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Abstract

We prove deviation bounds for the random variable
∑n

i=1 fi(Yi) in which {Yi}∞i=1 is a
Markov chain with stationary distribution and state space [N ], and fi : [N ]→ [−ai, ai].
Our bound improves upon previously known bounds in that the dependence is on√

a2
1 + · · ·+ a2

n rather than maxi{ai}
√
n. We also prove deviation bounds for certain

types of sums of vector–valued random variables obtained from a Markov chain
in a similar manner. One application includes bounding the expected value of the
Schatten ∞-norm of a random matrix whose entries are obtained from a Markov
chain.
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1 Introduction

Consider a Markov chain {Yi}∞i=1 with state space [N ], transition matrix A, and
stationary distribution π such that Y1 is distributed as π. Let Eπ be the associated
averaging operator defined by (Eπ)ij = πj , so that for v ∈ RN Eπv = Eπ[v]1 where 1 is
the vector whose entries are all 1.

In the case that the Yi are independent, that is A = Eπ, then it is well known (see [10])
that for functions f1, . . . , fn : [N ]→ [−1, 1] with E[fi(Yi)] = 0 for all i and u ≥ 0, that

Pr[|f1(Y1) + · · ·+ fn(Yn)| ≥ u
√
n] ≤ 2 exp

(
−u2/2

)
. (1.1)

Gillman generalized Eq. (1.1) to all Markov chains with a stationary distribution, in terms
of the quantity λ = ‖A−Eπ‖L2(π)→L2(π) in the case f1 = · · · = fn [7]. These bounds were
refined in a long series of work including [4, 11, 13, 22, 12, 9, 3, 8, 16, 15, 17]. We state
the following version due to Healy [9], which handles the case in which the fi are not
necessarily equal.

Pr[|f1(Y1) + · · ·+ fn(Yn)| ≥ u
√
n] ≤ 2 exp

(
−u2(1− λ)

4

)
. (1.2)
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A Hoeffding inequality for Markov chains

Back in the case of independent random variables, Hoeffding generalized Eq. (1.1) to
the case when the function fi has range [−ai, ai], obtaining the following bound [10].

Pr

|f1(Y1) + · · ·+ fn(Yn)| ≥ u

(
n∑
i=1

a2i

)1/2
 ≤ 2 exp(−u2/2). (1.3)

In this work, we generalize Eq. (1.3) to Markov chains with a stationary distribution. In
particular, we prove the following.

Theorem 1.1. Let {Yi}∞i=1 be a stationary Markov chain with state space [N ], transition
matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1 is
distributed according to π. Let λ = ‖A− Eπ‖L2(π)→L2(π) and let f1, . . . , fn : [N ]→ R so
that E[fi(Yi)] = 0 for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i. Then for u ≥ 0,

Pr

|f1(Y1) + · · ·+ fn(Yn)| ≥ u

(
n∑
i=1

a2i

)1/2
 ≤ 2 exp(−u2(1− λ)/(64e)).

One interpretation of Theorem 1.1 is that for a Markov chain {Yi}∞i=1 and functions
f1, . . . , fn : [N ]→ [−1, 1], the random vector (f1(Y1), . . . , fn(Yn)) is sub–gaussian.

We remark that the dependence on λ in both Eq. (1.2) and Theorem 1.1 is optimal,
as shown in [12] which considered the case that the fi are equal. In particular, one can
consider the Markov chain on two states with the transition matrix[

1+λ
2

1−λ
2

1−λ
2

1+λ
2

]
so that fi(1) = 1 and fi(2) = −1 for all i. Intuitively, the random variable f1(Y1) + · · ·+
fn(Yn) is similar to the sum of n(1− λ) random variables that are close to 1/(1− λ) or
close to −1/(1− λ), both with equal probability.

We also remark that Theorem 1.1 holds even for non-reversible Markov chains,
continuing the work of [3] who were the first to consider this setting. It is possible, if the
Markov chain is not reversible, for ‖A− Eπ‖L2(π)→L2(π) to be greater than 1, and thus
the bound in Theorem 1.1 is trivial.

1.1 Extension to vector–valued random variables

Recently, much attention has been paid to tail bounds for sums of vector–valued
random variables. Naor [14] obtained tail bounds for sums of random variables from a
Banach space satisfying certain properties. Before stating the corresponding theorem,
we define a quantity called the modulus of uniform smoothness.

