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Abstract

We revisit the zero-noise Peano selection problem for Lévy-driven stochastic differen-
tial equation considered in [Pilipenko and Proske, Statist. Probab. Lett., 132:62–73,
2018] and show that the selection phenomenon pertains in the multiplicative noise
setting and is robust with respect to certain perturbations of the irregular drift and of
the small jumps of the noise.
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1 Introduction, setting, and the main result

The well known Peano existence theorem [7, Theorem II.2.1] states that an ordinary
differential equation (ODE) dx = a(x) dt with a continuous function a : R→ R has a local
solution which however may be not unique.

On the contrary, an addition of a noise term allows to obtain unique solutions of
stochastic differential equations (SDE) with irregular or even just measurable coeffi-
cients, see, e.g. [3, 5, 10, 12, 13, 15, 16, 19, 20, 21, 23, 25].

Let us consider an SDE with a drift a and assume that the underlying ODE dx = a(x) dt

has multiple solutions. A natural question arises, what happens when the random
perturbation vanishes. Heuristically, solutions of the small noise SDE should converge
to one of the various deterministic solutions and the selection problem consists in
description of this limit behaviour.

Originally, the selection problem was treated in [1], where the authors considered
the SDE dXε = a(Xε) dt+ εb(Xε) dW with an irregular drift at x = 0. It was shown that
the limit law Law(Xε|Xε(0) = 0) is supported by the deterministic maximal and minimal
solutions of the ODE dx = a(x) dt starting at zero with the selection probabilities p± that
can be explicitly determined, see [1, Theorem 4.1]. The uniqueness of the limit in the
case of odd continuous concave drift and additive noise was proven in [24]. Recently a
new proof of these results was given in [4] for the piece-wise power drift

ā(x) = A+x
βI[0,∞)(x)−A−|x|βI(−∞,0)(x) (1.1)
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Generalized Peano problem with Lévy noise

with β ∈ (0, 1) and A± > 0 in the case of additive Brownian perturbations. Further
results concerning this equation can be found in [6, 22, 9].

In [14], the authors considered a class of SDEs dXε = ā(Xε) dt + εdB(α) with a
piece-wise power drift (1.1) with β ∈ (−1, 1) driven by α-self-similar processes B(α), e.g.
by a fractional Brownian motion or a strictly stable Lévy process. They showed that
under some natural assumptions Xε also selects the maximal and minimal solutions
of the ODE dx = ā(x) dt. Unfortunately, the selection probabilities cannot be always
determined explicitly.

In this paper we address the selection problem for a Lévy driven SDE with multiplica-
tive noise

Xε(t) =

∫ t

0

a(Xε(s)) ds+ ε

∫ t

0

b(Xε(s−)) dZ(s), t ≥ 0, ε→ 0, (1.2)

whose drift a = a(x) has an irregular point at x = 0 but does not have the exact piece-
wise power form (1.1). The small jumps of the driving Lévy process Z remind of those of
an α-stable Lévy process. In other words we answer the question whether the selection
dynamics are robust w.r.t. perturbations of the drift and the noise.

Let us formulate the precise assumptions. As usual, we write f(x) ∼ g(x) if
f(x)/g(x)→ 1; a ∧ b := min{a, b}, a ∨ b := max{a, b}, a, b ∈ R; ‖f‖ denotes the supremum
norm of a function f ; “⇒” denotes weak convergence in the Skorokhod space D; func-
tions of slow and regular variation are understood in Karamata’s sense, see [2, Sections
1.2.1 and 1.4.2].

AZ : Let Z = (Zt)t≥0 be a Lévy process without a Gaussian component and the jump
measure ν such that for some α ∈ (1, 2) and some constants C± ≥ 0, C− + C+ > 0,

ν([z,+∞)) ∼ C+z
−αlν

(1

z

)
, ν((−∞,−z]) ∼ C−z−αlν

(1

z

)
, z → +0, (1.3)

for a function lν slowly varying at infinity.

Aa: Let x 7→ a(x) be a real valued continuous function of linear growth such that
a(0) = 0 and that for β ∈ (0, 1)

a(x) = xβL+(x) for x > 0 and a(x) = −|x|βL−(|x|) for x < 0, (1.4)

with continuous functions L± : (0,∞)→ (0,∞) that satisfy

L±(x) ∼ A±la
( 1

x

)
as x→ +0, (1.5)

for a function la slowly varying at infinity, and A± > 0.

Ab: Let x 7→ b(x) be a bounded continuous real valued function such that b(0) > 0.

It follows from assumptions Aa, Ab that equation (1.2) has a weak solution, see, e.g.
Theorem 1 of §2 Chapter 5 in [5].

Remark 1.1. We will see in the main result that the weak limit of the sequence {Xε} as
ε → 0 is independent of the choice of a weak solution Xε. Therefore from now on we
assume that Xε is any weak solution to (1.2). It should be also noticed that the presence
of a noise often implies uniqueness of a solution and the strong Markov property, see
references above.

