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Abstract

We consider a supercritical branching process Zn in a stationary and ergodic random
environment ξ = (ξn)n≥0. Due to the martingale convergence theorem, it is known
that the normalized population size Wn = Zn/(E[Zn|ξ]) converges almost surely to a
random variable W . We prove that if W is not concentrated at 0 or 1 then for almost
every environment ξ the law of W conditioned on the environment ξ is absolutely
continuous with a possible atom at 0. The result generalizes considerably the main
result of [10], and of course it covers the well-known case of the martingale limit of a
Galton-Watson process. Our proof combines analytical arguments with the recursive
description of W .
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1 Introduction and statement of the main result

We consider a supercritical branching process Zn in a stationary and ergodic random
environment ξ = (ξn)n≥0, defined as follows. Let ∆ be the space of probability measures
on N0 = {0, 1, 2, ...} - the set of possible offspring distributions. Let ξ = (ξn)n≥0 be a
stationary and ergodic process taking values in ∆. The sequence (ξn)n≥0 is called a
“random environment” or “environment sequence”. All our random variables are defined
on a probability space (Ω,F ,P). The process (Zn : n ≥ 0) with values in N0 is called a
branching process in random environment ξ if Z0 is independent of ξ and it satisfies

L(Zn|ξ, Z0, . . . Zn−1) = ξ
∗Zn−1

n−1 a.s. (1.1)

where ξ∗kn−1 is the k fold convolution. Conditioned on the past and on the environment
sequence, Zn may be viewed as the sum of Zn−1 independent and identically distributed
random variables Yn−1,i, each having law ξn−1. The process {Zn}∞n=0 conditioned on the
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Absolute continuity of the martingale limit in BPRE

environment ξ is called a branching process in varying environment. For an environment
sequence ξ we denote

fn(s) =

∞∑
k=0

skξn({k}), s ∈ C, |s| ≤ 1,

the sequence of probability generating functions associated with ξ and

mn = m(ξn) = f ′n(1) =

∞∑
k=0

kξn({k}),

the sequence of the means. Let

Mn = Eξ[Zn] = m0 · . . . ·mn−1

and

Wn =
Zn
Mn

.

By Pξ we denote the measure P conditioned on the environment ξ. The corresponding
mean and variance are denoted by Eξ and Varξ i.e. for any random variable X we have
Eξ[X] = E[X|ξ] and Varξ(X) = E

[
(X − EξX)2|ξ

]
. Finally, for any random variable X we

also introduce the conditional law Lξ(X) by Lξ(X)(A) = P(X ∈ A|ξ), where the equality
is valid for any measurable set A. Then (Wn)n≥0 is a nonnegative martingale under Pξ.
Therefore,

lim
n→∞

Wn = W

exists Pξ–almost surely.

There has been a lot of interest in asymptotic properties of W , convergence rates
of W −Wn as well as limit theorems for Zn and large deviations principles. Positive
and negative, annealed and quenched, moments of W were investigated. Most of that
was done for i.i.d. environments, because then properties of the so-called “associated
random walks” could be applied, but some results hold also in a stationary and ergodic
environment. For a sample of results see [3, 5, 4, 8, 9] and references therein.

However, except of [10] the local regularity of the law of W has not been studied.
Due to the recursive equation (1.2) satisfied by W , see below, it is closely related to the
local regularity for stationary solutions to affine type equations, see (1.3) below. This
motivated us to study absolute continuity of the law of W . More precisely, the following
recursive formula will be crucial for our proof. The definition of the process Zn yields
that W satisfies the relation

W =
1

m0

Z1∑
j=1

Wj , (1.2)

where under Pξ, the random variablesWj are independent of each other and independent
of Z1 with distribution Pξ(Wj ∈ ·) = PTξ(W ∈ ·). Here, T is the translation operator
defined by T (ξ0, ξ1, . . . ) = (ξ1, ξ2, . . . ).

