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Abstract

We provide sufficient conditions for uniqueness of an invariant probability measure of
a Markov kernel in terms of (generalized) couplings. Our main theorem generalizes
previous results which require the state space to be Polish. We provide an example
showing that uniqueness can fail if the state space is separable and metric (but not
Polish) even though a coupling defined via a continuous and positive definite function
exists.
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1 Introduction

One important question in the theory of Markov processes is that of existence and
uniqueness of invariant probability measures (ipms). In this note we will concentrate
on uniqueness. A sufficient condition for uniqueness of an ipm is provided by Doob’s
theorem based on appropriate equivalence assumptions of the transition probabilities.
In fact, such kind of conditions even imply total variation convergence of all or almost all
transition probabilities (see [6], [8]). On the other hand, there are a number of cases
in which an ipm is known to be unique and for which it is also known that equivalence
of transition probabilities fails, for example certain classes of stochastic functional
differential equations, see e.g. [5]. In [5, Theorem 1.1, Corollary 2.2] and later in [7,
Theorem 1, Corollary 1], the authors provided uniqueness criteria in terms of generalized
couplings. A basic assumption in both papers is that the state space is Polish (i.e. a
separable and completely metrizable topological space), a fact which is used in order
to apply an ergodic decomposition theorem but also to guarantee inner regularity of
finite Borel measures. In recent years, there seems to be growing interest in invariant
measures for Markov processes with non-Polish state space, like spaces of bounded
measurable functions (e.g. [2]).

In this note, we generalize previous results to (not necessarily separable) metric
spaces and, in the Polish state space case, we allow that the distance function which
appears in the coupling assumption, is a lower semi-continuous positive definite function
and not necessarily a metric. We also provide an example showing that this generalization
fails to hold if the state space is separable and metric but not complete.
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Generalized couplings and invariant measures

Let us briefly recall the previous approaches to show uniqueness via generalized
couplings in the case of a Polish state space. Assume that a Markov kernel P admits
more than one ipm. Then it is known that P admits two distinct ergodic and hence
mutually singular ipms µ and ν (see, e.g., [4]). Therefore, there exist disjoint compact
sets A and B of µ (resp. ν)-measure almost 1. By ergodicity, starting in A, the Markov
chain will almost surely spend a large proportion of time in A and similarly for B. No
matter how we couple the chains starting in A and in B: most of the time, the first
process is in A and the second one is in B and so their distance is at least equal to the
distance of the sets A and B (which is strictly positive), thus contradicting the usual
coupling assumption that there exists a coupling for which the processes starting in
A and in B are very close for large times. This argument still holds if couplings are
replaced by generalized couplings (see the definition below).

The note is organized as follows. In the following section, we provide three elementary
propositions, where the first and the third one constitute an elementary substitute for
the ergodic decomposition property which does not seem to be known for a general state
space. Then we present and prove the main result along the lines [5] and [7] but using
these propositions instead of ergodicity and inner regularity in the Polish case.

2 Preliminaries

Let P be a Markov kernel on the measurable space (E, E). We denote the set of
probability measures on (E, E) by M1(E, E) or just M1(E). If µ ∈ M1(E), then we
write µP for the image of µ under P . We are interested in providing criteria for the
uniqueness of an invariant probability measure (ipm), i.e. a probability measure π on
(E, E) satisfying πP = π. We call two probability measures µ and ν on the measurable
space (E, E) (mutually) singular, denoted µ ⊥ ν, if there exists a set C ∈ E such that
µ(C) = 1 and ν(C) = 0. As usual, µ � ν means that the measure µ is absolutely
continuous with respect to ν. If E is a topological space, then we denote its Borel σ-field
by B(E).

For x ∈ E, we denote the law of the chain with kernel P and initial condition x by
Px. Note that Px is a probability measure on the space

(
EN0 , EN0

)
. C(Px,Py) :=

{
ξ ∈

M1(EN0 × EN0) : π1(ξ) = Px, π2(ξ) = Py
}

is called the set of couplings of Px and Py.
Here, πi(ξ) denotes the image of ξ under the projection on the i-th coordinate, i = 1, 2.
The set of generalized couplings Ĉ(Px,Py) is defined as

Ĉ(Px,Py) :=
{
ξ ∈M1(EN0 × EN0) : π1(ξ)� Px, π2(ξ)� Py

}
.