A simple analysis shows that the limit deterministic equation

X0(t) =

∫ t

0

a(X0(s)) ds (1.6)
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Generalized Peano problem with Lévy noise

has the maximal and the minimal solutions

x±(t) := ±A−1
± (t), t ≥ 0, (1.7)

where A±(·) are continuous non-negative strictly increasing functions, A±(0) = 0, given
by

A+(x) :=

∫ x

0+

dy

a(y)
, x > 0, A−(x) :=

∫ x

0−

dy

a(y)
, x < 0,

and A−1
± (·) : [0,∞) → [0,∞) are their inverses. All these functions are well defined

because of assumption Aa.
It is intuitively clear that under the influence of noise the selection occurs very quickly,

so that it is determined only by the small jumps of Z and the local behaviour of a(·) in
the vicinity of zero. Omitting the functions lν and la in (1.3) and (1.5) we introduce the
auxiliary model SDE

X̄ε(t) =

∫ t

0

ā(X̄ε(s)) ds+ εZ(α)(t) (1.8)

with the piece-wise power drift ā defined in (1.1) and driven by a strictly α-stable Lévy
process Z(α), α ∈ (1, 2), with the generating triplet (0, ν(α), 0)1 (see [18, Section 8])
where

ν(α)([z,+∞)) = C+z
−α, ν(α)((−∞,−z]) = C−z

−α, z > 0. (1.9)

The model equation (1.8) has a unique strong Markov solution due to Theorem 3.1 from
[21] (although in [21] the drift is supposed to be bounded, an extension of their results
to ā given by (1.1) follows easily from the sublinear growth of ā at infinity).

The model ODE dx = ā(x) dt has the following maximal and minimal solutions starting
at x = 0:

x̄±(t) = ±
(
A± · (1− β)t

) 1
1−β , t ≥ 0. (1.10)

The selection problem for the model SDE (1.8) was solved in [14, Theorem 1.1],
namely it was shown that Law X̄ε ⇒ p̄−δx̄− + p̄+δx̄+ , ε → 0, in D([0,∞),R), where the
selection probabilities

p̄± = P
(

lim
t→∞

X̄ε(t) = ±∞
)

(1.11)

are independent of ε, and p̄− + p̄+ = 1.

Remark 1.2. It follows from the self-similarity of Z(α) that for any ε, δ, γ > 0 the rescaled
process X̄γ,δ,ε(t) := γX̄ε(δt), t ≥ 0, satisfies the SDE

X̄γ,δ,ε(t) =

∫ t

0

γ1−βδ ā(X̄γ,δ,ε(s)) ds+ εγδ
1
α · Z̄(α)(t),

where Z̄(α) d
= Z(α). This implies that the selection probabilities p̄± defined in (1.11) are

the same for any model equation dXε = ā(Xε) dt+ σdZ(α) driven by a rescaled process
σZ(α) with any σ > 0. Moreover, they are completely determined by the four parameters
α ∈ (1, 2), C+/C− ∈ [0,+∞], β ∈ (0, 1), and A+/A− ∈ (0,∞).

In the present paper we solve the generalized selection problem for the SDE (1.2).
The main result of this paper is the following.

Theorem 1.3. Let assumptions AZ , Aa, and Ab hold true, and let Xε be a solution
to (1.2). Then

LawXε ⇒ p̄−δx− + p̄+δx+ , ε→ 0, (1.12)

in D([0,∞),R) where functions x± are defined in (1.7) and the selection probabilities
p̄± are defined in (1.11) for the model equation (1.8).
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Remark 1.4. The question of how to determine the selection probabilities p̄± is still
open except of the case of Brownian perturbation, see [1, 4]:

p̄− =
A

1
1+β

−

A
1

1+β

− +A
1

1+β

+

and p̄+ =
A

1
1+β

+

A
1

1+β

− +A
1

1+β

+

.

To prove Theorem 1.3 it suffices to show two properties of the limit laws of Xε as
ε→ 0: i) a processXε can spend only infinitesimal time near zero and ii) the deterministic
solutions x± are chosen with the probabilities p̄± given in (1.11).

In particular we will show that the selection takes place in the infinitesimal time-space
box (t, x) ∈ [0, T0ε

′]×[−Rε′′, Rε′′] with appropriately chosen bounds ε′, ε′′ → 0 and T0, R >

0 large enough. To achieve this, we introduce a rescaled process Y ε(t) := Xε(ε′t)/ε′′

and show that Y ε converges weakly to a solution of the model equation (1.8) driven by
b(0)Z(α). Hence the exit of Xε from the infinitesimal time-space box [0, T0ε

′]×[−Rε′′, Rε′′]
is equivalent to the exit of Y ε from the ε-independent time-space box [0, T0]× [0, R] which
is the subject of Theorem 1.1 in [14].

Eventually we show that upon leaving the ε-dependent time-space box, a solution Xε

with high probability follows the maximal (minimal) solution x± as ε→ 0.

2 Preliminary considerations and time-space rescaling

Before starting the proof we make two technical assumptions that do not reduce the
generality of the setting but simplify the arguments significantly.

