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Abstract

Let µ be a compactly supported probability measure on the positive half-line and let
µ�t be the free multiplicative convolution semigroup. We show that the support of µ�t

varies continuously as t changes. We also obtain the asymptotic length of the support
of these measures.
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1 Introduction

Let µ and ν be probability measures on [0,∞). The free convolution µ� ν represents
the distribution of the product of two positive operators in a tracial W ∗-probability space
whose distributions are µ and ν respectively. We refer to [15] for an introduction to free
probability theory.

Given a probability measure µ on [0,∞) not being a Dirac measure at 0, it is known
[3] that, for any t > 1, the fractional free convolution power µ�t is defined appropri-
ately, such that it interpolates the discrete convolution semigroup {µ�n}n∈Z+ , where
µ�n = µ� · · ·� µ is the n-fold free convolution. This is the multiplicative analogue
of Nica-Speicher semigroup [12] defined firstly for the free additive convolution. The
free convolution semigroups obey many regularity properties and has been studied
extensively. See [16] for a survey on free convolutions and other topics in free probability
theory.

Denote by supp(µ) the topological support of the measure µ. We will prove the
following result about continuity of the support of µ�t, which is the analogue of the work
[17] for free multiplicative convolution on the positive half line.

Theorem 1.1. Let µ be a compactly supported probability measure on [0,∞). Then the
supports of measures {supp(µ�t)}t>1 change continuously in the Hausdorff metric with
respect to the parameter t ∈ (1,∞).

We then study the asymptotic size of the support.
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Free multiplicative convolution semigroups

Theorem 1.2. Let µ be a compactly supported probability measure on [0,∞) with mean
m1(µ) =

∫∞
0
s dµ(s) = 1. We denote by ||µ�t|| = max{m : m ∈ supp(µ�t)}. Then

lim
t→∞

||µ�t||/t = eV,

where V is the variance of µ.

Theorem 1.2 generalizes Kargin’s work [11] (see also [1]) to continuous semigroups.
Our proof is different from Kargin’s proof, but uses the density formula for free convolu-
tion semigroups [10, 19]. In addition, we obtain formulas for the limits of the left and
right edges of the support of (µ�t)1/t in Proposition 4.2, where the measure (µ�t)1/t is
the push-forward of µ�t under the map x 7→ xt. This was also studied by Tucci [13] and
Haagerup-Möller [9] for discrete semigroups.

The free multiplicative convolution on the unit circle is usually studied together with
the positive half line case. It was shown in [2] that many results can be deduced from
results on free additive convolutions. Since analogue results were known in additive case,
a separate work on free multiplicative convolution on the unit circle become unnecessary.
Hence we focus on measures on the positive half line in our article.

An estimation for the size of support of free additive convolution semigroups was
obtained in [5, 8]. In light of the proof of Theorem 1.2, it is very likely higher order
asymptotic expansion can be obtained for free additive convolution semigroups. We plan
to investigate it in a forthcoming work as it may have some applications in quantum
information theory.

The paper is organized as follows. In Section 2, we collect some known regularity
results about free multiplicative convolution semigroups. In Section 3, we give the proof
for Theorem 1.1. We study the asymptotic behaviour of free multiplicative convolution
semigroups and give the proof for Theorem 1.2 in Section 4.

2 Free convolution on the positive half line

Let µ be a probability measure on [0,∞). The ψ-transform of µ is the moment
generating function of µ defined as

ψµ(z) =

∫ ∞
0

zs

1− zs
dµ(s),

which is analytic on Ω = C\[0,∞). The η-transform of µ is defined as ηµ = ψµ/(1 + ψµ)

on the same domain as the ψ-transform. It is know [3] that the map η is a map from C+

to itself when it is restricted to C+.
Any probability measure µ on [0,∞) can be recovered from its η-transform by Stieltjes

inversion formula. Indeed, we have the identity

Gµ

(
1

z

)
=

z

1− ηµ(z)
, z ∈ Ω, (2.1)

where Gµ is the Cauchy transform of µ. If µ is not a Dirac measure at 0, then η′µ(z) > 0

for z < 0, and therefore ηµ|(−∞, 0) is invertible. Let η−1µ be the inverse of ηµ and set
Σµ(z) = η−1µ (z)/z, where z < 0 is sufficiently small. The free convolution of two such
probability measures µ and ν is determined by Σµ�ν(z) = Σµ(z)Σν(z). In particular, the
n-th order free multiplicative convolution power µ�n of µ satisfies the identity

