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Abstract

Under the standard drift/minorization and strong aperiodicity assumptions, this paper
provides an original and quite direct approach of the V -geometrical ergodicity of a
general Markov kernel P , which is by now a classical framework in Markov modelling.
This is based on an explicit approximation of the iterates of P by positive finite-rank
operators, combined with the Krein-Rutman theorem in its version on topological
dual spaces. Moreover this allows us to get a new bound on the spectral gap of the
transition kernel. This new approach is expected to shed new light on the role and
on the interest of the above mentioned drift/minorization and strong aperiodicity
assumptions in V -geometrical ergodicity.
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1 Introduction

Throughout the paper P is a Markov kernel on a measurable space (X,X ). For
any positive measure µ on X and any µ-integrable function f : X→C, µ(f) denotes
the integral

∫
fdµ. When P admits a unique invariant distribution denoted by π, an

important question in the theory of Markov chains is to find condition for the n−th iterate
Pn of P to converge to π when n→+∞, and to control ‖Pn−π(·)1X‖ for some functional
norm. In this paper we consider the standard V−weighted norm ‖ · ‖V associated with
some [1,+∞)-valued function V on X. Then the property

‖Pn − π(·)1X‖V := sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− π(f)
∣∣

V (x)
−→ 0 when n→+∞

implies that there exists ρ ∈ (0, 1) such that ‖Pn − π(·)1X‖V = O(ρn): this corresponds
to the so-called V -geometrical ergodicity property, see [10, 13, 6]. The infimum of all
the real numbers ρ such that the previous property holds true is the so-called spectral
gap of P , denoted by ρV (P ).

Since the classical work by Meyn and Tweedie [10, 11], it is well known that P is
V -geometrically ergodic provided that usual irreducibility/aperiodicity assumptions hold
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true and that the following drift/minorization conditions are fulfilled: there exist S ∈ X ,
called a small set, and a positive measure ν on (X,X ) such that

∃δ ∈ (0, 1), ∃L > 0, PV ≤ δ V + L 1S , (D)

∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (M)

Condition (M) when the small set S is the entire state space X is the so-called Doeblin
condition. The proofs in [10, 11, 1] are based on renewal theory involving the study of
the return times to the small set S and Kendall’s theorem. Actually the renewal theory
applies to the atomic case (i.e. when S is an atom), and it has to be applied to the split
chain in the general case.

In this paper, under Assumptions (D)-(M) and the (strong) aperiodicity condition as
in [1]

ν(1S) > 0, (SA)

we revisit the V -geometrical ergodicity property of P thanks to a simple constructive
approach based on an explicit approximation of the iterates of P by positive finite-rank
operators, combined with Krein-Rutman theorem [7]. This theorem can be thought of as
an abstract dual Perron-Frobenius statement. It is stated at the end of this section in our
specific case of positive operators acting on a weighted-suppremum norm space.

Specifically in Section 2, the following sequence (βk)k≥1 of positive measures on
(X,X ) is recursively defined from the positive measure ν and the small set S in Condi-
tion (M):

β1(·) := ν(·) and ∀n ≥ 2, βn(·) := ν
(
Pn−1 ·

)
−
n−1∑
k=1

ν
(
Pn−k−11S

)
βk(·).

Then, under Conditions (D)-(M), the following assertions are obtained:

(i) ∀n ≥ 1, Pn − Tn = (P − T )n with Tn :=
∑n
k=1 βk(·)Pn−k1S satisfying 0 ≤ Tn ≤ Pn;

(ii) r := limn

(
‖Pn − Tn‖V

)1/n
< 1, thus ∀γ ∈ (r, 1), ‖Pn − Tn‖V = O(γn);

(iii) r ≤ (δν(1X) + τ)/(ν(1X) + τ) < 1, with τ := max(0, L− ν(V )).

In Section 3, under Conditions (D)-(M), the unique invariant distribution π of P is
obtained from the explicit series

π = π(1S)

+∞∑
k=1

βk,

which extends a well-known formula when P satisfies the Doeblin condition, see [8], or
when P is irreducible and recurrent positive according to [12, p 74]. More important, as
a result of the above assertion (ii), we easily derive the rate βn(V ) = O(γn) as well as
an approximation of π by an explicit sequence of probability measures with the same
convergence rate. In Sections 4 and 5, under the additional assumption (SA), an original
proof of the V -geometrical ergodicity is derived from the results of Sections 2-3. More
precisely, setting

%S := lim sup
n→+∞

(
sup
x∈X

∣∣(Pn(x, S)− π(1S)
∣∣

V (x)

) 1
n

the V -geometrical ergodicity follows from the following bounds of the spectral gap of P

ρV (P ) ≤ max
(
r, %S

)
≤

(
min

{
|z| : 1 < |z| < 1/r,

+∞∑
k=1

βk(1X) zk = 0

})−1
< 1 (1.2)
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with the convention that the above minimum equals to 1/r if the related set is empty (in
this case ρV (P ) ≤ r).

