Vanishing of the anchored isoperimetric profile in bond percolation at $p_{c}{ }^{*}$

Raphaël Cerf ${ }^{\ddagger \ddagger} \quad$ Barbara Dembin ${ }^{\S}$

Abstract

We consider the anchored isoperimetric profile of the infinite open cluster, defined for $p>p_{c}$, whose existence has been recently proved in [3]. We extend adequately the definition for $p=p_{c}$, in finite boxes. We prove a partial result which implies that, if the limit defining the anchored isoperimetric profile at p_{c} exists, it has to vanish.

Keywords: critical percolation; isoperimetric constant.
AMS MSC 2010: Primary 60K35, Secondary 82B43.
Submitted to ECP on March 18, 2019, final version accepted on December 8, 2019.
Supersedes arXiv:1903.08065.
Supersedes HAL: hal-02071030.

1 Introduction

The most well-known open question in percolation theory is to prove that the percolation probability vanishes at p_{c} in dimension three. In fact, the interesting quantities associated to the model are very difficult to study at the critical point or in its vicinity. We study here a very modest intermediate question. We consider the anchored isoperimetric profile of the infinite open cluster, defined for $p>p_{c}$, whose existence has been recently proved in [3]. We extend adequately the definition for $p=p_{c}$, in finite boxes. We prove a partial result which implies that, if the limit defining the anchored isoperimetric profile at p_{c} exists, it has to vanish.

The Cheeger constant For a graph \mathcal{G} with vertex set V and edge set E, we define the edge boundary $\partial_{\mathcal{G}} A$ of a subset A of V as

$$
\partial_{\mathcal{G}} A=\{e=\langle x, y\rangle \in E: x \in A, y \notin A\} .
$$

We denote by $|B|$ the cardinal of the finite set B. The Cheeger constant of the graph \mathcal{G} is defined as

$$
\varphi_{\mathcal{G}}=\min \left\{\frac{\left|\partial_{\mathcal{G}} A\right|}{|A|}: A \subset V, 0<|A| \leq \frac{|V|}{2}\right\}
$$

[^0]This constant was introduced by Cheeger in his thesis [2] in order to obtain a lower bound for the smallest eigenvalue of the Laplacian.

The anchored isoperimetric profile $\varphi_{n}(p)$ Let $d \geq 2$. We consider an i.i.d. supercritical bond percolation on \mathbb{Z}^{d}, every edge is open with a probability $p>p_{c}(d)$, where $p_{c}(d)$ denotes the critical parameter for this percolation. We know that there exists almost surely a unique infinite open cluster \mathcal{C}_{∞} [5]. We say that H is a valid subgraph of \mathcal{C}_{∞} if H is connected and $0 \in H \subset \mathcal{C}_{\infty}$. We define the anchored isoperimetric profile $\varphi_{n}(p)$ of \mathcal{C}_{∞} as follows. We condition on the event $\left\{0 \in \mathcal{C}_{\infty}\right\}$ and we set

$$
\varphi_{n}(p)=\min \left\{\frac{\left|\partial_{\mathcal{C}_{\infty}} H\right|}{|H|}: H \text { valid subgraph of } \mathcal{C}_{\infty}, 0<|H| \leq n^{d}\right\}
$$

The following theorem from [3] asserts the existence of the limit of $n \varphi_{n}(p)$ when $p>p_{c}(d)$.
Theorem 1.1. Let $d \geq 2$ and $p>p_{c}(d)$. There exists a positive real number $\varphi(p)$ such that, conditionally on $\left\{0 \in \mathcal{C}_{\infty}\right\}$,

$$
\lim _{n \rightarrow \infty} n \varphi_{n}(p)=\varphi(p) \text { almost surely }
$$

We wish to study how this limit behaves when p is getting closer to p_{c}. To do so, we need to extend the definition of the anchored isoperimetric profile so that it is well defined at $p_{c}(d)$. We say that H is a valid subgraph of $\mathcal{C}(0)$, the open cluster of 0 , if H is connected and $0 \in H \subset \mathcal{C}(0)$. We define $\widehat{\varphi}_{n}(p)$ for every $p \in[0,1]$ as

$$
\widehat{\varphi}_{n}(p)=\min \left\{\frac{\left|\partial_{\mathcal{C}(0)} H\right|}{|H|}: H \text { valid subgraph of } \mathcal{C}(0), 0<|H| \leq n^{d}\right\}
$$