Remark 2.1. To establish convergence (1.12) it suffices to show the weak convergence
on the space D([0, T ],R) for each T > 0. After applying the standard “truncation of large
jumps procedure”, see, e.g. [11, Section 3.2] we can assume that for some M > 0 the
Lévy measure ν defined in (1.3) additionally satisfies

supp ν ⊆ [−M,M ] and ν({±M}) = 0. (2.1)

Remark 2.2. We also note that for any two drifts a and ã both satisfying Aa and such
that a(x) = ã(x), |x| ≤ 1, the corresponding solutions Xε and X̃ε coincide up to the exit
from [−1, 1]. Hence the selection probabilities for these solutions in the limit ε→ 0 are
equal too. From now on we assume without loss of generality that

L±(x) = L±(x ∧ 1) for x > 0 (2.2)

to ensure the power growth of a at infinity.

Lemma 2.3. Assume that assumptions Aa and Ab are satisfied. Then the family of
distributions {Law(Xε)}ε∈(0,1] is tight inD([0,∞),R) and a limit of any weakly convergent
subsequence satisfies the integral equation (1.6).

Proof. Indeed, tightness of {Law(Xε)}ε∈(0,1] follows, e.g. from the sublinear growth of
a, boundedness on b, Aldous’ criterion and boundedness supε∈(0,1] E supt∈[0,T ] |Xε

t |2 <∞
for each T > 0, see (2.1). The weak convergence Xεn ⇒ X, n → ∞ follows from the
continuity of a and b.

Let Xε be any solution of (1.2). For any ε′ = ε′(ε) > 0 and ε′′ = ε′′(ε) > 0 we define

aε(y) =
a(ε′′y)

ε′′/ε′
, bε(y) = b(ε′′y), Zε(t) =

Z(ε′t)

ε′′/ε
(2.3)

and consider a time-space rescaled process

Y ε(t) =
Xε(ε′t)

ε′′
, t ≥ 0, (2.4)
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which satisfies the SDE

Y ε(t) =
1

ε′′

∫ ε′t

0

a(Xε(s)) ds+
ε

ε′′

∫ ε′t

0

b(Xε(s−)) dZ(s)

=

∫ t

0

a(ε′′Y ε(s))

ε′′/ε′
ds+

∫ t

0

b(ε′′Y ε(s−)) d
Z(ε′s)

ε′′/ε

=

∫ t

0

aε(Y
ε(s)) ds+

∫ t

0

bε(Y
ε(s−)) dZε(s).

(2.5)

Lemma 2.4. Let la and lν be slowly varying functions from assumptions AZ and Aa.
Then there exist positive functions ε′ = ε′(ε) and ε′′ = ε′′(ε) such that limε→0 ε

′ =

limε→0 ε
′′ = 0,

lim
ε→0

ε′′

ε
= 0 (2.6)

and

ε′′

ε′
∼ (ε′′)βla

( 1

ε′′

)
, (2.7)

ε′ ∼
(ε′′
ε

)α
·
(
lν

( ε
ε′′

))−1

as ε→ 0. (2.8)

Proof. The construction of the scalings ε′, ε′′ relies on the Karamata theory of regularly
varying functions. Consider regularly varying at infinity functions f1(x) = x1−β/la(x)

and f2(x) = xαlν(x), x > 0, and let g1, g2 be their asymptotic inverses, see [2, Section
1.5.7]. The ratio

f3(x) :=
g1(x)

g2(x)

is also regularly varying with index 1
1−β −

1
α > 0. Let g3 be its asymptotic inverse. We set

1

ε′(ε)
:= g3

(1

ε

)
, (2.9)

1

ε′′(ε)
:= g1

( 1

ε′(ε)

)
. (2.10)

It is easy to see that ε 7→ ε′(ε) and ε 7→ ε′′(ε) are positive and converge to zero as ε→ 0.
Applying f1 to the both sides of (2.10) immediately yields (2.7):

f1

( 1

ε′′

)
= f1

(
g1

( 1

ε′

))
∼ 1

ε′
.

Furthermore, due to (2.9) we have f3( 1
ε′ ) = f3(g3( 1

ε )) ∼ 1
ε and hence

ε

ε′′
∼
g1( 1

ε′ )

f3( 1
ε′ )

= g2

( 1

ε′

)
. (2.11)

Since regularly varying functions preserve asymptotic equivalence we obtain (2.8) by
application of f2 to (2.11):

f2

(
g2

( 1

ε′

))
∼ f2

( ε
ε′′

)
∼ 1

ε′
.

Let ν be the Lévy measure of the process Z satisfying AZ and (2.1), and let ε′, ε′′ be
the scalings chosen in Lemma 2.4. For ε ∈ (0, 1] let us define rescaled jump measures νε
by setting for z > 0

νε([z,∞)) = ε′ν
([ε′′z

ε
,∞
))
, νε((−∞,−z]) = ε′ν

((
−∞,−ε

′′z

ε

])
. (2.12)
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Lemma 2.5. For the family of jump measures {νε}ε∈(0,1] defined in (2.12) we have:

1. for each z > 0

lim
ε→0

νε([z,∞)) = ν(α)([z,∞)) and lim
ε→0

νε((−∞,−z]) = ν(α)((−∞, z]), (2.13)

where ν(α) is defined in (1.9);

2. for each δ > 0 there is C > 0 such that for all z > 0

sup
ε∈(0,1]

(
νε((−∞,−z]) + νε([z,∞))

)
≤ C

( 1

zα−δ
∨ 1

zα+δ

)
. (2.14)

Proof. Without loss of generality we consider only the right tail of νε.