Definition 1.2. The modulus of uniform smoothness of a Banach space (X, ‖ · ‖) is

ρX(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
.

Let (X, ‖ · ‖) be a Banach space so that ρX(τ) ≤ sτ2 for some s and all τ > 0. When
the elements of the Markov chain are independent, for fi : [N ]→ {x ∈ X : ‖x‖ ≤ ai} and
such that E[fi(Yi)] = 0, it was shown that

Pr

‖f1(Y1) + · · ·+ fn(Yn)‖ ≥ u

(
n∑
i=1

a2i

)1/2
 ≤ exp

(
s+ 2− cu2

)
(1.4)

for some universal constant c.
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A Hoeffding inequality for Markov chains

We extend Theorem 1.1 to random variables from a fixed Banach space as follows.
We stress that the setting in the following theorem is more limited than that of Eq. (1.4).
In particular we only allow random variables of the form f(Yi)Xi in which f(Yi) is a
random scalar and Xi is a fixed element from the Banach space.

Theorem 1.3. Let (X, ‖ · ‖) be a Banach space, and let X1, . . . , Xn ∈ X. Let {Yi}∞i=1 be a
stationary Markov chain with state space [N ], transition matrix A, stationary probability
measure π, and averaging operator Eπ, so that Y1 is distributed according to π. Let
λ = ‖A− Eπ‖L2(π)→L2(π), and let f1, . . . , fn : [N ]→ [−1, 1] be such that E[fi(Yi)] = 0 for
all i. Then there exist universal constants C and L, such that for any u ≥ 0,

Pr [‖f1(Y1)X1 + · · ·+ fn(Yn)Xn‖ ≥ uCE[‖g1X1 + · · ·+ gnXn‖]] ≤ L exp(−Cu2(1− λ))

where g1, . . . , gn ∼ N (0, 1) are independent standard Gaussian random variables.

Note that Eq. (1.4) implies that E[‖g1X1 + · · ·+ gnXn‖] ≤ C
√
s(‖X1‖2 + · · ·+ ‖Xn‖2)

for some constant C. This follows from the fact that the distribution of the normalized
sum of independent Rademacher random variables approaches that of a Gaussian, in the
limit. Thus for Banach spaces that satisfy ρX(τ) ≤ sτ2, we also have the bound

Pr
[
‖f1(Y1)X1 + · · ·+ fn(Yn)Xn‖ ≥ uC

√
s(‖X1‖2 + · · ·+ ‖Xn‖2)

]
≤ L exp(−Cu2(1− λ))

1.1.1 Bounds on the Schatten ∞-norm of a random matrix

As an application, we are able to generalize bounds on the Schatten∞-norm of a matrix
with independent entries to matrices whose entries are obtained from a Markov chain
with stationary distribution.

Let I ⊆ [d]× [d] be the set of pairs (i, j) such that i ≤ j, and let B = (bi,j) ∈ Rd×d be
a symmetric matrix with positive entries. Let X ∈ Rd×d be the random symmetric matrix
whose entries are

Xi,j =

{
εi,jbi,j if (i, j) ∈ I
εj,ibi,j otherwise

where εi,j are independent Rademacher random variables. Then it was shown in [2] that

E[‖X‖S∞ ] ≤ min
{
C(σ + σ∗

√
log d), ‖B‖S∞

}
(1.5)

for some absolute constant C, where

σ = max
i

√∑
j

b2i,j and σ∗ = max
i,j
|bi,j |. (1.6)

We generalize Eq. (1.5) to Markov chains with a stationary distribution. In particular,
we obtain a similar bound in terms of λ = ‖A− Eπ‖L2(π)→L2(π) on the Schatten∞-norm
of a matrix whose entries are chosen in the following manner. We start by choosing an
arbitrary permutation of the entries in the diagonal and upper triangular part of the
matrix. Then we fill in the entries according to the order given by the permutation, using
the values given by the Markov chain. Finally we fill in the entries in the lower triangular
part of the matrix, so that the matrix is symmetric. The case that the transition matrix is
A = Eπ corresponds to choosing the entries of the diagonal and upper triangular part of
the matrix independently, as in [2].

