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Abstract

We consider a discrete-time branching random walk in a stationary and ergodic
environment ξ = (ξn) indexed by time n ∈ N. Let Wn(z) (z ∈ Cd) be the natural
complex martingale of the process. We show sufficient conditions for its almost sure
and quenched Lα convergence, as well as the existence of quenched moments and
weighted moments of its limit, and also describe the exponential convergence rate.
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1 Introduction and main results

We consider a branching random walk in a time random environment (BRWRE),
where the distributions of the point processes indexed by particles vary from generation
to generation according to a time random environment. First introduced by Biggins
and Kyprianou [4], this model was further studied in [9, 11, 21, 23]. For the classical
branching walk, Biggins [3] showed a sufficient condition for the almost sure and
Lα convergence of the complex martingale of the model for α ∈ (1, 2], and recently,
necessary and sufficient conditions for α > 1 were shown by Ikzanove et al. [13], while
Kolesko and Meiners [15] especially discussed the convergence on the boundary of the
uniform convergence region. Aiming to extend the result of [3], this paper focuses on
investigating the convergence (in the sense almost sure and in Lα for α > 1) of the
complex martingale in BRWRE. The main results presented in the paper cannot be
derived directly by techniques suitable for classical branching walks. The main reason
is that the environment makes it difficult to find useful upper bounds of martingales.
Similar problems may appear in other models in random environments, such as branching
processes, multiplicative cascades and random fractals in random environments, etc.
The techniques used in the paper, especially in the side of dealing with the stationary
and ergodic random environments, should provide reference for related topics.

Let us describe the model in detail. The time random environment, denoted by
ξ = (ξn), is a stationary and ergodic sequence of random variables, indexed by the
time n ∈ N = {0, 1, 2, · · · }, taking values in some measurable space (Θ, E). Without
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Convergence of complex martingale in BRWRE

loss of generality we can suppose that ξ is defined on the product space (ΘN, E⊗N, ν),
with ν the law of ξ. Stationarity means that the two random vectors (ξk, ξk+1, · · · , ξk+n)

and (ξk+h, ξk+1+h, · · · , ξk+n+h) have the same joint distribution for any k, n and h ∈ N;
ergodicity can be comprehended as that the following Birkhoff ergodic theorem holds:
for any measure-preserving transformation τ and integrable function f on (ΘN, E⊗N, ν),

lim
n→∞

1

n

n−1∑
k=0

f(τkξ) =

∫
ΘN

f(ξ)dν(ξ) for almost all ξ.

For each realization of ξn, there exists a distribution on N × (Rd)⊗N
∗

corresponds it,
where d ≥ 1 is the dimension of the real space and N∗ = {1, 2, · · · }. We denote the
distribution corresponding to ξn by ηn = η(ξn). The notation η(ξn) can be regarded as a
mapping from the space (Θ, E) to the set of all distributions on N× (Rd)⊗N

∗
. Given the

environment ξ, the process can be described as follows: at time 0, one initial particle
∅ of generation 0 is located at S∅ = 0 ∈ Rd; in general, each particle u of generation n
located at Su ∈ Rd is replaced at time n+ 1 by N(u) new particles ui of generation n+ 1,
located at

Sui = Su + Li(u) (1 ≤ i ≤ N(u)),

where the random vector X(u) = (N(u), L1(u), L2(u), · · · ) is of distribution ηn = η(ξn);
all particles behave independently conditioned on the environment ξ.

For each realization ξ of the environment sequence, let (Γ,G,Pξ) be the probability
space on which the process is defined. The probability Pξ is usually called quenched
law, while the total probability P is usually called annealed law. The quenched law Pξ
may be considered to be the conditional probability of P given ξ. The expectation with
respect to P (resp. Pξ) will be denoted by E (resp. Eξ).

Let U = {∅} ∪
⋃
n≥1(N∗)n be the set of all finite sequence u = u1 · · ·un. For u ∈ U,

we write |u| for the length of u. Let T be the Galton-Watson tree with defining elements
{N(u)} and Tn = {u ∈ T : |u| = n} be the set of particles of generation n. For n ∈ N and
z = x+ iy ∈ Cd, put

mn(z) = Eξ

N(u)∑
i=1

ezLi(u) (|u| = n), (1.1)

where the product zL should be understood as the inner product that
d∑
i=1

ziLi if z =

(z1, · · · , zd) ∈ Cd and L = (L1, · · · , Ld) ∈ Rd. We consider the non trivial case that

Pξ(N = 0) < 1 a.s., (1.2)

so that mn(z) 6= 0 a.s. Set

P0(z) = 1 and Pn(z) = Eξ
∑
u∈Tn

ezSu =

n−1∏
i=0

mi(z) (n ≥ 1). (1.3)

For z ∈ Cd and u ∈ T, denote Xu(z) = ezSu

P|u|(z)
,

W0(z) = 1, Wn(z) =
∑
u∈Tn

Xu(z) (n ≥ 1) and W ∗ = sup
n≥0
|Wn(z)|. (1.4)

Let F0 = σ(ξ) and Fn = σ(ξ,X(u); |u| < n) for n ≥ 1. It is well known that for each
z ∈ Cd fixed, Wn(z) forms a complex martingale with respect to the filtration Fn under
both laws Pξ and P. Particularly, for x ∈ Rd, the martingale Wn(x) is non-negative, hence
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Convergence of complex martingale in BRWRE

it converges almost surely (a.s.). In the deterministic environment case, this martingale
(with real or complex parameters) has been studied by Kahane and Peyrière [14], Biggins
[2, 3], Uchiyama[22], Durrett and Liggett [7], Guivarc’h [10], Lyons [20] and Liu [18, 19],
etc. in different contexts. In this paper, we are interested in the convergence of the
complex martingale Wn(z) for z ∈ Cd fixed. For simplicity, later we write Xu = Xu(z)

and Wn = Wn(z) for short.
In deterministic environment, Biggins ([3], Theorem 1) showed a sufficient condition

for the almost sure and Lα convergence of Wn for α ∈ (1, 2], but there was no information
for the case α > 2. When the environment is independent and identically distributed
(i.i.d.), we can deduce the following result from ([11], Theorem 2.4) without effort, which
completes and generalizes the results of [3, 11].

