andersen model

Remark 2.2. A priori, the diffusion coefficient is a matrix. In our case, however, the
model is invariant under permutation and inversion of the standard basis vectors. This
forces the diffusion matrix to be scalar, and we may treat it as a real number.

In [1], it was first proven that D(q) > 0 for all q > 0. We will give in this paper the
appropriate scale of D(q) when q → 0. The main result is the following:

Theorem 2.3. Let d ≥ 2, k ∈ [2, d]. For q ∈ (0, 1) let D(q) be the diffusion coefficient
given by Theorem 2.1. Then for q sufficiently small:
if k = 2:

1/ exp
(
c (log 1/q)

2
q−

1
d−1

)
≤ D(q) ≤ 1/ exp

(
c′q−

1
d−1

)
,

if k ≥ 3:

1/ exp(k−1)

(
cq−

1
d−k+1

)
≤ D(q) ≤ 1/ exp(k−1)

(
c′q−

1
d−k+1

)
,

where exp(k−1) denotes the exponential function iterated (k − 1) times, and c, c′ are
positive constants depending only on k and d.

The fact that D decays as q tends to 0 is not surprising – when q is small the constraint
is difficult to satisfy, resulting in a lengthening of time scales related to the process.
Indeed, for a particle to move around it must wait for sufficiently many vacancies to
arrive at its vicinity. Single vacancies cannot move freely, so the dynamics is controlled
by the displacement of structures containing many empty sites capable to propagate
in space. We shall call such structures droplets. For example, in the case k = d = 2 an
empty column of length ` ≈ q−1 is likely to have a neighboring empty site to its right,
allowing it to move to the right (see Figure 2). These droplets give rise to two important
length scales – the scale ` of the droplet, and the scale L within which such a droplet can
be found, i.e., L ≈ q−`. Hence, for k = d = 2 these scales behave roughly as ` ≈ q−1 and
L ≈ e1/q. For higher values of k and d the mechanism which allows a droplet to move is
based on the fact that a d− 1 dimensional layer parallel to the droplet could evolve like
a (k − 1, d− 1)-Kob-Andersen model since one of the k required empty neighbors comes
from the droplet. Particles are thus allowed to move in this layer if its size reaches the
scale L of the (k − 1, d− 1) dynamics, which is therefore equal ` of the (k, d) dynamics.
This induction gives rise to the iterated exponential appearing in the theorem. The
details of this argument can be found in [18] (see also [15]).

3 Proof of the lower bound

The proof of the lower bound will closely follow the proof of [1], Sections 4 and 5.
However, we use more refined combinatorial properties of the KA model in order to
obtain the correct scaling. Throughout the proof, c and λ denote generic positive
constants which only depend on d and k.

We start by defining a coarse grained version of the lattice, depending on two scales:

` =

{
c log (1/q) q−

1
d−1 if k = 2,

exp(k−2)

(
cq−

1
d−k+1

)
if k ≥ 3,

(3.1)

L = q−λ`. (3.2)

We will assume that λ and c are such that L, `, L` are integers.

Definition 3.1. A block is a set of the form (L+ 1) i+ [L]
d, i ∈ Zd. A block is divided in

boxes, which are sets of the form (L+ 1) i+ `a+ [`]
d, i ∈ Zd, a ∈ [L/`].

We also call external face of a box any connected component of the set of vertices at
(graph) distance 1 from the box. See Figure 1.
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L

`

i j

Figure 1: Block-connected vertices i and j. The boxes in blue are (d, k)-good, and the
external faces in green are (d− 1, k − 1)-good. The red box is (d, k)-frameable.

We think of the blocks’ corners (L+ 1)i as vertices of a graph ZdL = (L+ 1)Zd; with
edges connecting a vertex (L+ 1)i with a vertex (L+ 1)j for ||i− j||1 = 1.

From now on, sites on the original lattice will be denoted using the letters x, y, . . . ,
while vertices of ZdL will be denoted with the letters i, j, . . . . Similarly to [1], the purpose
of this coarse grained lattice is to define an auxiliary dynamics that has diffusive behavior
on a larger scale.

Let us now recall a few definitions in relation with the coarse grained lattice, intro-
duced in [12, Section 3.1].

Definition 3.2. Let E be a subset of the standard basis with size |E| ≤ d− 1, V ⊂ Zd a
set of sites, and fix a site x ∈ V . The |E|-dimensional slice of V passing through x in the
directions of E is defined as V ∩ (x+ span(E)), where span(E) is the linear span of E.

