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Abstract

As a generalization of scale functions of spectrally negative Lévy processes, we define
generalized scale functions of general standard processes with no positive jumps. For
this purpose, we utilize the excursion theory. Using the generalized scale functions,
we study Laplace transforms of hitting times, potential measures and duality.
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1 Introduction

We first recall the basic facts of scale functions of spectrally negative Lévy processes.
Let (X,PXx ) with X = {Xt : t ≥ 0} be a spectrally negative Lévy process with PXx (X0 =

x) = 1, i.e., a Lévy process which has neither positive jumps nor monotone paths. Then,
there correspond to it the Laplace exponent Ψ and the q-scale function W (q) of X for all
q ≥ 0. The Laplace exponent Ψ is a function from [0,∞) to R defined by

Ψ(λ) = logEX0
[
eλX1

]
, λ ≥ 0. (1.1)

The q-scale function W (q) is a function which is equal to 0 on (−∞, 0), is continuous on
[0,∞), and satisfies ∫ ∞

0

e−βxW (q)(x)dx =
1

Ψ(β)− q
, β > Φ(q), (1.2)

where Φ(q) = inf{λ > 0 : Ψ(λ) > q} (see, e.g., [12, Section 8] for the details). The
scale function is useful since the Laplace transforms of hitting times and the q-potential
measure can be characterized as follows: for b < x < a,

EXx

[
e−qT

+
a ;T+

a < T−b

]
=
W (q)(x− b)
W (q)(a− b)

, (1.3)

EXx

[∫ T+
a ∧T

−
b

0

e−qtf(Xt)dt

]
=

∫ a

b

f(y)

(
W (q)(x− b)
W (q)(a− b)

W (q)(a− y)−W (q)(x− y)

)
dy,

(1.4)
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Generalized scale functions

where T+
a and T−b denote the first hitting times of [a,∞) and (−∞, b], respectively. Many

other properties of the scale functions can be found in Kyprianou [12] and Kuznetsov–
Kyprianou–Rivero [11].

The scale functions have a close connection to excursion measures. Bertoin [2,
Proposition VII.5] connected W (0) with an excursion measure n of the reflected process
of X at 0 as

W (0)(x) ∝ 1

n
[
T+
x <∞

] , x > 0, (1.5)

where by ∝ we mean that both sides coincide up to a multiplicative constant. The identity
(1.5) has some applications (see, e.g., Doney [6]). Recently, Pardo–Pérez–Rivero [16]
connected the two excursion measures of the original process and of the reflected process
up to a multiplicative constant. This study was applied for insurance mathematics (see,
e.g., Pardo–Pérez–Rivero [15] or Avram–Pérez–Yamazaki [1]). Avram–Pérez–Yamazaki [1]
applied some results of [15] to prove the identity

W (q)(x) ∝ 1

n
[
e−qT

+
x ;T+

x <∞
] , q ≥ 0, x > 0, (1.6)

where n is an excursion measure away from 0 of the original process.

In Noba–Yano [14, Section 3], we removed the ambiguity of the multiplicative constant
in (1.6). When X has unbounded variation paths, we proved that the scale functions
satisfy

W (q)(x) =
1

nX
[
e−qT

+
x ;T+

x <∞
] , q ≥ 0, x > 0, (1.7)

where nX is an excursion measure away from 0 subject to the normalization

nX
[
1− e−qT0

]
=

1

Φ′(q)
, q > 0, (1.8)

with T0 denoting the first hitting time of 0.