In particular, if 0 is not connected to $\partial[-n / 2, n / 2]^{d}$ by a p-open path, then $|\mathcal{C}(0)|<n^{d}$ and taking $H=\mathcal{C}(0)$, we see that $\widehat{\varphi}_{n}(p)$ is equal to 0 . Thanks to Theorem 1.1, we have

$$
\forall p>p_{c} \quad \lim _{n \rightarrow \infty} n \widehat{\varphi}_{n}(p)=\theta(p) \delta_{\varphi(p)}+(1-\theta(p)) \delta_{0}
$$

where $\theta(p)$ is the probability that 0 belongs to an infinite open cluster. The techniques of [3] to prove the existence of this limit rely on coarse-graining estimates which can be employed only in the supercritical regime. Therefore we are not able so far to extend the above convergence at the critical point p_{c}. Naturally, we expect that $n \widehat{\varphi}_{n}\left(p_{c}\right)$ converges towards 0 as n goes to infinity, unfortunately we are only able to prove a weaker statement.
Theorem 1.2. With probability one, we have

$$
\liminf _{n \rightarrow \infty} n \widehat{\varphi}_{n}\left(p_{c}\right)=0
$$

We shall prove this theorem by contradiction. We first define an exploration process of the cluster of 0 that remains inside the box $[-n, n]^{d}$. If the statement of the theorem does not hold, then the cluster of 0 satisfies a d-dimensional anchored isoperimetric inequality. It follows that the number of sites that are revealed in the exploration of the cluster of 0 will grow fast enough of order n^{d-1}. Then, we can prove that the intersection of the cluster that we have explored with the boundary of the box $[-n, n]^{d}$ is of order n^{d-1}. Using the fact that there is no percolation in a half-space, we obtain a contradiction. Before starting the precise proof, we recall some results from [3] on the meaning of the limiting value $\varphi(p)$.

Vanishing of the anchored isoperimetric profile

The Wulff theorem We denote by \mathcal{L}^{d} the d-dimensional Lebesgue measure and by \mathcal{H}^{d-1} denotes the ($d-1$)-Hausdorff measure in dimension d. Given a norm τ on \mathbb{R}^{d} and a subset E of \mathbb{R}^{d} having a regular enough boundary, we define $\mathcal{I}_{\tau}(E)$, the surface tension of E for the norm τ, as

$$
\mathcal{I}_{\tau}(E)=\int_{\partial E} \tau\left(n_{E}(x)\right) \mathcal{H}^{d-1}(d x) .
$$

We consider the anisotropic isoperimetric problem associated with the norm τ :

$$
\begin{equation*}
\text { minimize } \frac{\mathcal{I}_{\tau}(E)}{\mathcal{L}^{d}(E)} \text { subject to } \mathcal{L}^{d}(E) \leq 1 \tag{1.1}
\end{equation*}
$$

The famous Wulff construction provides a minimizer for this anisotropic isoperimetric problem. We define the set \widehat{W}_{τ} as

$$
\widehat{W}_{\tau}=\bigcap_{v \in \mathbb{S}^{d-1}}\left\{x \in \mathbb{R}^{d}: x \cdot v \leq \tau(v)\right\}
$$

where • denotes the standard scalar product and \mathbb{S}^{d-1} is the unit sphere of \mathbb{R}^{d}. Up to translation and Lebesgue negligible sets, the set

$$
\frac{1}{\mathcal{L}^{d}\left(\widehat{W}_{\tau}\right)^{1 / d}} \widehat{W}_{\tau}
$$

is the unique solution to the problem (1.1).