Σµ�n(z) = Σnµ(z), (2.2)

where z < 0 is sufficiently small.
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Free multiplicative convolution semigroups

We now briefly recall the construction of µ�t which interpolates the relation (2.2) as
follows. Let κµ(z) = z/ηµ(z) for z ∈ Ω and one can write κµ(z) = exp(u(z)), where u is
an analytic function on Ω and can be expressed as

u(z) = a+

∫ ∞
0

1 + zs

z − s
dρ(s), (2.3)

where a = − log |ηµ(i)| and ρ is a finite positive Borel measure on [0,∞) following [10,
Proposition 4.1]. To eliminate the trivial case, we assume that ρ 6= 0 in this article.

We define Φt(z) := z exp[(t − 1)u(z)]. It turned out that the function Φt is the right
inverse of Voiculescu subordination function ωt [3]. More precisely, we have

Φt(ωt(z)) = z, and ηµ�t(z) = ηµ(ωt(z))

for all z ∈ Ω and t > 1. It turns out that the function ωt can be regarded as the η-
transform of a �-infinitely divisible measure on [0,∞) and the function ηµ�t can be
retrieved from ωt. We refer to [3, 10] for more details.

The following result was proved in [3].

Theorem 2.1. Let µ be a probability measure on [0,∞) and t > 1.

1. The functions ηµ�t and ωt can be extended as continuous functions defined on C+.

2. A point x ∈ (0,∞) satisfies ηµ�t(x) = 1 if and only if x−1/t is an atom of µ with mass

µ({x−1/t}) ≥ (t− 1)/t. If µ({x−1/t}) > (t− 1)/t, then 1/x is an atom of µ�t, and

µ�t ({1/x}) = tµ({x−1/t})− (t− 1).

3. The nonatomic part of µ�t is absolutely continuous and its density is continuous
except at the finitely many points x such that ηµ�t(x) = 1.

4. The density of µ�t is analytic at all points where it is different from zero.

The study of regularity property of free convolutions relies on Voiculescu’s subordi-
nation result [3, 4, 7, 14]. By a careful study of boundary behaviour of subordination
functions, we were able to give a formula for the density function of absolutely continu-
ous part of µ�t in [10]. To describe our result, we need some auxiliary functions studied
in [10].

Let g be a function defined on (0,∞)× (0, π) by

g(r, θ) = −=u(reiθ)

θ
=
r sin θ

θ

∫ ∞
0

s2 + 1

r2 − 2rs cos θ + s2
dρ(s). (2.4)

The derivative ∂g
∂θ < 0 for (r, θ) ∈ (0,∞) × (0, π) if ρ 6= 0. Hence, the function g(r, θ) is

decreasing on (0, π) for any r ∈ (0,∞) fixed. We also have limθ→π− g(r, θ) = 0. We then
set

g(r) = lim
θ→0

g(r, θ) =

∫ ∞
0

r(s2 + 1)

(r − s)2
dρ(s)

and

At(r) = inf

{
θ ∈ (0, π) : g(r, θ) <

1

t− 1

}
.

The fact that limθ→π− g(r, θ) = 0 and ∂g
∂θ < 0 implies that the function At(r) is always

defined for r ∈ (0,∞). It is clear that if At(r) > 0, then g(r,At(r)) = 1/(t− 1). We further
let ht(r) := Φt(re

iAt(r)) and

V +
t =

{
r ∈ (0,∞) : g(r) >

1

t− 1

}
= {r ∈ (0,∞) : At(r) > 0}.
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Free multiplicative convolution semigroups

It is clear that V +
s ⊂ V +

t if s ≤ t. It is known [3] that limz→0 ωt(z) = 0, we hence set
ht(0) = 0 as the function Φt is the inverse of ωt. The function ht is a homeomorphism of
[0,∞) and limr→∞ ht(r) =∞.