Although the results of Section 5 seem to be close to those in [1], where a real
number similar to %S is also introduced, it is worth noticing that they differ completely
from their content and their proofs. Indeed, on the one hand the renewal theory is
not used here, on the other hand no intermediate Markov kernel is required in our
work, in particular we do not use the split chain. Our method is mainly based on the
Krein-Rutman theorem. Recall that the classical Perron-Frobenius theorem is a useful
result for obtaining positive eigenvectors belonging to the maximal positive eigenvalue
of a finite non-negative matrix. Here the Krein-Rutman theorem plays the same role (on
the dual side). The following four stages outline our approach. First, the minorization
condition (M) provides the positive finite-rank operator Tn in the above assertion (i).
Let us mention that such an approach has been used in [5] to study inhomogeneous
products of Markov kernels satisfying the Doeblin condition. Second, the geometric
rate of ‖(P − T )n‖V is obtained under Conditions (D)-(M) thanks to the Krein-Rutman
theorem. Third, the existence and uniqueness of the invariant distribution π is deduced
from the Krein-Rutman theorem too. Four, standard arguments on power series are used
to prove Inequalities (1.2) under the additional assumption (SA).

As mentioned in [1] (see also the references therein), the bounds of ρV (P ) obtained
in the literature may be still quite far off ρV (P ), and we do not presume to give here a
better bound of ρV (P ). Actually this new approach is expected to shed new light, as for
instance in [3] (see also [2]), on the role of Assumptions (D)-(M)-(SA) in the study of the
V -geometrical ergodicity.

Notations and basic material

Let V : X→[1,+∞) be a measurable function such that V (x0) = 1 for some x0 ∈ X. Let
(BV , ‖ · ‖V ) denote the weighted-supremum Banach space

BV :=
{
f : X→C, measurable : ‖f‖V := sup

x∈X

|f(x)|
V (x)

<∞
}
.

If Q is a bounded linear operator on BV , its operator norm ‖Q‖V is defined by

‖Q‖V := sup
f∈BV ,‖f‖V ≤1

‖Qf‖V .

If Q1 and Q2 are bounded linear operators on BV , we write Q1 ≤ Q2 when the following
property holds: ∀f ∈ BV , f ≥ 0, Q1f ≤ Q2f . Under Assumption (D), the following
functional action of P

∀f ∈ BV , ∀x ∈ X, (Pf)(x) :=

∫
X

f(y)P (x, dy)

is well-defined and provides a bounded linear operator on BV . Recall that P is said to
be V -geometrically ergodic if there exists a P -invariant probability measure π on (X,X )

such that π(V ) <∞ and if there exist some rate ρ ∈ (0, 1) and constant Cρ > 0 such that

∀n ≥ 0, sup
f∈BV ,‖f‖V ≤1

‖Pnf − π(f)1X‖V ≤ Cρ ρn. (1.3)

Denoting by Π the rank-one operator f 7→ π(f)1X on BV , Property (1.3) rewrites as

∀n ≥ 0, ‖(P −Π)n‖V = ‖Pn −Π‖V ≤ Cρ ρn. (1.4)
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The spectral gap of P , denoted by ρV (P ), is defined as the spectral radius r(P − Π) of
the operator P −Π, that is

ρV (P ) = lim
n→+∞

(
‖(P −Π)n‖V

) 1
n = lim

n→+∞

(
‖Pn −Π‖V

) 1
n . (1.5)

Equivalently ρV (P ) is the infimum of all the real numbers ρ such that (1.3) holds true for
some positive constant Cρ. Finally B′V denotes the topological dual space of BV , that is
the Banach space composed of all the continuous linear forms on BV , equipped with its
usual norm:

∀η ∈ B′V , ‖η‖′V = sup
f∈BV ,‖f‖V ≤1

|η(f)|.

Note that, if η ∈ B′V is non-negative (i.e. ∀f ∈ BV : f ≥ 0⇒ η(f) ≥ 0), then ‖η‖′V = η(V ).

Finally, for the sake of simplicity, let us state the Krein-Rutman theorem for the
positive operators on BV . In such a context, a proof can be directly obtained from [9, Th
4.1.5, p 251] using E := BV and ‖ · ‖e := ‖ · ‖V .

Krein-Rutman theorem If L is a positive bounded linear operator on BV such that
its spectral radius r(L) = limn ‖Ln‖1/nV > 0, then there exists a non-trivial non-negative
η ∈ B′V such that η ◦ L = r(L) η.