For z = x+ iy ∈ Cd fixed, write ρz(s) = E
m0(sx)
|m0(z)|s (s ∈ R) if the expectation exists as

real number.

Theorem 1.1 (Annealed Lα convergence). Assume that the environment (ξn) is i.i.d. Let
α > 1. If E(

∑
u∈T1

|Xu|)α <∞ and max{ρz(α), ρz(β)} < 1 for some 1 < β ≤ min{2, α}, then

E(W ∗)α <∞, so that Wn converges a.s., in Pξ-Lα for almost all ξ and in Lα.

However, when the environment is stationary and ergodic rather than i.i.d, there
were no corresponding results in the literature. Many times the methods available for
i.i.d environments could not be applied directly to stationary and ergodic environments.
For our problem, the main trouble is that it is difficult to estimate the upper bounds
for Eξ(

∑
u∈Tn

|Xu|β)
α
β . Similar trouble was also encountered during our study on the Lα

convergence rate of the real martingale in [23], where we obtained satisfactory result for
the i.i.d environment case, but failed to acquire the corresponding result for all α > 1 in
the stationary and ergodic environment case. Such difficulty has been overcome in this
paper. Instead of finding the direct upper bounds, we have discovered the asymptotic
upper bounds (see Theorem 2.3), with which we successfully obtain the corresponding
results of Theorem 1.1 for the stationary and ergodic environment case.

For z = x + iy ∈ Cd fixed, write fz(s) = E logm0(sx) − sE log |m0(z)| (s ∈ R) if the
expectations exist as real numbers.

Theorem 1.2 (Quenched Lα convergence). Let α > 1. If E log+Eξ(
∑
u∈T1

|Xu|)α <∞ and

max{fz(α), fz(β)} < 0 for some 1 < β ≤ min{2, α}, then Eξ(W ∗)α < ∞ a.s., so that Wn

converges a.s. and in Pξ-Lα for almost all ξ.

Remark 1.3. (a) Apparently, the long-term behaviors of branching random walks can
be investigated with the help of the additive martingale Wn. For example, we can
use Theorem 1.2 to give a sharp upper bound for the deviation Zn+1(z)−mn(z)Zn(z),
where Zn(z) :=

∑
u∈Tn e

zSu . Besides, in the study of the asymptotic behaviors of
BRWRE, it is often necessary to check the convergence of the series in the form
of
∑
n a0 · · · an−1ETnξ(W

∗)α, where an is a random variable depending on ξn and
T is the shift operator satisfying Tnξ = (ξn, ξn+1, · · · ) if ξ = (ξ0, ξ1, · · · ). In this
case, we need to first ensure the finiteness of the moment Eξ(W ∗)α before going a
step further. It is also worth mentioning that the method presented in this paper
may provide an available approach for the study of the convergence of the series
mentioned above.

(b) From Theorem 1.2, we can see that Wn converges a.s. and in Pξ-Lα for almost all
ξ to a non-trivial limit (pointwisely) on the set

Λ =
⋃

1<α≤2

{z ∈ Cd : E log+Eξ(
∑
u∈T1

|Xu|)α <∞ and fz(α) < 0}. (1.5)

In deterministic environment, Kolesko and Meiners [15] studied the convergence
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Convergence of complex martingale in BRWRE

of Wn on the boundary of Λ. Their method can be extended to work on the
analogous boundary problem for BRWRE with i.i.d. environment. However, for the
stationary and ergodic environment case, as the boundary condition cannot ensure
the trueness of the so-called many-to-one formula, the convergence of Wn on the
boundary of Λ is still an open question.

In order to help readers better understand the set Λ in BRWRE and distinguish it
from the one in classical branching random walk, we present below a simple example
corresponding to Example 3.1 of [15].

Example 1.4 (Binary splitting with Gaussian increments in a random environment). Given
the environment ξ = (ξn), we consider a branching random walk on R with independent
Gaussian increments and binary splitting, i.e., X(u) = (2, L1(u), L2(u)), where L1(u),
L2(u) are i.i.d. with one-dimensional Gaussian distribution N (µ|u|, σ

2
|u|) conditioned on

ξ. The parameter (µn, σ
2
n) = (µ(ξn), σ2(ξn)) depends on the random variable ξn. Assume

that E|µ0| <∞ and E(1/σ2
0) ∈ (0,∞). Similarly to ([15], Example 3.1), we calculate that

E log |m0(z)| = log 2 + xEµ0 + 1
2 (x2 − y2)E(1/σ2

0) for z = x+ iy ∈ C and the set Λ defined
in (1.5) now becomes

Λ = {z = x+ iy ∈ C : α(α− 1)x2 + αy2 + (1− α)
2 log 2

E(1/σ2
0)
< 0 for some α ∈ (1, 2]}.