The functions defined above can be used to describe the image set Ωt = ωt(C
+). The

set Ωt is in fact the connected component of Φ−1t (C+ ∪ (−∞, 0)) having the negative half
line as part of its boundary. Moreover, we proved that

Ωt = {reiθ : At(r) < θ < π, r ∈ (0,∞)},

and
∂Ωt = (−∞, 0] ∪ {reiθ : θ = At(r), r ∈ (0,∞)}.

The following result is one of main results in [10].

Theorem 2.2. Suppose that µ is a probability measure on [0,∞) not being a Dirac
measure at 0 and t > 1. Let St =

{
1/ht(r) : r ∈ V +

t

}
. Then the following statements hold.

(1) The measure (µ�t)ac is equal to the closure of St.

(2) The density of (µ�t)ac is analytic on the set St and is given by

d(µ�t)ac

dx

(
1

ht(r)

)
=

1

π

ht(r)lt(r) sin θt(r)

1− 2lt(r) cos θt(r) + l2t (r)
, r ∈ V +

t ,

where lt(r) = r exp<u(reiAt(r)) and θt(r) = tAt(r)/(t− 1) for r ∈ V +
t .

(3) The number of components in supp(µ�t)ac is a decreasing function of t ∈ (1,∞).

3 Continuity of free convolution semigroups

In this section, we assume that the probability measure µ on [0,∞) is compactly
supported and µ is not a Dirac measure.

Lemma 3.1. Set κµ(z) = z/ηµ(z) and write κµ(z) = exp[u(z)], where u is give by (2.3).
Then limx→0− κ(x) = 1/m1(µ) and∫ ∞

0

1

s
dρ(s) = logm1(µ) + a.

Moreover, when m1(µ) = 1, we have∫ ∞
0

1 + s2

s2
dρ(s) = V,

where V is the variance of µ.

Proof. Observe that limr→0− ηµ(r)/r = m1(µ) by the definition of ηµ. We write u as

u(z) = a− z
∫ ∞
0

1 dρ(s)− (z2 + 1)

∫ ∞
0

1

s− z
dρ(s),

and hence limr→0− u(r) = a−
∫∞
0

1/s dρ(s). We then deduce the first equation.
We calculate

u′(r) = −
∫ ∞
0

s2 + 1

(r − s)2
dρ(s),

for all r < 0 and, by Monotone Convergence Theorem,

lim
r→0−

u′(r) = −
∫ ∞
0

s2 + 1

s2
dρ(s).
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Free multiplicative convolution semigroups

On the other hand, when m1(µ) = 1, we have u(z) = − ln (ηµ(z)/z) = − ln(1 + V z + o(z)),
which yields that u′(0−) = −V . Therefore, we deduce that

V =

∫ ∞
0

s2 + 1

s2
dρ(s).

This finishes the proof.

The following result is from [10].

Lemma 3.2. Let I be an open interval contained in (V +
t )c, then ρ(I) = 0 and g is strictly

convex on I.

Proposition 3.3. Let 1 < α < β. Write κµ(z) = exp[u(z)], where u is an analytic function
given by (2.3).

(1) There exists a > 0 such that [0, a) ∩ supp(ρ) = ∅. Moreover, the set V +
t is uniformly

bounded away from zero and increasing for all t ∈ (α, β).

(2) Given any b > 0, the sets V +
t ∩ [0, b] are Hausdorff continuous with respect to t.