The question about local regularity of Lξ(W ) fits very well into a number of similar
problems being investigated recently [6, 7, 12, 13, 18, 22]. For the Galton Watson
process the Wj ’s have the same law as W and so then (1.2) is an example of the so-called
smoothing equation. By the latter we mean

Y =
∑
j≥1

AjYj + C, (1.3)
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Absolute continuity of the martingale limit in BPRE

where the equality is meant in law, (C,A1, A2, . . . ) is a given sequence of real or complex
random variables and Y1, Y2, . . . are independent copies of the variable Y and indepen-
dent of (C,A1, A2, . . . ). Let N be a random number of Aj ’s that are not zero. As long as
EN > 1 the transform

S(µ) = Law of (
∑
j≥1

AjYj + C),

where µ is the law of Y1, improves local regularity of the measure, and so it is expected
that the fixed points of S are absolutely continuous even when the Aj ’s and C are
discrete. This is indeed the case, see [7], [12], [13] and references therein.

However, in the case of a random environment, the equation (1.2) is not exactly of
the form in (1.3) and so a different approach had to be elaborated.

If N = 1 a.s., (1.3) becomes
Y = AY + C (1.4)

and absolute continuity of the solution is much harder to prove if (A,C) does not
possess a priori any regularity, as for instance in the case of Bernoulli convolutions A is
concentrated at λ, for some 0 < λ < 1 and C is a Bernoulli random variable, i.e. C takes
the values +1,−1 each with probability 1/2. If 0 < λ < 1/2 then the law νλ of Y = λY +C

is continuous but singular with respect to Lebesgue measure and if λ = 1/2 then νλ is the
uniform distribution on [−2, 2]. However, when 1/2 < λ < 1, νλ is absolutely continuous
for almost every such λ or even better: it is absolutely continuous outside of a subset
of λ ∈ (1/2, 1) of Hausdorff dimension 0. Moreover, if particular λ’s are considered,
absolute continuity of νλ depends on delicate algebraic properties of λ, see [22] for an
overview of the recent developments on Bernoulli convolutions.

When we go beyond Bernoulli convolutions there is no general theory about regularity
of ν. Further examples of singular (A,C) that give rise to absolutely continuous solutions
as well as to singular ones are available, see [6], [14], [18].

Let
q(ξ) = Pξ

(
lim
n→∞

Zn = 0
∣∣∣Z0 = 1

)
be the extinction probability of the process Zn. Since ξ is ergodic, P(q(ξ) < 1) equals 0

or 1 a.s.. We assume that the random variable logm0 is integrable. If E logm0 ≤ 0 then it
is easy to see that P(q(ξ) = 1) = 1, see also [19], unless ξ0 = δ1 a.s. Therefore, we will
assume

0 < µ := E logm0 <∞ (1.5)

The question whether P(q(ξ) < 1) is 0 or 1 is well understood (c.f. [16, 17, 2] and [11]):

Proposition 1.1. Suppose that

E(logm0)− < E(logm0)+ ≤ ∞, (1.6)

and
E| log(1− f0(0))| <∞, (1.7)

holds. Then P(q(ξ) < 1) = 1.
Conversely, if E(logm0)+ <∞, P(q(ξ) < 1) = 1 and (ξn)n≥0 forms a sequence of i.i.d.

random variables then (1.7) holds.

Our main result is the following description of the law of W under Pξ.

Theorem 1.2. Suppose that the environment sequence ξ is stationary and ergodic and
(1.5) holds. Let Lξ be the law of W under Pξ. Then exactly one of the following three
cases occurs:

(i) Lξ = δ0 a.s.
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Absolute continuity of the martingale limit in BPRE

(ii) Lξ = δ1 a.s.

(iii) q(ξ) < 1 and Lξ(W ) = q(ξ)δ0 +νξ, a.s where νξ is absolutely continuous with respect
to the Lebesgue measure.