Corollary 1.4. Let {Yi}∞i=1 be a stationary Markov chain with state space [N ], transition
matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1 is
distributed according to π. Let λ = ‖A−Eπ‖L2(π)→L2(π), let f : V → [−1, 1] be such that
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A Hoeffding inequality for Markov chains

E[f(Yi)] = 0, and let B ∈ Rd×d be a symmetric d× d matrix with positive entries. For any
injective function ω : I → {1, 2, . . . , (d2 + d)/2}, let X be the symmetric matrix defined by

Xi,j =

{
f(Yω(i,j))bi,j if (i, j) ∈ I
f(Yω(j,i))bj,i otherwise

Then,

E[‖X‖S∞ ] ≤ min

{
C√
1− λ

(σ + σ∗
√

log d), ‖B‖S∞
}
,

for some absolute constant C, where σ and σ∗ are defined as in Eq. (1.6).

1.2 Related Work

In recent independent work by Fan, Jiang, and Sun [5], a Hoeffding bound for general
Markov chains was also given. Their bound is sharper, and in particular the constant
64e can be replaced by 2 after replacing 1− λ by (1− λ)/(1 + λ). However, our proof is
arguably somewhat simpler.

In work by Garg, Lee, Song and Srivastava [6], a version of Eq. (1.4) was proved for
Markov chains when the Banach space is the set of d× d matrices under the Schatten
∞-norm, generalizing a result first shown by Ahlswede and Winter [1] (see also the
monograph by Tropp [21]). Note that the Schatten ∞-norm of a d × d matrix is up to
constant factors equal to the Schatten log(d)-norm of that matrix, and the modulus of
uniform smoothness of the set of d × d matrices under the Schatten p-norm is O(pτ2).
Thus in this case the left-hand side of Eq. (1.4) is bounded above by d exp(c − cu2).
Garg, Lee, Song and Srivastava showed that for a Markov chain {Yi}∞i=1 and functions
fi : [N ]→ {x ∈ Rd×d : ‖x‖S∞ ≤ 1} such that E[fi(Yi)] = 0,

Pr[‖f1(Y1) + · · ·+ fn(Yn)‖S∞ ≤ u
√
n] ≤ 2d exp

(
−c(1− λ)u2

)
2 Preliminaries

Given vectors v, π ∈ RN so that π has positive entries, (typically π will be a distribution
over [N ]), let

‖v‖pLp(π) =
N∑
i=1

πi|vi|p.

We define the inner product for two vectors u, v ∈ RN and π ∈ RN with positive entries
to be

〈u, v〉L2(π)

N∑
i=1

πiuivi.

Additionally, we let the operator norm of a matrix A ∈ RN×N be defined as

‖A‖Lp(π)→Lq(π) = max
v:‖v‖Lp(π)=1

‖Av‖Lq(π).

We will use `p in place of Lp(1) where 1 is the vector whose entries are all 1.
The Schatten p-norm of a matrix A ∈ RN×N is defined to be

‖A‖pSp =

N∑
i=1

spi

where s1, . . . , sN are the singular values of A.
For a vector v, we let diag(v) be the diagonal matrix where diag(v)i,i = vi.
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Let A be a stochastic matrix, and let π be a stationary distribution forA. We let
(Eπ)ij = πj be the averaging operator on L∞(π)→ L∞(π). Note that Eπ is also stochastic,
and that EπA = AEπ = E2

π = Eπ.
The following simple claim bounds ‖T‖L2(π)→L2(π) for a matrix T in terms of

‖T‖L1(π)→L1(π) and ‖T‖L∞(π)→L∞(π). This can be viewed as a special case of inter-
polation of matrix norms.

Claim 2.1. For any matrix T ,

‖T‖2L2(π)→L2(π)
≤ ‖T‖L1(π)→L1(π)‖T‖L∞(π)→L∞(π).

Proof. For all x, π ∈ Rn so that π has positive entries,

‖Tx‖2L2(π)→L2(π)
=

n∑
i=1

πi

 n∑
j=1

Tijxj

2

≤
n∑
i=1

πi

 n∑
j=1

|Tij |

 n∑
j=1

|Tij |x2j


≤ ‖T‖L∞(π)→L∞(π)‖T (x ◦ x)‖L1(π)→L1(π) ≤ ‖T‖L∞(π)→L∞(π)‖T‖L1(π)→L1(π)‖x‖

2
L2(π)

where the first inequality follows by Cauchy-Schwarz, and ◦ denotes entrywise product.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we follow the strategy of bounding the qth moment for some
even integer q, and using Markov’s inequality to obtain a tail bound. We start by
expanding (f1(Y1) + · · ·+ fn(Yn))

q into a sum of monomials.
The following lemma bounds the expectation of monomials in the fi(Yi). The state-

ment is similar to Lemma 3.3 in [17]. Most of the proof is the same and is deferred to
the appendix. Let Sq−1 ⊂ {0, 1}q−1 be the set of strings with no consecutive 0’s and so
that s1, sq−1 = 1 for all s ∈ Sq−1.