In this paper, we generalize the scale functions for Lévy processes to those for
standard processes (for the definition of the standard processes, see, e.g., [4, Definition
1.9.2]). Let (X,PXx ) with X = {Xt : t ≥ 0} and PXx (X0 = x) = 1 be a standard process
with no positive jumps. For q ≥ 0, we define the generalized q-scale function of X as

W
(q)
X (x, y) =


1

nXy

[
e−qT

+
x ;T+

x <∞
] , x ≥ y,

0, x < y,
(1.9)

where T+
x denotes the upward hitting time of level x and nXy the excursion measure

away from y under suitable normalization. In this paper, we investigate exit problems,
potential densities, and duality of the generalized scale functions. This is in fact a
generalization of the usual scale functions. When X is a spectrally negative Lévy process,
we have

W
(q)
X (x, y) = W (q)(x− y), q ≥ 0, x, y ∈ R. (1.10)

We prove (1.10) in Section A. (What we have to show is that nX coincides with nX0 , i.e.,
the coincidence of the two normalization requirements.)
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We prove that the generalized scale functions characterize the two-sided exit problem
and the killed potential densities of X as follows: for q ≥ 0 and x ∈ (b, a), we have

EXx

[
e−qT

+
a ;T+

a < T−b

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

, (1.11)

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W (q)

X (x, y), (1.12)

where LX,yt denotes the local time at y ∈ (b, a) under the normalization corresponding to
nXy .

As the standardness assumption is too weak to exclude processes that may not have a
manageable normalization of local times, the duality is a useful condition which assures
regularity of the resolvent. We give necessary and sufficient conditions of duality in
terms of generalized scale functions. For two standard processes X and X̂ such that X
and −X̂ have no positive jumps, we prove that X and X̂ are in duality if and only if for
all x, y, we have

W
(q)
X (x, y) = W

(q)

−X̂
(−y,−x). (1.13)

This duality problem naturally arises with our generalization. When X is a spectrally
negative Lévy process, we know that X and −X are in duality relative to the Lebesgue
measure and so the identity (1.13) automatically follows from (1.10).

There were two earlier studies on generalization of scale functions for some modi-
fied classes of Lévy processes. Kyprianou–Loeffen [13] introduced the refracted Lévy
processes via a stochastic differential equation and the corresponding scale functions.
Noba–Yano [14] generalized their results via the excursion theory.

The organization of this paper is as follows. In Section 2, we prepare some notations
and recall preliminary facts about standard processes, local times, and excursion mea-
sures. In Section 3, we give the definition of the generalized scale functions and apply
them to the exit problems and the potential measures. In Section 4, we study the duality
problem. In Section A, we prove (1.10).

2 Preliminaries

Let D denote the set of functions ω : [0,∞)→ R ∪ {∂} which are càdlàg and satisfy
ω(t) = ∂, t ≥ ζ, where R ∪ {∂} is the one-point compactification of R, ζ = inf{t > 0 :

ω(t) = ∂} and inf ∅ =∞. Let B(D) denote the class of Borel sets of D equipped with the
Skorokhod topology. For ω ∈ D, we write

T−x (ω) := inf{t > 0 : ω(t) ≤ x} , (2.1)

T+
x (ω) := inf{t > 0 : ω(t) ≥ x} , (2.2)

Tx(ω) := inf{t > 0 : ω(t) = x} . (2.3)

We sometimes write T−x , T+
x , Tx simply for T−x (X), T+

x (X), Tx(X), respectively, when
we consider these times for the process (X,PXx ). Let T be an interval of R and set
a0 = supT and b0 = inf T. We assume that the process (X,PXx ) considered in this paper
is a T-valued standard process with no positive jumps with PXx (X0 = x) = 1, satisfying
the following conditions:

(A1) (x, y) 7→ EXx
[
e−Ty

]
> 0 is a B(T)× B(T)-measurable function.
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(A2) X has a reference measure m on T, i.e. for q ≥ 0 and x ∈ T, we have R(q)
X 1(·)(x)�

m(·), where

R
(q)
X f(x) := EXx

[∫ ∞
0

e−qtf(Xt)dt

]
(2.4)

for non-negative measurable function f . Here and hereafter we use the notation∫ a
b

=
∫

(b,a]∩R. In particular,
∫ a
b− =

∫
[b,a]∩R.