1. For any z > 0 we apply (1.3), (2.6) and (2.8) to get for ε→ 0 that

νε([z,∞)) = ε′ν
([ε′′z

ε
,∞
))
∼ C+ε

′
(ε′′z
ε

)−α
lν

( ε

ε′′z

)
∼ C+

zα
·
lν
(
ε
ε′′z

)
lν
(
ε
ε′′

) ∼ C+

zα
= ν(α)([z,∞)).

(2.15)

2. Let δ > 0, ε ∈ (0, 1], z > 0. If ε′′z
ε > M the νε([z,∞)) = 0 see (2.1). If 0 < ε′′z

ε ≤ M

the we take into account (2.8) and (1.3) and apply Potter’s theorem, see e.g. [2,
Theorem 1.5.6] to get

νε([z,∞)) = ε′ν
([ε′′z

ε
,∞
))

=
ε′

( ε
′′

ε )αlν( ε
ε′′ )
−1
·

ν([ ε
′′z
ε ,∞))

C+( ε
′′z
ε )−αlν( ε

ε′′z )
·
C+( ε

′′z
ε )−αlν( ε

ε′′z )

( ε
′′

ε )−αlν( ε
ε′′ )

≤ sup
ε∈(0,1]

ε′

( ε
′′

ε )αlν( ε
ε′′ )
−1
· sup
y∈(0,M ]

ν([y,∞))

C+y−αlν( 1
y )
· C+

zα
· (z−δ ∨ zδ)

=
C(δ,M)

zα
· (z−δ ∨ zδ).

Theorem 2.6. Suppose that ε′ and ε′′ satisfy conditions of Lemma (2.4) and let assump-
tions of Theorem 1.3 hold true. Then

1.
Zε ⇒ Z(α), ε→ 0; (2.16)

2. there exists a weak limit
Y ε ⇒ Y, ε→ 0, (2.17)

which satisfies the SDE

Y (t) =

∫ t

0

ā(Y (s)) ds+ b(0)Z(α)(t), t ≥ 0. (2.18)

The process Y diverges to ±∞ with the selection probabilities p̄± defined in (1.11).

Proof. 1. It is well known that in the case of Lévy processes convergence of marginal
distributions implies the weak convergence in the Skorokhod space, see [8, Corollary
VII.3.6].

For some µ ∈ R, the process Z has the Lévy–Khintchine representation

lnEeiλZ(1) = iµλ+

∫
R

(
eiλz − 1− iλz

)
ν(dz), λ ∈ R,
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whereas the rescaled process Zε has the Lévy–Khintchine representation

lnEeiλZε(1) = lnEe
i
λZ(ε′)
ε′′/ε =

iµλε′

ε′′/ε
+ ε′

∫
R

(
e
i λz
ε′′/ε − 1− iλz

ε′′/ε

)
ν(dz)

=: iµελ+

∫
R

(eiλz − 1− iλz)νε(dz),

with the jump measures νε defined in (2.12).
Hence, the integration by parts formula, Lebesgue’s dominated convergence theo-

rem, (2.13) and (2.14) yield that for each λ ∈ R∫
(0,∞)

(eiλz − 1− iλz)νε(dz) = −iλ

∫
(0,∞)

(eiλz − 1)νε([z,∞)) dz

→ −iλ

∫
(0,∞)

(eiλz − 1)ν(α)([z,∞)) dz

=

∫
(0,∞)

(eiλz − 1− iλz)ν(α)(dz), ε→ 0.

(2.19)

The same convergence holds analogously for the negative tail.
Eventually it follows from the choice of ε′ and ε′′ (see the proof of Lemma 2.4) that

µε = µ · ε · ε
′

ε′′
∼ µε′g2

( 1

ε′

)
→ 0, ε→ 0. (2.20)

Therefore we obtain convergence of the characteristic functions

EeiλZε(1) → EeiλZ(α)(1), ε→ 0.

2. To show (2.17), we note that the SDE (2.18) has a unique weak solution (see [21,
Theorem 3.1]) and the corresponding martingale problem is well-posed. The convergence
aε(y)→ ā(y), µεbε(y)→ 0, and bε(y) = b(0) > 0 as ε→ 0 holds point-wise and uniformly
on compact intervals. Hence due to Lemma 2.5 we also have locally uniform convergence

lim
δ→0

sup
ε∈(0,1]

∫
|z|≤δ

|zbε(y)|2 νε(dz) = 0 and lim
ε→0

∫
g(zbε(y)) νε(dz) =

∫
g(zb(0)) ν(α)(dz)

for each continuous bounded g vanishing in a neighbourhood of 0. Eventually the weak
convergence Y ε ⇒ Y follows by [8, Theorem IX.4.8, p. 556] from the convergence of the
semimartingale characteristics.

Due to [14, Theorem 1.1] and Remark 1.2, the limiting process Y diverges to ±∞
with the selection probabilities p̄±.

3 Estimates for the noise

In this section we get estimates for a growth rate of the noise term
∫ t

0
bε(Y

ε(s−)) dZε(s)

as t→∞ that are uniform in ε. We start with the the following general result.