Lemma 3.1. Let {Yi}∞i=1 be a stationary Markov chain with state space [N ], transition
matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1 is
distributed according to π. Let λ = ‖A− Eπ‖L2(π)→L2(π) and let f1, . . . , fn : [N ]→ R so
that E[fi(Yi)] = 0 for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i. For all q, and w ∈ [n]q

such that w1 ≤ w2 ≤ · · · ≤ wq

E[fw1
(Yw1

)fw2
(Yw2

) · · · fwq (Ywq )] ≤ aw1
aw2
· · · awq

∑
s∈Sq−1

( ∏
i:si=1

λwi+1−wi

)
.

Proof. We apply Lemma A.3, letting k = q − 1, ui(v) = fwi(v) for all v ∈ [N ], and
Ti = Awi+1−wi − Eπ. Note that for all k ≥ 0,

Ak − Eπ = Ak −Ak−1Eπ − EπA+ E2
π = (Ak−1 − Eπ)(A− Eπ) = (A− Eπ)k.

The lemma follows by noting that ‖ui‖L∞(π) ≤ awi and ‖Ti‖L2(π)→L2(π) ≤ λwi+1−wi

We obtain the following bound on the moments of f1(Y1) + · · ·+ fn(Yn).

Theorem 3.2. Let {Yi}∞i=1 be a stationary Markov chain with state space [N ], transition
matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1
is distributed according to π. Let λ = ‖A − Eπ‖L2(π)→L2(π) be less than 1, and let
f1, . . . , fn : [N ]→ R so that E[fi(Yi)] = 0 for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i.
Then for even q,

E[(f1(Y1) + · · ·+ fn(Yn))
q] ≤ 4q(q/2)!

(
1

1− λ

)q/2( n∑
i=1

a2i

)q/2
.
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Proof. Let σ : [n]q → [n]q be the function where σ(w) is the sorted list of coordinates of
w in non-decreasing order. Then by Lemma 3.1,

E[(f1(Y1) + · · ·+ fn(Yn))
q] =

∑
w∈[n]q

E[fw1
(Yw1

)fw2
(Yw2

) · · · fwq (Ywq )]

≤
∑
w∈[n]q

aw1
aw2
· · · awq

∑
s∈Sq−1

( ∏
i:si=1

λσ(w)i+1−σ(w)i

)
. (3.1)

Let
(
[q]
q/2

)
denote the collection of subsets of [q] of size exactly q/2. For each subset

I ∈
(
[q]
q/2

)
, let WI ⊂ [n]q be the set of all vectors w such that for each j ∈ [n],

|{i : i ∈ I and wi = j}| = |{i : i ∈ {1, 3, 5, . . . , q − 1} and σ(w)i = j}| ,

i.e. the multi-set
⋃
i∈I{wi} is equal to the multi-set {σ(w)1, σ(w)3, σ(w)5, . . . , σ(w)q−1}.

Let wI , w[q]\I ∈ [n]q/2 be the restriction of w to the coordinates in I and [q]\I respectively.

Additionally, for each I ∈
(
[q]
q/2

)
and s ∈ Sq−1, let TI,s be the nq/2 × nq/2 matrix defined as

follows. For each w ∈ [n]q, the entry in the wIth row and w[q]\Ith column of TI,s is

TI,s(wI , w[q]\I) =

{∏
i:si=1 λ

σ(w)i+1−σ(w)i if w ∈WI
0 otherwise.