It is not hard to detect that the shape of Λ is similar to ([15], Figure 1) but with some
minor changes in coordinates. Particularly, in the case where E(1/σ2

0) = 1, the figure of
Λ coincides with ([15], Figure 1).

Under stronger conditions, we can further obtain the existence of the quenched
weighted moments of W ∗, of the forms Eξ(W ∗)α`(W ∗), where α > 1 and the measurable

function ` : [0,∞) 7→ [0,∞) is slowly varying at ∞, which means that lim
s→∞

`(λs)
`(s) = 1 for

all λ > 0.

Theorem 1.5 (Quenched weighted moments). Let α > 1 and ` : [0,∞) 7→ [0,∞) be a

function slowly varying at ∞. If E log+Eξ

[
(
∑
u∈T1

|Xu|)α`(
∑
u∈T1

|Xu|)

]
< ∞ and α, β ∈

int{s ∈ R : fz(s) < 0} for some 1 < β < min{2, α}, then Eξ(W ∗)α`(W ∗) <∞ a.s.

In i.i.d. environment, corresponding annealed weighted moments can be deduced
from Liang and Liu ([17], Theorem 1.1).

Moreover, thanks to Theorem 2.3, we can further investigate the exponential rate of
the quenched Lα convergence of Wn to its limit, denoted by W if it exists.

Theorem 1.6 (Quenched Lα convergence rate). Let α > 1 and ρ > 1.

(a) If 1 < α < 2, E log+Eξ(
∑
u∈T1

|Xu|)r < ∞ and ρ < exp{− 1
rfz(r)} for some r ∈ [α, 2],

then Wn −W = o(ρ−n) a.s. and in Pξ-Lα for almost all ξ.

(b) Assume that α ≥ 2 and E log+Eξ(
∑
u∈T1

|Xu|)α < ∞. Then for almost all ξ, the

statement Wn −W = o(ρ−n) in Pξ-Lα holds if ρ < ρc, and does not hold if ρ > ρc
and E log−Eξ|W1 − 1|2 <∞, where ρc = exp{−max{ 1

2fz(2), 1
αfz(α)}}.

For R-valued BRWRE (i.e. the space dimension d = 1), Wang and Huang ([23],
Theorem 1.1) showed the exponential rate of the quenched Lα convergence of the
non-negative martingale Wn(x) for 1 < α ≤ αx, where αx ∈ (0,∞] depending on x is a
general constant that can be calculated accurately. The evident pity in that result is
the lack of the description for the case α > αx. Theorem 1.6 remedies this lack, and
meanwhile generalizes the result to the complex martingale Wn(z) in Rd-valued BRWRE.
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Convergence of complex martingale in BRWRE

2 Mandelbrot martingale and auxiliary results

The proofs of theorems rely on the asymptotic properties of the Mandelbrot martin-
gale in the random environment ξ = (ξn). For each realization of ξn, there exists a distri-
bution (denoted by η̃n = η̃(ξn)) onN×(0,∞)⊗N

∗
corresponds to it. Suppose that when the

environment ξ is given, {(N(u), A1(u), A2(u), · · · ), u ∈ U} is a sequence of independent
random variables taking values in N×(0,∞)⊗N

∗
; each (N(u), A1(u), A2(u), · · · ) has distri-

bution η̃(ξn) if |u| = n. For simplicity, we write (N,A1, A2, · · · ) for (N(∅), A1(∅), A2(∅), · · · ).
For u = u1 · · ·un of length n, set X̃∅ = 1 and X̃u = Au1Au2(u1) · · ·Aun(u1 · · ·un−1). For
n ∈ N and s ∈ R, define

Y
(s)
0 = 1 and Y (s)

n =
∑
u∈Tn

X̃s
u (n ≥ 1), (2.1)

m̃n(s) = Eξ

N(u)∑
i=1

Ai(u)s (|u| = n), (2.2)

P̃0(s) = 1 and P̃n(s) =

n−1∏
i=0

m̃i(s) (n ≥ 1). (2.3)

Then P̃n(s) = EξY
(s)
n . We still assume that (1.2) holds, so that P̃n(s) > 0 a.s. Let

Λ̃(s) = E log m̃0(s) if the expectation exists as real number. Denote Ȳ
(s)
n =

Y (s)
n

P̃n(s)
=

Y (s)
n

EξY
(s)
n

. In particular, we write Yn = Y
(1)
n and Ȳn = Ȳ

(1)
n for short. Let E0 = σ(ξ) and

En = σ(ξ, (N(u), A1(u), A2(u), · · · ); |u| < n) for n ≥ 1. Then {Ȳ (s)
n , En} forms a non-

negative martingale under both laws Pξ and P. It is called the Mandelbrot martingale
in random environment. For example, in the model of BRWRE introduced in Section
1, we can construct Mandelbrot martingales {Ȳ (s)

n ,Fn} in random environment by
setting X̃u = |Xu|. To complete the proofs of Theorems 1.2-1.6, an important step is to

investigate the quenched moments of Y (s)
n . Before that work, we present below a lemma

about the random environment.