Definition 3.3. Given the d-dimensional cube Cn = [n]d and an integer j ≤ d we define
the jth frame of Cn as the union of all (j−1)-dimensional slices passing through (1, . . . , 1).

We say that the box Cn is frameable for the configuration η ∈ {0, 1}Cn if η is connected
by legal KA-kf transitions to a configuration for which the kth frame of Cn is empty.

Definition 3.4. Given a configuration η, we say that a box B is (d, k)-good for η if all
(d− 1)-dimensional slices of B are (d− 1, k − 1)-frameable for all configurations η′ that
differ from η in at most two sites.

Note that this definition slightly differs from [12], allowing η′ to differ from η at two
sites rather than just one. This forces η to contain additional empty sites other than
those required in [12]; the reason will be clarified in the proof of Lemma 3.14. Whenever
context allows, we shall simply say that a box is good instead of (d, k)-good.

Example 3.5. A box is (2, 2)-good if it contains at least three empty sites in each row
and each column.

Proposition 3.6. Let d ≥ k ≥ 2 and ` be defined as in (3.1). Then with the appropriate
choice of constants:

(i) The µ-probability that the box [`]d is (d, k)-frameable is at least qd`
k−1

. In particular,
it is much larger than 1/L.

(ii) The µ-probability that the box [`]d is (d, k)-good tends to 1 when q → 0.

Proof. The probability of being frameable is bounded by the probability that the frame
is already empty. Since the size of the frame is less than d`k−1, the first bound follows.

The second bound is a consequence of [18], detailed Section 3.6 of [12]. The change
in the definition of being good has no effect on the argument presented there.
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The following definitions describes blocks that contain a droplet which is able to
propagate. See Figure 1.

Definition 3.7. Let i, j be two adjacent sites in ZdL with, suppose, j = i+ (L+ 1)eα.
A geometric path connecting i and j is a sequence of adjacent boxes B1, . . . , Bn in

the block i+ [L]d with B1 = i+ [`]d and Bn = j − (`+ 1)eα + [`]d. We say that a geometric
path is (d, k)-super-good for a configuration η if:

1. For all m, the box Bm is (d, k)-good.

2. At least one of the boxes in the sequence is (d, k)-frameable

Definition 3.8. Let i ∈ ZdL and j = i+(L+1)eα. We say that i, j are (d, k)-block-connected
for η if the following conditions hold:

1. There exists a (d, k)-super-good path connecting i and j whose length is at most 3L.

2. All (d− 1)-dimensional external faces of the box i+ [`]
d that are adjacent to i are

(d− 1, k − 1)-good.

3. All (d− 1)-dimensional external faces of the box j − (`+ 1) e1 + [`+ 1]
d that are

adjacent to j are (d− 1, k − 1)-good.

We stress that being block-connected does not depend on the values of η(i) and η(j).
This notion of being block-connected defines a percolation process on ZdL. Let η be

the configuration on the edges of ZdL that gives the value ηij = 1 to an edge i ∼ j if
i and j are block-connected and 0 otherwise. We denote by µ the measure on these
configurations induced by µ.

Lemma 3.9. µ is a stationary ergodic measure, that stochastically dominates a super-
critical Bernoulli bond percolation, whose parameter tends to 1 as q tends to 0.

Proof. The probability that an edge is open depends only on the sites in the blocks
adjacent to it. There are 2d such blocks, and the diameter of a block is d, hence the
percolation process is 2d2-dependent. By [11], it suffices to prove that the probability to
be block connected tends to 1 as q tends to 0.

The probability for a (d− 1)-dimensional face of a box to be good tends to 1 as q goes
to 0 (see Proposition 3.6). We now need to prove that the probability that condition 1 in
Definition 3.8 is satisfied is also large.

It will be convenient to restrict the super-good path that we seek to a two dimensional
plane, as in [12]. We assume without loss of generality that j = i+ (L+ 1)e1.

By Proposition 3.6 and standard results in oriented percolation [4, Sections 3 and 14]
the following paths exist with high probability:

1. an up-right path of good boxes connecting i+ [`d] with j + [`]× [L]× [`]d−2,

2. an up-left path of good boxes connecting j + [`]d − (`+ 1)e1 to i+ [`]× [L]× [`]d−2.

This provides a good path of boxes of length at most 3L.
It is thus left to show that one of these boxes is super-good. This is a consequence of

Proposition 3.6 and the FKG inequality (since both being good and being frameable are
increasing events).