Because ⋃
I∈( [q]

q/2)

WI = [n]q,

Eq. (3.1) can be bounded above by

∑
s∈Sq−1

∑
I∈( [q]

q/2)

∑
w∈WI

aw1aw2 · · · awq

( ∏
i:si=1

λσ(w)i+1−σ(w)i

)
=

∑
s∈Sq−1

∑
I∈( [q]

q/2)

〈
a⊗q/2, TI,sa

⊗q/2
〉
`2

≤ |Sq−1|
(
q

q/2

)
max

s∈Sq−1,I∈( [q]
q/2)
‖TI,s‖`2→`2‖a‖

q
`2
,

where a⊗q/2 ∈ Rnq/2 is the vector such that a⊗q/2i1,...,iq/2
= ai1ai2 · · · aiq/2 for i ∈ [n]q/2 and

thus ‖a⊗q/2‖`2 = ‖a‖q/2`2
. Both |Sq−1| and

(
q
q/2

)
are each bounded above by 2q. Thus by

Claim 2.1, it is enough to show that

‖TI,s‖`1→`1 , ‖TI,s‖`∞→`∞ ≤ (q/2)!

(
1

1− λ

)q/2
.

We show this for ‖TI,s‖`∞→`∞ ; the proof for ‖TI,s‖`1→`1 is similar.
Because the entries of T are positive, ‖TI,s‖`∞→`∞ is just the largest row sum of

TI,s. Without loss of generality, assume that I = {1, 3, 5, . . . , q − 1}. Then the sum of the
entries of the row corresponding to wI = (w1, w3, w5, . . . , wq−1) is

∑
w2,w4,...,wq :w∈WI

TI,s(wI , w[q]\I) ≤ (q/2)!

σ(w)3∑
w2=σ(w)1

σ(w)5∑
w4=σ(w)3

· · ·
n∑

wq=σ(w)q−1

∏
i:si=1

λσ(w)i+1−σ(w)i

≤ (q/2)!

(
1

1− λ

)q/2
,

as desired. The first inequality follows from the fact that w ∈WI and w1, w3, w5, . . . , wq−1
determine σ(w)1, σ(w)3, σ(w)5, . . . , σ(w)q−1 exactly, and that there are at most (q/2)!
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possible orderings of w2, w4, . . . , wq. The second inequality follows from the definition of
Sq−1, which implies that for every positive even integer k ≤ q, either sk−1 = 1 or sk = 1,
along with the formula for the sum of an infinite geometric series.

Finally, Theorem 1.1 follows by considering the moment generating function and
applying Markov’s inequality.

Proof of Theorem 1.1. If λ ≥ 1 or if u ≤ 8/
√
1− λ, the theorem holds trivially as the

right-hand side is greater than 1.
Otherwise, we start by bounding the moment generating function. Let θ = (1 −

λ)u/(32(a21+ · · ·+a2n)1/2) By Theorem 3.2 and keeping in mind that by Jensen’s inequality,
odd moments are bounded above by even moments,

E [exp(θ(f1(Y1) + · · ·+ fn(Yn)))] =

∞∑
q=0

E[θ(f1(Y1) + · · ·+ fn(Yn))
q]

q!

≤ 1 +

∞∑
q=1

(1− λ)(2q−1)/2u2q−1q!
82q−1(2q − 1)!

+
(1− λ)qu2qq!

82q(2q)!

≤ 2
∞∑
q=0

(1− λ)qu2q

82qq!

= 2 exp
(
u2(1− λ)/64

)
.

By Markov’s inequality,

Pr

[
f1(Y1) + · · ·+ fn(Yn) ≥ u

(
n∑
i=1

a2i

)1/2]

= Pr

[
exp(θ(f1(Y1) + · · ·+ fn(Yn))) ≥ exp

(
θu

(
n∑
i=1

a2i

)1/2)]

≤ E [exp(θ(f1(Y1) + · · ·+ fn(Yn)))]

exp
(
θu (

∑n
i=1 a

2
i )

1/2
)

≤ 2 exp
(
u2(1− λ)/64− u2(1− λ)/32

)
= 2 exp

(
−u2(1− λ)/64

)
The final bound follows by doing the same for the left tail, and noting that if u ≥ 8/

√
1− λ,

either 4 exp(−u2(1− λ)/64) ≤ 2 exp(−u2(1− λ)/(64e)), or 2 exp(−u2(1− λ)/(64e) ≥ 1.

We note that it is possible to obtain stronger tail bounds that improve on the constant
factor by optimizing some of the calculations above, but we will not do so here.

4 Extension to vector–valued random variables

To prove Theorem 1.3 we use the techniques of Talagrand’s generic chaining. These
techniques apply to random variables that satisfy the “increment condition,” which we
define below.