Lemma 3.1. Let Z̃ be a zero mean Lévy process without a Gaussian component and
with a jump measure ν such that for some C > 0 and γ ∈ (1, 2) it satisfies∫

|z|>x
ν(dz) ≤ C

xγ
, x ≥ 1. (3.1)

and ∫
|z|≤1

z2ν(dz) ≤ C. (3.2)
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Then for any θ > 0 and δ > 0 there exists a generic constant K = K(C, γ, δ, θ) such that
for any predictable process {σ(t)}t≥0, |σ(t)| ≤ 1 a.s., we have

P
(

sup
t≥0

∫ t
0
σ(s) dZ̃(s)

1 + t
1
γ+δ

> K
)
≥ θ. (3.3)

Proof. Denote T (x) := ν((−x, x)c), x ≥ 1. With the help of the integration by parts
and (3.1) we get for x ≥ 1 that∫

|z|>x
|z| ν(dz) = −

∫ ∞
x

z dT (z) = −zT (z)
∣∣∣∞
x

+

∫ ∞
x

T (z) dz

≤ Cx1−γ +
C

γ − 1
x1−γ =

Cγ

γ − 1
x1−γ .

(3.4)

Analogously, for x ≥ 1∫
0<|z|≤x

z2 ν(dz) ≤
∫

0<|z|≤1

z2 ν(dz) +

∫
1<|z|≤x

z2 ν(dz) ≤ 2C
3− γ
2− γ

x2−γ . (3.5)

To show (3.3), we follow the reasoning of [17]. Let us use the Lévy–Itô representation
of the zero mean pure jump Lévy process process Z̃, namely for a Poisson random
measure N with the compensator ν(dz)dt and the compensated Poisson random measure
Ñ(dz,ds) = N(dz,ds)− ν(dz)dt we write

Z̃(t) =

∫ t

0

∫
z Ñ(dz,ds).

For arbitrary A ≥ 1 and T > 0 we estimate

P
(

sup
t∈[0,T ]

∣∣∣∫ t

0

σ(s) dZ̃(s)
∣∣∣ > A

)
≤ P

(
sup
t∈[0,T ]

∣∣∣ ∫ t

0

σ(s)

∫
|z|≤A

zÑ(dz,ds)
∣∣∣ > A

3

)
+ P

(∫ T

0

∫
|z|>A

N(dz,ds) > 0
)

+ P
(∫ T

0

∫
|z|>A

|z|ν(dz)ds >
A

3

)
= I1 + I2 + I3.

(3.6)

By Doob’s inequality and (3.5) we obtain

I1 ≤
36
∫ T

0
Eσ2(s)

∫
|z|≤A z

2ν(dz)ds

A2
≤

36T
∫
|z|≤A z

2ν(dz)

A2
≤ 3− γ

2− γ
72CT

Aγ
. (3.7)

The inequality 1− e−x ≤ x, x ≥ 0, and (3.1) imply that

I2 = 1− exp
(
− T

∫
|z|>A

ν(dz)
)
≤ T

∫
|z|>A

ν(dz) ≤ CT

Aγ
. (3.8)

The item I3 equals 0 if T
∫
|z|>A |z| ν(dz) ds ≤ A/3. By (3.4) this is true if 3CT γ

γ−1A
−γ ≤ 1.

Hence for each K > 0 we have

P
(

sup
t≥0

∫ t
0
σ(s) dZ̃(s)

1 + t
1
γ+δ

> K
)

≤ P
(

sup
t∈[0,1]

∫ t

0

σ(s) dZ̃(s) > K
)

+

∞∑
n=0

P
(

sup
t∈[2n,2n+1]

∫ t
0
σ(s) dZ̃(s)

1 + t
1
γ+δ

> K
)

≤ P
(

sup
t∈[0,1]

∫ t

0

σ(s) dZ̃(s) > K
)

+

∞∑
n=0

P
(

sup
t∈[2n,2n+1]

∫ t
0
σ(s) dZ̃(s)

2n( 1
γ+δ)

> K
)

≤ P
(

sup
t∈[0,1]

∫ t

0

σ(s) dZ̃(s) > K
)

+

∞∑
n=0

P
(

sup
t∈[0,2n+1]

∫ t

0

σ(s) dZ̃(s) > K2n( 1
γ+δ)

)
.

ECP 25 (2020), paper 85.
Page 8/14

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP365
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Generalized Peano problem with Lévy noise

Let us apply (3.6), (3.7), (3.8) to the terms in the last line. Note that all the respective
items I3 are zero if K > K0 = (6C γ

γ−1 )1/γ . Therefore for C1 = C(1 + 72 3−γ
2−γ ) and K > K0

we get

P
(

sup
t≥0

∫ t
0
σ(s) dZ̃(s)

1 + t
1
γ+δ

> K
)
≤ C1

Kγ
+
∑
n≥0

C12n+1

Kγ2nγ( 1
γ+δ)

=
C1

Kγ

(
1 +

22+γδ

21+γδ − 1

)
.

Choosing K = K(C, γ, δ, θ) large enough we make the last probability less than θ.