By [7, Theorem 18.4], there exists a family of processes {LX,x}x∈T with LX,x =
{
LX,xt

}
t≥0

for x ∈ T, which we call local times, such that the following conditions hold: for all q > 0,
x ∈ T and non-negative measurable function f∫ t

0

f(Xs)ds =

∫
T

f(y)LX,yt m(dy), a.s. (2.5)

R
(q)
X f(x) =

∫
T

f(y)EXx

[∫ ∞
0

e−qtdLX,yt

]
m(dy). (2.6)

We have the following two cases:

• Case 1. If x ∈ T is regular for itself (for the definitions of “regular for itself” and
“irregular for itself”, see, e.g., [2, pp. 65]), this LX,x is the continuous local time at
x ([4, pp. 216]). Note that LX,x has no ambiguity of multiplicative constant because
of (2.5) or (2.6).

• Case 2. If x ∈ T is irregular for itself, we have

LX,xt = lXx #{0 ≤ s < t : Xs = x}, a.s. (2.7)

for some constant lXx ∈ (0,∞).

In Case 1, let ηX,x denote the inverse local time of LX,x, i.e., ηX,x(t) = inf{s > 0 :

LX,xs > t}. Let nXx be the excursion measure away from x which is associated with LX,x.
For background on general excursion theory, see Itô [9], [2, Section IV], [3] and [10].
Then, for all q > 0, we have

− logEXx

[
e−qη

X,x(1)
]

= δXx q + nXx
[
1− e−qTx

]
(2.8)

for a non-negative constant δXx called the stagnancy rate (see, e.g., [2, Theorem IV.8]).
We thus have

EXx

[∫ ∞
0

e−qtdLX,xt

]
= EXx

[∫ ∞
0

e−qη
X,x(s)ds

]
=

1

δXx q + nXx [1− e−qTx ]
. (2.9)

In Case 2, we define nXx = 1
lXx
PX

x

x where PX
x

x denotes the law of X started from x and
stopped at x. Then we have

EXx

[∫ ∞
0−

e−qtdLX,xt

]
= lXx

∞∑
i=0

(
EXx
[
e−qTx

])i
=

lXx
EXx [1− e−qTx ]

=
1

nXx [1− e−qTx ]
. (2.10)

Remark 2.1. Any point x ∈ T\{a0} cannot be a holding point. To demonstrate, assume
x is a holding point. Then X leaves x by jumps (see, e.g., [18, Theorem 1 (vi)]). However,
X has no positive jumps, and thus X can not exceed x, which contradicts (A1).
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3 Generalized scale functions

We define generalized scale functions for standard processes with no positive jumps
using the excursion theory. In addition, we characterize the fluctuations of standard
processes with no positive jumps using the generalized scale functions.

Definition 3.1. For q ≥ 0 and x, y ∈ T, we define generalized q-scale function of X as

W
(q)
X (x, y) =


1

nXy

[
e−qT

+
x ;T+

x <∞
] , x ≥ y,

0, x < y,
(1.9)

where 1
∞ = 0.

Remark 3.2. Each x ∈ T\{b0} is regular for (x,∞), i.e., PXx (τ+
x = 0) = 1 with τ+

x = {t >
0 : Xt > x}, thanks to the assumptions of no positive jumps and (A1). Indeed, we have

Ex

[
e−τ

+
x

]
= Ex

[
Ex

[
e−τ

+
x

] ∣∣∣τ+
x <∞

]
(3.1)

= Ex

[
EX

τ
+
x

[
e−τ

+
x

] ∣∣∣τ+
x <∞

]
= Ex

[(
e−τ

+
x

)
◦ θτ+

x

∣∣∣τ+
x <∞

]
= 1. (3.2)

When x is irregular for itself, we have W (q)
X (x, x) = lXx by the definition of nXx .