Definition 4.1. A metric space (T, d) and process (Zt)t∈T satisfies the increment condi-
tion if for all u and all s, t ∈ T ,

Pr[|Zs − Zt| ≥ u] ≤ 2 exp

(
− u2

2d(s, t)2

)
.
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When (Zt)t∈T is a gaussian process, that is Zt is gaussian for all t ∈ T , we can equip
T with the canonical distance, d(s, t) = E[(Zs − Zt)2]1/2.

Theorem 1.1 essentially states that for a a Markov chain {Yi}∞i=1 and functions
f1, . . . , fn : [N ] → [−1, 1] with E[fi(Yi)] = 0, the process (Zt)t∈T defined by Zt =

(f1(Y1)t1, . . . , fn(Yn)tn) for T = Rn satisfies the increment condition if the associated
distance is

√
32e/(1− λ) times the Euclidean distance.

We also define the γ2 functional.

Definition 4.2.

γ2(T, d) = inf sup
t∈T

∞∑
i=0

2i/2 min
t′∈Ti

d(t, t′),

where the infimum is taken over all sequences of subsets T0 ⊆ T1 ⊆ · · · ⊆ T such that
|T0| = 1 and |Ti| ≤ 22

i

for i ≥ 1.

The majorizing measures theorem, due to Talagrand [19] (see also Theorem 2.4.1
in [20]), gives bounds on the expected value of supt∈T Zt, where (Zt)t∈T is a gaussian
process, in terms of γ2(T, d) where d is the canonical distance. We state the theorem
below.

Theorem 4.3 (Talagrand’s majorizing measures theorem). For some universal constant
C, and for every gaussian process (Zt)t∈T ,

1

C
γ2(T, d) ≤ E

[
sup
t∈T

Zt

]
≤ Cγ2(T, d),

where d(s, t) = E[(Zs − Zt)2]1/2.

We also use the following tail bound for any process that satisfies the increment
condition, which is given as Theorem 2.2.27 in [20].

Theorem 4.4. If the process (Zt) satisfies the increment condition, then for u > 0, Then,

Pr

[
sup
s,t∈T

|Xs −Xt| ≥ Lγ2(T, d) + uL sup
t1,t2∈T

d(t1, t2)

]
≤ L exp(−u2).

We now describe how to select T to apply the above tools to the setting of Theorem 1.3.
Let (X, ‖ · ‖) be a Banach space, and let (X∗, ‖ · ‖∗) be the dual space of X with closed
unit ball B∗. Recall that for x ∈ X,

‖x‖ = sup
x∗∈B∗

|〈x∗, x〉|.

(see for instance, Theorem 4.3 in [18]). For fixed X1, . . . , Xn ∈ X, let T ⊂ Rn be the set
of points,

T = {(〈x∗, X1〉, 〈x∗, X2〉, . . . , 〈x∗, Xn〉) : x∗ ∈ B∗} . (4.1)

Note that T is symmetric, as for every x∗ ∈ B∗, we also have −x∗ ∈ B∗. It follows that

‖f1X1 + · · ·+ fnXn‖ = sup
t∈T
〈f, t〉. (4.2)

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Consider the metric space (T, d) where T is as constructed in
Eq. (4.1) and d(s, t) =

√
32e/(1− λ)‖s− t‖`2 . Then by Theorem 1.1, the process (Zt)t∈T

defined by Zt = (f1(Y1)t1, . . . , fn(Yn)tn) satisfies the increment condition.
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Additionally, consider the Gaussian process (Z ′t)t∈T on the metric space (T, d′), so
that Zt = g1t1 + · · · + gntn for independent standard Gaussian variables g1, . . . , gn and
d′ = E[(Zs − Zt)2]1/2. Then by Theorem 4.3,

γ2(T, d) =

√
32e

1− λ
γ2(T, d

′) ≤ C

1− λ
E

[
sup
t∈T

Z ′t

]
The theorem then follows from Theorem 4.4 the observation that sups,t |Zs − Zt| =

2 supt Zt as T is symmetric, and Eq. (4.2).

4.1 Comparison to matrices with independent entries

We prove Corollary 1.4, which follows from a straightforward application of Theo-
rem 1.3.

In order to apply Theorem 1.3, we need a bound on E[‖X ′‖S∞ ] when X ′ is the random
symmetric matrix whose entries are

X ′i,j =

{
gi,jbi,j if (i, j) ∈ I
gj,ibi,j otherwise

where gi,j ∼ N (0, 1) are independent standard Gaussian random variables (rather than
Rademacher random variables, as in Eq. (1.5)). This setting was also discussed in [2] in
which it was shown that

E[‖X ′‖S∞ ] ≤ C(σ + σ∗
√
log d), (4.3)

where σ and σ∗ are defined as in Eq. (1.6).