Remark 1.3. Note that the statement in case (i) of the Theorem 1.2 is equivalent to
W ≡ 0. The question when W is not identically zero is well-studied. Below, we provide a
sufficient condition for W not to be identically 0, see Theorem 2.3. On the other hand,
the statement in case (ii) of Theorem 1.2 clearly holds when the probability measure ξ0
is a Dirac measure almost surely. In this case, the process (Zn : n ≥ 0) is deterministic
under Pξ. For instance, ξ0 could have values in {δ2, δ3}. We show below, see Theorem
2.1, that if one excludes the case where W ≡ 0 and the case where ξ0 is a Dirac measure,
almost surely, then indeed case (iii) in Theorem 1.2 occurs.

In order to prove Theorem 1.2, we will need some additional statements provided in
the next section.

2 Further results

In general, for a supercritical BPRE, W may vanish almost surely and conditions
for that to happen are well known. Recall that Lξ is the law of W under Pξ. Notice
that due to (1.2), the sets {ξ : Lξ = δ0} and {ξ : LTξ = δ0} coincide. Therefore, by
ergodicity, P(ξ : Lξ = δ0) ∈ {0, 1}. If P(ξ : Lξ = δ0) = 0, i.e. if W is not identically zero,
let z(ξ) = Pξ(W = 0) < 1. In fact, as explained below, it is known, that if z(ξ) < 1 then
z(ξ) = q(ξ) but we will not need this information for our proof of Theorem 2.1. We say
that a measure is degenerate if it is concentrated at a point.

Theorem 2.1. Suppose that the environment sequence ξ is stationary and ergodic, (1.5)
holds, P(ξ : Lξ = δ0) = 0 and P(ξ : ξ0 not degenerate) > 0. Then

Lξ = z(ξ)δ0 + νξ a.s.,

where νξ is absolutely continuous with respect to Lebesgue measure.

Remark 2.2. Theorem 1.2 follows directly from Theorem 2.1. Indeed, if P(ξ : Lξ = δ0) =

1 then (i) in Theorem 1.2 holds. If µ > 0 (recall (1.5)) and P(ξ : ξ0 degenerate) = 1 then
Wn is concentrated at 1 for every n, hence the same is true for W . Moreover, if W is not
identically zero then z(ξ) = q(ξ), see [20] and [21]. Let us provide a short argument for
the latter statement. If (1.5) holds, then by [20, Theorem 1] there exists a sequence of
random variables cn(ξ) and a nonnegative random variable U such that

lim
n→∞

c−1n Zn = U a.s.

and
Pξ(U = 0) = q(ξ), Pξ(U <∞) = 1.

Since
Zn
Mn

=
Zn
cn

cn
Mn

,

and
Pξ(U = 0) ≤ Pξ(W = 0) < 1, (2.1)

we conclude that
lim
n→∞

cn
Mn

= L(ξ) <∞ a.s.

On the other hand, L(ξ) is constant under Pξ, and therefore, L(ξ) = 0 would imply
Pξ(W = 0) = 1 which is a contradiction. Hence W = L(ξ)U and Pξ(W = 0) = Pξ(U =

0) = q(ξ).
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The question when W is not identically zero is well-studied. For a stationary and
ergodic environment a sufficient condition was given in [1]:

Theorem 2.3. (see [1]) Let Z0 = 1. Suppose that (1.5) is satisfied and

E[m−10 Z1 log+ Z1] <∞. (2.2)

Then

W = lim
n→∞

Zn
Mn

is not identically zero. (2.3)

Furthermore,
Pξ(W = 0) = q(ξ) and EξW = 1 a.s. (2.4)

Moreover, it was proved in [21] that if (ξn) is an i.i.d. sequence then condition (2.2)
is in fact equivalent to (2.3). Another proof for i.i.d. environments (ξn) is contained in
[11]. For i.i.d. environments, assuming (1.5), (2.2) and EξW = 1 a.s. are equivalent. In
general, when the sequence (ξn) is assumed to be only stationary and ergodic (2.2) is
not necessary for W to be not identically zero [21]. In this case the necessary condition

is
∑∞
n=0m

−1
n

(∑
k≥Mn+1

kξn(k)
)
< ∞ a.s. The sufficient condition is only a little bit

stronger (see Theorem 1, [21]). Under this sufficient condition, (2.4) holds.
We write