Remark 3.3. Let us characterize the generalized scale functions of diffusion processes in
terms of their characteristics. Let m and s be two R-valued strictly increasing continuous
functions on the interval [0,∞) satisfying s(0) = 0. Let X be a d

dm
d
ds -diffusion process

with 0 being a reflecting boundary. Note that our nX0 coincides with the excursion
measure defined in [19, Definition 2.1] up to scale transformation. Let ψ(q) denote the
increasing eigenfunction d

dm
d
dsψ

(q) = qψ(q) such that d
dsψ

(q)(0) = 1. In other words, ψ(q)

is the unique solution of the integral equation

ψ(q)(x) = s(x) + q

∫ x

0

(s(x)− s(y))ψ(q)(y)dm(y), x ∈ [0,∞). (3.3)

Then, by [19, Corollary 2.4], for q > 0 and x ∈ (0,∞), we have

ψ(q)(x) =
1

nX0

[
e−qT

+
x ;T+

x <∞
] , (3.4)

which shows that W (q)
X (x, 0) = ψ(q)(x). In particular, we have W (0)

X (x, 0) = s(x).

We fix b, a ∈ T with b < a. The exit from the upper barrier is characterized as follows.

Theorem 3.4. For q ≥ 0 and x ∈ (b, a), we have

EXx

[
e−qT

+
a ;T+

a < T−b

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

. (1.11)

Proof. Since b < x < a and since X has no positive jumps, we have

nXb

[
e−qT

+
a ;T+

a <∞
]

= nXb

[
e−qT

+
x ;T+

x <∞
]
EXx

[
e−qT

+
a ;T+

a < T−b

]
, (3.5)

where we utilized the strong Markov property of nXb (see, e.g., [3]).

In order to obtain killed potential density, we need the following lemma.

Lemma 3.5. For q ≥ 0 and x ∈ (b, a), we have

EXx

[
e−qT

+
a ;T+

a < T−b

]
= nXx

[
e−qT

+
a ;T+

a <∞
]
EXx

[∫ T+
a ∧T

−
b

0−
e−qtdLX,xt

]
. (3.6)
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Proof. The proof is almost the same as that of [14, Lemma 6.1], but a slight difference
lies in presence of stagnancy.

i) We assume that x is regular for itself.
We use the notations which were used the notations which was used in in [8, Section

I.9]. Let p : D(p) → D on (Ω,F ,P) denote a Poisson point process with characteristic
measure nXx . We write ηX,x(s) = δXx s+

∑
u≤s Tx(p(u)). We set A = {T+

a < ∞} ∪ {T−b <

∞} ∪ {ζ <∞} and κA = inf{s > 0 : p(s) ∈ A}. By the same argument as in the proof of
[14, Lemma 6.1], we have

EXx

[
e−qT

+
a ;T+

a < T−b

]
= E

[
e−qη

X,x(κA−)
] nXx [e−qT+

a ;A
]

nXx [A]
. (3.7)

We denote pA = p|D(pA) with D(pA) = {s ∈ D(p) : p(s) ∈ A}. We write ηX,xAc (s) =

ηX,x(s) −
∑
u≤s Tx(pA(u)) where Tx(∂) = 0. Note that ηX,x(t) = ηX,xAc (t) for t < κA and

that ηX,xAc and κA are independent. We thus have

E
[
e−qη

X,x(κA−)
]

= nXx [A]E

[∫ κA

0

exp
(
−qηX,x(t)

)
dt

]
(3.8)

= nXx [A]EXx

[∫ T+
a ∧T

−
b

0−
e−qtdLX,xt

]
, (3.9)

where we used the fact that P[κA > t] = e−tn
X
x [A], and the identity

E[f(eq)] = qE

[∫ eq

0

f(t)dt

]
(3.10)

for an exponential variable with P[eq > t] = e−tq and a non-negative measurable function
f . Therefore, we obtain (3.6).

ii) We assume that x is irregular for itself.