Lemma 2.1. Let (αn, βn, γn)n≥0 be a stationary and ergodic sequence of non-negative
random variables. If E| logα0| <∞, E| log β0| <∞ and E log+ γ0 <∞, then

lim sup
n→∞

1

n
log

(
n−1∑
k=0

α0 · · ·αk−1γkβk+1 · · ·βn−1

)
≤ max{E logα0,E log β0} a.s. (2.4)

Proof. Let ck = γk
βk

and dk = αk
βk

. Since E log+ c0 ≤ E log+ γ0 + E log− β0 <∞, we have

lim
n→∞

1

n
log+ cn = 0 a.s. (2.5)

Besides, the ergodic theorem yields

lim
n→∞

1

n
log(β0 · · ·βn−1) = E log β0 a.s., (2.6)

lim
n→∞

1

n
log(d0 · · · dn−1) = E log d0 a.s. (2.7)

By (2.5) and (2.7), a.s., for every ε > 0, there exists a random integer nε such that
d0 · · · dn−1cn ≤ e(E log d0+ε)n for all n ≥ nε, so that

n−1∑
k=0

d0 · · · dk−1ck ≤ Aε +

n−1∑
k=nε

e(E log d0+ε)k ≤


Aε + n, if E log d0 + ε ≤ 0,

Aε + ne(E log d0+ε)n, if E log d0 + ε > 0,

ECP 24 (2019), paper 41.
Page 5/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP247
http://www.imstat.org/ecp/


Convergence of complex martingale in BRWRE

where Aε =
nε−1∑
k=0

d0 · · · dk−1ck <∞. Thus

lim sup
n→∞

1

n
log

(
n−1∑
k=0

d0 · · · dk−1ck

)
≤ max{0, E log d0 + ε} a.s.

Letting ε→ 0 and noticing (2.6), we get

lim sup
n→∞

1

n
log

(
n−1∑
k=0

α0 · · ·αk−1γkβk+1 · · ·βn−1

)

= lim sup
n→∞

(
1

n
log β0 · · ·βn−1 +

1

n
log

(
n−1∑
k=0

d0 · · · dk−1ck

))
≤ max{E logα0,E log β0} a.s.

The proof is complete.

Now let us consider the quenched moments of Y (s)
n .

Lemma 2.2. Let α > 1. If EξY α1 <∞ a.s., then for every n, we have EξY αn <∞ a.s.

Proof. It can be seen that for s ∈ [1, α], m̃0(s) ≤ EξY s1 ≤ (EξY
α
1 )s/α < ∞ a.s., hence

P̃n(s) ∈ (0,∞) a.s. for each n. Assume that α ∈ (2m, 2m+1] for some integer m ≥ 0. We
will prove the assertion by induction on m.

Firstly, for m = 0, we have α ∈ (1, 2], so that α
2 ∈ (0, 1]. Notice that

Ȳn+1 − Ȳn =
∑
u∈Tn

X̃u

P̃n(1)
(Ȳ1(u)− 1),

with Ȳ1(u) =
Y

(1)
1 (u)

Eξ[Y
(1)
1 (u)]

, where under the quenched law Pξ, {Y (s)
k (u)}|u|=n are i.i.d. and in-

dependent of En with common distribution determined by Pξ(Y
(s)
k (u) ∈ ·) = PTnξ(Y

(s)
k ∈

·). Recall that the notation T represents the shift operator: Tnξ = (ξn, ξn+1, · · · ) if
ξ = (ξ0, ξ1, · · · ). Applying Burkholder’s inequality (see e.g. [6], Theorem 11.2.1) twice
and noticing the sub-additivity of the function x 7→ xα/2, we get

Eξ|Ȳn − 1|α ≤ C
n−1∑
k=0

Eξ|Ȳk+1 − Ȳk|α ≤ C
n−1∑
k=0

P̃k(α)

P̃k(1)α
ETkξ|Ȳ1 − 1|α <∞ a.s., (2.8)

where C > 0 is a constant, and in general it does not necessarily stand for the same
constant throughout. Thus the assertion holds for m = 0.

Now suppose that the assertion holds for α ∈ (2m, 2m+1]. For α ∈ (2m+1, 2m+2], we

have α
2 ∈ (2m, 2m+1]. Observe that Eξ(Y

(2)
1 )

α
2 = Eξ(

∑
u∈T1

X̃2
u)

α
2 ≤ EξY

α
1 < ∞ a.s. By

the induction assumption, we have Eξ(Y
(2)
n )

α
2 <∞ a.s. for each n. Using Burkholder’s

inequality, Minkowski’s inequality and Jensen’s inequality, we deduce that

(
Eξ|Ȳn − 1|α

) 2
α ≤ C

n−1∑
k=0

(
Eξ|Ȳk+1 − Ȳk|α

) 2
α

≤ C

n−1∑
k=0

Eξ
∑
u∈Tk

(
X̃u

P̃k(1)

)2

(Ȳ1(u)− 1)2

α
2


2
α

≤ C

n−1∑
k=0

(
Eξ(Y

(2)
k )

α
2

P̃k(1)α
ETkξ|Ȳ1 − 1|α

) 2
α

<∞ a.s.,
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which means that the assertion also holds for m+ 1.

For α > 1 and β ∈ [1,min{2, α}], notice that Eξ(Y
(β)
n )

α
β ≤ EξY

α
n . It follows from

Lemma 2.2 that the quenched moment Eξ(Y
(β)
n )

α
β <∞ a.s. for every n if EξY α1 <∞ a.s.

Furthermore, we can even find the asymptotic upper bounds for Eξ(Y
(β)
n )

α
β .