2 Approximation of P n by a positive finite-rank operator

Let P be a Markov kernel satisfying Conditions (D)-(M). We set β1(·) := ν(·), and for
every n ≥ 2, the element βn(·) of B′V is defined by the following recursive formula:

∀f ∈ BV , βn(f) := ν
(
Pn−1f

)
−
n−1∑
k=1

ν
(
Pn−k−11S

)
βk(f). (2.1)

Note that β1(·) = ν(·) is defined as a positive measure on (X,X ) and that β1(V ) =

ν(V ) <∞ from (D)-(M). Thus β1(·) defines a non-negative element of B′V . It follows from
induction that, for every n ≥ 1, βn(·) is well defined as an element of B′V . Actually the
next proposition shows that, for every n ≥ 1, βn(·) can be defined as a positive measure
on (X,X ) such that βn(V ) < ∞. Let T be the rank-one non-negative operator on BV
defined by:

∀f ∈ BV , T f := ν(f) 1S = β1(f) 1S .

It follows from (M) that 0 ≤ T ≤ P .

Proposition 2.1. Assume that P satisfies Assumptions (D)-(M). Then

∀n ≥ 1, Tn := Pn − (P − T )n =

n∑
k=1

βk(·)Pn−k1S and 0 ≤ Tn ≤ Pn. (2.2)

Moreover, for every n ≥ 1, βn is a positive measure on (X,X) such that βn(V ) <∞, that
is: there exists a positive measure on (X,X) (still denoted by βn) such that

∫
X
V dβn <∞

and: ∀f ∈ BV , βn(f) =
∫
X
f dβn.

Proof. The first equality in (2.2) is just the definition of Tn. That 0 ≤ Tn ≤ Pn follows
from 0 ≤ T ≤ P . The second equality in (2.2) for n = 1 is obvious from the definition of
T . Now assume that this second equality holds true for some n ≥ 1. Then

Pn+1 − Tn+1 := (P − T )n+1 = (P − T )(Pn − Tn) = Pn+1 − PTn − TPn + TTn
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from which we deduce that, for every f ∈ BV

Tn+1f = PTnf + TPnf − TTnf (2.3)

=

n∑
k=1

βk(f)Pn−k+11S +

(
β1(Pnf)−

n∑
k=1

βk(f)ν(Pn−k1S)

)
1S

=

n∑
k=1

βk(f)Pn+1−k1S + βn+1(f)1S

with βn+1(·) defined in (2.1). This provides the second equality in (2.2) by induction.
As already mentioned β1(·) = ν(·) is defined as a positive measure on (X,X ) such

that β1(V ) <∞. Next, for every n ≥ 1, the element βn(·) is defined as an element of B′V
and for every f ∈ BV , we have from (2.1) and then from (2.2)

βn(f) = ν
(
Pn−1f

)
−
n−1∑
k=1

βk(f) ν
(
Pn−k−11S

)
= ν

(
Pn−1f − Tn−1f

)
. (2.4)

It follows that βn(·) is a non-negative element of B′V since Pn−1 ≥ Tn−1. To complete the
proof, let us prove by induction that, for every n ≥ 1, βn is a positive measure on (X,X)

such that βn(V ) < ∞. Assume that, for some n ≥ 2, the following property holds: for
every 1 ≤ k ≤ n − 1, βk(·) is a positive measure on (X,X) such that βk(V ) < ∞. That
is: for every 1 ≤ k ≤ n − 1 there exists a positive measure on (X,X) (still denoted by
βk) such that

∫
X
V dβk <∞ and ∀f ∈ BV , βk(f) =

∫
X
f dβk. Then βn(·) in (2.1) is a finite

linear combination of positive measures on (X,X). It follows that βn(·) is itself a positive
measure on (X,X) since we have proved that βn is non-negative.

Under Assumptions (D)-(M), let us introduce the spectral radius r := r(P − T ) of
P − T on BV :

r := lim
n→+∞

(
‖(P − T )n‖V

) 1
n = lim

n→+∞

(
‖Pn − Tn‖V

) 1
n . (2.5)

Theorem 2.2. Assume that P satisfies Conditions (D)-(M). Then

r ≤ δ ν(1X) + τ

ν(1X) + τ
< 1 where τ := max(0, L− ν(V )). (2.6)

Inequality (2.6) has already been established to prove [4, Th. 5.2] in another purpose.
Here a short proof of (2.6) is given to highlight the use of the Krein-Rutman theorem.