Proof. By the definition of η-transform, we have ηµ(0) = 0 and η′µ(0) = m1(µ) <∞. The
identity

z

1− ηµ(z)
= Gµ

(
1

z

)
=

∫ ∞
0

1

1/z − x
dµ(x) = z ·

∞∑
n=0

(zx)ndµ(x),

implies that ηµ is real on some interval [0, a) under the assumption that µ is compactly
supported. It follows that u is also real on [0, a) and hence ρ([0, a)) = 0 by Stieltjes
inversion formula. Hence, the function g is finite in a neighborhood of zero and g(r) =∫∞
0

r(s2+1)
(r−s)2 dρ(s)→ 0 as r → 0. We see that V +

t is bounded away from 0. The definition

of V +
t immediately implies that V +

t1 ⊂ V
+
t2 if t1 < t2. This proves the first assertion.

We prove the second claim by contradiction. Assume that we have tn → t ∈ (α, β)

and (V +
tn ∩ [0, b]) 6⊂ Bε(V +

t ∩ [0, b]), where Bε(V
+
t ∩ [0, b]) is an ε-neighborhood of the set

V +
t ∩ [0, b]. We then have a series rn ∈ (V +

tn ∩ [0, b])\Bε(V +
t ). We may assume that rn → r

by passing to a subsequence if necessary. Lemma 3.2 implies that supp(ρ) ⊂ Bε(V +
t ) and

hence we can take the limit

g(r) = lim
n→∞

g(rn) = lim
n→∞

1

tn − 1
=

1

t− 1
,

where we used the choice of rn ∈ V +
tn . On the other hand, g ≤ 1

t−1 and g is strictly convex

on any open interval contained in (V +
t )c. This contradiction finishes the proof.

Proposition 3.4. Given b > 0, the graphs {reiAt(r) : r ∈ V +
t ∩ (0, b)} are continuous in

the Hausdorff metric for t ∈ (1,∞).

Proof. For 0 < c < π, we define V +
t,c = {r ∈ V +

t : At(r) ≥ c}. Given ε > 0, we will start to
prove that there exists δ > 0 such that

At(r) < As(r) ≤ At(r) + ε (3.1)

for all r ∈ V +
t,c ∩ (0, b) if t < s < t + δ. The first inequality follows from the fact that

the function g(r, θ) is a decreasing function of θ. To prove the second inequality by

contradiction, we assume that there exists a series tn > t, tn → t and rn, r ∈ V +
t,c ∩ (0, b)

such that rn → r and Atn(rn) > At(rn) + ε. We then have

g(rn, At(rn) + ε) ≥ g(rn, Atn(rn)) =
1

tn − 1
.
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Free multiplicative convolution semigroups

As At(rn) ≥ c, we can take the limit and obtain

g(r,At(r) + ε) ≥ 1

t− 1
,

due to the fact that the integrand in (2.4) is bounded away from zero and At is continuous.
On the other hand, we have g(r,At(r)) = 1

t−1 and g(r, θ) is a strictly decreasing function
of θ. This contradiction yields the second inequality in (3.1).

Given ε > 0, using the similar argument as above, we can prove that there exists
δ > 0 such that

At(r)− ε ≤ As(r) < At(r) (3.2)

for all r ∈ V +
t,c ∩ (0, b) if t− δ < s < t.

We claim that
sup{As(r) : r ∈ (0, b)\V +

t,c} ≤ 2c

if s − t is small enough. Assume that is not the case, then there exists a series tn → t

and rn → r, where rn ∈ (0, b)\V +
t,c, such that Atn(rn) > 2c. We have

g(rn, 2c) ≥ g(rn, Atn(rn)) =
1

tn − 1
.

Taking the limit, we have g(r, 2c) ≥ 1/(t−1), which implies that At(r) ≥ 2c. As the cluster
set of rn /∈ V +

t,c, r is either not in V +
t,c or an end point of V +

t,c, it must satisfy At(r) ≤ c. This
contradiction proves our claim.

The desired assertion follows by above results and applying Proposition 3.3.

Proposition 3.5. If µ({0}) > 0, then µ�t({0}) = µ({0}) for all t > 1. If 0 ∈ supp((µ�s)ac)

for some s > 1, then 0 ∈ supp((µ�t)ac) for all t > 1.