Theorem 2.3. Let β ∈ (1, 2] and α ∈ (βm, βm+1] for some integerm ≥ 1. IfE log+EξY
α
1 <

∞, then

lim sup
n→∞

1

n
logEξ(Y

(β)
n )

α
β ≤ αh(α, β, · · · , βm) a.s., (2.9)

where h(s1, · · · , sk) = max{ Λ̃(s1)
s1

, · · · , Λ̃(sk)
sk
}.

Remark 2.4. By the convexity of Λ̃(s), it can be seen that h(α, β, · · · , βm)≤ sup
β≤s≤α

{ 1
s Λ̃(s)}=

h(α, β) if α ∈ (βm, βm+1].

Proof of Theorem 2.3. We will prove the assertion by induction onm. Firstly, we consider
m = 1, in which case α ∈ (β, β2], so that α

β ∈ (1, β] ⊂ (1, 2]. Similarly to (2.8), using
Burkholder’s inequality twice, we obtain

Eξ(Ȳ
(β)
n )

α
β ≤ C

(
Eξ|Ȳ (β)

n − 1|
α
β + 1

)
≤ C

(
n−1∑
k=0

P̃k(α)

P̃k(β)
α
β

γk

m̃k(β)
α
β

+ 1

)
, (2.10)

where γn = ETnξ|Y (β)
1 − m̃n(β)|

α
β . Notice that

γ0 ≤ C
(
Eξ(Y

(β)
1 )

α
β + m̃0(β)

α
β

)
≤ C

(
EξY

α
1 + m̃0(β)

α
β

)
.

Thus E log+ γ0 <∞, since E log+EξY
α
1 <∞ and Λ̃(β) exists. From (2.10), we deduce

Eξ(Y
(β)
n )

α
β = Eξ(Ȳ

(β)
n )

α
β P̃n(β)

α
β ≤ C

(
An + P̃n(β)

α
β

)
, (2.11)

where An =
n−1∑
k=0

P̃k(α)γkm̃k+1(β)
α
β · · · m̃n−1(β)

α
β . Since E log+ γ0 < ∞, Λ̃(α) and Λ̃(β)

exist, by Lemma 2.1,

lim sup
n→∞

1

n
logAn ≤ max{Λ̃(α),

α

β
Λ̃(β)} = αh(α, β) a.s. (2.12)

Therefore, by (2.12) and the ergodic theorem,

lim sup
n→∞

1

n
log
(
An + P̃n(β)

α
β

)
≤ max{lim sup

n→∞

1

n
logAn, lim sup

n→∞

1

n
log P̃n(β)

α
β }

≤ αh(α, β) a.s. (2.13)

Combining (2.13) with (2.11) leads to lim sup
n→∞

1
n logEξ(Y

(β)
n )

α
β ≤ αh(α, β) a.s., which

means that the assertion holds for m = 1.

Now suppose that the assertion holds for α ∈ (βm, βm+1] with m ≥ 1. For α ∈
(βm+1, βm+2], we have α

β ∈ (βm, βm+1] and α
β2 > βm−1 ≥ 1. Let

D(β)
n = Y

(β)
n+1 − Y (β)

n m̃n(β) =
∑
u∈Tn

X̃β
u

(
Y

(β)
1 (u)− m̃n(β)

)
.
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Convergence of complex martingale in BRWRE

Then we can write Y (β)
n =

n−1∑
k=0

D
(β)
k m̃k+1(β) · · · m̃n−1(β) + P̃n(β). Therefore,

Eξ(Y
(β)
n )

α
β = Eξ

(
n−1∑
k=0

D
(β)
k m̃k+1(β) · · · m̃n−1(β) + P̃n(β)

)α
β

≤ (n+ 1)
α
β−1

(
n−1∑
k=0

Eξ|D(β)
k |

α
β m̃k+1(β)

α
β · · · m̃n−1(β)

α
β + P̃n(β)

α
β

)
. (2.14)

Applying the BDG-inequality (see e.g. [6], Theorem 11.3.2) to {D(β)
n }, we get

Eξ

[
|D(β)

n |
α
β |En

]
≤ C

(∑
u∈Tn

Eξ

[
X̃β2

u |Y
(β)
1 (u)− m̃n(β)|β

∣∣∣ En])
α
β2

+
∑
u∈Tn

Eξ

[
X̃α
u |Y

(β)
1 (u)− m̃n(β)|

α
β

∣∣∣ En]


≤ C
(

(Y (β2)
n )

α
β2 γn + Y (α)

n γn

)
.

Taking the expectation Eξ yields

Eξ|D(β)
n |

α
β ≤ C

(
Eξ(Y

(β2)
n )

α
β2 + P̃n(α)

)
γn. (2.15)

Combining (2.15) with (2.14), we get

Eξ(Y
(β)
n )

α
β ≤ C(n+ 1)

α
β−1

(
Bn +An + P̃n(β)

α
β

)
, (2.16)

where Bn =
n−1∑
k=0

Cn,k and Cn,k = Eξ(Y
(β2)
k )

α
β2 γkm̃k+1(β)

α
β · · · m̃n−1(β)

α
β . Since α

β ∈

(βm, βm+1] and E log+Eξ(Y
(β)
1 )

α
β ≤ E log+EξY

α
1 <∞, by the induction assumption,

lim sup
n→∞

1

n
logEξ(Y

(β2)
n )

α
β2 ≤ α

β
max{β

α
Λ̃(α),

1

β
Λ̃(β2), · · · , 1

βm
Λ̃(βm+1)}

= αh(α, β2, · · · , βm+1) a.s.