Proof. Condition (D) implies that PV ≤ δ V + L 1X, thus: ∀n ≥ 1, ‖Pn‖V = ‖PnV ‖V ≤
(1 − δ + L)/(1 − δ). Then the spectral radius r(P ) of P is one from P1X = 1X and
1X ∈ BV . Recall that T := ν(·) 1S . Set R := P − T with spectral radius r := r(R).
We know that 0 ≤ R ≤ P , thus r ≤ r(P ) = 1. If r = 0, then (2.6) is obvious. Now
assume that r ∈ (0, 1]. Then there exists η ∈ B′V , η ≥ 0, η 6= 0 such that η ◦ R = r η

from the Krein-Rutman theorem. Since P = T + R, we have η ◦ P = η ◦ T + r η, so
that η(P1X) = η(1X) = η(T1X) + r η(1X). Hence η(T1X) = (1− r)η(1X). Observing that
T1X = ν(1X) 1S and ν(1X) > 0, and that η ≥ 0 and 1X ≤ V , it follows that

η(1S) =
(1− r)η(1X)

ν(1X)
≤ (1− r)η(V )

ν(1X)
.

We have RV = PV − ν(V )1S ≤ δ V + (L− ν(V )) 1S from (D). Hence

r η(V ) = η(RV ) ≤ δ η(V ) + τ η(1S) ≤ δ η(V ) + τ
(1− r)η(V )

ν(1X)
.

Since η 6= 0, we have η(V ) = ‖η‖′V 6= 0, and (2.6) follows from the last inequality.
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Note that, for every n ≥ 1, the operator Tn defined in Proposition 2.1 is positive
and finite-rank, more precisely Im(Tn) is contained in the n−dimensional subspace of
BV generated by the functions 1S , P1S , . . . , P

n−11S . The following corollary is a direct
consequence of Proposition 2.1 and Theorem 2.2.

Corollary 2.3. Assume that P satisfies (D)-(M). Then, for every γ ∈ (r, 1), there exists
Cγ > 0 such that

∀n ≥ 1, ∀f ∈ BV , ‖Pnf − Tnf‖V =

∥∥∥∥Pnf − n∑
k=1

βk(f)Pn−k1S

∥∥∥∥
V

≤ Cγ γn ‖f‖V . (2.7)

Under Conditions (D)-(M), Inequality (2.7) provides a geometric convergence rate
for the difference between the n-th iterate of P and the positive finite-rank operator
Tn. This will be a central preliminary property for obtaining the results of Sections 3, 4
and 5.

3 Existence and approximation of π

Let us introduce

∀n ≥ 1, µn :=

n∑
k=1

βk (3.1)

with the βk’s defined in (2.1). It follows from Proposition 2.1 that µn is a positive measure
on (X,X ) such that µn(V ) < ∞. We provide a very short proof that P has a unique
invariant probability π with a simple representation from the βk’s.

Theorem 3.1. Assume that P satisfies (D)-(M). Then P has a unique P -invariant distri-
bution π. Moreover π satisfies:

π = π(1S)

+∞∑
k=1

βk, (3.2)

where the series
∑+∞
k=1 βk is absolutely convergent in B′V with

∀γ ∈ (r, 1), ∀n ≥ 1, ‖βn‖′V ≤ ν(V )Cγ γ
n−1 (3.3)

where Cγ is given in Corollary 2.3. Moreover π(V ) <∞.

Proof. Under Condition (D), we know from the proof of Theorem 2.2 that the spectral
radius r(P ) of P is one. Next, we know from the Krein-Rutman theorem that there exists
a non-zero and non-negative element φ ∈ B′V such that φ ◦ P = φ. We may assume that
‖φ‖′V = 1. We obtain using the P -invariance of φ and (2.7) that for every γ ∈ (r, 1)

∀n ≥ 1, ‖φ− φ(1S)

n∑
k=1

βk‖′V ≤ Cγ γn (3.4)

where Cγ is given in Corollary 2.3. It follows that φ = φ(1S)
∑+∞
k=1 βk in B′V . Actually this

series absolutely converges in B′V since we have for every n ≥ 2

‖βn‖′V ≤ ‖ν‖′V ‖Pn−1 − Tn−1‖V ≤ ν(V )Cγ γ
n−1

from (2.4) and Corollary 2.3, and from ‖ν‖′V = ν(V ). Next µ :=
∑+∞
k=1 βk defines a

sigma-additive positive measure from Proposition 2.1. Since βk(1X) ≤ βk(V ) = ‖βk‖′V for
any k ≥ 1, we have µ(1X) ≤ µ(V ) < +∞ and µ is a finite positive measure. Thus φ is a
finite positive measure and φ is a P -invariant probability up to a normalization factor.
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The following theorem states that the P -invariant probability π may be approximated
by a sequence of probability measures defined from the βk’s. Indeed, µn(1X) ≥ β1(1X) =