Following [1], we compare the KA dynamics to a simple random walk on the infinite
connected cluster of ZdL given by this percolation process, conditioned on the event that
0 is in this cluster. We will denote µ∗(·) = µ (·|0↔∞). It is shown in [5, 3] that this
dynamics has a diffusive limit, given by a strictly positive diffusion matrix.
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Proposition 3.10. Let Daux be the symmetric matrix characterized by

u ·Dauxu = inf
f


∑
i∈Zd`
i∼0

µ∗
(
η0i [u · i+ f (τiη)− f(η)]

2
)

for any u ∈ Rd, where the infimum is taken over local functions f on {0, 1}E(Z
d
` ). Then

Daux is bounded away from 0 uniformly in q.

Thus, for the rest of this section we will concentrate on proving an inequality of the
form:

D(q) ≥ ∆(q)−1 e1 ·Dauxe1, (3.3)

for ∆(q) proportional to the bound on the diffusion coefficient in Theorem 2.3.
First, in order to compare the KA dynamics and the auxiliary one, we should put them

on the same space.

Lemma 3.11. Fix u ∈ Rd. Then

u ·Dauxu ≤ µ (0↔∞)
−1

inf
f


∑
i∈Zd`
i∼0

µ0

(
η0i
[
u · i+ f

(
τiη

0i
)
− f (η)

]2)
 ,

where now the infimum is taken over local functions on Ω.

Proof. The proof follows the exact same steps as that of [1, Lemma 5.2].

The comparison of both dynamics will be via a path argument. We will use the
construction of [12], by concatenating basic moves. The next definition describes a
sequence of legal KA transitions which keeps track of the configuration η and the
position of a marked particle z.

Definition 3.12. GivenM⊂ Ω and V ⊂ Zd, a T -step move M with domain Dom(M) =

M is a function from Dom(M) to ΩT+1 such that for any η ∈ Dom(M) the sequence
Mtη := M(η)t satisfies:

1. M0η = η,

2. for any t ∈ [T ], the configurations Mt−1η and Mtη are either identical or linked by
a legal KA transition contained in V .

For t ∈ [T ] and η, whenever Mt−1η 6= Mtη, a particle has jumped from a site to a
neighbor. We denote by xt(η) (resp. yt(η)) the initial (resp. final) position of the particle
during the jump. More precisely, xt and yt are such that Mt−1η(xt) = Mtη(yt) = 1 and
Mt−1η(yt) = Mtη(xt) = 0. If Mt−1η = Mtη, we set xt = yt = 0.

For z0 ∈ V such that η(z0) = 1, we define zt(η) by:

∀t ≥ 1, zt =

{
zt−1 if xt−1 6= zt−1

yt−1 otherwise,
(3.4)

that is, zt is the position at step t of the particle initially places at z0. The sequences
xt, yt, zt depend on the move M and the initial configuration η, but these will be clear
from the context and omitted from the notation.

Definition 3.13. Given a T -step move M , its information loss Loss(M) is defined as

2Loss(M) = sup
η′∈Dom(M)

t∈[T ]

#{η ∈ Dom(M)|Mt−1η = Mt−1η
′,Mtη = Mtη

′}.
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The next lemma constructs a T -step move that exchanges a marked particle at the
origin with a block-connected site.

Lemma 3.14. There exists a T -step move M satisfying the following conditions:

1. Dom(M) =
{
η0,(L+1)e1 = 1 and η(0) = 1

}
,

2. for all η ∈ Dom(M),MT η = η0,(L+1)e1 and with z0 = 0, zT = (L+ 1)e1,

3. T = O(L`λ) for k = 2, and T = O(L2`
d

) for k ≥ 3,

4. Loss(M) = O(` log2(`)) for k = 2, and Loss(M) = O(`d−1) for k ≥ 3.

Similar moves exist replacing e1 by any of the vectors ±e1,±e2, . . . ,±ed.

Proof. The proof is based on the construction of [12], explained in [15, Proposition 5.2.41].
In that proposition, the T -step move is propagating a site through a super-good path.
Note that propagating simply means that the values of the configuration in the initial
and final sites are being swapped. This does not mean that the marked particle initially
at 0 reached the site (L+ 1)e1, since in [12, 15], the permutation move exchanges any
two sites even if they are both occupied (see [15, Proposition 5.2.35]), which is not a
legal KA transition.