Corollary 3.2. Let θ > 0. Let Ab, (2.1), (2.7) and (2.8) be satisfied. Let Xε be a solution
to (1.2) with any starting point, and let Y ε(t) = Xε(ε′t)/ε′′, t ≥ 0, be the rescaled process.
Then for any θ > 0, T > 0 and δ > 0 there exists a generic constant K = K(α, δ, θ, T )

such that for any ε ∈ (0, 1] we have

P
(

sup
t∈[0, T

ε′ ]

∣∣∣∫ t0 bε(Y ε(s−)) dZε(s)

1 + t
1
α+δ

∣∣∣ > K
)

= P
(

sup
t∈[0,T ]

∣∣∣ εε′′ ∫ t0 b(Xε(s−)) dZ(s)

1 + ( tε′ )
1
α+δ

∣∣∣ > K
)
≤ θ.

(3.9)

Proof. The uniform estimate (2.14) from Lemma 2.5 implies that for any γ ∈ (1, α) there
is a constant C > 0 such that the inequalities∫

|z|>x
νε(dz) ≤

C

xγ
, x ≥ 1 and

∫
|z|≤1

z2νε(dz) ≤ C,

hold uniformly over ε ∈ (0, 1].
The only difference between the statement of Lemma 3.1 and this corollary is that

the processes {Zε} and the process Z respectively are not necessarily centered and that
the supremum is taken over a finite ε-dependent interval. Hence we have to estimate the
impact of the deterministic drift. It is more convenient to treat the deterministic linear
mean value component µt of Z, µ ∈ R. Indeed, for δ > 0 due to (2.11) there is a constant
C1 = C1(α, δ) such that ε/ε′′ ≤ C1 · (ε′)−

1
α−δ for ε ∈ (0, 1]. Therefore we have

sup
t∈[0,T ]

∣∣∣ εε′′µ ∫ t0 b(Xε(s−)) ds

1 + ( tε′ )
1
α+δ

∣∣∣ ≤ sup
t∈[0,T ]

t · εε′′ · |µ| · ‖b‖
1 + ( tε′ )

1
α+δ

≤ C1 · |µ| · ‖b‖ · sup
t∈[0,T ]

t(ε′)−
1
α−δ

1 + ( tε′ )
1
α+δ

= C1 · |µ| · ‖b‖ · sup
t∈[0,T ]

t1−
1
α−δ( tε′ )

1
α+δ

1 + ( tε′ )
1
α+δ

≤ C1 · |µ| · ‖b‖ · T 1− 1
α−δ · sup

s≥0

s
1
α+δ

1 + s
1
α+δ

=: K0(α, δ, T ),

that gives us the lower bound for K in (3.9).

4 Exit of Xε from the time-space box [0, T0ε
′]× [−Rε′′, Rε′′]

In the following Lemma we estimate the exit time of Xε from a small neighborhood
of 0. Here we essentially use the representation of Xε in terms of Y ε and establish the
proper relations between its small time and small space behaviour. For R > 0 and a
stochastic process X we denote the first exit times

τXR = inf{t ≥ 0: X(t) > R}, τX−R = inf{t ≥ 0: X(t) < −R}.

Lemma 4.1. For any θ > 0 and any R > 0 there is T0 = T0(R) > 0 such that

lim inf
ε→0

P
(
τX

ε

Rε′′ ∧ τX
ε

−Rε′′ ≤ T0ε
′
)
≥ 1− θ. (4.1)

ECP 25 (2020), paper 85.
Page 9/14

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP365
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Generalized Peano problem with Lévy noise

Proof. Recall that ε′ = ε′(ε) and ε′′ = ε′′(ε) are chosen according to Lemma 2.4. Note
that due to rescaling (2.4)

τX
ε

±Rε′′ = ε′τY
ε

±R, Xε(τX
ε

±Rε′′) = ε′′Y ε(ε′τY
ε

±R). (4.2)

Let R > 0 and choose ε0 ∈ (0, 1] be such that

0 <
b(0)

2
≤ inf
|y|≤R, ε∈(0,ε0]

b(ε′′y) = inf
|y|≤R, ε∈(0,ε0]

bε(y)

≤ sup
|y|≤R, ε∈(0,ε0]

bε(y) = sup
|y|≤R, ε∈(0,ε0]

b(ε′′y) ≤ 2b(0).

Also recall that Zε ⇒ Z(α) by Theorem 2.6 so that Zε has unbounded jumps in the limit as
ε→ 0. Let σε be the first jump time such that |∆Zε(σε)| > 6R/b(0). Then |∆Y ε(σε)| > 3R

and hence τY
ε

R ≤ σε. Eventually (2.16) yields

lim
ε→0

Eσε =
(∫
|z|>6R/b(0)

ν(α)(dz)
)−1

and the statement of the Lemma follows from (4.2) and Chebyshev’s inequality.

Corollary 4.2. For any θ > 0 there exist R > 0 large enough and T0 > 0 such that

lim sup
ε→0

∣∣∣P(τXε∓Rε′′ < τX
ε

±Rε′′ ≤ T0ε
′
)
− p̄±

∣∣∣ ≤ θ.
Proof. The result follows from (4.1), (4.2), (1.11) and Theorem 2.6.

5 Behaviour of Xε upon exit from the time-space box [0, T0ε
′] ×

[−Rε′′, Rε′′]. Proof of the main result

For definiteness, let us consider only dynamics on the positive spatial half line x ≥ 0.