It follows that for every ε > 0, there exists a random integer nε > 0 such that for n ≥ nε,

Eξ(Y
(β2)
n )

α
β2 ≤ exp{

(
αh(α, β2, · · · , βm+1) + ε

)
n} a.s. (2.17)

For n large enough, decompose

Bn =

nε−1∑
k=0

Cn,k +

n−1∑
k=nε

Cn,k =: B1,n(ε) +B2,n(ε).

For B2,n(ε), it follows from (2.17) that

B2,n(ε) ≤
n−1∑
k=0

exp{
(
αh(α, β2, · · · , βm+1) + ε

)
k}γkm̃k+1(β)

α
β · · · m̃n−1(β)

α
β a.s.

Using Lemma 2.1, we obtain

lim sup
n→∞

1

n
logB2,n(ε) ≤ max{αh(α, β2, · · · , βm+1)+ε,

α

β
Λ̃(β)} ≤ αh(α, β, · · · , βm+1)+ε a.s.

(2.18)
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Convergence of complex martingale in BRWRE

For B1,n(ε), notice that Eξ(Y
(β2)
k )

α
β2 ≤ Eξ(Ȳ (β)

k )
α
β P̃k(β)

α
β . Thus

B1,n(ε) ≤
nε−1∑
k=0

Eξ(Ȳ
(β)
k )

α
β P̃k(β)

α
β γkm̃k+1(β)

α
β · · · m̃n−1(β)

α
β

= P̃n(β)
α
β

nε−1∑
k=0

Eξ(Ȳ
(β)
k )

α
β

γk

m̃k(β)
α
β
.

By Lemma 2.2, we have Eξ(Y
(β)
n )

α
β <∞ a.s. for each n, so that

Cε(ξ) :=

nε−1∑
k=0

Eξ(Ȳ
(β)
k )

α
β

γk

m̃k(β)
α
β
<∞ a.s.

Therefore,

lim sup
n→∞

1

n
logB1,n(ε) ≤ lim sup

n→∞

(
1

n
log P̃n(β)

α
β +

1

n
logCε(ξ)

)
=
α

β
Λ̃(β) a.s. (2.19)

By (2.18) and (2.19),

lim sup
n→∞

1

n
logBn ≤ max{lim sup

n→∞

1

n
logB1,n(ε), lim sup

n→∞

1

n
logB2,n(ε)}

≤ αh(α, β, · · · , βm+1) + ε a.s.

Since ε is arbitrary, we get

lim sup
n→∞

1

n
logBn ≤ αh(α, β, · · · , βm+1) a.s. (2.20)

Finally, combining (2.20) and (2.13) with (2.16), the assertion also holds for m+ 1.

Lemma 2.5. Let (ζn)n≥0 be a stationary and ergodic sequence of non-negative random
variables satisfying E log+ ζ0 <∞. Assume that E log+EξY

α
1 <∞ for some α > 1.

(a) If max{Λ̃(α), Λ̃(β)} < 0 for some β ∈ (1, 2] with β ≤ α, then for every constant γ > 0,

the series
∑
n

(
Eξ(Y

(β)
n )

α
β

)γ
ζn <∞ a.s.

(b) If α, β ∈ int{s ∈ R : Λ̃(s) < 0} for some β ∈ (1, 2] with β < α, then there exists a
constant ε0 > 0 such that for every constant 0 < ε < ε0 and every constant γ > 0,

the series
∑
n

(
Eξ(Y

(β)
n )

α±ε
β

)γ
ζn <∞ a.s.

Proof. Proof of the assertion (a). If α = β ∈ (1, 2], it follows from ([12], Lemma 3.1) that

the series
∑
n

(
Eξ(Y

(β)
n )

α
β

)γ
ζn =

∑
n
P̃n(α)γζn < ∞ a.s., since Λ̃(α) < 0 and E log+ ζ0 <

∞. Now we consider the case where α > β. Notice that E log+ ζ0 < ∞ implies that
lim
n→∞

1
n log+ ζn = 0 a.s. By Theorem 2.3 and Remark 2.4,

lim sup
n→∞

1

n
log
[(
Eξ(Y

(β)
n )

α
β

)γ
ζn

]
≤ γ lim sup

n→∞

1

n
logEξ(Y

(β)
n )

α
β ≤ γαh(α, β) < 0 a.s.,

which implies that the series
∑
n

(
Eξ(Y

(β)
n )

α
β

)γ
ζn <∞ a.s.

Proof of the assertion (b). Denote αε = α± ε. Since α, β ∈ int{s ∈ R : Λ̃(s) < 0}, we
can take 1 < β′ < β and α′ > α such that Λ̃(s) < 0 on [β′, α′]. Let Mn = sup

u∈Tn
X̃β−β′
u . Then

Y (β)
n =

∑
u∈Tn

X̃β′

u X̃
β−β′
u ≤MnY

(β′)
n . (2.21)
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Convergence of complex martingale in BRWRE

For δ > 0, set 1
q = αεβ

′

(α−δ)β , 1
p = 1− 1

q = (α−δ)β−αεβ′
(α−δ)β and α∗ = (β − β′)αεβ p = (β−β′)αε(α−δ)

(α−δ)β−αεβ′ .