We will show here briefly the idea of the proof when k = d = 2, repeating the
construction of [12] with the appropriate adaptations. We will then explain how these
adaptations apply to general k, d.

In order to construct the move M , we will construct a sequence of shorter, simpler,
moves. The first of them is the column exchange move:

Claim 3.15 ([12, Claim 3.19]). Fix y ∈ Z2, and consider the configurations in which the
column y+ {0}× [`] is empty, and the column to its right contains at least one empty site.
Then there exists a T -step move M whose domain consist of these configurations, and in
the final state MT η the columns y + {0} × [`] and y + {1} × [`] are exchanged. Moreover,
Loss(M) = O(log2 `) and T = O(`). See Figure 2.

The next move we will use is the framing move:

Claim 3.16 ([12, Claim 3.21]). Fix a box, and consider the configurations for which the
box is good, and, in addition, its bottom row is empty. Then there exists a T-step move
M whose domain consists of these configurations, and in the final state MT η the left
column is also empty. Moreover, Loss(M) = O(` log2 `) and T = O(`2).

0

0

0

0

0 0

0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2: Exchange an empty column with a good column.

When a box is framed, we are able to permute its sites:

Claim 3.17. Consider the box [`]2, and fix any permutation σ of the sites [2, `]2, which
by convention fixes the sites outside [2, `]2. Consider the configurations for which [`]2 is
framed and [2, `]2 contain at least one empty site. Then there exists a T -step move M
whose domain consists of these configurations, and in the final state MT (η) the sites are
permuted according to σ, i.e., (MT η)(σx) = η(x) for all x ∈ [2, `]2. Moreover, the marked
particle moves from its original position X to σX. The loss of information of M is at
most O(log2 `), and T = O(`8). See Figure 3.

One last ingredient before constructing the large move M is the jump move, that will
allow us to hop a particle over a row of empty sites:
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a
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b

0 0 0 0

0

0

0

a

0
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0 0 0 0

0

0

0
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Figure 3: Permutation move, exchanging a with b. Note that if a is 1 and b is the marked
particle, we are not allowed to exchange them directly, which is the reason we introduce
the blue 0. The loss O(log2 `) is due to the unknown initial position of the blue 0, and the
time O(`8) comes from the fact that, in general, exchanging the blue 0 with a neighboring
site takes O(`2) steps, and any even permutation can be expressed as O(`6) such basic
transpositions [8]; while parity issues could be solved by exchanging any two sites which
do not contain the marked particle in the beginning and in the end.

Claim 3.18 ([12, Claim 3.20]). Fix y ∈ Z2 and some site ? ∈ y + {−1} × [`]. Consider
the configurations in which the column y + {0} × [`] is empty, the column y + {−1} × [`]

contains at least one empty site not counting ?, and the column y + {1} × [`] contains
at least two empty sites. Then there exists a T -step move M whose domain consists of
these configurations, and in the final state, MT (η) the sites ? and ?+(2, 0) are exchanged,
and zT (η, ?) = ?+ (2, 0). Moreover, Loss(M) = O(log2(`)) and T = O(`).

We are now ready to construct the move as shown in Figure 4, exchanging the marked
particle initially at 0 with the particle/vacancy ? initially at (L+ 1)e. Since we consider
η in the domain of M , there is at least one super-good path connecting 0 and e; let us
choose the minimal one, according to some arbitrary fixed order. This will be the path
along which the exchange will take place.

First we use Claim 3.16 in order to frame the framable box in the super-good path.
After that use Claim 3.15 in order to propagate the empty column, and then frame the
box [1, `]× [0, `] using Claim 3.16. We can then frame the column {1} × [0, `], and apply
the permutation move (Claim 3.17) in order to bring the marked particle to the position
(`− 1, `− 1). We then use the jump move (Claim 3.18), and clean up the modifications to
the box [0, `]2. Using again Claim 3.15, we can move the marked particle to the bottom
right box, and apply the same framing procedure as before in order to exchange it with
? and move ? to (0, 0). All that is left is to take the row of 0s back to its original position.

The bound on T is immediate, and the bound the loss relies on Observations 5.2.27
and 5.2.29 of [15]. Roughly speaking, in order to bound the loss we should, for fixed t,
reconstruct η from Mtη. If t is right after an exchange move, permutation move, or jump
move, we can reconstruct the configuration before that move has been executed with
no loss of information. Hence LossM has three contribution – when t is in the middle of
one these moves we could pay O(log2(`)) to reconstruct the configuration from which it
has begun; the framing moves we apply have additional cost O(` log2(`)); and recovering
the original frameable box on the super-good path adds O(log2(L)) to the loss. These
contribution sum up to O(` log2(`)).