ψ(t, ξ) = Eξ[e
itW ]

for the conditional characteristic function of W . We now derive a second recursive
formula which is crucial for our proofs. Define

Fn(s, ξ) = Eξ[s
Zn |Z0, . . . , Zn−1] = fn−1(s)Zn−1 a.s. (2.5)

Then by the recursive relation (1.2) we obtain

ψ(t, ξ) = f0(ψ(t/m−10 , T ξ))

= f0 ◦ · · · ◦ fn−1(ψ(t/Mn, T
nξ)) = Fn(ψ(t/Mn, T

nξ)), (2.6)

where Fn is the probability generating function of Zn given by (2.5) and T the translation
operator defined above.

In order to prove Theorem 2.1 we use the following analytical result.

Lemma 2.4. Let ν be a probability measure on (R,B) with finite first moment and let
ψ be its characteristic function. If |ψ′| is integrable then ν = cδ0 + νabs where νabs is
absolutely continuous with respect to the Lebesgue measure.

Proof. ∂tψ(t) dt defines a tempered distribution, see [15], part 2. Moreover, its Fourier
inverse satisfies

F−1(∂tψ(t) dt) = F−1(∂tψ(t)) dx =: f(x) dx,

where f is a complex valued function vanishing at infinity. In the above formula the first
F−1 means the inverse Fourier transform of a tempered distribution and the second F−1
the inverse Fourier transform of an integrable function. On the other hand

F−1(∂tψ(t) dt) = −ixF−1(ψ(t) dt) = −ixν,

as tempered distributions. Hence

−ixν = f(x) dx.

This shows that ν1R\{0} has density given by ix−1f(x) and the conclusion follows.
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Remark 2.5. Theorem 2.1 generalizes considerably Theorem 1 in [10] but, what is
more important, Kaplan’s proof contains essential gaps that concern the integrability of
|ψ′(·, ξ)|. We don’t think that they are easily reparable within his approach and instead
we suggest our proof which is contained in Theorem 2.6 below. However, the idea to
show the integrability of |ψ′(·, ξ)| is borrowed from [10].

The key step in the proof of Theorem 2.1 is the following theorem.

Theorem 2.6. Suppose that ξ is stationary and ergodic, (1.5) holds and for a.e. ξ,

ρ(ξ) := sup
|t|≥1
|ψ(t, ξ)| < 1. (2.7)

Then for a.e. ξ,
∫
R
|ψ′(t, ξ)| dt <∞.

It turns out that (2.7) can be quite easily guaranteed.

Theorem 2.7. Assume that the environment sequence ξ is stationary and ergodic such
that (1.5) holds. If W is not identically zero and P(ξ0 not degenerate) > 0, then

lim sup
|t|→∞

|ψ(t, ξ)| < 1.

Proof of Theorem 2.1. Suppose that W is not degenerate and (1.5) is satisfied. Then it
follows from Theorems 2.7 and 2.6 that for almost every ξ,

∫
R
|ψ′(t, ξ)| dt <∞. Hence by

Lemma 2.4, (iii) in Theorem 2.1 holds. Moreover, z(ξ) < 1 a.s.

If W is degenerate then it follows from Lemma 3.1 below that P(ξ0 is degenerate) =

1.

3 Proof of Theorem 2.7

We first need some auxiliary results.

Lemma 3.1. Suppose that W is not identically zero and W is degenerate, i.e. VarξW = 0.
Then P(ξ0 is degenerate) = 1.

Proof. Taking conditional expectation of both sides of (1.2), we see that EξW = ETξW

and so by ergodicity, EξW is a strictly positive constant, call it γ. Moreover, due to (1.2),

VarξW =
1

m0
VarTξW +

γ2

m2
0

VarξZ1, (3.1)

(which holds also in the case when one of the terms is infinite). Suppose that VarξW = 0.
Then iterating (3.1), we have that VarT iξZ1 = 0 for all i ∈ N, which is not possible.
Indeed, if P(ξ0 is not degenerate) > 0 then by Birkhoff’s ergodic theorem for a.e. ξ there
is i such that (T iξ)0 = ξi is not degenerate.