Take δ and ε small enough such that p, q > 1 and α − δ, α∗ ∈ (β′, α′). By (2.21) and
Hölder’s inequality,

Eξ(Y
(β)
n )

αε
β ≤

[
EξM

αε
β p
n

]1/p [
Eξ(Y

(β′)
n )

αε
β q
]1/q
≤ P̃n(α∗)1/p

[
Eξ(Y

(β′)
n )

α−δ
β′
]1/q

. (2.22)

Since E log+EξY
α−δ
1 <∞, by Theorem 2.3 and Remark 2.4,

lim sup
n→∞

1

n
logEξ(Y

(β′)
n )

α−δ
β′ ≤ (α− δ)h(α− δ, β′) < 0 a.s. (2.23)

Noticing (2.22) and (2.23), we calculate that

lim sup
n→∞

1

n
log
[(
Eξ(Y

(β)
n )

αε
β

)γ
ζn

]
≤ lim

n→∞

1

n
log P̃n(α∗)γ/p + lim sup

n→∞

1

n
log
[
Eξ(Y

(β′)
n )

α−δ
β′
]γ/q

+ lim
n→∞

1

n
log+ ζn

≤ γ

p
Λ̃(α∗) +

γ

q
(α− δ)h(α− δ, β′) < 0 a.s.,

which implies the a.s. convergence of the series
∑
n

(
Eξ(Y

(β)
n )

αε
β

)γ
ζn.

3 Proof of Theorems 1.2-1.6

Let us come back to BRWRE and give the proofs of Theorems 1.2-1.6. As Theorem 1.1
can be proved by arguments in the proof of ([11], Theorem 2.4) with tiny modifications,
we omit its proof.

For z = x + iy ∈ Cd fixed, set X̃u = |Xu| = exSu

|P|u|(z)|
. We will use the notations

introduced in Section 2 for the Mandelbrot martingale. Note that now Λ̃(s) = fz(s).
Moreover, for u ∈ U, denote

Bu =

N(u)∑
i=1

ezLi(u)

m|u|(z)
− 1 and ζ(s)

n = Eξ|Bu|s (|u| = n).

It can be seen that if E log+Eξ(
∑
u∈T1

X̃u)α < ∞, then E log+ ζ
(s)
0 < ∞ for 0 < s ≤ α. In

the following proofs, we will use the generalized BDG-inequality for complex martingales
(we still call it the BDG-inequality later). Such inequality can be obtained by applying
the classical BDG-inequality for real-valued martingales to the real and imaginary parts
respectively of the complex martingales and noticing the convexity and monotonicity of
the related functions.

Proof of Theorem 1.2. We shall prove that Eξ sup
n≥0
|Wn−1|α <∞ a.s., which is equivalent

to Eξ(W ∗)α <∞ a.s. By the BDG-inequality, we see that for 1 ≤ β ≤ min{2, α},

Eξ sup
n≥0
|Wn − 1|α ≤ C

Eξ ( ∞∑
n=0

Eξ
[
|Wn+1 −Wn|β

∣∣Fn])
α
β

+

∞∑
n=0

Eξ|Wn+1 −Wn|α


= : C(A1(ξ) +B1(ξ)).
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Convergence of complex martingale in BRWRE

We need to show that A1(ξ) and B1(ξ) are finite a.s. Applying the BDG-inequality to the
martingale difference {Wn+1 −Wn}, we have for 1 ≤ β ≤ min{2, γ},

Eξ [ |Wn+1 −Wn|γ | Fn] ≤ C

Eξ
(∑

u∈Tn

X̃β
uEξ|Bu|β

) γ
β

∣∣∣∣∣∣Fn
+

∑
u∈Tn

X̃γ
uEξ|Bu|γ


= C

(
(Y (β)
n )

γ
β (ζ(β)

n )
γ
β + Y (γ)

n ζ(γ)
n

)
. (3.1)

For A1(ξ), using (3.1) with γ = β and Minkowski’s inequality, we have

A1(ξ)
β
α ≤ C

Eξ ( ∞∑
n=0

Y (β)
n ζ(β)

n

)α
β


β
α

≤ C
∞∑
n=0

[
Eξ(Y

(β)
n )

α
β

] β
α

ζ(β)
n .

Notice that here E log+ ζ
(s)
0 <∞ (s = α, β), E log+EξY

α
1 <∞ and max{Λ̃(α), Λ̃(β)} < 0.

Hence A1(ξ) <∞ a.s. by Lemma 2.5(a). For B1(ξ), using (3.1) with γ = α, we have

B1(ξ) ≤ C

( ∞∑
n=0

Eξ(Y
(β)
n )

α
β (ζ(β)

n )
α
β +

∞∑
n=0

P̃n(α)ζ(α)
n

)
. (3.2)

The first series in the right hand side of (3.2) converges a.s. by Lemma 2.5(a), and the
second series

∑
n
P̃n(α)ζ

(α)
n <∞ a.s. by ([12], Lemma 3.1). Thus B1(ξ) <∞ a.s.

Proof of Theorem 1.5. Take β < β1 < min{2, α}. Clearly, β1 ∈ int{s ∈ R : Λ̃(s) < 0}. Put

φ(x) = xα`(x). Without loss of generality, we assume that φ(x) and φ(x
1
β1 ) are increasing,

convex on [0,∞) and `(x) > 0 for all x ≥ 0 (see [16], Lemma 3.1). By the BDG-inequality
and using (3.1) (with α = β = β1), we obtain

Eξφ(sup
n≥0
|Wn − 1|) ≤ C

Eξφ(

( ∞∑
n=0

Y (β1)
n ζ(β1)

n

) 1
β1

) +

∞∑
n=0

Eξφ(|Wn+1 −Wn|)


= : C(A2(ξ) +B2(ξ)).