Representation of $\varphi(p)$ In [3], we build an appropriate norm β_{p} for our problem that is directly related to the open edge boundary. We define the Wulff crystal W_{p} as the dilate of $\widehat{W}_{\beta_{p}}$ such that $\mathcal{L}^{d}\left(W_{p}\right)=1 / \theta(p)$, where $\theta(p)=\mathbb{P}\left(0 \in \mathcal{C}_{\infty}\right)$. We denote by \mathcal{I}_{p} the surface tension associated with the norm β_{p}. In [3], we prove that

$$
\forall p>p_{c}(d) \quad \varphi(p)=\mathcal{I}_{p}\left(W_{p}\right) .
$$

2 Proofs

We prove next the following lemma, which is based on two important results due to Zhang [9] and Rossignol and Théret [6]. To alleviate the notation, the critical point $p_{c}(d)$ is denoted simply by p_{c}.
Lemma 2.1. We have

$$
\lim _{\substack{p \rightarrow p_{c} \\ p>p_{c}}}\left(\theta(p) \delta_{\mathcal{I}_{p}\left(W_{p}\right)}+(1-\theta(p)) \delta_{0}\right)=\delta_{0} .
$$

Proof. If $\lim _{p \rightarrow p_{c}} \theta(p)=0$, then the result is clear. Otherwise, let us assume that

$$
\lim _{\substack{p \rightarrow p_{c} \\ p>p_{c}}} \theta(p)=\delta>0 .
$$

Let B be a subset of \mathbb{R}^{d} having a regular boundary and such that $\mathcal{L}^{d}(B)=1 / \delta$. As the map $p \mapsto \theta(p)$ is non-decreasing and $\mathcal{L}^{d}\left(W_{p}\right)=1 / \theta(p)$, we have

$$
\forall p>p_{c} \quad \mathcal{L}^{d}\left(W_{p}\right) \leq \mathcal{L}^{d}(B)
$$

Moreover as W_{p} is the dilate of the minimizer associated to the isoperimetric problem (1.1), we have

$$
\forall p>p_{c} \quad \mathcal{I}_{p}\left(W_{p}\right) \leq \mathcal{I}_{p}(B) .
$$

In [9], Zhang proved that $\beta_{p_{c}}=0$. In [6], Rossignol and Théret proved the continuity of the flow constant. Combining these two results, we get that

$$
\lim _{\substack{p \rightarrow p_{c} \\ p>p_{c}}} \beta_{p}=\beta_{p_{c}}=0 \quad \text { and so } \quad \lim _{\substack{p \rightarrow p_{c} \\ p>p_{c}}} \mathcal{I}_{p}(B)=0 .
$$

Finally, we obtain

$$
\lim _{\substack{p \rightarrow p_{c} \\ p>p_{c}}} \mathcal{I}_{p}\left(W_{p}\right)=0 .
$$

This yields the result.
Proof of Theorem 1.2. We assume by contradiction that

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} n \widehat{\varphi}_{n}\left(p_{c}\right)=0\right)<1
$$

Therefore there exist positive constants c and δ such that

$$
\begin{equation*}
\mathbb{P}\left(\liminf _{n \rightarrow \infty} n \widehat{\varphi}_{n}\left(p_{c}\right)>c\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\inf _{k \geq n} k \widehat{\varphi}_{k}\left(p_{c}\right)>c\right)=\delta \tag{2.1}
\end{equation*}
$$

Therefore, there exists a positive integer n_{0} such that

$$
\begin{equation*}
\mathbb{P}\left(\inf _{k \geq n_{0}} k \widehat{\varphi}_{k}\left(p_{c}\right)>c\right) \geq \frac{\delta}{2} \tag{2.2}
\end{equation*}
$$

In what follows, we condition on the event

$$
\left\{\inf _{k \geq n_{0}} k \widehat{\varphi}_{k}\left(p_{c}\right)>c\right\}
$$