Lemma 3.2. Assume that W is not identically zero and that P(ξ0 not degenerate) > 0

and (1.5) holds. Then there is a measurable function ξ 7→ (N(ξ), c(ξ)) ∈ N× [0, 1] such
that for a.e. ξ, c(ξ) > 0 and

|ψ(t, ξ)| ≤ 1− c(ξ)t2, for 0 ≤ t ≤ 1
2N(ξ)

Proof. Let W ′ be a random variable such that under Pξ, W and W ′ are i.i.d. Then for
almost all ξ we have

lim
t→0

(1− |ψ(t, ξ)|2)t−2 = lim
t→0

(
1− Eξ

[
eit(W−W

′)
])
t−2 = VarξW ∈ (0,∞]. (3.2)
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Indeed, if VarξW <∞ then (3.2) follows by applying twice L’Hospital’s rule and the
fact that Eξ[(W −W ′)2] = 2VarξW . On the other hand, if VarξW =∞ then

lim inf
t→0

(
1− Eξ

[
eit(W−W

′)
])
t−2 = lim inf

t→0
Eξ[1− cos(t(W −W ′))]t−2

≥ lim sup
t→0

Eξ

[(
1− cos(t(W −W ′))

)
1[|W−W ′|<|t|−1/2]

]
t−2.

Next, since for 0 ≤ x ≤ 1 the function x 7→ x−2(1− cosx) is decreasing, we conclude that
for |t(W −W ′)| < |t|1/2 ≤ 1 it holds

(
1− cos(t(W −W ′))

)
t−2 ≥ (W −W ′)2 · 1− cos(|t|1/2)

|t|
.

Hence

lim
t→0

(
1− Eξ

[
eit(W−W

′)
])
t−2 ≥ lim sup

t→0

1

2
Eξ

[
(W −W ′)21[|W−W ′|<|t|−1/2]

]
=∞,

by the monotone convergence theorem. It follows that, for c(ξ) := 1
8 min(1,VarξW ) we

have
|ψ(t, ξ)| ≤

√
1− 2c(ξ)t2 ≤ 1− c(ξ)t2,

on some neighbourhood of 0. In particular,

τ(ξ) := inf{s : |ψ(s, ξ)| ≥ 1− c(ξ)s2}| > 0,

and since ξ → ψ(t, ξ) is measurable, τ is measurable as well. The lemma now holds with
N(ξ) := dτ(ξ)−1e.

Lemma 3.3. Assume that the environment sequence ξ is stationary and ergodic such
that (1.5) holds. If W is not degenerate then for any 0 < β < 1 there are constants c > 0

and t0 ≤ 1 such that for a.e. ξ there is a sequence of natural numbers ni such that

(1− β)i ≤ ni ≤ i, for i ≥ i0 (3.3)

and
|ψ(t, Tniξ)| ≤ 1− ct2, for 0 ≤ t ≤ t0.

Proof. Given β ∈ (0, 1) there are c > 0, N ∈ N such that probability of the set

S = {ξ : c(ξ) ≥ c, N(ξ) ≤ N}

is larger than 1− β. By the ergodic theorem, we have for sufficiently large n

n∑
j=1

1S(T jξ) ≥ (1− β)n.

Therefore, for every large enough i we can find (1− β)i ≤ ni ≤ i such that Tniξ ∈ S. In
view of Lemma 3.2, for t ≤ t0 := 1

2N we have |ψ(t, Tniξ)| ≤ 1− ct2.

Proof of Theorem 2.7. We write, using (2.6),

ψ(t, ξ) = Eξ

[
ψ
( t

Mn
, Tnξ

)Zn]
= Eξ

[
ψ
( t

Mn
, Tnξ

)Zn
1[W=0]

]
+ Eξ

[
ψ
( t

Mn
, Tnξ

)Zn
1[W>0]

]
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and the absolute value of the first term above is bounded by Pξ(W = 0) < 1. It remains
to show that the second term converges to zero as |t| → ∞ (n = n(t) will be adjusted to
t).