We will prove that A2(ξ) and B2(ξ) are finite a.s. For A2(ξ), by Potter’s theorem (see [5],
Theorem 1.5.6), for 0 < ε < α− β1, we have

A2(ξ) ≤ C

Eξ ( ∞∑
n=0

Y (β1)
n ζ(β1)

n

)α+ε
β1

+ Eξ

( ∞∑
n=0

Y (β1)
n ζ(β1)

n

)α−ε
β1

 =: C
(
A+

2 +A−2
)
.

By Minkowski’s inequality and Lemma 2.5(b), we have A±2 <∞ a.s. for ε small enough,
so that A2(ξ) <∞ a.s. Now we consider B2(ξ). Denote ∆n = Eξφ(|Wn+1 −Wn|). By the
BDG-inequality,

∆n ≤ C
(
Eξφ(

(
Y (β1)
n ζ(β1)

n

) 1
β1

) + Eξφ( sup
u∈Tn

X̃u|Bu|)
)

=: C (∆1,n + ∆2,n) .

For ∆1,n, again by Potter’s theorem, we have for ε > 0,

∆1,n ≤ C
(
Eξ

(
Y (β1)
n ζ(β1)

n

)α+ε
β1

+ Eξ

(
Y (β1)
n ζ(β1)

n

)α−ε
β1

)
=: C

(
∆+

1,n + ∆−1,n
)
.
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It can be deduced from Lemma 2.5(b) that the series
∑
n

∆±1,n <∞ a.s. for ε small enough.

For ∆2,n, by the increasing and convex property of the function φ(x
1
β1 ) and using Potter’s

theorem,

∆2,n ≤ Eξφ(

(∑
u∈Tn

X̃β1
u |Bu|β1

) 1
β1

)

≤ Eξ

(∑
u∈Tn

X̃β1
u

Y
(β1)
n

φ(|Bu|(Y (β1)
n )

1
β1 )

)
≤ C

(
∆+

2,n + ∆−2,n
)
,

where ∆±2,n = Eξ(Y
(β1)
n )

α±ε
β1 ETnξφ(|B∅|). Since E log+Eξφ(|B∅|) < ∞, it follows from

Lemma 2.5(b) that
∑
n

∆±2,n <∞ a.s. if ε small enough. Thus B2(ξ) =
∑
n

∆n <∞ a.s.

Proof of Theorem 1.6. The proof is very similar to the proof of ([23], Theorem 1.1). For

ρ > 1, set A(ρ) =
∞∑
n=0

ρn(W −Wn) and Ân(ρ) =
n∑
k=0

ρk(Wk+1 −Wk). By ([1], Lemma 3.1

and Remark 3.1), A(ρ) converges in Pξ-Lα if and only if sup
n
Eξ|Ân(ρ)|α <∞, and the Lα

convergence of A(ρ) implies its a.s. convergence.
For the assertion (a), using Burkholder’s inequality twice gives

sup
n
Eξ|Ân(ρ)|α ≤ C

∞∑
n=0

ραnP̃n(r)α/r(ζ(r)
n )α/r <∞ a.s.,

since E log+ ζ
(r)
0 <∞ and log ρ+ 1

r Λ̃(r) < 0. Thus we have lim
n→∞

ρn(W −Wn) = 0 a.s. and

in Pξ-Lα for almost all ξ.
For the assertion (b), by Burkholder’s inequality, Minkowski’s inequality and the

formula (2.8) in [23],

sup
n
Eξ|Ân(ρ)|α ≤ C

( ∞∑
n=0

ρ2n
(
Eξ(Y

(2)
n )

α
2

) 2
α

(ζ(α)
n )

2
α

)α
2

.

Since E log+EξY
α
1 <∞, by Theorem 2.3 and Remark 2.4,

lim sup
n→∞

1

n
log

[
ρ2n

(
Eξ(Y

(2)
n )

α
2

) 2
α

(ζ(α)
n )

α
2

]
≤ 2 log ρ+ 2h(α, 2) < 0 a.s.

if ρ < ρc = exp{−h(α, 2)}. It follows that sup
n
Eξ|Ân(ρ)|α < ∞ a.s., which implies that

lim
n→∞

ρn (Eξ|W −Wn|α)
1
α = 0 a.s. Conversely, if ρ > ρc and E log− ζ

(2)
0 <∞, we suppose

that lim
n→∞

ρn (Eξ|W −Wn|α)
1
α = 0 a.s. Now we can deduce that for any ρ1 ∈ (1, ρ),

sup
n
Eξ|Ân(ρ1)|α <∞ a.s. Thus, by Burkholder’s inequality,

∞∑
n=0

ραn1 P̃n(r)α/r(ζ(r)
n )α/r ≤ C sup

n
Eξ|Ân(ρ1)|α <∞ a.s.

for all r ∈ [2, α]. Since E| log ζ
(r)
0 | ≤ r

αE log+ ζ
(α)
0 + r

2E log− ζ
(2)
0 <∞, Lemma 3.1 of [12]

yields log ρ1 ≤ − 1
r Λ̃(r) for all r ∈ [2, α], namely, log ρ1 ≤ inf

2≤r≤α
{− 1

r Λ̃(r)} = log ρc. Letting

ρ1 ↑ ρ yields ρ ≤ ρc, which contradicts the fact that ρ > ρc.
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