Note that on this event, 0 is connected to infinity by a p_{c}-open path. For H a subgraph of \mathbb{Z}^{d}, we define

$$
\partial^{o} H=\{e \in \partial H, e \text { is open }\}
$$

Note that if $H \subset \mathcal{C}_{\infty}$, then $\partial_{\mathcal{C}_{\infty}} H=\partial^{o} H$. Moreover, if H is equal to $\mathcal{C}(0)$, the open cluster of 0 , then $\partial_{\mathcal{C}(0)} H=\partial^{o} H=\varnothing$. We define next an exploration process of the cluster of 0 . We set $\mathcal{C}_{0}=\{0\}, \mathcal{A}_{0}=\emptyset$. Let us assume that $\mathcal{C}_{0}, \ldots, \mathcal{C}_{l}$ and $\mathcal{A}_{0}, \ldots, \mathcal{A}_{l}$ are already constructed. We define

$$
\mathcal{A}_{l+1}=\left\{x \in \mathbb{Z}^{d}: \exists y \in \mathcal{C}_{l} \quad\langle x, y\rangle \in \partial^{o} \mathcal{C}_{l}\right\}
$$

and

$$
\mathcal{C}_{l+1}=\mathcal{C}_{l} \cup \mathcal{A}_{l+1}
$$

We have

$$
\partial^{o} \mathcal{C}_{l} \subset\left\{\langle x, y\rangle \in \mathbb{E}^{d}: x \in \mathcal{A}_{l+1}\right\}
$$

so that $\left|\partial^{o} \mathcal{C}_{l}\right| \leq 2 d\left|\mathcal{A}_{l+1}\right|$. Since \mathcal{A}_{l+1} and \mathcal{C}_{l} are disjoint, we have

$$
\begin{equation*}
\left|\mathcal{C}_{l+1}\right|=\left|\mathcal{C}_{l}\right|+\left|\mathcal{A}_{l+1}\right| \geq\left|\mathcal{C}_{l}\right|+\frac{\left|\partial^{\circ} \mathcal{C}_{l}\right|}{2 d} \tag{2.3}
\end{equation*}
$$

Let us set $\alpha=1 / n_{0}^{d}$ so that $\left|\mathcal{C}_{0}\right|=\alpha n_{0}^{d}$. Let k be the smallest integer greater than $2^{d+1} d / c$. We recall that c and n_{0} were defined in (2.1) and (2.2). Let us prove by induction on n that

$$
\begin{equation*}
\forall n \geq n_{0} \quad\left|\mathcal{C}_{\left(n-n_{0}\right) k}\right| \geq \alpha n^{d} \tag{2.4}
\end{equation*}
$$

This is true for $n=n_{0}$. Let us assume that this inequality is true for some integer $n \geq n_{0}$. If $\left|\mathcal{C}_{\left(n+1-n_{0}\right) k}\right| \geq n^{d}$, then we are done. Suppose that $\left|\mathcal{C}_{\left(n+1-n_{0}\right) k}\right|<n^{d}$. In this case, for

Vanishing of the anchored isoperimetric profile

any integer $l \leq k$, we have also $\left|\mathcal{C}_{\left(n-n_{0}\right) k+l}\right|<n^{d}$, and since $\mathcal{C}_{\left(n-n_{0}\right) k+l}$ is a valid subgraph of $\mathcal{C}(0)$ and $\widehat{\varphi}_{n}\left(p_{c}\right)>c / n$, we conclude that

$$
\frac{\left|\partial^{\circ} \mathcal{C}_{\left(n-n_{0}\right) k+l}\right|}{\left|\mathcal{C}_{\left(n-n_{0}\right) k+l}\right|} \geq \frac{c}{n}
$$

and so $\left|\partial^{o} \mathcal{C}_{\left(n-n_{0}\right) k+l}\right| \geq \alpha c n^{d-1}$. Thanks to inequality (2.3) applied k times, we have

$$
\left|\mathcal{C}_{\left(n+1-n_{0}\right) k}\right| \geq \alpha\left(n^{d}+\frac{c k}{2 d} n^{d-1}\right)
$$

As $k \geq 2^{d+1} d / c$, we get

$$
\left|\mathcal{C}_{\left(n+1-n_{0}\right) k}\right| \geq \alpha\left(n^{d}+2^{d} n^{d-1}\right) \geq \alpha(n+1)^{d} .
$$