ν(1X) > 0 for every n ≥ 1. Thus, we can define from (3.1) the following probability
measure µ̃n(·) on (X,X ) such that µ̃n(V ) <∞:

∀n ≥ 1, µ̃n(·) =
1

µn(1X)
µn(·). (3.5)

Theorem 3.2. Assume that P satisfies (D)-(M). Let γ be such that γ ∈ (r, 1), and let n0
be the smallest integer number such that LCγ γn0 + δ < 1, with Cγ given in Corollary 2.3.
Then the following assertion holds for the P -invariant probability π:

∀n ≥ n0, ∀f ∈ BV ,
∣∣π(f)− µ̃n(f)

∣∣ ≤ L

1− δ

(
1 +

L

1− δ − LCγγn

)
Cγ γ

n ‖f‖V . (3.6)

Proof. We have from (3.5) and from the triangle inequality that

∀n ≥ 1,∀f ∈ BV ,
∣∣π(f)− µ̃n(f)

∣∣ ≤ ∣∣π(f)−π(1S)µn(f)
∣∣+ |µn(f)|

∣∣∣∣π(1S)µn(1X)− 1

µn(1X)

∣∣∣∣. (3.7)

Using the notations of Proposition 2.1 and Corollary 2.3, we deduce from the P−invariance
of π that π ◦ Tn = π(1S)µn. It follows from (2.7) that

∀n ≥ 1, ∀f ∈ BV ,
∣∣π(f)− π(1S)µn(f)

∣∣ ≤ Cγ γn π(V ) ‖f‖V . (3.8)

We deduce from (D) that π(V ) ≤ δ π(V ) + Lπ(1S). Thus π(1S) > 0 since δ < 1 and
π(V ) > 0 and we have

π(V ) ≤ π(V )

π(1S)
≤ L

1− δ
. (3.9)

Therefore, we obtain from (3.8)

∀n ≥ 1, ∀f ∈ BV ,
∣∣π(f)− π(1S)µn(f)

∣∣ ≤ L

1− δ
Cγ γ

n ‖f‖V . (3.10)

Let us control the second term in the right hand side of Inequality (3.7). Property (3.10)
with f := 1X gives

∀n ≥ 1,
∣∣1− π(1S)µn(1X)

∣∣ ≤ L

1− δ
Cγ γ

n. (3.11)

Let n ≥ n0. We know from (3.11) that π(1S)µn(1X) ≥ 1− LCγγn/(1− δ), thus µn(1X) ≥
π(1S)µn(1X) ≥ (1 − δ − LCγγn)/(1 − δ) > 0 from π(1S) ≤ 1 and the definition of n0. It
follows from (3.11) and from the last inequality that

∀n ≥ n0,
∣∣∣∣π(1S)µn(1X)− 1

µn(1X)

∣∣∣∣ ≤ L

1− δ
Cγ γ

n 1

µn(1X)
≤ LCγ γ

n

1− δ − LCγγn
.

Next, it remains to note that

∀n ≥ 1, |µn(f)| ≤ µn(V )‖f‖V ≤
L

1− δ
‖f‖V

since it follows from (3.2) and (3.9) that µn(V ) ≤ π(V )/π(1S) ≤ L/(1− δ).
The proof of Inequality (3.6) is complete.

Remark 3.3. Theorem 3.1 asserts the existence of a unique invariant probability when
X is a general state space and P satisfies the conditions (D)-(M). Under topological
assumptions on X such a statement can be simply obtained by using Prohorov’s theorem.
This is the case when P satisfies the drift condition (D) provided that X is a separable
complete metric space and that V has compact level sets (for completeness a proof is
postponed to Proposition A.1).
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Remark 3.4. It follows from (2.4) and (2.2) that βk = ν(P − T )k−1 for every k ≥ 1, so
that the series representation (3.2) of π reduces to π = π(1S) ν

∑+∞
k=0(P − T )k. Such a

representation is well known when P satisfies the Doeblin condition (i.e. X is a small
set, e.g. see [8]) and when P is irreducible and recurrent positive by using the renewal
theory, see [12, p. 74]. Note that Theorem 3.1 gives this formula with the additional
geometric rate (3.3) which is central for analysing the power series introduced in the
next section.