For general k, d the same proof as [12] will allow us to construct M , where the only
modification is in the definition of the permutation move, which now takes into account
the position of the marked particle. This is done in the exact same way as we have seen in
Claim 3.17 (and Figure 3) for the case k = d = 2. The time T of the modified permutation
move remains polynomial in the volume of the box `d, and the loss is logarithmic in this
volume. This leads to the bounds given in the lemma.
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Figure 4: Permuting the marked particle 1 with a site ?.

Definition 3.19. Let M be a T -step move and η such that η (0) = 1. Let z0 = 0. Then the
translated move Mτ is given by Mτ

t η = τztMtη, as well as xτt = xt − zt and yτt = yt − zt,
so that for all t, Mτ

t η(0) = 1.

Proof of inequality (3.3). We now use the move given in Lemma 3.14 in order to compare
both diffusion matrices. First, note that for η ∈ DomM and i ∈ ZdL a neighbor of the
origin,

e1 · i+ f
(
τiη

0,i
)
− f (η) =

T∑
t=1

1xτt=0e1 · yτt + f (Mτ
t η)− f

(
Mτ
t−1η

)
.

By the Cauchy-Schwarz inequality

(
e1 · i+ f

(
τiη

0,i
)
− f (η)

)2 ≤ T T∑
t=1

cxτt yτt (Mτ
t η)

(
1xτt=0e1 · yτt + f (Mτ

t η)− f
(
Mτ
t−1η

))2
,

where we have used the fact that, by definition of a move, cxtyt(Mtη) = 1. Therefore,

µ0

[
η0i
(
e1 · i+ f

(
τiη

0,i
)
− f (η)

)2]
≤ Tµ0

[
η0i

T∑
t=1

cxτt yτt (Mτ
t η)

(
1xτt=0e1 · yτt + f (Mτ

t η)− f
(
Mτ
t−1η

))2]
= T

∑
η

µ0 (η) η0i
∑
t

∑
η′

∑
y∼0

1η′=Mτ
t−1η

10=xτt 1y=yτt c0y (η′)
(
e1 · y + f

(
τyη
′0y)− f (η′)

)2
+ T

∑
η

µ0 (η) η0i
∑
t

∑
η′

∑
x 6=0

∑
y∼x

1η′=Mτ
t−1η

1x=xτt 1y=yτt cxy (η′) (f (η′xy)− f (η′))
2

≤ T 22LossM
∑
η′

∑
y∼0

µ0 (η′) c0y (η′)
(
e1 · y + f

(
τyη
′0y)− f (η′)

)2
+ T 22LossM

∑
η′

∑
x6=0

∑
y∼x

µ0 (η′) cxy (η′) (f (η′xy)− f (η′))
2
.
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In order to obtain the last inequality, we first replaced µ0(η) with µ0(η′). Then, given
η′, t, xτt and yτt , we estimated the sum

∑
η 1η′=Mτ

t−1
1x=xτt 1y=yτt ≤ 2Loss(M). Next, the sum

over t contributes in another factor T , and finally, we bound η0i ≤ 1.
We have hence shown that e1 ·Dauxe1 ≤ T 22LossMD(q). Now, plugging the appropriate

bounds for LossM , L and ` yields:

• If k = 2,

T 22LossM ≤ exp(c log(`)`) ≤ exp
(
c log(1/q)2q−

1
d−1

)
.

• If k ≥ 3,

T 22LossM ≤ exp(c`d) ≤ exp
(
c exp(k−2)(q

− 1
d−k+1 )d

)
≤ exp(k−1)(cq

− 1
d−k+1 ).

This concludes the proof of the inequality (3.3). Together with Proposition 3.10, we
obtain the lower bound of Theorem 2.3.

4 Upper bound

In order to find an upper bound, we will look for a suitable test function to plug
in (2.4). Without loss of generality we consider u = e1.

Let

` =

{
cq−

1
d−1 if k = 2,

exp(k−2)

(
cq−

1
d−k+1

)
if k ≥ 3,

(4.1)

for c > 0 that may depend on d and k but not on q. We emphasize that, even though `

carries the same notation as ` of the previous section, and plays a similar role, it does
not have the exact same value.