Fix 0 < β < 1
25 . Then, by the ergodic theorem we get that for almost every ξ

e(1−β)iµ ≤Mi ≤ e(1+β)iµ (3.4)

for sufficiently large i. In view of (3.4) and (3.3), for large i we have

Mni+1

Mni

≤ e(1+β)(ni+1)µ−(1−β)niµ ≤ e((1+β)(i+1)−(1−β)2i)µ ≤ e3βµi =: αi. (3.5)

For large enough i0 = i0(ξ) the intervals [α−1i t0Mni+1
, t0Mni+1

], for i ≥ i0, cover
[t0Mni0

,∞). Indeed, given x ≥ Mni0
t0, let Mni = max{Mnk : t0Mnk ≤ x, k ≥ i0}.

Moreover, we may assume that i is maximal with that property. Then x < t0Mni+1
and

x ∈ [α−1i t0Mni+1
, t0Mni+1

]. Further, for α−1i t0Mni+1
≤ |t| ≤ t0Mni+1

we have∣∣∣∣Eξ[ψ( t

Mni+1

, Tni+1ξ
)Zni+1

1[W>0]

]∣∣∣∣ ≤ Eξ[∣∣∣∣ψ( t

Mni+1

, Tni+1ξ
)∣∣∣∣Zni+1

1[W>0]

]
≤ Eξ

[(
1− c(|t|M−1ni+1

)2
)Zni+11[W>0]

]
≤ Eξ

[(
1− ct20α−2i

)Zni+11[W>0]

]
Then since Wni+1

=
Zni+1

Mni+1
by applying the inequality 1− x ≤ e−x, valid for x ≥ 0, we get

∣∣∣Eξ[ψ( t

Mni+1

, Tni+1ξ
)Zni+1

1[W>0]

]∣∣∣ ≤ Eξ[ exp(−ct20α−2i Zni+1
)1[W>0]

]
= Eξ

[
exp(−ct20e−6βµiMni+1

Wni+1
)1[W>0]

]
.

Since, for large enough i, we have Mni+1 ≥ e(1−β)
2(i+1)µ and by the choice of β, (1−β)2 >

6β, the dominated convergence theorem gives

lim sup
i→∞

Eξ

[
exp(−ct20e−6βµiMni+1

Wni+1
)1[W>0]

]
= 0.

4 Integrability of ψ′

In this section we prove Theorem 2.6. To this end, we need the following auxiliary
result.

Lemma 4.1. Fix ξ0 such that ξ0(0) < 1. Let f = f0 and

h(r) =
1− r

1− f(r)
f ′(r), 0 ≤ r < 1.

Then

h(r) ≤ 1

1 + f ′(1)−1
∑∞
k=2 ξ0(k)(1− r)k−1

≤ 1.

Remark 4.2. The idea to consider the function h is borrowed from [5].

Proof. First, let us observe that for any 0 < r < 1 we have

1 = f(1) ≥
∞∑
k=0

f (k)(r)

k!
(1− r)k.
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Indeed, by applying Taylor’s theorem at r we get that for any natural number N

1 = f(1) =

N∑
k=0

f (k)(r)

k!
(1− r)k +

f (N+1)(s)

(N + 1)!
(1− r)N+1,

for some 1− r < s < 1 and since all the derivatives are positive we can take the limit for
N →∞ and obtain the desired inequality. Next, we conclude that

h(r) ≤ (1− r)f ′(r)
f ′(r)(1− r) +R1

≤ 1,

where the reminder R1 is given by

R1 =

∞∑
k=2

f (k)(r)

k!
(1− r)k.

From the fact that ξ0(0) < 1 a.s. we infer

f ′(r) =
∞∑
m=1

mξ0(m)rm−1 > 0, a.s.

and

h(r) ≤ 1

1 + f ′(r)−1(1− r)−1R1
.

Since all derivatives of f are nonnegative and so nondecreasing, we conclude

f ′(r) ≤ f ′(1)

and

ξ0(k)k! = f (k)(0) ≤ f (k)(r).