4 Some relevant power series

In this short section some power series related to the βk(·)’s are introduced and
we prove a result that highlights the interest of Property (3.3) and the role of Assump-
tion (SA). For every τ > 0 we set D(0, τ) := {z ∈ C : |z| < τ} and D(0, τ) := {z ∈ C :

|z| ≤ τ}.
Proposition 4.1. Assume that P satisfies (D)-(M). Then, for every f ∈ BV , the radius of
convergence of the power series

Bf (z) :=

+∞∑
k=1

βk(f) zk

is larger than 1/r. The functions B1X and B1S (i.e. Bf for f := 1X and f := 1S) satisfy

∀z ∈ D(0, 1/r), (1− z)B1X(z) = ν(1X) z
(
1−B1S (z)

)
. (4.1)

Under the additional assumption (SA), z = 0 is the unique zero of B1X(·) in D(0, 1).

Proof. The assertion on the radius of convergence follows from (3.3). Next, set a−1 := 1

and ∀j ≥ 0, aj := ν(P j1S). Let f ∈ BV . Then (2.1) rewrites as

∀n ≥ 1, ν(Pn−1f) =

n∑
k=1

βk(f)an−k−1. (4.2)

Note that the radius of convergence of the power series Nf (z) :=
∑+∞
n=0 ν(Pnf)zn is

larger than 1 since supn ν(|Pnf |) ≤ ‖f‖V supn ν(PnV ) <∞ from (D)-(M). It follows from
(4.2) that for every z ∈ D(0, 1)

+∞∑
n=1

ν(Pn−1f)zn =

+∞∑
n=1

n∑
k=1

βk(f)an−k−1z
n =

+∞∑
k=1

βk(f)zk
+∞∑
n=k

an−k−1z
n−k,

so that: ∀z ∈ D(0, 1), zNf (z) = Bf (z)
(
1 + zN1S (z)

)
. We obtain with f := 1X and f := 1S

∀z ∈ D(0, 1), ν(1X)
z

1− z
= B1X(z)

(
1 + zN1S (z)

)
zN1S (z)

(
1−B1S (z)

)
= B1S (z). (4.3)

The second equality of (4.3) gives (1 + zN1S (z))(1−B1S (z)) = 1 and multiplying the first
equality of (4.3) by (1−B1S (z)) provides (4.1) on D(0, 1).1 The extension of (4.1) to the
open disk D(0, 1/r) follows from the principle of analytic continuation.

Now we prove the last assertion of Proposition 4.1. Note that B1X(0) = 0. The first
equality in (4.3) shows that, for every z ∈ D(0, 1), z 6= 0, we have B1X(z) 6= 0 since

1When S is an atom for the chain, note that (1+zN1S (z))(1−B1S (z)) = 1 is the so-called renewal equation
related to the return times to the atom S (e.g. see [12, 1]). However this fact is not relevant here since the
atomic and non-atomic cases are investigated in a unified way.
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z/(1 − z) 6= 0. Now assume that there exists z0 ∈ C such that |z0| = 1, z0 6= 1, and
B1X(z0) = 0. Then B1S (z0) = 1 from (4.1), which is impossible since

+∞∑
k=1

βk(1S) zk = 1, z ∈ C, |z| = 1 =⇒ z = 1. (4.4)

Indeed set z := eiϑ with ϑ ∈ [0, 2π[. Then the equality
∑+∞
k=1 βk(1S) zk = 1 provides∑+∞

k=1 βk(1S)
(
1 − cos(kϑ)) = 0 since

∑+∞
k=1 βk(1S) = 1 from (3.2). We deduce from

β1(1S) = ν(1S) > 0 that cos(ϑ) = 1, that is z = 1. We have proved by a reductio ad
absurdum that B1X(z0) 6= 0 for every z0 ∈ C such that |z0| = 1, z0 6= 1. Finally note that
B1X(1) = 1/π(1S) 6= 0 from (3.2).

5 V -geometrical ergodicity and bound of the spectral gap

In this section an original proof of the V -geometrical ergodicity of P under the three
assumptions (D)-(M)-(SA) is derived from the previous statements. We also provide a
new bound of the spectral gap ρV (P ) of P on BV defined in (1.5). This bound is related
to the real number r ∈ [0, 1) of Theorem 2.2 and to the following real number %S only
depending on the action of the iterates of P on the small set S in (M):

%S := lim sup
n→+∞

(∥∥(Pn −Π)1S
∥∥
V

) 1
n . (5.1)

Under Assumptions (D)-(M)-(SA), Proposition 4.1 is used in order to define

θ := min
{
|z| : 1 < |z| < 1/r, B1X(z) = 0

}
(5.2)

with the convention θ := 1/r when the previous set is empty. Note that, for every
0 < τ < 1/r, the function B1X(·) is analytic on D(0, τ) from Proposition 4.1 so has a finite
number of zeros in D(0, τ). From this fact and from the definition of θ, it follows that
θ > 1. The following lemma is used to derive the inequality %S ≤ θ−1.