Let T (n)
x denote the n-th hitting time to x and let T (0)

x = 0. Then we have

EXx

[∫ T+
a ∧T

−
b

0−
e−qtdLX,xt

]
= lXx

∞∑
i=0

EXx

[
e−qT

(i)
x ;T (i)

x < T+
a ∧ T−b

]
(3.11)

= lXx

∞∑
i=0

(
EXx
[
e−qTx ;Tx < T+

a ∧ T−b
])i
. (3.12)

On the other hand, we have

EXx

[
e−qT

+
a ;T+

a < T−b

]
=

∞∑
i=0

(
EXx
[
e−qTx ;Tx < T+

a ∧ T−b
])i
EXx

[
e−qT

+
a ;T+

a < Tx ∧ T−b
]
.

(3.13)

Therefore, we obtain (3.6).

By Theorem 3.4 and Lemma 3.5, for q ≥ 0 and x ∈ (b, a), we obtain

EXx

[∫ T+
a ∧T

−
b

0−
e−qtdLX,xt

]
=
W

(q)
X (x, b)W

(q)
X (a, x)

W
(q)
X (a, b)

. (3.14)

For q ≥ 0, x ∈ (b, a) and non-negative measurable function f , we define

R
(q;b,a)

X f(x) := EXx

[∫ T−b ∧T
+
a

0

e−qtf(Xt)dt

]
. (3.15)
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Then, for q ≥ 0, we have

R
(q;b,a)

X f(x) =

∫
(b,a)

f(y)EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
m(dy). (3.16)

The following theorem represents the potential density in terms of the generalized scale
functions.

Theorem 3.6. For q ≥ 0 and x, y ∈ (b, a), we have

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W (q)

X (x, y). (1.12)

Proof. i) Let us consider the case where x = y.

When x is regular for itself, the continuity of the local time implies that

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
= EXx

[∫ T−b ∧T
+
a

0−
e−qtdLX,yt

]
, (3.17)

and the absence of positive jumps implies that

W
(q)
X (x, x) =

1

nXx

[
e−qT

+
x ;T+

x <∞
] =

1

nXx
[
T+
x <∞

] = 0. (3.18)

Thus, (1.12) follows from (3.14).

When x is irregular for itself, we have

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
= EXx

[∫ T−b ∧T
+
a

0−
e−qtdLX,yt

]
− lXx . (3.19)

By (3.14) and Remark 3.2, we obtain (1.12).

ii) Let us consider the case where x 6= y.

On one hand, we have

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
= EXx

[
e−qTy ;Ty < T−b ∧ T

+
a

]
EXy

[∫ T−b ∧T
+
a

0−
e−qtdLX,yt

]
. (3.20)

On the other hand, we can prove

EXx
[
e−qTy ;Ty < T−b ∧ T

+
a

]
=
W

(q)
X (a, b)

W
(q)
X (y, b)

(
W

(q)
X (x, b)

W
(q)
X (a, b)

−
W

(q)
X (x, y)

W
(q)
X (a, y)

)
. (3.21)

Indeed, for x < y, this is obvious, and, and for x > y the left-hand-side of (3.21) equals

EXx

[
e−qT

+
a ;Ty < T+

a < T−b

]
EXy

[
e−qT

+
a ;T+

a < T−b

] =
EXx

[
e−qT

+
a ;T+

a < T−b

]
− EXx

[
e−qT

+
a ;T+

a < T−y

]
EXy

[
e−qT

+
a ;T+

a < T−b

] , (3.22)

which leads to (3.21) by Theorem 3.4. Combining (3.20), (3.14) and (3.21), we obtain
(1.12).