In particular, we can estimate the reminder from below

R1 ≥
∞∑
k=2

ξ0(k)(1− r)k

and for 0 ≤ r ≤ 1 we have

h(r) ≤ 1

1 + f ′(1)−1
∑∞
k=2 ξ0(k)(1− r)k−1

.

Now we are ready to prove Theorem 2.6, but first let us sketch the idea. Similarly to
the proof of Theorem 2.7 the intervals [Mni ,Mniαi] cover some half line [y,∞) and there-
fore the integrability of ψ′ will follow once we prove the finiteness of

∑
i

∫
|t|∈Ii |ψ

′(t)|dt,
where Ii = [Mni ,Mniαi]. On each such interval Ii we can use the relation (2.6) and then
apply the chain rule. By doing so we get a product of derivatives of functions f ′i which
in general is not easy to handle. However, replacing f ′i by hi, which are bounded by 1
and counting those that are bounded away from 1 leads to exponential decay of |ψ′(t)|,
uniformly for Mni ≤ |t| ≤Mniαi. Finally, as αi = e3βi with arbitrary small β we conclude
the integrability of ψ′.

Proof of Theorem 2.6. First notice that due to µ > 0,

P(ξ0(0) + ξ0(1) < 1) > 0. (4.1)
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Moreover, our assumptions imply that

P(ξ0(0) < 1) = 1. (4.2)

Indeed, let S̃ = {ξ : ξ0(0) = 1} and P(S̃) > 0. Then, by the Poincaré recurrence theorem,
for a.e. ξ there is n such that Tnξ ∈ S̃ i.e. ξ0(0) = 1 and so Zn+1 = 0 hence W = 0 a.s.,
which contradicts (2.7). Let us introduce

b(ξ) =
1

1 + f ′0(1)−1
∑∞
k=2 ξ0(k)(1− ρ(Tξ))k−1

. (4.3)

In view of (4.1), there is 0 < η < 1 such that for S = {ξ : b(ξ) < η} we have P(S) > 1
2 .

Take 0 < β < 1
4 small enough such that | log η| > 24βµ, and then choose 0 < d(β) < 1

such that for S1 = {ξ : ρ(ξ) < d} we have P(S1) > (1 − β). By the ergodic theorem we
conclude that for a.e. ξ and sufficiently large n

n∑
j=1

1S1
(T jξ) > (1− β)n.

Therefore, we may choose a sequence ni →∞ such that

(1− β)i < ni ≤ i (4.4)

and
ρ(Tniξ) < d(β)

for sufficiently large i. Then Mni →∞ and for sufficiently large i

Mni

Mj
≥ 1, provided

ni
8
≤ j ≤ ni

2
. (4.5)

Indeed, in view of (3.4),

MniM
−1
j ≥eµ(1−β)nie−µ(1+β)j = eµ(1−β)nie−µ(1+β)

ni
2 ≥ 1,

by the choice of β. As before, in view of (4.5) there is i(ξ) such that for i ≥ i(ξ) the
intervals [Mni ,Mniαi] cover [Mni(ξ) ,∞). Therefore,∫
|t|≥Mni(ξ)

|ψ′(t, ξ)| dt ≤
∑
i≥i(ξ)

∫
Mni
≤|t|≤αiMni

|ψ′(t, ξ)| dt

=
∑
i≥i(ξ)

∫
Mni
≤|t|≤αiMni

|F ′ni(ψ(t/Mni , T
niξ)ψ′(t/Mni , T

niξ)|M−1ni dt

=
∑
i≥i(ξ)

∫
1≤|y|≤αi

|F ′ni(ψ(y, Tniξ))||ψ′(y, Tniξ)| dy

since ψ(t, ξ) = Fni(ψ(t/Mni , T
niξ)). Moreover,

|ψ′(y, Tniξ)| ≤ ETξW ≤ 1.