Proof of Corollary 1.4. Let X ′ be the random matrix defined above. Then by Theorem 1.3
and Eq. (4.3),

E[‖X‖S∞ ] ≤
C√
1− λ

E[‖X ′‖S∞ ] ≤
C ′√
1− λ

(σ + σ∗
√
log d)

Finally, because |f(v)| ≤ 1 for all v ∈ [N ] and B has positive entries, it follows that
‖X‖S∞ ≤ ‖B‖S∞ , always.

A Appendix

In this section, we give the tools needed to prove Lemma 3.1. They are either taken
directly from [17] (which is based on techniques used in [15]), or are straightforward
adaptations.

Claim A.1. For all k ≥ 1, matrices R1, . . . , Rk ∈ RN×N , and distributions π over [N ]

〈1, R1EπR2Eπ · · ·EπRk1〉L2(π)
=

k∏
i=1

〈1, Ri1〉L2(π) ≤
k∏
i=1

‖Ri1‖L1(π) .

Claim A.2. For all k ≥ 1, vectors u1, . . . , uk ∈ RN , Ui = diag(ui) for all i, distributions π
over [N ] and matrices T1, . . . , Tk−1 ∈ RN×N ,

‖U1T1U2T2 · · ·Tk−1Uk1‖L1(π)
≤ ‖uk‖L∞(π)

k−1∏
i=1

‖ui‖L∞(π)‖Ti‖L2(π) .

Proof. By Jensen’s inequality, the right-hand side is bounded above by

‖U1T1U2T2 · · ·Tk−1Uk1‖L2(π)

and the claim follows by the definition of operator norm, and the fact that ‖Ui‖L2(π)→L2(π)=

‖ui‖L∞(π).
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Lemma A.3. Let k ≥ 1 be an integer. Let Sk ⊂ {0, 1}k be the subset of {0, 1}k of vectors
s with no two consecutive 0s and so that s1, sk = 1. Let π be a distribution over [N ],
let u1, . . . , uk+1 ∈ RN be N -dimensional vectors such that utiπ = 0 for all i, and let
Ui = diag(ui) for all i. Finally, let T1, . . . , Tk ∈ RN×N . Then,∣∣∣〈1, U1(T1 + Eπ)U2(T2 + Eπ)U3 · · ·Uk(Tk + Eπ)Uk+11〉L2(π)

∣∣∣ ≤
‖u1‖L∞(π)‖u2‖L∞(π) · · · ‖uk+1‖L∞(π)

∑
s∈Sk

∏
j:sj=1

‖Tj‖L2(π)→L2(π) . (A.1)

Proof. For j = 1, . . . , k, let Tj,0 = Eπ and Tj,1 = Tj . Then using the triangle inequality,
the left-hand side of (A.1) is at most

∑
s∈{0,1}k

∣∣∣∣∣∣∣
〈
1,

 k∏
j=1

UjTj,sj

Uk+11

〉
L2(π)

∣∣∣∣∣∣∣ =
∑
s∈Sk

∣∣∣∣∣∣∣
〈
1,

 k∏
j=1

UjTj,sj

Uk+11

〉
L2(π)

∣∣∣∣∣∣∣ , (A.2)

since the terms corresponding to vectors s with two consecutive zeros or with sk = 0

are equal to 0 because in these cases the term EπUjEπ = 0 (or EπUk+11 = 0) ap-
pears. Additionally, terms corresponding to vectors s with s1 = 0 are equal to 0, as
〈1, U1Eπv〉L2(π) = 0 for all v ∈ RN .

Fix an s ∈ Sk, and let r1, r2, . . . , r` be the indices of s that are 0. By Claim A.1, the
term corresponding to s in Eq. (A.2) is at most

‖U1T1UT2 · · ·Tr1−1Ur11‖L1(π) · ‖Ur1+1Tr1+1Ur1+2Tr1+2 · · ·Tr2−1Ur21‖L1(π) · · ·
‖Ur`+1Tr`+1Ur`+2Tr`+2 · · ·TkUk+11‖L1(π) .

The claim now follows by applying Claim A.2.
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