The following elementary proposition is a consequence of the ergodic decomposition
theorem under the assumption that the space (E, E) is standard Borel, i.e. measurable
isomorphic to a Polish space equipped with its Borel σ-field, but we are not aware of a
proof in the general case.

Proposition 2.1. Assume that P admits more than one ipm. Then there exist two
mutually singular ipm’s.

Proof. Let µ and ν be two distinct ipm’s. Assume first that µ and ν are mutually
equivalent and define f(x) = dµ

dν (x), x ∈ E and A := {x ∈ E : f(x) > 1}. Then
µ(A), ν(A) ∈ (0, 1). We have (by invariance of ν and µ)∫

A

P (y,Ac) dν(y) =

∫
Ac

P (y,A) dν(y)

and ∫
A

P (y,Ac)f(y) dν(y) =

∫
Ac

P (y,A)f(y) dν(y).
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Generalized couplings and invariant measures

Since f(y) > 1 on A and f(y) ≤ 1 on Ac, it follows that all four expressions in the two
equations are in fact equal. This implies P (y,Ac) = 0 for (µ or ν)-almost all y ∈ A and
hence P (y,A) = 0 for almost all y ∈ Ac. Therefore, the probability measures 1

µ(A)µ|A and
1

µ(Ac)µ|Ac are mutually singular ipm’s.
Let us now assume that µ and ν are distinct ipm’s which are neither equivalent

nor singular. Without loss of generality we assume that µ is not absolutely continuous
with respect to ν. Then there exist disjoint sets A,B,C ∈ E such that A ∪ B ∪ C = E

and µ and ν restricted to B are equivalent, ν(A) = 0 and µ(C) = 0. By assumption,
µ(A) > 0 and µ(B), ν(B) > 0. Then P (x,B) = 1 for (µ or ν-)almost all x ∈ B showing
that the normalized measures µ restricted to B and to A are mutually singular invariant
probability measures.

If E is a non-empty set, A and B are subsets of E and ρ : E × E → [0,∞), then we
define

ρ(A,B) := inf{ρ(a, b) : a ∈ A, b ∈ B},

where the infimum over the empty set is defined as +∞. If A = {x}, then we write ρ(x,B)

instead of ρ({x}, B). Further, we call such a function ρ positive definite, if ρ(x, y) = 0 iff
x = y. A metric d on E is a special case of such a positive definite function.

Proposition 2.2. Let µ and ν be probability measures on the Borel sets of a metric
space (E, d) such that µ ⊥ ν. Let C ∈ B(E) be such that µ(C) = 1 and ν(C) = 0. Then,
for every ε > 0, there exist closed sets A ⊂ C and B ⊂ Cc such that µ(A) > 1 − ε,
ν(B) > 1− ε and d(A,B) > 0.

If E is Polish and d is a (not necessarily complete) metric which generates the topology
of E, then, in addition, A and B can be chosen to be compact. In this case, it holds that
for any lower semi-continuous and positive definite function ρ : E × E → [0,∞), we have
ρ(A,B) > 0.

Proof. By [3, Lemma 7.2.4.], there exists a closed set A ⊆ C such that µ(A) > 1 − ε.
Similarly, there is a closed set B0 ⊂ Cc for which ν(B0) > 1 − ε/2. For n ∈ N, let
Bn := {y ∈ E : d(y,A) ≥ 1/n}. Choose n ∈ N such that ν(Bn ∩B0) > 1− ε. Then A and
B := Bn ∩B0 satisfy all properties stated in the proposition (and d(A,B) ≥ 1/n).

On a Polish space, every finite measure on the Borel sets is regular ([3, Proposition
8.1.12]) and therefore, there exist compact sets A ⊂ C and B ⊂ Cc such that µ(A) > 1−ε
and µ(B) > 1 − ε. Since A and B are disjoint, we have d(A,B) > 0. Moreover, if
ρ : E × E → [0,∞) is lower semi-continuous and positive definite, then, automatically,
ρ(A,B) > 0 by compactness of A and B.