This concludes the induction
Let $\eta>0$ be a constant that we will choose later. In [1], Barsky, Grimmett and Newman proved that there is no percolation in a half-space at criticality. An important consequence of the result of Grimmett and Marstrand [4] is that the critical value for bond percolation in a half-space equals to the critical parameter $p_{c}(d)$ of bond percolation in the whole space, i.e., we have

$$
\mathbb{P}\left(0 \text { is connected to infinity by a } p_{c} \text {-open path in } \mathbb{N} \times \mathbb{Z}^{d-1}\right)=0,
$$

so that for n large enough,

$$
\mathbb{P}\left(\exists \gamma \text { a } p_{c} \text {-open path starting from } 0 \text { in } \mathbb{N} \times \mathbb{Z}^{d-1} \text { such that }|\gamma| \geq n\right) \leq \eta .
$$

In what follows, we will consider an integer n such that the above inequality holds. By construction the set \mathcal{C}_{n} is inside the box $[-n, n]^{d}$. Starting from this cluster, we are going to resume our exploration but with the constraint that we do not explore anything outside the box $[-n, n]^{d}$. We set $\mathcal{C}_{0}^{\prime}=\mathcal{C}_{n}$ and $\mathcal{A}_{0}^{\prime}=\emptyset$. Let us assume $\mathcal{C}_{0}^{\prime}, \ldots, \mathcal{C}_{l}^{\prime}$ and $\mathcal{A}_{0}^{\prime}, \ldots, \mathcal{A}_{l}^{\prime}$ are already constructed. We define

$$
\mathcal{A}_{l+1}^{\prime}=\left\{x \in[-n, n]^{d}: \exists y \in \mathcal{C}_{l}^{\prime} \quad\langle x, y\rangle \in \partial^{o} \mathcal{C}_{l}^{\prime}\right\}
$$

and

$$
\mathcal{C}_{l+1}^{\prime}=\mathcal{C}_{l}^{\prime} \cup \mathcal{A}_{l+1}^{\prime} .
$$

We stop the process when $\mathcal{A}_{l+1}^{\prime}=\emptyset$. As the number of vertices in the box $[-n, n]^{d}$ is finite, this process of exploration will eventually stop for some integer l. We have that $\left|\mathcal{C}_{l}^{\prime}\right| \leq n^{d}$ and $n \hat{\varphi}_{k}\left(p_{c}\right)>c$ so that

$$
\left|\partial^{o} \mathcal{C}_{l}^{\prime}\right| \geq \frac{c}{n}\left|\mathcal{C}_{l}^{\prime}\right| \geq \frac{c}{n}\left|\mathcal{C}_{n}\right|
$$

Moreover, for $n \geq k n_{0}$, we have, thanks to inequality (2.4),

$$
\left|\mathcal{C}_{n}\right| \geq\left|\mathcal{C}_{\left\lfloor\frac{n}{k}\right\rfloor k}\right| \geq\left|\mathcal{C}_{\left(\left\lfloor\frac{n}{k}\right\rfloor-n_{0}\right) k}\right| \geq \alpha\left(\left\lfloor\frac{n}{k}\right\rfloor\right)^{d}
$$

We suppose that n is large enough so that $n \geq k n_{0}$ and $\left\lfloor\frac{n}{k}\right\rfloor \geq n / 2 k$. Combining the two previous display inequalities, we conclude that

$$
\left|\partial^{o} \mathcal{C}_{l}^{\prime}\right| \geq \frac{c \alpha}{2^{d} k^{d}} n^{d-1}
$$

Vanishing of the anchored isoperimetric profile

Therefore, for n large enough, there exists one face of $[-n, n]^{d}$ such that there are at least $c \alpha n^{d-1} /\left(2^{d} k^{d} 2 d\right)$ vertices that are connected to 0 by a p_{c}-open path that remains inside the box $[-n, n]^{d}$ and so

$$
\mathbb{P}\left(\begin{array}{c}
\text { there exists one face of }[-n, n]^{d} \text { with at least } \tag{2.5}\\
c \alpha n^{d-1} /\left(2^{d} k^{d} 2 d\right) \text { vertices that are connected to } 0 \text { by a } \\
p_{c} \text {-open path that remains inside the box }[-n, n]^{d}
\end{array}\right) \geq \frac{\delta}{2} .
$$