Proof. It follows from [6] that rGµ(r) → µ({0}) as r → 0− on the negative half line.
Hence, µ({0}) = 1 + limr→−∞ ψµ(r). For any t > 0, one can check that limr→−∞ φt(r) =

−∞, and hence limr→−∞ ωt(r) = −∞. We then have

µ�t({0}) = 1 + lim
r→−∞

ψµ(ωt(r)) = 1 + lim
r→−∞

ψµ(r) = µ({0}).

Assuming that 0 ∈ supp((µ�s)ac) for some s > 1, we claim that ρ is not compactly
supported. Indeed, if ρ is compactly supported, then limr→∞ g(r) = 0 and hence the

set V +
s is compact and the set supp((µ�s)ac) is bounded away from zero by the part (1)

of Theorem 2.2, which contradicts the assumption. The fact that the measure ρ is not
compactly supported in turn implies that Vt is not compact by the fact that supp(ρ) ⊂ V +

t

(see Lemma 3.2). According to Theorem 2.2, supp((µ�t)ac) is the closure of the set
{1/ht(r) : r ∈ V +

t }. We see that 0 ∈ supp((µ�t)ac) for all t > 1 in this case.

Lemma 3.6. Given t > 1, there exists b > 0 such that At(r) = 0 for all r ∈ (0, b). For any
c > b, we have

lim
s→t

ht(r)

hs(r)
= 1

uniformly on r ∈ (b, c).

Proof. By Proposition 3.3, the set [0, a) ∩ supp(ρ) = ∅ for some a > 0. Hence,

g(r) =

∫ ∞
0

r(s2 + 1)

(r − s)2
dρ(s) <

1

t− 1

and At(r) = 0 in some interval (0, b).
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Free multiplicative convolution semigroups

Recall that ht(r) = Φt(re
iAt(r)). Fix r ∈ (b, c) and denote z1 = reiAt(r) and z2 = reiAs(r).

We have

ht(r)

hs(r)
=

Φt(z1)

Φs(z2)
=
r| exp

(
(t− 1)u(z1)

)
|

r| exp
(
(s− 1)u(z2)

)
|

=
∣∣exp

(
(t− 1)(u(z1)− u(z2)

)∣∣ · ∣∣exp
(
(t− s)u(z1)

)∣∣ .
Let δ < t− 1 and s ∈ (t− δ, t+ δ). To estimate the first factor, we note that

r sin(θ)

θ

∫ ∞
0

s2 + 1

|z − s|2
dρ(s) <

1

t− δ − 1
,

for any z = reiθ ∈ Ωs ∩ Ωt and

u′(z) = −
∫ ∞
0

1 + s2

(z − s)2
dρ(s),

which yields that

|u′(z)| ≤
∫ ∞
0

1 + s2

|z − s|2
dρ(s)

≤ θ

r sin(θ)
· 1

t− δ − 1
.

We now choose an arc γ, disjoint from (−∞, 0), of the circle centered at 0 of radius r that
connects z1 and z2, and obtain

|u(z1)− u(z2)| =
∣∣∣∣∫
γ

u′(z)dz

∣∣∣∣ ≤ 1

t− δ − 1

∫
γ

θ

r sin(θ)
|dz|

=
1

t− δ − 1

∫
γ

θ

sin(θ)
dθ. (3.3)

The proof of Proposition 3.4 implies, in particular, that lims→tAs(r) = At(r) uniformly on
(b, c). Hence, the arc γ can be chosen uniformly small for all r ∈ (b, c) and the right hand
side of (3.3) tends to zero uniformly on (b, c) as s→ t.

We then estimate the second factor exp
(
(t − s)u(z1)

)
. We note that ht([b, c]) is

a compact set which does not contain 0. Recall that Φt(z) = z exp[(t − 1)u(z)] and
ht(r) = Φt(re

iAt(r)). Hence, lims→t exp
(
(t − s)u(z1)

)
= 1 uniformly for r ∈ (b, c). The

desired result then follows.

We are now in a position to prove the main result of this section.