The exit from the lower barrier is characterized as follows.
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Corollary 3.7. For x, y ∈ (b0, a0), we define

Z
(q)
X (x, y) =

{
1 + q

∫
(y,x)

W
(q)
X (x, z)m(dz), x > y,

1, x ≤ y.
(3.23)

Then we have

EXx

[
e−qT

−
b ;T−b < T+

a

]
= Z

(q)
X (x, b)−

W
(q)
X (x, b)

W
(q)
X (a, b)

Z
(q)
X (a, b). (3.24)

Proof. We have

EXx

[
e−qT

−
b ;T−b < T+

a

]
= EXx

[
e−q(T

−
b ∧T

+
a );T−b ∧ T

+
a <∞

]
− EXx

[
e−qT

+
a ;T+

a < T−b

]
.

(3.25)

By Theorem 3.6 and by the identity e−qs = 1− q
∫ s

0
e−qtdt, we have

EXx

[
e−q(T

−
b ∧T

+
a )
]

= 1− q
∫

(b,a)

(
W

(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W (q)

X (x, y)

)
m(dy). (3.26)

By (3.25), (3.26) and Theorem 3.4, we have

(3.25) = 1 + q

∫
(b,a)

W
(q)
X (x, y)m(dy)−

W
(q)
X (x, b)

W
(q)
X (a, b)

(
1 + q

∫
(b,a)

W
(q)
X (a, y)m(dy)

)
, (3.27)

and therefore, we obtain (3.24).

4 Relation between duality and generalized scale functions

In this section, we give the necessary and sufficient conditions of duality in terms
of generalized scale functions. To state our main result, we need several facts about
duality.

Let X be a T-valued standard process with no positive jumps satisfying (A1) and (A2).

Let (X̂,PX̂x ) with X̂ =
{
X̂t : t ≥ 0

}
be a T-valued standard process with no negative

jumps satisfying the following conditions:

(B1) (x, y) 7→ EX̂x
[
e−Ty

]
> 0 is a B(T)× B(T)-measurable function.

(B2) X̂ has a reference measure m on T.

For q ≥ 0 and non-negative measurable function f , we denote

R
(q)

X̂
f(x) = EX̂x

[∫ ∞
0

e−qtf(X̂t)dt

]
. (4.1)

We define local times {LX̂,x}x∈T, excursion measures {nX̂x }x∈T, and generalized scale

functions {W (q)

−X̂
}
q≥0

of X̂ in the same way as X’s in Section 3.

Definition 4.1 (See, e.g., [5, Definition 13.1]). Let m be a σ-finite Radon measure on
T. We say that X and X̂ are in duality (relative to m) if for q > 0 and for non-negative
measurable functions f and g,∫

T

f(x)R
(q)
X g(x)m(dx) =

∫
T

R
(q)

X̂
f(x)g(x)m(dx). (4.2)
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Theorem 4.2 (See, e.g., [5, Theorem 13.2] or [17, pp. 517]). Suppose X and X̂ are in
duality relative to m. Then, for each q > 0, there exists a function r(q)

X : T×T→ [0,∞)

such that

(i) r(q)
X is B(T)× B(T)-measurable,

(ii) x 7→ r
(q)
X (x, y) is q-excessive and finely continuous for each y ∈ T,

(iii) y 7→ r
(q)
X (x, y) is q-coexcessive and cofinely continuous for each x ∈ T, and

(iv) for all non-negative measurable function f ,

R
(q)
X f(x) =

∫
T

f(y)r
(q)
X (x, y)m(dy), R

(q)

X̂
f(y) =

∫
T

f(x)r
(q)
X (x, y)m(dx). (4.3)

By [17, Proposition of Section V .1], if X and X̂ are in duality relative to m, there
exist local times {LX,x}x∈T of X and {LX̂,x}x∈T of X̂ satisfying

EXx

[∫ ∞
0

e−qtdLX,yt

]
= r

(q)
X (x, y), EX̂y

[∫ ∞
0

e−qtdLX̂,xt

]
= r

(q)
X (x, y) (4.4)

for all q > 0. When X and X̂ are in duality, we always use the normalization of the local
times above. In other cases, we use the normalization of the local times in Section 3.

Our main theorem is as follows.