We now define the k neighbor bootstrap percolation on the box [−`, `]d. It is usually

seen as a deterministic process defined on Ω` := {0, 1}[−`,`]
d

, but for our needs it is
sufficient to define the bootstrap percolation map BP : Ω` → Ω`, given by:

BP(η)(x) =


0 if η(x) = 0,

0 if
∑
y∼x∈[−`,`]d (1− η(y)) ≥ k,

1 otherwise.

That is, empty sites remain empty and occupied sites become empty if they have at least
k empty neighbors. Let BP∞(η) be the limiting configuration, that is:

BP∞(η)(x) =

{
0 if ∃t ∈ N,BPt(η)(x) = 0,

1 otherwise.

For more details about bootstrap percolation, see e.g. [13].
The following observation clarifies the relation between bootstrap percolation and

the KA model.

Fact 4.1. Fix η ∈ Ω`. Let x, y be two sites in [−`, `]d such that cxy(η) = 1. Then
BP∞(η) = BP∞(ηxy).

Proof. Since in a legal KA move the particle has at least k empty neighbors both before
and after the exchange, it would be emptied for both states.

We say that a site x is in the bootstrap percolation cluster of the origin if there is
a nearest neighbor path 0, x1, . . . , xn = x such that BP∞(η) (xi) = 0 for i = 1, . . . , n.
For any η ∈ Ω, let f(η) be the first coordinate of the rightmost site in the bootstrap
percolation cluster of the origin for η [−`,`]d .
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Definition 4.2. Fix η ∈ Ω`. We define B as the event that the bootstrap percolation
cluster of the origin contains a site of∞-norm at least `− 1.

Claim 4.3. There exists a constant γ > 0 such that µ (B) ≤ e−γ`.

Proof. This is a direct consequence of [2, Lemma 5.1] and the choice of ` in (4.1), as we
set c = β−(d, k) following the notations of [2].

Definition 4.4. Fix x, y ∈ Zd and η ∈ Ω. We say that the edge xy is pivotal for η if
cxy(η) = 1 and f (η) 6= f (ηxy).

Claim 4.5. Fix x, y ∈ Zd. The edge xy can only be pivotal if at least one of its endpoints
is on the inner boundary of [−`, `]d, and B must occur for either η or ηxy.

Proof. If both x and y are outside [−`, `]d, xy is not pivotal. If both are inside [−`+1, `−1]d,
then cxy(η) = cxy(η [−`,`]d). By Observation 4.1, xy can not be pivotal.

Assume xy is pivotal. Then either x or y is in the bootstrap percolation cluster of the
origin for either η or ηxy, hence B must occur for either η or ηxy.

We can now estimate the right hand side of (2.4) for our choice of f . First,∑
x6=0

∑
y∼x

µ0

[
cxy (f (ηxy)− f (η))

2
]
≤
∑
x 6=0

∑
y∼x

µ0

[
cxy 4`2 1f(ηxy) 6=f(η)

]
≤ 4`2 · 2d #{x | ||x||∞ = `} · sup

x,y
µ0 [1x,y pivotal] ≤ cld+2e−γ`.

For the second term, fix y ∼ 0, and assume first that η, η0y /∈ B, and c0y = 1. In this
case, the bootstrap percolation cluster of the origin for τyη0y is a translation by −y of the
bootstrap percolation cluster for η. Therefore, the term e1 · y + f

(
τyη

0y
)
− f (η) equals 0.

In the other case we bound
∣∣f (τyη0y)− f (η)

∣∣ ≤ 2` and |u · y| ≤ 1, obtaining∑
y∼0

µ0

[
c0y
(
u · y + f

(
τyη

0y
)
− f (η)

)2] ≤ 4d (2`+ 1)µ0(B) ≤ c`e−γ`.

Summing both contributions yields the expected bounds.

5 Further questions

Theorem 2.3 shows how the self-diffusion constant decays as q → 0 up to a constant
for k ≥ 3 and logarithmic correction for k = 2. In [17, equation (6.26)], it is conjectured
for the case k = d = 2 that the true behavior is D(q) ≈ exp(−γq−1) for γ = π2

9 . In view of
recent works related to the Fredrickson-Andersen model [18, 7], where similar scaling is
observed and the exact constant γ could be identified, it seems reasonable that such a
result could also be obtained for the Kob-Andersen model.

The methods used here could also be applied in other models for which the combina-
torial structure allows a construction of a T -step move as in Lemma 3.14. In particular,
it is natural to consider other kinetically constrained lattice gases, or even look for
universality results on the self-diffusion coefficient.
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