Proof of Theorem 1.1. We fix t > 1 and 0 < ε < t − 1. Following Lemma 3.6, let a > 0

such that [0, a) ∩ supp(ρ) = ∅ and b > 0 such that At(r) = 0 in (0, b).
Suppose 0 ∈ supp((µ�t)ac). Let c > 0 be the unique point satisfying ht(c) = 2/ε. We

want to prove that
supp((µ�s)ac) ⊂ Bε(supp((µ�t)ac)), (3.4)

if |s− t| is small enough. It suffices to prove that

supp((µ�s)ac) ∩ [ε,∞) ⊂ Bε(supp(µ�t)ac).

Let s so that |s − t| is small enough satisfying hs(c) > 1/ε (this is possible due to
Lemma 3.6). For such s, we have

supp((µ�s)ac) ∩ [ε,∞) ⊂ {1/x : x = hs(r), r ∈ V +
s ∩ [b, c]},
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Free multiplicative convolution semigroups

due to the fact that the function hs is an increasing homeomorphism of (0,∞) and Part
(1) of Theorem 2.2. Provided that |s− t| is small enough, it then follows from Part (2) of
Proposition 3.3 and Lemma 3.6 that we have

{1/x : x = hs(r), r ∈ V +
s ∩ [b, c]} ⊂Bε

(
{1/x : x = ht(r), r ∈ V +

t ∩ [b, c]}
)

⊂Bε(supp(µ�t)ac),

thanks also to Part (1) in Theorem 2.2. We thus proved (3.4). The same proof works to
deduce

supp((µ�t)ac) ⊂ Bε(supp((µ�s)ac)), (3.5)

if |s− t| is small enough.
Suppose 0 /∈ supp((µ�t)ac). We recall that

supp((µ�t)ac) = {1/x : x = ht(r), r ∈ V +
t ∩ [b, c]}.

Then inclusions (3.4) and (3.5) follow from Lemma 3.6 and Part (1) of Theorem 2.2 in
this case as well.

Hence, the family of sets {supp(µ�t)ac} is Hausdorff continuous. Finally, atoms of µ�t

change continuously as time evolves by Theorem 2.1 and Proposition 3.5. This completes
the proof.

4 Estimation of norm of free multiplicative convolution
semigroups

We give an estimation of the size of the support of µ�t for a compactly supported
probability measure on [0,∞).

Proof of Theorem 1.2. Let a > 0 be such that supp(ρ) ⊂ (a,∞). As limr→0 g(r) = 0, the
set V +

t is bounded away from zero. Let αt = inf{r : r ∈ V +
t } > 0. By Theorem 2.2, we

have

||µ�t|| = 1

ht(αt)
.

By the choice of αt, we have At(αt) = 0,

g(αt) =

∫ ∞
0

αt(s
2 + 1)

(αt − s)2
dρ(s) =

1

t− 1

and
ht(αt) = Φt(αt) = αt exp[(t− 1)u(αt)].

By (2.3) and the assumption m1(µ) = 1, applying Lemma 3.1, we have

u(αt) = a+

∫ ∞
0

1 + αts

αt − s
dρ(s)

=

∫ ∞
0

(
1

s
+

1 + αts

αt − s

)
dρ(s)

=

∫ ∞
0

αt(1 + s2)

(αt − s)2
αt − s
s

dρ(s)

= −
∫ ∞
0

αt(1 + s2)

(αt − s)2
dρ(s) + αt

∫ ∞
0

αt(1 + s2)

(αt − s)2
1

s
dρ(s)

= − 1

t− 1
+ αt

∫ ∞
0

αt(1 + s2)

(αt − s)2
1

s
dρ(s).
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It is clear that limt→∞ αt = 0 and hence

1 = lim
t→∞

g(αt)(t− 1) = lim
t→∞

(tαt) ·
(∫ ∞

0

s2 + 1

s2
dρ(s)

)
, (4.1)

which yields that limt→∞(tαt) = 1/V thanks to Lemma 3.1. We then obtain

lim
t→∞

u(αt)(t− 1) = −1 + lim
t→∞

[(t− 1)αt] · αt
∫ ∞
0

1 + s2

(αt − s)2
1

s
dρ(s)

= −1

as supp(ρ) is bounded below from zero.
Finally, we have

lim
t→∞

||µ�t||
t

= lim
t→∞

1

tht(αt)

= lim
t→∞

(
1

t · αt
· exp[−(t− 1)u(αt)]

)
= eV,

where we used (4.1). This proves the desired result.