Lemma 5.1. Assume that P satisfies Conditions (D)-(M)-(SA). Let φ ∈ B′V , and for every
j ≥ 0 set σj := φ

(
(P j −Π) 1S

)
. Then the power series σ(z) :=

∑+∞
k=0 σk z

k has a radius of
convergence larger that θ.

Proof. The radius of convergence of σ(z) is larger than 1 since (σk)k≥0 is clearly bounded
from above by 2‖φ‖′V . Next, we deduce from the definitions of Tn and π in (2.2) and (3.2)
that

(Tn − Pn)1X = Tn1X − 1X = Tn1X −Π 1X =

n∑
k=1

βk(1X)Pn−k1S −
( +∞∑
k=1

βk(1X)

)
π(1S)1X

=

n∑
k=1

βk(1X)
(
Pn−k −Π

)
1S −

( +∞∑
k=n+1

βk(1X)

)
Π 1S .

Composing on the left by φ this equality we obtain that

∀n ≥ 1,

n∑
k=1

βk(1X)σn−k = hn

where (hn)n≥1 is a sequence of complex numbers (depending on φ) such that, for every
γ ∈ (r, 1), |hn| = O(γn) from Corollary 2.3 and (3.3). Then

∀z ∈ D(0, 1),

+∞∑
n=1

n∑
k=1

βk(1X)σn−k z
n = B1X(z)σ(z) = h(z) where h(z) :=

+∞∑
n=1

hnz
n.

(5.3)
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Note that h(z) (as B1X(z)) has a radius of convergence larger than 1/r since we have,
for every γ ∈ (r, 1), |hn| = O(γn). Moreover, first z = 0 is the only zero of B1X(·) on
D(0, θ) from Proposition 4.1 and from the definition of θ, second z = 0 is a simple zero
of B1X(·) since β1(1X) = ν(1X) > 0. Thus, for every z ∈ D(0, θ), B1X(z) = zξ(z) with
ξ(z) =

∑+∞
k=0 βk+1(1X)zk having a radius of convergence larger than 1/r and having no

zero in D(0, θ). It follows from (5.3) that z 7→ z σ(z) coincides on D(0, 1) with the function
h/ξ which is analytic on D(0, θ) since 1/r ≥ θ and ξ does not vanish on D(0, θ). Therefore
the power series

∑+∞
k=0 σk z

k+1 has a radius of convergence larger than θ.

Proposition 5.2. Assume that P satisfies (D)-(M)-(SA). Then we have: %S ≤ θ−1 < 1.

Proof. That θ > 1 has already been obtained. Let φ ∈ B′V . Then Lemma 5.1 and the
Cauchy-Hadamard formula give

lim sup
n→+∞

∣∣φ((Pn −Π)1S
)∣∣1/n ≤ θ−1.

Let ε > 0. We have proved that: ∀φ ∈ B′V , supn≥0
(
θ−1 + ε

)−n∣∣φ((Pn − Π)1S
)∣∣ < ∞. It

follows from a classical corollary of the Banach-Steinhaus theorem that

sup
n≥0

(
θ−1 + ε

)−n∥∥(Pn −Π)1S
∥∥
V
<∞. (5.4)

This give %S ≤ θ−1 + ε, thus %S ≤ θ−1 since ε is arbitrary.

We are now in position to state the main result of this section.

Theorem 5.3. Assume that P satisfies (D)-(M)-(SA). Then P is V -geometrically ergodic.
Moreover

ρV (P ) ≤ max
(
r, %S

)
≤ θ−1 < 1

where r, %S and θ are defined in (2.5), (5.1) and (5.2) respectively. More precisely

(i) ρV (P ) = %S ≤ θ−1 when r ≤ %S; (ii) ρV (P ) ≤ r when r > %S .

Proof. Let n ≥ 1. We have

Tn − µn(·)Π 1S =

n∑
k=1

βk(·)
(
Pn−k1S −Π 1S

)
from (2.2) and (3.1). From Proposition 5.2 we know that %S < 1. Let γ ∈ (r, 1), % ∈ (%S , 1).
Set α := max(γ, %), and define D% := supn≥0 %

−n
∥∥Pn1S −Π 1S

∥∥
V
<∞. Then

‖Tn − µn(·)Π 1S‖V ≤
n∑
k=1

‖βk‖′V
∥∥Pn−k1S −Π 1S

∥∥
V
≤ ν(V )Cγ D%

n∑
k=1

γk−1%n−k

≤ ν(V )Cγ D%

γ
nαn

from (3.3) and from the definitions of D% and α. Moreover note that

‖µn(·)Π 1S −Π‖V = ‖π(1S)µn(·)− π(·)‖′V ≤
LCγ
1− δ

γn

from (3.10). Then

‖Pn −Π‖V ≤ ‖Pn − Tn‖V + ‖Tn − µn(·)Π 1S‖V + ‖µn(·)Π 1S −Π‖V

≤ Cγ γ
n +

ν(V )Cγ D%

γ
nαn +

LCγ
1− δ

γn
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from Corollary 2.3 and from the previous inequalities. It follows from the definition of
ρV (P ) in (1.5) that ρV (P ) ≤ α, thus P is V -geometrically ergodic. Next, since γ and % are
arbitrarily close to r and %S respectively, we obtain that ρV (P ) ≤ max