Lemma 5.1. 1. For each γ ∈ (0, β) there is Kγ > 0 such that for all x ≥ 1 and ε ∈ (0, 1]

aε(x) ≥ Kγx
β−γ . (5.1)

2. For any κ ∈ (0, 1) there exists µ ∈ (0, 1) such that

inf
x
y∈[1−µ,1+µ]

aε(x)

aε(y)
> 1− κ. (5.2)

Proof. 1. Recall that according to Assumption Aa and Remark 2.2, a(x) = xβL+(x ∧ 1),
x > 0, and a(0) = 0. Hence

aε(x) =
a(ε′′x)

ε′′/ε′
= ε′ · (ε′′)β−1 · xβL+((ε′′x) ∧ 1)

= ε′ · (ε′′)β−1 · l
( 1

ε′′

)
· xβ · L+((ε′′x) ∧ 1)

A+la
(

1
xε′′ ∨ 1

) · A+la
(

1
xε′′ ∨ 1

)
la
(

1
ε′′

) .

(5.3)

The equivalence (2.7) guarantees that ε′ · (ε′′)β−1 · la( 1
ε′′ ) ≥ C1 > 0 for some C1 > 0 and

ε ∈ (0, 1].
Let γ ∈ (0, β), x ≥ 1 and ε ∈ (0, 1]. We consider two cases.

a) For xε′′ < 1, with the help of Potter’s theorem [2, Theorem 1.5.6 (ii)] applied to the
function la we get

aε(x) ≥ C1 · xβ · inf
0<y<1

L+(y)

A+la
(

1
y

) ·A+ ·
la
(

1
xε′′

)
la
(

1
ε′′

) ≥ C2 · xβ−γ

for some C2 = C2(γ) > 0.

ECP 25 (2020), paper 85.
Page 10/14

https://www.imstat.org/ecp

https://doi.org/10.1214/20-ECP365
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Generalized Peano problem with Lévy noise

b) For xε′′ ≥ 1 applying Potter’s theorem again we get

aε(x) ≥ C1 · xβ ·
L+(1)

la(1)
· la(1)

la
(

1
ε′′

) ≥ C2 · xβ · (ε′′)γ ≥ C3 · xβ−γ

for some C3 = C3(γ), and (5.1) follows with Kγ = C2 ∧ C3.

2. To prove (5.2) we note that

inf
x
y∈[1−µ,1+µ]

aε(x)

aε(y)
= inf

x
y∈[1−µ,1+µ]

a(x)

a(y)
= (1− µ)β · inf

x
y∈[1−µ,1+µ]

L+(x ∧ 1)

L+(y ∧ 1)
= C(µ) · (1− µ)β ,

where 0 < C(µ) → 1 as µ → 0 by continuity of L+ and Potter’s bounds. Hence for any
κ ∈ (0, 1), the estimate (5.2) holds for µ small enough.

Lemma 5.2. Let γ ∈ (0, β). Then for any y ≥ 1, κ ∈ (0, 1) and any ε ∈ (0, 1] the solution
of the ODE

ζεκ(t; y) = y + (1− κ)

∫ t

0

aε(ζ
ε
κ(s; y)) ds

satisfies

ζεκ(t; y) ≥ y +Kt
1

1−β+γ , t ≥ 0, (5.4)

with a constant K = K(β, γ, κ) > 0.

Proof. Let γ ∈ (0, β) be fixed. For y ≥ 1 we use (5.1) and compare ζεκ(·; y) with the
solution of the auxiliary ODE

zκ(t; y) = y + (1− κ)Kγ

∫ t

0

(zκ(s; y))β−γ ds, t ≥ 0.

This solution has the explicit form

zκ(t; y) =
(
y1−β+γ + (1− κ)(1− β + γ)Kγt

) 1
1−β+γ

.

Hence the application of an elementary inequality (a + b)p ≥ ap + bp, a, b ≥ 0, p ≥ 1,
yields (5.4) with some K > 0.

We need the following comparison theorem for solutions of integral equations.

Lemma 5.3. Let for T > 0 and i = 1, 2, the functions ui be solutions (not necessarily
unique) to the equations

ui(t) = ui(0) +

∫ t

0

Ui(s, ui(s)) ds, t ∈ [0, T ].

Assume that u1(0) ≥ u2(0), U1(t, u2(t)) > U2(t, u2(t)), t ∈ [0, T ], and functions t 7→
Ui(t, ui(t)) are right-continuous. Then u1(t) ≥ u2(t), t ∈ [0, T ].

Proof. The proof of this Lemma is quite standard. Assume that there is τ = inf{t >
0: u1(t) < u2(t)} ∈ [0, T ]. Then by continuity u1(τ) = u2(τ) we necessarily have the
inequality D+u1(τ) ≤ D+u2(τ) for the right Dini derivatives of the solutions. However
since t 7→ Ui(t, ui(t)) are right-continuous, by assumption

D+u1(τ) = U1(τ, u1(τ)) = U1(τ, u2(τ)) > U2(τ, u2(τ)) = D+u2(τ),

and we obtain a contradiction.
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In the next Lemma we determine a lower bound for the process Y ε starting sufficiently
far from zero.