Proposition 2.3. Let µ be an invariant probability measure of the Markov kernel P on
the measurable space (E, E) and let f : E → R be bounded and measurable. For γ ∈ R
define ψγ : E → [0, 1] by

ψγ(x) = Px

(
lim inf
n→∞

1

n

n−1∑
i=0

f(Xi) ≥ γ
)
. (2.1)

Then, ψγ(x) ∈ {0, 1} for µ-almost all x ∈ E.
If, moreover, f(x) ∈ [0, 1] for all x ∈ E, m :=

∫
f dµ, and γ ∈ [0,m], then

µ
({
x : ψγ(x) = 1

})
≥ 1− 1−m

1− γ
.

Proof. Let X0, X1, ... be the Markov chain started with L(X0) = µ defined on a space
(Ω,F ,P). Then ψγ(Xn), n ∈ N0 is a stationary process and a (bounded) martingale with
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respect to the complete filtration (Fn) generated by (Xn), so Z := limn→∞ ψγ(Xn) exists
almost surely by the martingale convergence theorem. Clearly, any real-valued stationary
process Yn, n ∈ N0 which converges almost surely must be almost surely constant with
respect to the parameter n, so, almost surely, ψγ(Xn) = Z for all n ∈ N. Further, Z
is F∞-measurable and therefore Z ∈ {0, 1} almost surely. Hence, ψγ(x) ∈ {0, 1} for
µ-almost all x ∈ E.

To establish the final statement, we apply Birkhoff’s ergodic theorem to see that

Y := lim
n→∞

1

n

n−1∑
i=0

f(Xi)

exists almost surely and EY = m. Therefore, by Markov’s inequality,

µ
({
x : ψγ(x) = 1

})
= P(Y ≥ γ) = 1− P(1− Y > 1− γ) ≥ 1− 1−m

1− γ
,

so the proof is complete.

Remark 2.4. Note that, due to Birkhoff’s ergodic theorem, we could replace the lim inf

in (2.1) by lim sup or lim. This changes the value of ψγ only on a set of µ-measure 0.

3 Main result

Before we state the main result we address a small technical issue. If the metric
space (E, d) is not separable, then it may happen that the map (x, y) 7→ d(x, y) is not
B(E) ⊗ B(E)-measurable (the map is of course B(E × E)-measurable but B(E) ⊗ B(E)

may be strictly contained in B(E × E)). If ξ is a probability measure on (E × E, E ⊗ E),
then we silently assume that an expression like ξ(A) is interpreted as ξ∗(A) in case A is
not measurable where ξ∗ denotes the outer measure associated to ξ.

Theorem 3.1. Let µ1 and µ2 be invariant probability measures of the Markov kernel P
on the metric space (E, d) with Borel σ-field E := B(E). Assume that there exists a set
M ∈ E ⊗ E such that µ1 ⊗ µ2(M) > 0 and that for every (x, y) ∈ M there exists some
αx,y > 0 such that for every ε > 0 there exists some ξεx,y ∈ Ĉ(Px,Py) such that

ξεx,y

(
(ζ, η) ∈ EN0 × EN0 : lim sup

n→∞

1

n

n−1∑
i=0

1[0,ε]

(
d(ζi, ηi)

)
≥ αx,y

)
> 0. (3.1)

Then µ1 and µ2 cannot be mutually singular.
If, moreover, E is Polish and ρ : E×E → [0,∞) is a lower semicontinuous and positive

definite function for which (3.1) holds for d replaced by ρ then, again, µ1 and µ2 cannot
be mutually singular.

The following corollary is a simple consequence of Theorem 3.1 and Proposition 2.1.

Corollary 3.2. Let P be a Markov kernel on the metric space (E, d) with Borel σ-field
E := B(E). Assume that there exists a set M ∈ E such that µ(M) > 0 for every invariant
probablity measure µ and that for every x, y ∈ M there exists αx,y > 0 such that for
every ε > 0 there exists some ξεx,y ∈ Ĉ(Px,Py) such that

ξεx,y

(
(ζ, η) ∈ EN0 × EN0 : lim sup

n→∞

1

n

n−1∑
i=0

1[0,ε]

(
ρ(ζi, ηi)

)
≥ αx,y

)
> 0, (3.2)

where either ρ = d, or ρ is lower semicontinuous and positive definite and E is Polish,
then there exists at most one invariant probability measure.
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Remark 3.3. In the Polish space case, conditions (3.1) and (3.2) are slightly weaker
than [7, (2.5)]: If, for given x, y ∈ E,

Zn,ε :=
1

n

n−1∑
i=0

1[0,ε]

(
d(Xi, Yi)

)
,

then condition (3.1) is of the form ξ
(

lim supn→∞ Zn,ε ≥ α
)
> 0 while (2.5) in [7] is of the

form lim supn→∞EξZn,ε ≥ α, both for each ε > 0. The corresponding condition in [5,
Corollary 2.2] is yet a bit stronger: ξ

(
limi→∞ d(Xi, Yi) = 0

)
> 0.