(
r, %S

)
. Inequality

max
(
r, %S

)
≤ θ−1 holds since %S ≤ θ−1 from Proposition 5.2 and since r ≤ θ−1 from the

definition of θ. Next, if r ≤ %S , then ρV (P ) ≤ %S , thus ρV (P ) = %S since %S ≤ ρV (P ) from
the definitions of ρV (P ) and %S . This gives (i)-(ii).

Remark 5.4. As already mentioned, the geometric approximation (2.7) as well as the
geometrical rate for ‖βk‖′V in (3.3) are central in the proof of Proposition 5.2. Indeed this
ensures that the radius of convergence of both power series B1X(·) and h(·) in (5.3) are
larger than 1/r. In this regard note that, if the function B1X(·) in (5.2) has no zero in the
annulus {1 < |z| < 1/r}, then ρV (P ) ≤ r from Theorem 5.3 since θ = 1/r in this case. By
contrast, if B1X(·) has a zero in the annulus {1 < |z| < 1/r}, then Inequality ρV (P ) > r

may occur: in this case the convergence rate O
(
(r + ε)n

)
in both inequalities (2.7) and

(3.6) is better than O
(
(ρV (P ) + ε)n

)
in (1.3).

Remark 5.5. The main results of this paper extend when conditions (D)-(M)-(SA) hold
for some iterate PN with N > 1 (in place of P ). Indeed Theorem 2.2 and Theorem 3.1
then apply to PN . In the same way Theorem 5.3 asserts that PN is V -geometrically
ergodic, provided that the small set associated with PN satisfies Assumption (SA). In
particular PN has a unique invariant probability π which is also P -invariant. Then it
easily follows that P is V -geometrically ergodic with spectral gap ρV (P ) = (ρV (PN ))1/N .

Under the assumptions (D)-(M)-(SA), recall that the renewal theory is used in [1] to
investigate the V -geometric ergodicity of Markov chains with an atom S and to obtain
an upper bound of the spectral gap. The extension to the general case is then derived by
applying the atomic techniques to the split chain [1]. In our work no intermediate Markov
chain is required. Indeed the power series B1X(z) and B1S (z) of Proposition 4.1, from
which the bound of ρV (P ) is derived in Theorem 5.3, can be defined in the general case.
Let us mention that the bound of ρV (P ) in Theorem 5.3 can be specified by using more
sophisticated spectral arguments due to quasi-compactness. This work is in progress
and such a discussion is beyond the scope of this paper.

A Existence of π in a separable complete metric state space

The following result gives the existence of a P -invariant probability under the drift
condition (D), even under the weaker condition (WD): ∃δ ∈ (0, 1), ∃L > 0, PV ≤
δ V + L1X. A proof is provided since we do not succeed in finding simple arguments for
this statement in the literature.

Proposition A.1. Let (X, d) be a separable complete metric space and V : X→[1,+∞)

be a continuous function such that the set {V ≤ α} is compact for every α ∈ (0,+∞). If
P satisfies Condition (WD), then there exists a P -invariant probability measure π such
that π(V ) <∞.

Proof. We know from the proof of Theorem 2.2 that P is power-bounded on BV . Let
x0 ∈ X. Then K := supn(PnV )(x0) < ∞. Let πn, n ≥ 1, be the probability measure on
(X,X ) defined by: ∀B ∈ X , πn(1B) = (1/n)

∑n−1
k=0(P k1B)(x0). Then Markov’s inequality

gives: ∀n ≥ 1, ∀α ∈ (0,+∞), πn
(
1{V >α}

)
≤ πn(V )/α ≤ K/α. Thus the sequence

(πn)n≥1 is tight, and we can select a subsequence (πnk
)k∈N weakly converging to a

probability measure π, which is clearly P -invariant. For p ∈ N∗, set Vp(·) = min(V (·), p).
Then ∀k ≥ 0, ∀p ≥ 0, πnk

(Vp) ≤ πnk
(V ) ≤ K. Since Vp is continuous and bounded on X,

we obtain: ∀p ≥ 0, limk πnk
(Vp) = π(Vp) ≤ K. The monotone convergence theorem then

gives π(V ) <∞.
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