For any n and any complex number z in the unit disk we have:

|F ′n(z, ξ)| =
n−1∏
j=0

|f ′j(fj+1 ◦ ... ◦ fn−1(z)| ≤
n−1∏
j=0

f ′j(|fj+1 ◦ ... ◦ fn−1(z)|)

=

n−1∏
j=0

1− |fj+1 ◦ ... ◦ fn−1(z)|
1− |fj ◦ ... ◦ fn−1(z)|

f ′j(|fj+1 ◦ ... ◦ fn−1(z)|)× 1− |f0 ◦ ... ◦ fn−1(z)|
1− |z|

≤
n−1∏
j=0

1− |fj+1 ◦ ... ◦ fn−1(z)|
1− fj(|fj+1 ◦ ... ◦ fn−1(z)|)

f ′j(|fj+1 ◦ ... ◦ fn−1(z)|)× 1− |f1 ◦ ... ◦ fn−1(z)|
1− |z|

,
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since |f (k)i (z)| ≤ f
(k)
i (|z|) for any k, i ≥ 0 and any complex |z| ≤ 1. We intend to prove

that for sufficiently large i

ni−1∏
j=0

1− |fj+1 ◦ ... ◦ fni−1(z)|
1− fj(|fj+1 ◦ ... ◦ fni−1(z)|)

f ′j(|fj+1 ◦ ... ◦ fni−1(z)|) ≤ η
ni
8 −2. (4.6)

uniformly for s = ψ(y, Tniξ) and |y| ≥ 1. Hence,∫
1≤|y|≤αni

|F ′ni(ψ(y, Tniξ))||ψ′(y, Tniξ)| dt ≤ (1−d(β))−1η
ni
8 −2αi ≤ (1−d(β))−1η

i
8−2e3βµi.

Then, by the choice of β, the sequence η
i
8 e3βµi decays exponentially fast and so ψ′(·, ξ) is

integrable.
We return now to show that the inequality (4.6) holds. To this end, we first prove that

for almost every ξ, sufficiently large i, ni8 ≤ j ≤
ni
2 and |y| ≥ 1, we have

|fj+1 ◦ ... ◦ fni−1(ψ(y, Tniξ))| ≤ ρ(T j+1ξ).

Indeed,
fj ◦ ... ◦ fni−1(ψ(y, Tniξ)) = ψ(MniM

−1
j y, T jξ).

So by (4.5), for |y| ≥ 1

|ψ(MniM
−1
j y, T jξ)| ≤ sup

|y|≥1
|ψ(y, T jξ)| = ρ(T jξ)|.

For r ∈ [0, 1] consider

hj(r) =
1− r

1− fj(r)
f ′j(r).

By Lemma 4.1, for 0 ≤ r ≤ 1

hj(r) ≤
1

1 + f ′j(1)−1
∑∞
k=2 ξj(k)(1− r)k−1

≤ 1.

Let r = |fj+1 ◦ ... ◦ fni−1(ψ(y, Tniξ))|. For ni/8 ≤ j ≤ ni/2 and i sufficiently large we have

hj(r) ≤
1

1 + f ′j(1)−1
∑∞
k=2 ξj(k)(1− r)k−1

≤ 1

1 + f ′j(1)−1
∑∞
k=2 ξj(k)(1− ρ(T j+1ξ))k−1

=: b(T jξ).

Hence

ni−1∏
j=0

1− |fj+1 ◦ ... ◦ fni−1(z)|
1− fj(|fj+1 ◦ ... ◦ fni−1(z)|)

f ′j(|fj+1 ◦ ... ◦ fni−1(z)|) ≤
bni/2c∏
j=dni/8e

b(T jξ)

for a.e. ξ and sufficiently large i. Since ni →∞

1

bni/2c

bni/2c∑
j=0

1S(T jξ)→ P(S) >
1

2
, a.s.. (4.7)

So there is N(ξ) such that for ni ≥ N(ξ), T jξ ∈ S at least 1
2bni/2c ≥ ni/4− 1 times, that

is b(T jξ) < η at least ni/8− 2 times for j > ni/8. Finally, for large enough i,

ni∏
j=1

hj(r) ≤ ηni/8−2.
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