Proof of Theorem 3.1. Assume that µ1 and µ2 are mutually singular invariant probability
measures of P . Let C ∈ E be a set such that µ1(C) = 1 and µ2(C) = 0. Take any
κ, γ ∈ (0, 1) to be chosen appropriately later. By Proposition 2.2, there exist closed sets
A ⊂ C and B ⊂ Cc such that µ1(A) > 1− κ, µ2(B) > 1− κ, and ρ(A,B) > 0 with ρ := d if
E is not Polish.

Denoting the chain starting at X0 = x ∈ E by (Xx
i ), i ∈ N0, we have, by Proposi-

tion 2.3,

µ1

({
x ∈ E : lim inf

n→∞

1

n

n−1∑
i=1

1A(Xx
i ) ≥ γ, Px-a.s.

})
> 1− κ

1− γ
,

µ2

({
x ∈ E : lim inf

n→∞

1

n

n−1∑
i=1

1B(Xx
i ) ≥ γ, Px-a.s.

})
> 1− κ

1− γ
.

(3.3)

We now proceed to assign specific values to the variables γ and κ.
We claim that there exist some δ, δ̄ > 0 such that for every set M̄ ∈ E ⊗ E , M̄ ⊂ M

such that µ1 ⊗ µ2(M̄) ≥ µ1 ⊗ µ2(M)− δ there exists some (x, y) ∈ M̄ such that αx,y > δ̄

(even if (x, y) 7→ αx,y is non-measurable). To see this assume, by contradiction, that such
δ, δ̄ > 0 do not exist. Then, for each n ∈ N, the function (x, y) 7→ αx,y is upper bounded
by 1/n on some set M̄n ⊂ M , M̄n ∈ E ⊗ E such that µ1 ⊗ µ2(M̄n) ≥ µ1 ⊗ µ2(M) − 1

n , so
the function α ∧ 1 is upper bounded by gn = 1M\M̄n

+ 1
n1M̄n

on M for each n and hence
also by infn∈N gn which is 0 µ1 ⊗ µ2-almost surely contradicting the assumption that α is
strictly positive on M .

Fix such δ, δ̄ > 0 and fix γ ∈ (0, 1) such that

2(1− γ) < δ̄.

Define

E1 :=
{
x ∈ E : lim inf

n→∞

1

n

n−1∑
i=1

1A(Xx
i ) ≥ γ, Px-a.s.

}
,

E2 :=
{
y ∈ E : lim inf

n→∞

1

n

n−1∑
i=1

1B(Xy
i ) ≥ γ, Py-a.s.

}
.

The sets E1 and E2 still depend on κ via A and B. Using (3.3), we can find (and fix) κ > 0

such that µ1 ⊗ µ2

(
E1 × E2

)
= µ1

(
E1

)
µ2

(
E2

)
≥ 1 − δ, so M̄ :=

(
E1 × E2

)
∩M satisfies

µ1 ⊗ µ2(M̄) ≥ µ1 ⊗ µ2(M)− δ. Therefore, there exists (x, y) ∈
(
E1 × E2

)
∩M such that

αx,y > δ̄. Fix such a pair (x, y) and let ε := 1
2ρ(A,B). Pick ξεx,y ∈ Ĉ

(
Px,Py

)
as in the

theorem. If
(
X̂i, Ŷi

)
i∈N0

has law ξεx,y, then L(X̂)� Px and L(Ŷ )� Py and so

lim inf
n→∞

1

n

n−1∑
i=1

1A(X̂i) ≥ γ, lim inf
n→∞

1

n

n−1∑
i=1

1B(Ŷi) ≥ γ, a.s..
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Therefore,

lim inf
n→∞

1

n

n−1∑
i=1

1A×B(X̂i, Ŷi) ≥ 2γ − 1 > 1− δ̄ > 1− αx,y a.s.. (3.4)

Since
1[0,ε]

(
ρ
(
X̂i, Ŷi

))
≤ 1− 1A×B

(
X̂i, Ŷi

)
,

we see that (3.4) contradicts assumption (3.1), so there cannot exist two mutually
singular invariant probability measures.