Theorem 4.3. If X and X̂ are in duality relative to m, then we have

W
(q)
X (x, y) = W

(q)

−X̂
(−y,−x), q > 0, x, y ∈ (b0, a0). (4.5)

The converse is also true, when T is open.

We postpone the proof of Theorem 4.3 until the end of this section. To prove Theorem
4.3, we need the following lemma, which gives us the relationship between the killed
potential densities of X and X̂.

Lemma 4.4. Let X and X̂ be in duality relative to m. Then, for all b < a ∈ T and
x, y ∈ (b, a), we have

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
= EX̂y

[∫ T−b ∧T
+
a

0

e−qtdLX̂,xt

]
. (4.6)

Proof. Let X(b,a) and X̂(b,a) denote the X and X̂ killed on exiting (b, a), respectively. We

denote by R(q)

X(b,a) and R(q)

X̂(b,a)
the q-resolvent operators of X(b,a) and X̂(b,a), respectively.

For each q > 0, there exists a function r
(q)

X(b,a) : (b, a) × (b, a) → [0,∞) such that all the
conditions (i)–(iv) of Theorem 4.2 hold. By definition, we have

R
(q)

X(b,a)f(y) = R
(q;b,a)

X f(y) =

∫
(b,a)

f(y)EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
m(dy). (4.7)

So, for all x ∈ (b, a), we have

r
(q)

X(b,a)(x, y) = EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
, m-a.e. y. (4.8)

Let us remove the a.e. restriction. Since

EXx

[∫ T−b ∧T
+
a

0

e−qtdLX,yt

]
= EXx

[∫ ∞
0

e−qtdLX,yt

]
− EXx

[
e−q(T

−
b ∧T

+
a )EXX

T
−
b
∧T+
a

[∫ ∞
0

e−qtdLX,yt

]]
(4.9)
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and from the dominated convergence theorem, the function y 7→ EXx

[∫ T−b ∧T+
a

0
e−qtdLX,yt

]
is cofinely continuous. By the cofine continuity, we see that (4.8) holds for all y ∈ (b, a).

In the same way, we have

r
(q)

X(b,a)(x, y) = EX̂y

[∫ T−b ∧T
+
a

0

e−qtdLX̂,xt

]
, m-a.e. x (4.10)

for all x, y ∈ (b, a) via fine continuity. The proof is now completed.

Remark 4.5. We suppose that X and X̂ are in duality. Then at each point x ∈ T, fine
continuity implies right continuity and cofine continuity implies left continuity, so by
Theorem 4.2, x 7→ r

(q)

X(b,a)(x, y) is right continuous and y 7→ r
(q)

X(b,a)(x, y) is left continuous.

By the proof of Lemma 4.4 and Theorem 3.6, the function x 7→ W
(q)
X (x, y) is finely

continuous (and hence right continuous, since X has no positive jumps and we have
Remark 3.2) and y 7→W

(q)
X (x, y) is cofinely continuous (and hence left continuous). In the

case of the spectrally negative Lévy process X, the scale functions are not continuous
at 0 when X has bounded variation paths (and hence each x ∈ R is irregular for itself)
and are continuous at 0 when X has bounded variation paths (and hence each x ∈ R is
regular for itself) (see, e.g., [12, Lemma 8.6]). As in the case for the scale functions for
Lévy processes, it holds that, for x ∈ T, the function y 7→W

(q)
X (y, x) is continuous at x or

not according as x is regular for itself or not. More precisely, we have

W
(q)
X (x−, x) = 0, W

(q)
X (x, x) =

1

nXx
[
T+
x <∞

] . (4.11)

Proof of Theorem 4.3. i) Let us assume that X and X̂ are in duality relative to m.
First, we fix b, y, a ∈ T with b < y < a. By Lemma 4.4 and Theorem 3.6, for all q ≥ 0

and x ∈ (b, y), we have

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y) =

W
(q)

−X̂
(−y,−a)

W
(q)

−X̂
(−b,−a)