Let us denote by X_{n} the number of vertices in the face $\{-n\} \times[-n, n]^{d-1}$ that are connected to 0 by a p_{c}-open path inside the box $[-n, n]^{d}$. We have

$$
\begin{align*}
\mathbb{E}\left(X_{n}\right) & \leq\left|\left(\{-n\} \times[-n, n]^{d-1}\right) \cap \mathbb{Z}^{d}\right| \mathbb{P}\left(\begin{array}{c}
\exists \gamma \text { a } p_{c} \text {-open path starting } \\
\text { from } 0 \text { in } \mathbb{N} \times \mathbb{Z}^{d-1} \text { such that } \\
|\gamma| \geq n
\end{array}\right) \\
& \leq(2 n+1)^{d-1} \eta . \tag{2.6}
\end{align*}
$$

Moreover, we have

$$
\begin{equation*}
\mathbb{E}\left(X_{n}\right) \geq \frac{c \alpha}{2 d 2^{d} k^{d}} n^{d-1} \mathbb{P}\left(X_{n}>\frac{c \alpha}{2 d 2^{d} k^{d}} n^{d-1}\right) . \tag{2.7}
\end{equation*}
$$

Finally, combining inequalities (2.6) and (2.7), we get

$$
\mathbb{P}\left(X_{n}>\frac{c \alpha}{2 d 2^{d} k^{d}} n^{d-1}\right) \leq \frac{2 d \eta 3^{d-1} 2^{d} k^{d}}{c \alpha}
$$

Therefore, we can choose η small enough such that

$$
\mathbb{P}\left(X_{n}>\frac{c \alpha}{2 d 2^{d} k^{d}} n^{d-1}\right) \leq \frac{\delta}{10 d}
$$

and so using the symmetry of the lattice
$\mathbb{P}\left(\begin{array}{c}\text { there exists one face of }[-n, n]^{d} \text { such there are at least } \\ c \alpha n^{d-1} /\left(2^{d} k^{d} 2 d\right) \text { vertices that are connected to } 0 \text { by a } p_{c} \text {-open } \\ \text { path that remains inside the box }[-n, n]^{d}\end{array}\right)$

$$
\leq 2 d \mathbb{P}\left(X_{n}>\frac{c \alpha}{2 d 2^{d} k^{d}} n^{d-1}\right) \leq \frac{\delta}{5} .
$$

This contradicts inequality (2.5) and yields the result.

References

[1] David J. Barsky, Geoffrey R. Grimmett, and Charles M. Newman. Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Related Fields, 90(1):111-148, 1991. MR-1124831
[2] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the Princeton conference in honor of Professor S. Bochner, pages 195-199, 1969. MR-0402831
[3] B. Dembin. Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher. To appear in ALEA, available from arXiv:1810.11239, 2018. MR-3865668
[4] G. R. Grimmett and J. M. Marstrand. The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A, 430(1879):439-457, 1990. MR-1068308
[5] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999. MR-1707339

Vanishing of the anchored isoperimetric profile
[6] Raphaël Rossignol and Marie Théret. Existence and continuity of the flow constant in first passage percolation. Electron. J. Probab., 23:42 pp., 2018. MR-3862614
[7] J. Taylor. Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. AMS, 27:419-427, 1975. MR-0388225
[8] G. Wulff. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallfächen, volume 34, 1901.
[9] Yu Zhang. Critical behavior for maximal flows on the cubic lattice. Journal of Statistical Physics, 98(3-4):799-811, 2000. MR-1749233

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *The second author is laureate of the Séphora Berrebi Scholarship in Mathematics in 2019. The second author would like to thank Association Séphora Berrebi for their support.
 ${ }^{\dagger}$ DMA, Ecole Normale Supérieure, CNRS, PSL University, 75005 Paris.
 ${ }^{\ddagger}$ LMO, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay.
 E-mail: raphael.cerf@ens.fr
 ${ }^{\S}$ LPSM UMR 8001, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75013 Paris.
 E-mail: bdembin@lpsm.paris

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