4 A counterexample

The basic set-up of the following example is inspired by [1, Example 1] in which the
authors show that the “gluing lemma” need not hold on a separable and metrizable
space. Our example shows that even if there exists a continuous and positive definite
function ρ : E × E, where E is separable and metric, such that for every pair x, y ∈ E
there exists a (true) coupling (Xn, Yn) for which ρ(Xn, Yn) converges to 0 almost surely,
uniqueness of an invariant probability measure may not hold.

Example 4.1. Let I ⊂ [0, 1] be a set such that λ∗(I) = 1 and λ∗(I) = 0, where λ denotes
Lebesgue measure on the Borel sets of [0, 1] and λ∗ and λ∗ are the corresponding outer
and inner measures. Further, let J := [0, 1]\I (then λ∗(J) = 1 and λ∗(J) = 0). Let E
be the disjoint union of I and J , i.e. E = E1 ∪ E2, where E1 := {(x, 1) : x ∈ I} and
E2 := {(x, 2) : x ∈ J} equipped with the metric

d(x, y) =

{
|x− y| if (x, y) ∈ E1 × E1 or (x, y) ∈ E2 × E2,

1 if (x, y) ∈ E1 × E2 or (x, y) ∈ E2 × E1.

Note that E is separable (but not Polish since otherwise the following construction
could not work). We define ρ : E × E → [0, 1] as ρ

(
(x, i), (y, j)

)
= |x − y| for (x, i) ∈ Ei,

(y, j) ∈ Ej , i, j ∈ {1, 2}. Obviously, ρ is continuous. Further, ρ is positive definite since
ρ
(
(x, i), (y, j)

)
= 0 implies that i = j and hence either both x and y are in I or both

x and y are in J (since I and J are disjoint). In fact, ρ is a (continuous) metric on E

which makes (E, ρ) a Polish space (which is isometric to the interval [0, 1] equipped with
the Euclidean metric). Note that the topology generated by ρ is different from the one
generated by d.

Next, we construct an E-valued Markov chain with two different invariant measures
µ and ν and a coupling (Xn, Yn) of two copies of the chain starting at (x, y) such that
limn→∞ ρ(Xn, Yn) = 0 almost surely.

For A ⊂ E, we define π1(A) := {x ∈ I : (x, 1) ∈ A} and π1(A) := {x ∈ J : (x, 2) ∈ A}.
Let

µ(A) := λ∗
(
π1(A)

)
, ν(A) := λ∗

(
π2(A)

)
, A ∈ B(E).

We define the Markov kernel P on E by

P (x, .) =

{
µ, if x ∈ E1

ν, if x ∈ E2.

Clearly, µ and ν are mutually singular invariant probability measures of P . Note that
conditional on X0 = x ∈ E1 (resp. E2) the sequence X1, X2, ... is i.i.d. with law µ (resp. ν).

We define ξx,y ∈ C
(
Px,Py

)
as follows. If x, y are both in E1, then we let X1, X2, ... be

i.i.d. with law µ and Yi := Xi, i ∈ N and similarly if x, y are both in E2. This defines a
coupling ξx,y ∈ C

(
Px,Py

)
which satisfies limn→∞ ρ(Xn, Yn) = 0.

Now we assume that x ∈ E1 and y ∈ E2. We let (X1, Y1), (X2, Y2), ... be independent
with a distribution depending on n ∈ N as follows. For given n ∈ N, we consider a
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random variable U which is uniformly distributed on {0, ...n − 1}. Let Xn and Yn be
conditionally independent given U with law

P
(
Xn ∈ A, Yn ∈ B|U = i

)
= n2λ∗

(
π1(A) ∩

[ i
n
,
i+ 1

n

))
· λ∗
(
π2(A) ∩

[ i
n
,
i+ 1

n

))
, A,B ∈ B(E).

Clearly, this defines a coupling of Px and Py for which ρ(Xn, Yn) ≤ 1
n almost surely.

Remark 4.2. Note that the Markov kernel P in the previous example is even strong
Feller, i.e. the map x 7→

∫
f(y)P (x, dy) is continuous for every bounded measurable

function f : E → R.
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