W
(q)

−X̂
(−b,−x). (4.12)

Hence, there exists a function γ1 : [0,∞)×T→ (0,∞) satisfying

W
(q)
X (x, b) = γ1(q, b)W

(q)

−X̂
(−b,−x) x ∈ (b, a0). (4.13)

Second, we fix b, x, a ∈ T with b < x < a. For q ≥ 0 and y ∈ (x, a), we have (4.12).
Thus there exists a function γ2 : [0,∞)×T→ (0,∞) such that

W
(q)
X (a, y) = γ2(q, a)W

(q)

−X̂
(−y,−a) y ∈ (b0, a). (4.14)

For q ≥ 0 and a, b ∈ (b0, a0) with b < a, by (4.13) with x = a and (4.14) with y = b, we
have γ1(q, b) = γ2(q, a), so γ1 and γ2 only depend on q ≥ 0. We can rewrite γ1(q) = γ1(q, ·).

By (4.12) and the definition of γ1, for q ≥ 0 and a, b, x, y ∈ (b0, a0) with b < x < y < a,
we have

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y) =

W
(q)

−X̂
(−y,−a)

W
(q)

−X̂
(−b,−a)

W
(q)

−X̂
(−b,−x) = γ1(q)

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y), (4.15)

so we have γ1 = γ2 ≡ 1. Thus, for y, x ∈ (b0, a0) with y < x, we have W
(q)
X (x, y) =

W
(q)

−X̂
(−y,−x). By the fine continuity of W (q)

X and the cofine continuity W (q)

−X̂
, for x ∈

(b0, a0), we have W (q)
X (x, x) = W

(q)

−X̂
(−x,−x).
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ii) Let us assume that T is open and that (4.5) is satisfied. Then, for b < a ∈ T and
x, y ∈ (b, a), we have

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W (q)

X (x, y) =
W

(q)

−X̂
(−y,−a)

W
(q)

−X̂
(−b,−a)

W
(q)

−X̂
(−b,−x)−W (q)

−X̂
(−y,−x).

(4.16)

By Theorem 3.6, the first term and the second term of (4.16) are potential densities of
X and X̂ killed on exiting (b, a), respectively. We therefore conclude the duality of the
killed processes, which yields that of the original processes.

A The proof of (1.10)

We prove (1.10). When X has unbounded variation paths, we have (1.7). Suppose X
has bounded variation paths. In [14], we proved that

W (q)(x) =
1

δXEX0

[
e−qT

+
x ;T+

x < T−0

] , q ≥ 0, x ≥ 0, (A.1)

where δX denotes the drift parameter of X, and also proved that

δXE
X
0

[
1− e−qT0

]
=

1

Φ′(q)
, q > 0. (A.2)

So the only thing we have to show is that nX0 = nX or nX0 = δXE
X
0 , that is, that the

normalization of nX0 coincides with (1.8) or (A.2).
By [12, Theorem 8.7], the spectrally negative Lévy process X has the q-potential

density

r(q)(x, y) = Φ′(q)e−Φ(q)(y−x) −W (q)(x− y), x, y ∈ R (A.3)

with respect to the Lebesgue measure. Since r(q)(x, y) is right-continuous for x and
left-continuous for y, we have

r(q)(x, y) = Ex

[∫ ∞
0

e−qtdLX,yt

]
, q ≥ 0, x, y ∈ R, (A.4)

where {LX,x}x∈R is the local times defined by Theorem 4.2 with respect to the Lebesgue
measure. Therefore, the generalized scale functions of X defined in Section 4 satisfy
(1.9) for the excursion measures which satisfy

nXx
[
1− e−qTx

]
=

1

Ex

[∫∞
0− e

−qtdLX,xt

] =
1

r(q)(x, x+)
=

1

Φ′(q)
, q > 0, x ∈ R. (A.5)

By (1.9), (A.5) and (1.7), we obtain (1.10). The proof is now completed.
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