Lemma 5.4. For any θ > 0, κ ∈ (0, 1) and T > 0 there are µ = µ(κ) ∈ (0, 1) and
R = R(T, κ, θ) ≥ 1 such that for any F0-measurable initial condition Y ε(0) > R a.s. and
all ε ∈ (0, 1]

P
(
Y ε(t) ≥ (1− µ)ζεκ(t;Y ε(0)), t ∈ [0, T/ε′]

)
≥ 1− θ.

A similar estimate from above also holds for Y ε(0) < −R a.s.

Proof. For ε ∈ (0, 1] let

gε(t) :=

∫ t

0

bε(Y
ε(s−)) dZε(s), Ỹ ε(t) := Y ε(t)− gε(t).

Then Ỹ ε(t) satisfies the integral equation

Ỹ ε(t) = Y ε(0) +

∫ t

0

aε(Ỹ
ε(s) + gε(s)) ds.

Choose γ ∈ (0, β) small enough such that 1
1−β+γ > 1

α . For θ > 0 fixed, we apply
Corollary 3.2 and find a constant K1 = K1(T, β, γ, θ) > 0 such that for all ε ∈ (0, 1] and
any initial starting point Y ε(0) ∈ R

P
(

sup
t∈[0, T

ε′ ]

∣∣∣ gε(t)

1 + t
1

1−β+γ

∣∣∣ ≤ K1

)
≥ 1− θ. (5.5)

Consequently, for any κ ∈ (0, 1) and any y ≥ 1 with the help of (5.4) we get

P
(

sup
t∈[0, T

ε′ ]

∣∣∣ gε(t)
ζεκ(t; y)

∣∣∣ ≤ K1(1 + t
1

1−β+γ )

y +Kt
1

1−β+γ

)
≥ 1− θ.

Let µ = µ(κ) ∈ (0, 1) be such that (5.2) holds. For this µ choose R ≥ 1 such that

supt≥0
K1(1+t

1
1−β+γ )

R+Kt
1

1−β+γ
≤ µ. Then

P
(

sup
t∈[0, T

ε′ ]

∣∣∣ gε(t)

ζεκ(t;R ∨ Y ε(0))

∣∣∣ ≤ µ) ≥ 1− θ.

In other words, for Y ε(0) ≥ R a.s. we have

P
(
aε(ζ

ε
κ(t;Y ε(0)) + gε(t)) > (1− κ)aε(ζ

ε
κ(t;Y ε(0))), t ∈ [0, T/ε′]

)
≥ 1− θ.

Therefore the comparison Lemma 5.3 applied to u1 = Ỹ ε and u2 = ζεκ(·;Y ε(0)) yields

P
(
Ỹ ε(t) ≥ ζεκ(t;Y ε(0)), t ∈ [0, T/ε′]

)
≥ 1− θ

and hence
P
(
Y ε(t) ≥ (1− µ)ζεκ(t;Y ε(0)), t ∈ [0, T/ε′]

)
≥ 1− θ.

Proof of Theorem 1.3. Notice that for each κ ∈ (0, 1), ε ∈ (0, 1] and y > 0 the function
ζ̂εκ(t; y) := ε′′ζεκ(t/ε′; y), t ≥ 0, satisfies the equation

ζ̂εκ(t; y) = ε′′y + (1− κ)

∫ t

0

a(ζ̂εκ(s; y)) ds.
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Hence according to (1.6) and (1.7)

ζ̂εκ(t; y) = X0
ε′′y((1− κ)t) ≥ x+((1− κ)t), t ≥ 0. (5.6)

Let µ = µ(κ) ∈ (0, 1) be chosen to satisfy (5.2).
Since the Lévy process Zε is strong Markov, analogously to Lemma 3.1 and Corol-

lary 3.2 we have the following. For any T , δ, θ > 0 there exists a generic constant
K = K(T, α, δ, θ) such that for any ε ∈ (0, 1] the estimate

P
(

sup
t∈[0, T

ε′ ]

∣∣∣∫ τ+t

τ
bε(Y

ε(s−)) dZε(s)

1 + t
1
α+δ

∣∣∣ ≤ K) ≥ 1− θ

holds for any stopping time τ . It follows from Corollary 3.2, Lemma 4.1, Corollary 4.2,
Lemma 5.4, and (5.6) that for any θ > 0 and T > 0 there are R > 0 and T0 > 0 large
enough such that

lim inf
ε→0

P
(
τX

ε

±Rε′′ < τX
ε

∓Rε′′ ≤ T0ε
′, Xε(τX

ε

±Rε′′ + t) ≥ (1− µ)x±((1− κ)t), t ∈ [0, T ]
)
≥ p̄± − θ.

In the last formula, Lemma 5.4 is applied to the process Y ε(t+ τY
ε

−R ∧ τY
ε

R ), t ≥ 0, whose
initial value belongs to the set [−R,R]c, see (4.2). Corollary 3.2 holds true since τY

ε

±R are
stopping times.

Since p̄− + p̄+ = 1 and any limit law of {Xε} is supported by the solutions x± (see
Lemma 2.3) we get that for each δ > 0

lim sup
ε→0

∣∣∣P( sup
t∈[0,T0ε′+T ]

|Xε(t)− x±(t)| ≤ δ
)
− p±

∣∣∣ ≤ θ,
and the proof is finished.
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