Proposition 4.1. Let µ be a probability measure supported on [c, d] with c, d > 0. There
exists T such that the sets V +

t and supp(µ�t) have only one connected component for all
t > T .

Proof. The case is clear when the measure is a Dirac measure. Assume now that µ is
not a Dirac measure. The measure ρ determined by (2.3) is compactly supported since
supp(µ) ⊂ [c, d]. Hence limr→0 g(r) = limr→∞ g(r) = 0 and V +

t is bounded away from
zero and∞.

Let [a, b] ⊂ (0,∞) be a finite interval such that supp(ρ) ⊂ [a, b]. Fix t0 > 1. We claim
that infr∈[a,b] g(r) is positive. If not, there is a sequence rn ∈ [a, b] converging to some
c ∈ [a, b] such that g(rn)→ 0. Fatou’s lemma implies that

0 = lim inf
n→∞

∫ b

a

rn(s2 + 1)

(rn − s)2
dρ(s) ≥

∫ b

a

c(s2 + 1)

(c− s)2
dρ(s),

and so ρ = 0, which contradicts to our assumption that µ is not a Dirac measure.
Taking T > 1 such that infr∈[a,b] g(r) > 1/(T − 1), it follows that [a, b] ⊂ V +

T . Since

g(r) =
∫ b
a
r(s2+1)
(r−s)2 dρ(s) is decreasing on (b,∞) and increasing on (0, a), we conclude that

V +
T = {r > 0 : g(r) > 1/(T − 1)} is a finite interval and so has only one connected

component.

Proposition 4.2. Let µ be a probability measure on [c, d] not being a Dirac measure for
some c, d > 0. Define

at = sup{a : a < x for all x ∈ supp(µ�t)},

and
bt = inf{b : b > x for all x ∈ supp(µ�t)}.

Then

lim
t→∞

(at)
1/t =

(∫ ∞
0

x−1dµ(x)

)−1
, and lim

t→∞
(bt)

1/t =

∫ ∞
0

x dµ(x).

ECP 24 (2019), paper 4.
Page 9/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP202
http://www.imstat.org/ecp/


Free multiplicative convolution semigroups

Proof. The set V +
t is bounded away from zero and∞. Let αt = min{r : r ∈ V +

t } > 0 and
βt = max{r : r ∈ V +

t } < ∞, we have limt→∞ αt = 0 and limt→∞ βt = 0 by Theorem 2.2.
By rescaling the measure and applying Theorem 1.2, we have

lim
t→∞

t−1m−t1 bt = eV/m2
1.

Taking the logarithm of this and dividing by t, one easily shows that limt→∞(bt)
1/t = m1.

For a1/tt , consider the push-forward µ∗ of the measure µ by the map x 7→ 1/x and use
the property that (µ∗)�t = (µ�t)∗. We deduce that

lim
t→∞

(at)
1/t =

(∫ ∞
0

x−1dµ(x)

)−1
.

This finishes the proof.

Remark 4.3. Proposition 4.2 should be compared with the main result in [9] (see also
[13]), where weak limits of rescaled discrete semigroups were studied. Our method is
not suitable to study weak limits, but works to estimate the asymptotic bound of free mul-
tiplicative convolution semigroups. The interested reader can easily generalize results
in [9] to continuous free multiplicative convolution semigroups using their method.

Remark 4.4. Free multiplicative convolution semigroups can also be defined for mea-
sures on the unit circle [3]. Let µ be a probability measure on the unit circle not being a
Dirac measure, it is known in [18, Proposition 3.26] that µ�t converges to the uniform
measure on the unit circle as t→∞.
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